AnalyzeHOLE: An Integrated Wellbore Flow Analysis Tool
Energy Technology Data Exchange (ETDEWEB)
Keith J. Halford
2009-10-01
Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically
The model coupling fluid flow in reservoir with flow in horizontal wellbore
Energy Technology Data Exchange (ETDEWEB)
Liu, Xiangping; Jiang, Zhixiang [RIPED-TEXACO Horizontal Well Technology Laboratory (United States)
1998-12-31
Three-dimensional pressure distributions of oil flow in a reservoir with horizontal well were derived, and a new formula to calculate pressure drop along the horizontal wellbore was developed based on the principle of conservation of matter and momentum. The formula considers the effect of influx into the horizontal wellbore from the reservoir on pressure drop in the wellbore. A mathematical model to couple fluid flow in the reservoir with flow in the horizontal wellbore is presented. Model results and experimental data showed good correspondence. Results showed the influence of pressure drop on well performance. 13 refs., 2 tabs., 7 figs.
Gas and Oil Flow through Wellbore Flaws
Hatambeigi, M.; Anwar, I.; Reda Taha, M.; Bettin, G.; Chojnicki, K. N.; Stormont, J.
2017-12-01
We have measured gas and oil flow through laboratory samples that represent two important potential flow paths in wellbores associated with the Strategic Petroleum Reserve (SPR): cement-steel interfaces (microannuli) and cement fractures. Cement fractures were created by tensile splitting of cement cores. Samples to represent microannuli were created by placing thin steel sheets within split cement cores so flow is channeled along the cement-steel interface. The test sequence included alternating gas and oil flow measurements. The test fluids were nitrogen and silicone oil with properties similar to a typical crude oil stored in the SPR. After correcting for non-linear (inertial) flow when necessary, flows were interpreted as effective permeability and hydraulic aperture using the cubic law. For both samples with cement fractures and those with cement-steel interfaces, initial gas and oil permeabilities were comparable. Once saturated with oil, a displacement pressure had to be overcome to establish gas flow through a sample, and the subsequent gas permeability were reduced by more than 50% compared to its initial value. Keywords: wellbore integrity, leakage, fracture, microannulus, SPR. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of NTESS/Honeywell, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2017-8168 A
The Development of a Gas-Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus.
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-11-18
The measurement of wellbore annulus gas-liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas-liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.
The Development of a Gas–Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-01-01
The measurement of wellbore annulus gas–liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas–liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work. PMID:27869708
The Development of a Gas–Liquid Two-Phase Flow Sensor Applicable to CBM Wellbore Annulus
Directory of Open Access Journals (Sweden)
Chuan Wu
2016-11-01
Full Text Available The measurement of wellbore annulus gas–liquid two-phase flow in CBM (coalbed methane wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas–liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.
Heating production fluids in a wellbore
Orrego, Yamila; Jankowski, Todd A.
2016-07-12
A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.
Wellbore Seal Repair Using Nanocomposite Materials
Energy Technology Data Exchange (ETDEWEB)
Stormont, John [Univ. of New Mexico, Albuquerque, NM (United States)
2016-08-31
Nanocomposite wellbore repair materials have been developed, tested, and modeled through an integrated program of laboratory testing and numerical modeling. Numerous polymer-cement nanocomposites were synthesized as candidate wellbore repair materials using various combinations of base polymers and nanoparticles. Based on tests of bond strength to steel and cement, ductility, stability, flowability, and penetrability in opening of 50 microns and less, we identified Novolac epoxy reinforced with multi-walled carbon nanotubes and/or alumina nanoparticles to be a superior wellbore seal material compared to conventional microfine cements. A system was developed for testing damaged and repaired wellbore specimens comprised of a cement sheath cast on a steel casing. The system allows independent application of confining pressures and casing pressures while gas flow is measured through the specimens along the wellbore axis. Repair with the nanocomposite epoxy base material was successful in dramatically reducing the flow through flaws of various sizes and types, and restoring the specimen comparable to an intact condition. In contrast, repair of damaged specimens with microfine cement was less effective, and the repair degraded with application of stress. Post-test observations confirm the complete penetration and sealing of flaws using the nanocomposite epoxy base material. A number of modeling efforts have supported the material development and testing efforts. We have modeled the steel-repair material interface behavior in detail during slant shear tests, which we used to characterize bond strength of candidate repair materials. A numerical model of the laboratory testing of damaged wellbore specimens was developed. This investigation found that microannulus permeability can satisfactorily be described by a joint model. Finally, a wellbore model has been developed that can be used to evaluate the response of the wellbore system (casing, cement, and microannulus
Energy Technology Data Exchange (ETDEWEB)
Yarlong Wang [Petro-Geotech Inc., Calgary, AB (Canada); Papamichos, Euripides [IKU Petroleum Research, Trondheim (Norway)
1999-07-01
The coupled heat-fluid-stress problem of circular wellbore or spherical cavity subjected to a constant temperature change and a constant fluid flow rate is considered. Transient analytical solutions for temperature, pore pressure and stress are developed by coupling conductive heat transfer with Darcy fluid flow in a poroelastic medium. They are applicable to lower permeability porous media suitable for liquid-waste disposal and also simulating reservoir for enhanced oil recovery, where conduction dominates the heat transfer process. A full range of solutions is presented showing separately the effects of temperature and fluid flow on pore pressure and stress development. It is shown that injection of warm fluid can be used to restrict fracture development around wellbores and cavities and generally to optimise a fluid injection operation. Both the limitations of the solutions and the convective flow effect are addressed. (Author)
A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.
Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang
2018-01-01
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
Wellbore stability analysis and its application in the Fergana basin, central Asia
Chuanliang, Yan; Jingen, Deng; Baohua, Yu; Hailong, Liu; Fucheng, Deng; Zijian, Chen; Lianbo, Hu; Haiyan, Zhu; Qin, Han
2014-02-01
Wellbore instability is one of the major problems hampering the drilling speed in the Fergana basin. Comprehensive analysis of the geological and engineering data in this area indicates that the Fergana basin is characterized by high in situ stress and plenty of natural fractures, especially in the formations which are rich in bedding structure and have several high-pressure systems. Complex accidents such as wellbore collapse, sticking, well kick and lost circulation happen frequently. Tests and theoretical analysis reveals that the wellbore instability in the Fergana basin was influenced by multiple interactive mechanisms dominated by the instability of the bedding shale. Selecting a proper drilling fluid density and improving the sealing characteristic of the applied drilling fluid is the key to preventing wellbore instability in the Fergana basin. The mechanical mechanism of wellbore instability in the Fergana basin was analysed and a method to determine the proper drilling fluid density was proposed. The research results were successfully used to guide the drilling work of the Jida-4 well; compared with the Jida-3 well, the drilling cycle of the Jida-4 well was reduced by 32%.
Wellbore Microannulus Characterization and Modeling.
Energy Technology Data Exchange (ETDEWEB)
Matteo, Edward N; Sobolik, Steven R.; Stormont, John C.; Taha, Mahmoud Reda; Gomez, Steven Paul
2016-05-01
Subsurface geologic formations used for extracting resources such as oil and gas can subsequently be used as a storage reservoir for the common greenhouse gas CO_{2}, a concept known as Carbon Capture and Storage (CCS). Pre-existing wellbores penetrate the reservoirs where supercritical CO_{2} is to be injected. These wellbores can potentially be a pathway for contamination if CO_{2} leaks through wellbore flaws to an overlying aquifer or the atmosphere. Characterizing wellbore integrity and providing zonal isolation by repairing these wellbore flaws is of critical importance to the long-term isolation of CO_{2} and success of CCS. This research aims to characterize the microannulus region of the cement sheath-steel casing interface in terms of its compressibility and permeability. A mock-up of a wellbore system was used for lab-scale testing. Specimens, consisting of a cement sheath cast on a steel casing with microannuli, were subjected to confining pressures and casing pressures in a pressure vessel that allows simultaneous measurement of gas flow along the axis of the specimen. The flow was interpreted as the hydraulic aperture of the microannuli. Numerical models are used to analyze stress and displacement conditions along the casing-cement interface. These numerical results provide good agreement with closed-form elastic solutions. Numerical models incorporating flaws of varying dimensions along the casing-cement interface were then developed to describe the microannulus region. A joint model is used to describe the hydraulic aperture of the microannulus region, whose mechanical stiffness is altered in response to the imposed stress state across the joint interface. The aperture-stress behavior is based upon laboratory measurements of hydraulic aperture as a function of imposed stress conditions. This investigation found that microannulus permeability can satisfactorily be described by a joint model and that the constitutive
Measurement of flowing water salinity within or behind wellbore casing
International Nuclear Information System (INIS)
Arnold, D.M.
1981-01-01
Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)P 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is to be determined. (author)
Simulation of a SAGD well blowout using a reservoir-wellbore coupled simulator
Energy Technology Data Exchange (ETDEWEB)
Walter, J.; Vanegas, P.; Cunha, L.B. [Alberta Univ., Edmonton, AB (Canada); Worth, D.J. [C-FER Technologies, Edmonton, AB (Canada); Crepin, S. [Petrocedeno, Caracas (Venezuela)
2008-10-15
Single barrier completion systems are typically used in SAGD projects due to the lack of equipment suitable for high temperature SAGD downhole environments. This study used a wellbore and reservoir coupled thermal simulator tool to investigate the blowout behaviour of a steam assisted gravity drainage (SAGD) well pair when the safety barrier has failed. Fluid flow pressure drop through the wellbore and heat losses between the wellbore and the reservoir were modelled using a discretized wellbore option and a semi-analytical model. The fully coupled mechanistic model accounted for the simultaneous transient pressure and temperature variations along the wellbore and the reservoir. The simulations were used to predict flowing potential and fluid compositions of both wells in a SAGD well pair under various flowing conditions. Blowout scenarios were created for 3 different points in the well pair's life. Three flow paths during the blowout were evaluated for both the production and injection wells. Results of the study were used to conduct a comparative risk assessment between a double barrier and a single barrier completion. The modelling study confirmed that both the injection and production wells had the potential for blowouts lasting significant periods of time, with liquid rates over 50 times the normal production liquid rates. The model successfully predicted the blowout flow potential of the SAGD well pairs. 8 refs., 3 tabs., 18 figs.
Directory of Open Access Journals (Sweden)
Bisheng Wu
2017-12-01
Full Text Available Accurate characterization of heat transfer in a wellbore during drilling, which includes fluid circulation, is important for wellbore stability analysis. In this work, a pseudo-3D model is developed to simultaneously calculate the heat exchange between the flowing fluid and the surrounding media (drill pipe and rock formation and the in-plane thermoelastic stresses. The cold drilling fluid descends through the drill pipe at constant injection rates and returns to the ground surface via the annulus. The fluid circulation will decrease the wellbore bottom temperature and reduce the near-wellbore high compressive stress, potentially leading to tensile fracturing of the well. The governing equations for the coupled heat transfer stress problem are formulated to ensure that the most important parameters are taken into account. The wellbore is subject to a non-hydrostatic in situ far-field stress field. In modeling heat exchange between fluid and surrounding media, the heat transfer coefficients are dependent on fluid properties and flow behavior. Analytical solutions in the Laplace space are obtained for the temperatures of the fluid in both the drill pipe and annulus and for the temperature and stress changes in the formation. The numerical results in the time domain are obtained by using an efficient inversion approach. In particular, the near-well stresses are compared for the cases with fixed and time-dependent cooling wellbore conditions. This comparison indicates that the using a fixed temperature wellbore conditions may over-estimate or under-estimate the bottom-hole stress change, potentially leading to wellbore stability problems.
Energy Technology Data Exchange (ETDEWEB)
Carey, James W. [Los Alamos National Laboratory; Bachu, Stefan [Alberta Innovates
2012-06-21
In this presentation, we review the current state of knowledge on wellbore integrity as developed in the IEA Greenhouse Gas Programme's Wellbore Integrity Network. Wells are one of the primary risks to the successful implementation of CO{sub 2} storage programs. Experimental studies show that wellbore materials react with CO{sub 2} (carbonation of cement and corrosion of steel) but the impact on zonal isolation is unclear. Field studies of wells in CO{sub 2}-bearing fields show that CO{sub 2} does migrate external to casing. However, rates and amounts of CO{sub 2} have not been quantified. At the decade time scale, wellbore integrity is driven by construction quality and geomechanical processes. Over longer time-scales (> 100 years), chemical processes (cement degradation and corrosion) become more important, but competing geomechanical processes may preserve wellbore integrity.
Pulse testing in the presence of wellbore storage and skin effects
Energy Technology Data Exchange (ETDEWEB)
Ogbe, D.O.; Brigham, W.E.
1984-08-01
A pulse test is conducted by creating a series of short-time pressure transients in an active (pulsing) well and recording the observed pressure response at an observation (responding) well. Using the pressure response and flow rate data, the transmissivity and storativity of the tested formation can be determined. Like any other pressure transient data, the pulse-test response is significantly influenced by wellbore storage and skin effects. The purpose of this research is to examine the influence of wellbore storage and skin effects on interference testing in general and on pulse-testing in particular, and to present the type curves and procedures for designing and analyzing pulse-test data when wellbore storage and skin effects are active at either the responding well or the pulsing well. A mathematical model for interference testing was developed by solving the diffusivity equation for radial flow of a single-phase, slightly compressible fluid in an infinitely large, homogeneous reservoir. When wellbore storage and skin effects are present in a pulse test, the observed response amplitude is attenuated and the time lag is inflated. Consequently, neglecting wellbore storage and skin effects in a pulse test causes the calculated storativity to be over-estimated and the transmissivity to be under-estimated. The error can be as high as 30%. New correlations and procedures are developed for correcting the pulse response amplitude and time lag for wellbore storage effects. Using these correlations, it is possible to correct the wellbore storage-dominated response amplitude and time lag to within 3% of their expected values without wellbore storage, and in turn to calculate the corresponding transmissivity and storativity. Worked examples are presented to illustrate how to use the new correction techniques. 45 references.
Method for measurement of flowing water salinity within or behind wellbore casing
International Nuclear Information System (INIS)
Arnold, D.M.
1986-01-01
Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)p 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is determined
Wellbore integrity analysis of a natural CO2 producer
Crow, Walter
2010-03-01
Long-term integrity of existing wells in a CO2-rich environment is essential for ensuring that geological sequestration of CO2 will be an effective technology for mitigating greenhouse gas-induced climate change. The potential for wellbore leakage depends in part on the quality of the original construction as well as geochemical and geomechanical stresses that occur over its life-cycle. Field data are essential for assessing the integrated effect of these factors and their impact on wellbore integrity, defined as the maintenance of isolation between subsurface intervals. In this report, we investigate a 30-year-old well from a natural CO2 production reservoir using a suite of downhole and laboratory tests to characterize isolation performance. These tests included mineralogical and hydrological characterization of 10 core samples of casing/cement/formation, wireline surveys to evaluate well conditions, fluid samples and an in situ permeability test. We find evidence for CO2 migration in the occurrence of carbonated cement and calculate that the effective permeability of an 11′-region of the wellbore barrier system was between 0.5 and 1 milliDarcy. Despite these observations, we find that the amount of fluid migration along the wellbore was probably small because of several factors: the amount of carbonation decreased with distance from the reservoir, cement permeability was low (0.3-30 microDarcy), the cement-casing and cement-formation interfaces were tight, the casing was not corroded, fluid samples lacked CO2, and the pressure gradient between reservoir and caprock was maintained. We conclude that the barrier system has ultimately performed well over the last 3 decades. These results will be used as part of a broader effort to develop a long-term predictive simulation tool to assess wellbore integrity performance in CO2 storage sites. © 2009 Elsevier Ltd. All rights reserved.
THE EFFECT OF WELL-BORE REVERSE FLOW OF FLUID ON ...
African Journals Online (AJOL)
ES Obe
1980-03-01
Mar 1, 1980 ... ABSTRACT. Well-bore storage may dominate the bottom-hole pressure profile of ... Type- curve matching is however only accurate when the storage factor .... numerical integration technique ... existence of a measure of well-.
Evolution of Cement-Casing Interface in Wellbore Microannuli under Stress
Matteo, E. N.; Gomez, S. P.; Sobolik, S. R.; Taha, M. R.; Stormont, J.
2017-12-01
Laboratory tests measured the compressibility and flow characteristics of wellbore microannuli. Specimens, consisting of a cement sheath cast on a steel casing with microannuli, were subjected to confining pressures and casing pressures in a pressure vessel that allows simultaneous measurement of gas flow along the axis of the specimen. The flow was interpreted as the hydraulic aperture of the microannuli. We found the hydraulic aperture decreases as confining stress is increased. The larger the initial hydraulic aperture, the more it decreases as confining stress increases. The changes in measured hydraulic aperture correspond to changes of many orders of magnitude in permeability of the wellbore system, suggesting that microannulus response to stress changes may have a significant impact on estimates of wellbore leakage. A finite element model of a wellbore system was developed that included elements representing the microannulus that incorporated the hyperbolic joint model. The thickness of the microannulus elements is equivalent to the hydraulic aperture. The calculated normal stress across the microannulus used in the numerical implementation was found to be similar to the applied confining pressure in the laboratory tests. The microannulus elements were found to reasonably reproduce laboratory behavior during loading from confining pressure increases. The calculated microannulus response to internal casing pressure changes was less stiff than measured, which may be due to hardening of the microannulus during testing. In particular, the microannulus model could be used to estimate CO2 leakage as a function of formation stress changes and/or displacements, or loading from casing expansion or contraction during wellbore operations. Recommendations for future work include an application of the joint model with a thermally active large-scale reservoir coupled with pore pressure caused by dynamic CO2 injection and subsequent microannulus region affects. Sandia
Energy Technology Data Exchange (ETDEWEB)
Souza Junior, J.C. de; Campos, W.; Lopes, D.; Moura, L.S.S. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Thomas, A. Clecio F. [Universidade Estadual do Ceara (UECE), CE (Brazil)
2008-07-01
This work addresses to the development of a hydrodynamic and heat transfer mechanistic model for steam flow in injection wellbores. The problem of two-phase steam flow in wellbores has been solved recently by using available empirical correlations from petroleum industry (Lopes, 1986) and nuclear industry (Moura, 1991).The good performance achieved by mechanistic models developed by Ansari (1994), Hasan (1995), Gomez (2000) and Kaya (2001) supports the importance of the mechanistic approach for the steam flow problem in injection wellbores. In this study, the methodology to solve the problem consists in the application of a numerical method to the governing equations of steam flow and a marching algorithm to determine the distribution of the pressure and temperature along the wellbore. So, a computer code has been formulated to get numerical results, which provides a comparative study to the main models found in the literature. Finally, when compared to available field data, the mechanistic model for downward vertical steam flow in wellbores gave better results than the empirical correlations. (author)
WELLBORE INSTABILITY: CAUSES AND CONSEQUENCES
Directory of Open Access Journals (Sweden)
Borivoje Pašić
2007-12-01
Full Text Available Wellbore instability is one of the main problems that engineers meet during drilling. The causes of wellbore instability are often classified into either mechanical (for example, failure of the rock around the hole because of high stresses, low rock strength, or inappropriate drilling practice or chemical effects which arise from damaging interaction between the rock, generally shale, and the drilling fluid. Often, field instances of instability are a result of a combination of both chemical and mechanical. This problem might cause serious complication in well and in some case can lead to expensive operational problems. The increasing demand for wellbore stability analyses during the planning stage of a field arise from economic considerations and the increasing use of deviated, extended reach and horizontal wells. This paper presents causes, indicators and diagnosing of wellbore instability as well as the wellbore stresses model.
Directory of Open Access Journals (Sweden)
Daolun Li
2015-01-01
Full Text Available A mathematical dual porosity and dual permeability numerical model based on perpendicular bisection (PEBI grid is developed to describe gas flow behaviors in shale-gas reservoirs by incorporating slippage corrected permeability and adsorbed gas effect. Parametric studies are conducted for a horizontal well with multiple infinite conductivity hydraulic fractures in shale-gas reservoir to investigate effect of matrix-wellbore flow, natural fracture porosity, and matrix porosity. We find that the ratio of fracture permeability to matrix permeability approximately decides the bottom hole pressure (BHP error caused by omitting the flow between matrix and wellbore and that the effect of matrix porosity on BHP is related to adsorption gas content. When adsorbed gas accounts for large proportion of the total gas storage in shale formation, matrix porosity only has a very small effect on BHP. Otherwise, it has obvious influence. This paper can help us understand the complex pressure transient response due to existence of the adsorbed gas and help petroleum engineers to interpret the field data better.
International Nuclear Information System (INIS)
Gu, Hao; Cheng, Linsong; Huang, Shijun; Li, Bokai; Shen, Fei; Fang, Wenchao; Hu, Changhao
2015-01-01
Highlights: • A comprehensive mathematical model was established to estimate wellbore heat efficiency of steam injection wells. • A simplified approach of predicting steam pressure in wellbores was proposed. • High wellhead injection rate and wellhead steam quality can improve wellbore heat efficiency. • High wellbore heat efficiency does not necessarily mean good performance of heavy oil recovery. • Using excellent insulation materials is a good way to save water and fuels. - Abstract: The aims of this work are to present a comprehensive mathematical model for estimating wellbore heat efficiency and to analyze performance of steam injection for heavy oil recovery. In this paper, we firstly introduce steam injection process briefly. Secondly, a simplified approach of predicting steam pressure in wellbores is presented and a complete expression for steam quality is derived. More importantly, both direct and indirect methods are adopted to determine the wellbore heat efficiency. Then, the mathematical model is solved using an iterative technique. After the model is validated with measured field data, we study the effects of wellhead injection rate and wellhead steam quality on steam injection performance reflected in wellbores. Next, taking cyclic steam stimulation as an example, we analyze steam injection performance reflected in reservoirs with numerical reservoir simulation method. Finally, the significant role of improving wellbore heat efficiency in saving water and fuels is discussed in detail. The results indicate that we can improve the wellbore heat efficiency by enhancing wellhead injection rate or steam quality. However, high wellbore heat efficiency does not necessarily mean satisfactory steam injection performance reflected in reservoirs or good performance of heavy oil recovery. Moreover, the paper shows that using excellent insulation materials is a good way to save water and fuels due to enhancement of wellbore heat efficiency
Directory of Open Access Journals (Sweden)
Yi Li
2017-01-01
Full Text Available With the blossoming of intermittent energy, compressed air energy storage (CAES has attracted much attention as a potential large-scale energy storage technology. Compared with caverns as storage vessels, compressed air energy storage in aquifers (CAESA has the advantages of wide availability and lower costs. The wellbore can play an important role as the energy transfer mechanism between the surroundings and the air in CAESA system. In this paper, we investigated the influences of the well screen length on CAESA system performance using an integrated wellbore-reservoir simulator (T2WELL/EOS3. The results showed that the well screen length can affect the distribution of the initial gas bubble and that a system with a fully penetrating wellbore can obtain acceptably stable pressurized air and better energy efficiencies. Subsequently, we investigated the impact of the energy storage scale and the target aquifer depth on the performance of a CAESA system using a fully penetrating wellbore. The simulation results demonstrated that larger energy storage scales exhibit better performances of CAESA systems. In addition, deeper target aquifer systems, which could decrease the energy loss by larger storage density and higher temperature in surrounding formation, can obtain better energy efficiencies.
Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling
Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting
2018-02-01
Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep
Quantifying drag on wellbore casings in moving salt sheets
Weijermars, R.; Jackson, M. P. A.; Dooley, T. P.
2014-08-01
Frontier hydrocarbon development projects in the deepwater slopes of the Gulf of Mexico Basin, Santos Basin and Lower Congo Basin all require wells to cross ductile layers of autochthonous or allochthonous salt moving at peak rates of 100 mm yr-1. The Couette-Poiseuille number is introduced here to help pinpoint the depth of shear stress reversal in such salt layers. For any well-planned through salt, the probable range of creep forces of moving salt needs to be taken into account when designing safety margins and load-factor tolerance of the well casing. Drag forces increase with wellbore diameter, but more significantly with effective viscosity and speed of the creeping salt layer. The potential drag forces on cased wellbores in moving salt sheets are estimated analytically using a range of salt viscosities (1015-1019 Pa s) and creep rates (0-10 mm yr-1). Drag on perfectly rigid casing of infinite strength may reach up to 13 Giga Newton per meter wellbore length in salt having a viscosity of 1019 Pa s. Well designers may delay stress accumulations due to salt drag when flexible casing accommodates some of the early displacement and strain. However, all creeping salt could displace, fracture and disconnect well casing, eventually. The shear strength of typical heavy duty well casing (about 1000 MPa) can be reached due to drag by moving salt. Internal flow of salt will then fracture the casing near salt entry and exit points, but the structural damage is likely to remain unnoticed early in the well-life when the horizontal shift of the wellbore is still negligibly small (at less than 1 cm yr-1). Disruption of casing and production flow lines within the anticipated service lifetime of a well remains a significant risk factor within distinct zones of low-viscosity salt which may reach ultrafast creep rates of 100 mm yr-1.
Wellbore stability in shales considering chemo-poroelastic effects
Energy Technology Data Exchange (ETDEWEB)
Araujo, Ewerton M.P.; Pastor, Jorge A.S.C.; Fontoura, Sergio A.B.; Rabe, Claudio [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. de Engenharia Civil. Grupo de Tecnologia e Engenharia de Petroleo
2004-07-01
Under compaction and low geothermal gradients are deep water characteristics. Both under compaction and low geothermal gradients generate considerable thickness of smectite-rich shales. These rocks are the major source of wellbore stability problems, because they are susceptible to adverse physico-chemical reactions when in contact with inadequate drilling fluids. Due shales are low permeability rocks diffusion processes dominate the changes of pore pressure around wellbore. Diffusion of fluids, ions and temperature occurs in shales during drilling and demand a fully coupled modelling taking account these factors. Despite temperature importance, in this paper wellbore stability in shales is analyzed through a model that considers only the coupling between poroelastic and physico-chemical effects. The coupled equations are solved analytically and have been implemented in a computational simulator with user-friendly interface. Time-dependent simulations of wellbore stability in shales are presented for a typical deep water scenario. The results show that physico-chemical effects change pore pressure around wellbore and have high impact on the wellbore stability. (author)
Energy Technology Data Exchange (ETDEWEB)
Park, Byoung Yoon
2014-02-01
Oil leaks were found in wellbores of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interbed between the caprock bottom and salt top. A three dimensional finite element model, which contains wellbore element blocks and allows each cavern to be configured individually, is constructed to investigate the wellbore damage mechanism. The model also contains element blocks to represent interface between each lithology and a shear zone to examine the interbed behavior in a realistic manner. The causes of the damaged casing segments are a result of vertical and horizontal movements of the interbed between the caprock and salt dome. The salt top subsides because the volume of caverns below the salt top decrease with time due to salt creep closure, while the caprock subsides at a slower rate because the caprock is thick and stiffer. This discrepancy yields a deformation of the well. The deformed wellbore may fail at some time. An oil leak occurs when the wellbore fails. A possible oil leak date of each well is determined using the equivalent plastic strain failure criterion. A well grading system for a remediation plan is developed based on the predicted leak dates of each wellbore.
Energy Technology Data Exchange (ETDEWEB)
Wiles, L.E.
1979-10-01
The purpose of the work is to define the hydrodynamic and thermodynamic response of a CAES dry porous media reservoir subjected to simulated air mass cycling. The knowledge gained will provide, or will assist in providing, design guidelines for the efficient and stable operation of the air storage reservoir. The analysis and results obtained by two-dimensional modeling of dry reservoirs are presented. While the fluid/thermal response of the underground system is dependent on many parameters, the two-dimensional model was applied only to those parameters that entered the analysis by virtue of inclusion of the vertical dimension. In particular, the parameters or responses that were quantified or characterized include wellbore heat transfer, heat losses to the vertical boundaries of the porous zone, gravitationally induced flows, producing length of the wellbore, and the effects of nonuniform permeability. The analysis of the wellbore heat transfer included consideration of insulation, preheating (bubble development with heated air), and air mass flow rate.
Coupling of the reservoir simulator TOUGH and the wellbore simulator WFSA
Energy Technology Data Exchange (ETDEWEB)
Hadgu, T.; Zimmerman, R.W.; Bodvarsson [Lawrence Berkeley Laboratory, Berkeley, CA (United States)
1995-03-01
The reservoir simulator TOUGH and the wellbore simulator WFSA have been coupled, so as to allow simultaneous modeling of the flow of geothermal brine in the reservoir as well as in the wellbore. A new module, COUPLE, allows WFSA to be called as a subroutine by TOUGH. The mass flowrate computed by WFSA now serves as a source/sink term for the TOUGH wellblocks. Sample problems are given to illustrate the use of the coupled codes. One of these problems compares the results of the new simulation method to those obtained using the deliverability option in TOUGH. The coupled computing procedure is shown to simulate more accurately the behavior of a geothermal reservoir under exploitation.
Numerical studies of CO2 and brine leakage into a shallow aquifer through an open wellbore
Wang, Jingrui; Hu, Litang; Pan, Lehua; Zhang, Keni
2018-03-01
Industrial-scale geological storage of CO2 in saline aquifers may cause CO2 and brine leakage from abandoned wells into shallow fresh aquifers. This leakage problem involves the flow dynamics in both the wellbore and the storage reservoir. T2Well/ECO2N, a coupled wellbore-reservoir flow simulator, was used to analyze CO2 and brine leakage under different conditions with a hypothetical simulation model in water-CO2-brine systems. Parametric studies on CO2 and brine leakage, including the salinity, excess pore pressure (EPP) and initially dissolved CO2 mass fraction, are conducted to understand the mechanism of CO2 migration. The results show that brine leakage rates increase proportionally with EPP and inversely with the salinity when EPP varies from 0.5 to 1.5 MPa; however, there is no CO2 leakage into the shallow freshwater aquifer if EPP is less than 0.5 MPa. The dissolved CO2 mass fraction shows an important influence on the CO2 plume, as part of the dissolved CO2 becomes a free phase. Scenario simulation shows that the gas lifting effect will significantly increase the brine leakage rate into the shallow freshwater aquifer under the scenario of 3.89% dissolved CO2 mass fraction. The equivalent porous media (EPM) approach used to model the wellbore flow has been evaluated and results show that the EPM approach could either under- or over-estimate brine leakage rates under most scenarios. The discrepancies become more significant if a free CO2 phase evolves. Therefore, a model that can correctly describe the complex flow dynamics in the wellbore is necessary for investigating the leakage problems.
Drilling subsurface wellbores with cutting structures
Mansure, Arthur James; Guimerans, Rosalvina Ramona
2010-11-30
A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.
Self-healing polymer cement composites for geothermal wellbore applications
Rod, K. A.; Fernandez, C.; Childers, I.; Koech, P.; Um, W.; Roosendaal, T.; Nguyen, M.; Huerta, N. J.; Chun, J.; Glezakou, V. A.
2017-12-01
Cement is vital for controlling leaks from wellbores employed in oil, gas, and geothermal operations by sealing the annulus between the wellbore casing and geologic formation. Wellbore cement failure due to physical and chemical stresses is common and can result in significant environmental consequences and ultimately significant financial costs due to remediation efforts. To date numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This research investigates novel polymer-cement composites which could function at most geothermal temperatures. Thermal stability and mechanical strength of the polymer is attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. It has been demonstrated that the bonding between cement and casing is more predictable when polymer is added to cement and can even improve healing of adhesion break when subjected to stresses such as thermal shock. Fractures have also been healed, effectively reducing permeability with fractures up to 0.3-0.5mm apertures, which is two orders of magnitude larger than typical wellbore fractures. Additionally, tomography analysis was used to determine internal structure of the cement polymer composite and imaging reveals that polymers fill fractures in the cement and between the cement and casing. By plugging fractures that occur in wellbore cement, reducing permeability of fractures, both environmental safety and economics of subsurface operations will be improved for geothermal energy and oil and gas production.
Exploring the hole cleaning parameters of horizontal wellbore using two-phase Eulerian CFD approach
Directory of Open Access Journals (Sweden)
Satish K Dewangan
2016-03-01
Full Text Available The present investigation deals with the flow through concentric annulus with the inner cylinder in rotation. This work has got its importance in the petroleum industries in relation to the wellbore drilling. In wellbore drilling, the issue of the hole-cleaning is very serious problem especially in case of the horizontal drilling process. The effect of the various parameters like slurry flow velocity, inner cylinder rotational speed, inlet solid concentration which affect hole cleaning was discussed. Their effect on the pressure drop, wall shear stress, mixture turbulence kinetic energy, and solid-phase velocity and slip velocity were analyzed, which are responsible for solid-phase distribution. Flow was considered to be steady, incompressible and two-phase slurry flow with water as carrier fluid and silica sand as the secondary phase. Eulerian approach was used for modeling the slurry flow. Silica sand was considered of spherical shape with particle size of 180 µm. ANSYS FLUENT software was used for modeling and solution. Plotting was done using Tecplot software and Microsoft Office.
Cementing a wellbore using cementing material encapsulated in a shell
Energy Technology Data Exchange (ETDEWEB)
Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael
2016-08-16
A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.
Cementing a wellbore using cementing material encapsulated in a shell
Energy Technology Data Exchange (ETDEWEB)
Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Floyd, III, William C.; Spadaccini, Christopher M.; Vericella, John J.; Cowan, Kenneth Michael
2017-03-14
A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.
Identifiability of location and magnitude of flow barriers in slightly compressible flow
Kahrobaei, S.; Mansoori Habib Abadi, M.; Joosten, G.J.P.; Hof, Van den P.M.J.; Jansen, J.D.
2015-01-01
Classic identifiability analysis of flow barriers in incompressible single-phase flow reveals that it is not possible to identify the location and permeability of low-permeability barriers from production data (wellbore pressures and rates), and that only averaged reservoir properties in between
Identifiability of location and magnitude of flow barriers in slightly compressible flow
Kahrobaei, S.; Mansoori Habib Abadi, M.; Joosten, G.J.P.; Van den Hof, P.; Jansen, J.D.
2016-01-01
Classic identifiability analysis of flow barriers in incompressible single-phase flow reveals that it is not possible to identify the location and permeability of low-permeability barriers from production data (wellbore pressures and rates), and that only averaged reservoir properties in between
Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore
Zeng, Fanhui; Cheng, Xiaozhao; Guo, Jianchun; Chen, Zhangxin; Tao, Liang; Liu, Xiaohua; Jiang, Qifeng; Xiang, Jianhua
2018-06-01
It is widely accepted that a fracture can be induced at a wellbore surface when the fluid pressure overcomes the rock tensile strength. However, few models of this phenomenon account for the fluid penetration effect. A rock is a typical permeable, porous medium, and the transmission of pressure from a wellbore to the surrounding rock temporally and spatially perturbs the effective stresses. In addition, these induced stresses influence the fracture initiation pressure. To gain a better understanding of the penetration effect on the initiation pressure of a permeable formation, a comprehensive formula is presented to study the effects of the in situ stresses, rock mechanical properties, injection rate, rock permeability, fluid viscosity, fluid compressibility and wellbore size on the magnitude of the initiation pressure during fracturing of an open-hole wellbore. In this context, the penetration effect is treated as a consequence of the interaction among these parameters by using Darcy’s law of radial flow. A fully coupled analytical procedure is developed to show how the fracturing fluid infiltrates the rock around the wellbore and considerably reduces the magnitude of the initiation pressure. Moreover, the calculation results are validated by hydraulic fracturing experiments in hydrostone. An exhaustive sensitivity study is performed, indicating that the local fluid pressure induced from a seepage effect strongly influences the fracture evolution. For permeable reservoirs, a low injection rate and a low viscosity of the injected fluid have a significant impact on the fracture initiation pressure. In this case, the Hubbert and Haimson equations to predict the fracture initiation pressure are not valid. The open-hole fracture initiation pressure increases with the fracturing fluid viscosity and fluid compressibility, while it decreases as the rock permeability, injection rate and wellbore size increase.
International Nuclear Information System (INIS)
Boak, D.M.; Dotson, L.; Aguilar, R.
1997-01-01
This study involved the evaluation and documentation of cases in which petroleum wellbores were enlarged beyond the nominal hole diameter as a consequence of erosion during exploratory drilling, particularly as a function of gas flow into the wellbore during blowout conditions. A primary objective was to identify analogs to potential wellbore enlargement at the Waste Isolation Pilot Plant (WIPP) during inadvertent human intrusion. Secondary objectives were to identify drilling scenarios associated with enlargement, determine the physical extent of enlargement, and establish the physical properties of the formation in which the enlargement occurred. No analogs of sufficient quality to establish quantitative limits on wellbore enlargement at the WIPP disposal system were identified. However, some information was obtained regarding the frequency of petroleum well blowouts and the likelihood that such blowouts would bridge downhole, self-limiting the surface release of disposal-system material. Further work would be necessary, however, to determine the conditions under which bridging could occur and the extent to which the bridging might be applicable to WIPP. In addition, data on casing sizes of petroleum boreholes in the WIPP vicinity support the use of a 12-1/4 inch borehole size in WIPP performance assessment calculations. Finally, although data are limited, there was no evidence of significant wellbore enlargement in any of three blowouts that occur-red in wellbores in the Delaware Basin (South Culebra Bluff Unit No. 1, Energy Research and Development Administration (ERDA) 6, and WIPP 12)
In-situ Mechanical Manipulation of Wellbore Cements as a Solution to Leaky Wells
Kupresan, D.; Radonjic, M.; Heathman, J.
2013-12-01
Wellbore cement provides casing support, zonal isolation, and casing protection from corrosive fluids, which are essential for wellbore integrity. Cements can undergo one or more forms of failure such as debonding at cement/formation and cement/casing interface, fracturing and defects within cement matrix. Failures and defects within cement will ultimately lead to fluids migration, resulting in inter-zonal fluid migration and premature well abandonment. There are over 27,000 abandoned oil and gas wells only in The Gulf of Mexico (some of them dating from the late 1940s) with no gas leakage monitoring. Cement degradation linked with carbon sequestration can potentially lead to contamination of fresh water aquifers with CO2. Gas leaks can particularly be observed in deviated wells used for hydraulic fracking (60% leakage rate as they age) as high pressure fracturing increases the potential for migration pathways. Experimental method utilized in this study enables formation of impermeable seals at interfaces present in a wellbore by mechanically manipulating wellbore cement. Preliminary measurements obtained in bench scale experiments demonstrate that an impermeable cement/formation and cement/casing interface can be obtained. In post-modified cement, nitrogen gas flow-through experiments showed complete zonal isolation and no permeability in samples with pre-engineered microannulus. Material characterization experiments of modified cement revealed altered microstructural properties of cement as well as changes in mineralogical composition. Calcium-silicate-hydrate (CSH), the dominant mineral in hydrated cement which provides low permeability of cement, was modified as a result of cement pore water displacement, resulting in more dense structures. Calcium hydroxide (CH), which is associated with low resistance of cement to acidic fluids and therefore detrimental in most wellbore cements, was almost completely displaced and/or integrated in CSH as a result of
A coupled conductive-convective thermo-poroelastic solution and implications for wellbore stability
Energy Technology Data Exchange (ETDEWEB)
Wang, Yarlong [Petro-Geotech Inc., Suite no.300, 840-6th Avenue, S.W., Calgary, AB (Canada) T2P 3E5; Dusseault, Maurice B. [Porous Media Research Institute, Department of Earth Sciences, University of Waterloo, Waterloo, ON (Canada) N2L 361
2003-06-01
Steam injection is widely used in heavy oil reservoirs to enhance oil recovery; elevated temperatures increase fluid mobility in several ways, but can also generate damage through shearing, crushing of weak grains, and casing impairment by shear, collapse, or buckling. Disposal of cold produced water by injection can generate thermally induced extensional fracturing, increasing the effective wellbore radius. Drilling with long open-hole sections can lead to rock temperature changes as large as 30-40 C at the casing shoe through mud heating at depth and upward mud circulation, dramatically impacting wellbore stability. Clearly, thermal stress analysis of open and cased boreholes is of primary interest for drilling and completion planning, as bottom-hole temperature changes can have as large an impact as bottom-hole pressure changes. Local wellbore stresses are the sum of far-field, pore pressure and thermally induced stresses; they may be highly inhomogeneous because of different rock properties and heat transport processes. These stresses, combined with thermal weakening and pore pressure changes, may lead to phenomena such as formation damage, sand production, shale shrinkage, and various modes of instability (shearing, spalling, fracturing, etc.). Previous studies of thermally induced stresses were primarily based on assumptions of low permeability and heat conduction only; this is inadequate when high-permeability formations are encountered. To analyze induced stresses and formation damage, a geomechanics model that is fully coupled to diffusive transport processes is employed. By assuming a constant wellbore pressure and temperature boundary condition, a closed-form solution including heat conduction and convection is obtained for the stresses near a cylindrical wellbore. The stability of an open-hole subject to non-isothermal, non-hydrostatic in situ loading and various conditions is then investigated. Our studies indicate that maximum tangential stresses are
Optimum position for wells producing at constant wellbore pressure
Energy Technology Data Exchange (ETDEWEB)
Camacho-Velazquez, R.; Rodriguez de la Garza, F. [Univ. Nacional Autonoma de Mexico, Mexico City (Mexico); Galindo-Nava, A. [Inst. Mexicanos del Petroleo, Mexico City (Mexico)]|[Univ. Nacional de Mexico, Mexico City (Mexico); Prats, M.
1994-12-31
This paper deals with the determination of the optimum position of several wells, producing at constant different wellbore pressures from a two-dimensional closed-boundary reservoirs, to maximize the cumulative production or the total flow rate. To achieve this objective they authors use an improved version of the analytical solution recently proposed by Rodriguez and Cinco-Ley and an optimization algorithm based on a quasi-Newton procedure with line search. At each iteration the algorithm approximates the negative of the objective function by a cuadratic relation derived from a Taylor series. The improvement of rodriguez and Cinco`s solution is attained in four ways. First, an approximation is obtained, which works better at earlier times (before the boundary dominated period starts) than the previous solution. Second, the infinite sums that are present in the solution are expressed in a condensed form, which is relevant for reducing the computer time when the optimization algorithm is used. Third, the solution is modified to take into account the possibility of having wells starting to produce at different times. This point allows them to deal with the problem of getting the optimum position for an infill drilling program. Last, the solution is extended to include the possibility of changing the value of wellbore pressure or being able to stimulate any of the wells at any time. When the wells are producing at different wellbore pressures it is found that the optimum position is a function of time, otherwise the optimum position is fixed.
The successful use of transverse hydraulic fractures from horizontal wellbores
Energy Technology Data Exchange (ETDEWEB)
Crosby, D. G.; Yang, Z.; Rahman, S. S. [New South Wales Univ., NSW (Australia)
1998-12-31
Since a significant proportion of the world`s recoverable hydrocarbon resources exist in reservoirs possessing permeabilities of less than one milli-Darcy (mD), some form of permeability enhancement or stimulation is necessary if the hydrocarbons are to be exploited economically. Multi-stage, transversely fractured horizontal wellbores are shown to have the potential to greatly increase production from low permeability formations. To overcome the problems caused by near-wellbore tortuosity, common to wells with multiple fracturing from the same perforated interval, a criterion was devised which predicts the wellbore pressures to initiate secondary multiple transverse hydraulic fractures in close proximity to primary fractures. The criterion, confirmed by laboratory experiments, demonstrates that transversely fractured horizontal wellbores have limited capacities to resist the initiation of multiple fractures from adjacent perforations. This characteristic can be used in designing hydraulic fracture treatments to establish injection pressure limits or threshold pressures, above which additional multiple fractures will initiate and propagate from the wellbore. 23 refs., 1 tab., 10 figs.
Radonjic, M.; Du, H.
2015-12-01
Shale caprocks and wellbore cements are two of the most common subsurface impermeable barriers in the oil and gas industry. More than 60% of effective seals for geologic hydrocarbon bearing formations as natural hydraulic barriers constitute of shale rocks. Wellbore cements provide zonal isolation as an engineered hydraulic barrier to ensure controlled fluid flow from the reservoir to the production facilities. Shale caprocks were deposited and formed by squeezing excess formation water and mineralogical transformations at different temperatures and pressures. In a similar process, wellbore cements are subjected to compression during expandable tubular operations, which lead to a rapid pore water propagation and secondary mineral precipitation within the cement. The focus of this research was to investigate the effect of wellbore cement compression on its microstructure and mechanical properties, as well as a preliminary comparison of shale caprocks and hydrated cement. The purpose of comparative evaluation of engineered vs natural hydraulic barrier materials is to further improve wellbore cement durability when in contact with geofluids. The micro-indentation was utilized to evaluate the change in cement mechanical properties caused by compression. Indentation experiments showed an overall increase in hardness and Young's modulus of compressed cement. Furthermore, SEM imaging and Electron Probe Microanalysis showed mineralogical alterations and decrease in porosity. These can be correlated with the cement rehydration caused by microstructure changes as a result of compression. The mechanical properties were also quantitatively compared to shale caprock samples in order to investigate the similarities of hydraulic barrier features that could help to improve the subsurface application of cement in zonal isolation. The comparison results showed that the poro-mechanical characteristics of wellbore cement appear to be improved when inherent pore sizes are shifted to
Sobolik, S. R.; Gomez, S. P.; Matteo, E. N.; Stormont, J.
2015-12-01
This paper will present the results of large-scale three-dimensional calculations simulating the hydrological-mechanical behavior of a CO2injection reservoir and the resulting effects on wellbore casings and sealant repair materials. A critical aspect of designing effective wellbore seal repair materials is predicting thermo-mechanical perturbations in local stress that can compromise seal integrity. The DOE-NETL project "Wellbore Seal Repair Using Nanocomposite Materials," is interested in the stress-strain history of abandoned wells, as well as changes in local pressure, stress, and temperature conditions that accompany carbon dioxide injection or brine extraction. Two distinct computational models comprise the current modeling effort. The first is a field scale model that uses the stratigraphy, material properties, and injection history from a pilot CO2injection operation in Cranfield, MS to develop a stress-strain history for wellbore locations from 100 to 400 meters from an injection well. The results from the field scale model are used as input to a more detailed model of a wellbore casing. The 3D wellbore model examines the impacts of various loading scenarios on a casing structure. This model has been developed in conjunction with bench-top experiments of an integrated seal system in an idealized scaled wellbore mock-up being used to test candidate seal repair materials. The results from these models will be used to estimate the necessary mechanical properties needed for a successful repair material. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DE-FE0009562. This project is managed and administered by the Storage Division of the NETL and funded by DOE/NETL and cost-sharing partners. This work was funded in part by the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science
Energy Technology Data Exchange (ETDEWEB)
Elahifar, Behzad; Esmaeili, Abdolali; Thonhauser, Gerhard [Montanuniversitaet Leoben (Austria); Fruhwirth, Rudolf K. [TDE Thonhauser Data Engineering GmbH, Leoben (Austria)
2013-03-15
Drilling programs continue to push into new and more complicated environments. As a result, accurate measurement, interpretation and analysis of drilling data in real time are becoming more critical. One of the key measurement devices for drilling, cementing and formation evaluation is the borehole caliper. An ultrasonic sensor caliper tool is thereby a key measurement device for determining the borehole diameter in MWD or LWD tools. Another use of ultrasonic caliper tools is to offer a method for calculating borehole volumes. Real-time application of ultrasonic caliper tools can also support the early detection of borehole instability. This paper describes the experiments related to the accuracy of the ultrasonic sensor for measuring wellbore diameter by performing the tests in different fluids, comparing the results and determining the weak points of the sensor for detecting echoes. In addition the wellbore profiles were simulated and the simulated results were compared with the recorded data. Different tests related to the position of the caliper tool inside the wellbore were performed as well as the evaluation of the accuracy of the ultrasonic sensor by simulating dog-legs and latches. (orig.)
Adaptive forward-inverse modeling of reservoir fluids away from wellbores; TOPICAL
International Nuclear Information System (INIS)
Ziagos, J P; Gelinas, R J; Doss, S K; Nelson, R G
1999-01-01
This Final Report contains the deliverables of the DeepLook Phase I project entitled, ''Adaptive Forward-Inverse Modeling of Reservoir Fluids Away from Wellbores''. The deliverables are: (i) a description of 2-D test problem results, analyses, and technical descriptions of the techniques used, (ii) a listing of program setup commands that construct and execute the codes for selected test problems (these commands are in mathematical terminology, which reinforces technical descriptions in the text), and (iii) an evaluation and recommendation regarding continuance of this project, including considerations of possible extensions to 3-D codes, additional technical scope, and budget for the out-years. The far-market objective in this project is to develop advanced technologies that can help locate and enhance the recovery of oil from heterogeneous rock formations. The specific technical objective in Phase I was to develop proof-of-concept of new forward and inverse (F-I) modeling techniques[Gelinas et al, 1998] that seek to enhance estimates (images) of formation permeability distributions and fluid motion away from wellbore volumes. This goes to the heart of improving industry's ability to jointly image reservoir permeability and flow predictions of trapped and recovered oil versus time. The estimation of formation permeability away from borehole measurements is an ''inverse'' problem. It is an inseparable part of modeling fluid flows throughout the reservoir in efforts to increase the efficiency of oil recovery at minimum cost. Classic issues of non-uniqueness, mathematical instability, noise effects, and inadequate numerical solution techniques have historically impeded progress in reservoir parameter estimations. Because information pertaining to fluid and rock properties is always sampled sparsely by wellbore measurements, a successful method for interpolating permeability and fluid data between the measurements must be: (i) physics-based, (ii) conditioned by signal
Polymer-cement interactions towards improved wellbore cement fracture sealants
Beckingham, B. S.; Iloejesi, C.; Minkler, M. J.; Schindler, A. K.; Beckingham, L. E.
2017-12-01
Carbon capture, utilization, and storage (CCUS) in deep geologic formations is a promising means of reducing point source emissions of CO2. In these systems, CO2 is captured at the source and then injected to be utilized (eg. in enhanced oil recovery or as a working fluid in enhanced geothermal energy plants) or stored in geologic formations such as depleted oil and gas reservoirs or saline aquifers. While CCUS in subsurface systems could aid in reducing atmospheric CO2 emissions, the potential for CO2 leakage from these systems to overlying formations remains a major limitation and poses a significant risk to the security of injected CO2. Thus, improved materials for both initial wellbore isolation and repairing leakage pathways that develop over time are sought. One approach for the repair of cement fractures in wellbore (and other) systems is the injection of polymer materials into the fracture with a subsequent environmentally dependent (temperature, pressure, pH, etc.) densification or solidification. Here, we aim to investigate novel polymer materials for use to repair leaking wellbores in the context of CCUS. We synthesize and fully characterize a series of novel polymer materials and utilize a suite of analysis techniques to examine polymer-cement interactions at a range of conditions (namely temperature, pressure and pH). Initial findings will be leveraged to design novel polymer materials for further evaluation in polymer-cement composite cores, cement fracture healing, and the aging behavior of healed cements.
Energy Technology Data Exchange (ETDEWEB)
Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-07-26
Potential CO_{2} leakage through existing open wellbores is one of the most significant hazards that need to be addressed in geologic carbon sequestration (GCS) projects. In the framework of the National Risk Assessment Partnership (NRAP) which requires fast computations for uncertainty analysis, rigorous simulation of the coupled wellbore-reservoir system is not practical. We have developed a 7,200-point look-up table reduced-order model (ROM) for estimating the potential leakage rate up open wellbores in response to CO_{2} injection nearby. The ROM is based on coupled simulations using T2Well/ECO2H which was run repeatedly for representative conditions relevant to NRAP to create a look-up table response-surface ROM. The ROM applies to a wellbore that fully penetrates a 20-m thick reservoir that is used for CO_{2} storage. The radially symmetric reservoir is assumed to have initially uniform pressure, temperature, gas saturation, and brine salinity, and it is assumed these conditions are held constant at the far-field boundary (100 m away from the wellbore). In such a system, the leakage can quickly reach quasi-steady state. The ROM table can be used to estimate both the free-phase CO_{2} and brine leakage rates through an open well as a function of wellbore and reservoir conditions. Results show that injection-induced pressure and reservoir gas saturation play important roles in controlling leakage. Caution must be used in the application of this ROM because well leakage is formally transient and the ROM lookup table was populated using quasi-steady simulation output after 1000 time steps which may correspond to different physical times for the various parameter combinations of the coupled wellbore-reservoir system.
Energy Technology Data Exchange (ETDEWEB)
Ehgartner, Brian L.; Bean, James E. (Sandia Staffing Alliance, LLC, Albuquerque, NM); Arguello, Jose Guadalupe, Jr.; Stone, Charles Michael
2010-04-01
Geomechanical analyses have been performed to investigate potential mine interactions with wellbores that could occur in the Potash Enclave of Southeastern New Mexico. Two basic models were used in the study; (1) a global model that simulates the mechanics associated with mining and subsidence and (2) a wellbore model that examines the resulting interaction impacts on the wellbore casing. The first model is a 2D approximation of a potash mine using a plane strain idealization for mine depths of 304.8 m (1000 ft) and 609.6 m (2000 ft). A 3D wellbore model then considers the impact of bedding plane slippage across single and double cased wells cemented through the Salado formation. The wellbore model establishes allowable slippage to prevent casing yield.
Problems in the wellbore integrity of a shale gas horizontal well and corresponding countermeasures
Directory of Open Access Journals (Sweden)
Zhonglan Tian
2015-12-01
Full Text Available In the Changning–Weiyuan national shale gas demonstration area, SW Sichuan Basin, the wellbore integrity damage occurs in some shale gas wells and has direct effect on the gas production rate of single shale gas horizontal well. After statistics analysis was performed on the problems related with wellbore integrity, such as casing damage, casing running difficulty and cement sheath blow-by, the multi-factor coupling casing stress calculation and evaluation mode laws established. Then study was conducted on the influential mechanism of multi-factor coupling (temperature effect, casing bending and axial pressure on casing damage. The shale slip mechanism and its relationship with casing sheared formation were analyzed by using the Mohr–Coulomb criterion. Inversion analysis was performed on the main controlling factors of casing friction by using the developed casing hook load prediction and friction analysis software. And finally, based on the characteristics of shale gas horizontal wells, wellbore integrity control measures were proposed in terms of design and construction process, so as to improve the drilling quality (DQ. More specifically, shale gas well casing design calculation method and check standard were modified, well structure and full bore hole trajectory design were optimized, drilling quality was improved, cement properties were optimized and cement sealing integrity during fracturing process was checked. These research findings are significant in the design and management of future shale gas borehole integrity.
Geomechanics of fracture caging in wellbores
Weijermars, R.; Zhang, X.; Schultz-Ela, D.
2013-01-01
This study highlights the occurrence of so-called ‘fracture cages’ around underbalanced wellbores, where fractures cannot propagate outwards due to unfavourable principal stress orientations. The existence of such cages is demonstrated here by independent analytical and numerical methods. We explain
Um, W.; Rod, K. A.; Strickland, C. E.
2016-12-01
Permeability is a critical parameter needed to understand flow in subsurface environments; it is particularly important in deep subsurface reservoirs where multiphase fluid flow is common, such as carbon sequestration and geothermal reservoirs. Cement is used in the annulus of wellbores due to its low permeable properties to seal aquifers, reducing leaks to adjacent strata. Extreme subsurface environments of CO2 storage and geothermal production conditions will eventually reduce the cement integrity, propagating fracture networks and increasing the permeability for air and/or water. To date, there have been no reproducible experimental investigations of relative permeability in fractured wellbore cement published. To address this gap, we conducted a series of experiments using fractured Portland cement monoliths with increasing fracture networks. The monolith cylinder sides were jacketed with heavy-duty moisture-seal heat-shrink tubing, then fractured using shear force applied via a hydraulic press. Fractures were generated with different severity for each of three monoliths. Stainless steel endcaps were fixed to the monoliths using the same shrink-wrapped jacket. Fracture characteristics were determined using X-ray microtomography and image analysis. Flow controllers were used to control flow of water and air to supply continuous water or water plus air, both of which were delivered through the influent end cap. Effluent air flow was monitored using a flow meter, and water flow was measured gravimetrically. To monitor the effective saturation of the fractures, a RCON2 concrete bulk electrical resistivity test device was attached across both endcaps and a 0.1M NaNO3 brine was used as the transport fluid to improve resistivity measurements. Water content correlated to resistivity measurements with a r2 > 0.96. Data from the experiments was evaluated using two relative permeability models, the Corey-curve, often used for modeling relative permeability in porous media
Energy Technology Data Exchange (ETDEWEB)
Ikeda, N [Kyushu University, Fukuoka (Japan)
1996-05-01
This paper reports numerical computation of streaming potentials which are generated by transient pressure waves propagating the vicinity of wellbore wall immediately after a mud cake formed on the wellbore wall has been removed. One existing analysis solution on heat conduction was utilized upon changing the parameters in order to derive fluid pressure inside the ground bed. Calculations were carried out by using the existing three-dimensional finite difference method (partly re-written) based on the relationship constituted between the fluid pressure and the streaming potential. This paper presents results of calculating the streaming potentials in wellbores on models having wellbores filled with mud water in a cubic ground bed existing with ground bed water at saturation of 100%. The calculations have been conducted on the following cases: a case where permeability of the ground bed is small with the fluid under two conditions of low electric resistivity and high electric resistivity, a case where the permeability is large with the fluid under the above conditions, and a case where a small area of bore wall is covered with a rubber pad having high electric resistivity under a low electric resistivity condition. 8 refs., 5 figs.
Near-wellbore modeling of a horizontal well with Computational Fluid Dynamics
DEFF Research Database (Denmark)
Szanyi, Márton L.; Hemmingsen, Casper Schytte; Yan, Wei
2018-01-01
Dynamics (CFD) is capable of modeling the complex interaction between the creeping reservoir flow and turbulent well flow for single phases, while capturing both the completion geometry and formation damage. A series of single phase steady-state simulations are undertaken, using such fully coupled three...... dimensional numerical models, to predict the inflow to the well. The present study considers the applicability of CFD for near-wellbore modeling through benchmark cases with available analytical solutions. Moreover, single phase steady-state numerical investigations are performed on a specific perforated...... horizontal well producing from the Siri field, offshore Denmark. The performance of the well is investigated with an emphasis on the inflow profile and the productivity index for different formation damage scenarios. A considerable redistribution of the inflow profile were found when the filtrate invasion...
Optimization of SAGD wellbore completions : short production tubing string sensitivities
Energy Technology Data Exchange (ETDEWEB)
Cokar, M.; Graham, J. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Petro-Canada, Calgary, AB (Canada)
2008-10-15
This study investigated the effects of changing the landing position of short production tubing strings near the heel of steam assisted gravity drainage (SAGD) production wells. A homogenous discretized wellbore model was used to model the reservoir and wellbore simultaneously in order to study wellbore and reservoir interactions. The aim of the study was to develop a method of optimizing bitumen production and determining the most economical position for wellbore strings. Simulations were conducted to examine the effect of shortening the production tubing string and examine the impact of extending the tubing string beyond the heel of the well on bitumen bitumen production rates and the steam oil ratio (SOR). Results of the study showed that a shortened string decreased bitumen production rates, while the amounts of steam produced through the tubing string increased. When the tubing string was extended past the heel of the well, bitumen production rates remained the same, but steam injection rates and SOR decreased. A lower pressure differential between the injector and producer wells was also observed. The study showed that SAGD producers can re-position production tubing strings in order to determine ratios of liquid production. It was concluded that although placing the short production tubing string close to the heel increased oil production, a longer tubing string improved production rates while lowering operating costs. 3 refs., 3 tabs., 35 figs.
Proppant backflow: Mechanical and flow considerations
Energy Technology Data Exchange (ETDEWEB)
McLennan, John [Univ. of Utah, Salt Lake City, UT (United States); Walton, Ian [Univ. of Utah, Salt Lake City, UT (United States); Moore, Joseph [Univ. of Utah, Salt Lake City, UT (United States); Brinton, Dan [Univ. of Utah, Salt Lake City, UT (United States); Lund, Jeff [TerraTek Inc., Salt Lake City, UT (United States)
2015-09-01
One of the concerns of using proppant in geothermal wells, and particularly in enhanced geothermal systems, is proppant flowback. Particulate proppant maintain post-closure conductivity in hydraulically opened fractures. If that proppant is displaced from the near-wellbore region, either due to overflushing during stimulation or flowback to the wellbore at any time, the reduced fracture width chokes the injection or production. Two intermediate-scale laboratory analogs of a propped hydraulic fracture were prepared, and fluid was flowed through a normally stressed, propped fracture into a central wellbore. The tests were conducted in a polyaxial load frame. Acoustic/microseismic activity was measured during the injection programs. In one scenario—radial flow through a transverse fracture to a wellbore—the results suggest the creation of flow channels and nominally intact propped zones around the channels, maintaining fracture aperture. In the other—linear flow through a longitudinal fracture into a wellbore—there was substantially more proppant removal. The measurements have shown a greater tendency for proppant flowback in a linear flow situation (proppant movement is kinematically more restricted for radial convergent flow). The pressure gradients causing flow are exceedingly small and restraining flowback will be difficult. Convergent flow relationships could be an issue for injector wells, which will experience fluid flowback during hard shutdowns.
Parametric Sensitivity Study of Operating and Design Variables in Wellbore Heat Exchangers
International Nuclear Information System (INIS)
Nalla, G.; Shook, G.M.; Mines, G.L.; Bloomfield, K.K.
2004-01-01
This report documents the results of an extensive sensitivity study conducted by the Idaho National Engineering and Environmental Laboratory. This study investigated the effects of various operating and design parameters on wellbore heat exchanger performance to determine conditions for optimal thermal energy extraction and evaluate the potential for using a wellbore heat exchanger model for power generation. Variables studied included operational parameters such as circulation rates, wellbore geometries and working fluid properties, and regional properties including basal heat flux and formation rock type. Energy extraction is strongly affected by fluid residence time, heat transfer contact area, and formation thermal properties. Water appears to be the most appropriate working fluid. Aside from minimal tubing insulation, tubing properties are second order effects. On the basis of the sensitivity study, a best case model was simulated and the results compared against existing low-temperature power generation plants. Even assuming ideal work conversion to electric power, a wellbore heat exchange model cannot generate 200 kW (682.4e+3 BTU/h) at the onset of pseudosteady state. Using realistic conversion efficiency, the method is unlikely to generate 50 kW (170.6e+3 BTU/h)
Plugging wellbore fractures : limit equilibrium of a Bingham drilling mud cake in a tensile crack
Energy Technology Data Exchange (ETDEWEB)
Garagash, D.I. [Dalhousie Univ., Halifax, NS (Canada). Dept. of Civil and Resource Engineering
2009-07-01
The proper selection of drilling muds is important in order to successfully drill hydrocarbon wells in which wellbore mud pressure remains low enough to prevent circulation loss and high enough to support the uncased wellbore against the shear failure. This paper presented a mathematical model to study invasion of mud cake into a drilling-induced planar fracture at the edge of a wellbore perpendicular to the minimum in situ principal stress. The model assumed a planar edge-crack geometry loaded by the wellbore hoop stress, variable mud pressure along the invaded region adjacent to the wellbore, and uniform pore-fluid pressure along the rest of the crack. The invading mud was assumed to freely displaces the pore-fluid in the crack without mixing with it. The case corresponding to a sufficiently permeable formation was considered. This solution provides a means to evaluate whether or not the mud cake could effectively plug the fracture, thereby prevent fracture propagation and associated uncontrollable loss of wellbore drilling mud. The toughness or tensile strength is evaluated based on criterion for initiation of crack propagation, which may lead to uncontrollable loss of mud circulation in a well. The study provided information on the breakdown pressure as a function of the rock ambient stress, ambient pore pressure, pre-existing crack length, and mud cake properties. 12 refs., 6 figs.
A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations
Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.
2017-06-01
Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical
Directory of Open Access Journals (Sweden)
Jianjun Liu
2013-01-01
Full Text Available Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength.
Directory of Open Access Journals (Sweden)
Guillaume Meyzonnat
2018-01-01
Full Text Available This work aims to provide an overview of the thermal processes that shape wellbore temperature profiles under static and dynamic conditions. Understanding of the respective influences of advection and conduction heat fluxes is improved through the use of a new heat budget at the borehole scale. Keeping in mind the thermal processes involved, a qualitative interpretation of the temperature profiles allows the occurrence, the position, and the origin of groundwater flowing into wellbores from hydraulically active fractures to be constrained. With the use of a heat budget developed at the borehole scale, temperature logging efficiency has been quantitatively enhanced and allows inflow temperatures to be calculated through the simultaneous use of a flowmeter. Under certain hydraulic or pumping conditions, both inflow intensities and associated temperatures can also be directly modelled from temperature data and the use of the heat budget. Theoretical and applied examples of the heat budget application are provided. Applied examples are shown using high-resolution temperature logging, spinner flow metering, and televiewing for three wells installed in fractured bedrock aquifers in the St-Lawrence Lowlands, Quebec, Canada. Through relatively rapid manipulations, thermal measurements in such cases can be used to detect the intervals or discrete positions of hydraulically active fractures in wellbores, as well as the existence of ambient flows with a high degree of sensitivity, even at very low flows. Heat budget calculations at the borehole scale during pumping indicate that heat advection fluxes rapidly dominate over heat conduction fluxes with the borehole wall. The full characterization of inflow intensities provides information about the distribution of hydraulic properties with depth. The full knowledge of inflow temperatures indicates horizons that are drained from within the aquifer, providing advantageous information on the depth from which
A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements
Energy Technology Data Exchange (ETDEWEB)
Keita Yoshioka; Pinan Dawkrajai; Analis A. Romero; Ding Zhu; A. D. Hill; Larry W. Lake
2007-01-15
With the recent development of temperature measurement systems, continuous temperature profiles can be obtained with high precision. Small temperature changes can be detected by modern temperature measuring instruments such as fiber optic distributed temperature sensor (DTS) in intelligent completions and will potentially aid the diagnosis of downhole flow conditions. In vertical wells, since elevational geothermal changes make the wellbore temperature sensitive to the amount and the type of fluids produced, temperature logs can be used successfully to diagnose the downhole flow conditions. However, geothermal temperature changes along the wellbore being small for horizontal wells, interpretations of a temperature log become difficult. The primary temperature differences for each phase (oil, water, and gas) are caused by frictional effects. Therefore, in developing a thermal model for horizontal wellbore, subtle temperature changes must be accounted for. In this project, we have rigorously derived governing equations for a producing horizontal wellbore and developed a prediction model of the temperature and pressure by coupling the wellbore and reservoir equations. Also, we applied Ramey's model (1962) to the build section and used an energy balance to infer the temperature profile at the junction. The multilateral wellbore temperature model was applied to a wide range of cases at varying fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section. With the prediction models developed, we present inversion studies of synthetic and field examples. These results are essential to identify water or gas entry, to guide flow control devices in intelligent completions, and to decide if reservoir stimulation is needed in particular horizontal sections. This study will complete and validate these inversion studies.
Impact of Casing Expansion on the Mechanical and Petro-Physical Properties of Wellbore Cements
Oyibo, A. E.
2014-12-01
The main objective of this research is to investigate the applicability of expandable casing technology as a remediation technique for leaky wells resulting in gas migration problems. Micro annulus is usually created at the cement-formation/cement-casing interface or within the cement matrix either due to poor primary cementing or as a result of activities such as temperature and pressure variation or fracturing operations. Recent reports on gas migration in hydraulically fractured wellbores, has raised concerns on the contamination of fresh water aquifers resulting from fluid migration though this flow path. A unique bench-scale physical model which utilizes expandable tubulars in the remediation of micro annular gas flow has been used to simulate expansion of a previously-cemented casing under field-like conditions. Three different designs of cement slurry: regular 16.4 lb. /gal, 16.4 lb. /gal base slurry foamed to 13 lb. /gal and 16.4 lb. /gal cement slurry with 10% salt concentration. Gas flow path (microannulus) was artificially created at the pipe-cement interface by rotating the inner pipe in a pipe inside pipe assembly with cement in the annulus within the first few hours of hydration to create debonding at the cement-casing interface. Nitrogen gas flow-through experiments were performed before and after the expansion to confirm the sealing of the microannulus. The results obtained confirmed the effectiveness of this technique in the complete closure of gas leakage path, providing seal-tight cement-formation interface free of microannulus. The manipulation of the cement sheath during the casing expansion resulted in improved porosity, permeability and the strength of the cement sheath. SEM micrographs revealed decrease in pore size and fracturing of unhydrated cement grains within the cement matrix. This technology has great potential to become one of the leading cement remediation techniques for leaks behind the casing if implemented. Keywords: Wellbore
International Nuclear Information System (INIS)
Yang, Mou; Zhao, Xiangyang; Meng, Yingfeng; Li, Gao; Zhang, Lin; Xu, Haiming; Tang, Daqian
2017-01-01
Highlights: • The different wellbore conditions of heat transfer models were developed. • Drill string assembly and casing programs impact on down-hole temperatures. • The thermal performance in circulation and shut-in stages were deeply investigated. • Full-scale model coincided with the measured field data preferably. - Abstract: Heat exchange efficiency between each region of the wellbore and formation systems is influenced by the high thermal conductivity of the drill string and casing, which further affects temperature distribution of the wellbore. Based on the energy conservation principle, the Modified Raymond, Simplified and Full-scale models were developed, which were solved by the fully implicit finite difference method. The results indicated that wellbore and formation temperatures were significantly influenced at the connection points between the drill collar and drill pipe, as well as the casing shoe. Apart from the near surface, little change was observed in temperature distribution in the cement section. In the open-hole section, the temperature rapidly decreased in the circulation stage and gradually increased in the shut-in stage. Most important, the simulated result from the full-scale model coincided with the measured field data better than the other numerical models. These findings not only confirm the effect of the drill string assembly and casing programs on the wellbore and formation temperature distribution, but also contribute to resource exploration, drilling safety and reduced drilling costs.
Wu, Chuan; Ding, Huafeng; Han, Lei
2018-02-14
Coalbed methane (CBM) is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pressure formula, i.e., the sensor monitors the two-phase flow patterns and obtains the mean density of the two-phase flow according to the pattern recognition result in the first step, and then combines the pressure data of the working level to calculate the working level using the liquid pressure formula. The sensor was tested in both the lab and on site, and the tests showed that the sensor's error was ±8% and that the sensor could function well in practical conditions and remain stable in the long term.
Directory of Open Access Journals (Sweden)
Chuan Wu
2018-02-01
Full Text Available Coalbed methane (CBM is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pressure formula, i.e., the sensor monitors the two-phase flow patterns and obtains the mean density of the two-phase flow according to the pattern recognition result in the first step, and then combines the pressure data of the working level to calculate the working level using the liquid pressure formula. The sensor was tested in both the lab and on site, and the tests showed that the sensor’s error was ±8% and that the sensor could function well in practical conditions and remain stable in the long term.
Wu, Chuan; Ding, Huafeng; Han, Lei
2018-01-01
Coalbed methane (CBM) is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pressure formula, i.e., the sensor monitors the two-phase flow patterns and obtains the mean density of the two-phase flow according to the pattern recognition result in the first step, and then combines the pressure data of the working level to calculate the working level using the liquid pressure formula. The sensor was tested in both the lab and on site, and the tests showed that the sensor’s error was ±8% and that the sensor could function well in practical conditions and remain stable in the long term. PMID:29443871
Lin, Ye-Chen; Li, Ming-Hsu; Yeh, Hund-Der
2017-09-01
A new mathematical model is developed to describe the flow in response to a constant-head pumping (or constant-head test, CHT) in a leaky unconfined aquifer system of infinite lateral extent with considering unsaturated flow. The model consists of an unsaturated zone on the top, an unconfined aquifer in the middle, and a second aquifer (aquitard) at the bottom. The unsaturated flow is described by Richard's equation, and the flows in unconfined aquifer and second layer are governed by the groundwater flow equation. The well partially penetrates the unconfined aquifer with a constant head in the well due to CHT. The governing equations of the model are linearized by the perturbation method and Gardner's exponential model is adopted to describe the soil retention curves. The solution of the model for drawdown distribution is obtained by applying the methods of Laplace transform and Weber transform. Then the solution for the wellbore flowrate is derived from the drawdown solution with Darcy's law. The issue of the equivalence of normalized drawdown predicted by the present solution for constant-head pumping and Tartakovsky and Neuman's (2007) solution for constant-rate pumping is discussed. On the basis of the wellbore flowrate solution, the results of the sensitivity analysis indicate that the wellbore flowrate is very sensitive to the changes in the radial hydraulic conductivity and the thickness of the saturated zone. Moreover, the results predicted from the present wellbore flowrate solution indicate that this new solution can reduce to Chang's et al. (2010a) solution for homogenous aquifers when the dimensionless unsaturated exponent approaches 100. The unsaturated zone can be considered as infinite extent in the vertical direction if the thickness ratio of the unsaturated zone to the unconfined aquifer is equal to or greater than one. As for the leakage effect, it can be ignored when the vertical hydraulic conductivity ratio (i.e., the vertical hydraulic
Equivalent Circulation Density Analysis of Geothermal Well by Coupling Temperature
Directory of Open Access Journals (Sweden)
Xiuhua Zheng
2017-02-01
Full Text Available The accurate control of the wellbore pressure not only prevents lost circulation/blowout and fracturing formation by managing the density of the drilling fluid, but also improves productivity by mitigating reservoir damage. Calculating the geothermal pressure of a geothermal well by constant parameters would easily bring big errors, as the changes of physical, rheological and thermal properties of drilling fluids with temperature are neglected. This paper researched the wellbore pressure coupling by calculating the temperature distribution with the existing model, fitting the rule of density of the drilling fluid with the temperature and establishing mathematical models to simulate the wellbore pressures, which are expressed as the variation of Equivalent Circulating Density (ECD under different conditions. With this method, the temperature and ECDs in the wellbore of the first medium-deep geothermal well, ZK212 Yangyi Geothermal Field in Tibet, were determined, and the sensitivity analysis was simulated by assumed parameters, i.e., the circulating time, flow rate, geothermal gradient, diameters of the wellbore, rheological models and regimes. The results indicated that the geothermal gradient and flow rate were the most influential parameters on the temperature and ECD distribution, and additives added in the drilling fluid should be added carefully as they change the properties of the drilling fluid and induce the redistribution of temperature. To ensure the safe drilling and velocity of pipes tripping into the hole, the depth and diameter of the wellbore are considered to control the surge pressure.
Reaction-driven casing expansion : potential for wellbore leakage mitigation
Wolterbeek, Timotheus K. T.; van Noort, Reinier; Spiers, Christopher J.
It is generally challenging to predict the post-abandonment behaviour and integrity of wellbores. Leakage is, moreover, difficult to mitigate, particularly between the steel casing and outer cement sheath. Radially expanding the casing with some form of internal plug, thereby closing annular voids
Stick-slip and Torsional Friction Factors in Inclined Wellbores
Directory of Open Access Journals (Sweden)
Aarsnes Ulf Jakob F.
2018-01-01
The model is shown to have a good match with the surface and downhole behavior of two deviated wellbores for depths ranging from 1500 to 3000 meters. In particular, the model replicates the amplitude and period of the oscillations, in both the topside torque and the downhole RPM, as caused by the along-string stick slip. It is further shown that by using the surface behavior of the drill-string during rotational startup, an estimate of the static and dynamic friction factors along the wellbore can be obtained, even during stick-slip oscillations, if axial tension in the drillstring is considered. This presents a possible method to estimate friction factors in the field when off-bottom stick slip is encountered, and points in the direction of avoiding stick slip through the design of an appropriate torsional start-up procedure without the need of an explicit friction test.
Song, Xianzhi; Peng, Chi; Li, Gensheng; He, Zhenguo; Wang, Haizhu
2016-01-01
Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2) as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN) was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in horizontal wells.
Directory of Open Access Journals (Sweden)
Xianzhi Song
Full Text Available Sand production and blockage are common during the drilling and production of horizontal oil and gas wells as a result of formation breakdown. The use of high-pressure rotating jets and annular helical flow is an effective way to enhance horizontal wellbore cleanout. In this paper, we propose the idea of using supercritical CO2 (SC-CO2 as washing fluid in water-sensitive formation. SC-CO2 is manifested to be effective in preventing formation damage and enhancing production rate as drilling fluid, which justifies tis potential in wellbore cleanout. In order to investigate the effectiveness of SC-CO2 helical flow cleanout, we perform the numerical study on the annular flow field, which significantly affects sand cleanout efficiency, of SC-CO2 jets in horizontal wellbore. Based on the field data, the geometry model and mathematical models were built. Then a numerical simulation of the annular helical flow field by SC-CO2 jets was accomplished. The influences of several key parameters were investigated, and SC-CO2 jets were compared to conventional water jets. The results show that flow rate, ambient temperature, jet temperature, and nozzle assemblies play the most important roles on wellbore flow field. Once the difference between ambient temperatures and jet temperatures is kept constant, the wellbore velocity distributions will not change. With increasing lateral nozzle size or decreasing rear/forward nozzle size, suspending ability of SC-CO2 flow improves obviously. A back-propagation artificial neural network (BP-ANN was successfully employed to match the operation parameters and SC-CO2 flow velocities. A comprehensive model was achieved to optimize the operation parameters according to two strategies: cost-saving strategy and local optimal strategy. This paper can help to understand the distinct characteristics of SC-CO2 flow. And it is the first time that the BP-ANN is introduced to analyze the flow field during wellbore cleanout in
Microbial enhancement of non-Darcy flow: Theoretical consideration
Energy Technology Data Exchange (ETDEWEB)
Shi, Jianxin; Schneider, D.R.
1995-12-31
In the near well-bore region and perforations, petroleum fluids usually flow at high velocities and may exhibit non-Darcy-flow behavior. Microorganisms can increase permeability and porosity by removing paraffin or asphaltene accumulations. They can also reduce interfacial tension by producing biosurfactants. These changes can significantly affect non-Darcy flow behavior. Theoretical analysis shows that microbial activities can enhance production by decreasing the turbulence pressure drop and in some cases increasing the drag force exerted to the oil phase. This implies that the effects of microbial activities on non-Darcy flow are important and should be considered in the evaluation of microbial well stimulation and enhanced oil recovery.
Energy Technology Data Exchange (ETDEWEB)
Moody, Mark [Battelle Memorial Institute, Columbus, OH (United States); Sminchak, J.R. [Battelle Memorial Institute, Columbus, OH (United States)
2015-11-01
Under this three year project, the condition of legacy oil and gas wells in the Midwest United States was evaluated through analysis of well records, well plugging information, CBL evaluation, sustained casing pressure (SCP) field testing, and analysis of hypothetical CO_{2} test areas to provide a realistic description of wellbore integrity factors. The research included a state-wide review of oil and gas well records for Ohio and Michigan, along with more detailed testing of wells in Ohio. Results concluded that oil and gas wells are clustered along fields in areas. Well records vary in quality, and there may be wells that have not been identified in records, but there are options for surveying unknown wells. Many of the deep saline formations being considered for CO_{2} storage have few wells that penetrate the storage zone or confining layers. Research suggests that a variety of well construction and plugging approaches have been used over time in the region. The project concluded that wellbore integrity is an important issue for CO_{2} storage applications in the Midwest United States. Realistic CO_{2} storage projects may cover an area in the subsurface with several hundred legacy oil and gas wells. However, closer inspection may often establish that most of the wells do not penetrate the confining layers or storage zone. Therefore, addressing well integrity may be manageable. Field monitoring of SCP also indicated that tested wells provided zonal isolation of the reservoirs they were designed to isolate. Most of these wells appeared to exhibit gas pressure originating from intermediate zones. Based on these results, more flexibility in terms of cementing wells to surface, allowing well testing, and monitoring wells may aid operators in completing CO_{2} storage project. Several useful products were developed under this project for examining wellbore integrity for CO_{2} storage applications including, a
Novel Experimental Techniques to Investigate Wellbore Damage Mechanisms
Choens, R. C., II; Ingraham, M. D.; Lee, M.; Dewers, T. A.
2017-12-01
A new experimental technique with unique geometry is presented investigating deformation of simulated boreholes using standard axisymmetric triaxial deformation equipment. The Sandia WEllbore SImulation, SWESI, geometry, uses right cylinders of rock 50mm in diameter and 75mm in length. A 11.3mm hole is drilled perpendicular to the axis of the cylinder in the center of the sample to simulate a borehole. The hole is covered with a solid metal cover, and sealed with polyurethane. The metal cover can be machined with a high-pressure port to introduce different fluid chemistries into the borehole at controlled pressures. Samples are deformed in a standard load frame under confinement, allowing for a broad range of possible stresses, load paths, and temperatures. Experiments in this study are loaded to the desired confining pressure, then deformed at a constant axial strain rate or 10-5 sec-1. Two different suites of experiments are conducted in this study on sedimentary and crystalline rock types. The first series of experiments are conducted on Mancos Shale, a finely laminated transversely isotropic rock. Samples are cored at three different orientations to the laminations. A second series of experiments is conducted on Sierra White granite with different fluid chemistries inside the borehole. Numerical modelling and experimental observations including CT-microtomography demonstrate that stresses are concentrated around the simulated wellbore and recreate wellbore deformation mechanisms. Borehole strength and damage development is dependent on anisotropy orientation and fluid chemistry. Observed failure geometries, particularly for Mancos shale, can be highly asymmetric. These results demonstrate uncertainties in in situ stresses measurements using commonly-applied borehole breakout techniques in complicated borehole physico-chemical environments. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering
Polymer nanocomposites for sealing microannulus cracks in wellbores cement-steel interface
Genedy, M.; Fernandez, S. G.; Stormont, J.; Matteo, E. N.; Dewers, T. A.; Reda Taha, M.
2017-12-01
Seal integrity of production and storage wellbores has become a critical challenge with the increasing oil and gas leakage incidents. The general consensus is that one of the potential leakage pathways is micro-annuli at the cement-steel interface. In this paper, we examine the efficiency of proposed polymer nanocomposite to seal microannulus cracks at the cement-steel interface. The repair material efficiency is defined as the ability of the repair material to reduce or eliminate the gas permeability of the cement-steel interface. The flow rate of an inert gas (Nitrogen) at the cement-steel interface was investigated for three cases: 1) repaired test samples with traditional repair material (microfine cement), 2) polymer nanocomposites, and 3) unrepaired test samples. Flow rates were measured and compared for all three cases. The experimental results show up to 99.5% seal efficiency achieved by using polymer nanocomposites compared to 20% efficiency achieved in the case of microfine cement. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017-8094 A.
Energy Technology Data Exchange (ETDEWEB)
Hughes, Richard [Louisiana State Univ., Baton Rouge, LA (United States); Tyagi, Mayank [Louisiana State Univ., Baton Rouge, LA (United States); Radonjic, Mileva [Louisiana State Univ., Baton Rouge, LA (United States); Dahi, Arash [Louisiana State Univ., Baton Rouge, LA (United States); Wang, Fahui [Louisiana State Univ., Baton Rouge, LA (United States); John, Chacko [Louisiana State Univ., Baton Rouge, LA (United States); Kaiser, Mark [Louisiana State Univ., Baton Rouge, LA (United States); Snyder, Brian [Louisiana State Univ., Baton Rouge, LA (United States); Sears, Stephen [Louisiana State Univ., Baton Rouge, LA (United States)
2017-07-07
This project is intended to demonstrate the technical and economic feasibility, and environmental and social attractiveness of a novel method of heat extraction from geothermal reservoirs. The emphasis is on assessing the potential for a heat extraction method that couples forced and free convection to maximize extraction efficiency. The heat extraction concept is enhanced by considering wellbore energy conversion, which may include only a boiler for a working fluid, or perhaps a complete boiler, turbine, and condenser cycle within the wellbore. The feasibility of this system depends on maintaining mechanical and hydraulic integrity of the wellbore, so the material properties of the casing-cement system are examined both experimentally and with well design calculations. The attractiveness depends on mitigation of seismic and subsidence risks, economic performance, environmental impact, and social impact – all of which are assessed as components of this study.
International Nuclear Information System (INIS)
Pedler, W.H.; Williams, L.L.; Head, C.L.
1992-01-01
In the continuing search for improved groundwater characterization technologies, a new wellbore fluid logging method has recently been developed to provide accurate and cost effective hydrogeologic and contaminant characterization of bedrock aquifers. This new technique, termed hydrophysical logging, provides critical information for contaminated site characterization and water supply studies and, in addition, offers advantages compared to existing industry standards for aquifer characterization. Hydrophysical logging is based on measuring induced electrical conductivity changes in the fluid column of a wellbore by employing advanced downhole water quality instrumentation specifically developed for the dynamic borehole environment. Hydrophysical logging contemporaneously identifies the locations of water bearing intervals, the interval-specific inflow rate during pumping, and in-situ hydrochemistry of the formation waters associated with each producing interval. In addition, by employing a discrete point downhole fluid sampler during hydrophysical logging, this technique provides evaluation of contaminant concentrations and migration of contaminants vertically within the borehole. Recently, hydrophysical logging was applied in a deep bedrock wellbore at an industrial site in New Hampshire contaminated with dense nonaqueous phase liquids (DNAPLs). The results of the hydrophysical logging, conducted as part of a hydrogeologic site investigation and feasibility study, facilitated investigation of the site by providing information which indicated that the contamination had not penetrated into deeper bedrock fractures at concentrations of concern. This information was used to focus the pending Remedial Action Plan and to provide a more cost-effective remedial design
Energy Technology Data Exchange (ETDEWEB)
Dreesen, D.; Malzahn, M.; Fehler, M.; Dash, Z.
1987-01-01
One of the critical steps in developing a hot dry rock geothermal system is the creation of flow paths through the rock between two wellbores. To date, circulation systems have only been created by drilling one wellbore, hydraulically fracturing the well (which induces microearthquakes), locating the microearthquakes and then drilling a second wellbore through the zone of seismicity. A technique for analyzing the pattern of seismicity to determine where fracture planes are located in the seismically active region has recently been developed. This allows us to distinguish portions of the seismically active volume which are most likely to contain significant flow paths. We applied this technique to seismic data collected during a massive hydraulic fracturing (MHF) treatment and found that the fracture planes determined by the seismic method are confirmed by borehole temperature and caliper logs which indicate where permeable fractures and/or zones of weakness intersect the wellbores. A geometric model based on these planes and well log data has enhanced our understanding of the reservoir flow paths created by fracturing and is consistent with results obtained during production testing of the reservoir.
Transient well flow in layered aquifer systems: the uniform well-face drawdown solution
Hemker, C. J.
1999-11-01
Previously a hybrid analytical-numerical solution for the general problem of computing transient well flow in vertically heterogeneous aquifers was proposed by the author. The radial component of flow was treated analytically, while the finite-difference technique was used for the vertical flow component only. In the present work the hybrid solution has been modified by replacing the previously assumed uniform well-face gradient (UWG) boundary condition in such a way that the drawdown remains uniform along the well screen. The resulting uniform well-face drawdown (UWD) solution also includes the effects of a finite diameter well, wellbore storage and a thin skin, while partial penetration and vertical heterogeneity are accommodated by the one-dimensional discretization. Solutions are proposed for well flow caused by constant, variable and slug discharges. The model was verified by comparing wellbore drawdowns and well-face flux distributions with published numerical solutions. Differences between UWG and UWD well flow will occur in all situations with vertical flow components near the well, which is demonstrated by considering: (1) partially penetrating wells in confined aquifers, (2) fully penetrating wells in unconfined aquifers with delayed response and (3) layered aquifers and leaky multiaquifer systems. The presented solution can be a powerful tool for solving many well-hydraulic problems, including well tests, flowmeter tests, slug tests and pumping tests. A computer program for the analysis of pumping tests, based on the hybrid analytical-numerical technique and UWG or UWD conditions, is available from the author.
Directory of Open Access Journals (Sweden)
Seyed Hassan Fallahzadeh
2017-03-01
Full Text Available Hydraulic fracture initiation and near wellbore propagation is governed by complex failure mechanisms, especially in cased perforated wellbores. Various parameters affect such mechanisms, including fracturing fluid viscosity and injection rate. In this study, three different fracturing fluids with viscosities ranging from 20 to 600 Pa.s were used to investigate the effects of varying fracturing fluid viscosities and fluid injection rates on the fracturing mechanisms. Hydraulic fracturing tests were conducted in cased perforated boreholes made in tight 150 mm synthetic cubic samples. A true tri-axial stress cell was used to simulate real far field stress conditions. In addition, dimensional analyses were performed to correspond the results of lab experiments to field-scale operations. The results indicated that by increasing the fracturing fluid viscosity and injection rate, the fracturing energy increased, and consequently, higher fracturing pressures were observed. However, when the fracturing energy was transferred to a borehole at a faster rate, the fracture initiation angle also increased. This resulted in more curved fracture planes. Accordingly, a new parameter, called fracturing power, was introduced to relate fracture geometry to fluid viscosity and injection rate. Furthermore, it was observed that the presence of casing in the wellbore impacted the stress distribution around the casing in such a way that the fracture propagation deviated from the wellbore vicinity.
Jung, Na-Hyun; Han, Weon Shik; Han, Kyungdoe; Park, Eungyu
2015-05-01
Regional-scale advective, diffusive, and eruptive transport dynamics of CO2 and brine within a natural analogue in the northern Paradox Basin, Utah, were explored by integrating numerical simulations with soil CO2 flux measurements. Deeply sourced CO2 migrates through steeply dipping fault zones to the shallow aquifers predominantly as an aqueous phase. Dense CO2-rich brine mixes with regional groundwater, enhancing CO2 dissolution. Linear stability analysis reveals that CO2 could be dissolved completely within only 500 years. Assigning lower permeability to the fault zones induces fault-parallel movement, feeds up-gradient aquifers with more CO2, and impedes down-gradient fluid flow, developing anticlinal CO2 traps at shallow depths (<300 m). The regional fault permeability that best reproduces field spatial CO2 flux variation is estimated 1 × 10-17 ≤ kh < 1 × 10-16 m2 and 5 × 10-16 ≤ kv < 1 × 10-15 m2. The anticlinal trap serves as an essential fluid source for eruption at Crystal Geyser. Geyser-like discharge sensitively responds to varying well permeability, radius, and CO2 recharge rate. The cyclic behavior of wellbore CO2 leakage decreases with time.
Energy Technology Data Exchange (ETDEWEB)
Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.
2011-05-01
Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.
Rate transient analysis for homogeneous and heterogeneous gas reservoirs using the TDS technique
International Nuclear Information System (INIS)
Escobar, Freddy Humberto; Sanchez, Jairo Andres; Cantillo, Jose Humberto
2008-01-01
In this study pressure test analysis in wells flowing under constant wellbore flowing pressure for homogeneous and naturally fractured gas reservoir using the TDS technique is introduced. Although, constant rate production is assumed in the development of the conventional well test analysis methods, constant pressure production conditions are sometimes used in the oil and gas industry. The constant pressure technique or rate transient analysis is more popular reckoned as decline curve analysis under which rate is allows to decline instead of wellbore pressure. The TDS technique, everyday more used even in the most recognized software packages although without using its trade brand name, uses the log-log plot to analyze pressure and pressure derivative test data to identify unique features from which exact analytical expression are derived to easily estimate reservoir and well parameters. For this case, the fingerprint characteristics from the log-log plot of the reciprocal rate and reciprocal rate derivative were employed to obtain the analytical expressions used for the interpretation analysis. Many simulation experiments demonstrate the accuracy of the new method. Synthetic examples are shown to verify the effectiveness of the proposed methodology
Characteristic Value Method of Well Test Analysis for Horizontal Gas Well
Directory of Open Access Journals (Sweden)
Xiao-Ping Li
2014-01-01
Full Text Available This paper presents a study of characteristic value method of well test analysis for horizontal gas well. Owing to the complicated seepage flow mechanism in horizontal gas well and the difficulty in the analysis of transient pressure test data, this paper establishes the mathematical models of well test analysis for horizontal gas well with different inner and outer boundary conditions. On the basis of obtaining the solutions of the mathematical models, several type curves are plotted with Stehfest inversion algorithm. For gas reservoir with closed outer boundary in vertical direction and infinite outer boundary in horizontal direction, while considering the effect of wellbore storage and skin effect, the pseudopressure behavior of the horizontal gas well can manifest four characteristic periods: pure wellbore storage period, early vertical radial flow period, early linear flow period, and late horizontal pseudoradial flow period. For gas reservoir with closed outer boundary both in vertical and horizontal directions, the pseudopressure behavior of the horizontal gas well adds the pseudosteady state flow period which appears after the boundary response. For gas reservoir with closed outer boundary in vertical direction and constant pressure outer boundary in horizontal direction, the pseudopressure behavior of the horizontal gas well adds the steady state flow period which appears after the boundary response. According to the characteristic lines which are manifested by pseudopressure derivative curve of each flow period, formulas are developed to obtain horizontal permeability, vertical permeability, skin factor, reservoir pressure, and pore volume of the gas reservoir, and thus the characteristic value method of well test analysis for horizontal gas well is established. Finally, the example study verifies that the new method is reliable. Characteristic value method of well test analysis for horizontal gas well makes the well test analysis
Directory of Open Access Journals (Sweden)
Xiaodong Wu
2016-10-01
Full Text Available Downhole vortex drainage gas recovery is a new gas production technology. So far, however, the forces and motions of liquid phase in the swirling flow field of wellbores during its field application have not been figured out. In this paper, the forces of liquid droplets in the swirling flow field of wellbores were analyzed on the basis of two-phase fluid dynamics theories. Then, the motion equations of fluid droplets along axial and radical directions were established. Magnitude comparison was performed on several typical acting forces, including Basset force, virtual mass force, Magnus force, Saffman force and Stokes force. Besides, the formula for calculating the optimal helical angle of vortex tools was established according to the principle that the vertical resultant force on fluid droplets should be the maximum. And afterwards, each acting force was comprehensively analyzed in terms of its origin, characteristics and direction based on the established force analysis model. Magnitude comparison indicates that the forces with less effect can be neglected, including virtual mass force, Basset force and convection volume force. Moreover, the vertically upward centrifugal force component occurs on the fluid droplets in swirling flow field instead of those in the conventional flow field of wellbores, which is favorable for the fluid droplets to move upward. The reliability of optimal helical angle calculation formula was verified by means of case analysis. It is demonstrated that with the decrease of well depth, the fluid-carrying capability of gas and the optimal helical angle increase. The research results in this paper have a guiding significance to the optimization design of downhole vortex tools and the field application of downhole vortex drainage gas recovery technology.
Energy Technology Data Exchange (ETDEWEB)
Fehler, M.; House, L.; Kaieda, H.
1986-01-01
Hydraulic fracturing has gained in popularity in recent years as a way to determine the orientations and magnitudes of tectonic stresses. By augmenting conventional hydraulic fracturing measurements with detection and mapping of the microearthquakes induced by fracturing, we can supplement and idependently confirm information obtained from conventional analysis. Important information obtained from seismic monitoring includes: the state of stress of the rock, orientation and spacing of the major joint sets, and measurements of rock elastic parameters at locations distant from the wellbore. While conventional well logging operations can provide information about several of these parameters, the zone of interrogation is usually limited to the immediate proximity of the borehole. The seismic waveforms of the microearthquakes contain a wealth of information about the rock in regions that are otherwise inaccessible for study. By reliably locating the hypocenters of many microearthquakes, we have inferred the joint patterns in the rock. We observed that microearthquake locations do not define a simple, thin, planar distribution, that the fault plane solutions are consistent with shear slippage, and that spectral analysis indicates that the source dimensions and slip along the faults are small. Hence we believe that the microearthquakes result from slip along preexisting joints, and not from tensile extension at the tip of the fracture. Orientations of the principal stresses can be estimated by using fault plane solutions of the larger microearthquakes. By using a joint earthquake location scheme, and/or calibrations with downhole detonators, rock velocities and heterogeneities thereof can be investigated in rock volumes that are far enough from the borehole to be representative of intrincis rock properties.
Wellbore inertial navigation system (WINS) software development and test results
Energy Technology Data Exchange (ETDEWEB)
Wardlaw, R. Jr.
1982-09-01
The structure and operation of the real-time software developed for the Wellbore Inertial Navigation System (WINS) application are described. The procedure and results of a field test held in a 7000-ft well in the Nevada Test Site are discussed. Calibration and instrumentation error compensation are outlined, as are design improvement areas requiring further test and development. Notes on Kalman filtering and complete program listings of the real-time software are included in the Appendices. Reference is made to a companion document which describes the downhole instrumentation package.
This presentation examines various published reports from two drinking water contamination cases, and discuss the potential roles of wellbore construction and integrity and hydraulic fracturing in the resultant drinking water contamination.
Energy Technology Data Exchange (ETDEWEB)
Guthrie, George Drake Jr. [Los Alamos National Laboratory; Pawar, Rajesh J. [Los Alamos National Laboratory; Carey, James William [Los Alamos National Laboratory; Karra, Satish [Los Alamos National Laboratory; Harp, Dylan Robert [Los Alamos National Laboratory; Viswanathan, Hari S. [Los Alamos National Laboratory
2017-07-28
This report analyzes the dynamics and mechanisms of the interactions of carbonated brine with hydrated Portland cement. The analysis is based on a recent set of comprehensive reactive-transport simulations, and it relies heavily on the synthesis of the body of work on wellbore integrity that we have conducted for the Carbon Storage Program over the past decade.
Chuan Wu; Huafeng Ding; Lei Han
2018-01-01
Coalbed methane (CBM) is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pres...
A well test analysis method accounting for pre-test operations
International Nuclear Information System (INIS)
Silin, D.B.; Tsang, C.-F.
2003-01-01
We propose to use regular monitoring data from a production or injection well for estimating the formation hydraulic properties in the vicinity of the wellbore without interrupting the operations. In our approach, we select a portion of the pumping data over a certain time interval and then derive our conclusions from analysis of these data. A distinctive feature of the proposed approach differing it form conventional methods is in the introduction of an additional parameter, an effective pre-test pumping rate. The additional parameter is derived based on a rigorous asymptotic analysis of the flow model. Thus, we account for the non-uniform pressure distribution at the beginning of testing time interval caused by pre-test operations at the well. By synthetic and field examples, we demonstrate that deviation of the matching curve from the data that is usually attributed to skin and wellbore storage effects, can also be interpreted through this new parameter. Moreover, with our method, the data curve is matched equally well and the results of the analysis remain stable when the analyzed data interval is perturbed, whereas traditional methods are sensitive to the choice of the data interval. A special efficient minimization procedure has been developed for searching the best fitting parameters. We enhanced our analysis above with a procedure of estimating ambient reservoir pressure and dimensionless wellbore radius. The methods reported here have been implemented in code ODA (Operations Data Analysis). A beta version of the code is available for free testing and evaluation to interested parties
Transient well flow in vertically heterogeneous aquifers
Hemker, C. J.
1999-11-01
A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with
Selected hydraulic test analysis techniques for constant-rate discharge tests
International Nuclear Information System (INIS)
Spane, F.A. Jr.
1993-03-01
The constant-rate discharge test is the principal field method used in hydrogeologic investigations for characterizing the hydraulic properties of aquifers. To implement this test, the aquifer is stressed by withdrawing ground water from a well, by using a downhole pump. Discharge during the withdrawal period is regulated and maintained at a constant rate. Water-level response within the well is monitored during the active pumping phase (i.e., drawdown) and during the subsequent recovery phase following termination of pumping. The analysis of drawdown and recovery response within the stress well (and any monitored, nearby observation wells) provides a means for estimating the hydraulic properties of the tested aquifer, as well as discerning formational and nonformational flow conditions (e.g., wellbore storage, wellbore damage, presence of boundaries, etc.). Standard analytical methods that are used for constant-rate pumping tests include both log-log type-curve matching and semi-log straight-line methods. This report presents a current ''state of the art'' review of selected transient analysis procedures for constant-rate discharge tests. Specific topics examined include: analytical methods for constant-rate discharge tests conducted within confined and unconfined aquifers; effects of various nonideal formation factors (e.g., anisotropy, hydrologic boundaries) and well construction conditions (e.g., partial penetration, wellbore storage) on constant-rate test response; and the use of pressure derivatives in diagnostic analysis for the identification of specific formation, well construction, and boundary conditions
Shale-Gas Experience as an Analog for Potential Wellbore Integrity Issues in CO2 Sequestration
Energy Technology Data Exchange (ETDEWEB)
Carey, James W. [Los Alamos National Laboratory; Simpson, Wendy S. [Los Alamos National Laboratory; Ziock, Hans-Joachim [Los Alamos National Laboratory
2011-01-01
Shale-gas development in Pennsylvania since 2003 has resulted in about 19 documented cases of methane migration from the deep subsurface (7,0000) to drinking water aquifers, soils, domestic water wells, and buildings, including one explosion. In all documented cases, the methane leakage was due to inadequate wellbore integrity, possibly aggravated by hydrofracking. The leakage of methane is instructive on the potential for CO{sub 2} leakage from sequestration operations. Although there are important differences between the two systems, both involve migrating, buoyant gas with wells being a primary leakage pathway. The shale-gas experience demonstrates that gas migration from faulty wells can be rapid and can have significant impacts on water quality and human health and safety. Approximately 1.4% of the 2,200 wells drilled into Pennsylvania's Marcellus Formation for shale gas have been implicated in methane leakage. These have resulted in damage to over 30 domestic water supplies and have required significant remediation via well repair and homeowner compensation. The majority of the wellbore integrity problems are a result of over-pressurization of the wells, meaning that high-pressure gas has migrated into an improperly protected wellbore annulus. The pressurized gas leaks from the wellbore into the shallow subsurface, contaminating drinking water or entering structures. The effects are localized to a few thousands of feet to perhaps two-three miles. The degree of mixing between the drinking water and methane is sufficient that significant chemical impacts are created in terms of elevated Fe and Mn and the formation of black precipitates (metal sulfides) as well as effervescing in tap water. Thus it appears likely that leaking CO{sub 2} could also result in deteriorated water quality by a similar mixing process. The problems in Pennsylvania highlight the critical importance of obtaining background data on water quality as well as on problems associated with
The wellbore simulator SIMU1999; El simulador de pozos SIMU1999
Energy Technology Data Exchange (ETDEWEB)
Sanchez Upton, Pedro [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)
1999-08-01
This work presents a brief description of the architecture and scope of the wellbore simulator SIMU1999. Its prime application involves the representation of the different flow types and thermodynamic conditions found in geothermal wells. The simulator utilizes a homogeneous flow model which incorporates the fundamental theories of fluid mechanics and allows the handling of two-phase three component mixtures (H{sub 2}O-NaCl-CO{sub 2}), which represent the main constituents appearing in the production of geothermal fluids. SIMU1999 uses a two-phase friction factor developed on the basis of 64 production test carried out on 45 different wells. There were recovered more than 324 pressure drop data and 628 temperature measurements from the inner of the wells. Mechanical log recorders (Kuster) were mainly used but some electronic logs (Hot Hole and Pruett) were carried out, too. The friction factor is calculated using the Reynolds number, steam quality, and fluid pressure, therefore, it is independent of any previous flow pattern identification. Production data included specific enthalpies from 650 to 2 780 kj/kg, fluid pressures between 0.4 and 14 MPa, and fluid temperatures from 110 to 340 Celsius degrees. The computer code of SIMU 1999 is written in Fortran 90 and generates and executable file a little bit greater than 1 Mb. The program is divided in four parts, these are: the wellbore simulator; a graphical output to analyze the results on the screen; a separated subroutine to evaluate the mass flow rate of three component flows discharging to the atmosphere at the speed of sound; and an independent thermodynamic module which could be utilized to make estimations to be used in manual analysis. The code incorporates an efficient algorithm to solve the fluid transport phenomena problem, based on a numerical method of successive approaches. The simulator uses the International System of Units, for data input and for results (outcomes) generation. Everything is realized
Methodology to predict the initiation of multiple transverse fractures from horizontal wellbores
Energy Technology Data Exchange (ETDEWEB)
Crosby, D. G.; Yang, Z.; Rahman, S. S. [Univ. of New South Wales (Australia)
2001-10-01
The criterion based on Drucker and Prager which is designed to predict the pressure required to initiate secondary multiple transverse fractures in close proximity to primary fractures is discussed. Results based on this criterion compare favorably with those measured during a series of laboratory-scale hydraulic fracture interaction tests. It is concluded that the multiple fracture criterion and laboratory results demonstrate that transversely fractured horizontal wellbores have a limited capacity to resist the initiation of multiple fractures from adjacent perforations, or intersecting induced and natural fractures. 23 refs., 1 tab., 9 figs.
Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.
2010-01-01
Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative
Energy Technology Data Exchange (ETDEWEB)
Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.
2010-02-12
Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative
Energy Technology Data Exchange (ETDEWEB)
Sobolik, Steven R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.; Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Waste Disposal Research and Analysis Dept.; Rechard, Robert P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Waste Disposal Research and Analysis Dept.
2016-05-01
The Bureau of Land Management (BLM), US Department of the Interior has asked Sandia National Laboratories (SNL) to perform scientific studies relevant to technical issues that arise in the development of co-located resources of potash and petroleum in southeastern New Mexico in the Secretary’s Potash Area. The BLM manages resource development, issues permits and interacts with the State of New Mexico in the process of developing regulations, in an environment where many issues are disputed by industry stakeholders. The present report is a deliverable of the study of the potential for gas migration from a wellbore to a mine opening in the event of wellbore leakage, a risk scenario about which there is disagreement among stakeholders and little previous site specific analysis. One goal of this study was to develop a framework that required collaboratively developed inputs and analytical approaches in order to encourage stakeholder participation and to employ ranges of data values and scenarios. SNL presents here a description of a basic risk assessment (RA) framework that will fulfill the initial steps of meeting that goal. SNL used the gas migration problem to set up example conceptual models, parameter sets and computer models and as a foundation for future development of RA to support BLM resource development.
Energy Technology Data Exchange (ETDEWEB)
Berger, P. E.; Sele, R. [Baker Hughes INTEQ (United States)
1998-12-31
Wellbore position calculations are typically performed by measuring azimuth and inclination at 10 to 30 meter intervals and using interpolation techniques to determine the borehole position between survey stations. The input parameters are measured depth (MD), azimuth and inclination, where the two parameters are measured with an MWD tool. Output parameters are the geometric coordinates; true value depth (TVD), north and east. By improving the accuracy of the inclination measurement reduces the uncertainty of the calculated TVD value, resulting in increased confidence in wellbore position. Significant improvements in quality control can be achieved by using multiple sensors. This paper describes a set of quality control parameters that can be used to verify individual sensor performance and a method for calculating TVD uncertainty in horizontal wells, using a single sensor or a combination of sensors. 6 refs., 5 figs.
Directory of Open Access Journals (Sweden)
Salam Al-Rbeawi
2017-12-01
Full Text Available The objective of this paper is studying the impact of the hydraulic flow unit and reservoir quality index (RQI on pressure profile and productivity index of horizontal wells acting in finite reservoirs. Several mathematical models have been developed to investigate this impact. These models have been built based on the pressure distribution in porous media, depleted by a horizontal well, consist of multi hydraulic flow units and different reservoir quality index. The porous media are assumed to be finite rectangular reservoirs having different configurations and the wellbores may have different lengths. Several analytical models describing flow regimes have been derived wherein hydraulic flow units and reservoir quality index have been included in addition to rock and fluid properties. The impact of these two parameters on reservoir performance has also been studied using steady state productivity index.It has been found that both pressure responses and flow regimes are highly affected by the existence of multiple hydraulic flow units in the porous media and the change in reservoir quality index for these units. Positive change in the RQI could lead to positive change in both pressure drop required for reservoir fluids to move towards the wellbore and hence the productivity index.
Directory of Open Access Journals (Sweden)
Wang Dongying
2017-01-01
Full Text Available In this paper, a triple-medium flow model for carbonate geothermal reservoirs with an exponential external boundary ﬂux is established. The pressure solution under constant production conditions in Laplace space is solved. The geothermal wellbore pressure change considering wellbore storage and skin factor is obtained by Stehfest numerical inversion. The well test interpretation charts and Fetkovich production decline chart for carbonate geothermal reservoirs are proposed for the first time. The proposed Fetkovich production decline curves are applied to analyze the production decline behavior. The results indicate that in carbonate geothermal reservoirs with exponential external boundary ﬂux, the pressure derivative curve contains a triple dip, which represents the interporosity flow between the vugs or matrix and fracture system and the invading flow of the external boundary ﬂux. The interporosity flow of carbonate geothermal reservoirs and changing external boundary flux can both slow down the extent of production decline and the same variation tendency is observed in the Fetkovich production decline curve.
Fluid flow in gas condensate reservoirs. The interplay of forces and their relative strengths
Energy Technology Data Exchange (ETDEWEB)
Ursin, Jann-Rune [Stavanger University College, Department of Petroleum Engineering, PO Box 8002, Stavanger, 4068 (Norway)
2004-02-01
Natural production from gas condensate reservoirs is characterized by gas condensation and liquid dropout in the reservoir, first in the near wellbore volume, then as a cylindrical shaped region, dynamically developing into the reservoir volume. The effects of liquid condensation are reduced productivity and loss of production. Successful forecast of well productivity and reservoir production depends on detailed understanding of the effect of various forces acting on fluid flow in time and space. The production form gas condensate reservoirs is thus indirectly related to the interplay of fundamental forces, such as the viscosity, the capillary, the gravitational and the inertial force and their relative strengths, demonstrated by various dimensionless numbers. Dimensionless numbers are defined and calculated for all pressure and space coordinates in a test reservoir. Various regions are identified where certain forces are more important than others. Based on reservoir pressure development, liquid condensation and the numerical representation of dimensionless numbers, a conceptual understanding of a varying reservoir permeability has been reached.The material balance, the reservoir fluid flow and the wellbore flow calculations are performed on a cylindrical reservoir model. The ratios between fundamental forces are calculated and dimensionless numbers defined. The interplay of forces, demonstrated by these numbers, are calculated as function of radial dimension and reservoir pressure.
Interpretation of horizontal well production logs: influence of logging tool
Energy Technology Data Exchange (ETDEWEB)
Ozkan, E. [Colorado School of Mines, Boulder, CO (United States); Sarica, C. [Pennsylvania State Univ., College Park, PA (United States); Haci, M. [Drilling Measurements, Inc (United States)
1998-12-31
The influence of a production-logging tool on wellbore flow rate and pressure measurements was investigated, focusing on the disturbence caused by the production-logging tool and the coiled tubing on the original flow conditions in the wellbore. The investigation was carried out using an analytical model and single-phase liquid flow was assumed. Results showed that the production-logging tool influenced the measurements as shown by the deviation of the original flow-rate, pressure profiles and low-conductivity wellbores. High production rates increase the effect of the production-logging tool. Recovering or inferring the original flow conditions in the wellbore from the production-logging data is a very complex process which cannot be solved easily. For this reason, the conditions under which the information obtained by production-logging is meaningful is of considerable practical interest. 7 refs., 2 tabs., 15 figs.
Interpretation of horizontal well performance in complicated systems by the boundary element method
Energy Technology Data Exchange (ETDEWEB)
Jongkittinarukorn, K.; Tiab, D. [Oklahoma Univ., School of Petroleum and Geological Engineering (United States); Escobar, F. H. [Surcolombiana Univ., Dept. of Petroleum Engineering (Colombia)
1998-12-31
A solution obtained by using the boundary element method to simulate pressure behaviour of horizontal wells in complicated reservoir-wellbore configurations is presented. Three different types of well bore and reservoir models were studied, i.e. a snake-shaped horizontal wellbore intersecting a two-layer reservoir with cross flow, a horizontal well in a three-layer reservoir with cross flow, and a vertical well intersecting a two-layer reservoir without cross flow. In each case, special attention was paid to the influence of wellbore inclination angle, the distance from the wellbore to the different boundaries and the permeability ratio. Performance of each of these types of wells are discussed. 9 refs., 18 figs.
Flow chemistry vs. flow analysis.
Trojanowicz, Marek
2016-01-01
The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Abrahams, J R; Hiller, N
1965-01-01
Signal Flow Analysis provides information pertinent to the fundamental aspects of signal flow analysis. This book discusses the basic theory of signal flow graphs and shows their relation to the usual algebraic equations.Organized into seven chapters, this book begins with an overview of properties of a flow graph. This text then demonstrates how flow graphs can be applied to a wide range of electrical circuits that do not involve amplification. Other chapters deal with the parameters as well as circuit applications of transistors. This book discusses as well the variety of circuits using ther
Final Scientific/Technical Report for "Nanite" for Better Well-Bore Integrity and Zonal Isolation
Energy Technology Data Exchange (ETDEWEB)
Veedu, Vinod [Oceanit Laboratories, Inc., Honolulu, HI (United States); Hadmack, Michael [Oceanit Laboratories, Inc., Honolulu, HI (United States); Pollock, Jacob [Oceanit Laboratories, Inc., Honolulu, HI (United States); Pernambuco-Wise, Paul [Oceanit Laboratories, Inc., Honolulu, HI (United States); Ah Yo, Derek [Oceanit Laboratories, Inc., Honolulu, HI (United States)
2017-05-30
Nanite™ is a cementitious material that contains a proprietary formulation of functionalized nanomaterial additive to transform conventional cement into a smart material responsive to pressure (or stress), temperature, and any intrinsic changes in composition. This project has identified optimal sensing modalities of smart well cement and demonstrated how real-time sensing of Nanite™ can improve long-term wellbore integrity and zonal isolation in shale gas and applicable oil and gas operations. Oceanit has explored Nanite’s electrical sensing properties in depth and has advanced the technology from laboratory proof-of-concept to sub-scale testing in preparation for field trials.
Flow analysis of HANARO flow simulated test facility
International Nuclear Information System (INIS)
Park, Yong-Chul; Cho, Yeong-Garp; Wu, Jong-Sub; Jun, Byung-Jin
2002-01-01
The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial critical in February, 1995. Many experiments should be safely performed to activate the utilization of the NANARO. A flow simulated test facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate core channels. This test facility must simulate similar flow characteristics to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the test facility. The computational flow analysis has been performed for the verification of flow structure and similarity of this test facility assuming that flow rates and pressure differences of the core channel are constant. The shapes of flow orifices were determined by the trial and error method based on the design requirements of core channel. The computer analysis program with standard k - ε turbulence model was applied to three-dimensional analysis. The results of flow simulation showed a similar flow characteristic with that of the HANARO and satisfied the design requirements of this test facility. The shape of flow orifices used in this numerical simulation can be adapted for manufacturing requirements. The flow rate and the pressure difference through core channel proved by this simulation can be used as the design requirements of the flow system. The analysis results will be verified with the results of the flow test after construction of the flow system. (author)
Energy Technology Data Exchange (ETDEWEB)
Garcia-Valladares, O.; Santoyo, E. [Centro de Investigacion en Energia (UNAM), Privada Xochicalco s/n, Temixco, Mor. 62580 (Mexico); Sanchez-Upton, P. [Posgrado en Ingenieria (Energia), UNAM, Privada Xochicalco s/n, Temixco, Mor. 62580 (Mexico)
2006-07-15
One dimensional steady and transient numerical modeling for describing the heat and fluid dynamic transport inside geothermal wells has been conducted. The mass, momentum and energy governing equations were solved using a segregated numerical scheme. Discretized governing equations for the fluid flow were coupled and solved with a fully implicit step by step method. The mathematical formulation used suitable empirical correlations for estimating the convective heat transfer coefficients as well as the shear stress and the void fraction parameters. Heat conduction across the wellbore materials was solved by an implicit central difference numerical scheme using the tri-diagonal matrix algorithm (TDMA). The flow characteristics of producer geothermal wells (pressure, temperature, enthalpy, heat fluxes, etc.) at each depth node were computed. Analytical data reported in the literature were used to validate the numerical capability of the wellbore simulator developed for this study (GEOWELLS). This simulator, together with another computer code (ORKISZEWSKI), was applied for modeling the heat and fluid flow processes inside some wells drilled in Mexican geothermal fields. The simulated pressure and temperature profiles were statistically compared against stable measured field data (through the computation of the residual sum of squares and Chi-square). A good agreement between the simulated and measured profiles of pressure and temperature was consistently obtained, having the best matching results for the GEOWELLS predictions. An analysis of the sensitivity and uncertainty was finally conducted to estimate the confidence to be accorded the simulation results predicted by GEOWELLS. Matching the sensitivity to variations in some input parameters (e.g., pressure, temperature, enthalpy and void fraction) was examined. The void fraction was identified as one of the most important parameters that affect the GEOWELLS simulations for matching measured field data correctly
International Nuclear Information System (INIS)
Garcia-Valladares, O.; Sanchez-Upton, P.; Santoyo, E.
2006-01-01
One dimensional steady and transient numerical modeling for describing the heat and fluid dynamic transport inside geothermal wells has been conducted. The mass, momentum and energy governing equations were solved using a segregated numerical scheme. Discretized governing equations for the fluid flow were coupled and solved with a fully implicit step by step method. The mathematical formulation used suitable empirical correlations for estimating the convective heat transfer coefficients as well as the shear stress and the void fraction parameters. Heat conduction across the wellbore materials was solved by an implicit central difference numerical scheme using the tri-diagonal matrix algorithm (TDMA). The flow characteristics of producer geothermal wells (pressure, temperature, enthalpy, heat fluxes, etc.) at each depth node were computed. Analytical data reported in the literature were used to validate the numerical capability of the wellbore simulator developed for this study (GEOWELLS). This simulator, together with another computer code (ORKISZEWSKI), was applied for modeling the heat and fluid flow processes inside some wells drilled in Mexican geothermal fields. The simulated pressure and temperature profiles were statistically compared against stable measured field data (through the computation of the residual sum of squares and Chi-square). A good agreement between the simulated and measured profiles of pressure and temperature was consistently obtained, having the best matching results for the GEOWELLS predictions. An analysis of the sensitivity and uncertainty was finally conducted to estimate the confidence to be accorded the simulation results predicted by GEOWELLS. Matching the sensitivity to variations in some input parameters (e.g., pressure, temperature, enthalpy and void fraction) was examined. The void fraction was identified as one of the most important parameters that affect the GEOWELLS simulations for matching measured field data correctly
Liu, Yang; D'Angelo, Ralph M.; Choi, Gloria; Zhu, Lingchen; Bose, Sandip; Zeroug, Smaine
2018-04-01
Once an oil and gas wellbore has been drilled, steel casings and cement slurry are placed to ensure structural support, protection from fluid invasion, and most importantly to provide zonal isolation. The actual wellbore and string structure is rarely concentric but rather is often an eccentric one, especially in deviated boreholes. The term "eccentricity" is used to describe how off-center a casing string is within another pipe or the open-hole. In a typical double-string configuration, the inner casing is eccentered with respect to the outer string which itself is also eccentered within the cylindrical hole. The annuli may or may not be filled with solid cement, and the cement may have liquid-filled channels or be disbonded over localized azimuthal ranges. The complexity of wave propagation along axial intervals is significant in that multiple modes can be excited and detected with characteristics that are affected by the various parameters, including eccentering, in a non-linear fashion. A successful diagnosis of cement flaws largely relies on a thorough understanding of the complex acoustic modal information. The present study employs both modeling and experiments to fully understand the acoustic wave propagation in the complex, fluid-solid nested, cylindrically layered structures, with geometric eccentricities. The experimental results show excellent agreement with the theoretical predictions from newly developed, borehole acoustic modeling approaches. As such, it provides the basis for better understanding the operative wave physics and providing the means for effective inspection methodologies to assess well integrity and zonal isolation of oil wells.
International Nuclear Information System (INIS)
Thomas, L.K.; Evans, C.E.; Pierson, R.G.; Scott, S.L.
1992-01-01
This paper describes the development and application of a comprehensive oil or gas well performance model. The model contains six distinct sections: stimulation design, tubing and/or casing flow, reservoir and near-wellbore calculations, production forecasting, wellbore heat transmission, and economics. These calculations may be performed separately or in an integrated fashion with data and results shared among the different sections. The model analysis allows evaluation of all aspects of well completion design, including the effects on future production and overall well economics
Multiphase flow models for hydraulic fracturing technology
Osiptsov, Andrei A.
2017-10-01
The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and
Directory of Open Access Journals (Sweden)
Vinh X. Nguyen
2010-03-01
Full Text Available The porochemoelectroelastic analytical models and solutions have been used to describe the response of chemically active and electrically charged saturated porous media such as clays, shales, and biological tissues. However, these attempts have been restricted to one-dimensional consolidation problems, which are very limited in practice and not general enough to serve as benchmark solutions for numerical validation. This work summarizes the general linear porochemoelectroelastic formulation and presents the solution of an inclined wellbore drilled in a fluid-saturated chemically active and ionized formation, such as shale, and subjected to a three-dimensional in-situ state of stress. The analytical solution to this geometry incorporates the coupled solid deformation and simultaneous fluid/ion flows induced by the combined influences of pore pressure, chemical potential, and electrical potential gradients under isothermal conditions. The formation pore fluid is modeled as an electrolyte solution comprised of a solvent and one type of dissolved cation and anion. The analytical approach also integrates into the solution the quantitative use of the cation exchange capacity (CEC commonly obtained from laboratory measurements on shale samples. The results for stresses and pore pressure distributions due to the coupled electrochemical effects are illustrated and plotted in the vicinity of the inclined wellbore and compared with the classical porochemoelastic and poroelastic solutions.Modelos analíticos poroelásticos incluindo acoplamento químico e elétrico e soluções têm sido utilizados paradescrever a resposta de meios porosos saturados ativos química e eletricamente tais como argilas, folhelhos e tecidos biológicos. Entretanto tais tentativas têm sido restritas a problemas de consolidação unidimensional os quais exibem limitações na prática não constituindo exemplos realistas para validação de soluções numéricas. Este trabalho
Time-Lapse Measurement of Wellbore Integrity
Duguid, A.
2017-12-01
estimate of the cement isolating capacity. Cased-hole sidewall cores in the steel and fiberglass casing sections allowed analysis of bulk cement and the cement at the casing- and formation-interface. This presentation will cover how time-lapse logging was conducted, how the results may be applicable to other wells, and how monitoring well design may affect wellbore integrity.
Wang, Q.; Zhan, H.
2017-12-01
Horizontal drilling becomes an appealing technology for water exploration or aquifer remediation in recent decades, due to the decreasing operational cost and many technical advantages over the vertical wells. However, many previous studies on the flow into horizontal wells were based on the uniform flux boundary condition (UFBC) for treating horizontal wells, which could not reflect the physical processes of flow inside the well accurately. In this study, we investigated transient flow into a horizontal well in an anisotropic confined aquifer between two streams for three types of boundary conditions of treating the horizontal well, including UFBC, uniform head boundary condition (UHBC), and mixed-type boundary condition (MTBC). The MTBC model considered both kinematic and frictional effects inside the horizontal well, in which the kinematic effect referred to the accelerational and fluid inflow effects. The new solution of UFBC was derived by superimposing the point sink/source solutions along the axis of the horizontal well with a uniform strength. The solutions of UHBC and MTBC were obtained by a hybrid analytical-numerical method, and an iterative method was proposed to determine the minimum well segment number required to yield sufficiently accurate answer. The results showed that the differences among the UFBC, UHBC, MTBCFriction and MTBC solutions were obvious, in which MTBCFriction represented the solutions considering the frictional effect but ignoring the kinematic effect. The MTBCFriction and MTBC solutions were sensitive to the flow rate, and the difference of these two solutions increases with the flow rate, suggesting that the kinematic effect could not be ignored for studying flow to a horizontal well, especially when the flow rate is great. The well specific inflow (WSI) (which is the inflow per unit screen length at a specified location of the horizontal well) increased with the distance along the wellbore for the MTBC model at early stage, while
Radial flow towards well in leaky unconfined aquifer
Mishra, P. K.; Kuhlman, K. L.
2012-12-01
An analytical solution is developed for three-dimensional flow towards a partially penetrating large- diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.
Numerical modelling of cuttings transport in horizontal wells using conventional drilling fluids
Energy Technology Data Exchange (ETDEWEB)
Li, Y.; Bjorndalen, E.; Kuru, E. [Alberta Univ., Edmonton, AB (Canada)
2004-07-01
Some of the problems associated with poor wellbore cleaning include high drag or torque, slower rate of penetration, formation fractures and difficulty in wellbore steering. Some of the factors that affect cuttings transport include drilling fluid velocity, inclination angle, drilling fluid viscosity and drilling rate. The general practice is to stop drilling when necessary to clean boreholes with viscous pills, pipe rotation or drilling fluid circulation. It is important to predict when drilling should be stopped for remedial wellbore cleaning. This can be accomplished with a transient cuttings transport model which can improve drilling hydraulics, particularly in long horizontal well sections and extended reach (ERD) wells. This paper presents a newly developed 1-dimensional transient mechanistic model of cuttings transport with conventional (incompressible) drilling fluids in horizontal wells. The numerically solved model predicts the height of cutting beds as a function of different drilling operational parameters such as fluid flow rate and rheological characteristics, drilling rates, wellbore geometry and drillpipe eccentricity. Sensitivity analysis has demonstrated the effects of these parameters on the efficiency of solids transport. The proposed model can be used in the creation of computer programs designed to optimize drilling fluid rheology and flow rates for horizontal well drilling. 29 refs., 3 tabs., 12 figs.
Saturated-unsaturated flow in a compressible leaky-unconfined aquifer
Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.
2012-06-01
An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.
Flexible cement improves wellbore integrity for steam assisted gravity drainage SAGD wells
Energy Technology Data Exchange (ETDEWEB)
DeBruijn, G.; Whitton, S.; Redekopp, D. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Schlumberger Canada Ltd., Calgary, AB (Canada); Siso, C. [ConocoPhillips Canada Resources Corp., Calgary, AB (Canada); Reinheimer, D. [Schlumberger Canada Ltd., Calgary, AB (Canada)
2008-10-15
Cement sheath integrity is an important factor in ensuring the zonal isolation of wells. Significant stresses are placed on the cement sheaths of wells during steam assisted gravity drainage (SAGD) processes, as the expanded forces from the heating of the well are transferred to the cement sheath, which places a tensile load on the cement at the sheath's outer edge. In this study, a computerized simulation was conducted to examine stresses in a novel flexible cement sheath system during an SAGD heat-up cycle. Wellbore temperature was increased from 10 degrees C to 250 degrees C over a period of 720 minutes. Pressure was increased from 0 MPa to 5 MPa. The finite element model was used to predict microannulus, cement failure in compression, and cement failure in tension. A sensitivity analysis was used to estimate the effect of different parameters as well as to estimate the value of the Young's modulus of the shale. Results of the study showed that temperature and pressure dynamics have a significant impact on stresses in the cement sheath. An extended heat-up period resulted in reduced stresses to the sheath. Lower operating pressures also reduced stresses. It was concluded that pressure and temperature increases should be extended over a long a period as possible in order to reduce stresses. Results suggested that a flexible cement system with a low Young's modulus is suitable for SAGD wells. 8 refs., 2 tabs., 6 figs.
Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis
Energy Technology Data Exchange (ETDEWEB)
Horne, Roland N.; Li, Kewen; Alaskar, Mohammed; Ames, Morgan; Co, Carla; Juliusson, Egill; Magnusdottir, Lilja
2012-06-30
This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.
Fluid flow behaviour of gas-condensate and near-miscible fluids at the pore scale
Energy Technology Data Exchange (ETDEWEB)
Dawe, Richard A. [Department of Chemical Engineering, University of West Indies, St. Augustine (Trinidad and Tobago); Grattoni, Carlos A. [Department of Earth Science and Engineering, Imperial College, London, SW7 2BP (United Kingdom)
2007-02-15
Retrograde condensate reservoir behaviour is complex with much of the detailed mechanisms of the multiphase fluid transport and mass transfer between the phases within the porous matrix still speculative. Visual modelling of selected processes occurring at the pore level under known and controlled boundary conditions can give an insight to fluid displacements at the core scale and help the interpretation of production behaviour at reservoir scale. Visualisation of the pore scale two-phase flow mechanisms has been studied experimentally at low interfacial tensions, < 0.5 mN/m, using a partially miscible fluid system in glass visual micro models. As the interfacial tension decreases the balance between fluid-fluid forces (interfacial, spreading and viscous) and fluid-solid interactions (wettability and viscous interactions) changes. Data measurements in the laboratory, particularly relative permeability, will therefore always be difficult especially for condensate fluids just below their dew point. What is certain is that gas production from a gas-condensate leads to condensate dropout when pressure falls below the dew point, either within the wellbore or, more importantly, in the reservoir. This paper illustrates some pore scale physics, particularly interfacial phenomena at low interfacial tension, which has relevance to appreciating the flow of condensate fluids close to their dew point either near the wellbore (which affects well productivity) or deep inside the reservoir (which affects condensate recovery). (author)
Hangx, Suzanne J T; van der Linden, Arjan; Marcelis, Fons; Liteanu, Emilia
2016-01-19
To predict the behavior of the cement sheath after CO2 injection and the potential for leakage pathways, it is key to understand how the mechanical properties of the cement evolves with CO2 exposure time. We performed scratch-hardness tests on hardened samples of class G cement before and after CO2 exposure. The cement was exposed to CO2-rich fluid for one to six months at 65 °C and 8 MPa Ptotal. Detailed SEM-EDX analyses showed reaction zones similar to those previously reported in the literature: (1) an outer-reacted, porous silica-rich zone; (2) a dense, carbonated zone; and (3) a more porous, Ca-depleted inner zone. The quantitative mechanical data (brittle compressive strength and friction coefficient) obtained for each of the zones suggest that the heterogeneity of reacted cement leads to a wide range of brittle strength values in any of the reaction zones, with only a rough dependence on exposure time. However, the data can be used to guide numerical modeling efforts needed to assess the impact of reaction-induced mechanical failure of wellbore cement by coupling sensitivity analysis and mechanical predictions.
Two-phase flow in volatile oil reservoir using two-phase pseudo-pressure well test method
Energy Technology Data Exchange (ETDEWEB)
Sharifi, M.; Ahmadi, M. [Calgary Univ., AB (Canada)
2009-09-15
A study was conducted to better understand the behaviour of volatile oil reservoirs. Retrograde condensation occurs in gas-condensate reservoirs when the flowing bottomhole pressure (BHP) lowers below the dewpoint pressure, thus creating 4 regions in the reservoir with different liquid saturations. Similarly, when the BHP of volatile oil reservoirs falls below the bubblepoint pressure, two phases are created in the region around the wellbore, and a single phase (oil) appears in regions away from the well. In turn, higher gas saturation causes the oil relative permeability to decrease towards the near-wellbore region. Reservoir compositional simulations were used in this study to predict the fluid behaviour below the bubblepoint. The flowing bottomhole pressure was then exported to a well test package to diagnose the occurrence of different mobility regions. The study also investigated the use of a two-phase pseudo-pressure method on volatile and highly volatile oil reservoirs. It was concluded that this method can successfully predict the true permeability and mechanical skin. It can also distinguish between mechanical skin and condensate bank skin. As such, the two-phase pseudo-pressure method is particularly useful for developing after-drilling well treatment and enhanced oil recovery process designs. However, accurate relative permeability and PVT data must be available for reliable interpretation of the well test in volatile oil reservoirs. 18 refs., 3 tabs., 9 figs.
Subcubic Control Flow Analysis Algorithms
DEFF Research Database (Denmark)
Midtgaard, Jan; Van Horn, David
We give the first direct subcubic algorithm for performing control flow analysis of higher-order functional programs. Despite the long held belief that inclusion-based flow analysis could not surpass the ``cubic bottleneck, '' we apply known set compression techniques to obtain an algorithm...... that runs in time O(n^3/log n) on a unit cost random-access memory model machine. Moreover, we refine the initial flow analysis into two more precise analyses incorporating notions of reachability. We give subcubic algorithms for these more precise analyses and relate them to an existing analysis from...
Mullet, B.; Segall, P.
2017-12-01
Explosive volcanic eruptions can exhibit abrupt changes in physical behavior. In the most extreme cases, high rates of mass discharge are interspaced by dramatic drops in activity and periods of quiescence. Simple models predict exponential decay in magma chamber pressure, leading to a gradual tapering of eruptive flux. Abrupt changes in eruptive flux therefore indicate that relief of chamber pressure cannot be the only control of the evolution of such eruptions. We present a simplified physics-based model of conduit flow during an explosive volcanic eruption that attempts to predict stress-induced conduit collapse linked to co-eruptive pressure loss. The model couples a simple two phase (gas-melt) 1-D conduit solution of the continuity and momentum equations with a Mohr-Coulomb failure condition for the conduit wall rock. First order models of volatile exsolution (i.e. phase mass transfer) and fragmentation are incorporated. The interphase interaction force changes dramatically between flow regimes, so smoothing of this force is critical for realistic results. Reductions in the interphase force lead to significant relative phase velocities, highlighting the deficiency of homogenous flow models. Lateral gas loss through conduit walls is incorporated using a membrane-diffusion model with depth dependent wall rock permeability. Rapid eruptive flux results in a decrease of chamber and conduit pressure, which leads to a critical deviatoric stress condition at the conduit wall. Analogous stress distributions have been analyzed for wellbores, where much work has been directed at determining conditions that lead to wellbore failure using Mohr-Coulomb failure theory. We extend this framework to cylindrical volcanic conduits, where large deviatoric stresses can develop co-eruptively leading to multiple distinct failure regimes depending on principal stress orientations. These failure regimes are categorized and possible implications for conduit flow are discussed, including
Energy Technology Data Exchange (ETDEWEB)
Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.
2014-08-07
Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.
Subsurface fracture mapping from geothermal wellbores. Final report
Energy Technology Data Exchange (ETDEWEB)
Hartenbaum, B.A.; Rawson, G.
1983-08-01
To advance the state-of-the-art in Hot Dry Rock technology, and evaluation is made of (1) the use of both electromagnetic and acoustic radar to map far-field fractures, (2) the use of more than twenty different conventional well logging tools to map borehole-fracture intercepts, (3) the use of magnetic dipole ranging to determine the relative positions of the injection well and the production well within the fractured zone, (4) the use of passive microseismic methods to determine the orientation and extent of hydraulic fractures, and (5) the application of signal processing techniques to fracture mapping including tomography, holography, synthetic aperture, image reconstruction, and the relative importance of phase and amplitude information. It is found that according to calculations, VHF backscatter radar has the potential for mapping fractures within a distance of 50 +- 20 meters from the wellbore. A new technique for improving fracture identification is presented. The range of acoustic radar is five to seven times greater than that of VHF radar when compared on the basis of equal resolution, i.e., equal wavelengths. Analyses of extant data indicate that when used synergistically the (1) caliper, (2) resistivity dipmeter, (3) televiewer, (4) television, (5) impression packer, and (6) acoustic transmission are useful for mapping borehole-fracture intercepts. A new model of hydraulic fracturing is presented which indicates that a hydraulic fracture is dynamically unstable; consequently, improvements in locating the crack tip may be possible. The importance of phase in signal processing is stressed and those techniques which employ phase data are emphasized for field use.
Information Flow Analysis for VHDL
DEFF Research Database (Denmark)
Tolstrup, Terkel Kristian; Nielson, Flemming; Nielson, Hanne Riis
2005-01-01
We describe a fragment of the hardware description language VHDL that is suitable for implementing the Advanced Encryption Standard algorithm. We then define an Information Flow analysis as required by the international standard Common Criteria. The goal of the analysis is to identify the entire...... information flow through the VHDL program. The result of the analysis is presented as a non-transitive directed graph that connects those nodes (representing either variables or signals) where an information flow might occur. We compare our approach to that of Kemmerer and conclude that our approach yields...
Shams Bilal; Yao Jun; Zhang Kai; Zhang Lei
2017-01-01
Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large...
DEFF Research Database (Denmark)
Edvardsen, I.; Nyrnes, E.; Johnsen, M. G.
2014-01-01
of nonmagnetic steel in the bottomhole assembly (BHA). To maintain azimuth uncertaintyat an acceptable level in northern areas, it is crucial that wellbore-directional-surveying requirements are given high priority and considered early during well planning. During the development phase of an oil and gas field...... magnetic-reference stations. The different land and sea configuration, distant offshore oil and gas fields, higher geomagnetic latitude, and different behavior of the magnetic field require the procedures to be reassessed before being applied to the Barents Sea. To reduce drilling delays, procedures must...... be implemented to enable efficient management of magnetic disturbances.In some areas of the Barents Sea, the management requires new equipment to be developed and tested before drilling, such as seabed magnetometer stations. One simple way to reduce drillstring interference is increasing the amount...
CQUESTRA, a risk and performance assessment code for geological sequestration of carbon dioxide
International Nuclear Information System (INIS)
LeNeveu, D.M.
2008-01-01
A computationally efficient semi-analytical code, CQUESTRA, has been developed for probabilistic risk assessment and rapid screening of potential sites for geological sequestration of carbon dioxide. The rate of dissolution and leakage from a trapped underground pool of carbon dioxide is determined. The trapped carbon dioxide could be mixed with hydrocarbons and other components to form a buoyant phase. The program considers potential mechanisms for escape from the geological formations such as the movement of the buoyant phase through failed seals in wellbores, the annulus around wellbores and through open fractures in the caprock. Plume animations of dissolved carbon dioxide in formation water around the wellbores are provided. Solubility, density and viscosity of the buoyant phase are determined by equations of state. Advection, dispersion, diffusion, buoyancy, aquifer flow rates and local formation fluid pressure are taken into account in the modeling of the carbon dioxide movement. Results from a hypothetical example simulation based on data from the Williston basin near Weyburn, Saskatchewan, indicate that this site is potentially a viable candidate for carbon dioxide sequestration. Sensitivity analysis of CQUESTRA indicates that criteria such as siting below aquifers with large flow rates and siting in reservoirs having fluid pressure below the pressure of the formations above can promote complete dissolution of the carbon dioxide during movement toward the surface, thereby preventing release to the biosphere. Formation of very small carbon dioxide bubbles within the fluid in the wellbores can also lead to complete dissolution
Using Crossflow for Flow Measurements and Flow Analysis
Energy Technology Data Exchange (ETDEWEB)
Gurevich, A.; Chudnovsky, L.; Lopeza, A. [Advanced Measurement and Analysis Group Inc., Ontario (Canada); Park, M. H. [Sungjin Nuclear Engineering Co., Ltd., Gyeongju (Korea, Republic of)
2016-10-15
Ultrasonic Cross Correlation Flow Measurements are based on a flow measurement method that is based on measuring the transport time of turbulent structures. The cross correlation flow meter CROSSFLOW is designed and manufactured by Advanced Measurement and Analysis Group Inc. (AMAG), and is used around the world for various flow measurements. Particularly, CROSSFLOW has been used for boiler feedwater flow measurements, including Measurement Uncertainty Recovery (MUR) reactor power uprate in 14 nuclear reactors in the United States and in Europe. More than 100 CROSSFLOW transducers are currently installed in CANDU reactors around the world, including Wolsung NPP in Korea, for flow verification in ShutDown System (SDS) channels. Other CROSSFLOW applications include reactor coolant gross flow measurements, reactor channel flow measurements in all channels in CANDU reactors, boiler blowdown flow measurement, and service water flow measurement. Cross correlation flow measurement is a robust ultrasonic flow measurement tool used in nuclear power plants around the world for various applications. Mathematical modeling of the CROSSFLOW agrees well with laboratory test results and can be used as a tool in determining the effect of flow conditions on CROSSFLOW output and on designing and optimizing laboratory testing, in order to ensure traceability of field flow measurements to laboratory testing within desirable uncertainty.
Directory of Open Access Journals (Sweden)
Haiyang Yu
2014-01-01
Full Text Available This work presents numerical well testing interpretation model and analysis techniques to evaluate formation by using pressure transient data acquired with logging tools in crossflow double-layer reservoirs by polymer flooding. A well testing model is established based on rheology experiments and by considering shear, diffusion, convection, inaccessible pore volume (IPV, permeability reduction, wellbore storage effect, and skin factors. The type curves were then developed based on this model, and parameter sensitivity is analyzed. Our research shows that the type curves have five segments with different flow status: (I wellbore storage section, (II intermediate flow section (transient section, (III mid-radial flow section, (IV crossflow section (from low permeability layer to high permeability layer, and (V systematic radial flow section. The polymer flooding field tests prove that our model can accurately determine formation parameters in crossflow double-layer reservoirs by polymer flooding. Moreover, formation damage caused by polymer flooding can also be evaluated by comparison of the interpreted permeability with initial layered permeability before polymer flooding. Comparison of the analysis of numerical solution based on flow mechanism with observed polymer flooding field test data highlights the potential for the application of this interpretation method in formation evaluation and enhanced oil recovery (EOR.
Buck Creek River Flow Analysis
Dhanapala, Yasas; George, Elizabeth; Ritter, John
2009-04-01
Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.
Usefulness of DC power flow for active power flow analysis with flow controlling devices
Van Hertem, D.; Verboomen, J.; Purchala, K.; Belmans, R.; Kling, W.L.
2006-01-01
DC power flow is a commonly used tool for contingency analysis. Recently, due to its simplicity and robustness, it also becomes increasingly used for the real-time dispatch and techno-economic analysis of power systems. It is a simplification of a full power flow looking only at active power.
Thermal transient analysis applied to horizontal wells
Energy Technology Data Exchange (ETDEWEB)
Duong, A.N. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[ConocoPhillips Canada Resources Corp., Calgary, AB (Canada)
2008-10-15
Steam assisted gravity drainage (SAGD) is a thermal recovery process used to recover bitumen and heavy oil. This paper presented a newly developed model to estimate cooling time and formation thermal diffusivity by using a thermal transient analysis along the horizontal wellbore under a steam heating process. This radial conduction heating model provides information on the heat influx distribution along a horizontal wellbore or elongated steam chamber, and is therefore important for determining the effectiveness of the heating process in the start-up phase in SAGD. Net heat flux estimation in the target formation during start-up can be difficult to measure because of uncertainties regarding heat loss in the vertical section; steam quality along the horizontal segment; distribution of steam along the wellbore; operational conditions; and additional effects of convection heating. The newly presented model can be considered analogous to pressure transient analysis of a buildup after a constant pressure drawdown. The model is based on an assumption of an infinite-acting system. This paper also proposed a new concept of a heating ring to measure the heat storage in the heated bitumen at the time of testing. Field observations were used to demonstrate how the model can be used to save heat energy, conserve steam and enhance bitumen recovery. 18 refs., 14 figs., 2 appendices.
Experimental and numerical modeling of sulfur plugging in carbonate reservoirs
Energy Technology Data Exchange (ETDEWEB)
Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, PO Box 17555, Al-Ain (United Arab Emirates)
2000-05-01
Sour gas, mainly in the form of hydrogen sulfide, is produced in large amounts from many oil and gas reservoirs in the United Arab Emirates. In addition to creating problems in production lines, the precipitation of elemental sulfur in vicinity of the wellbore is often reported to cause wellbore damage. While there have been several studies performed on the role of solid deposition in gas reservoirs, the role of sulfur deposition in oil reservoirs has not been investigated. This paper presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. Two separate sets of experiments, one for a gas phase system and another for a crude oil system, were conducted to investigate the deposition of elemental sulfur in (linear) carbonate cores. The gas flow tests were conducted with elemental sulfur being carried with nitrogen through limestone cores. Changes in gas flow rate were monitored while the injection pressure was held constant. A series of experiments generated valuable data for plugging with elemental sulfur. X-ray diffraction tests provided evidence of sulfur deposition along the cores. The oil flow tests were carried out to observe sulfur precipitation and plugging in a carbonate core. The crude oil was de-asphalted before conducting these tests in order to isolate the effect of asphaltene plugging. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in a phenomenological model that was incorporated in the wellbore numerical model. The data for the numerical model were obtained from both test tube and oil flow experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results)
Flow analysis techniques for phosphorus: an overview.
Estela, José Manuel; Cerdà, Víctor
2005-04-15
A bibliographical review on the implementation and the results obtained in the use of different flow analytical techniques for the determination of phosphorus is carried out. The sources, occurrence and importance of phosphorus together with several aspects regarding the analysis and terminology used in the determination of this element are briefly described. A classification as well as a brief description of the basis, advantages and disadvantages of the different existing flow techniques, namely; segmented flow analysis (SFA), flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA) and multipumped FIA (MPFIA) is also carried out. The most relevant manuscripts regarding the analysis of phosphorus by means of flow techniques are herein classified according to the detection instrumental technique used with the aim to facilitate their study and obtain an overall scope. Finally, the analytical characteristics of numerous flow-methods reported in the literature are provided in the form of a table and their applicability to samples with different matrixes, namely water samples (marine, river, estuarine, waste, industrial, drinking, etc.), soils leachates, plant leaves, toothpaste, detergents, foodstuffs (wine, orange juice, milk), biological samples, sugars, fertilizer, hydroponic solutions, soils extracts and cyanobacterial biofilms are tabulated.
Robust-mode analysis of hydrodynamic flows
Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.
2017-04-01
The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.
Modular Control Flow Analysis for Libraries
DEFF Research Database (Denmark)
Probst, Christian W.
2002-01-01
One problem in analyzing object oriented languages is that the exact control flow graph is not known statically due to dynamic dispatching. However, this is needed in order to apply the large class of known interprocedural analysis. Control Flow Analysis in the object oriented setting aims...
A code to compute borehole fluid conductivity profiles with multiple feed points
International Nuclear Information System (INIS)
Hale, F.V.; Tsang, C.F.
1988-03-01
It is of much current interest to determine the flow characteristics of fractures intersecting a wellbore in order to understand the hydrologic behavior of fractured rocks. Often inflow from these fractures into the wellbore is at very low rates. A new procedure has been proposed and a corresponding method of analysis developed to obtain fracture inflow parameters from a time sequence of electric conductivity logs of the borehole fluid. The present report is a companion document to NTB--88-13 giving the details of equations and computer code used to compute borehole fluid conductivity distributions. Verification of the code used and a listing of the code are also given. (author) 9 refs., 5 figs., 7 tabs
Boolean logic analysis for flow regime recognition of gas–liquid horizontal flow
International Nuclear Information System (INIS)
Ramskill, Nicholas P; Wang, Mi
2011-01-01
In order to develop a flowmeter for the accurate measurement of multiphase flows, it is of the utmost importance to correctly identify the flow regime present to enable the selection of the optimal method for metering. In this study, the horizontal flow of air and water in a pipeline was studied under a multitude of conditions using electrical resistance tomography but the flow regimes that are presented in this paper have been limited to plug and bubble air–water flows. This study proposes a novel method for recognition of the prevalent flow regime using only a fraction of the data, thus rendering the analysis more efficient. By considering the average conductivity of five zones along the central axis of the tomogram, key features can be identified, thus enabling the recognition of the prevalent flow regime. Boolean logic and frequency spectrum analysis has been applied for flow regime recognition. Visualization of the flow using the reconstructed images provides a qualitative comparison between different flow regimes. Application of the Boolean logic scheme enables a quantitative comparison of the flow patterns, thus reducing the subjectivity in the identification of the prevalent flow regime
OPR1000 RCP Flow Coastdown Analysis using SPACE Code
Energy Technology Data Exchange (ETDEWEB)
Lee, Dong-Hyuk; Kim, Seyun [KHNP CRI, Daejeon (Korea, Republic of)
2016-10-15
The Korean nuclear industry developed a thermal-hydraulic analysis code for the safety analysis of PWRs, named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). Current loss of flow transient analysis of OPR1000 uses COAST code to calculate transient RCS(Reactor Coolant System) flow. The COAST code calculates RCS loop flow using pump performance curves and RCP(Reactor Coolant Pump) inertia. In this paper, SPACE code is used to reproduce RCS flowrates calculated by COAST code. The loss of flow transient is transient initiated by reduction of forced reactor coolant circulation. Typical loss of flow transients are complete loss of flow(CLOF) and locked rotor(LR). OPR1000 RCP flow coastdown analysis was performed using SPACE using simplified nodalization. Complete loss of flow(4 RCP trip) was analyzed. The results show good agreement with those from COAST code, which is CE code for calculating RCS flow during loss of flow transients. Through this study, we confirmed that SPACE code can be used instead of COAST code for RCP flow coastdown analysis.
ANALYSIS AND ACCOUNTING OF TOTAL CASH FLOW
Directory of Open Access Journals (Sweden)
MELANIA ELENA MICULEAC
2012-01-01
Full Text Available In order to reach the objective of supplying some relevant information regarding the liquidity inflows and outflows during a financial exercise, the total cash flow analysis must include the analysis of result cashable from operation, of payments and receipts related to the investment and of financing decisions of the last exercise, as well as the analysis of treasury variation (of cash items. The management of total cash flows ensures the correlation of current liquidness flows as consequence of receipts with the payments ’flows, in order to provide payment continuity of mature obligations.
Directory of Open Access Journals (Sweden)
Yunsheng Wei
2016-10-01
Full Text Available The generally accomplished technique for horizontal wells in tight gas reservoirs is by multi-stage hydraulic fracturing, not to mention, the flow characteristics of a horizontal well with multiple transverse fractures are very intricate. Conventional methods, well as an evaluation unit, are difficult to accurately predict production capacity of each fracture and productivity differences between wells with a different number of fractures. Thus, a single fracture sets the minimum evaluation unit, matrix, fractures, and lateral wellbore model that are then combined integrally to approximate horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. This paper presents a new semi-analytical methodology for predicting the production capacity of a horizontal well with multiple transverse hydraulic fractures in tight gas reservoirs. Firstly, a mathematical flow model used as a medium, which is disturbed by finite conductivity vertical fractures and rectangular shaped boundaries, is established and explained by the Fourier integral transform. Then the idea of a single stage fracture analysis is incorporated to establish linear flow model within a single fracture with a variable rate. The Fredholm integral numerical solution is applicable for the fracture conductivity function. Finally, the pipe flow model along the lateral wellbore is adapted to couple multi-stages fracture mathematical models, and the equation group of predicting productivity of a multi-stage fractured horizontal well. The whole flow process from the matrix to bottom-hole and production interference between adjacent fractures is also established. Meanwhile, the corresponding iterative algorithm of the equations is given. In this case analysis, the productions of each well and fracture are calculated under the different bottom-hole flowing pressure, and this method also contributes to obtaining the distribution of pressure drop and production for every
Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications
Jang, Jaesung; Wereley, Steven
2007-01-01
The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both wal...
Hybrid Information Flow Analysis for Programs with Arrays
Directory of Open Access Journals (Sweden)
Gergö Barany
2016-07-01
Full Text Available Information flow analysis checks whether certain pieces of (confidential data may affect the results of computations in unwanted ways and thus leak information. Dynamic information flow analysis adds instrumentation code to the target software to track flows at run time and raise alarms if a flow policy is violated; hybrid analyses combine this with preliminary static analysis. Using a subset of C as the target language, we extend previous work on hybrid information flow analysis that handled pointers to scalars. Our extended formulation handles arrays, pointers to array elements, and pointer arithmetic. Information flow through arrays of pointers is tracked precisely while arrays of non-pointer types are summarized efficiently. A prototype of our approach is implemented using the Frama-C program analysis and transformation framework. Work on a full machine-checked proof of the correctness of our approach using Isabelle/HOL is well underway; we present the existing parts and sketch the rest of the correctness argument.
LFSTAT - An R-Package for Low-Flow Analysis
Koffler, D.; Laaha, G.
2012-04-01
When analysing daily streamflow data focusing on low flow and drought, the state of the art is well documented in the Manual on Low-Flow Estimation and Prediction [1] published by the WMO. While it is clear what has to be done, it is not so clear how to preform the analysis and make the calculation as reproducible as possible. Our software solution expands the high preforming statistical open source software package R to analyse daily stream flow data focusing on low-flows. As command-line based programs are not everyone's preference, we also offer a plug-in for the R-Commander, an easy to use graphical user interface (GUI) to analyse data in R. Functionality includes estimation of the most important low-flow indices. Beside standardly used flow indices also BFI and Recession constants can be computed. The main applications of L-moment based Extreme value analysis and regional frequency analysis (RFA) are available. Calculation of streamflow deficits is another important feature. The most common graphics are prepared and can easily be modified according to the users preferences. Graphics include hydrographs for different periods, flexible streamflow deficit plots, baseflow visualisation, flow duration curves as well as double mass curves just to name a few. The package uses a S3-class called lfobj (low-flow objects). Once this objects are created, analysis can be preformed by mouse-click, and a script can be saved to make the analysis easy reproducible. At the moment we are offering implementation of all major methods proposed in the WMO manual on Low-flow Estimation and Predictions. Future plans include e.g. report export in odt-file using odf-weave. We hope to offer a tool to ease and structure the analysis of stream flow data focusing on low-flows and to make analysis transparent and communicable. The package is designed for hydrological research and water management practice, but can also be used in teaching students the first steps in low-flow hydrology.
New transient-flow modelling of a multiple-fractured horizontal well
International Nuclear Information System (INIS)
Jia, Yong-Lu; Wang, Ben-Cheng; Nie, Ren-Shi; Wang, Dan-Ling
2014-01-01
A new transient-flow modelling of a multiple-fractured horizontal well is presented. Compared to conventional modelling, the new modelling considered more practical physical conditions, such as various inclined angles for different fractures, different fracture intervals, different fracture lengths and partially penetrating fractures to formation. A kind of new mathematical method, including a three-dimensional eigenvalue and orthogonal transform, was created to deduce the exact analytical solutions of pressure transients for constant-rate production in real space. In order to consider a wellbore storage coefficient and skin factor, we used a Laplace-transform approach to convert the exact analytical solutions to the solutions in Laplace space. Then the numerical solutions of pressure transients in real space were gained using a Stehfest numerical inversion. Standard type curves were plotted to describe the transient-flow characteristics. Flow regimes were clearly identified from type curves. Furthermore, the differences between the new modelling and the conventional modelling in pressure transients were especially compared and discussed. Finally, an example application to show the accordance of the new modelling with real conditions was implemented. Our new modelling is different from, but more practical than, conventional modelling. (paper)
Multifractal Analysis for the Teichmueller Flow
Energy Technology Data Exchange (ETDEWEB)
Meson, Alejandro M., E-mail: meson@iflysib.unlp.edu.ar; Vericat, Fernando, E-mail: vericat@iflysib.unlp.edu.ar [Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB) CCT-CONICET, La Plata-UNLP and Grupo de Aplicaciones Matematicas y Estadisticas de la Facultad de Ingenieria (GAMEFI) UNLP (Argentina)
2012-03-15
We present a multifractal description for Teichmueller flows. A key ingredient to do this is the Rauzy-Veech-Zorich reduction theory, which allows to treat the problem in the setting of suspension flows over subshifts. To perform the multifractal analysis we implement a thermodynamic formalism for suspension flows over countable alphabet subshifts a bit different from that developed by Barreira and Iommi.
Flows method in global analysis
International Nuclear Information System (INIS)
Duong Minh Duc.
1994-12-01
We study the gradient flows method for W r,p (M,N) where M and N are Riemannian manifold and r may be less than m/p. We localize some global analysis problem by constructing gradient flows which only change the value of any u in W r,p (M,N) in a local chart of M. (author). 24 refs
Technical review of the high energy gas stimulation technique
Energy Technology Data Exchange (ETDEWEB)
Haney, B.; Cuthill, D. [Computalog Ltd., Calgary, AB (Canada)
1997-08-01
High Energy Gas Stimulation (HEGS) or propellant stimulation is a process that enhances production of oil wells by decreasing wellbore damage and increasing near wellbore permeability. The technique has been used on about 7,000 wells with varying results. The HEGS tool is a cast cylinder of solid rocket propellant with a central ignition system. The propellant is fired and as it burns it produces a pressure load on the formation, increasing fracture volume which enhances the flow channels. Background information on the development and application of this stimulation technique was provided. The introduction of fractures around a wellbore is dependent on the pressure loading rate and the dynamic response of the rock. Propellant stimulation relies on controlling the pressure-time behaviour to maximize fracture growth by fluid pressurization. The process is composed of 3 sequential phases: (1) wellbore pressurization, (2) fracture initiation, and (3) fracture extension. A full description of each of these phases was provided. Geologic and well-tool factors that have a significant influence on the fracturing process such as in-situ stress, natural fractures and flaws, formation mechanical properties, formation fluid and flow properties, formation thermal properties, and wellbore, tool, and tamp configuration, were also reviewed. The many applications for HEGS were presented. It was emphasized that the success of HEGS is dependent on pre-stimulation problem evaluation and on proper charge design. Since HEGS will decrease near-wellbore restrictions and initiate formation breakdown, it should only be used in cases where this will be beneficial to the well. Careful attention to engineering will optimize results. 21 refs., 13 figs.
Flow Injection Analysis in Industrial Biotechnology
DEFF Research Database (Denmark)
Hansen, Elo Harald; Miró, Manuel
2009-01-01
Flow injection analysis (FIA) is an analytical chemical continuous-flow (CF) method which in contrast to traditional CF-procedures does not rely on complete physical mixing (homogenisation) of the sample and the reagent(s) or on attaining chemical equilibria of the chemical reactions involved. Ex...
Computational Analysis of Human Blood Flow
Panta, Yogendra; Marie, Hazel; Harvey, Mark
2009-11-01
Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.
Basic Functional Analysis Puzzles of Spectral Flow
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm
2011-01-01
We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....
Abnormal traffic flow data detection based on wavelet analysis
Directory of Open Access Journals (Sweden)
Xiao Qian
2016-01-01
Full Text Available In view of the traffic flow data of non-stationary, the abnormal data detection is difficult.proposed basing on the wavelet analysis and least squares method of abnormal traffic flow data detection in this paper.First using wavelet analysis to make the traffic flow data of high frequency and low frequency component and separation, and then, combined with least square method to find abnormal points in the reconstructed signal data.Wavelet analysis and least square method, the simulation results show that using wavelet analysis of abnormal traffic flow data detection, effectively reduce the detection results of misjudgment rate and false negative rate.
International Nuclear Information System (INIS)
Kim, Duk Sang; Cho, Yong Seok
2004-01-01
Results from an experimental study of flow distribution in a Close-coupled Catalytic Converter (CCC) are presented. The experiments were carried out with a flow measurement system specially designed for this study under steady and transient flow conditions. A pitot tube was a tool for measuring flow distribution at the exit of the first monolith. The flow distribution of the CCC was also measured by LDV system and flow visualization. Results from numerical analysis are also presented. Experimental results showed that the flow uniformity index decreases as flow Reynolds number increases. In steady flow conditions, the flow through each exhaust pipe made some flow concentrations on a specific region of the CCC inlet. The transient test results showed that the flow through each exhaust pipe in the engine firing order, interacted with each other to ensure that the flow distribution was uniform. The results of numerical analysis were qualitatively accepted with experimental results. They supported and helped explain the flow in the entry region of CCC
Flow Analysis for the Falkner–Skan Wedge Flow
DEFF Research Database (Denmark)
Bararnia, H; Haghparast, N; Miansari, M
2012-01-01
In this article an analytical technique, namely the homotopy analysis method (HAM), is applied to solve the momentum and energy equations in the case of a two-dimensional incompressible flow passing over a wedge. The trail and error method and Padé approximation strategies have been used to obtai...
Space shuttle booster multi-engine base flow analysis
Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.
1972-01-01
A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.
Improved oxygen-activation method for determining water flow behind casing
International Nuclear Information System (INIS)
McKeon, D.C.; Scott, H.D.; Olesen, J.R.; Patton, G.L.; Mitchell, R.J.
1991-01-01
This paper reports on impulse activation which is a new oxygen-activation technique developed to detect vertical water flow and to provide a quantitative measure of water flow velocity and flow rate. Flow-loop measurements made over a wide range of water velocities are in good agreement with theoretical predictions. Measurements of up- and downward channel flow were made at the U.S. Environmental Protection Agency (EPA) leak test well in Ada, OK, to demonstrate the technique in a controlled environment and to confirm that EPA requirements have been met. A major advantage of this method over previous procedures is that a measurement is a known zero-flow zone is not required. The impulse-activation technique has improved sensitivity to both low and high flow rates. In the EPA leak test well, the technique successfully discriminated between 0- and 1.4 ft/min flow conditions. The lowest quantified velocity was 1.8 ft/min or 10 BWPD, significantly below the EPA requirement of 3 ft/min. The upper limit of detection has not been determined by exceeds 137 ft/min. The water flow log (WFL SM ) measurement uses the impulse-activation technique and a Dual-Bust SM , thermal-decay-time (TDT SM ) tool to detect water flow behind casing. An important application of this measurement is testing for fluid migration in the wellbore as part of the mechanical integrity testing process for Class I and II disposal wells. The new oxygen-activation measurement was used in numerous production wells to identify the presence of water flow behind casing. Additional applications include the identification of open fractures in horizontal wells and the quantification of water flow in the tubing/casing annulus in injection and production wells
Present status of numerical analysis on transient two-phase flow
International Nuclear Information System (INIS)
Akimoto, Masayuki; Hirano, Masashi; Nariai, Hideki.
1987-01-01
The Special Committee for Numerical Analysis of Thermal Flow has recently been established under the Japan Atomic Energy Association. Here, some methods currently used for numerical analysis of transient two-phase flow are described citing some information given in the first report of the above-mentioned committee. Many analytical models for transient two-phase flow have been proposed, each of which is designed to describe a flow by using differential equations associated with conservation of mass, momentum and energy in a continuous two-phase flow system together with constructive equations that represent transportation of mass, momentum and energy though a gas-liquid interface or between a liquid flow and the channel wall. The author has developed an analysis code, called MINCS, that serves for systematic examination of conservation equation and constructive equations for two-phase flow models. A one-dimensional, non-equilibrium two-liquid flow model that is used as the basic model for the code is described. Actual procedures for numerical analysis is shown and some problems concerning transient two-phase analysis are described. (Nogami, K.)
Examples of detection of water flow by oxygen activation on pulsed neutron logs
International Nuclear Information System (INIS)
de Rosset, W.H.M.
1986-01-01
Upward flow of water in cased wellbores may be detected with pulsed neutron capture (PNC) and gamma ray (GR) tools. Water entering tubing, casing and flowing behind pipe may similarly be evaluated qualitatively. Gamma ray background anomalies in PNC data and elevation of GR tool response occur when water is flowing above threshold velocities and volumes. The technique requires logging the well under static and flow conditions or logging at different tools speeds in a flowing well. Oxygen activation results in increased gamma ray count rates at each detector. PNC far detector and GR well log curves from each log run (flowing well, static well) are overlain. The increases for each curve are offset from the point of water entry by a distance similar to tool source-detector spacing. These offsets in gamma increase are 15-20 ft. higher for the GR than for the PNC far detector and distinguish oxygen activation due to flowing water from common hot spots. The amount of gamma ray increase is controlled by the velocity of upward flow of water past the tool, the amount of water flowing, and the distance of the flow from the tool. Prior planning is important to gain usable information in flowing wells. The upward relative velocity imposes maximal and minimal tool speeds to produce significant gamma increases, and tool speed must be adjusted to optimize gamma changes. Use of the technique to answer actual production problems is illustrated with examples. Insight was gained which led to the correction of the problem in each case
Climate Informed Low Flow Frequency Analysis Using Nonstationary Modeling
Liu, D.; Guo, S.; Lian, Y.
2014-12-01
Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events,were modified by climate change and human activities and the conventional frequency analysis without considering the non-stationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gaging station 44 kilometers downstream of the Three Gorges Dam. The Mann-Kendall trend test under the scaling hypothesis showed that the annual low flows had significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate informed low flow frequency analysis and the divided and combined method are employed to account for the impacts from related climate variables and the nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gaging station, six distribution functions including the Generalized Extreme Values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal, and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate informed low flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply.
Numerical flow analysis of axial flow compressor for steady and unsteady flow cases
Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.
2017-07-01
Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.
International Nuclear Information System (INIS)
Huang, Xiaoxue; Zhu, Jialing; Niu, Chengke; Li, Jun; Hu, Xia; Jin, Xianpeng
2014-01-01
As a promising advanced technology, Enhanced Geothermal System (EGS) utilizing deep geothermal energy has gained increasing attention. Production performance of a prospective EGS site in Songliao Basin was evaluated through mathematical modeling. Firstly, numerical simulation of heat extraction process in the fractured reservoir was carried out. To take account of the flow process in wellbores, reservoir-wellbore coupled simulation was undertaken through indirect coupling of TOUGH2 with the wellbore simulator HOLA, in which dynamic treatment of the wellbottom pressure was enabled. Power production performance was then investigated through thermodynamic modeling of an electricity generation system using the output from the reservoir-wellbore coupled simulation. The results suggest that the desirable thermal efficiency and gross power output could be obtained initially, whereas the decrease in production arising from thermal depletion of the reservoir is significant at later stages of operation. Meanwhile, the power consumption of the injection pump takes up an increasing amount of the generated power. It can be inferred from the comparison between simulations with and without coupling that a downhole pump could improve the hydraulic performance notably with little sacrifice of the thermal performance. - Highlights: • An Enhanced Geothermal System based on field data in Songliao Basin is modelled. • We apply reservoir-wellbore and thermodynamic modeling for production evaluation. • Commercial objective is attained at the early stages, and decreases heavily afterward. • Mass flow rate decreases due to wellbottom pressure variation as enthalpy decreases. • Hydraulic performance is improved under the constant wellbottom pressure
Meanline Analysis of Turbines with Choked Flow in the Object-Oriented Turbomachinery Analysis Code
Hendricks, Eric S.
2016-01-01
The Object-Oriented Turbomachinery Analysis Code (OTAC) is a new meanline/streamline turbomachinery modeling tool being developed at NASA GRC. During the development process, a limitation of the code was discovered in relation to the analysis of choked flow in axial turbines. This paper describes the relevant physics for choked flow as well as the changes made to OTAC to enable analysis in this flow regime.
Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng
2016-06-01
Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix-a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30-47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3-35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.
Cryogenic recovery analysis of forced flow supercritical helium cooled superconductors
International Nuclear Information System (INIS)
Lee, A.Y.
1977-08-01
A coupled heat conduction and fluid flow method of solution was presented for cryogenic stability analysis of cabled composite superconductors of large scale magnetic coils. The coils are cooled by forced flow supercritical helium in parallel flow channels. The coolant flow reduction in one of the channels during the spontaneous recovery transient, after the conductor undergoes a transition from superconducting to resistive, necessitates a parallel channel analysis. A way to simulate the parallel channel analysis is described to calculate the initial channel inlet flow rate required for recovery after a given amount of heat is deposited. The recovery capability of a NbTi plus copper composite superconductor design is analyzed and the results presented. If the hydraulics of the coolant flow is neglected in the recovery analysis, the recovery capability of the superconductor will be over-predicted
PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment
Shieh, C. F.; Arslan, Alan; Sundaran, P.; Kim, Suk; Won, Mark J.
1999-01-01
This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.
Stress Analysis of Fuel Rod under Axial Coolant Flow
Energy Technology Data Exchange (ETDEWEB)
Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung [Chungnam National University, Daejeon (Korea, Republic of); Park, Num Kyu; Jeon, Kyung Rok [Kerea Nuclear Fuel., Daejeon (Korea, Republic of)
2010-05-15
A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions
Stress Analysis of Fuel Rod under Axial Coolant Flow
International Nuclear Information System (INIS)
Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok
2010-01-01
A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions
International Nuclear Information System (INIS)
Ofei, T N; Irawan, S; Pao, W
2015-01-01
During oil and gas drilling operations, frictional pressure loss is experienced as the drilling fluid transports the drilled cuttings from the bottom-hole, through the annulus, to the surface. Estimation of these pressure losses is critical when designing the drilling hydraulic program. Two-phase frictional pressure loss in the annulus is very difficult to predict, and even more complex when there is drillpipe rotation. Accurate prediction will ensure that the correct equivalent circulating density (ECD) is applied in the wellbore to prevent formation fracture, especially in formations with narrow window between the pore pressure and fracture gradient. Few researchers have attempted to propose cuttings-liquid frictional pressure loss models, nevertheless, these models fail when they are applied to narrow wellbores such as in casing- while-drilling and slimhole applications. This study proposes improved cuttings-liquid frictional pressure loss models for narrow horizontal annuli with drillpipe rotation using Dimensional Analysis. Both Newtonian and non-Newtonian fluids were considered. The proposed model constants were fitted by generated data from a full-scale simulation study using ANSYS-CFX. The models showed improvement over existing cuttings-liquid pressure loss correlations in literature. (paper)
Channel flow analysis. [velocity distribution throughout blade flow field
Katsanis, T.
1973-01-01
The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.
Information flow analysis of interactome networks.
Directory of Open Access Journals (Sweden)
Patrycja Vasilyev Missiuro
2009-04-01
Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we
Aquifer test interpretation using derivative analysis and diagnostic plots
Hernández-Espriú, Antonio; Real-Rangel, Roberto; Cortés-Salazar, Iván; Castro-Herrera, Israel; Luna-Izazaga, Gabriela; Sánchez-León, Emilio
2017-04-01
Pumping tests remain a method of choice to deduce fundamental aquifer properties and to assess well condition. In the oil and gas (O&G) industry, well testing has been the core technique in examining reservoir behavior over the last 50 years. The pressure derivative by Bourdet, it is perhaps, the most significant single development in the history of well test analysis. Recently, the so-called diagnostics plots (e.g. drawdown and drawdown derivative in a log-log plot) have been successfully tested in aquifers. However, this procedure is still underutilized by groundwater professionals. This research illustrates the applicability range, advantages and drawbacks (e.g. smoothing procedures) of diagnostic plots using field examples from a wide spectrum of tests (short/long tests, constant/variable flow rates, drawdown/buildup stages, pumping well/observation well) in dissimilar geological conditions. We analyze new and pre-existent aquifer tests in Mexico, USA, Canada, Germany, France and Saudi Arabia. In constant flow rate tests, our results show that derivative analysis is an easy, robust and powerful tool to assess near-borehole damage effects, formation heterogeneity, boundaries, flow regimes, infinite-acting radial stages, i.e., valid Theisian framework, and fracture-driven flow. In step tests, the effectiveness relies on high-frequency drawdown measurements. Moreover, we adapt O&G analytical solutions to cater for the conditions in groundwater systems. In this context, further parameters can be computed analytically from the plots, such as skin factor, head losses, wellbore storage, distance to the boundary, channel-aquifer and/or fracture zone width, among others. Therefore, diagnostic plots should be considered a mandatory tool for pumping tests analysis among hydrogeologists. This project has been supported by DGAPA (UNAM) under the research project PAPIIT IN-112815.
Li, Qi; Shi, Hui; Yang, Duoxing; Wei, Xiaochen
2017-02-01
Carbon dioxide (CO 2 ) blowout from a wellbore is regarded as a potential environment risk of a CO 2 capture and storage (CCS) project. In this paper, an assumed blowout of a wellbore was examined for China's Shenhua CCS demonstration project. The significant factors that influenced the diffusion of CO 2 were identified by using a response surface method with the Box-Behnken experiment design. The numerical simulations showed that the mass emission rate of CO 2 from the source and the ambient wind speed have significant influence on the area of interest (the area of high CO 2 concentration above 30,000 ppm). There is a strong positive correlation between the mass emission rate and the area of interest, but there is a strong negative correlation between the ambient wind speed and the area of interest. Several other variables have very little influence on the area of interest, e.g., the temperature of CO 2 , ambient temperature, relative humidity, and stability class values. Due to the weather conditions at the Shenhua CCS demonstration site at the time of the modeled CO 2 blowout, the largest diffusion distance of CO 2 in the downwind direction did not exceed 200 m along the centerline. When the ambient wind speed is in the range of 0.1-2.0 m/s and the mass emission rate is in the range of 60-120 kg/s, the range of the diffusion of CO 2 is at the most dangerous level (i.e., almost all Grade Four marks in the risk matrix). Therefore, if the injection of CO 2 takes place in a region that has relatively low perennial wind speed, special attention should be paid to the formulation of pre-planned, emergency measures in case there is a leakage accident. The proposed risk matrix that classifies and grades blowout risks can be used as a reference for the development of appropriate regulations. This work may offer some indicators in developing risk profiles and emergency responses for CO 2 blowouts.
Analysis of the brazilian scientific production about information flows
Directory of Open Access Journals (Sweden)
Danielly Oliveira Inomata
2015-07-01
Full Text Available Objective. This paper presents and discuss the concepts, contexts and applications involving information flows in organizations. Method. Systematic review, followed by a bibliometric analysis and system analysis. The systematic review aimed to search for, evaluate and review evidence about the research topic. The systematic review process comprised the following steps: 1 definition of keywords, 2 systematic review, 3 exploration and analysis of articles and 4 comparison and consolidation of results. Results. A bibliometric analysis aimed to provide a statement of the relevance of articles where the authors, dates of publications, citation index, and periodic keywords with higher occurrence. Conclusions. As survey results confirms the emphasis on information featured in the knowledge management process, and advancing years, it seems that the emphasis is on networks, ie, studies are turning to the operationalization and analysis of flows information networks. The literature produced demonstrates the relationship of information flow with its management, applied to different organizational contexts, including showing new trends in information science as the study and analysis of information flow in networks.
Optoelectronic iron detectors for pharmaceutical flow analysis.
Rybkowska, Natalia; Koncki, Robert; Strzelak, Kamil
2017-10-25
Compact flow-through optoelectronic detectors fabricated by pairing of light emitting diodes have been applied for development of economic flow analysis systems dedicated for iron ions determination. Three analytical methods with different chromogens selectively recognizing iron ions have been compared. Ferrozine and ferene S based methods offer higher sensitivity and slightly lower detection limits than method with 1,10-phenantroline, but narrower ranges of linear response. Each system allows detection of iron in micromolar range of concentration with comparable sample throughput (20 injections per hour). The developed flow analysis systems have been successfully applied for determination of iron in diet supplements. The utility of developed analytical systems for iron release studies from drug formulations has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Analysis of constant-head well tests in nonporous fractured rock
International Nuclear Information System (INIS)
Doe, T.; Remer, J.
1981-01-01
If one compares the results of steady analyses and transient flowrate analyses, the error in assuming steady flow is less than an order of magnitude for reasonable values of storativity, and this error can be minimized through proper choice of radius of influence. Although the steady flow assumptions do not result in large errors in the calculation of permeability, careful design of constant-head well tests can yield not only storativity, but also qualitative information on the areal extent of permeable zones or fractures tested. Constant-head well tests have several major advantages over other well test techniques in low permeability rock. Unlike pump tests, wellbore storage effects are virtually nonexistant. Provided low-flow measurement apparatus is available, constant-level tests are far more rapid than slug tests and, unlike pulse tests, compliance of equipment is not a factor, since the system is maintained at constant pressure throughout the test
Control Flow Analysis for BioAmbients
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis; Priami, C.
2007-01-01
This paper presents a static analysis for investigating properties of biological systems specified in BioAmbients. We exploit the control flow analysis to decode the bindings of variables induced by communications and to build a relation of the ambients that can interact with each other. We...
Mean streamline analysis for performance prediction of cross-flow fans
International Nuclear Information System (INIS)
Kim, Jae Won; Oh, Hyoung Woo
2004-01-01
This paper presents the mean streamline analysis using the empirical loss correlations for performance prediction of cross-flow fans. Comparison of overall performance predictions with test data of a cross-flow fan system with a simplified vortex wall scroll casing and with the published experimental characteristics for a cross-flow fan has been carried out to demonstrate the accuracy of the proposed method. Predicted performance curves by the present mean streamline analysis agree well with experimental data for two different cross-flow fans over the normal operating conditions. The prediction method presented herein can be used efficiently as a tool for the preliminary design and performance analysis of general-purpose cross-flow fans
Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications
Jang, Jaesung; Wereley, Steven T.
2007-02-01
The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 µm wide, 4.64 µm deep and 5680 µm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10-10 kg s-1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f sdot Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.
Visual Analysis of Inclusion Dynamics in Two-Phase Flow.
Karch, Grzegorz Karol; Beck, Fabian; Ertl, Moritz; Meister, Christian; Schulte, Kathrin; Weigand, Bernhard; Ertl, Thomas; Sadlo, Filip
2018-05-01
In single-phase flow visualization, research focuses on the analysis of vector field properties. In two-phase flow, in contrast, analysis of the phase components is typically of major interest. So far, visualization research of two-phase flow concentrated on proper interface reconstruction and the analysis thereof. In this paper, we present a novel visualization technique that enables the investigation of complex two-phase flow phenomena with respect to the physics of breakup and coalescence of inclusions. On the one hand, we adapt dimensionless quantities for a localized analysis of phase instability and breakup, and provide detailed inspection of breakup dynamics with emphasis on oscillation and its interplay with rotational motion. On the other hand, we present a parametric tightly linked space-time visualization approach for an effective interactive representation of the overall dynamics. We demonstrate the utility of our approach using several two-phase CFD datasets.
Bistable flow spectral analysis. Repercussions on jet pumps
International Nuclear Information System (INIS)
Gavilan Moreno, C.J.
2011-01-01
Highlights: → The most important thing in this paper, is the spectral characterization of the bistable flow in a Nuclear Power Plant. → This paper goes deeper in the effect of the bistable flow over the jet pump and the induced vibrations. → The jet pump frequencies are very close to natural jet pump frequencies, in the 3rd and 6th mode. - Abstract: There have been many attempts at characterizing and predicting bistable flow in boiling water reactors (BWRs). Nevertheless, in most cases the results have only managed to develop models that analytically reproduce the phenomenon (). Modeling has been forensic in all cases, while the capacity of the model focus on determining the exclusion areas on the recirculation flow map. The bistability process is known by its effects given there is no clear definition of its causal process. In the 1980s, Hitachi technicians () managed to reproduce bistable flow in the laboratory by means of pipe geometry, similar to that which is found in recirculation loops. The result was that the low flow pattern is formed by the appearance of a quasi stationary, helicoidal vortex in the recirculation collector's branches. This vortex creates greater frictional losses than regions without vortices, at the same discharge pressure. Neither the behavior nor the dynamics of these vortices were characterized in this paper. The aim of this paper is to characterize these vortices in such a way as to enable them to provide their own frequencies and their later effect on the jet pumps. The methodology used in this study is similar to the one used previously when analyzing the bistable flow in tube arrays with cross flow (). The method employed makes use of the power spectral density function. What differs is the field of application. We will analyze a Loop B with a bistable flow and compare the high and low flow situations. The same analysis will also be carried out on the loop that has not developed the bistable flow (Loop A) at the same moments
Dussenova, D.; Bilheux, H.; Radonjic, M.
2012-12-01
Wellbore Cement studies have been ongoing for decades. The studies vary from efforts to reduce permeability and resistance to corrosive environment to issues with gas migration also known as Sustained Casing Pressure (SCP). These practical issues often lead to health and safety problems as well as huge economic loss in oil and gas industry. Several techniques have been employed to reduce the impact of gas leakage. In this study we purely focus on expandable liners, which are introduced as part of oil well reconstruction and work-overs and as well abandonment procedures that help in prevention of SCP. Expandable liner is a tube that after application of a certain tool can increase its diameter. The increase in diameter creates extra force on hydrated cement that results in reducing width of interface fractures and cement-tube de-bonding. Moreover, this also causes cement to change its microstructure and other porous medium properties, primarily hydraulic conductivity. In order to examine changes before and after operations, cement pore structure must be well characterized and correlated to cement slurry design as well as chemical and physical environmental conditions. As modern oil well pipes and tubes contain iron, it is difficult to perform X-ray tomography of a bulk measurement of the cement in its wellbore conditions, which are tube wall-cement-tube wall. Neutron imaging is a complementary technique to x-ray imaging and is well suited for detection of light elements imbedded in metallic containers. Thus, Neutron Imaging (NI) is investigated as a tool for the detection of pore structure of hydrated wellbore cement. Recent measurements were conducted at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) neutron imaging facility. NI is is highly sensitive to light elements such as Hydrogen (H). Oil well cements that have undergone a full hydration contain on average 30%-40% of free water in its pore structure. The unreacted water is the main
Low flow analysis of the lower Drava River
International Nuclear Information System (INIS)
Mijuskovic-Svetinovic, T; Maricic, S
2008-01-01
Understanding the regime and the characteristics of low streamflows is of vital importance in several aspects. It is essential for the effective planning, designing, constructing, maintaining, using and managing different water management systems and structures. In addition, frequent running and assessing of estimates of low stream-flow statistics are especially important when different aspects of water quality are considered. This paper attempts to present the results of a stochastic analysis of the River Drava low flow from the gauging station, Donji Miholjac [located at rkm 77+700]. Currently, almost all specialists apply the truncation method in low-flows analysis. Taking this into consideration, it is possible to accept the definition of a low streamflow, as a period when the analysed characteristics are either, equal to or lower than the truncation level of drought. The same method has been applied in this analysis. The calculating method applied takes into account all the essential components of the afore-mentioned process. This includes a number of elements, such as the deficit, duration or the time of the occurrence of low flows, the number of times, the maximum deficit and the maximum duration of the low flows in the analysed time period. Moreover, this paper determines computational values for deficits and for the duration of low flow in different return periods.
Substance flow analysis in Finland - Four case studies on N and P flows
Energy Technology Data Exchange (ETDEWEB)
Antikainen, R.
2007-07-01
Nitrogen (N) and phosphorus (P) are essential elements for all living organisms. However, in excess, they contribute to such environmental problems as aquatic and terrestrial eutrophication (N, P), acidification (N), global warming (N), groundwater pollution (N), depletion of stratospheric ozone (N), formulation of tropospheric ozone (N) and poor urban air quality (N). Globally, human action has multiplied the volume of N and P cycling since the onset of industrialization. Themultiplication is a result of intensified agriculture, increased energy consumption and population growth. Industrial ecology (IE) is a discipline, in which human interaction with the ecosystems is investigated using a systems analytical approach. The main idea behind IE is that industrial systems resemble ecosystems, and, like them, industrial systems can then be described using material, energy and information flows and stocks. Industrial systems are dependent on the resources provided by the biosphere, and these two cannot be separated from each other. When studying substance flows, the aims of the research from the viewpoint of IE can be, for instance, to elucidate the ways how the cycles of a certain substance could be more closed and how the flows of a certain substance could be decreased per unit of production (= dematerialization). IE uses analytical research tools such as material and substance flow analysis (MFA, SFA), energy flow analysis (EFA), life cycle assessment (LCA) and material input per service unit (MIPS). In Finland, N and P are studied widely in different ecosystems and environmental emissions. A holistic picture comparing different societal systems is, however, lacking. In this thesis, flows of N and P were examined in Finland using SFA in the following four subsystems: (I) forest industry and use of wood fuels, II) food production and consumption, III) energy, and IV) municipal waste. A detailed analysis at the end of the 1990s was performed. Furthermore, historical
Random signal tomographical analysis of two-phase flow
International Nuclear Information System (INIS)
Han, P.; Wesser, U.
1990-01-01
This paper reports on radiation tomography which is a useful tool for studying the internal structures of two-phase flow. However, general tomography analysis gives only time-averaged results, hence much information is lost. As a result, it is sometimes difficult to identify the flow regime; for example, the time-averaged picture does not significantly change as an annual flow develops from a slug flow. A two-phase flow diagnostic technique based on random signal tomographical analysis is developed. It extracts more information by studying the statistical variation of the measured signal with time. Local statistical parameters, including mean value, variance, skewness and flatness etc., are reconstructed from the information obtained by a general tomography technique. More important information are provided by the results. Not only the void fraction can be easily calculated, but also the flow pattern can be identified more objectively and more accurately. The experimental setup is introduced. It consisted of a two-phase flow loop, an X-ray system, a fan-like five-beam detector system and a signal acquisition and processing system. In the experiment, for both horizontal and vertical test sections (aluminum and steel tube with Di/Do = 40/45 mm), different flow situations are realized by independently adjusting air and water mass flow. Through a glass tube connected with the test section, some typical flow patterns are visualized and used for comparing with the reconstruction results
Stereo Scene Flow for 3D Motion Analysis
Wedel, Andreas
2011-01-01
This book presents methods for estimating optical flow and scene flow motion with high accuracy, focusing on the practical application of these methods in camera-based driver assistance systems. Clearly and logically structured, the book builds from basic themes to more advanced concepts, culminating in the development of a novel, accurate and robust optic flow method. Features: reviews the major advances in motion estimation and motion analysis, and the latest progress of dense optical flow algorithms; investigates the use of residual images for optical flow; examines methods for deriving mot
Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi
2011-09-01
In order to monitor the condition of patients with implantable left ventricular assist systems (LVAS), it is important to measure pump flow rate continuously and noninvasively. However, it is difficult to measure the pump flow rate, especially in an implantable axial flow blood pump, because the power consumption has neither linearity nor uniqueness with regard to the pump flow rate. In this study, a miniaturized mass-flow meter for discharged patients with an implantable axial blood pump was developed on the basis of computational analysis, and was evaluated in in-vitro tests. The mass-flow meter makes use of centrifugal force produced by the mass-flow rate around a curved cannula. An optimized design was investigated by use of computational fluid dynamics (CFD) analysis. On the basis of the computational analysis, a miniaturized mass-flow meter made of titanium alloy was developed. A strain gauge was adopted as a sensor element. The first strain gauge, attached to the curved area, measured both static pressure and centrifugal force. The second strain gauge, attached to the straight area, measured static pressure. By subtracting the output of the second strain gauge from the output of the first strain gauge, the mass-flow rate was determined. In in-vitro tests using a model circulation loop, the mass-flow meter was compared with a conventional flow meter. Measurement error was less than ±0.5 L/min and average time delay was 0.14 s. We confirmed that the miniaturized mass-flow meter could accurately measure the mass-flow rate continuously and noninvasively.
The analysis of exergy and cash flow
International Nuclear Information System (INIS)
Weimin, H.
1989-01-01
The paper presents the analysis of the economic content of exergy parameter and the thermodynamical analogy of the analysis of cash flow, and gives out the reasonable foundations of the analysis of heat economy. The thoughts of optimum design of the combination of heat economic analysis and investment policy are also put forward
A borehole fluid conductivity logging method for the determination of fracture inflow parameters
International Nuclear Information System (INIS)
Tsang, C.F.; Hufschmied, P.
1988-01-01
It is of much current interest to determine the flow characteristics of fractures intersecting a wellbore in order to provide data in the estimation of the hydrologic behavior of fractured rocks. In particular the fluid inflow rates from the fractures into the wellbore are important quantities to measure. However often these inflows are at very low rates. In addition very often one finds that only a few percent of the fractures identified by core inspection and geophysical logging are water-conducting fractures, the rest being closed, clogged or isolated from the water flow system. A new method has been developed to locate water-conducting fractures and obtain fracture inflow parameters by means of a time sequence of electric conductivity logs of the borehole fluid. The physical basis of the analysis method is discussed. The procedure is applied to an existing set of data, which shows initiation and growth of nine conductivity peaks in a 900-m section of a 1690-m borehole, corresponding to nine waterconducting fractures intersecting the borehole. We are able to match all nine peaks and determine the flow rates from these fractures. A discussion is given on the applicability of this technique in the context of a borehole testing program. (author) 18 refs., 30 figs., 5 tabs
A Comparison of Thermal Models for Temperature Profiles in Gas-Lift Wells
Directory of Open Access Journals (Sweden)
Langfeng Mu
2018-02-01
Full Text Available Gas lift is a simple, reliable artificial lift method which is frequently used in offshore oil field developments. In order to enhance the efficiency of production by gas lift, it is vital to exactly predict the distribution of temperature-field for fluid within the wellbore. A new mechanistic model is developed for computing flowing fluid temperature profiles in both conduits simultaneously for a continuous-flow gas-lift operation. This model assumes steady heat transfer in the formation, as well as steady heat transfer in the conduits. A micro-units discrete from the wellbore, whose heat transfer process is analyzed and whose heat transfer equation is set up according to the law of conservation of energy. A simplified algebraic solution to our model is conducted to analyze the temperature profile. Sensitivity analysis was conducted with the new model. The results indicate that mass flow rate of oil and the tubing overall heat transfer coefficient are the main factors that influence the temperature distribution inside the tubing and that the mass flow rate of oil is the main factor affecting temperature distribution in the annulus. Finally, the new model was tested in three various wells and compared with other models. The results showed that the new model is more accurate and provides significant references for temperature prediction in gas lift well.
Flow boiling in microgap channels experiment, visualization and analysis
Alam, Tamanna; Jin, Li-Wen
2013-01-01
Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c
An Analytical Model for Multilayer Well Production Evaluation to Overcome Cross-Flow Problem
Hakiki, Farizal; Wibowo, Aris T.; Rahmawati, Silvya D.; Yasutra, Amega; Sukarno, Pudjo
2017-01-01
One of the major concerns in a multi-layer system is that interlayer cross-flow may occur if reservoir fluids are produced from commingled layers that have unequal initial pressures. Reservoir would commonly have bigger average reservoir pressure (pore fluid pressure) as it goes deeper. The phenomenon is, however, not followed by the reservoir productivity or injectivity. The existence of reservoir with quite low average-pressure and high injectivity would tend experiencing the cross-flow problem. It is a phenomenon of fluid from bottom layer flowing into upper layer. It would strict upper-layer fluid to flow into wellbore. It is as if there is an injection treatment from bottom layer. The study deploys productivity index an approach parameter taking into account of cross-flow problem instead of injectivity index since it is a production well. The analytical study is to model the reservoir multilayer by addressing to avoid cross-flow problem. The analytical model employed hypothetical and real field data to test it. The scope of this study are: (a) Develop mathematical-based solution to determine the production rate from each layer; (b) Assess different scenarios to optimize production rate, those are: pump setting depth and performance of in-situ choke (ISC) installation. The ISC is acting as an inflow control device (ICD) alike that help to reduce cross-flow occurrence. This study employed macro program to write the code and develop the interface. Fast iterative procedure happens on solving the analytical model. Comparison results recognized that the mathematical-based solution shows a good agreement with the commercial software derived results.
An Analytical Model for Multilayer Well Production Evaluation to Overcome Cross-Flow Problem
Hakiki, Farizal
2017-10-17
One of the major concerns in a multi-layer system is that interlayer cross-flow may occur if reservoir fluids are produced from commingled layers that have unequal initial pressures. Reservoir would commonly have bigger average reservoir pressure (pore fluid pressure) as it goes deeper. The phenomenon is, however, not followed by the reservoir productivity or injectivity. The existence of reservoir with quite low average-pressure and high injectivity would tend experiencing the cross-flow problem. It is a phenomenon of fluid from bottom layer flowing into upper layer. It would strict upper-layer fluid to flow into wellbore. It is as if there is an injection treatment from bottom layer. The study deploys productivity index an approach parameter taking into account of cross-flow problem instead of injectivity index since it is a production well. The analytical study is to model the reservoir multilayer by addressing to avoid cross-flow problem. The analytical model employed hypothetical and real field data to test it. The scope of this study are: (a) Develop mathematical-based solution to determine the production rate from each layer; (b) Assess different scenarios to optimize production rate, those are: pump setting depth and performance of in-situ choke (ISC) installation. The ISC is acting as an inflow control device (ICD) alike that help to reduce cross-flow occurrence. This study employed macro program to write the code and develop the interface. Fast iterative procedure happens on solving the analytical model. Comparison results recognized that the mathematical-based solution shows a good agreement with the commercial software derived results.
Power flow analysis for DC voltage droop controlled DC microgrids
DEFF Research Database (Denmark)
Li, Chendan; Chaudhary, Sanjay; Dragicevic, Tomislav
2014-01-01
This paper proposes a new algorithm for power flow analysis in droop controlled DC microgrids. By considering the droop control in the power flow analysis for the DC microgrid, when compared with traditional methods, more accurate analysis results can be obtained. The algorithm verification is ca...
Deep Packet/Flow Analysis using GPUs
Energy Technology Data Exchange (ETDEWEB)
Gong, Qian [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wu, Wenji [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); DeMar, Phil [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2017-11-12
Deep packet inspection (DPI) faces severe performance challenges in high-speed networks (40/100 GE) as it requires a large amount of raw computing power and high I/O throughputs. Recently, researchers have tentatively used GPUs to address the above issues and boost the performance of DPI. Typically, DPI applications involve highly complex operations in both per-packet and per-flow data level, often in real-time. The parallel architecture of GPUs fits exceptionally well for per-packet network traffic processing. However, for stateful network protocols such as TCP, their data stream need to be reconstructed in a per-flow level to deliver a consistent content analysis. Since the flow-centric operations are naturally antiparallel and often require large memory space for buffering out-of-sequence packets, they can be problematic for GPUs, whose memory is normally limited to several gigabytes. In this work, we present a highly efficient GPU-based deep packet/flow analysis framework. The proposed design includes a purely GPU-implemented flow tracking and TCP stream reassembly. Instead of buffering and waiting for TCP packets to become in sequence, our framework process the packets in batch and uses a deterministic finite automaton (DFA) with prefix-/suffix- tree method to detect patterns across out-of-sequence packets that happen to be located in different batches. In conclusion, evaluation shows that our code can reassemble and forward tens of millions of packets per second and conduct a stateful signature-based deep packet inspection at 55 Gbit/s using an NVIDIA K40 GPU.
International Nuclear Information System (INIS)
Hussain, M.; Khan, J.A.
2004-01-01
A numerical study of flow in distributor of Francis Turbine is carried out by using two different techniques of flow zone generation. Distributor of GAMM Francis Turbine is used for present calculation. In present work, flow is assumed to be periodic around the distributor in steady state conditions, therefore computational domain consists of only one blade channel (one stay vane and one guide vane). The distributor computational domain is bounded up stream by cylindrical and downstream by conical patches. The first one corresponds to the spiral casing outflow section, while the second one is considered to be the distributor outlet or runner inlet. Upper and lower surfaces are generated by the revolution of hub and shroud edges. Single connected and multiple connected techniques are considered to generate distributor flow zone for numerical flow analysis of GAMM Francis turbine. The tetrahedral meshes are generated in both the flow zones. Same boundary conditions are applied for both the equivalent flow zones. The three dimensional, laminar flow analysis for both the distributor flow zones of the GAMM Francis turbine operating at the best efficiency point is performed. Gambit and G- Turbo are used as a preprocessor while calculations are done by using Fluent. Finally, numerical results obtained on the distributor outlet are compared with the available experimental data to validate the two different methodologies and examine their accuracy. (author)
Mechanistic multidimensional analysis of horizontal two-phase flows
International Nuclear Information System (INIS)
Tselishcheva, Elena A.; Antal, Steven P.; Podowski, Michael Z.
2010-01-01
The purpose of this paper is to discuss the results of analysis of two-phase flow in horizontal tubes. Two flow situations have been considered: gas/liquid flow in a long straight pipe, and similar flow conditions in a pipe with 90 deg. elbow. The theoretical approach utilizes a multifield modeling concept. A complete three-dimensional two-phase flow model has been implemented in a state-of-the-art computational multiphase fluid dynamics (CMFD) computer code, NPHASE. The overall model has been tested parametrically. Also, the results of NPHASE simulations have been compared against experimental data for a pipe with 90 deg. elbow.
Analysis of turbulence spectra in gas-liquid two-phase flow
International Nuclear Information System (INIS)
Kataoka, Isao; Besnard, D.C.; Serizawa, Akimi.
1993-01-01
An analysis was made on the turbulence spectra in bubbly flow. Basic equation for turbulence spectrum in bubbly flow was formulated considering the eddy disintegration induced by bubble. Based on the dimensional analysis and modeling of eddy disintegration by bubble, constitutive equations for eddy disintegration were derived. Using these equations, turbulence spectra in bubbly flow (showing -8/3 power) was successfully explained. (author)
Sensitivity analysis of time-dependent laminar flows
International Nuclear Information System (INIS)
Hristova, H.; Etienne, S.; Pelletier, D.; Borggaard, J.
2004-01-01
This paper presents a general sensitivity equation method (SEM) for time dependent incompressible laminar flows. The SEM accounts for complex parameter dependence and is suitable for a wide range of problems. The formulation is verified on a problem with a closed form solution obtained by the method of manufactured solution. Systematic grid convergence studies confirm the theoretical rates of convergence in both space and time. The methodology is then applied to pulsatile flow around a square cylinder. Computations show that the flow starts with symmetrical vortex shedding followed by a transition to the traditional Von Karman street (alternate vortex shedding). Simulations show that the transition phase manifests itself earlier in the sensitivity fields than in the flow field itself. Sensitivities are then demonstrated for fast evaluation of nearby flows and uncertainty analysis. (author)
ASSESSMENT OF PLASTIC FLOWS AND STOCKS IN SERBIA USING MATERIAL FLOW ANALYSIS
Directory of Open Access Journals (Sweden)
Goran Vujić
2010-01-01
Full Text Available Material flow analysis (MFA was used to assess the amounts of plastic materials flows and stocks that are annually produced, consumed, imported, exported, collected, recycled, and disposed in the landfills in Serbia. The analysis revealed that approximatelly 269,000 tons of plastic materials are directly disposed in uncontrolled landfills in Serbia without any preatretment, and that siginificant amounts of these materials have already accumulated in the landfills. The substantial amounts of landfilled plastics represent not only a loss of valuable recourses, but also pose a seriuos treath to the environment and human health, and if the trend of direct plastic landfilling is continued, Serbia will face with grave consecequnces.
Precessing rotating flows with additional shear: stability analysis.
Salhi, A; Cambon, C
2009-03-01
We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally
International Nuclear Information System (INIS)
Nishi, Y; Inagaki, T; Li, Y; Omiya, R; Hatano, K
2014-01-01
The purpose of this research is to develop a water turbine appropriate for low-head open channels in order to effectively utilize the unused hydropower energy of rivers and agricultural waterways. The application of the cross-flow runner to open channels as an undershot water turbine has come under consideration and, to this end, a significant simplification was attained by removing the casings. However, the flow field of undershot cross-flow water turbines possesses free surfaces. This means that with the variation in the rotational speed, the water depth around the runner will change and flow field itself is significantly altered. Thus it is necessary to clearly understand the flow fields with free surfaces in order to improve the performance of this turbine. In this research, the performance of this turbine and the flow field were studied through experiments and numerical analysis. The experimental results on the performance of this turbine and the flow field were consistent with the numerical analysis. In addition, the inlet and outlet regions at the first and second stages of this water turbine were clarified
Two-phase flow characteristics analysis code: MINCS
International Nuclear Information System (INIS)
Watanabe, Tadashi; Hirano, Masashi; Akimoto, Masayuki; Tanabe, Fumiya; Kohsaka, Atsuo.
1992-03-01
Two-phase flow characteristics analysis code: MINCS (Modularized and INtegrated Code System) has been developed to provide a computational tool for analyzing two-phase flow phenomena in one-dimensional ducts. In MINCS, nine types of two-phase flow models-from a basic two-fluid nonequilibrium (2V2T) model to a simple homogeneous equilibrium (1V1T) model-can be used under the same numerical solution method. The numerical technique is based on the implicit finite difference method to enhance the numerical stability. The code structure is highly modularized, so that new constitutive relations and correlations can be easily implemented into the code and hence evaluated. A flow pattern can be fixed regardless of flow conditions, and state equations or steam tables can be selected. It is, therefore, easy to calculate physical or numerical benchmark problems. (author)
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings
Andres, Luis San
1993-01-01
A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.
Stanisavljevic, Nemanja; Brunner, Paul H
2014-08-01
The novelty of this paper is the demonstration of the effectiveness of combining material flow analysis (MFA) with substance flow analysis (SFA) for decision making in waste management. Both MFA and SFA are based on the mass balance principle. While MFA alone has been applied often for analysing material flows quantitatively and hence to determine the capacities of waste treatment processes, SFA is more demanding but instrumental in evaluating the performance of a waste management system regarding the goals "resource conservation" and "environmental protection". SFA focuses on the transformations of wastes during waste treatment: valuable as well as hazardous substances and their transformations are followed through the entire waste management system. A substance-based approach is required because the economic and environmental properties of the products of waste management - recycling goods, residues and emissions - are primarily determined by the content of specific precious or harmful substances. To support the case that MFA and SFA should be combined, a case study of waste management scenarios is presented. For three scenarios, total material flows are quantified by MFA, and the mass flows of six indicator substances (C, N, Cl, Cd, Pb, Hg) are determined by SFA. The combined results are compared to the status quo in view of fulfilling the goals of waste management. They clearly point out specific differences between the chosen scenarios, demonstrating potentials for improvement and the value of the combination of MFA/SFA for decision making in waste management. © The Author(s) 2014.
The cash-flow analysis of the firm
Mariana Man
2001-01-01
The analysis of economic and financial indicators of the firm regards the profit and loss account analysis and the balance sheet analysis. The cash-flow from operating activities represents the amount of cash obtained by a firm from selling goods and services after deducting the costs involved by raw materials, materials and processenig operations
Development of the GO-FLOW reliability analysis methodology for nuclear reactor system
International Nuclear Information System (INIS)
Matsuoka, Takeshi; Kobayashi, Michiyuki
1994-01-01
Probabilistic Safety Assessment (PSA) is important in the safety analysis of technological systems and processes, such as, nuclear plants, chemical and petroleum facilities, aerospace systems. Event trees and fault trees are the basic analytical tools that have been most frequently used for PSAs. Several system analysis methods can be used in addition to, or in support of, the event- and fault-tree analysis. The need for more advanced methods of system reliability analysis has grown with the increased complexity of engineered systems. The Ship Research Institute has been developing a new reliability analysis methodology, GO-FLOW, which is a success-oriented system analysis technique, and is capable of evaluating a large system with complex operational sequences. The research has been supported by the special research fund for Nuclear Technology, Science and Technology Agency, from 1989 to 1994. This paper describes the concept of the Probabilistic Safety Assessment (PSA), an overview of various system analysis techniques, an overview of the GO-FLOW methodology, the GO-FLOW analysis support system, procedure of treating a phased mission problem, a function of common cause failure analysis, a function of uncertainty analysis, a function of common cause failure analysis with uncertainty, and printing out system of the results of GO-FLOW analysis in the form of figure or table. Above functions are explained by analyzing sample systems, such as PWR AFWS, BWR ECCS. In the appendices, the structure of the GO-FLOW analysis programs and the meaning of the main variables defined in the GO-FLOW programs are described. The GO-FLOW methodology is a valuable and useful tool for system reliability analysis, and has a wide range of applications. With the development of the total system of the GO-FLOW, this methodology has became a powerful tool in a living PSA. (author) 54 refs
Analysis of the cross flow in a radial inflow turbine scroll
Hamed, A.; Abdallah, S.; Tabakoff, W.
1977-01-01
Equations of motion were derived, and a computational procedure is presented, for determining the nonviscous flow characteristics in the cross-sectional planes of a curved channel due to continuous mass discharge or mass addition. An analysis was applied to the radial inflow turbine scroll to study the effects of scroll geometry and the through flow velocity profile on the flow behavior. The computed flow velocity component in the scroll cross-sectional plane, together with the through flow velocity profile which can be determined in a separate analysis, provide a complete description of the three dimensional flow in the scroll.
GO-FLOW methodology. Basic concept and integrated analysis framework for its applications
International Nuclear Information System (INIS)
Matsuoka, Takeshi
2010-01-01
GO-FLOW methodology is a success oriented system analysis technique, and is capable of evaluating a large system with complex operational sequences. Recently an integrated analysis framework of the GO-FLOW has been developed for the safety evaluation of elevator systems by the Ministry of Land, Infrastructure, Transport and Tourism, Japanese Government. This paper describes (a) an Overview of the GO-FLOW methodology, (b) Procedure of treating a phased mission problem, (c) Common cause failure analysis, (d) Uncertainty analysis, and (e) Integrated analysis framework. The GO-FLOW methodology is a valuable and useful tool for system reliability analysis and has a wide range of applications. (author)
Evolution of - and Core-Dominated Lava Flows Using Scaling Analysis
Castruccio, A.; Rust, A.; Sparks, R. S.
2010-12-01
We investigated the front evolution of simple lava flows on a slope using scaling arguments. For the retarding force acting against gravity, we analyzed three different cases: a flow controlled by a Newtonian viscosity, a flow controlled by the yield strength of a diffusively growing crust and a flow controlled by its core yield strength. These models were tested using previously published data of front evolution and volume discharge of 10 lava flow eruptions from 6 different volcanoes. Our analysis suggests that for basaltic eruptions with high effusion rate and low crystal content, (Hawaiian eruptions), the best fit of the data is with a Newtonian viscosity. For basaltic eruptions with lower effusion rates (Etna eruptions) or long duration andesitic eruptions (Lonquimay eruption, Chile) the flow is controlled by the yield strength of a growing crust. Finally, for very high crystalline lavas (Colima, Santiaguito) the flow is controlled by its core yield strength. The order of magnitude of the viscosities from our analysis is in the same range as previous studies using field measurements on the same lavas. The yield strength values for the growing crust and core of the flow are similar and with an order of magnitude of 10^5 Pa. This number is similar to yield strength values found in lava domes by different authors. The consistency of yield strength ~10^5 Pa is because larger stresses cause fracturing of very crystalline magma, which drastically reduces its effective strength. Furthermore, we used a 2-D analysis of a Bingham fluid flow on a slope to conclude that, for lower yield strength values, the flow is controlled mainly by its plastic viscosity and the lava can be effectively modelled as Newtonian. Our analysis provides a simple tool to evaluate the main controlling forces in the evolution of a lava flow, as well as the magnitude of its rheological properties, for eruptions of different compositions and conditions and may be useful to predict the evolution of
Computed tomography for the quantitative characterization of flow through a porous medium
International Nuclear Information System (INIS)
Auzerais, F.M.; Dussan, E.B.; Reischer, A.J.
1991-01-01
X-ray computer tomography (CT) has become an increasingly popular research tool in petroleum engineering for characterizing porous media. Its highly detailed images have been used to construct maps of porosity, saturation and atomic composition, and to visualize the displacement of fluids. However, extracting data necessary to characterize flow through porous media is both time consuming and dependent on the availability of extensive computational resources - - a consequence of the large size of the image files. The authors of this paper applied to known technique, based upon the ability to recognize regions with similar features, which avoids these difficulties. It allows the authors to substitute for the image, the pixel location of the boundaries of the recognized regions, reducing considerably the computer storage requirements. The authors this technique to study the dynamics of two miscible liquids of different densities flowing through a porous medium where buoyancy plays an important role. The authors' specific concern is the movement of mud filtrate as it penetrates a permeable formation in the vicinity of a recently drilled wellbore. The authors quantify the manner in which impermeable horizontal barriers influence the movement of the filtrate
Directory of Open Access Journals (Sweden)
Amit Saxena
2017-06-01
Full Text Available Foam has emerged as an efficient drilling fluid for the drilling of low pressure, fractured and matured reservoirs because of its the ability to reduce formation damage, fluid loss, differential sticking etc. However the compressible nature along with its complicated rheology has made its implementation a multifaceted task. Knowledge of the hydrodynamic behavior of drilling fluid within the borehole is the key behind successful implementation of drilling job. However, little effort has been made to develop the hydrodynamic models for the foam flowing with cuttings through pipes of variable diameter. In the present study, hydrodynamics of the foam fluid was investigated through the vertical smooth pipes of different pipe diameters, with variable foam properties in a flow loop system. Effect of cutting loading on pressure drop was also studied. Thus, the present investigation estimates the differential pressure loss across the pipe. The flow loop permits foam flow through 25.4 mm, 38.1 mm and 50.8 mm diameter pipes. The smaller diameter pipes are used to replicate the annular spaces between the drill string and wellbore. The developed model determines the pressure loss along the pipe and the results are compared with a number of existing models. The developed model is able to predict the experimental results more accurately.
Cathles, L. M.; Sanford, W. E.; Hawkins, A.; Li, Y. V.
2017-12-01
The nature of flow in fractured porous media is important to almost all subsurface processes including oil and gas recovery, contaminant transport and remediation, CO2 sequestration, and geothermal heat extraction. One would like to know, under flowing conditions, the flow volume, surface area, effective aperture, and rectilinear spacing of fractures in a representative volume of rock away from the well bore, but no methods currently allow acquisition of this data. It could, however, be collected by deploying inert tracers with a wide range of aqueous diffusion constants (e.g., rapidly diffusing heat to non-diffusing nanoparticle) in the following fashion: The flow volume is defined by the heated volume measured by resistivity surveys. The fracture volume within this flow volume is indicate by the nanoparticle transit time. The average fracture spacing is indicated by the evolving thermal profile in the monitor and the production wells (measured by fiber optic cable), and by the retention of absorbing tracers. The average fracture aperture is determined by permeability measurements and the average fracture separation. We have proposed a field test to redundantly measure these fracture parameters in the fractured Dakota Sandstone where it approaches the surface in Ft Collins, Colorado. Five 30 m deep wells (an injection, production, and 3 monitor wells) cased to 20 m are proposed. The experiments will involve at least 9 different tracers. The planned field test and its potential significance will be described.
Jackson, S. J.; Reynolds, C.; Krevor, S. C.
2017-12-01
Predictions of the flow behaviour and storage capacity of CO2 in subsurface reservoirs are dependent on accurate modelling of multiphase flow and trapping. A number of studies have shown that small scale rock heterogeneities have a significant impact on CO2flow propagating to larger scales. The need to simulate flow in heterogeneous reservoir systems has led to the development of numerical upscaling techniques which are widely used in industry. Less well understood, however, is the best approach for incorporating laboratory characterisations of small scale heterogeneities into models. At small scales, heterogeneity in the capillary pressure characteristic function becomes significant. We present a digital rock workflow that combines core flood experiments with numerical simulations to characterise sub-core scale capillary pressure heterogeneities within rock cores from several target UK storage reservoirs - the Bunter, Captain and Ormskirk sandstone formations. Measured intrinsic properties (permeability, capillary pressure, relative permeability) and 3D saturations maps from steady-state core flood experiments were the primary inputs to construct a 3D digital rock model in CMG IMEX. We used vertical end-point scaling to iteratively update the voxel by voxel capillary pressure curves from the average MICP curve; with each iteration more closely predicting the experimental saturations and pressure drops. Once characterised, the digital rock cores were used to predict equivalent flow functions, such as relative permeability and residual trapping, across the range of flow conditions estimated to prevail in the CO2 storage reservoirs. In the case of the Captain sandstone, rock cores were characterised across an entire 100m vertical transect of the reservoir. This allowed analysis of the upscaled impact of small scale heterogeneity on flow and trapping. Figure 1 shows the varying degree to which heterogeneity impacted flow depending on the capillary number in the
THE INFLUENCE OF CO2 ON WELL CEMENT
Directory of Open Access Journals (Sweden)
Nediljka Gaurina-Međimurec
2010-12-01
Full Text Available Carbon capture and storage is one way to reduce emissions of greenhouse gases in the atmosphere. Underground gas storage operations and CO2 sequestration in aquifers relay on both the proper wellbore construction and sealing properties of the cap rock. CO2 injection candidates may be new wells or old wells. In both cases, the long-term wellbore integrity (up to 1 000 years is one of the key performance criteria in the geological storage of CO2. The potential leakage paths are the migration CO2 along the wellbore due to poor cementation and flow through the cap rock. The permeability and integrity of the set cement will determine how effective it is in preventing the leakage. The integrity of the cap rock is assured by an adequate fracture gradient and by sufficient set cement around the casing across the cap rock and without a micro-annulus. CO2 storage in underground formations has revived the researc of long term influence of the injected CO2 on Portland cements and methods for improving the long term efficiency of the wellbore sealant. Some researchers predicted that set cement will fail when exposed to CO2 leading to potential leakage to the atmosphere or into underground formations that may contain potable water. Other researchers show set cement samples from 30 to 50 year-old wells (CO2 EOR projects that have maintained sealing integrity and prevented CO2 leakage, in spite of some degree of carbonation. One of reasons for the discrepancy between certain research lab tests and actual field performance measurements is the absence of standard protocol for CO2 resistance-testing devices, conditions, or procedures. This paper presents potential flow paths along the wellbore, CO2 behaviour under reservoir conditions, and geochemical alteration of hydrated Portland cement due to supercritical CO2 injection.
AREA 2: Novel Materials for Robust Repair of Leaky Wellbores in CO_{2} Storage Formations
Energy Technology Data Exchange (ETDEWEB)
Balhoff, Matthew [Univ. of Texas, Austin, TX (United States); Tavassoli, Shayan [Univ. of Texas, Austin, TX (United States); Fei Ho, Jostine [Univ. of Texas, Austin, TX (United States)
2016-01-31
cement cores to remove calcium and prevent syneresis during polymer placement. A chelating agent, sodium triphosphate (Na_{5}P_{3}O_{10}), was found to successfully eliminate syneresis without compromising the injectivity of polymer solution during placement. Polymer gel strength is determined by recording the maximum holdback pressure gradients during liquid breakthrough tests after various periods of pretreatment and polymer shut-in time. Cores pretreated with Na_{5}P_{3}O_{10} successfully held up to an average of 80 psi/ft, which is significantly greater than the expected threshold value of about 0.1-5 psi/ft required to prevent flow in a typical CO_{2} leakage scenario. The use of such inexpensive, pH-triggered poly-acrylic acid polymer allows long-term robust seal of leaky wellbores under high pH conditions.
International Nuclear Information System (INIS)
Nagel, H.
1986-01-01
The flow induced valve operation is calculated for single and two-phase flow conditions by the fluid dynamic computer code DYVRO and results are compared to experimental data. The analysis show that the operational behaviour of the valves is not only dependent on the condition of the induced flow, but also the pipe flow can cause a feedback as a result of the induced pressure waves. For the calculation of pressure wave propagation in pipes of which the operation of flow induced valves has a considerable influence it is therefore necessary to have a coupled analysis of the pressure wave propagation and the operational behaviour of the valves. The analyses of the fast transient transfer from steam to two-phase flow show a good agreement with experimental data. Hence even these very high loads on pipes resulting from such fluid dynamic transients can be calculated realistically. (orig.)
Analysis of bubbly flow using particle image velocimetry
Energy Technology Data Exchange (ETDEWEB)
Todd, D.R.; Ortiz-Villafuerte, J.; Schmidl, W.D.; Hassan, Y.A. [Texas A and M University, Nuclear Engineering Dept., College Stagion, TX (United States); Sanchez-Silva, F. [ESIME, INP (Mexico)
2001-07-01
The local phasic velocities can be determined in two-phase flows if the phases can be separated during analysis. The continuous liquid velocity field can be captured using standard Particle Image Velocimetry (PIV) techniques in two-phase flows. PIV is now a well-established, standard flow measurement technique, which provides instantaneous velocity fields in a two-dimensional plane of finite thickness. PIV can be extended to three dimensions within the plane with special considerations. A three-dimensional shadow PIV (SPIV) measurement apparatus can be used to capture the dispersed phase flow parameters such as velocity and interfacial area. The SPIV images contain only the bubble images, and can be easily analyzed and the results used to separate the dispersed phase from the continuous phase in PIV data. An experimental system that combines the traditional PIV technique with SPIV will be described and sample data will be analyzed to demonstrate an advanced turbulence measurement method in a two-phase bubbly flow system. Also, a qualitative error analysis method that allows users to reduce the number of erroneous vectors obtained from the PIV measurements will be discussed. (authors)
Analysis of bubbly flow using particle image velocimetry
International Nuclear Information System (INIS)
Todd, D.R.; Ortiz-Villafuerte, J.; Schmidl, W.D.; Hassan, Y.A.; Sanchez-Silva, F.
2001-01-01
The local phasic velocities can be determined in two-phase flows if the phases can be separated during analysis. The continuous liquid velocity field can be captured using standard Particle Image Velocimetry (PIV) techniques in two-phase flows. PIV is now a well-established, standard flow measurement technique, which provides instantaneous velocity fields in a two-dimensional plane of finite thickness. PIV can be extended to three dimensions within the plane with special considerations. A three-dimensional shadow PIV (SPIV) measurement apparatus can be used to capture the dispersed phase flow parameters such as velocity and interfacial area. The SPIV images contain only the bubble images, and can be easily analyzed and the results used to separate the dispersed phase from the continuous phase in PIV data. An experimental system that combines the traditional PIV technique with SPIV will be described and sample data will be analyzed to demonstrate an advanced turbulence measurement method in a two-phase bubbly flow system. Also, a qualitative error analysis method that allows users to reduce the number of erroneous vectors obtained from the PIV measurements will be discussed. (authors)
OpenFlow Deployment and Concept Analysis
Directory of Open Access Journals (Sweden)
Tomas Hegr
2013-01-01
Full Text Available Terms such as SDN and OpenFlow (OF are often used in the research and development of data networks. This paper deals with the analysis of the current state of OpenFlow protocol deployment options as it is the only real representative protocol that enables the implementation of Software Defined Networking outside an academic world. There is introduced an insight into the current state of the OpenFlow specification development at various levels is introduced. The possible limitations associated with this concept in conjunction with the latest version (1.3 of the specification published by ONF are also presented. In the conclusion there presented a demonstrative security application addressing the lack of IPv6 support in real network devices since most of today's switches and controllers support only OF v1.0.
Directory of Open Access Journals (Sweden)
Shams Bilal
2017-08-01
Full Text Available Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources.
International Nuclear Information System (INIS)
Ohyama, Takuya; Saegusa, Hiromitsu; Onoe, Hironori
2005-05-01
Japan Nuclear Cycle Development Institute has been conducting a wide range of geoscientific research in order to build a foundation for multidisciplinary studies of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. Ongoing geoscientific research programs include the Regional Hydrogeological Study (RHS) project and Mizunami Underground Research Laboratory (MIU) project in the Tono region, Gifu Prefecture. The main goal of these projects is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment at several spatial scales. The RHS project is a local scale study for understanding the groundwater flow system from the recharge area to the discharge area. The surface-based Investigation Phase of the MIU project is a site scale study for understanding the groundwater flow system immediately surrounding the MIU construction site. The MIU project is being conducted using a multiphase, iterative approach. In this study, the hydrogeological modeling and groundwater flow analysis of the local scale were carried out in order to set boundary conditions of the site scale model based on the data obtained from surface-based investigations in Step 1 in site scale of the MIU project. As a result of the study, head distribution to set boundary conditions for groundwater flow analysis on the site scale model could be obtained. (author)
Energy Technology Data Exchange (ETDEWEB)
Betata, S.A.
1998-02-13
During the production phase of an oil reservoir, a pressure drawdown occurs in the near wellbore region. This may lower the pressure below the bubble-point pressure, leading to the appearance of a gas phase, thus decreasing the oil relative permeability and the well productivity. The main goal of this study is the development of an appropriate laboratory procedure and its modeling, so as to derive gas-oil relative permeabilities at conditions representative of the near wellbore region, e.g. for a dispersed gas phase. A set of depressurization tests in porous media are performed for various conditions of pressure gradient and supersaturation. They are interpreted using a model relating the gas saturation to the supersaturation, as well as the nucleation rate J. Gas-oil relative permeabilities and average gas saturation versus time are measured. Oil relative permeabilities are found to be a function of both the gas saturation and the supersaturation. In addition to that, above a given threshold pressure drop part of the gas is mobilized. The value of J, obtained from the oil production curve leads to the description of the bubble population, in terms of their number and size. It is shown that oil-phase flow impairment is caused more by a limited number of large bubbles rather than by the presence of regularly distributed small ones. The procedure thus established allows the description of the behavior of oil and gas, not only above the critical gas saturation (defined as the saturation above which the gas phase becomes continuous), but also in the early stage of the nucleation, when the gas, even in a dispersed form, can flow depending on the applied pressure gradient. (author) 39 refs.
Experimental and numerical modeling of sulfur plugging in a carbonate oil reservoir
Energy Technology Data Exchange (ETDEWEB)
Al-Awadhy, F. [ADMA-OPCO, Abudhabi (United Arab Emirates); Kocabas, I.; Abou-Kassem, J.H. [UAE University, Al Ain (United Arab Emirates); Islam, M.R. [Dalhousie University, Halifax, NS (United States)
2005-01-15
Many oil and gas reservoirs in the United Arab Emirates produce large amounts of sour gas, mainly in the form of hydrogen sulfide. In addition to creating problems in the production line, wellbore damage is often reported due to the precipitation of elemental sulfur in the vicinity of the wellbore. While there have been several studies performed on the role of solid deposition in a gas reservoir, the role of sulfur deposition in oil reservoirs has not been investigated. This article presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. The experiments were conducted in a core (linear) system. Both analytical and numerical modelings were performed in a linear coordinate system. Data for the numerical model was obtained from both test tube and coreflood experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results). The crude oil was de-asphalted prior to conducting the experiment in order to isolate the effect of asphaltene plugging. A series of coreflood tests was carried out to observe sulfur precipitation and plugging in a carbonate rock. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in the phenomenological model and can be incorporated in the wellbore numerical model. (author)
Flow injection analysis in inductively coupled plasma spectrometry
International Nuclear Information System (INIS)
Rosias, Maria F.G.G.
1995-10-01
The main features of flow injection analysis (FIA) as contribution to the inductively coupled plasma (Icp) spectrometry are described. A systematic review of researches using the combined FIA-Icp and the benefits of this association are presented. Flow systems were proposed to perform on-line Icp solution management for multielemental determination by atomic emission spectrometry (Icp-AES) or mass spectrometry. The inclusion of on-line ion exchangers in flow systems for matrix separation and/or analyte preconcentration are presented. Together with those applications the new advent of instruments with facilities for multielement detection on flow injection signals are described. (author). 75 refs., 19 figs
Basic models in transitory analysis in biphasic flows
International Nuclear Information System (INIS)
Gonzalez S, J.M.
1992-02-01
The two-phase flow but studied and possibly the more complex, is the one integrated by gas-liquid mixtures. These flows are with frequency inside systems and equipment related with the chemical industry, that of the petroleum and in the one dedicated to the electric energy generation, being inside this last, in particular in the nuclear and of geothermal areas, those that but have motivated to the detailed and complete analysis of the behavior of the two-phase flows. The present report, it tries to analyze inside the nuclear reactor area, the emergence of some abnormal operation situations, related exclusively with the two-phase flow in gas-liquid mixtures. (Author)
Transient flow analysis of integrated valve opening process
Energy Technology Data Exchange (ETDEWEB)
Sun, Xinming; Qin, Benke; Bo, Hanliang, E-mail: bohl@tsinghua.edu.cn; Xu, Xingxing
2017-03-15
Highlights: • The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the integrated valve (IV) is the key control component. • The transient flow experiment induced by IV is conducted and the test results are analyzed to get its working mechanism. • The theoretical model of IV opening process is established and applied to get the changing rule of the transient flow characteristic parameters. - Abstract: The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the IV is the key control component. The working principle of integrated valve (IV) is analyzed and the IV hydraulic experiment is conducted. There is transient flow phenomenon in the valve opening process. The theoretical model of IV opening process is established by the loop system control equations and boundary conditions. The valve opening boundary condition equation is established based on the IV three dimensional flow field analysis results and the dynamic analysis of the valve core movement. The model calculation results are in good agreement with the experimental results. On this basis, the model is used to analyze the transient flow under high temperature condition. The peak pressure head is consistent with the one under room temperature and the pressure fluctuation period is longer than the one under room temperature. Furthermore, the changing rule of pressure transients with the fluid and loop structure parameters is analyzed. The peak pressure increases with the flow rate and the peak pressure decreases with the increase of the valve opening time. The pressure fluctuation period increases with the loop pipe length and the fluctuation amplitude remains largely unchanged under different equilibrium pressure conditions. The research results lay the base for the vibration reduction analysis of the CRHDS.
Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino
2018-01-01
Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P 0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
New method of analyzing well tests in fractured wells using sandface pressure and rate data
Energy Technology Data Exchange (ETDEWEB)
Osman, M.; Almehaideb, R.; Abou-Kassem, J. [U.A.E. University, Al-Ain (United Arab Emirates)
1998-05-01
Analysis of variable flow rate tests has been of special interest recently because in many cases it is impractical to keep a flow rate constant long enough to perform a drawdown test. Further, in many other drawdown and buildup tests, the early data were influenced by wellbore storage effects, and the duration of these effects could be quite long for low-permeability reservoirs. This paper presents a mathematical model which describes drawdown and buildup tests in hydraulically fractured wells. This new method uses a specialized plot approach to analyze the linear flow data and combines it with the superposition of constant-rate solution method for the analysis of psuedoradial flow data. It does not require prior knowledge of the fracture type (uniform-flux or infinite-conductivity); in fact it predicts the fracture type. This method is useful for the analysis of simultaneously measured downhole pressure and sandface rate data. 12 refs., 11 figs., 3 tabs.
A Flow-Sensitive Analysis of Privacy Properties
DEFF Research Database (Denmark)
Nielson, Hanne Riis; Nielson, Flemming
2007-01-01
that information I send to some service never is leaked to another service? - unless I give my permission? We shall develop a static program analysis for the pi- calculus and show how it can be used to give privacy guarantees like the ones requested above. The analysis records the explicit information flow...
Global Qualitative Flow-Path Modeling for Local State Determination in Simulation and Analysis
Malin, Jane T. (Inventor); Fleming, Land D. (Inventor)
1998-01-01
For qualitative modeling and analysis, a general qualitative abstraction of power transmission variables (flow and effort) for elements of flow paths includes information on resistance, net flow, permissible directions of flow, and qualitative potential is discussed. Each type of component model has flow-related variables and an associated internal flow map, connected into an overall flow network of the system. For storage devices, the implicit power transfer to the environment is represented by "virtual" circuits that include an environmental junction. A heterogeneous aggregation method simplifies the path structure. A method determines global flow-path changes during dynamic simulation and analysis, and identifies corresponding local flow state changes that are effects of global configuration changes. Flow-path determination is triggered by any change in a flow-related device variable in a simulation or analysis. Components (path elements) that may be affected are identified, and flow-related attributes favoring flow in the two possible directions are collected for each of them. Next, flow-related attributes are determined for each affected path element, based on possibly conflicting indications of flow direction. Spurious qualitative ambiguities are minimized by using relative magnitudes and permissible directions of flow, and by favoring flow sources over effort sources when comparing flow tendencies. The results are output to local flow states of affected components.
Typing Local Control and State Using Flow Analysis
Guha, Arjun; Saftoiu, Claudiu; Krishnamurthi, Shriram
Programs written in scripting languages employ idioms that confound conventional type systems. In this paper, we highlight one important set of related idioms: the use of local control and state to reason informally about types. To address these idioms, we formalize run-time tags and their relationship to types, and use these to present a novel strategy to integrate typing with flow analysis in a modular way. We demonstrate that in our separation of typing and flow analysis, each component remains conventional, their composition is simple, but the result can handle these idioms better than either one alone.
Substance Flow Analysis of Wastes Containing Polybrominated Diphenyl Ethers
DEFF Research Database (Denmark)
Vyzinkarova, Dana; Brunner, Paul H.
2013-01-01
materials. Therefore, end-of-life (EOL) plastic materials used for construction must be separated and properly treated, for example, in a state-of-the-art municipal solid waste (MSW) incinerator. In the case of cOctaBDE, the main flows are waste electrical and electronic equipment (WEEE) and, possibly......The present article examines flows and stocks of Stockholm Convention regulated pollutants, commercial penta- and octabrominated diphenyl ether (cPentaBDE, cOctaBDE), on a city level. The goals are to (1) identify sources, pathways, and sinks of these compounds in the city of Vienna, (2) determine...... the fractions that reach final sinks, and (3) develop recommendations for waste management to ensure their minimum recycling and maximum transfer to appropriate final sinks. By means of substance flow analysis (SFA) and scenario analysis, it was found that the key flows of cPentaBDE stem from construction...
Annular dispersed flow analysis model by Lagrangian method and liquid film cell method
International Nuclear Information System (INIS)
Matsuura, K.; Kuchinishi, M.; Kataoka, I.; Serizawa, A.
2003-01-01
A new annular dispersed flow analysis model was developed. In this model, both droplet behavior and liquid film behavior were simultaneously analyzed. Droplet behavior in turbulent flow was analyzed by the Lagrangian method with refined stochastic model. On the other hand, liquid film behavior was simulated by the boundary condition of moving rough wall and liquid film cell model, which was used to estimate liquid film flow rate. The height of moving rough wall was estimated by disturbance wave height correlation. In each liquid film cell, liquid film flow rate was calculated by considering droplet deposition and entrainment flow rate. Droplet deposition flow rate was calculated by Lagrangian method and entrainment flow rate was calculated by entrainment correlation. For the verification of moving rough wall model, turbulent flow analysis results under the annular flow condition were compared with the experimental data. Agreement between analysis results and experimental results were fairly good. Furthermore annular dispersed flow experiments were analyzed, in order to verify droplet behavior model and the liquid film cell model. The experimental results of radial distribution of droplet mass flux were compared with analysis results. The agreement was good under low liquid flow rate condition and poor under high liquid flow rate condition. But by modifying entrainment rate correlation, the agreement become good even under high liquid flow rate. This means that basic analysis method of droplet and liquid film behavior was right. In future work, verification calculation should be carried out under different experimental condition and entrainment ratio correlation also should be corrected
A Calculus for Control Flow Analysis of Security Protocols
DEFF Research Database (Denmark)
Buchholtz, Mikael; Nielson, Hanne Riis; Nielson, Flemming
2004-01-01
The design of a process calculus for anaysing security protocols is governed by three factors: how to express the security protocol in a precise and faithful manner, how to accommodate the variety of attack scenarios, and how to utilise the strengths (and limit the weaknesses) of the underlying...... analysis methodology. We pursue an analysis methodology based on control flow analysis in flow logic style and we have previously shown its ability to analyse a variety of security protocols. This paper develops a calculus, LysaNS that allows for much greater control and clarity in the description...
Energy Technology Data Exchange (ETDEWEB)
Randolph, P.L.; Hayden, C.G.; Rogers, L.A.
1992-02-01
for the shallower perforated interval. Hydrate formation in the upper part of the wellbore was a problem. To circumvent this problem, about 10 barrels of diesel were pumped into the top of the well after each flow to displace the brine down to a level in the well where the temperature was too high for hydrates to form. Calculations of saturation index indicated that calcium carbonate scale would also form in the well if the pressure was drawn down too far. Thus all the flow tests were performed at low flow rates to preclude formation of scale in the wellbore. Scale inhibitor was injected into the surface flow lines to control possible scale formation in the surface equipment. Corrosion inhibitor was also injected, and coupon monitoring indicated a corrosion rate of less than 5 mils per year.
Swirl flow analysis in a helical wire inserted tube using CFD code
International Nuclear Information System (INIS)
Park, Yusun; Chang, Soon Heung
2010-01-01
An analysis on the two-phase flow in a helical wire inserted tube using commercial CFD code, CFX11.0, was performed in bubbly flow and annular flow regions. The analysis method was validated with the experimental results of Takeshima. Bubbly and annular flows in a 10 mm inner diameter tube with varying pitch lengths and inserted wire diameters were simulated using the same analysis methods after validation. The geometry range of p/D was 1-4 and e/D was 0.08-0.12. The results show that the inserted wire with a larger diameter increased swirl flow generation. An increasing swirl flow was seen as the pitch length increased. Regarding pressure loss, smaller pitch lengths and inserted wires with larger diameters resulted in larger pressure loss. The average liquid film thickness increased as the pitch length and the diameter of the inserted wire increased in the annular flow region. Both in the bubbly flow and annular flow regions, the effect of pitch length on swirl flow generation and pressure loss was more significant than that of the inserted wire diameters. Pitch length is a more dominant factor than inserted wire diameter for the design of the swirl flow generator in small diameter tubes.
Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models
Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.
2013-12-01
Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.
Development of a detailed core flow analysis code for prismatic fuel reactors
International Nuclear Information System (INIS)
Bennett, R.G.
1990-01-01
The detailed analysis of the core flow distribution in prismatic fuel reactors is of interest for modular high-temperature gas-cooled reactor (MHTGR) design and safety analyses. Such analyses involve the steady-state flow of helium through highly cross-connected flow paths in and around the prismatic fuel elements. Several computer codes have been developed for this purpose. However, since they are proprietary codes, they are not generally available for independent MHTGR design confirmation. The previously developed codes do not consider the exchange or diversion of flow between individual bypass gaps with much detail. Such a capability could be important in the analysis of potential fuel block motion, such as occurred in the Fort St. Vrain reactor, or for the analysis of the conditions around a flow blockage or misloaded fuel block. This work develops a computer code with fairly general-purpose capabilities for modeling the flow in regions of prismatic fuel cores. The code, called BYPASS solves a finite difference control volume formulation of the compressible, steady-state fluid flow in highly cross-connected flow paths typical of the MHTGR
Analysis of the three dimensional flow in a turbine scroll
Hamed, A.; Baskharone, E.
1979-01-01
The present analysis describes the three-dimensional compressible inviscid flow in the scroll and the vaneless nozzle of a radial inflow turbine. The solution to this flow field, which is further complicated by the geometrical shape of the boundaries, is obtained using the finite element method. Symmetric and nonsymmetric scroll cross sectional geometries are investigated to determine their effect on the general flow field and on the exit flow conditions.
Directory of Open Access Journals (Sweden)
R. Gholami
2014-02-01
Full Text Available Wellbore instability is reported frequently as one of the most significant incidents during drilling operations. Analysis of wellbore instability includes estimation of formation mechanical properties and the state of in situ stresses. In this analysis, the only controllable parameter during drilling operation is the mud weight. If the mud weight is larger than anticipated, the mud will invade into the formation, causing tensile failure of the formation. On the other hand, a lower mud weight can result in shear failures of rock, which is known as borehole breakouts. To predict the potential for failures around the wellbore during drilling, one should use a failure criterion to compare the rock strength against induced tangential stresses around the wellbore at a given mud pressure. The Mohr–Coulomb failure criterion is one of the commonly accepted criteria for estimation of rock strength at a given state of stress. However, the use of other criteria has been debated in the literature. In this paper, Mohr–Coulomb, Hoek–Brown and Mogi–Coulomb failure criteria were used to estimate the potential rock failure around a wellbore located in an onshore field of Iran. The log based analysis was used to estimate rock mechanical properties of formations and state of stresses. The results indicated that amongst different failure criteria, the Mohr–Coulomb criterion underestimates the highest mud pressure required to avoid breakouts around the wellbore. It also predicts a lower fracture gradient pressure. In addition, it was found that the results obtained from Mogi–Coulomb criterion yield a better comparison with breakouts observed from the caliper logs than that of Hoek–Brown criterion. It was concluded that the Mogi–Coulomb criterion is a better failure criterion as it considers the effect of the intermediate principal stress component in the failure analysis.
The flow analysis of supercavitating cascade by linear theory
Energy Technology Data Exchange (ETDEWEB)
Park, E.T. [Sung Kyun Kwan Univ., Seoul (Korea, Republic of); Hwang, Y. [Seoul National Univ., Seoul (Korea, Republic of)
1996-06-01
In order to reduce damages due to cavitation effects and to improve performance of fluid machinery, supercavitation around the cascade and the hydraulic characteristics of supercavitating cascade must be analyzed accurately. And the study on the effects of cavitation on fluid machinery and analysis on the performances of supercavitating hydrofoil through various elements governing flow field are critically important. In this study comparison of experiment results with the computed results of linear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. 7 refs., 6 figs.
Application of effective discharge analysis to environmental flow decision-making
McKay, S. Kyle; Freeman, Mary C.; Covich, A.P.
2016-01-01
Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.
A new analytical model for conduction heating during the SAGD circulation phase
Energy Technology Data Exchange (ETDEWEB)
Duong, A.N. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[ConocoPhillips Canada Resources Corp., Calgary, AB (Canada); Tomberlin, T.A. [ConocoPhillips Canada Resources Corp., Calgary, AB (Canada); Cyrot, M. [Total E and P Canada Ltd., Calgary, AB (Canada)
2008-10-15
The steam assisted gravity drainage (SAGD) process has become the common procedure to recover bitumen from Alberta's oilsands. Inter-well communication must be initiated during the start-up phase of a SAGD process. The shape of an initial steam chamber that develops during the circulation phase influences the efficiency of bitumen recovery. As such, the heating conformance distributed along the horizontal wellbores must be well understood. The duration of the start-up phase varies with the characteristics of the oilsand formation and the distance between the wellbores, but it is typically a month to several months. This paper presented a newly developed analytical model that predicts the initial steam chamber. The model improves bitumen recovery efficiency by predicting the mid-point temperature front and heating efficiency of a wellpair during the SAGD circulation phase. The Excel-based model uses the exponential integral solution for radial heating in a long cylinder and superposition in space for multi-heating sources. It can predict the temperature profile if the steam temperatures or pressures are known during the circulation period. Wellbore modeling that includes any variation in distances between the wellbores is critical to both circulation time and heating conformance. This model has an advantage over numerical simulation in terms of reducing computational time and accurately modelling any variation in distance between wellbores. The results can be optimized under various operational conditions, wellbore profiles, tubing sizes and convection flow effects. This easy to use model is currently being used by ConocoPhillips Canada to optimize, predict and guide oilsands projects during the start-up phase of a SAGD process. 5 refs., 13 figs.
Business valuation: an analysis of projected cash flows versus takeover bids
Directory of Open Access Journals (Sweden)
Camila Menezes
2017-12-01
Full Text Available One of the main financial statements is the Cash Flow. It became mandatory from the law # 11,638/2007 on, which changed the law # 6,404/1976 – the Corporations’ law, and the Cash Flow statement allows analysis about the companies’ operations activities effects, investing and financing, highlighting their main sources of financial allocation. In 2005 and 2006, 37 companies registered takeover bids in the Brazilian Securities Exchange Commission (CVM – Comissão de Valores Mobiliários. Based on these companies’ analysis of Projected Cash Flows (FCP – Fluxos de Caixa Projetados when the takeover bids were put in place and their Actual Cash Flows (FCR – Fluxo de Caixa Realizados the objective of this work was to compare those cash flows, to analyze the differences between the Statements of Cash Flows attached to the Appraisal Reports and the actual ones, as well as to check if these companies’ cash were in line with the balances projected in the takeover bids. The obtained results via statistical analysis of differences between the Projected Cash Flows attached to the Appraisal Reports and the effective Actual Cash Flows, all of them compared in the period between 2007 and 2013, did not show significant differences among them. IE: it was observed that, nevertheless the companies did not accomplish the promised Cash Flows delivery when the OPAs were put in place, the differences between the balances projected and the actual ones were not statistically significant.
Directory of Open Access Journals (Sweden)
A. V. Rusanov
2016-12-01
Full Text Available The results of numerical investigation of spatial flow of viscous incompressible fluid in flow part of Kaplan turbine PL20 Kremenchug HPP at optimum setting angle of runner blade φb = 15° and at maximum setting angle φb = 35° are shown. The flow simulation has been carried out on basis of numerical integration of the Reynolds equations with an additional term containing artificial compressibility. The differential two-parameter model of Menter (SST has been applied to take into account turbulent effects. Numerical integration of the equations is carried out using an implicit quasi-monotone Godunov type scheme of second - order accuracy in space and time. The calculations have been conducted with the help of the software system IPMFlow. The analysis of fluid flow in the flow part elements is shown and the values of hydraulic losses and local cavitation coefficient have been obtained. Comparison of calculated and experimental results has been carried out.
Gas migration through cement slurries analysis: A comparative laboratory study
Directory of Open Access Journals (Sweden)
Arian Velayati
2015-12-01
Full Text Available Cementing is an essential part of every drilling operation. Protection of the wellbore from formation fluid invasion is one of the primary tasks of a cement job. Failure in this task results in catastrophic events, such as blow outs. Hence, in order to save the well and avoid risky and operationally difficult remedial cementing, slurry must be optimized to be resistant against gas migration phenomenon. In this paper, performances of the conventional slurries facing gas invasion were reviewed and compared with modified slurry containing special gas migration additive by using fluid migration analyzer device. The results of this study reveal the importance of proper additive utilization in slurry formulations. The rate of gas flow through the slurry in neat cement is very high; by using different types of additives, we observe obvious changes in the performance of the cement system. The rate of gas flow in neat class H cement was reported as 36000 ml/hr while the optimized cement formulation with anti-gas migration and thixotropic agents showed a gas flow rate of 13.8 ml/hr.
Analysis of a fully developed laminar flow b/w two parallel plates ...
African Journals Online (AJOL)
... Simulation Software Comsol Multiphysics. The flow behavior and the interaction with the boundary has been analysed. Wall no slip conditions were set for evaluation purpose. The analysis is a steady state analysis by using Incompressible Navier Stokes Model. Keywords: Steady state analysis, Velocity profile, Fluid flow.
Directory of Open Access Journals (Sweden)
M. Branicki
2010-03-01
Full Text Available In this work we discuss applications of Lagrangian techniques to study transport properties of flows generated by shallow water models of estuarine flows. We focus on the flow in the Chesapeake Bay generated by Quoddy (see Lynch and Werner, 1991, a finite-element (shallow water model adopted to the bay by Gross et al. (2001. The main goal of this analysis is to outline the potential benefits of using Lagrangian tools for both understanding transport properties of such flows, and for validating the model output and identifying model deficiencies. We argue that the currently available 2-D Lagrangian tools, including the stable and unstable manifolds of hyperbolic trajectories and techniques exploiting 2-D finite-time Lyapunov exponent fields, are of limited use in the case of partially mixed estuarine flows. A further development and efficient implementation of three-dimensional Lagrangian techniques, as well as improvements in the shallow-water modelling of 3-D velocity fields, are required for reliable transport analysis in such flows. Some aspects of the 3-D trajectory structure in the Chesapeake Bay, based on the Quoddy output, are also discussed.
Cross-flow analysis of injection wells in a multilayered reservoir
Directory of Open Access Journals (Sweden)
Mohammadreza Jalali
2016-09-01
Natural and forced cross-flow is modeled for some injection wells in an oil reservoir located at North Sea. The solution uses a transient implicit finite difference approach for multiple sand layers with different permeabilities separated by impermeable shale layers. Natural and forced cross-flow rates for each reservoir layer during shut-in are calculated and compared with different production logging tool (PLT measurements. It appears that forced cross-flow is usually more prolonged and subject to a higher flow rate when compared with natural cross-flow, and is thus worthy of more detailed analysis.
Energy Technology Data Exchange (ETDEWEB)
Kohl, T [ETH Hoenggerberg, Zuerich (Switzerland). Inst. fuer Geophysik; Evans, K F; Hopkirk, R J [Polydynamics Engineering, Maennedorf (Switzerland); Jung, R [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Rybach, L [ETH Hoenggerberg, Zuerich (Switzerland). Inst. fuer Geophysik und Radiometrie
1997-12-01
Three independent multi-rate flow experiments were conducted in 1994 and 1995 in the open hole depth interval of a wellbore at the Hot-Dry-Rocks (HDR) test site Soultz. The steady state and transient dowmhole pressure records gave clear indications of non-Darcian flow. A numerical model has been set-up to evaluate these two measurements. An excellent fit of the transient pressure responses of all three flow tests could be achieved by assuming a simple model geometry. The models predict fluid transport along a conduit with substantial surface area in which fully-turbulent flow is occurring. The parameters required by our best-fit simulation all fall into a physically reasonable range. Sensitivity analysis demonstrates a non-Darcian flow regime along highly conductive features. The existence of high capacity far-field faults as postulated in our model confirms earlier characterisations of the Soultz test site. (orig.) [Deutsch] In den Jahren 1994 und 1995 wurden drei unabhaengige Druck- bzw. Fliessratentests in den Bohrungen GPK1 und GPK2 des HDR Standortes Soultz durchgefuehrt. Sowohl die stationaeren wie auch die instationaeren Druckaufzeichnungen gaben bereits klare Hinweise auf nichtlaminare, turbulent-aehnliche Stroemungsverhaeltnisse. Zur genaueren Interpretation dieser Daten wurde das numerische Programm FRACTure erweitert. Unter der Annahme eines geometrisch einfachen Modells konnten die instationaeren Druckantworten sehr gut angepasst werden. Es gelang sogar, die beiden in GPK1 durchgefuehrten Tests durch dieselben Modelle zu erklaeren. Die hierfuer benoetigten Modellparameter liegen in einem physikalisch sinnvollem Rahmen und bestaetigen z.T. fruehere Untersuchungen. Die Existenz grosser Stoerungszonen, welche von den Modellen vorausgesetzt werden, bestaetigt ebenfalls fruehere Charakterisierungen des HDR Standortes Soultz als ein teilweise offenes hydraulisches System. (orig.)
International Nuclear Information System (INIS)
Evans, R. D.
1996-01-01
A technique for optimizing recovery of hydrocarbons from naturally fractured reservoirs using horizontal well technology was proposed. The technique combines inflow performance analysis, production forecasting and economic considerations, and is based on material balance analysis and linear approximations of reservoir fluid properties as functions of reservoir pressure. An economic evaluation model accounting for the time value of cash flow, interest and inflation rates, is part of the package. Examples of using the technique have been demonstrated. The method is also applied to a gas well producing from a horizontal wellbore intersecting discrete natural fractures. 11 refs., 2 tabs,. 10 figs
A Computer Program for Flow-Log Analysis of Single Holes (FLASH)
Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.
2011-01-01
A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.
Parallel simulation of wormhole propagation with the Darcy-Brinkman-Forchheimer framework
Wu, Yuanqing; Salama, Amgad; Sun, Shuyu
2015-01-01
The acid treatment of carbonate reservoirs is a widely practiced oil and gas well stimulation technique. The injected acid dissolves the material near the wellbore and creates flow channels that establish a good connectivity between the reservoir
The Process of Hydraulic Fracturing
Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.
Retro-review of flow injection analysis
DEFF Research Database (Denmark)
Ruzicka, Jaromir; Hansen, Elo Harald
2008-01-01
It is indeed unusual for authors to review their own monograph – J. Ruzicka, E.H. Hansen, Flow Injection Analysis, 2nd Edition, Wiley, Chichester, West Sussex, UK, 1988. – and even more so if the book was published 20 years ago. Yet such an exercise might yield a perspective on the progress of an...
GenFlow: generic flow for integration, management and analysis of molecular biology data
Directory of Open Access Journals (Sweden)
Marcio Katsumi Oikawa
2004-01-01
Full Text Available A large number of DNA sequencing projects all over the world have yielded a fantastic amount of data, whose analysis is, currently, a big challenge for computational biology. The limiting step in this task is the integration of large volumes of data stored in highly heterogeneous repositories of genomic and cDNA sequences, as well as gene expression results. Solving this problem requires automated analytical tools to optimize operations and efficiently generate knowledge. This paper presents an information flow model , called GenFlow, that can tackle this analytical task.
Process Measurement Deviation Analysis for Flow Rate due to Miscalibration
Energy Technology Data Exchange (ETDEWEB)
Oh, Eunsuk; Kim, Byung Rae; Jeong, Seog Hwan; Choi, Ji Hye; Shin, Yong Chul; Yun, Jae Hee [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)
2016-10-15
An analysis was initiated to identify the root cause, and the exemption of high static line pressure correction to differential pressure (DP) transmitters was one of the major deviation factors. Also the miscalibrated DP transmitter range was identified as another major deviation factor. This paper presents considerations to be incorporated in the process flow measurement instrumentation calibration and the analysis results identified that the DP flow transmitter electrical output decreased by 3%. Thereafter, flow rate indication decreased by 1.9% resulting from the high static line pressure correction exemption and measurement range miscalibration. After re-calibration, the flow rate indication increased by 1.9%, which is consistent with the analysis result. This paper presents the brief calibration procedures for Rosemount DP flow transmitter, and analyzes possible three cases of measurement deviation including error and cause. Generally, the DP transmitter is required to be calibrated with precise process input range according to the calibration procedure provided for specific DP transmitter. Especially, in case of the DP transmitter installed in high static line pressure, it is important to correct the high static line pressure effect to avoid the inherent systematic error for Rosemount DP transmitter. Otherwise, failure to notice the correction may lead to indicating deviation from actual value.
Radiometric flow injection analysis with an ASIA (Ismatec) analyzer
Energy Technology Data Exchange (ETDEWEB)
Myint, U; Win, N; San, K; Han, B; Myoe, K M [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science
1994-07-01
Radiometric Flow Injection Analysis of a radioactive ([sup 131]I) sample is described. For analysis an ASIA (Ismatec) analyzer with a NaI(Tl) scintillation detector was used. (author) 5 refs.; 3 figs.
Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System
Energy Technology Data Exchange (ETDEWEB)
Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong [Kookmin Univ., Seoul (Korea, Republic of)
2007-03-15
The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow.
Development of 3-D Flow Analysis Code for Fuel Assembly using Unstructured Grid System
International Nuclear Information System (INIS)
Myong, Hyon Kook; Kim, Jong Eun; Ahn, Jong Ki; Yang, Seung Yong
2007-03-01
The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Final objective of this study is to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system. In order to develop a CFD code for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system, the following researches are made: - Development of numerical algorithm for CFD code's solver - Grid and geometric connectivity data - Development of software(PowerCFD code) for fluid flow and heat transfer analysis in a nuclear fuel assembly using unstructured grid system - Modulation of software(PowerCFD code) - Development of turbulence model - Development of analysis module of RANS/LES hybrid models - Analysis of turbulent flow and heat transfer - Basic study on LES analysis - Development of main frame on pre/post processors based on GUI - Algorithm for fully-developed flow
Active Flow Control and Global Stability Analysis of Separated Flow Over a NACA 0012 Airfoil
Munday, Phillip M.
definition of the coefficient of momentum, which successfully characterizes suppression of separation and lift enhancement. The effect of angular momentum is incorporated into the modified coefficient of momentum by introducing a characteristic swirling jet velocity based on the non-dimensional swirl number. With the modified coefficient of momentum, this single value is able to categorize controlled flows into separated, transitional, and attached flows. With inadequate control input (separated flow regime), lift decreased compared to the baseline flow. Increasing the modified coefficient of momentum, flow transitions from separated to attached and accordingly results in improved aerodynamic forces. Modifying the spanwise spacing, it is shown that the minimum modified coefficient of momentum input required to begin transitioning the flow is dependent on actuator spacing. The growth (or decay) of perturbations can facilitate or inhibit the influence of flow control inputs. Biglobal stability analysis is considered to further analyze the behavior of control inputs on separated flow over a symmetric airfoil. Assuming a spanwise periodic waveform for the perturbations, the eigenvalues and eigenvectors about a base flow are solved to understand the influence of spanwise variation on the development of the flow. Two algorithms are developed and validated to solve for the eigenvalues of the flow: an algebraic eigenvalue solver (matrix based) and a time-stepping algorithm. The matrix based approach is formulated without ever storing the matrices, creating a computationally memory efficient algorithm. Increasing the Reynolds number to Re = 23,000 over a NACA 0012 airfoil, the time-stepper method is implemented due to rising computational cost of the matrix-based method. Stability analysis about the time-averaged flow is performed for spanwise wavenumbers of beta = 1/c, 10pi/ c and 20pi/c, which the latter two wavenumbers are representative of the spanwise spacing between the
CFD Analysis for Predicting Flow Resistance of the Cross Flow Gap in Prismatic VHTR Core
International Nuclear Information System (INIS)
Lee, Jeong Hun; Yoon, Su Jong; Park, Goon Cherl; Park, Jong Woon
2011-01-01
The core of Very High Temperature Reactor (VHTR) consists of assemblies of hexagonal graphite blocks and its height and across-flats width are 800 mm and 360 mm respectively. They are equipped with 108 coolant holes 16 mm in diameter. Up to ten fuel blocks arranged in vertical order form a fuel element column and the neutron flux varies over the cross section of the core. It makes different axial shrinkage of fuel element and this leads to make wedge-shaped gaps between the base and top surfaces of stacked blocks. The cross flow is defined as the core flow that passes through this cross gaps. The cross flow complicates the flow distribution of reactor core. Moreover, the cross flow could lead to uneven coolant distribution and consequently to superheating of individual fuel element zones with increased fission product release. Since the core cross flow has a negative impact on safety and efficiency of VHTR, core cross flow phenomena have to be investigated to improve the core thermal margin of VHTR. In particular, to predict amount of flow at the cross flow gap obtaining accurate flow loss coefficient is important. Nevertheless, there has not been much effort in domestic. The experiment of cross flow was carried out by H. G. Groehn in 1981 Germany. For the study of cross flow the applicability of CFD code should be validated. In this paper a commercial CFD code CFX-12 validation will be carried out with this cross flow experiment. Validated data can be used for validation of other thermal-hydraulic analysis codes
Modified and reverse radiometric flow injection analysis
Energy Technology Data Exchange (ETDEWEB)
Myint, U; Ba, H; Khin, M M; Aung, K; Thida, [Yangon Univ. (Myanmar). Dept. of Chemistry; Toelgyessy, J [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Environmental Science
1994-06-01
Determination of [sup 137]Cs and [sup 60]Co by using modified and reverse radiometric flow injection analysis is described. Two component RFIA was also realized using [sup 60]Co and [sup 137]Cs radionuclides. (author) 2 refs.; 5 figs.
Power flow as a complement to statistical energy analysis and finite element analysis
Cuschieri, J. M.
1987-01-01
Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.
Unsaturated Zone Flow Patterns and Analysis
International Nuclear Information System (INIS)
Ahlers, C.
2001-01-01
This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M and O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M and O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses where conservatism may be
Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method
Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.
2017-12-01
The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.
Parametric distribution approach for flow availability in small hydro potential analysis
Abdullah, Samizee; Basri, Mohd Juhari Mat; Jamaluddin, Zahrul Zamri; Azrulhisham, Engku Ahmad; Othman, Jamel
2016-10-01
Small hydro system is one of the important sources of renewable energy and it has been recognized worldwide as clean energy sources. Small hydropower generation system uses the potential energy in flowing water to produce electricity is often questionable due to inconsistent and intermittent of power generated. Potential analysis of small hydro system which is mainly dependent on the availability of water requires the knowledge of water flow or stream flow distribution. This paper presented the possibility of applying Pearson system for stream flow availability distribution approximation in the small hydro system. By considering the stochastic nature of stream flow, the Pearson parametric distribution approximation was computed based on the significant characteristic of Pearson system applying direct correlation between the first four statistical moments of the distribution. The advantage of applying various statistical moments in small hydro potential analysis will have the ability to analyze the variation shapes of stream flow distribution.
International Nuclear Information System (INIS)
Khan, B.
2007-01-01
High flows and stream discharge have long been measured and used by the engineers in the design of hydraulic structures and flood-protection works and in planning for flood-plain use. Probability-analysis is the basis for the engineering design of many projects and advance information about flood-forecasting. High-flow analysis or flood-frequency studies interpret a past record of events, to predict the future probability of occurrence. In many countries, including the author's country, the long term flow data required for design of hydraulic structures and flood-protection works are not available. In such cases, the only tool with hydrologists is to extend the short-term flow data available at some other site in the region. The present study is made to find a reliable estimation of maximum instantaneous flood for higher frequencies of Kabul River at Warsak weir. Kabul River, at Nowshera gaging station is used or the purpose and regression-analysis is performed to extend the instantaneous peak-flow record up to 29 years at Warsak. The frequency-curves of high-flows are plotted on the normal probability paper, using different probability distributions. The Gumbel distribution seemed to be the best fit for the observed data-points, and is used here for estimation of flood for different return periods. (author)
CFD flow pattern analysis on primaryside of IHX for fast reactors
International Nuclear Information System (INIS)
Takano, Masahito; Mochizuki, Hiroyasu
2011-01-01
The present paper describes the CFD analysis on the primary-side of an intermediate heat exchange (IHX) which has the similar configurations as the IHX for the fast breeder reactor 'Monju'. The IHX is precisely modeled based on the discussion about meshing system. The present model is used for the heat transfer analysis under low-flowrate and natural circulation conditions. The IHX is a shell-and-tube type and counter-flow heat exchanger which has more than 3000 heat transfer tubes on the secondary side. Therefore, the flow pattern on the primary side gets complex. Measurement of flow pattern and temperature distribution on the primary-side of the real IHX are almost impossible. Since the heat transfer tubes of approximately 5 m in length are fixed at 7 plates with many flow holes and placed on the 23 circles with an appropriate lattice pitch, the number of meshes becomes enormous size. In order to overcome these problems, a separate model is discussed. In the present study, two models are discussed. The first one is a precise full-sector model with one flow entrance, 6 windows on the primary-side. The flow distributions are calculated changing inlet flow rate from 100% to 0.1% which is equivalent to 10 6 to 10 3 in the Reynolds numbers. The other model is a sector model with 8 chamber separated by 7 flow-rectifying plats. Pressure losses at each plate and chamber are calculated using this model. As a result of the analysis, since there is only a small flow deviation between the flow from the 6 windows under turbulent flow and laminar flow conditions, the sector model with one window is possible model in the calculation. The small radial velocity gradient is calculated from 23rd layer (outer heat transfer tube) to 10th layer. The distribution is not dependent on the flow rate. Axial flow distributions through the rectifying plates are unified from the entrance to the down-stream. The sector model is applicable to calculate the primary-side flow distributions
Laminar flow and convective transport processes scaling principles and asymptotic analysis
Brenner, Howard
1992-01-01
Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat
Control-flow analysis of function calls and returns by abstract interpretation
DEFF Research Database (Denmark)
Midtgaard, Jan; Jensen, Thomas P.
2012-01-01
Abstract interpretation techniques are used to derive a control-flow analysis for a simple higher-order functional language. The analysis approximates the interprocedural control-flow of both function calls and returns in the presence of first-class functions and tail-call optimization. In additi...... a rational reconstruction of a constraint-based CFA from abstract interpretation principles....
DEFF Research Database (Denmark)
Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter
2014-01-01
for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, Material Flow Analysis (MFA) has been carried out to perform the detailed mapping...
ON THE ANALYSIS OF IMPEDANCE-DRIVEN REVERSE FLOW DYNAMICS
Directory of Open Access Journals (Sweden)
LEE V. C.-C.
2017-02-01
Full Text Available Impedance pump is a simple valve-less pumping mechanism, where an elastic tube is joined to a more rigid tube, at both ends. By inducing a periodic asymmetrical compression on the elastic tube will produce a unidirectional flow within the system. This pumping concept offers a low energy, low noise alternative, which makes it an effective driving mechanism, especially for micro-fluidic systems. In addition, the wave-based mechanism through which pumping occurs infers many benefits in terms of simplicity of design and manufacturing. Adjustment of simple parameters such as the excitation frequencies or compression locations will reverse the direction of flow, providing a very versatile range of flow outputs. This paper describes the experimental analysis of such impedance-driven flow with emphasis on the dynamical study of the reverse flow in open-loop environment. In this study, tapered section with converging steps is introduced at both ends of the elastic tube to amplify the magnitude of reverse flow. Study conducted shows that the reverse peak flow is rather significant with estimate of 23% lower than the forward peak flow. The flow dynamics on the other hand has shown to exhibit different characteristics as per the forward peak flow. The flow characteristics is then studied and showed that the tapered sections altered the impedance within the system and hence induce a higher flow in the reverse direction.
Energy Technology Data Exchange (ETDEWEB)
Um, Wooyong [Pacific Northwest National Laboratory, Richland WA USA; Rod, Kenton A. [Pacific Northwest National Laboratory, Richland WA USA; Jung, Hun Bok [New Jersey City University, Jersey City NJ USA; Brown, Christopher F. [Pacific Northwest National Laboratory, Richland WA USA
2016-03-22
Cement samples were reacted with CO_{2}-saturated groundwater, with or without added H2S (1 wt.%), at 50°C and 10 MPa for up to 13 months (CO_{2} only) or for up to 3.5 months (CO_{2} + H_{2}S) under static conditions. After the reaction, X-ray computed tomography images revealed that calcium carbonate precipitation (CaCO_{3}) occurred extensively within the fractures in the cement matrix, but only partially along fractures at the cement-basalt interface. Exposure of a fractured cement sample to CO2-saturated groundwater (50°C and 10 MPa) over a period of 13 months demonstrated progressive healing of cement fractures by CaCO_{3}(s) precipitation. After reaction with CO_{2} + H_{2}S-saturated groundwater, CaCO_{3} (s) precipitation also occurred more extensively within the cement fracture than along the cement-basalt caprock interfaces. X-ray diffraction analysis showed that major cement carbonation products of the CO_{2} + H_{2}S-saturated groundwater were calcite, aragonite, and vaterite, all consistent with cement carbonation by CO_{2}-saturated groundwater. While pyrite is thermodynamically favored to form, due to the low H_{2}S concentration it was not identified by XRD in this study. The cement alteration rate into neat Portland cement columns by CO_{2}-saturated groundwater was similar at ~0.02 mm/d, regardless of the cement-curing pressure and temperature (P-T) conditions, or the presence of H_{2}S in the brine. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO_{2}- or CO_{2} + H_{2}S-saturated groundwater, whereas fractures along the cement-caprock interface are likely to remain open and vulnerable to the leakage of CO_{2}.
Development of an advanced fluid-dynamic analysis code: α-flow
International Nuclear Information System (INIS)
Akiyama, Mamoru
1990-01-01
A Project for development of large scale three-dimensional fluid-dynamic analysis code, α-FLOW, coping with the recent advancement of supercomputers and workstations, has been in progress. This project is called the α-Project, which has been promoted by the Association for Large Scale Fluid Dynamics Analysis Code comprising private companies and research institutions such as universities. The developmental period for the α-FLOW is four years, March 1989 to March 1992. To date, the major portions of basic design and program preparation have been completed and the project is in the stage of testing each module. In this paper, the present status of the α-Project, design policy and outline of α-FLOW are described. (author)
Service Interaction Flow Analysis Technique for Service Personalization
DEFF Research Database (Denmark)
Korhonen, Olli; Kinnula, Marianne; Syrjanen, Anna-Liisa
2017-01-01
Service interaction flows are difficult to capture, analyze, outline, and represent for research and design purposes. We examine how variation of personalized service flows in technology-mediated service interaction can be modeled and analyzed to provide information on how service personalization...... could support interaction. We have analyzed service interaction cases in a context of technology-mediated car rental service. With the analysis technique we propose, inspired by Interaction Analysis method, we were able to capture and model the situational service interaction. Our contribution regarding...... technology-mediated service interaction design is twofold: First, with the increased understanding on the role of personalization in managing variation in technology-mediated service interaction, our study contributes to designing service management information systems and human-computer interfaces...
Systematic Evaluation of Uncertainty in Material Flow Analysis
DEFF Research Database (Denmark)
Laner, David; Rechberger, Helmut; Astrup, Thomas Fruergaard
2014-01-01
Material flow analysis (MFA) is a tool to investigate material flows and stocks in defined systems as a basis for resource management or environmental pollution control. Because of the diverse nature of sources and the varying quality and availability of data, MFA results are inherently uncertain....... Uncertainty analyses have received increasing attention in recent MFA studies, but systematic approaches for selection of appropriate uncertainty tools are missing. This article reviews existing literature related to handling of uncertainty in MFA studies and evaluates current practice of uncertainty analysis......) and exploratory MFA (identification of critical parameters and system behavior). Whereas mathematically simpler concepts focusing on data uncertainty characterization are appropriate for descriptive MFAs, statistical approaches enabling more-rigorous evaluation of uncertainty and model sensitivity are needed...
Analysis and design of flow limiter used in steam generator
International Nuclear Information System (INIS)
Liu Shixun; Gao Yongjun
1995-10-01
Flow limiter is an important safety component of PWR steam generator. It can limit the blowdown rate of steam generator inventory in case of the main steam pipeline breaks, so that the rate of the primary coolant temperature reduction can be slowed down in order to prevent fuel element from burn-out. The venturi type flow limiter is analysed, its flow characteristics are delineated, physical and mathematical models defined; the detail mathematical derivation provided. The research lays down a theoretic basis for flow limiter design. The governing equations and formulas given can be directly applied to computer analysis of the flow limiter. (3 refs., 3 figs.)
Application of the load flow and random flow models for the analysis of power transmission networks
International Nuclear Information System (INIS)
Zio, Enrico; Piccinelli, Roberta; Delfanti, Maurizio; Olivieri, Valeria; Pozzi, Mauro
2012-01-01
In this paper, the classical load flow model and the random flow model are considered for analyzing the performance of power transmission networks. The analysis concerns both the system performance and the importance of the different system elements; this latter is computed by power flow and random walk betweenness centrality measures. A network system from the literature is analyzed, representing a simple electrical power transmission network. The results obtained highlight the differences between the LF “global approach” to flow dispatch and the RF local approach of randomized node-to-node load transfer. Furthermore, computationally the LF model is less consuming than the RF model but problems of convergence may arise in the LF calculation.
Analysis of IBW-driven plasma flows in tokamaks
International Nuclear Information System (INIS)
Berry, L.A.; Jaeger, E.F.; D'Azevedo, E.F.; Batchelor, D.B.; Carlsson, J.A.; Carter, M.D.; Cesario, R.
2001-01-01
Both theory and experiment have suggested that damping of Ion Bernstein Waves (IBWs) at ion cyclotron frequency harmonics could drive poloidal flows and lead to enhanced confinement for tokamaks. However, the early analyses were based on Reynolds stress closures of moment equations. More rigorous, finite Larmor radius (FLR) expansions of the radio frequency (RF) kinetic pressure for low harmonic interactions indicated that the Reynolds stress approximation was not generally valid, and resulted in significant changes in the plasma flow response. These changes were largest for wave interactions driven by finite Larmour radius effects. To provide a better assessment of higher harmonic interactions and IBW flow drive prospects, the electromagnetic (E and M) and RF kinetic force models are extended with no assumptions regarding the smallness of the ion Larmor radius. For both models, a spectral-width approximation was used to make the numerical analysis tractable. In addition, it was necessary to include the effects of plasma equilibrium gradients on the plasma conductivity and the RF-induced momentum in order to conserve energy and momentum. The analysis of high-harmonic IBW interactions for TFTR and FTU parameters indicates significant poloidal flow shears (relative to turbulence correlation times) for power levels available in present experiments. Recent advances in all-orders calculations of E and M fields in 2-D are also discussed. (author)
Kuźniar, Maciej
2018-02-15
Software-Defined Networking (SDN) and OpenFlow are actively being standardized and deployed. These deployments rely on switches that come from various vendors and differ in terms of performance and available features. Understanding these differences and performance characteristics is essential for ensuring successful and safe deployments.We propose a systematic methodology for SDN switch performance analysis and devise a series of experiments based on this methodology. The methodology relies on sending a stream of rule updates, while relying on both observing the control plane view as reported by the switch and probing the data plane state to determine switch characteristics by comparing these views. We measure, report and explain the performance characteristics of flow table updates in six hardware OpenFlow switches. Our results describing rule update rates can help SDN designers make their controllers efficient. Further, we also highlight differences between the OpenFlow specification and its implementations, that if ignored, pose a serious threat to network security and correctness.
Analysis of Employment Flow of Landscape Architecture Graduates in Agricultural Universities
Yao, Xia; He, Linchun
2012-01-01
A statistical analysis of employment flow of landscape architecture graduates was conducted on the employment data of graduates major in landscape architecture in 2008 to 2011. The employment flow of graduates was to be admitted to graduate students, industrial direction and regional distribution, etc. Then, the features of talent flow and factors…
Go-flow: a reliability analysis methodology applicable to piping system
International Nuclear Information System (INIS)
Matsuoka, T.; Kobayashi, M.
1985-01-01
Since the completion of the Reactor Safety Study, the use of probabilistic risk assessment technique has been becoming more widespread in the nuclear community. Several analytical methods are used for the reliability analysis of nuclear power plants. The GO methodology is one of these methods. Using the GO methodology, the authors performed a reliability analysis of the emergency decay heat removal system of the nuclear ship Mutsu, in order to examine its applicability to piping systems. By this analysis, the authors have found out some disadvantages of the GO methodology. In the GO methodology, the signal is on-to-off or off-to-on signal, therefore the GO finds out the time point at which the state of a system changes, and can not treat a system which state changes as off-on-off. Several computer runs are required to obtain the time dependent failure probability of a system. In order to overcome these disadvantages, the authors propose a new analytical methodology: GO-FLOW. In GO-FLOW, the modeling method (chart) and the calculation procedure are similar to those in the GO methodology, but the meaning of signal and time point, and the definitions of operators are essentially different. In the paper, the GO-FLOW methodology is explained and two examples of the analysis by GO-FLOW are given
Analysis of groundwater flow beneath ice sheets
Energy Technology Data Exchange (ETDEWEB)
Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics
2001-03-01
The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.
Analysis of groundwater flow beneath ice sheets
International Nuclear Information System (INIS)
Boulton, G. S.; Zatsepin, S.; Maillot, B.
2001-03-01
The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix
Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells
Directory of Open Access Journals (Sweden)
Dan Sui
2018-04-01
Full Text Available Having precise information of fluids' temperatures is a critical process during planning of drilling operations, especially for extended reach drilling (ERD. The objective of this paper is to develop an accurate temperature model that can precisely calculate wellbore temperature distributions. An established semi-transient temperature model for vertical wellbores is extended and improved to include deviated wellbores and more realistic scenarios using non-Newtonian fluids. The temperature model is derived based on an energy balance between the formation and the wellbore. Heat transfer is considered steady-state in the wellbore and transient in the formation through the utilization of a formation cooling effect. In this paper, the energy balance is enhanced by implementing heat generation from the drill bit friction and contact friction force caused by drillpipe rotation. A non-linear geothermal gradient as a function of wellbore inclination, is also introduced to extend the model to deviated wellbores. Additionally, the model is improved by considering temperature dependent drilling fluid transport and thermal properties. Transport properties such as viscosity and density are obtained by lab measurements, which allows for investigation of the effect of non-Newtonian fluid behavior on the heat transfer. Furthermore, applying a non-Newtonian pressure loss model enables an opportunity to evaluate the impact of viscous forces on fluid properties and thus the overall heat transfer. Results from sensitivity analysis of both drilling fluid properties and other relevant parameters will be presented. The main application area of this model is related to optimization of drilling fluid, hydraulics, and wellbore design parameters, ultimately leading to safe and cost efficient operations.
Unsaturated Zone Flow Patterns and Analysis
Energy Technology Data Exchange (ETDEWEB)
C. Ahlers
2001-10-17
This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M&O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses
Determination of conveyor-flow parameters by gamma-ray transmission analysis
International Nuclear Information System (INIS)
Fanger, H.U.; Pepelnik, R.; Michaelis, W.
1977-01-01
Dual-beam γ-ray transmission analysis (Am 241 - Cs 137 ) is successfully applied for the rapid determination of individual space concentrations in triple-component flows. The principle of the method, transmission formulae, the attainable precision and accuracy are discussed with respect to practical application. For determining drift velocities, a dual γ-ray transmission gate has been developed. The velocity is derived from the two gate responses by cross-correlation analysis. Combination of space concentration and mean drift speed data yields the mass transport per unit time. Thus the most important flow parameters can be controlled without interference with the conveyor-flow. Such data are of considerable relevance in testing and operating hydraulic and air-lift mining systems. (orig./HP) [de
Elbakhshwan, M.; Gill, S.; Weidner, R.; Ecker, L.
2017-12-01
Sequestration of CO2 in geological formations requires a deep understanding of its interaction with the cement-casing components in the depleted oil and gas wells. Portland cement is used to seal the wellbores; however it tends to interact with the CO2. Therefore it is critical to investigate the wellbore integrity over long term exposure to CO2. Studies showed that, CO2 leakage is due to the flow through the casing-cement microannulus, cement-cement fractures, or the cement-caprock interface. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using XRF, XANES and X-ray tomography techniques. In this study, a synthetic wellbore system, consisting of cement with an embedded rectangular length of steel casing that had grooves to accommodate fluid flow, was used to investigate the casing-cement microannulus through core-flood experiments. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using a sample environment designed and built for in situ X-ray diffraction in the National Synchrotron Light Source II (NSLS II). The formation of carbonate phases at cement -fluid and cement-steel/fluid interfaces will be monitored in real time. Samples may be exposed to super critical CO2 at pressures above 1100 psi and temperatures around 50°C. The reaction cell is built from hastealloy to provide corrosion resistance, while the experimental temperature and pressure are controlled with thermocouples and pressure vessel.
Analysis of water hammer in two-component two-phase flows
International Nuclear Information System (INIS)
Warde, H.; Marzouk, E.; Ibrahim, S.
1989-01-01
The water hammer phenomena caused by a sudden valve closure in air-water two-phase flows must be clarified for the safety analysis of LOCA in reactors and further for the safety of boilers, chemical plants, pipe transport of fluids such as petroleum and natural gas. In the present work water hammer phenomena caused by sudden valve closure in two-component two-phase flows are investigated theoretically and experimentally. The phenomena are more complicated than in single phase-flows due to the fact of the presence of compressible component. Basic partial differential equations based on a one-dimensional homogeneous flow model are solved by the method of characteristic. The analysis is extended to include friction in a two-phase mixture depending on the local flow pattern. The profiles of the pressure transients, the propagation velocity of pressure waves and the effect of valve closure on the transient pressure are found. Different two-phase flow pattern and frictional pressure drop correlations were used including Baker, Chesholm and Beggs and Bril correlations. The effect of the flow pattern on the characteristic of wave propagation is discussed primarily to indicate the effect of void fraction on the velocity of wave propagation and on the attenuation of pressure waves. Transient pressure in the mixture were recorded at different air void fractions, rates of uniform valve closure and liquid flow velocities with the aid of pressure transducers, transient wave form recorders interfaced with an on-line pc computer. The results are compared with computation, and good agreement was obtained within experimental accuracy
The Montaguto earth flow: nine years of observation and analysis
Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.
2016-01-01
This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.
Development of flow injection analysis technique for uranium estimation
International Nuclear Information System (INIS)
Paranjape, A.H.; Pandit, S.S.; Shinde, S.S.; Ramanujam, A.; Dhumwad, R.K.
1991-01-01
Flow injection analysis is increasingly used as a process control analytical technique in many industries. It involves injection of the sample at a constant rate into a steady flowing stream of reagent and passing this mixture through a suitable detector. This paper describes the development of such a system for the analysis of uranium (VI) and (IV) and its gross gamma activity. It is amenable for on-line or automated off-line monitoring of uranium and its activity in process streams. The sample injection port is suitable for automated injection of radioactive samples. The performance of the system has been tested for the colorimetric response of U(VI) samples at 410 nm in the range of 35 to 360mg/ml in nitric acid medium using Metrohm 662 Photometer and a recorder as detector assembly. The precision of the method is found to be better than +/- 0.5%. This technique with certain modifications is used for the analysis of U(VI) in the range 0.1-3mg/ailq. by alcoholic thiocynate procedure within +/- 1.5% precision. Similarly the precision for the determination of U(IV) in the range 15-120 mg at 650 nm is found to be better than 5%. With NaI well-type detector in the flow line, the gross gamma counting of the solution under flow is found to be within a precision of +/- 5%. (author). 4 refs., 2 figs., 1 tab
Lagrangian analysis of multiscale particulate flows with the particle finite element method
Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy
2014-05-01
We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.
Visualization and quantitative analysis of the CSF pulsatile flow with cine MR phase imaging
International Nuclear Information System (INIS)
Katayama, Shinji; Itoh, Takahiko; Kinugasa, Kazushi; Asari, Shoji; Nishimoto, Akira; Tsuchida, Shohei; Ono, Atsushi; Ikezaki, Yoshikazu; Yoshitome, Eiji.
1991-01-01
The visualization and the quantitative analysis of the CSF pulsatile flow were performed on ten healthy volunteers with cine MR phase imaging, a combination of the phase-contrast technique and the cardiac-gating technique. The velocities appropriate for the visualization and the quantitative analysis of the CSF pulsatile flow were from 6.0 cm/sec to 15.0 cm/sec. The applicability of this method for the quantitative analysis was proven with a steady-flow phantom. Phase images clearly demonstrated a to-and-fro motion of the CSF flow in the anterior subarachnoid space and in the posterior subarachnoid space. The flow pattern of CSF on healthy volunteers depends on the cardiac cycle. In the anterior subarachnoid space, the cephalic CSF flow continued until a 70-msec delay after the R-wave of the ECG and then reversed to caudal. At 130-190 msec, the caudal CSF flow reached its maximum velocity; thereafter it reversed again to cephalic. The same turn appeared following the phase, but then the amplitude decreased. The cephalic peaked at 370-430 msec, while the caudal peaked at 490-550 msec. The flow pattern of the CSF flow in the posterior subarachnoid space was almost identical to that in the anterior subarachnoid space. Cine MR phase imaging is thus useful for the visualization and the quantitative analysis of the CSF pulsative flow. (author)
Technical requirements document for the waste flow analysis
International Nuclear Information System (INIS)
Shropshire, D.E.
1996-05-01
Purpose of this Technical Requirements Document is to define the top level customer requirements for the Waste Flow Analysis task. These requirements, once agreed upon with DOE, will be used to flow down subsequent development requirements to the model specifications. This document is intended to be a ''living document'' which will be modified over the course of the execution of this work element. Initial concurrence with the technical functional requirements from Environmental Management (EM)-50 is needed before the work plan can be developed
Directory of Open Access Journals (Sweden)
Pengcheng Liu
2016-06-01
Full Text Available Skin factor is often regarded as a constant in most of the mathematical model for well test analysis in oilfields, but this is only a kind of simplified treatment with the actual skin factor changeable. This paper defined the average permeability of a damaged area as a function of time by using the definition of skin factor. Therefore a relationship between a variable skin factor and time was established. The variable skin factor derived was introduced into existing traditional models rather than using a constant skin factor, then, this newly derived mathematical model for well test analysis considering variable skin factor was solved by Laplace transform. The dimensionless wellbore pressure and its derivative changed with dimensionless time were plotted with double logarithm and these plots can be used for type curve fitting. The effects of all the parameters in the expression of variable skin factor were analyzed based on the dimensionless wellbore pressure and its derivative. Finally, actual well testing data were used to fit the type curves developed which validates the applicability of the mathematical model from Sheng-2 Block, Shengli Oilfield, China.
Slip analysis of squeezing flow using doubly stratified fluid
Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha
2018-06-01
The non-isothermal flow is modeled and explored for squeezed fluid. The influence of velocity, thermal and solutal slip effects on transport features of squeezed fluid are analyzed through Darcy porous channel when fluid is moving due to squeezing of upper plate towards the stretchable lower plate. Dual stratification effects are illustrated in transport equations. A similarity analysis is performed and reduced governing flow equations are solved using moderated and an efficient convergent approach i.e. Homotopic technique. The significant effects of physical emerging parameters on flow velocity, temperature and fluid concentration are reporting through various plots. Graphical explanations for drag force, Nusselt and Sherwood numbers are stated and examined. The results reveal that minimum velocity field occurs near the plate, whereas it increases far away from the plate for strong velocity slip parameter. Furthermore, temperature and fluid concentration significantly decreases with increased slip effects. The current analysis is applicable in some advanced technological processes and industrial fluid mechanics.
Numerical analysis of flow fields generated by accelerating flames
Energy Technology Data Exchange (ETDEWEB)
Kurylo, J.
1977-12-01
Presented here is a numerical technique for the analysis of non-steady flow fields generated by accelerating flames in gaseous media. Of particular interest in the study is the evaluation of the non-steady effects on the flow field and the possible transition of the combustion process to detonation caused by an abrupt change in the burning speed of an initially steady flame propagating in an unconfined combustible gas mixture. Optically recorded observations of accelerating flames established that the flow field can be considered to consist of non-steady flow fields associated with an assembly of interacting shock waves, contact discontinuities, deflagration and detonation fronts. In the analysis, these flow fields are treated as spatially one-dimensional, the influence of transport phenomena is considered to be negligible, and unburned and burned substances are assumed to behave as perfect gases with constant, but different, specific heats. The basis of the numerical technique is an explicit, two step, second order accurate, finite difference scheme employed to integrate the flow field equations expressed in divergence form. The burning speed, governing the motion of the deflagration, is expressed in the form of a power law dependence on pressure and temperature immediately ahead of its front. The steady wave solution is obtained by the vector polar interaction technique, that is, by determining the point of intersection between the loci of end states in the plane of the two interaction invariants, pressure and particle velocity. The technique is illustrated by a numerical example in which a steady flame experiences an abrupt change in its burning speed. Solutions correspond either to the eventual reestablishment of a steady state flow field commensurate with the burning speed or to the transition to detonation. The results are in satisfactory agreement with experimental observations.
COMPUTATIONAL ANALYSIS OF BACKWARD-FACING STEP FLOW
Directory of Open Access Journals (Sweden)
Erhan PULAT
2001-01-01
Full Text Available In this study, backward-facing step flow that are encountered in electronic systems cooling, heat exchanger design, and gas turbine cooling are investigated computationally. Steady, incompressible, and two-dimensional air flow is analyzed. Inlet velocity is assumed uniform and it is obtained from parabolic profile by using maximum velocity. In the analysis, the effects of channel expansion ratio and Reynolds number to reattachment length are investigated. In addition, pressure distribution throughout the channel length is also obtained and flow is analyzed for the Reynolds number values of 50 and 150 and channel expansion ratios of 1.5 and 2. Governing equations are solved by using Galerkin finite element mothod of ANSYS-FLOTRAN code. Obtained results are compared with the solutions of lattice BGK method that is relatively new method in fluid dynamics and other numerical and experimental results. It is concluded that reattachment length increases with increasing Reynolds number and at the same Reynolds number it decreases with increasing channel expansion ratio.
Analysis of magnetohydrodynamic flow in annular duct
International Nuclear Information System (INIS)
Yoo, G.J.; Choi, H.K.; Eun, J.J.
2004-01-01
In various types of reactors, fluid is required to be circulated inside the vessel to be an efficient coolant. For flowing metal coolant the electromagnetic pump can be an efficient device for providing the driving force. Numerical analysis is performed for magnetic and magnetohydrodynamic (MHD) flow fields in an electromagnetic pump. A finite volume method is applied to solve governing equations of magnetic field and the Navier-Stokes equations. Vector and scalar potential methods are adopted to obtain the electric and magnetic fields and the resulting Lorentz force in solving Maxwell equations. The magnetic field and velocity distributions are found to be affected by the phase of applied electric current and the magnitude of the Reynolds number. Computational results indicate that the magnetic flux distribution with changing phase of input electric current is characterized by pairs of counter-rotating closed loops. The axial velocity distributions are represented with S-type profiles for the case of the r-direction of Lorentz force dominated flows. (authors)
Geomechanical production optimization in faulted and fractured reservoirs
Heege, J.H. ter; Pizzocolo, F.; Osinga, S.; Veer, E.F. van der
2016-01-01
Faults and fractures in hydrocarbon reservoirs are key to some major production issues including (1) varying productivity of different well sections due to intersection of preferential flow paths with the wellbore, (2) varying hydrocarbon column heights in different reservoir compartments due to
ANALYSIS OF FINANCIAL FLOWS IN FOOD INDURSTRY ENTERPRISES
Iurie SPIVACENCO
2015-01-01
In the present study it was used the analysis of food industry and the financial flows generated by them. The analysis was based on information from the financial statements of these entities, and the study of evolution: food industry output, number of enterprises and employees in food industry, import and export of food production. Following the undertaken analysis are highlighted some shortcomings and made some concrete proposals need to be considered in the sustainable development of the f...
A review on the analysis and experiment of fluid flow and mixing in micro-channels
International Nuclear Information System (INIS)
Kang, Sang Mo; Suh, Yong Kweon; Jayaraj, Simon
2007-01-01
The studies with respect to micro-channels and micro-mixers are expanding in many dimensions. Most significant area of micro-mixer study is the flow analysis in various micro-channel configurations. The flow phenomena in microchannel devices are quite different from that of the macro-scale devices. An attempt is made here to review the important recent literature available in the area of micro-channel flow analysis and mixing. The topics covered include the physics of flow in micro-channels and integrated simulation of the micro-channel flow. Also, the flow control models and electro-kinetically driven micro-channel flows are dealt in detail. A survey of important numerical methods, which are currently popular for micro-channel flow analysis, is carried out. Different options for mixing in microchannels are provided, in sufficient detail
Real-Time Analysis and Forecasting of Multisite River Flow Using a Distributed Hydrological Model
Directory of Open Access Journals (Sweden)
Mingdong Sun
2014-01-01
Full Text Available A spatial distributed hydrological forecasting system was developed to promote the analysis of river flow dynamic state in a large basin. The research presented the real-time analysis and forecasting of multisite river flow in the Nakdong River Basin using a distributed hydrological model with radar rainfall forecast data. A real-time calibration algorithm of hydrological distributed model was proposed to investigate the particular relationship between the water storage and basin discharge. Demonstrate the approach of simulating multisite river flow using a distributed hydrological model couple with real-time calibration and forecasting of multisite river flow with radar rainfall forecasts data. The hydrographs and results exhibit that calibrated flow simulations are very approximate to the flow observation at all sites and the accuracy of forecasting flow is gradually decreased with lead times extending from 1 hr to 3 hrs. The flow forecasts are lower than the flow observation which is likely caused by the low estimation of radar rainfall forecasts. The research has well demonstrated that the distributed hydrological model is readily applicable for multisite real-time river flow analysis and forecasting in a large basin.
Control-flow analysis of function calls and returns by abstract interpretation
DEFF Research Database (Denmark)
Midtgaard, Jan; Jensen, Thomas P.
2009-01-01
We derive a control-flow analysis that approximates the interprocedural control-flow of both function calls and returns in the presence of first-class functions and tail-call optimization. In addition to an abstract environment, our analysis computes for each expression an abstract control stack......, effectively approximating where function calls return across optimized tail calls. The analysis is systematically calculated by abstract interpretation of the stack-based CaEK abstract machine of Flanagan et al. using a series of Galois connections. Abstract interpretation provides a unifying setting in which...
Analysis of Urine Flow in Three Different Ureter Models
Directory of Open Access Journals (Sweden)
Kyung-Wuk Kim
2017-01-01
Full Text Available The ureter provides a way for urine to flow from the kidney to the bladder. Peristalsis in the ureter partially forces the urine flow, along with hydrostatic pressure. Ureteral diseases and a double J stent, which is commonly inserted in a ureteral stenosis or occlusion, disturb normal peristalsis. Ineffective or no peristalsis could make the contour of the ureter a tube, a funnel, or a combination of the two. In this study, we investigated urine flow in the abnormal situation. We made three different, curved tubular, funnel-shaped, and undulated ureter models that were based on human anatomy. A numerical analysis of the urine flow rate and pattern in the ureter was performed for a combination of the three different ureters, with and without a ureteral stenosis and with four different types of double J stents. The three ureters showed a difference in urine flow rate and pattern. Luminal flow rate was affected by ureter shape. The side holes of a double J stent played a different role in detour, which depended on ureter geometry.
Complex analysis with applications to flows and fields
Braga da Costa Campos, Luis Manuel
2012-01-01
Complex Analysis with Applications to Flows and Fields presents the theory of functions of a complex variable, from the complex plane to the calculus of residues to power series to conformal mapping. The book explores numerous physical and engineering applications concerning potential flows, the gravity field, electro- and magnetostatics, steady heat conduction, and other problems. It provides the mathematical results to sufficiently justify the solution of these problems, eliminating the need to consult external references.The book is conveniently divided into four parts. In each part, the ma
Development of a detailed core flow analysis code for prismatic fuel reactors
International Nuclear Information System (INIS)
Bennett, R.G.
1990-01-01
The development of a computer code for the analysis of the detailed flow of helium in prismatic fuel reactors is reported. The code, called BYPASS, solves, a finite difference control volume formulation of the compressible, steady state fluid flow in highly cross-connected flow paths typical of the Modular High-Temperature Gas Cooled Reactor (MHTGR). The discretization of the flow in a core region typically considers the main coolant flow paths, the bypass gap flow paths, and the crossflow connections between them. 16 refs., 5 figs
Numerical analysis of exhaust jet secondary combustion in hypersonic flow field
Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han
2018-05-01
The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.
Zemlyanaya, N. V.; Gulyakin, A. V.
2017-11-01
The uniformity of flow distribution in perforated manifolds is a relevant task. The efficiency of water supply, sewerage and perflation systems is determined by hydraulics of the flow with a variable mass. The extensive study of versatile available information showed that achieving a uniform flow distribution through all of the outlets is almost impossible. The analysis of the studies conducted by other authors and our numerical experiments performed with the help of the software package ANSYS 16.1 were made in this work. The results allowed us to formulate the main causes of non-uniform flow distribution. We decided to suggest a hypothesis to explain the static pressure rise problem at the end of a perforated manifold.
Data-flow Analysis of Programs with Associative Arrays
Directory of Open Access Journals (Sweden)
David Hauzar
2014-05-01
Full Text Available Dynamic programming languages, such as PHP, JavaScript, and Python, provide built-in data structures including associative arrays and objects with similar semantics—object properties can be created at run-time and accessed via arbitrary expressions. While a high level of security and safety of applications written in these languages can be of a particular importance (consider a web application storing sensitive data and providing its functionality worldwide, dynamic data structures pose significant challenges for data-flow analysis making traditional static verification methods both unsound and imprecise. In this paper, we propose a sound and precise approach for value and points-to analysis of programs with associative arrays-like data structures, upon which data-flow analyses can be built. We implemented our approach in a web-application domain—in an analyzer of PHP code.
Development and evaluation of a meter for measuring return line fluid flow rates during drilling
Energy Technology Data Exchange (ETDEWEB)
Loeppke, G.E.; Schafer, D.M.; Glowka, D.A.; Scott, D.D.; Wernig, M.D. (Sandia National Labs., Albuquerque, NM (United States)); Wright, E.K. (Ktech Corp., Albuquerque, NM (United States))
1992-06-01
The most costly problem routinely encountered in geothermal drilling is lost circulation, which occurs when drilling fluid is lost to the formation rather than circulating back to the surface. The successful and economical treatment of lost circulation requires the accurate measurement of drilling fluid flow rate both into and out of the well. This report documents the development of a meter for measuring drilling fluid outflow rates in the return line of a drilling rig. The meter employs a rolling counterbalanced float that rides on the surface of the fluid in the return line. The angle of the float pivot arm is sensed with a pendulum potentiometer, and the height of the float is calculated from this measurement. The float height is closely related to the fluid height and, therefore, the flow rate in the line. The prototype rolling float meter was extensively tested under laboratory conditions in the Wellbore Hydraulics Flow Facility; results from these tests were used in the design of the field prototype rolling float meter. The field prototype meter was tested under actual drilling conditions in August and September 1991 at the Long Valley Exploratory Well near Mammoth Lakes, Ca. In addition, the performance of several other commercially available inflow and outflow meters was evaluated in the field. The tested inflow meters included conventional pump stroke counters, rotary pump speed counters, magnetic flowmeters, and an ultrasonic Doppler flowmeter. On the return flow line, a standard paddlemeter, an acoustic level meter, and the prototype rolling float meter were evaluated for measuring drilling fluid outflow rates.
Flow analysis of an innovative compact heat exchanger channel geometry
International Nuclear Information System (INIS)
Vitillo, F.; Cachon, L.; Reulet, F.; Millan, P.
2016-01-01
Highlights: • An innovative compact heat transfer technology is proposed. • Experimental measurements are shown to validate the CFD model. • CFD simulations show various flow mechanisms. • Flow analysis is performed to study physical phenomena enhancing heat transfer. - Abstract: In the framework of CEA R&D program to develop an industrial prototype of sodium-cooled fast reactor named ASTRID, the present work aims to propose an innovative compact heat exchanger technology to provide solid technological basis for the utilization of a Brayton gas-power conversion system, in order to avoid the energetic sodium–water interaction if a traditional Rankine cycle was used. The aim of the present work is to propose an innovative compact heat exchanger channel geometry to potentially enhance heat transfer in such components. Hence, before studying the innovative channel performance, a solid experimental and numerical database is necessary to perform a preliminary thermal–hydraulic analysis. To do that, two experimental test sections are used: a Laser Doppler Velocimetry (LDV) test section and a Particle Image Velocimetry (PIV) test section. The acquired experimental database is used to validate the Anisotropic Shear Stress Transport (ASST) turbulence model. Results show a good agreement between LDV, PIV and ASST data for the pure aerodynamic flow. Once validated the numerical model, the innovative channel flow analysis is performed. Principal and secondary flow has been analyzed, showing a high swirling flow in the bend region and demonstrating that mixing actually occurs in the mixing zone. This work has to be considered as a step forward the preposition of a reliable high-performance component for application to ASTRID reactor as well as to any other industrial power plant dealing needing compact heat exchangers.
OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media.
Wu, Yingcai; Liu, Shixia; Yan, Kai; Liu, Mengchen; Wu, Fangzhao
2014-12-01
It is important for many different applications such as government and business intelligence to analyze and explore the diffusion of public opinions on social media. However, the rapid propagation and great diversity of public opinions on social media pose great challenges to effective analysis of opinion diffusion. In this paper, we introduce a visual analysis system called OpinionFlow to empower analysts to detect opinion propagation patterns and glean insights. Inspired by the information diffusion model and the theory of selective exposure, we develop an opinion diffusion model to approximate opinion propagation among Twitter users. Accordingly, we design an opinion flow visualization that combines a Sankey graph with a tailored density map in one view to visually convey diffusion of opinions among many users. A stacked tree is used to allow analysts to select topics of interest at different levels. The stacked tree is synchronized with the opinion flow visualization to help users examine and compare diffusion patterns across topics. Experiments and case studies on Twitter data demonstrate the effectiveness and usability of OpinionFlow.
Analysis of flow induced vibration in heat exchangers
International Nuclear Information System (INIS)
Beek, A.W. van
1977-01-01
A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)
Analysis of flow induced vibration in heat exchangers
Energy Technology Data Exchange (ETDEWEB)
Beek, A.W. van [Institute for Mechanical Constructions TNO, Delft (Netherlands)
1977-12-01
A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)
SINDA/SINFLO computer routine, volume 1, revision A. [for fluid flow system analysis
Oren, J. A.; Williams, D. R.
1975-01-01
The SINFLO package was developed to modify the SINDA preprocessor to accept and store the input data for fluid flow systems analysis and adding the FLOSOL user subroutine to perform the flow solution. This reduced and simplified the user input required for analysis of flow problems. A temperature calculation method, the flow-hybrid method which was developed in previous VSD thermal simulator routines, was incorporated for calculating fluid temperatures. The calculation method accuracy was improved by using fluid enthalpy rather than specific heat for the convective term of the fluid temperature equation. Subroutines and data input requirements are described along with user subroutines, flow data storage, and usage of the plot program.
Blood flow analysis with considering nanofluid effects in vertical channel
Noreen, S.; Rashidi, M. M.; Qasim, M.
2017-06-01
Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.
Voltage stability analysis using a modified continuation load flow ...
African Journals Online (AJOL)
This paper addresses the rising problem of identifying the voltage stability limits of load buses in a power system and how to optimally place capacitor banks for voltage stability improvement. This paper uses the concept of the continuation power flow analysis used in voltage stability analysis. It uses the modified ...
Mathematical annuity models application in cash flow analysis ...
African Journals Online (AJOL)
Mathematical annuity models application in cash flow analysis. ... We also compare the cost efficiency between Amortisation and Sinking fund loan repayment as prevalent in financial institutions. Keywords: Annuity, Amortisation, Sinking Fund, Present and Future Value Annuity, Maturity date and Redemption value.
Discretizations in isogeometric analysis of Navier-Stokes flow
DEFF Research Database (Denmark)
Nielsen, Peter Nørtoft; Gersborg, Allan Roulund; Gravesen, Jens
2011-01-01
This paper deals with isogeometric analysis of 2-dimensional, steady state, incompressible Navier-Stokes flow subjected to Dirichlet boundary conditions. We present a detailed description of the numerical method used to solve the boundary value problem. Numerical inf-sup stability tests...
Hangx, Suzanne|info:eu-repo/dai/nl/30483579X; van der Linden, A.; Marcelis, F.; Bauer, A.
2013-01-01
Geological storage of CO2 in clastic reservoirs is expected to have a variety of coupled chemical-mechanical effects, which may damage the overlying caprock and/or the near-wellbore area. We performed conventional triaxial creep experiments, combined with fluid flow-through experiments (brine and
The Flow of International Students from a Macro Perspective: A Network Analysis
Barnett, George A.; Lee, Moosung; Jiang, Ke; Park, Han Woo
2016-01-01
This paper provides a network analysis of the international flow of students among 210 countries and the factors determining the structure of this flow. Among these factors, bilateral hyperlink connections between countries and the number of telephone minutes (communication variables) are the most important predictors of the flow's structure,…
Expansion of the Darcy-Weisbach Relation for Porous Flow Analysis
International Nuclear Information System (INIS)
Shin, Chang Hoon; Park, Warn Gyu
2017-01-01
This study started to deduce a permeability relationship that can consider the geometric features of various porous media under different flow regimes. With reference to the previous works of Kozeny and Carman, the conventional Darcy-Weisbach relation (Darcy's friction flow equation) was reviewed and expanded for porous flow analysis. Based on the capillary model, this relation was transformed to the friction equivalent permeability (FEP) definition. The validity of the FEP definition was confirmed by means of comparison with the Kozeny-Carman equation. Hereby, it was shown that the FEP definition is the generalized form of the Kozeny-Carman equation, which is confined to laminar flow through a circular capillary. In conclusion, the FEP definition as a new permeability estimation method was successfully developed by expanding the Darcy-Weisbach relation for porous flow analyses.
Expansion of the Darcy-Weisbach Relation for Porous Flow Analysis
Energy Technology Data Exchange (ETDEWEB)
Shin, Chang Hoon [Korea Gas Corporation (KOGAS), Daegu (Korea, Republic of); Park, Warn Gyu [Pusan Nat’l Univ., Busan (Korea, Republic of)
2017-04-15
This study started to deduce a permeability relationship that can consider the geometric features of various porous media under different flow regimes. With reference to the previous works of Kozeny and Carman, the conventional Darcy-Weisbach relation (Darcy's friction flow equation) was reviewed and expanded for porous flow analysis. Based on the capillary model, this relation was transformed to the friction equivalent permeability (FEP) definition. The validity of the FEP definition was confirmed by means of comparison with the Kozeny-Carman equation. Hereby, it was shown that the FEP definition is the generalized form of the Kozeny-Carman equation, which is confined to laminar flow through a circular capillary. In conclusion, the FEP definition as a new permeability estimation method was successfully developed by expanding the Darcy-Weisbach relation for porous flow analyses.
Development and Application of a Rubric for Analysis of Novice Students' Laboratory Flow Diagrams
Davidowitz, Bette; Rollnick, Marissa; Fakudze, Cynthia
2005-01-01
The purpose of this study was to develop and apply a scheme for the analysis of flow diagrams. The flow diagrams in question are a schematic representation of written instructions that require students to process the text of their practical manual. It was hoped that an analysis of the flow diagrams would provide insight into students'…
Hydrodynamic analysis and simulation of a flow cell ammonia electrolyzer
International Nuclear Information System (INIS)
Diaz, Luis A.; Botte, Gerardine G.
2015-01-01
Highlights: • NH_3 electrooxidation mechanism was validated in a bench scale electrolyzer. • All kinetic parameters for NH_3 electro-oxidation were calculated and verified. • Hydrodynamic behavior of the NH_3 electrolyzer was properly described as a CSTR. • CSTR model was successfully applied to simulate a flow ammonia electrolyzer. - Abstract: The hydrodynamic analysis and simulation of a non-ideal single pass flow cell alkaline ammonia electrolyzer was performed after the scale-up of a well-characterized deposited polycrystalline Pt on Ni anode. The hydrodynamic analysis was performed using the residence time distribution (RTD) test. The results of the hydrodynamic investigation provide additional insights for the kinetic analysis of the ammonia electrooxidation reaction on polycrystalline Pt electrocatalysts -which are typically obtained under controlled flow regime, e.g., rotating disk electrode- by including the flow non-uniformity present in the electrolyzer. Based on the RTD function, the ammonia electrolyzer performance was simulated as a non-steady stirred tank reactor (CSTR) and the unknown kinetic parameters were obtained by fitting the simulation results with an experimental current profile, obtaining an adequate prediction of the ammonia conversion. This simplified approach for the simulation of the ammonia electrolyzer could be implemented in process simulation packages and could be used for the design and scale-up of the process for hydrogen production and wastewater remediation.
Linear stability analysis of laminar flow near a stagnation point in the slip flow regime
Essaghir, E.; Oubarra, A.; Lahjomri, J.
2017-12-01
The aim of the present contribution is to analyze the effect of slip parameter on the stability of a laminar incompressible flow near a stagnation point in the slip flow regime. The analysis is based on the traditional normal mode approach and assumes parallel flow approximation. The Orr-Sommerfeld equation that governs the infinitesimal disturbance of stream function imposed to the steady main flow, which is an exact solution of the Navier-Stokes equation satisfying slip boundary conditions, is obtained by using the powerful spectral Chebyshev collocation method. The results of the effect of slip parameter K on the hydrodynamic characteristics of the base flow, namely the velocity profile, the shear stress profile, the boundary layer, displacement and momentum thicknesses are illustrated and discussed. The numerical data for these characteristics, as well as those of the eigenvalues and the corresponding wave numbers recover the results of the special case of no-slip boundary conditions. They are found to be in good agreement with previous numerical calculations. The effects of slip parameter on the neutral curves of stability, for two-dimensional disturbances in the Reynolds-wave number plane, are then obtained for the first time in the slip flow regime for stagnation point flow. Furthermore, the evolution of the critical Reynolds number against the slip parameter is established. The results show that the critical Reynolds number for instability is significantly increased with the slip parameter and the flow turn out to be more stable when the effect of rarefaction becomes important.
Extended forward sensitivity analysis of one-dimensional isothermal flow
International Nuclear Information System (INIS)
Johnson, M.; Zhao, H.
2013-01-01
Sensitivity analysis and uncertainty quantification is an important part of nuclear safety analysis. In this work, forward sensitivity analysis is used to compute solution sensitivities on 1-D fluid flow equations typical of those found in system level codes. Time step sensitivity analysis is included as a method for determining the accumulated error from time discretization. The ability to quantify numerical error arising from the time discretization is a unique and important feature of this method. By knowing the relative sensitivity of time step with other physical parameters, the simulation is allowed to run at optimized time steps without affecting the confidence of the physical parameter sensitivity results. The time step forward sensitivity analysis method can also replace the traditional time step convergence studies that are a key part of code verification with much less computational cost. One well-defined benchmark problem with manufactured solutions is utilized to verify the method; another test isothermal flow problem is used to demonstrate the extended forward sensitivity analysis process. Through these sample problems, the paper shows the feasibility and potential of using the forward sensitivity analysis method to quantify uncertainty in input parameters and time step size for a 1-D system-level thermal-hydraulic safety code. (authors)
FLOW TESTING AND ANALYSIS OF THE FSP-1 EXPERIMENT
Energy Technology Data Exchange (ETDEWEB)
Hawkes, Grant L.; Jones, Warren F.; Marcum, Wade; Weiss, Aaron; Howard, Trevor
2017-06-01
The U.S. High Performance Research Reactor Conversions fuel development team is focused on developing and qualifying the uranium-molybdenum (U-Mo) alloy monolithic fuel to support conversion of domestic research reactors to low enriched uranium. Several previous irradiations have demonstrated the favorable behavior of the monolithic fuel. The Full Scale Plate 1 (FSP-1) fuel plate experiment will be irradiated in the northeast (NE) flux trap of the Advanced Test Reactor (ATR). This fueled experiment contains six aluminum-clad fuel plates consisting of monolithic U-Mo fuel meat. Flow testing experimentation and hydraulic analysis have been performed on the FSP-1 experiment to be irradiated in the ATR at the Idaho National Laboratory (INL). A flow test experiment mockup of the FSP-1 experiment was completed at Oregon State University. Results of several flow test experiments are compared with analyses. This paper reports and shows hydraulic analyses are nearly identical to the flow test results. A water velocity of 14.0 meters per second is targeted between the fuel plates. Comparisons between FSP-1 measurements and this target will be discussed. This flow rate dominates the flow characteristics of the experiment and model. Separate branch flows have minimal effect on the overall experiment. A square flow orifice was placed to control the flowrate through the experiment. Four different orifices were tested. A flow versus delta P curve for each orifice is reported herein. Fuel plates with depleted uranium in the fuel meat zone were used in one of the flow tests. This test was performed to evaluate flow test vibration with actual fuel meat densities and reported herein. Fuel plate deformation tests were also performed and reported.
Stability Analysis of Reactive Multiphase Slug Flows in Microchannels
Directory of Open Access Journals (Sweden)
Alejandro A. Munera Parra
2014-05-01
Full Text Available Conducting multiphase reactions in micro-reactors is a promising strategy for intensifying chemical and biochemical processes. A major unresolved challenge is to exploit the considerable benefits offered by micro-scale operation for industrial scale throughputs by numbering-up whilst retaining the underlying advantageous flow characteristics of the single channel system in multiple parallel channels. Fabrication and installation tolerances in the individual micro-channels result in different pressure losses and, thus, a fluid maldistribution. In this work, an additional source of maldistribution, namely the flow multiplicities, which can arise in a multiphase reactive or extractive flow in otherwise identical micro-channels, was investigated. A detailed experimental and theoretical analysis of the flow stability with and without reaction for both gas-liquid and liquid-liquid slug flow has been developed. The model has been validated using the extraction of acetic acid from n-heptane with the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate. The results clearly demonstrate that the coupling between flow structure, the extent of reaction/extraction and pressure drop can result in multiple operating states, thus, necessitating an active measurement and control concept to ensure uniform behavior and optimal performance.
Analysis on flow characteristic of nuclear heating reactor
International Nuclear Information System (INIS)
Jiang Shengyao; Wu Xinxin
1997-06-01
The experiment was carried out on the test loop HRTL-5, which simulates the geometry and system design of a 5 MW Nuclear heating reactor. The analysis was based on a one-dimensional two-phase flow drift model with conservation equations for mass, steam mass, energy and momentum. Clausius-Clapeyron equation was used for the calculation of flashing front in the riser. A set of ordinary equation, which describes the behavior of two-phase flow in the natural circulation system, was derived through integration of the above conservation equations in subcooled boiling region, bulk boiling region in the heated section and in the riser. The method of time-domain was used for the calculation. Both static and dynamic results are presented. System pressure, inlet subcooling and heat flux are varied as input parameters. The results show that, firstly, subcooled boiling in the heated section and void flashing in the riser have significant influence on the distribution of the void fraction, mass flow rate and stability of the system, especially at lower pressure, secondly, in a wide range of two-phase flow conditions, only subcooled boiling occurs in the heated section. For the designed two-phase regime operation of the 5 MW nuclear heating reactor, the temperature at the core exit has not reaches its saturation value. Thirdly, the mechanism of two-phase flow oscillation, namely, 'zero-pressure-drop', is described. In the wide range of inlet subcooling (0 K<ΔT<28 K) there exists three regions for system flow condition, namely, (1) stable two-phase flow, (2) bulk and subcooled boiling unstable flow, (3) subcooled boiling and single phase stable flow. The response of mass flow rate, after a small disturbance in the heat flux, is showed in the above inlet subcooling range, and based on it the instability map of the system is given through experiment and calculation. (3 refs., 9 figs.)
Cash-Flow Analysis Base of the Company's Performance Evaluation
Radu Riana Iren; Mihalcea Lucean; Negoescu Gheorghe
2013-01-01
Analyses based on the study of financial flows allow coherent merge to study the financial equilibrium of the firm's performance. If static analysis to assess the financial imbalance at some point, but does not explain its evolution, in contrast, dynamic analysis highlights the evolution of financial imbalance, but does not indicate the extent of it. It follows that the two kinds of analysis are complementary and should be pursued simultaneously. Dynamic analysis is based on the concept of st...
User-friendly Tool for Power Flow Analysis and Distributed ...
African Journals Online (AJOL)
Akorede
AKOREDE et al: TOOL FOR POWER FLOW ANALYSIS AND DISTRIBUTED GENERATION OPTIMISATION. 23 ... greenhouse gas emissions and the current deregulation of electric energy ..... Visual composition and temporal behaviour of GUI.
Methods of measurement signal acquisition from the rotational flow meter for frequency analysis
Directory of Open Access Journals (Sweden)
Świsulski Dariusz
2017-01-01
Full Text Available One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.
Experimental and computational analysis of pressure response in a multiphase flow loop
Morshed, Munzarin; Amin, Al; Rahman, Mohammad Azizur; Imtiaz, Syed
2016-07-01
The characteristics of multiphase fluid flow in pipes are useful to understand fluid mechanics encountered in the oil and gas industries. In the present day oil and gas exploration is successively inducing subsea operation in the deep sea and arctic condition. During the transport of petroleum products, understanding the fluid dynamics inside the pipe network is important for flow assurance. In this case the information regarding static and dynamic pressure response, pressure loss, optimum flow rate, pipe diameter etc. are the important parameter for flow assurance. The principal aim of this research is to represents computational analysis and experimental analysis of multi-phase (L/G) in a pipe network. This computational study considers a two-phase fluid flow through a horizontal flow loop with at different Reynolds number in order to determine the pressure distribution, frictional pressure loss profiles by volume of fluid (VOF) method. However, numerical simulations are validated with the experimental data. The experiment is conducted in 76.20 mm ID transparent circular pipe using water and air in the flow loop. Static pressure transducers are used to measure local pressure response in multiphase pipeline.
4D-MR flow analysis in patients after repair for tetralogy of Fallot
International Nuclear Information System (INIS)
Geiger, J.; Markl, M.; Jung, B.; Langer, M.; Grohmann, J.; Stiller, B.; Arnold, R.
2011-01-01
Comprehensive analysis of haemodynamics by 3D flow visualisation and retrospective flow quantification in patients after repair of tetralogy of Fallot (TOF). Time-resolved flow-sensitive 4D MRI (spatial resolution ∝ 2.5 mm, temporal resolution = 38.4 ms) was acquired in ten patients after repair of TOF and in four healthy controls. Data analysis included the evaluation of haemodynamics in the aorta, the pulmonary trunk (TP) and left (lPA) and right (rPA) pulmonary arteries by 3D blood flow visualisation using particle traces, and quantitative measurements of flow velocity. 3D visualisation of whole heart haemodynamics provided a comprehensive overview on flow pattern changes in TOF patients, mainly alterations in flow velocity, retrograde flow and pathological vortices. There was consistently higher blood flow in the rPA of the patients (rPA/lPA flow ratio: 2.6 ± 2.5 vs. 1.1 ± 0.1 in controls). Systolic peak velocity in the TP was higher in patients (1.9 m/s ± 0.7 m/s) than controls (0.9 m/s ± 0.1 m/s). 4D flow-sensitive MRI permits the comprehensive evaluation of blood flow characteristics in patients after repair of TOF. Altered flow patterns for different surgical techniques in the small patient cohort may indicate its value for patient monitoring and potentially identifying optimal surgical strategies. (orig.)
4D-MR flow analysis in patients after repair for tetralogy of Fallot
Energy Technology Data Exchange (ETDEWEB)
Geiger, J.; Markl, M.; Jung, B.; Langer, M. [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Grohmann, J.; Stiller, B.; Arnold, R. [University Hospital Freiburg, Department of Congenital Heart Disease and Pediatric Cardiology, Freiburg (Germany)
2011-08-15
Comprehensive analysis of haemodynamics by 3D flow visualisation and retrospective flow quantification in patients after repair of tetralogy of Fallot (TOF). Time-resolved flow-sensitive 4D MRI (spatial resolution {proportional_to} 2.5 mm, temporal resolution = 38.4 ms) was acquired in ten patients after repair of TOF and in four healthy controls. Data analysis included the evaluation of haemodynamics in the aorta, the pulmonary trunk (TP) and left (lPA) and right (rPA) pulmonary arteries by 3D blood flow visualisation using particle traces, and quantitative measurements of flow velocity. 3D visualisation of whole heart haemodynamics provided a comprehensive overview on flow pattern changes in TOF patients, mainly alterations in flow velocity, retrograde flow and pathological vortices. There was consistently higher blood flow in the rPA of the patients (rPA/lPA flow ratio: 2.6 {+-} 2.5 vs. 1.1 {+-} 0.1 in controls). Systolic peak velocity in the TP was higher in patients (1.9 m/s {+-} 0.7 m/s) than controls (0.9 m/s {+-} 0.1 m/s). 4D flow-sensitive MRI permits the comprehensive evaluation of blood flow characteristics in patients after repair of TOF. Altered flow patterns for different surgical techniques in the small patient cohort may indicate its value for patient monitoring and potentially identifying optimal surgical strategies. (orig.)
Dual Solutions for Nonlinear Flow Using Lie Group Analysis.
Directory of Open Access Journals (Sweden)
Muhammad Awais
Full Text Available `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD flow of an upper-convected Maxwell (UCM fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered.
Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko
2017-01-01
Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.
Groen, J.S.
2004-01-01
In this project a detailed experimental analysis was performed of the dynamic flow field in bubbly flows, with the purpose of determining local hydrodynamics and scale effects. Measurements were done in gas-liquid systems (air-water bubble columns) and in gas-solid systems (air-sand bubbing
Flow distribution analysis on the cooling tube network of ITER thermal shield
International Nuclear Information System (INIS)
Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun; Kang, Dong Kwon; Kang, Kyoung-O; Ahn, Hee Jae; Lee, Hyeon Gon
2014-01-01
Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube network for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly
Numerical Analysis of Flow Field in Generator End-Winding Region
Directory of Open Access Journals (Sweden)
Wei Tong
2008-01-01
Full Text Available Cooling in an end-winding region of a high-powered, large-sized generator still remains a challenge today because of a number of factors: a larger number of parts/components with irregular geometries, complexity in cooling flow paths, flow splitting and mixing, and interactions between rotor-induced rotating flows and nonrotating flows from stationary sections. One of the key challenges is to model cooling flows passing through armature bars, which are made up of bundles of strands of insulated copper wires and are bent oppositely to cross each other. This work succeeded in modeling a complex generator end-winding region with great efforts to simplify the model by treating the armature bar region as a porous medium. The flow and pressure fields at the end-winding region were investigated numerically using an axial symmetric computational fluid dynamics (CFD model. Based on the analysis, the cooling flow rate at each flow branch (rotor-stator gap, rotor subslot, outside space block, and small ventilation holes to the heat exchanger was determined, and the high-pressure gradient zones were identified. The CFD results have been successfully used to optimize the flow path configuration for improving the generator operation performance, and the control of the cooling flow, as well as minimizing windage losses and flow-introduced noises.
Load Flow Analysis of a 15Mva Injection Substation | Oshevire ...
African Journals Online (AJOL)
This load flow helps to determine the state of the power system for a given load and generation distribution. This paper presents the computer aided power flow analysis of the existing Otovwodo33/11kV distribution network using the ETAP 7.0 software. The result showed that out of 91load feeders of which 6 is out of service, ...
Correlation dimension estimate and its potential use in analysis of gas-solid flows
DEFF Research Database (Denmark)
Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen
2005-01-01
Gas-solid flows are nonlinear systems. Therefore state-space analysis, a tool developed within the framework of nonlinear dynamics, could provide more useful insights into complex gas-solid flows. One of the positive aspects of state-space analysis is that the major properties of a system can be ...
Oscillatory flow at the end of parallel-plate stacks: phenomenological and similarity analysis
International Nuclear Information System (INIS)
Mao Xiaoan; Jaworski, Artur J
2010-01-01
This paper addresses the physics of the oscillatory flow in the vicinity of a series of parallel plates forming geometrically identical channels. This type of flow is particularly relevant to thermoacoustic engines and refrigerators, where a reciprocating flow is responsible for the desirable energy transfer, but it is also of interest to general fluid mechanics of oscillatory flows past bluff bodies. In this paper, the physics of an acoustically induced flow past a series of plates in an isothermal condition is studied in detail using the data provided by PIV imaging. Particular attention is given to the analysis of the wake flow during the ejection part of the flow cycle, where either closed recirculating vortices or alternating vortex shedding can be observed. This is followed by a similarity analysis of the governing Navier-Stokes equations in order to derive the similarity criteria governing the wake flow behaviour. To this end, similarity numbers including two types of Reynolds number, the Keulegan-Carpenter number and a non-dimensional stack configuration parameter, d/h, are considered and their influence on the phenomena are discussed.
Kinetic analysis of thermally relativistic flow with dissipation
International Nuclear Information System (INIS)
Yano, Ryosuke; Suzuki, Kojiro
2011-01-01
Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.
Frequency prediction by linear stability analysis around mean flow
Bengana, Yacine; Tuckerman, Laurette
2017-11-01
The frequency of certain limit cycles resulting from a Hopf bifurcation, such as the von Karman vortex street, can be predicted by linear stability analysis around their mean flows. Barkley (2006) has shown this to yield an eigenvalue whose real part is zero and whose imaginary part matches the nonlinear frequency. This property was named RZIF by Turton et al. (2015); moreover they found that the traveling waves (TW) of thermosolutal convection have the RZIF property. They explained this as a consequence of the fact that the temporal Fourier spectrum is dominated by the mean flow and first harmonic. We could therefore consider that only the first mode is important in the saturation of the mean flow as presented in the Self-Consistent Model (SCM) of Mantic-Lugo et al. (2014). We have implemented a full Newton's method to solve the SCM for thermosolutal convection. We show that while the RZIF property is satisfied far from the threshold, the SCM model reproduces the exact frequency only very close to the threshold. Thus, the nonlinear interaction of only the first mode with itself is insufficiently accurate to estimate the mean flow. Our next step will be to take into account higher harmonics and to apply this analysis to the standing waves, for which RZIF does not hold.
Uncertainty analysis of power monitoring transit time ultrasonic flow meters
International Nuclear Information System (INIS)
Orosz, A.; Miller, D. W.; Christensen, R. N.; Arndt, S.
2006-01-01
A general uncertainty analysis is applied to chordal, transit time ultrasonic flow meters that are used in nuclear power plant feedwater loops. This investigation focuses on relationships between the major parameters of the flow measurement. For this study, mass flow rate is divided into three components, profile factor, density, and a form of volumetric flow rate. All system parameters are used to calculate values for these three components. Uncertainty is analyzed using a perturbation method. Sensitivity coefficients for major system parameters are shown, and these coefficients are applicable to a range of ultrasonic flow meters used in similar applications. Also shown is the uncertainty to be expected for density along with its relationship to other system uncertainties. One other conclusion is that pipe diameter sensitivity coefficients may be a function of the calibration technique used. (authors)
Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model
International Nuclear Information System (INIS)
Tucci, P.
2001-01-01
This Analysis/Model Report (AMR) documents an updated analysis of water-level data performed to provide the saturated-zone, site-scale flow and transport model (CRWMS M and O 2000) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for model calibration. The previous analysis was presented in ANL-NBS-HS-000034, Rev 00 ICN 01, Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model (USGS 2001). This analysis is designed to use updated water-level data as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain. The objectives of this revision are to develop computer files containing (1) water-level data within the model area (DTN: GS010908312332.002), (2) a table of known vertical head differences (DTN: GS0109083 12332.003), and (3) a potentiometric-surface map (DTN: GS010608312332.001) using an alternate concept from that presented in ANL-NBS-HS-000034, Rev 00 ICN 01 for the area north of Yucca Mountain. The updated water-level data include data obtained from the Nye County Early Warning Drilling Program (EWDP) and data from borehole USW WT-24. In addition to being utilized by the SZ site-scale flow and transport model, the water-level data and potentiometric-surface map contained within this report will be available to other government agencies and water users for ground-water management purposes. The potentiometric surface defines an upper boundary of the site-scale flow model, as well as provides information useful to estimation of the magnitude and direction of lateral ground-water flow within the flow system. Therefore, the analysis documented in this revision is important to SZ flow and transport calculations in support of total system performance assessment
Development of flow network analysis code for block type VHTR core by linear theory method
International Nuclear Information System (INIS)
Lee, J. H.; Yoon, S. J.; Park, J. W.; Park, G. C.
2012-01-01
VHTR (Very High Temperature Reactor) is high-efficiency nuclear reactor which is capable of generating hydrogen with high temperature of coolant. PMR (Prismatic Modular Reactor) type reactor consists of hexagonal prismatic fuel blocks and reflector blocks. The flow paths in the prismatic VHTR core consist of coolant holes, bypass gaps and cross gaps. Complicated flow paths are formed in the core since the coolant holes and bypass gap are connected by the cross gap. Distributed coolant was mixed in the core through the cross gap so that the flow characteristics could not be modeled as a simple parallel pipe system. It requires lot of effort and takes very long time to analyze the core flow with CFD analysis. Hence, it is important to develop the code for VHTR core flow which can predict the core flow distribution fast and accurate. In this study, steady state flow network analysis code is developed using flow network algorithm. Developed flow network analysis code was named as FLASH code and it was validated with the experimental data and CFD simulation results. (authors)
International Nuclear Information System (INIS)
Kaminaga, Masanori
1997-03-01
JRR-3 is a light water moderated and cooled, beryllium and heavy water reflected pool type research reactor using low enriched uranium (LEU) plate-type fuels. Its thermal power is 20 MW. The core conversion program from uranium-aluminum (UAl x -Al) dispersion type fuel (aluminide fuel) to uranium-silicon-aluminum (U 3 Si 2 -Al) dispersion type fuel (silicide fuel) is currently conducted at the JRR-3. This report describes about the steady-state thermal hydraulic analysis results and the flow channel blockage accident analysis result. In JRR-3, there are two operation mode. One is high power operation mode up to 20 MW, under forced convection cooling using the primary and the secondary cooling systems. The other is low power operation mode up to 200 kW, under natural circulation cooling between the reactor core and the reactor pool without the primary and the secondary cooling systems. For the analysis of the flow channel blockage accident, COOLOD code was used. On the other hand, steady-state thermal hydraulic analysis for both of the high power operation mode under forced convection cooling and low power operation under natural convection cooling, COOLOD-N2 code was used. From steady-state thermal hydraulic analysis results of both forced and natural convection cooling, fuel temperature, minimum DNBR etc. meet the design criteria and JRR-3 LEU silicide core has enough safety margin under normal operation conditions. Furthermore, flow channel blockage accident analysis results show that one channel flow blockage accident meet the safety criteria for accident conditions which have been established for JRR-3 LEU silicide core. (author)
Horizontal Air-Water Flow Analysis with Wire Mesh Sensor
International Nuclear Information System (INIS)
De Salve, M; Monni, G; Panella, B
2012-01-01
A Wire Mesh Sensor, based on the measurement of the local instantaneous conductivity of the two-phase mixture, has been used to characterize the fluid dynamics of the gas–liquid interface in a horizontal pipe flow. Experiments with a pipe of a nominal diameter of 19.5 mm and total length of 6 m, have been performed with air/water mixtures, at ambient conditions. The flow quality ranges from 0.00016 to 0.22 and the superficial velocities range from 0.1 to 10.5 m/s for air and from 0.02 to 1.7 m/s for water; the flow pattern is stratified, slug/plug and annular. A sensor (WMS200) with an inner diameter of 19.5 mm and a measuring matrix of 16×16 points equally distributed over the cross-section has been chosen for the measurements. From the analysis of the Wire Mesh Sensor digital signals the average and the local void fraction are evaluated and the flow patterns are identified with reference to space, time and flow rate boundary conditions.
Computational Analysis of the G-III Laminar Flow Glove
Malik, Mujeeb R.; Liao, Wei; Lee-Rausch, Elizabeth M.; Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan
2011-01-01
Under NASA's Environmentally Responsible Aviation Project, flight experiments are planned with the primary objective of demonstrating the Discrete Roughness Elements (DRE) technology for passive laminar flow control at chord Reynolds numbers relevant to transport aircraft. In this paper, we present a preliminary computational assessment of the Gulfstream-III (G-III) aircraft wing-glove designed to attain natural laminar flow for the leading-edge sweep angle of 34.6deg. Analysis for a flight Mach number of 0.75 shows that it should be possible to achieve natural laminar flow for twice the transition Reynolds number ever achieved at this sweep angle. However, the wing-glove needs to be redesigned to effectively demonstrate passive laminar flow control using DREs. As a by-product of the computational assessment, effect of surface curvature on stationary crossflow disturbances is found to be strongly stabilizing for the current design, and it is suggested that convex surface curvature could be used as a control parameter for natural laminar flow design, provided transition occurs via stationary crossflow disturbances.
Method of critical power prediction based on film flow model coupled with subchannel analysis
International Nuclear Information System (INIS)
Tomiyama, Akio; Yokomizo, Osamu; Yoshimoto, Yuichiro; Sugawara, Satoshi.
1988-01-01
A new method was developed to predict critical powers for a wide variety of BWR fuel bundle designs. This method couples subchannel analysis with a liquid film flow model, instead of taking the conventional way which couples subchannel analysis with critical heat flux correlations. Flow and quality distributions in a bundle are estimated by the subchannel analysis. Using these distributions, film flow rates along fuel rods are then calculated with the film flow model. Dryout is assumed to occur where one of the film flows disappears. This method is expected to give much better adaptability to variations in geometry, heat flux, flow rate and quality distributions than the conventional methods. In order to verify the method, critical power data under BWR conditions were analyzed. Measured and calculated critical powers agreed to within ±7%. Furthermore critical power data for a tight-latticed bundle obtained by LeTourneau et al. were compared with critical powers calculated by the present method and two conventional methods, CISE correlation and subchannel analysis coupled with the CISE correlation. It was confirmed that the present method can predict critical powers more accurately than the conventional methods. (author)
Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil
Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris
2016-01-01
Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.
Doppler sonography of diabetic feet: Quantitative analysis of blood flow volume
International Nuclear Information System (INIS)
Seo, Young Lan; Kim, Ho Chul; Choi, Chul Soon; Yoon, Dae Young; Han, Dae Hee; Moon, Jeung Hee; Bae, Sang Hoon
2002-01-01
To analyze Doppler sonographic findings of diabetic feet by estimating the quantitative blood flow volume and by analyzing waveform on Doppler. Doppler sonography was performed in thirty four patients (10 diabetic patients with foot ulceration, 14 diabetic patients without ulceration and 10 normal patients as the normal control group) to measure the flow volume of the arteries of the lower extremities (posterior and anterior tibial arteries, and distal femoral artery. Analysis of doppler waveforms was also done to evaluate the nature of the changed blood flow volume of diabetic patients, and the waveforms were classified into triphasic, biphasic-1, biphasic-2 and monophasic patterns. Flow volume of arteries in diabetic patients with foot ulceration was increased witha statistical significance when compared to that of diabetes patients without foot ulceration of that of normal control group (P<0.05). Analysis of Doppler waveform revealed that the frequency of biphasic-2 pattern was significantly higher in diabetic patients than in normal control group(p<0.05). Doppler sonography in diabetic feet showed increased flow volume and biphasic Doppler waveform, and these findings suggest neuropathy rather than ischemic changes in diabetic feet.
Doppler sonography of diabetic feet: Quantitative analysis of blood flow volume
Energy Technology Data Exchange (ETDEWEB)
Seo, Young Lan; Kim, Ho Chul; Choi, Chul Soon; Yoon, Dae Young; Han, Dae Hee; Moon, Jeung Hee; Bae, Sang Hoon [Hallym University College of Medicine, Seoul (Korea, Republic of)
2002-09-15
To analyze Doppler sonographic findings of diabetic feet by estimating the quantitative blood flow volume and by analyzing waveform on Doppler. Doppler sonography was performed in thirty four patients (10 diabetic patients with foot ulceration, 14 diabetic patients without ulceration and 10 normal patients as the normal control group) to measure the flow volume of the arteries of the lower extremities (posterior and anterior tibial arteries, and distal femoral artery. Analysis of doppler waveforms was also done to evaluate the nature of the changed blood flow volume of diabetic patients, and the waveforms were classified into triphasic, biphasic-1, biphasic-2 and monophasic patterns. Flow volume of arteries in diabetic patients with foot ulceration was increased witha statistical significance when compared to that of diabetes patients without foot ulceration of that of normal control group (P<0.05). Analysis of Doppler waveform revealed that the frequency of biphasic-2 pattern was significantly higher in diabetic patients than in normal control group(p<0.05). Doppler sonography in diabetic feet showed increased flow volume and biphasic Doppler waveform, and these findings suggest neuropathy rather than ischemic changes in diabetic feet.
Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes
International Nuclear Information System (INIS)
Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.
2002-01-01
A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)
Compressible turbulent flows: aspects of prediction and analysis
Energy Technology Data Exchange (ETDEWEB)
Friedrich, R. [TU Muenchen, Garching (Germany). Fachgebiet Stroemungsmechanik
2007-03-15
Compressible turbulent flows are an important element of high-speed flight. Boundary layers developing along fuselage and wings of an aircraft and along engine compressor and turbine blades are compressible and mostly turbulent. The high-speed flow around rockets and through rocket nozzles involves compressible turbulence and flow separation. Turbulent mixing and combustion in scramjet engines is another example where compressibility dominates the flow physics. Although compressible turbulent flows have attracted researchers since the fifties of the last century, they are not completely understood. Especially interactions between compressible turbulence and combustion lead to challenging, yet unsolved problems. Direct numerical simulation (DNS) and large-eddy simulation (LES) represent modern powerful research tools which allow to mimic such flows in great detail and to analyze underlying physical mechanisms, even those which cannot be accessed by the experiment. The present lecture provides a short description of these tools and some of their numerical characteristics. It then describes DNS and LES results of fully-developed channel and pipe flow and highlights effects of compressibility on the turbulence structure. The analysis of pressure fluctuations in such flows with isothermal cooled walls leads to the conclusion that the pressure-strain correlation tensor decreases in the wall layer and that the turbulence anisotropy increases, since the mean density falls off relative to the incompressible flow case. Similar increases in turbulence anisotropy due to compressibility are observed in inert and reacting temporal mixing layers. The nature of the pressure fluctuations is however two-facetted. While inert compressible mixing layers reveal wave-propagation effects in the pressure and density fluctuations, compressible reacting mixing layers seem to generate pressure fluctuations that are controlled by the time-rate of change of heat release and mean density
Alternatives to current flow cytometry data analysis for clinical and research studies.
Gondhalekar, Carmen; Rajwa, Bartek; Patsekin, Valery; Ragheb, Kathy; Sturgis, Jennifer; Robinson, J Paul
2018-02-01
Flow cytometry has well-established methods for data analysis based on traditional data collection techniques. These techniques typically involved manual insertion of tube samples into an instrument that, historically, could only measure 1-3 colors. The field has since evolved to incorporate new technologies for faster and highly automated sample preparation and data collection. For example, the use of microwell plates on benchtop instruments is now a standard on virtually every new instrument, and so users can easily accumulate multiple data sets quickly. Further, because the user must carefully define the layout of the plate, this information is already defined when considering the analytical process, expanding the opportunities for automated analysis. Advances in multi-parametric data collection, as demonstrated by the development of hyperspectral flow-cytometry, 20-40 color polychromatic flow cytometry, and mass cytometry (CyTOF), are game-changing. As data and assay complexity increase, so too does the complexity of data analysis. Complex data analysis is already a challenge to traditional flow cytometry software. New methods for reviewing large and complex data sets can provide rapid insight into processes difficult to define without more advanced analytical tools. In settings such as clinical labs where rapid and accurate data analysis is a priority, rapid, efficient and intuitive software is needed. This paper outlines opportunities for analysis of complex data sets using examples of multiplexed bead-based assays, drug screens and cell cycle analysis - any of which could become integrated into the clinical environment. Copyright © 2017. Published by Elsevier Inc.
Analysis of two-phase flow and boiling heat transfer in inclined channel of core-catcher
International Nuclear Information System (INIS)
Tahara, M.; Suzuki, Y.; Abe, N.; Kurita, T.; Hamazaki, R.; Kojima, Y.
2008-01-01
Passive Corium Cooling System (CCS) provides a function of ex-vessel debris cooling and molten core stabilization during a severe accident. CCS features inclined cooling channels arranged axi-symmetrically below the core-catcher basin. In order to estimate the coolability of the inclined cooling channel, it is indispensable to identify the flow pattern of the two-phase flow in the cooling channel. Several former studies for the two-phase flow pattern in the inclined channel are referred. Taitel and Dukler (1976) developed a prediction method of the flow pattern transition in horizontal and near horizontal tubes. Barnea et al. (1980) showed the flow pattern map of upward flow with 10 degrees inclination. Sakaguti et al. (1996) observed the two-phase flow patterns in the horizontal pipe connected with slightly upward pipe, in which the flow pattern in the pipe with a bending part was expressed by the combination of a basic flow pattern and some auxiliary flow patterns. Then we investigated these studies In order to identify the flow patterns observed in the inclined cooling channel of CCS. Furthermore we experimentally observed the flow patterns in the inclined cooling channel with various inlet conditions. As a result of the investigation and observation, typical flow patterns in the inclined cooling channel were identified. Two typical flow patterns were observed depending on the steam flow rate, one of which is 'elongated bubble 'flow, and the other is 'churn with collapsing backward and upward slug 'flow The flow and heat transfer in the inclined channel of CCS is analyzed by using a two-phase analysis code employing two-fluid model in which the constitutive equations for the two-phase flow in inclined channels are incorporated. That is, drift flux parameter for each of the elongated bubble flow, and the churn with collapsing backward and upward slug flow are incorporated to the two-phase analysis code, which are based on the rising velocity of the long bubble in
THEORETICAL AND EXPERIMENTAL ANALYSIS OF A CROSS-FLOW HEAT EXCHANGER
Directory of Open Access Journals (Sweden)
R. Tuğrul OĞULATA
1996-03-01
Full Text Available In this study, cross-flow plate type heat exchanger has been investigated because of its effective use in waste heat recovery systems. For this purpose, a heat regain system has been investigated and manufactured in laboratory conditions. Manufactured heat exchanger has been tested with an applicable experimental set up and temperatures, velocity of the air and the pressure losses occuring in the system have been measured and the efficiency of the system has been determined. The irreversibility of heat exchanger has been taken into consideration while the design of heat exchanger is being performed. So minimum entropy generation number has been analysied with respect to second law of thermodynamics in cross-flow heat exchanger. The minimum entropy generation number depends on parameters called optimum flow path length, dimensionless mass velocity and dimensionless heat transfer area. Variations of entropy generation number with these parameters have been analysied and introduced their graphics with their comments.
Experimental analysis of the flow near the boundary of random porous media
Wu, Zhenxing; Mirbod, Parisa
2018-04-01
The aim of this work is to experimentally examine flow over and near random porous media. Different porous materials were chosen to achieve porosity ranging from 0.95 to 0.99. In this study, we report the detailed velocity measurements of the flow over and near random porous material inside a rectangular duct using a planar particle image velocimetry (PIV) technique. By controlling the flow rate, two different Reynolds numbers were achieved. We determined the slip velocity at the interface between the porous media and free flow. Values of the slip velocity normalized either by the maximum flow velocity or by the shear rate at the interface and the screening distance K1/2 were found to depend on porosity. It was also shown that the depth of penetration inside the porous material was larger than the screening length using Brinkman's prediction. Moreover, we examined a model for the laminar coupled flow over and inside porous media and analyzed the permeability of a random porous medium. This study provided detailed analysis of flow over and at the interface of various specific random porous media using the PIV technique. This analysis has the potential to serve as a first step toward using random porous media as a new passive technique to control the flow over smooth surfaces.
Analysis and control of supersonic vortex breakdown flows
Kandil, Osama A.
1990-01-01
Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external axial-pressure gradients and swirl ratios.
Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.
2017-11-01
This paper presents the second part of a study aiming to accurately characterise a Mach 10 scramjet test flow generated using a large free-piston-driven expansion tube. Part 1 described the experimental set-up, the quasi-one-dimensional simulation of the full facility, and the hybrid analysis technique used to compute the nozzle exit test flow properties. The second stage of the hybrid analysis applies the computed 1-D shock tube flow history as an inflow to a high-fidelity two-dimensional-axisymmetric analysis of the acceleration tube. The acceleration tube exit flow history is then applied as an inflow to a further refined axisymmetric nozzle model, providing the final nozzle exit test flow properties and thereby completing the analysis. This paper presents the results of the axisymmetric analyses. These simulations are shown to closely reproduce experimentally measured shock speeds and acceleration tube static pressure histories, as well as nozzle centreline static and impact pressure histories. The hybrid scheme less successfully predicts the diameter of the core test flow; however, this property is readily measured through experimental pitot surveys. In combination, the full test flow history can be accurately determined.
Flow injection analysis: Emerging tool for laboratory automation in radiochemistry
International Nuclear Information System (INIS)
Egorov, O.; Ruzicka, J.; Grate, J.W.; Janata, J.
1996-01-01
Automation of routine and serial assays is a common practice of modern analytical laboratory, while it is virtually nonexistent in the field of radiochemistry. Flow injection analysis (FIA) is a general solution handling methodology that has been extensively used for automation of routine assays in many areas of analytical chemistry. Reproducible automated solution handling and on-line separation capabilities are among several distinctive features that make FI a very promising, yet under utilized tool for automation in analytical radiochemistry. The potential of the technique is demonstrated through the development of an automated 90 Sr analyzer and its application in the analysis of tank waste samples from the Hanford site. Sequential injection (SI), the latest generation of FIA, is used to rapidly separate 90 Sr from interfering radionuclides and deliver separated Sr zone to a flow-through liquid scintillation detector. The separation is performed on a mini column containing Sr-specific sorbent extraction material, which selectively retains Sr under acidic conditions. The 90 Sr is eluted with water, mixed with scintillation cocktail, and sent through the flow cell of a flow through counter, where 90 Sr radioactivity is detected as a transient signal. Both peak area and peak height can be used for quantification of sample radioactivity. Alternatively, stopped flow detection can be performed to improve detection precision for low activity samples. The authors current research activities are focused on expansion of radiochemical applications of FIA methodology, with an ultimate goal of creating a set of automated methods that will cover the basic needs of radiochemical analysis at the Hanford site. The results of preliminary experiments indicate that FIA is a highly suitable technique for the automation of chemically more challenging separations, such as separation of actinide elements
Vortex Analysis of Intra-Aneurismal Flow in Cerebral Aneurysms.
Sunderland, Kevin; Haferman, Christopher; Chintalapani, Gouthami; Jiang, Jingfeng
2016-01-01
This study aims to develop an alternative vortex analysis method by measuring structure ofIntracranial aneurysm (IA) flow vortexes across the cardiac cycle, to quantify temporal stability of aneurismal flow. Hemodynamics were modeled in "patient-specific" geometries, using computational fluid dynamics (CFD) simulations. Modified versions of known λ 2 and Q -criterion methods identified vortex regions; then regions were segmented out using the classical marching cube algorithm. Temporal stability was measured by the degree of vortex overlap (DVO) at each step of a cardiac cycle against a cycle-averaged vortex and by the change in number of cores over the cycle. No statistical differences exist in DVO or number of vortex cores between 5 terminal IAs and 5 sidewall IAs. No strong correlation exists between vortex core characteristics and geometric or hemodynamic characteristics of IAs. Statistical independence suggests this proposed method may provide novel IA information. However, threshold values used to determine the vortex core regions and resolution of velocity data influenced analysis outcomes and have to be addressed in future studies. In conclusions, preliminary results show that the proposed methodology may help give novel insight toward aneurismal flow characteristic and help in future risk assessment given more developments.
POD- Mapping and analysis of hydroturbine exit flow dynamics
Kjeldsen, Morten; Finstad, Pal Henrik
2012-11-01
Pairwise radial dynamic measurements of the swirling draft tube flow have been made at the 25 MW Svorka power plant in Surnadal operating at 48% load at 6 radial and 7 angular positions. The data is analyzed with traditional methods as well as with POD. The measurements were made in the turbine draft tube/exit flow in an axial measurement plane about 1200mm downstream the turbine runner. The draft tube diameter in the measurement plane is about 1300mm. The flow rate during measurements was close to 5.8m3/s. Two probes were used; both of length Le=700 mm and made of stainless steel with an outer diameter of Do=20 mm and inner diameter Di=4mm. At the end of each probe a full bridge cylindrical KULITE xcl152, 0-3.5, was mounted. 90 seconds samples at 10 kS/s were taken. The POD analysis largely follows that of Tutkun et al. (see e.g. AIAA J., 45,5,2008). The analysis shows that 26% of the pressure pulsation energy can be addressed to azimuthal mode 1. The work has been supported by Energy Norway.
Determination of pH by flow-injection analysis and by fiber-optrode analysis
International Nuclear Information System (INIS)
Pia, S.H.; Waltman, D.P.; Hillman, D.C.
1988-07-01
Two new procedures for measuring pH were developed. The first measures pH colorimetrically using a proprietary indicator-dye mixture in a flow injection analysis (FIA) procedure. The second measures pH using a fiber-optic chemical sensor (FOCS) specifically developed for pH determinations. The FOCS method measures pH by monitoring the fluorescence of a fluorescein derivative bonded to the distal end of a fiber-optic cable called an optrade. The FIA method currently has a precision and accuracy of about + or - 0.2 pH units and can measure 100 samples/hour. The FOCS method has a precision of + or - 0.05-0.20 pH units and an accuracy of + or - 0.1 to 0.6 pH units. About 10 to 60 samples can be analyzed. The characteristics of the FOCS Method will vary significantly with individual optrodes. The experimental results indicate that either flow-injection analysis or fiber optic chemical sensor analysis could form the basis for an alternative to electrometric measurement of pH in certain circumstances
Non-invasive pulmonary blood flow analysis and blood pressure mapping derived from 4D flow MRI
Delles, Michael; Rengier, Fabian; Azad, Yoo-Jin; Bodenstedt, Sebastian; von Tengg-Kobligk, Hendrik; Ley, Sebastian; Unterhinninghofen, Roland; Kauczor, Hans-Ulrich; Dillmann, Rüdiger
2015-03-01
In diagnostics and therapy control of cardiovascular diseases, detailed knowledge about the patient-specific behavior of blood flow and pressure can be essential. The only method capable of measuring complete time-resolved three-dimensional vector fields of the blood flow velocities is velocity-encoded magnetic resonance imaging (MRI), often denoted as 4D flow MRI. Furthermore, relative pressure maps can be computed from this data source, as presented by different groups in recent years. Hence, analysis of blood flow and pressure using 4D flow MRI can be a valuable technique in management of cardiovascular diseases. In order to perform these tasks, all necessary steps in the corresponding process chain can be carried out in our in-house developed software framework MEDIFRAME. In this article, we apply MEDIFRAME for a study of hemodynamics in the pulmonary arteries of five healthy volunteers. The study included measuring vector fields of blood flow velocities by phase-contrast MRI and subsequently computing relative blood pressure maps. We visualized blood flow by streamline depictions and computed characteristic values for the left and the right pulmonary artery (LPA and RPA). In all volunteers, we observed a lower amount of blood flow in the LPA compared to the RPA. Furthermore, we visualized blood pressure maps using volume rendering and generated graphs of pressure differences between the LPA, the RPA and the main pulmonary artery. In most volunteers, blood pressure was increased near to the bifurcation and in the proximal LPA, leading to higher average pressure values in the LPA compared to the RPA.
CFD analysis and flow model reduction for surfactant production in helix reactor
Nikačević, N.M.; Thielen, L.; Twerda, A.; Hof, P.M.J. van den
2014-01-01
Flow pattern analysis in a spiral Helix reactor is conducted, for the application in the commercial surfactant production. Step change response curves (SCR) were obtained from numerical tracer experiments by three-dimensional computational fluid dynamics (CFD) simulations. Non-reactive flow is
Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis
Directory of Open Access Journals (Sweden)
Fuensanta SÃƒÂ¡nchez Rojas
2006-10-01
Full Text Available Optical techniques for chemical analysis are well established and sensors based on thesetechniques are now attracting considerable attention because of their importance in applications suchas environmental monitoring, biomedical sensing, and industrial process control. On the other hand,flow injection analysis (FIA is advisable for the rapid analysis of microliter volume samples and canbe interfaced directly to the chemical process. The FIA has become a widespread automatic analyticalmethod for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, andease of assembling. In this paper, an overview of flow injection determinations by using opticalchemical sensors is provided, and instrumentation, sensor design, and applications are discussed. Thiswork summarizes the most relevant manuscripts from 1980 to date referred to analysis using opticalchemical sensors in FIA.
Hidden flows and waste processing--an analysis of illustrative futures.
Schiller, F; Raffield, T; Angus, A; Herben, M; Young, P J; Longhurst, P J; Pollard, S J T
2010-12-14
An existing materials flow model is adapted (using Excel and AMBER model platforms) to account for waste and hidden material flows within a domestic environment. Supported by national waste data, the implications of legislative change, domestic resource depletion and waste technology advances are explored. The revised methodology offers additional functionality for economic parameters that influence waste generation and disposal. We explore this accounting system under hypothetical future waste and resource management scenarios, illustrating the utility of the model. A sensitivity analysis confirms that imports, domestic extraction and their associated hidden flows impact mostly on waste generation. The model offers enhanced utility for policy and decision makers with regard to economic mass balance and strategic waste flows, and may promote further discussion about waste technology choice in the context of reducing carbon budgets.
A study of grout flow pattern analysis
International Nuclear Information System (INIS)
Lee, S. Y.; Hyun, S.
2013-01-01
A new disposal unit, designated as Salt Disposal Unit no. 6 (SDU6), is being designed for support of site accelerated closure goals and salt nuclear waste projections identified in the new Liquid Waste System plan. The unit is cylindrical disposal vault of 380 ft diameter and 43 ft in height, and it has about 30 million gallons of capacity. Primary objective was to develop the computational model and to perform the evaluations for the flow patterns of grout material in SDU6 as function of elevation of grout discharge port, and slurry rheology. A Bingham plastic model was basically used to represent the grout flow behavior. A two-phase modeling approach was taken to achieve the objective. This approach assumes that the air-grout interface determines the shape of the accumulation mound. The results of this study were used to develop the design guidelines for the discharge ports of the Saltstone feed materials in the SDU6 facility. The focusing areas of the modeling study are to estimate the domain size of the grout materials radially spread on the facility floor under the baseline modeling conditions, to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation of discharge port, discharge pipe diameter, and grout properties, and to determine the changes in grout density as it is related to grout drop height. An axi-symmetric two-phase modeling method was used for computational efficiency. Based on the nominal design and operating conditions, a transient computational approach was taken to compute flow fields mainly driven by pumping inertia and natural gravity. Detailed solution methodology and analysis results are discussed here
Comparison of MATRA-S and COBRA-SFS for Low Flow Subchannel Analysis
Energy Technology Data Exchange (ETDEWEB)
Seo, Kyong Won; Kwon, Hyuk; Kim, Seong Jin; Hwang, Dae Hyun [KAERI, Daejeon (Korea, Republic of)
2016-05-15
In this study, we compared the MATRA-S with COBRA-SFS for the PNL test because the COBRASFS is believed to be superior to MATRA-S for the low flow conditions. COBRA-SFS code was developed for subchannel analysis of spent fuel storage system based on COBRA-3C, COBRA-4I, and COBRA-WC. As the code was designed to predict temperature and flow distributions in spent fuel storage system, it can analyze thermal hydraulic fields of natural convection as well as radiation and conduction heat transfer. In the way of improving XSHCME of MATRA-S to be applicable to low flow problems, we compared MATRA-S XSCHEM and COBRA-SFS RECIRC for steady state and flow transient. Both methods use similar algorithms to solve pressure, axial flow and cross flow. MATRA-S XSCHEM predicted flow velocity profile well even negative flow in recirculation flow.
Flow induced vibration and stability analysis of multi wall carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Yun, Kyung Jae [Agency for Defense Development, Daejeon (Korea, Republic of); Choi, Jong Woon [Korean Intellectual Property Office, Daejeon (Korea, Republic of); Kim, Sung Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Song, Oh Seop [Chungnam National Univ., Daejeon (Korea, Republic of)
2012-12-15
The free vibration and flow induced flutter instability of cantilever multi wall carbon nanotubes conveying fluid are investigated and the nanotubes are modeled as thin-walled beams. The non-classical effects of the transverse shear, rotary inertia, warping inhibition, and van der Waals forces between two walls are incorporated into the structural model. The governing equations and associated boundary conditions are derived using Hamilton's principle. A numerical analysis is carried out by using the extended Galerkin method, which enables us to obtain more accurate solutions compared to the conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for a flow velocity below a certain critical value. However, beyond this critical flow velocity, flutter instability may occur. The variations in the critical flow velocity with respect to both the radius ratio and length of the carbon nanotubes are investigated and pertinent conclusions are outlined. The differences in the vibration and instability characteristics between the Timoshenko beam theory and Euler beam theory are revealed. A comparative analysis of the natural frequencies and flutter characteristics of MWCNTs and SWCNTs is also performed.
Sensitivity Analysis of Unsteady Flow Fields and Impact of Measurement Strategy
Directory of Open Access Journals (Sweden)
Takashi Misaka
2014-01-01
Full Text Available Difficulty of data assimilation arises from a large difference between the sizes of a state vector to be determined, that is, the number of spatiotemporal mesh points of a discretized numerical model and a measurement vector, that is, the amount of measurement data. Flow variables on a large number of mesh points are hardly defined by spatiotemporally limited measurements, which poses an underdetermined problem. In this study we conduct the sensitivity analysis of two- and three-dimensional vortical flow fields within a framework of data assimilation. The impact of measurement strategy, which is evaluated by the sensitivity of the 4D-Var cost function with respect to measurements, is investigated to effectively determine a flow field by limited measurements. The assimilation experiment shows that the error defined by the difference between the reference and assimilated flow fields is reduced by using the sensitivity information to locate the limited number of measurement points. To conduct data assimilation for a long time period, the 4D-Var data assimilation and the sensitivity analysis are repeated with a short assimilation window.
Pigging analysis for gas-liquid two phase flow in pipelines
International Nuclear Information System (INIS)
Kohda, K.; Suzukawa, Y.; Furukawa, H.
1988-01-01
A new method to analyze transient phenomena caused by pigging in gas-liquid two-phase flow is developed. During pigging, a pipeline is divided into three sections by two moving boundaries, namely the pig and the leading edge of the liquid slug in front of the pig. The basic equations are mass, momentum and energy conservation equations. The boundary conditions at the moving boundaries are determined from the mass conservation across the boundaries, etc. A finite difference method is used to solve the equations numerically. The method described above is also capable of analyzing transient two-phase flow caused by pressure and flow rate changes. Thus the over-all analysis of transient two-phase flow in pipelines becomes possible. A series of air-water two-phase flow pigging experiments was conducted using 105.3 mm diameter and 1436.5 m long test pipeline. The agreement between the measured and the calculated results is very good
Evaluations of the CCFL and critical flow models in TRACE for PWR LBLOCA analysis
Energy Technology Data Exchange (ETDEWEB)
Yang, Jung-Hua; Lin, Hao Tzu [National Tsing Hua Univ., HsinChu, Taiwan (China). Dept. of Engineering and System Science; Wang, Jong-Rong [Atomic Energy Council, Taoyuan County, Taiwan (China). Inst. of Nuclear Energy Research; Shih, Chunkuan [National Tsing Hua Univ., HsinChu, Taiwan (China). Inst. of Nuclear Engineering and Science
2012-12-15
This study aims to develop the Maanshan Pressurized Water Reactor (PWR) analysis model by using the TRACE (TRAC/RELAP Advanced Computational Engine) code. By analyzing the Large Break Loss of Coolant Accident (LBLOCA) sequence, the results are compared with the Maanshan Final Safety Analysis Report (FSAR) data. The critical flow and Counter Current Flow Limitation (CCFL) play an important role in the overall performance of TRACE LBLOCA prediction. Therefore, the sensitivity study on the discharge coefficients of critical flow model and CCFL modeling among different regions are also discussed. The current conclusions show that modeling CCFL in downcomer has more significant impact on the peak cladding temperature than modeling CCFL in hot-legs does. No CCFL phenomena occurred in the pressurizer surge line. The best value for the multipliers of critical flow model would be 0.5 and the TRACE could consistently predict the break flow rate in the LBLOCA analysis as shown in FSAR. (orig.)
Automated flow cytometric analysis across large numbers of samples and cell types.
Chen, Xiaoyi; Hasan, Milena; Libri, Valentina; Urrutia, Alejandra; Beitz, Benoît; Rouilly, Vincent; Duffy, Darragh; Patin, Étienne; Chalmond, Bernard; Rogge, Lars; Quintana-Murci, Lluis; Albert, Matthew L; Schwikowski, Benno
2015-04-01
Multi-parametric flow cytometry is a key technology for characterization of immune cell phenotypes. However, robust high-dimensional post-analytic strategies for automated data analysis in large numbers of donors are still lacking. Here, we report a computational pipeline, called FlowGM, which minimizes operator input, is insensitive to compensation settings, and can be adapted to different analytic panels. A Gaussian Mixture Model (GMM)-based approach was utilized for initial clustering, with the number of clusters determined using Bayesian Information Criterion. Meta-clustering in a reference donor permitted automated identification of 24 cell types across four panels. Cluster labels were integrated into FCS files, thus permitting comparisons to manual gating. Cell numbers and coefficient of variation (CV) were similar between FlowGM and conventional gating for lymphocyte populations, but notably FlowGM provided improved discrimination of "hard-to-gate" monocyte and dendritic cell (DC) subsets. FlowGM thus provides rapid high-dimensional analysis of cell phenotypes and is amenable to cohort studies. Copyright © 2015. Published by Elsevier Inc.
International Nuclear Information System (INIS)
Cacuci, D.G.
1984-07-01
This report presents a self-contained mathematical formalism for deterministic sensitivity analysis of two-phase flow systems, a detailed application to sensitivity analysis of the homogeneous equilibrium model of two-phase flow, and a representative application to sensitivity analysis of a model (simulating pump-trip-type accidents in BWRs) where a transition between single phase and two phase occurs. The rigor and generality of this sensitivity analysis formalism stem from the use of Gateaux (G-) differentials. This report highlights the major aspects of deterministic (forward and adjoint) sensitivity analysis, including derivation of the forward sensitivity equations, derivation of sensitivity expressions in terms of adjoint functions, explicit construction of the adjoint system satisfied by these adjoint functions, determination of the characteristics of this adjoint system, and demonstration that these characteristics are the same as those of the original quasilinear two-phase flow equations. This proves that whenever the original two-phase flow problem is solvable, the adjoint system is also solvable and, in principle, the same numerical methods can be used to solve both the original and adjoint equations
State-of-the-art review of liquid loading in gas wells
Energy Technology Data Exchange (ETDEWEB)
Falcone, G. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE; Barbosa, J.R. Jr. [Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil). Dept. of Mechanical Engineering
2013-08-01
Gas wells suffering from liquid loading are incapable of removing the liquid associated with produced gas from the wellbore. This phenomenon is initiated when the upward gas velocity in the well falls below a critical value at which point the liquid that was initially flowing upwards, begins to fall back. This liquid accumulates downhole, where it increases the hydrostatic back-pressure on the reservoir, destabilises the multiphase flow in the well (following flow regime changes), decreases production rate and, in severe cases, kills the well. The typical liquid loading sequence begins with a gas flow rate that is high enough to transport all liquids to surface and there is no liquid fall-back in the well. However, as the gas velocity slows or the liquid content in the well rises, there is insufficient energy in the well to carry all liquids to surface and some begins to flow backwards. As the hydrostatic head downhole increases, the liquid column that has accumulated in the well can re-enter the near-wellbore region of the reservoir. This results in the well becoming 'unloaded' so that it can flow once more, with the gas carrying all liquids to surface. However, the reinjection of liquids into the reservoir may cause formation damage, which will impair the well productivity. This cycle continues, providing the typical intermittent response of liquid-loaded gas wells, until the reservoir potential starts to fall or the liquid yield rises. Diagnosing liquid loading is often difficult as the affected well(s) may continue production without any substantial performance impairment for a long period of time. Typical symptoms of liquid loading include sharp drops in the cumulative production decline curve, the onset of liquid slugs in the surface facilities, abrupt changes in the flowing pressure gradient, low temperature spikes at the wellhead and declining water production or condensate-gas-ratio. Many remedial lifting options have been developed for use in
Flow characteristics and performance evaluation of butterfly valves using numerical analysis
International Nuclear Information System (INIS)
Jeon, S Y; Shin, M S; Yoon, J Y
2010-01-01
The industrial butterfly valves have been applied to various fields that transport fluid in volume, especially water supply and drainage pipeline for flow control. The butterfly valves in various shapes are manufactured, but a fitting performance comparison is not made up. For this reason, we carried out numerical analysis of some kind of butterfly valves for water supply and drainage pipeline using commercial CFD code FLUENT, and made a comparative study of these results. Also, the flow coefficient, the loss coefficient, and pressure distribution of valves according to valve opening rate were compared each other and the influence of these design variables on valve performance were checked over. Through flow around the valve disk, such as pressure distribution, flow pattern, velocity vectors, and form of vortex, we grasped flow characteristics.
Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow
Balouchi, Ashkan; Browne, Dana
2015-03-01
The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings, phase 2
Sanandres, Luis
1994-01-01
The Phase 2 (1994) Annual Progress Report presents two major report sections describing the thermal analysis of tilting- and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings. A literature review on the subject of two-phase flow in fluid film bearings and part of the proposed work for 1995 are also included. The programs delivered at the end of 1994 are named hydroflext and hydrotran. Both codes are fully compatible with the hydrosealt (1993) program. The new programs retain the same calculating options of hydrosealt plus the added bearing geometries, and unsteady flow and transient forced response. Refer to the hydroflext & hydrotran User's Manual and Tutorial for basic information on the analysis and instructions to run the programs. The Examples Handbook contains the test bearing cases along with comparisons with experimental data or published analytical values. The following major tasks were completed in 1994 (Phase 2): (1) extension of the thermohydrodynamic analysis and development of computer program hydroflext to model various bearing geometries, namely, tilting-pad hydrodynamic journal bearings, flexure-pad cylindrical bearings (hydrostatic and hydrodynamic), and cylindrical pad bearings with a simple elastic matrix (ideal foil bearings); (2) improved thermal model including radial heat transfer through the bearing stator; (3) calculation of the unsteady bulk-flow field in fluid film bearings and the transient response of a point mass rotor supported on bearings; and (4) a literature review on the subject of two-phase flows and homogeneous-mixture flows in thin-film geometries.
Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps
International Nuclear Information System (INIS)
Schaefer, Thomas; Hampel, Uwe; Technische Univ. Dresden
2017-01-01
The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.
Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Thomas [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Hampel, Uwe [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Technische Univ. Dresden (Germany). AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering
2017-07-15
The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.
Construction and analysis of compressible flow calculation algorithms
International Nuclear Information System (INIS)
Desideri, Jean-Antoine
1993-01-01
The aim of this study is to give a theoretical rationale of a 'paradox' related to the behavior at the stagnation point of some numerical solutions obtained by conventional methods for Eulerian non-equilibrium flows. This 'paradox' concerns the relationship between the solutions given by equilibrium and non-equilibrium models and was raised by several experts during the 'Workshop on Hypersonic Flows for Reentry Problems, Part 1. Antibes 1990'. In the first part, we show that equilibrium conditions are reached at the stagnation point and we analyse the sensitivity of these equilibrium conditions to the flow variables. In the second part, we develop an analysis of the behavior of the mathematical solution to an Eulerian non-equilibrium flow in the vicinity of the stagnation point, which gives an explanation to the described 'paradox'. Then, a numerical procedure, integrating the species convection equations projected on the stagnation point streamline in a Lagrangian time approach, gives a numerical support to the theoretical predictions. We also propose two numerical integration procedures, that allow us to recompute, starting from the equilibrium conditions at the stagnation point, the flow characteristics at the body. The validity limits of these procedures are discussed and the results obtained for a Workshop test-case are compared with the results given by several contributors. Finally, we survey briefly the influence of the local behavior of the solution on the coupling technique to a boundary layer calculation. (author) [fr
An assessment of software for flow cytometry analysis in banana plants
Directory of Open Access Journals (Sweden)
Renata Alves Lara Silva
2014-02-01
Full Text Available Flow cytometry is a technique that yields rapid results in analyses of cell properties such as volume, morphological complexity and quantitative DNA content, and it is considered more convenient than other techniques. However, the analysis usually generates histograms marked by variations that can be produced by many factors, including differences between the software packages that capture the data generated by the flow cytometer. The objective of the present work was to evaluate the performance of four software products commonly used in flow cytometry based on quantifications of DNA content and analyses of the coefficients of variation associated with the software outputs. Readings were obtained from 25 ‘NBA’ (AA banana leaf samples using the FACSCalibur (BD flow cytometer, and 25 histograms from each software product (CellQuest™, WinMDI™, FlowJo™ and FCS Express™ were analyzed to obtain the estimated DNA content and the coefficient of variation (CV of the estimates. The values of DNA content obtained from the software did not differ significantly. However, the CV analysis showed that the precision of the WinMDI™ software was low and that the CV values were underestimated, whereas the remaining software showed CV values that were in relatively close agreement with those found in the literature. The CellQuest™ software is recommended because it was developed by the same company that produces the flow cytometer used in the present study.
Directory of Open Access Journals (Sweden)
Ingrid Tomac
2017-02-01
Full Text Available This paper presents an improved understanding of coupled hydro-thermo-mechanical (HTM hydraulic fracturing of quasi-brittle rock using the bonded particle model (BPM within the discrete element method (DEM. BPM has been recently extended by the authors to account for coupled convective–conductive heat flow and transport, and to enable full hydro-thermal fluid–solid coupled modeling. The application of the work is on enhanced geothermal systems (EGSs, and hydraulic fracturing of hot dry rock (HDR is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convective–conductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.
Unified fluid flow model for pressure transient analysis in naturally fractured media
International Nuclear Information System (INIS)
Babak, Petro; Azaiez, Jalel
2015-01-01
Naturally fractured reservoirs present special challenges for flow modeling with regards to their internal geometrical structure. The shape and distribution of matrix porous blocks and the geometry of fractures play key roles in the formulation of transient interporosity flow models. Although these models have been formulated for several typical geometries of the fracture networks, they appeared to be very dissimilar for different shapes of matrix blocks, and their analysis presents many technical challenges. The aim of this paper is to derive and analyze a unified approach to transient interporosity flow models for slightly compressible fluids that can be used for any matrix geometry and fracture network. A unified fractional differential transient interporosity flow model is derived using asymptotic analysis for singularly perturbed problems with small parameters arising from the assumption of a much smaller permeability of the matrix blocks compared to that of the fractures. This methodology allowed us to unify existing transient interporosity flow models formulated for different shapes of matrix blocks including bounded matrix blocks, unbounded matrix cylinders with any orthogonal crossection, and matrix slabs. The model is formulated using a fractional order diffusion equation for fluid pressure that involves Caputo derivative of order 1/2 with respect to time. Analysis of the unified fractional derivative model revealed that the surface area-to-volume ratio is the key parameter in the description of the flow through naturally fractured media. Expressions of this parameter are presented for matrix blocks of the same geometrical shape as well as combinations of different shapes with constant and random sizes. Numerical comparisons between the predictions of the unified model and those obtained from existing transient interporosity ones for matrix blocks in the form of slabs, spheres and cylinders are presented for linear, radial and spherical flow types for
ASRM Multi-Port Igniter Flow Field Analysis
Kania, Lee; Dumas, Catherine; Doran, Denise
1993-01-01
The Advanced Solid Rocket Motor (ASRM) program was initiated by NASA in response to the need for a new generation rocket motor capable of providing increased thrust levels over the existing Redesigned Solid Rocket Motor (RSRM) and thus augment the lifting capacity of the space shuttle orbiter. To achieve these higher thrust levels and improve motor reliability, advanced motor design concepts were employed. In the head end of the motor, for instance, the propellent cast has been changed from the conventional annular configuration to a 'multi-slot' configuration in order to increase the burn surface area and guarantee rapid motor ignition. In addition, the igniter itself has been redesigned and currently features 12 exhaust ports in order to channel hot igniter combustion gases into the circumferential propellent slots. Due to the close proximity of the igniter ports to the propellent surfaces, new concerns over possible propellent deformation and erosive burning have arisen. The following documents the effort undertaken using computational fluid dynamics to perform a flow field analysis in the top end of the ASRM motor to determine flow field properties necessary to permit a subsequent propellent fin deformation analysis due to pressure loading and an assessment of the extent of erosive burning.
Structure analysis of bubble driven flow by time-resolved PIV and POD techniques
International Nuclear Information System (INIS)
Kim, Hyun Dong; Yi, Seung Jae; Kim, Jong Wook; Kim, Kyung Chun
2010-01-01
In this paper, the recirculation flow motion and turbulence characteristics of liquid flow driven by air bubble stream in a rectangular water tank are studied. The time-resolved Particle Image Velocimetry (PIV) technique is adopted for the quantitative visualization and analysis. 532nm Diode CW laser is used for illumination and orange fluorescent (λex = 540nm, λem = 584nm) particle images are acquired by a 1280X1024 high-speed camera. To obtain clean particle images, 545nm long pass optical filter and an image intensifier are employed and the flow rate of compressed air is 3/min at 0.5MPa. The recirculation and mixing flow field is further investigated by timeresolved Proper Orthogonal Decomposition (POD) analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortical structures moving along with the large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy
Finite element analysis of helical flows in human aortic arch: A novel index
Lee, Cheng-Hung; Liu, Kuo-Sheng; Jhong, Guan-Heng; Liu, Shih-Jung; Hsu, Ming-Yi; Wang, Chao-Jan; Hung, Kuo-Chun
2014-01-01
This study investigates the helical secondary flows in the aortic arch using finite element analysis. The relationship between helical flow and the configuration of the aorta in patients of whose three-dimensional images constructed from computed tomography scans was examined. A finite element model of the pressurized root, arch, and supra-aortic vessels was developed to simulate the pattern of helical secondary flows. Calculations indicate that most of the helical secondary flow was formed i...
Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter; Dall, Ole; Wenzel, Henrik
2014-10-21
Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge.
On accelerated flow of MHD powell-eyring fluid via homotopy analysis method
Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul
2017-09-01
The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell-Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.
Modeling and flow analysis of pure nylon polymer for injection molding process
International Nuclear Information System (INIS)
Nuruzzaman, D M; Kusaseh, N; Basri, S; Hamedon, Z; Oumer, A N
2016-01-01
In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured. (paper)
Modeling and flow analysis of pure nylon polymer for injection molding process
Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.
2016-02-01
In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.
Zhorzholiani, Sh T; Mironov, A A; Talygin, E A; Tsyganokov, Yu M; Agafonov, A M; Kiknadze, G I; Gorodkov, A Yu; Bokeriya, L A
2018-03-01
Analysis of the data of morphometry of aortic casts, aortography at different pressures, and multispiral computer tomography of the aorta with contrast and normal pulse pressure showed that geometric configuration of the flow channel of the aorta during the whole cardiac cycle corresponded to the conditions of self-organization of tornado-like quasipotential flow described by exact solutions of the Navier-Stokes equation and continuity of viscous fluid typical for this type of fluid flows. Increasing pressure in the aorta leads to a decrease in the degree of approximation of the channel geometry to the ratio of exact solution and increases the risk of distortions in the structure of the flow. A mechanism of evolution of tornado-like flow in the aorta was proposed.
Macroscopic Model and Simulation Analysis of Air Traffic Flow in Airport Terminal Area
Directory of Open Access Journals (Sweden)
Honghai Zhang
2014-01-01
Full Text Available We focus on the spatiotemporal characteristics and their evolvement law of the air traffic flow in airport terminal area to provide scientific basis for optimizing flight control processes and alleviating severe air traffic conditions. Methods in this work combine mathematical derivation and simulation analysis. Based on cell transmission model the macroscopic models of arrival and departure air traffic flow in terminal area are established. Meanwhile, the interrelationship and influential factors of the three characteristic parameters as traffic flux, density, and velocity are presented. Then according to such models, the macro emergence of traffic flow evolution is emulated with the NetLogo simulation platform, and the correlativity of basic traffic flow parameters is deduced and verified by means of sensitivity analysis. The results suggest that there are remarkable relations among the three characteristic parameters of the air traffic flow in terminal area. Moreover, such relationships evolve distinctly with the flight procedures, control separations, and ATC strategies.
CFD analysis on heat transfer in low Prandtl number fluid flows
Energy Technology Data Exchange (ETDEWEB)
Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.; Sinha, R.K., E-mail: bananta@barc.gov.in [Bhabha Atomic Research Centre, Reactor Engineering Div., Trombay, Mumbai (India)
2011-07-01
Use of Computational Fluid Dynamics (CFD) code is helpful for designing liquid metal cooled nuclear reactor systems. Before using any CFD code proper evaluation of the code is essential for simulation of heat transfer in liquid metal flow. In this paper, a review of the literature on the correlations for liquid metal heat transfer is carried out and a comparison with experimental results is performed. CFD analysis is carried out using PHOENICS-3.6 code on heat transfer in molten Lead Bismuth Eutectic (LBE) flowing through tube. Turbulent flow analyses are carried out for the evaluation of the CFD code. The CFD results are compared with the available correlations. Assessment of various turbulence models and correlations for turbulent Prandtl number in the tube geometry are carried out. From the analysis it is found that, the CFD prediction can be improved with modified turbulent Prandtl number in the turbulence models. (author)
Directory of Open Access Journals (Sweden)
Ximing Zhang
2017-11-01
Full Text Available In coal seam gas (CSG wells, water is periodically removed from the wellbore in order to keep the bottom-hole flowing pressure at low levels, facilitating the desorption of methane gas from the coal bed. In order to calculate gas flow rate and further optimize well performance, it is necessary to accurately monitor the liquid level in real-time. This paper presents a novel method based on autocorrelation function (ACF analysis for determining the liquid level in CSG wells under intense noise conditions. The method involves the calculation of the acoustic travel time in the annulus and processing the autocorrelation signal in order to extract the weak echo under high background noise. In contrast to previous works, the non-linear dependence of the acoustic velocity on temperature and pressure is taken into account. To locate the liquid level of a coal seam gas well the travel time is computed iteratively with the non-linear velocity model. Afterwards, the proposed method is validated using experimental laboratory investigations that have been developed for liquid level detection under two scenarios, representing the combination of low pressure, weak signal, and intense noise generated by gas flowing and leakage. By adopting an evaluation indicator called Crest Factor, the results have shown the superiority of the ACF-based method compared to Fourier filtering (FFT. In the two scenarios, the maximal measurement error from the proposed method was 0.34% and 0.50%, respectively. The latent periodic characteristic of the reflected signal can be extracted by the ACF-based method even when the noise is larger than 1.42 Pa, which is impossible for FFT-based de-noising. A case study focused on a specific CSG well is presented to illustrate the feasibility of the proposed approach, and also to demonstrate that signal processing with autocorrelation analysis can improve the sensitivity of the detection system.
Entropy analysis on non-equilibrium two-phase flow models
International Nuclear Information System (INIS)
Karwat, H.; Ruan, Y.Q.
1995-01-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships
Entropy analysis on non-equilibrium two-phase flow models
Energy Technology Data Exchange (ETDEWEB)
Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)
1995-09-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.
Analysis of impact of mixing flow on the pebble bed high temperature reactor
International Nuclear Information System (INIS)
Hao Chen; Li Fu; Guo Jiong
2014-01-01
The impact of the mixing flow in the pebble flow on pebble bed high temperature gas cooled reactor (HTR) was analyzed in the paper. New code package MFVSOP which can simulate the mixing flow was developed. The equilibrium core of HTR-PM was selected as reference case, the impact of the mixing flow on the core parameters such as core power peak factor, power distribution was analyzed with different degree of mixing flow, and uncertainty analysis was carried out. Numerical results showed that the mixing flow had little impact on key parameters of pebble bed HTR, and the multiple-pass-operation-mode in pebble bed HTR can reduce the uncertainty arouse from the mixing flow. (authors)
Flow meter fault isolation in building central chilling systems using wavelet analysis
International Nuclear Information System (INIS)
Chen Youming; Hao Xiaoli; Zhang Guoqiang; Wang Shengwei
2006-01-01
This paper presents an approach to isolate flow meter faults in building central chilling systems. It mathematically explains the fault collinearity among the flow meters in central chilling systems and points out that the sensor validation index (SVI) used in principal component analysis (PCA) is incapable of isolating flow meter faults due to the fault collinearity. The wavelet transform is used to isolate the flow meter faults as a substitute for the SVI of PCA. This approach can identify various variations in measuring signals, such as ramp, step, discontinuity etc., due to the good property of the wavelet in local time-frequency. Some examples are given to demonstrate its ability of fault isolation for the flow meters
Simulating cold production by a coupled reservoir-geomechanics model with sand erosion
Energy Technology Data Exchange (ETDEWEB)
Wang, Y.; Xue, S. [Petro-Geotech Inc., Calgary, AB (Canada)
2002-06-01
This paper presents a newly developed fully coupled reservoir-geomechanics model with sand erosion. Sand production occurs during aggressive production induced by the impact of viscous fluid flow and the in situ stress concentration near a wellbore, as well as by perforation tips in poorly consolidated formations. This compromises oil production, increases well completion costs, and reduces the life cycles of equipment down hole and on the surface. The proposed model can be used for sand production studies in conventional oil/gas reservoirs such as the North Sea as well as in heavy oil reservoirs such as in northwestern Canada. Instead of generating a high permeability network in reservoirs, the enhanced oil production is determined by the increase in the effective wellbore radius. This paper presents the general model. A detailed study on the capillary pressure and the impact of multiphase flow on sanding and erosion will be conducted at a later date. It appears that 2 phase flow can be important to elastoplasticity if no significant sand erosion has occurred. It was determined that high porosity is induced by erosion and capillary pressure. Two phase flow can be important when the built-up drag force carries sand-fluid slurry into the well. It is concluded that viscosity and flow velocity can help estimate the slurry transport, sand rate and enhanced oil production. 22 refs., 3 tabs., 11 figs.
Exergy Based Performance Analysis of Double Flow Solar Air Heater with Corrugated Absorber
S. P. Sharma; Som Nath Saha
2017-01-01
This paper presents the performance, based on exergy analysis of double flow solar air heaters with corrugated and flat plate absorber. A mathematical model of double flow solar air heater based on energy balance equations has been presented and the results obtained have been compared with that of a conventional flat-plate solar air heater. The double flow corrugated absorber solar air heater performs thermally better than the flat plate double flow and conventional flat-plate solar air heate...
Aeroacoustic directivity via wave-packet analysis of mean or base flows
Edstrand, Adam; Schmid, Peter; Cattafesta, Louis
2017-11-01
Noise pollution is an ever-increasing problem in society, and knowledge of the directivity patterns of the sound radiation is required for prediction and control. Directivity is frequently determined through costly numerical simulations of the flow field combined with an acoustic analogy. We introduce a new computationally efficient method of finding directivity for a given mean or base flow field using wave-packet analysis (Trefethen, PRSA 2005). Wave-packet analysis approximates the eigenvalue spectrum with spectral accuracy by modeling the eigenfunctions as wave packets. With the wave packets determined, we then follow the method of Obrist (JFM, 2009), which uses Lighthill's acoustic analogy to determine the far-field sound radiation and directivity of wave-packet modes. We apply this method to a canonical jet flow (Gudmundsson and Colonius, JFM 2011) and determine the directivity of potentially unstable wave packets. Furthermore, we generalize the method to consider a three-dimensional flow field of a trailing vortex wake. In summary, we approximate the disturbances as wave packets and extract the directivity from the wave-packet approximation in a fraction of the time of standard aeroacoustic solvers. ONR Grant N00014-15-1-2403.
Dallal, Ahmed H.
Safety is an essential requirement for air traffic management and control systems. Aircraft are not allowed to get closer to each other than a specified safety distance, to avoid any conflicts and collisions between aircraft. Forecast analysis predicts a tremendous increase in the number of flights. Subsequently, automated tools are needed to help air traffic controllers resolve air born conflicts. In this dissertation, we consider the problem of conflict resolution of aircraft flows with the assumption that aircraft are flowing through a fixed specified control volume at a constant speed. In this regard, several centralized and decentralized resolution rules have been proposed for path planning and conflict avoidance. For the case of two intersecting flows, we introduce the concept of conflict touches, and a collaborative decentralized conflict resolution rule is then proposed and analyzed for two intersecting flows. The proposed rule is also able to resolved airborne conflicts that resulted from resolving another conflict via the domino effect. We study the safety conditions under the proposed conflict resolution and collision avoidance rule. Then, we use Lyapunov analysis to analytically prove the convergence of conflict resolution dynamics under the proposed rule. The analysis show that, under the proposed conflict resolution rule, the system of intersecting aircraft flows is guaranteed to converge to safe, conflict free, trajectories within a bounded time. Simulations are provided to verify the analytically derived conclusions and study the convergence of the conflict resolution dynamics at different encounter angles. Simulation results show that lateral deviations taken by aircraft in each flow, to resolve conflicts, are bounded, and aircraft converged to safe and conflict free trajectories, within a finite time.
Anthropogenic phosphorus flow analysis of Hefei City, China
International Nuclear Information System (INIS)
Li Sisi; Yuan Zengwei; Bi Jun; Wu Huijun
2010-01-01
The substance flow analysis (SFA) method was employed to examine phosphorus flow and its connection to water pollution in the city of Hefei, China, in 2008. As human activity is the driving force of phosphorus flux from the environment to the economy, the study provides a conceptual framework for analyzing an anthropogenic phosphorus cycle that includes four stages: extraction, fabrication and manufacturing, use, and waste management. Estimates of phosphorus flow were based on existing data as well as field research, expert advice, local accounting systems, and literature. The total phosphorus input into Hefei in 2008 reached 7810 tons, mainly as phosphate ore, chemical fertilizer, pesticides, crops and animal products. Approximately 33% of the total phosphorus input left the area, and nearly 20% of that amount was discharged as waste to surface water. Effluent containing excessive fertilizer from farming operations plays an important role in phosphorus overloads onto surface water; the other major emission source is sewage discharge. We also provide suggestions for reducing phosphorus emissions, for example reducing fertilizer use, recycling farming residues, and changing human consumption patterns.
Automated injection of slurry samples in flow-injection analysis
Hulsman, M.H.F.M.; Hulsman, M.; Bos, M.; van der Linden, W.E.
1996-01-01
Two types of injectors are described for introducing solid samples as slurries in flow analysis systems. A time-based and a volume-based injector based on multitube solenoid pinch valves were built, both can be characterized as hydrodynamic injectors. Reproducibility of the injections of dispersed
Flow Injection Analysis: A Revolution in Modern Analytical Chemistry
DEFF Research Database (Denmark)
Hansen, Elo Harald
1996-01-01
A review is made of the fundamentals of Flow Injection Analysis (FIA), and the versatility and applicability of this analytical concept is demonstrated by a series of examples, comprizing the use of different types of FIA-manifolds and various detection devices (optical and electrochemical...
Complex network analysis of phase dynamics underlying oil-water two-phase flows
Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De
2016-01-01
Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101
Analysis of flow near a dug well in an unconfined aquifer
Sridharan, K.; Sathyanarayana, D.; Reddy, A. Siva
1990-11-01
A numerical analysis of flow to a dug well in an unconfined aquifer is made, taking into account well storage, elastic storage release, gravity drainage, anisotropy, partial penetration, vertical flow and seepage surface at the well face, and treating the water table in the aquifer and water level in the well as unknown boundaries. The pumped discharge is maintained constant. The solution is obtained by a two-level iterative scheme. The effects of governing parameters on the drawdown, development of seepage surface and contribution from aquifer flow to the total discharge are discussed. The degree of anisotropy and partial penetration are found to be the parameters which affect the flow characteristics most significantly. The effect of anisotropy on the development of seepage surface is very pronounced.
Optimizing transformations for automated, high throughput analysis of flow cytometry data.
Finak, Greg; Perez, Juan-Manuel; Weng, Andrew; Gottardo, Raphael
2010-11-04
In a high throughput setting, effective flow cytometry data analysis depends heavily on proper data preprocessing. While usual preprocessing steps of quality assessment, outlier removal, normalization, and gating have received considerable scrutiny from the community, the influence of data transformation on the output of high throughput analysis has been largely overlooked. Flow cytometry measurements can vary over several orders of magnitude, cell populations can have variances that depend on their mean fluorescence intensities, and may exhibit heavily-skewed distributions. Consequently, the choice of data transformation can influence the output of automated gating. An appropriate data transformation aids in data visualization and gating of cell populations across the range of data. Experience shows that the choice of transformation is data specific. Our goal here is to compare the performance of different transformations applied to flow cytometry data in the context of automated gating in a high throughput, fully automated setting. We examine the most common transformations used in flow cytometry, including the generalized hyperbolic arcsine, biexponential, linlog, and generalized Box-Cox, all within the BioConductor flowCore framework that is widely used in high throughput, automated flow cytometry data analysis. All of these transformations have adjustable parameters whose effects upon the data are non-intuitive for most users. By making some modelling assumptions about the transformed data, we develop maximum likelihood criteria to optimize parameter choice for these different transformations. We compare the performance of parameter-optimized and default-parameter (in flowCore) data transformations on real and simulated data by measuring the variation in the locations of cell populations across samples, discovered via automated gating in both the scatter and fluorescence channels. We find that parameter-optimized transformations improve visualization, reduce
Optimizing transformations for automated, high throughput analysis of flow cytometry data
Directory of Open Access Journals (Sweden)
Weng Andrew
2010-11-01
Full Text Available Abstract Background In a high throughput setting, effective flow cytometry data analysis depends heavily on proper data preprocessing. While usual preprocessing steps of quality assessment, outlier removal, normalization, and gating have received considerable scrutiny from the community, the influence of data transformation on the output of high throughput analysis has been largely overlooked. Flow cytometry measurements can vary over several orders of magnitude, cell populations can have variances that depend on their mean fluorescence intensities, and may exhibit heavily-skewed distributions. Consequently, the choice of data transformation can influence the output of automated gating. An appropriate data transformation aids in data visualization and gating of cell populations across the range of data. Experience shows that the choice of transformation is data specific. Our goal here is to compare the performance of different transformations applied to flow cytometry data in the context of automated gating in a high throughput, fully automated setting. We examine the most common transformations used in flow cytometry, including the generalized hyperbolic arcsine, biexponential, linlog, and generalized Box-Cox, all within the BioConductor flowCore framework that is widely used in high throughput, automated flow cytometry data analysis. All of these transformations have adjustable parameters whose effects upon the data are non-intuitive for most users. By making some modelling assumptions about the transformed data, we develop maximum likelihood criteria to optimize parameter choice for these different transformations. Results We compare the performance of parameter-optimized and default-parameter (in flowCore data transformations on real and simulated data by measuring the variation in the locations of cell populations across samples, discovered via automated gating in both the scatter and fluorescence channels. We find that parameter
Performance analysis of flow lines with non-linear flow of material
Helber, Stefan
1999-01-01
Flow line design is one of the major tasks in production management. The decision to install a set of machines and buffers is often highly irreversible. It determines both cost and revenue to a large extent. In order to assess the economic impact of any possible flow line design, production rates and inventory levels have to be estimated. These performance measures depend on the allocation of buffers whenever the flow of material is occasionally disrupted, for example due to machine failures or quality problems. The book describes analytical methods that can be used to evaluate flow lines much faster than with simulation techniques. Based on these fast analytical techniques, it is possible to determine a flow line design that maximizes the net present value of the flow line investment. The flow of material through the line may be non-linear, for example due to assembly operations or quality inspections.
Tomographic flow cytometry assisted by intelligent wavefronts analysis
Merola, F.; Memmolo, P.; Miccio, L.; Mugnano, M.; Ferraro, P.
2017-06-01
High-throughput single-cell analysis is a challenging target for implementing advanced biomedical applications. An excellent candidate for this aim is label-free tomographic phase microscopy. However, in-line tomography is very difficult to be implemented in practice, as it requires complex setup for rotating the sample and/or illuminate the cell along numerous directions [1]. We exploit random rolling of cells while they are flowing along a microfluidic channel demonstrating that it is possible to obtain in-line phase-contrast tomography by adopting strategies for intelligent wavefronts analysis thus obtaining complete retrieval of both 3D-position and orientation of rotating cells [2]. Thus, by numerical wavefront analysis a-priori knowledge of such information is no longer needed. This approach makes continuos-flow cyto-tomography suitable for practical operation in real-world, single-cell analysis and with substantial simplification of the optical system avoiding any mechanical/optical scanning of light source. Demonstration is given for different classes of biosamples, red-blood-cells (RBCs), diatom algae and fibroblast cells [3]. Accurate characterization of each type of cells is reported despite their very different nature and materials content, thus showing the proposed method can be extended, by adopting two alternate strategies of wavefront-analysis, to many classes of cells. In particular, for RBCs we furnish important parameters as 3D morphology, Corpuscular Hemoglobin (CH), Volume (V), and refractive index (RI) for each single cell in the total population [3]. This could open a new route in blood disease diagnosis, for example for the isolation and characterization of "foreign" cells in the blood stream, the so called Circulating Tumor Cells (CTC), early manifestation of metastasis.
Directory of Open Access Journals (Sweden)
M. S. Najiha
2012-12-01
Full Text Available This paper presents a two-dimensional steady-state incompressible analysis for the minimum quantity of lubricant flow in milling operations using a computational fluid dynamics (CFD approach. The analysis of flow and heat transfer in a four-teeth milling cutter operation was undertaken. The domain of the rotating cutter along with the spray nozzle is defined. Operating cutting and boundary conditions are taken from the literature. A steady-state, pressure-based, planar analysis was performed with a viscous, realizable k-ε model. A mixture of oils and air were sprayed on the tool, which is considered to be rotating and is at a temperature near the melting temperature of the workpiece. Flow fields are obtained from the study. The vector plot of the flow field shows that the flow is not evenly distributed over the cutter surface, as well as the uneven distribution of the lubricant in the direction of the cutter rotation. It can be seen that the cutting fluid has not completely penetrated the tool edges. The turbulence created by the cutter rotation in the proximity of the tool throws oil drops out of the cutting zone. The nozzle position in relation to the feed direction is very important in order to obtain the optimum effect of the MQL flow.
Quantification of Wellbore Leakage Risk Using Non-destructive Borehole Logging Techniques
Energy Technology Data Exchange (ETDEWEB)
Duguid, Andrew; Butsch, Robert; Cary, J.; Celia, Michael; Chugunov, Nikita; Gasda, Sarah; Hovorka, Susan; Ramakrishnan, T. S.; Stamp, Vicki; Thingelstad, Rebecca; Wang, James
2014-08-29
Well integrity is important at all potential CCS locations and may play a crucial role establishing leakage risk in areas where there is a high density of existing wells that could be impacted by the storage operations including depleted petroleum fields where EOR or CCS will occur. To address a need for risk quantification methods that can be directly applied to individual wells using borehole logging tools a study was conducted using data from five wells in Wyoming. The objectives of the study were: Objective 1: Develop methods to establish the baseline flow parameters (porosity and permeability or mobility) from individual measurements of the material properties and defects in a well. Objective 2: Develop a correlation between field flow-property data and cement logs that can be used to establish the flow-properties of well materials and well features using cement mapping tools. Objective 3: Establish a method that uses the flow-property model (Objective 2) to analyze the statistical uncertainties associated with individual well leakage that can provide basis for uncertainty in risk calculations. The project objectives were met through the logging of five wells in Carbon and Natrona County Wyoming to collect data that was used to estimate individual and average well flow properties and model the results using ultrasonic data collected during the logging. Three of the five wells provided data on point and average flow properties for well annuli. Data from the other two wells were used to create models of cement permeability and test whether information collected in one well could be used to characterize another well. The results of the in-situ point measurements were confirmed by the lab measurements sidewall cores collected near the same depths Objective 1 was met using the data collected through logging, testing, and sampling. The methods were developed that can establish baseline flow parameters of wells by both point and average test methods. The methods to
Electric capacitance tomography and two-phase flow for the nuclear reactor safety analysis
International Nuclear Information System (INIS)
Lee, Jae Young
2008-01-01
Recently electric capacitance tomography has been developed to be used in the analysis of two-phase flow. Although its electric field is not focused as the hard ray tomography such as the X-ray or gamma ray, its convenience of easy access to the system and easy maintenance due to no requirement of radiation shielding benefits us in its application in the two-phase flow study, one of important area in the nuclear safety analysis. In the present paper, the practical technologies in the electric capacitance tomography are represented in both parts of hardware and software. In the software part, both forward problem and inverse problem are discussed and the method of regularization. In the hardware part, the brief discussion of the electronics circuits is made which provides femto farad resolution with a reasonable speed (150 frame/sec for 16 electrodes). Some representative ideal cases are studied to demonstrate its potential capability for the two-phase flow analysis. Also, some variations of the tomography such as axial tomography, and three dimensional tomography are discussed. It was found that the present ECT is expected to become a useful tool to understand the complicated three dimensional two-phase flow which may be an important feature to be equipped by the safety analysis codes. (author)
Arenal-type pyroclastic flows: A probabilistic event tree risk analysis
Meloy, Anthony F.
2006-09-01
A quantitative hazard-specific scenario-modelling risk analysis is performed at Arenal volcano, Costa Rica for the newly recognised Arenal-type pyroclastic flow (ATPF) phenomenon using an event tree framework. These flows are generated by the sudden depressurisation and fragmentation of an active basaltic andesite lava pool as a result of a partial collapse of the crater wall. The deposits of this type of flow include angular blocks and juvenile clasts, which are rarely found in other types of pyroclastic flow. An event tree analysis (ETA) is a useful tool and framework in which to analyse and graphically present the probabilities of the occurrence of many possible events in a complex system. Four event trees are created in the analysis, three of which are extended to investigate the varying individual risk faced by three generic representatives of the surrounding community: a resident, a worker, and a tourist. The raw numerical risk estimates determined by the ETA are converted into a set of linguistic expressions (i.e. VERY HIGH, HIGH, MODERATE etc.) using an established risk classification scale. Three individually tailored semi-quantitative risk maps are then created from a set of risk conversion tables to show how the risk varies for each individual in different areas around the volcano. In some cases, by relocating from the north to the south, the level of risk can be reduced by up to three classes. While the individual risk maps may be broadly applicable, and therefore of interest to the general community, the risk maps and associated probability values generated in the ETA are intended to be used by trained professionals and government agencies to evaluate the risk and effectively manage the long-term development of infrastructure and habitation. With the addition of fresh monitoring data, the combination of both long- and short-term event trees would provide a comprehensive and consistent method of risk analysis (both during and pre-crisis), and as such
Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques
Melih Guleren, Kursad; Turk, Seyfettin; Mirza Demircan, Osman; Demir, Oguzhan
2018-03-01
Open-source flow solvers are getting more and more popular for the analysis of challenging flow problems in aeronautical and mechanical engineering applications. They are offered under the GNU General Public License and can be run, examined, shared and modified according to user’s requirements. SU2 and OpenFOAM are the two most popular open-source solvers in Computational Fluid Dynamics (CFD) community. In the present study, some passive control methods on the high-speed cavity flows are numerically simulated using these open-source flow solvers along with one commercial flow solver called ANSYS/Fluent. The results are compared with the available experimental data. The solver SU2 are seen to predict satisfactory the mean streamline velocity but not turbulent kinetic energy and overall averaged sound pressure level (OASPL). Whereas OpenFOAM predicts all these parameters nearly as the same levels of ANSYS/Fluent.
The quasi-steady state of all-vanadium redox flow batteries: A scale analysis
International Nuclear Information System (INIS)
Sharma, A.K.; Vynnycky, M.; Ling, C.Y.; Birgersson, E.; Han, M.
2014-01-01
Highlights: • We present a transient 2D model for a VRFB (conservation of species and charge); • Carry out scale analysis of the species conservation equation; • Derive the condition characterizing the quasi-steadiness of VRFB operation; • Verify it by comparing charge-discharge curve with transient simulations. - Abstract: In general, mathematical models for all-vanadium redox flow batteries (VRFB) that seek to capture the transport phenomena are transient in nature. In this paper, we carry out scale analysis of VRFB operation and derive the conditions when it can be assumed to be quasi-steady state in nature, i.e., time-dependence only through a boundary condition. We find that it is true for typical tank volume and flow rate employed for VRFBs. The proposed analysis is generic and can also be employed for other types of redox flow batteries
MVA power flow and loss analysis for electricity market
International Nuclear Information System (INIS)
Wu, Z.Q.; Chen, G.Z.
2001-01-01
MVA power-flow and loss analysis is the basis for allocating the fixed costs and power losses under electricity-market deregulation. It is pointed out that the decomposition allocation of active and reactive power losses is not reasonable. The theory of active and reactive loss allocation and branch-power-flow decomposition has been proposed. Various contributory factors have been deduced. These contributory factors include the contribution factors of the active and reactive generation power, load-power-to-branch flows, the contribution factors of active and reactive generation power to active and reactive load power, the contribution factors of active and reactive load power to generation power, and the contribution factors of active and reactive load power and active and reactive generation power to line power losses. The detailed calculation results are presented and analysed, demonstrating that the theory presented provides a good charging algorithm for all the market participants. (Author)
Computational fluid dynamics analysis of a mixed flow pump impeller
African Journals Online (AJOL)
ATHARVA
International Journal of Engineering, Science and Technology ... From the CFD analysis software and advanced post processing tools the complex flow inside the ... The numerical simulation can provide quite accurate information on the fluid ...
WTAQ - A computer program for aquifer-test analysis of confined and unconfined aquifers
Barlow, P.M.; Moench, A.F.
2004-01-01
Computer program WTAQ was developed to implement a Laplace-transform analytical solution for axial-symmetric flow to a partially penetrating, finite-diameter well in a homogeneous and anisotropic unconfined (water-table) aquifer. The solution accounts for wellbore storage and skin effects at the pumped well, delayed response at an observation well, and delayed or instantaneous drainage from the unsaturated zone. For the particular case of zero drainage from the unsaturated zone, the solution simplifies to that of axial-symmetric flow in a confined aquifer. WTAQ calculates theoretical time-drawdown curves for the pumped well and observation wells and piezometers. The theoretical curves are used with measured time-drawdown data to estimate hydraulic parameters of confined or unconfined aquifers by graphical type-curve methods or by automatic parameter-estimation methods. Parameters that can be estimated are horizontal and vertical hydraulic conductivity, specific storage, and specific yield. A sample application illustrates use of WTAQ for estimating hydraulic parameters of a hypothetical, unconfined aquifer by type-curve methods. Copyright ASCE 2004.
Trojanowicz, Marek; Kołacińska, Kamila; Grate, Jay W
2018-06-01
The safety and security of nuclear power plant operations depend on the application of the most appropriate techniques and methods of chemical analysis, where modern flow analysis methods prevail. Nevertheless, the current status of the development of these methods is more limited than it might be expected based on their genuine advantages. The main aim of this paper is to review the automated flow analysis procedures developed with various detection methods for the nuclear energy industry. The flow analysis methods for the determination of radionuclides, that have been reported to date, are primarily focused on their environmental applications. The benefits of the application of flow methods in both monitoring of the nuclear wastes and process analysis of the primary circuit coolants of light water nuclear reactors will also be discussed. The application of either continuous flow methods (CFA) or injection methods (FIA, SIA) of the flow analysis with the β-radiometric detection shortens the analysis time and improves the precision of determination due to mechanization of certain time-consuming operations of the sample processing. Compared to the radiometric detection, the mass spectrometry (MS) detection enables one to perform multicomponent analyses as well as the determination of transuranic isotopes with much better limits of detection. Copyright © 2018 Elsevier B.V. All rights reserved.
"Batch" kinetics in flow: online IR analysis and continuous control.
Moore, Jason S; Jensen, Klavs F
2014-01-07
Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preliminary CFD analysis methodology for flow in a LFR fuel assembly
International Nuclear Information System (INIS)
Catana, A.; Ioan, M.; Serbanel, M.
2013-01-01
In this paper a preliminary Computational Fluid Dynamics (CFD) analysis was performed in order to setup a methodology to be used for more complex coolant flow analysis inside ALFRED nuclear reactor fuel assembly. The core contains 171 separated fuel assembly, each consisting in a hexagonal array of 127 fuel rods. Three honey comb spacer grids are proposed along fuel rods with the aim to keep flow geometry intact during reactor operation. The main goal of this paper is to compute some hydraulic parameters: pressure, velocity, wall shear stress and turbulence parameters with and without spacer grids. In this analysis we consider an adiabatic case, so far no heat transfer is considered but we pave the road toward more complex thermo hydraulic analysis for ALFRED (LFR in general). The CAELINUX CFD distribution was used with its main components: Salome-Meca (for geometry and mesh) and Code-Saturne as mono-phase CFD solver. Paraview and Visist Postprocessors were used for data extraction and graphical displays. (authors)
CROSS-FLOW ULTRAFILTRATION OF SECONDARY EFFLUENTS. MEMBRANE FOULING ANALYSIS
Directory of Open Access Journals (Sweden)
Luisa Vera
2014-12-01
Full Text Available The application of cross-flow ultrafiltration to regenerate secondary effluents is limited by membrane fouling. This work analyzes the influence of the main operational parameters (transmembrane pressure and cross-flow velocity about the selectivity and fouling observed in an ultrafiltration tubular ceramic membrane. The experimental results have shown a significant retention of the microcolloidal and soluble organic matter (52 – 54% in the membrane. The fouling analysis has defined the critical operational conditions where the fouling resistance is minimized. Such conditions can be described in terms of a dimensionless number known as shear stress number and its relationship with other dimensionless parameter, the fouling number.
Analysis of one-dimensional nonequilibrium two-phase flow using control volume method
International Nuclear Information System (INIS)
Minato, Akihiko; Naitoh, Masanori
1987-01-01
A one-dimensional numerical analysis model was developed for prediction of rapid flow transient behavior involving boiling. This model was based on six conservation equations of time averaged parameters of gas and liquid behavior. These equations were solved by using a control volume method with an explicit time integration. This model did not use staggered mesh scheme, which had been commonly used in two-phase flow analysis. Because void fraction and velocity of each phase were defined at the same location in the present model, effects of void fraction on phase velocity calculation were treated directly without interpolation. Though non-staggered mesh scheme was liable to cause numerical instability with zigzag pressure field, stability was achieved by employing the Godunov method. In order to verify the present analytical model, Edwards' pipe blow down and Zaloudek's initially subcooled critical two-phase flow experiments were analyzed. Stable solutions were obtained for rarefaction wave propagation with boiling and transient two-phase flow behavior in a broken pipe by using this model. (author)
Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field
Directory of Open Access Journals (Sweden)
Lin Yang
2015-03-01
Full Text Available In view of the limitations of the existing Newton fluid effects on the vortex flow mechanism study, numerical analysis of non Newton fluid effects was presented. Using Reynolds stress turbulence model (RSM and mixed multiphase flow model (Mixture of FLUENT (fluid calculation software and combined with the constitutive equation of apparent viscosity of non-Newtonian fluid, the typical non-Newtonian fluid (drilling fluid, polymer flooding sewage and crude oil as medium and Newton flow field (water as medium were compared by quantitative analysis. Based on the research results of water, the effects of non-Newtonian rheology on the key parameters including the combined vortex motion index n and tangential velocity were analyzed. The study shows that: non-Newtonian rheology has a great effect on tangential velocity and n value, and tangential velocity decreases with non-Newtonian increasing. The three kinds of n values (constant segment are: 0.564(water, 0.769(polymer flooding sewage, 0.708(drilling fluid and their variation amplitudes are larger than Newtonian fluid. The same time, non-Newtonian rheology will lead to the phenomenon of turbulent drag reduction in the vortex flow field. Compared with the existing formula calculation results shown, the calculation result of non-Newtonian rheology is most consistent with the simulation result, and the original theory has large deviations. The study provides reference for theory research of non-Newtonian cyclone separation flow field.
Directory of Open Access Journals (Sweden)
Weiyao Zhu
2018-02-01
Full Text Available In this paper, a series of specific studies were carried out to investigate the complex form of fracture networks and figure out the multi-scale flowing laws of nano/micro pores–complex fracture networks–wellbore during the development of shale reservoirs by means of horizontal well fracturing. First, hydraulic fractures were induced by means of Brazilian splitting tests. Second, the forms of the hydraulic fractures inside the rock samples were observed by means of X-ray CT scanning to measure the opening of hydraulic fractures. Third, based on the multi-scale unified flowing model, morphological description of fractures and gas flowing mechanism in the matrix–complex fracture network–wellbore, the productivity equation of single-stage horizontal well fracturing which includes diffusion, slipping and desorption was established. And fourthly, a productivity prediction model of horizontal well multi-stage fracturing in the shale reservoir was established considering the interference between the multi-stage fracturing zones and the pressure drop in the horizontal wellbore. The following results were obtained. First, hydraulic fractures are in the form of a complex network. Second, the measured opening of hydraulic fractures is in the range of 4.25–453 μm, averaging 112 μm. Third, shale gas flowing in different shapes of fracture networks follows different nonlinear flowing laws. Forth, as the fracture density in the strongly stimulated zones rises and the distribution range of the hydraulic fractures in strongly/weakly stimulated zones enlarges, gas production increases gradually. As the interference occurs in the flowing zones of fracture networks between fractured sections, the increasing amplitude of gas production rates decreases. Fifth, when the length of a simulated horizontal well is 1500 m and the half length of a fracture network in the strongly stimulated zone is 100 m, the productivity effect of stage 10 fracturing is the
Analysis of the pressure fields in a swirling annular jet flow
Percin, M.; Vanierschot, M.; Oudheusden, B. W. van
2017-12-01
In this paper, we investigate the flow structures and pressure fields of a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved tomographic particle image velocimetry measurements, which enable the reconstruction of the three-dimensional time-resolved pressure fields using the governing flow equations. Both time-averaged and instantaneous flow structures are discussed, including a characterization of the first- and second-order statistical moments. A Reynolds decomposition of the flow field shows that the time-averaged flow is axisymmetric with regions of high anisotropic Reynolds stresses. Two recirculation zones exist that are surrounded by regions of very intense mixing. Notwithstanding the axisymmetric nature of the time-averaged flow, a non-axisymmetric structure of the instantaneous flow is revealed, comprising a central vortex core which breaks up into a precessing vortex core. The winding sense of this helical structure is opposite to the swirl direction and it is wrapped around the vortex breakdown bubble. It precesses around the central axis of the flow at a frequency corresponding to a Strouhal number of 0.27. The precessing vortex core is associated with a low-pressure region along the central axis of the jet and the maximum pressure fluctuations occur upstream of the vortex breakdown location, where the azimuthal velocity component also reaches peak values as a result of the inward motion of the fluid and the conservation of angular momentum. The POD analysis of the pressure fields suggests that the precessing helical vortex formation is the dominant coherent structure in the instantaneous flow.
African Journals Online (AJOL)
ADOWIE PERE
Volumetric flow rate, STB/D r. Radius, ft. D r. Dimensionless radius e r. External radius, ft. eD r. Dimensionless external radius w ... wellbore using the finite element method. Theory: The law of conservation of mass, Darcy's law and the equation of state has been combined to obtain the following partial differential equation:.
International Nuclear Information System (INIS)
Haga, Katsuhiro; Terada, Atsuhiko; Kaminaga, Masanori; Hino, Ryutaro
2001-01-01
In this study the effectiveness of the cross-flow type mercury target structure was evaluated experimentally and analytically. The average water flow velocity field in the target mock-up model, which was fabricated with plexiglass, was measured at room temperature using the PIV (Particle Image Velocimetry) technique. The water flow analyses were conducted and the analytical results were compared with the experimental results. The experimental results showed that the cross-flow could be realized in the former part of the proton beam path where the heat load by the spallation reaction is large, and the analytical result of the water flow velocity field showed good correspondence to the experimental result in the case of the Reynolds number of more than 4.83 x 10 5 at the model inlet. With these results, the effectiveness of the cross-flow type mercury target structure and the present analysis code system was demonstrated. Then the mercury flow field and the temperature distribution in the target container were analyzed assuming the proton beam energy and power of 3 GeV and 5 MW. The analytical result showed that the cross-flow field of mercury, which is similar to the water flow field, could also be attained. (author)
Analysis and Calculation of the Fluid Flow and the Temperature Field by Finite Element Modeling
Dhamodaran, M.; Jegadeesan, S.; Kumar, R. Praveen
2018-04-01
This paper presents a fundamental and accurate approach to study numerical analysis of fluid flow and heat transfer inside a channel. In this study, the Finite Element Method is used to analyze the channel, which is divided into small subsections. The small subsections are discretized using higher number of domain elements and the corresponding number of nodes. MATLAB codes are developed to be used in the analysis. Simulation results showed that the analyses of fluid flow and temperature are influenced significantly by the changing entrance velocity. Also, there is an apparent effect on the temperature fields due to the presence of an energy source in the middle of the domain. In this paper, the characteristics of flow analysis and heat analysis in a channel have been investigated.
Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks
Gao, Zhong-Ke; Wang, Wen-Xu
2014-01-01
Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...
Water-Level Data Analysis for the Saturated Zone Site-Scale Flow and Transport Model
International Nuclear Information System (INIS)
K. Rehfeldt
2004-01-01
This report is an updated analysis of water-level data performed to provide the ''Saturated Zone Site-Scale Flow Model'' (BSC 2004 [DIRS 170037]) (referred to as the saturated zone (SZ) site-scale flow model or site-scale SZ flow model in this report) with the configuration of the potentiometric surface, target water-level data, and hydraulic gradients for calibration of groundwater flow models. This report also contains an expanded discussion of uncertainty in the potentiometric-surface map. The analysis of the potentiometric data presented in Revision 00 of this report (USGS 2001 [DIRS 154625]) provides the configuration of the potentiometric surface, target heads, and hydraulic gradients for the calibration of the SZ site-scale flow model (BSC 2004 [DIRS 170037]). Revision 01 of this report (USGS 2004 [DIRS 168473]) used updated water-level data for selected wells through the year 2000 as the basis for estimating water-level altitudes and the potentiometric surface in the SZ site-scale flow and transport model domain based on an alternative interpretation of perched water conditions. That revision developed computer files containing: Water-level data within the model area (DTN: GS010908312332.002); A table of known vertical head differences (DTN: GS010908312332.003); and A potentiometric-surface map (DTN: GS010608312332.001) using an alternative concept from that presented by USGS (2001 [DIRS 154625]) for the area north of Yucca Mountain. The updated water-level data presented in USGS (2004 [DIRS 168473]) include data obtained from the Nye County Early Warning Drilling Program (EWDP) Phases I and II and data from Borehole USW WT-24. This document is based on Revision 01 (USGS 2004 [DIRS 168473]) and expands the discussion of uncertainty in the potentiometric-surface map. This uncertainty assessment includes an analysis of the impact of more recent water-level data and the impact of adding data from the EWDP Phases III and IV wells. In addition to being utilized
Anthropogenic phosphorus flow analysis of Hefei City, China.
Li, Sisi; Yuan, Zengwei; Bi, Jun; Wu, Huijun
2010-11-01
The substance flow analysis (SFA) method was employed to examine phosphorus flow and its connection to water pollution in the city of Hefei, China, in 2008. As human activity is the driving force of phosphorus flux from the environment to the economy, the study provides a conceptual framework for analyzing an anthropogenic phosphorus cycle that includes four stages: extraction, fabrication and manufacturing, use, and waste management. Estimates of phosphorus flow were based on existing data as well as field research, expert advice, local accounting systems, and literature. The total phosphorus input into Hefei in 2008 reached 7810 tons, mainly as phosphate ore, chemical fertilizer, pesticides, crops and animal products. Approximately 33% of the total phosphorus input left the area, and nearly 20% of that amount was discharged as waste to surface water. Effluent containing excessive fertilizer from farming operations plays an important role in phosphorus overloads onto surface water; the other major emission source is sewage discharge. We also provide suggestions for reducing phosphorus emissions, for example reducing fertilizer use, recycling farming residues, and changing human consumption patterns. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Institute of Scientific and Technical Information of China (English)
LIU Jing-Quan; YOSHIKAWA Hidekazu; ZHOU Yang-Ping
2005-01-01
Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle system based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being. Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples.
Felix, Fabiana S; Brett, Christopher M A; Angnes, Lúcio
2008-06-30
Flow injection analysis (FIA) using a carbon film sensor for amperometric detection was explored for ambroxol analysis in pharmaceutical formulations. The specially designed flow cell designed in the lab generated sharp and reproducible current peaks, with a wide linear dynamic range from 5x10(-7) to 3.5x10(-4) mol L(-1), in 0.1 mol L(-1) sulfuric acid electrolyte, as well as high sensitivity, 0.110 Amol(-1) L cm(-2) at the optimized flow rate. A detection limit of 7.6x10(-8) mol L(-1) and a sampling frequency of 50 determinations per hour were achieved, employing injected volumes of 100 microL and a flow rate of 2.0 mL min(-1). The repeatability, expressed as R.S.D. for successive and alternated injections of 6.0x10(-6) and 6.0x10(-5) mol L(-1) ambroxol solutions, was 3.0 and 1.5%, respectively, without any noticeable memory effect between injections. The proposed method was applied to the analysis of ambroxol in pharmaceutical samples and the results obtained were compared with UV spectrophotometric and acid-base titrimetric methods. Good agreement between the results utilizing the three methods and the labeled values was achieved, corroborating the good performance of the proposed electrochemical methodology for ambroxol analysis.
International Nuclear Information System (INIS)
Park, Jong Hark; Chae, H. T.; Park, C.; Kim, H.
2006-12-01
A test facility had been established for the experiment of velocity distribution and pressure drop in a tubular fuel. A basic test had been conducted to examine the performance of the test loop and to verify the accuracy of measurement by pitot-tube. In this report, test results and CFD analysis for the hydraulic characteristics of a tubular fuel, following the previous tests, are described. Coolant velocities in all channels were measured using pitot-tube and the effect of flow rate change on the velocity distribution was also examined. The pressure drop through the tubular fuel was measured for various flow rates in range of 1 kg/s to 21 kg/s to obtain a correlation of pressure drop with variation of flow rate. In addition, a CFD(Computational Fluid Dynamics) analysis was also done to find out the hydraulic characteristics of tubular fuel such as velocity distribution and pressure drop. As the results of CFD analysis can give us a detail insight on coolant flow in the tubular fuel, the CFD method is a very useful tool to understand the flow structure and phenomena induced by fluid flow. The CFX-10, a commercial CFD code, was used in this study. The two results by the experiment and the CFD analysis were investigated and compared with each other. Overall trend of velocity distribution by CFD analysis was somewhat different from that of experiment, but it would be reasonable considering measurement uncertainties. The CFD prediction for pressure drop of a tubular fuel shows a tolerably good agreement with experiment within 8% difference
Directory of Open Access Journals (Sweden)
I. Magdych
2015-06-01
Full Text Available The article explores the methodological approaches to the analysis of cash flows in investment activity of the enterprise; the system of motion net cash flows, reflecting the impact of cash management efficiency on the amount and source of investment cash flows of the enterprise; analytical model of definition of effectiveness of cash management of the enterprise is proposed, based on the selected principals of modeling, comprehensive analysis of cash flows in investing activities and their optimization for the purpose of maximization of social and economic benefit. The research performed here allowed generalization and definition of stages of analysis for investing cash flow of the enterprise with the appropriate reasoning. It is necessary that research is going concern in this direction of effectiveness valuation of cash flow management in investing activity of the enterprise.
Li-ion battery recycling and cobalt flow analysis in Japan
Asari, Misuzu; Sakai, Shin-ichi
2013-01-01
Batteries sometimes contain precious or toxic substances (e.g. nickel, cobalt, lead, mercury, cadmium). However, the collection and recycling rate of small batteries were low in Japan. We focus on cobalt in lithium ion (Li-ion) batteries and conduct chemical analysis, questioner survey and flow analysis in Japan.Results of chemical analysis showed that the concentration of cobalt in Li-ion batteries was around 20% regardless of the year manufactured or the manufacturer. As a result of the con...
Analysis of a cryolava flow-like feature on Titan
Le, Corre L.; Le, Mouelic S.; Sotin, Christophe; Combe, J.-P.; Rodriguez, S.; Barnes, J.W.; Brown, R.H.; Buratti, B.J.; Jaumann, R.; Soderblom, J.; Soderblom, L.A.; Clark, R.; Baines, K.H.; Nicholson, P.D.
2009-01-01
This paper reports on the analysis of the highest spatial resolution hyperspectral images acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft during its prime mission. A bright area matches a flow-like feature coming out of a caldera-like feature observed in Synthetic Aperture Radar (SAR) data recorded by the Cassini radar experiment [Lopes et al., 2007. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper. Icarus 186, 395-412, doi:10.1016/j.icarus.2006.09.006]. In this SAR image, the flow extends about 160 km east of the caldera. The contrast in brightness between the flow and the surroundings progressively vanishes, suggesting alteration or evolution of the composition of the cryolava during the lifetime of the eruptions. Dunes seem to cover part of this flow on its eastern end. We analyze the different terrains using the Spectral Mixing Analysis (SMA) approach of the Multiple-Endmember Linear Unmixing Model (MELSUM, Combe et al., 2008). The study area can be fully modeled by using only two types of terrains. Then, the VIMS spectra are compared with laboratory spectra of known materials in the relevant atmospheric windows (from 1 to 2.78 ??m). We considered simple molecules that could be produced during cryovolcanic events, including H2O, CO2 (using two different grain sizes), CH4 and NH3. We find that the mean spectrum of the cryoflow-like feature is not consistent with pure water ice. It can be best fitted by linear combinations of spectra of the candidate materials, showing that its composition is compatible with a mixture of H2O, CH4 and CO2.. ?? 2009 Elsevier Ltd.
Analysis of reverse flow in inverted U-tubes of steam generator under natural circulation condition
International Nuclear Information System (INIS)
Yang Ruichang; Liu Ruolei; Liu Jinggong; Qin Shiwei
2008-01-01
In this paper, we report on the analysis of reverse flow in inverted U-tubes of a steam generator under natural circulation condition. The mechanism of reverse flow in inverted U-tubes of the steam generator with natural circulation is graphically analyzed by using the full-range characteristic curve of parallel U-tubes. The mathematical model and numerical calculation method for analyzing the reverse flow in inverted U-tubes of the steam generator with natural circulation have been developed. The reverse flow in an inverted U-tube steam generator of a simulated pressurized water reactor with natural circulation in analyzed. Through the calculation, the mass flow rates of normal and reverse flows in individual U-tubes are obtained. The predicted sharp drop of the fluid temperature in the inlet plenum of the steam generator due to reverse flow agrees very well with the experimental data. This indicates that the developed mathematical model and solution method can be used to correctly predict the reverse flow in the inverted U-tubes of the steam generator with natural circulation. The obtained results also show that in the analysis of natural circulation flow in the primary circuit, the reverse flow in the inverted U-tubes of the steam generator must be taken into account. (author)
Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography
DEFF Research Database (Denmark)
Wildenschild, Dorthe; Hopmans, J.W.; Rivers, M.L.
2005-01-01
been of a mostly qualitative nature and no experiments have been presented in the existing literature where a truly quantitative approach to investigating the multiphase flow process has been taken, including a thorough image-processing scheme. The tomographic images presented here show, both......Pore-scale multiphase flow experiments were developed to nondestructively visualize water flow in a sample of porous material using X-ray microtomography. The samples were exposed to similar boundary conditions as in a previous investigation, which examined the effect of initial flow rate...... by qualitative comparison and quantitative analysis in the form of a nearest neighbor analysis, that the dynamic effects seen in previous experiments are likely due to the fast and preferential drainage of large pores in the sample. Once a continuous drained path has been established through the sample, further...
Energy Technology Data Exchange (ETDEWEB)
Rizzo, Enrico, E-mail: enrico.rizzo@kit.edu [Institute for Technical Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Heller, Reinhard [Institute for Technical Physics, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Richard, Laura Savoldi; Zanino, Roberto [Dipartimento Energia, Politecnico di Torino, 10129 Torino (Italy)
2013-11-15
Highlights: • The laminar regime in the meander flow geometry has been analysed with a previously validated computational strategy. • Several meander flow geometries as well as flow conditions have been analysed. • A range for the Reynolds number has been defined in which the flow can be considered laminar. • Correlations for the pressure drop and the heat transfer coefficients in the laminar regime have been derived. • A comparison between the computed the experimental pressure drop of the W7-X HTS current lead prototype is presented. -- Abstract: The Karlsruhe Institute of Technology and the Politecnico di Torino have developed and validated a computational thermal-fluid dynamics (CtFD) strategy for the systematic analysis of the thermal-hydraulics inside the meander flow heat exchanger used in high-temperature superconducting current leads for fusion applications. In the recent past, the application of this CtFD technique has shown that some operating conditions occurring in these devices may not reach the turbulent regime region. With that motivation, the CtFD analysis of the helium thermal-fluid dynamics inside different meander flow geometries is extended here to the laminar flow regime. Our first aim is to clarify under which operative conditions the flow regime can be considered laminar and how the pressure drop as well as the heat transfer are related to the geometrical parameters and to the flow conditions. From the results of this analysis, correlations for the pressure drop and for the heat transfer coefficient in the meander flow geometry have been derived, which are applicable with good accuracy to the design of meander flow heat exchangers over a broad range of geometrical parameters.
International Nuclear Information System (INIS)
Rizzo, Enrico; Heller, Reinhard; Richard, Laura Savoldi; Zanino, Roberto
2013-01-01
Highlights: • The laminar regime in the meander flow geometry has been analysed with a previously validated computational strategy. • Several meander flow geometries as well as flow conditions have been analysed. • A range for the Reynolds number has been defined in which the flow can be considered laminar. • Correlations for the pressure drop and the heat transfer coefficients in the laminar regime have been derived. • A comparison between the computed the experimental pressure drop of the W7-X HTS current lead prototype is presented. -- Abstract: The Karlsruhe Institute of Technology and the Politecnico di Torino have developed and validated a computational thermal-fluid dynamics (CtFD) strategy for the systematic analysis of the thermal-hydraulics inside the meander flow heat exchanger used in high-temperature superconducting current leads for fusion applications. In the recent past, the application of this CtFD technique has shown that some operating conditions occurring in these devices may not reach the turbulent regime region. With that motivation, the CtFD analysis of the helium thermal-fluid dynamics inside different meander flow geometries is extended here to the laminar flow regime. Our first aim is to clarify under which operative conditions the flow regime can be considered laminar and how the pressure drop as well as the heat transfer are related to the geometrical parameters and to the flow conditions. From the results of this analysis, correlations for the pressure drop and for the heat transfer coefficient in the meander flow geometry have been derived, which are applicable with good accuracy to the design of meander flow heat exchangers over a broad range of geometrical parameters
Detection of Abnormal Events via Optical Flow Feature Analysis
Directory of Open Access Journals (Sweden)
Tian Wang
2015-03-01
Full Text Available In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm.
Detection of Abnormal Events via Optical Flow Feature Analysis
Wang, Tian; Snoussi, Hichem
2015-01-01
In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227
Novel quantitative autophagy analysis by organelle flow cytometry after cell sonication.
Directory of Open Access Journals (Sweden)
Michael Degtyarev
Full Text Available Autophagy is a dynamic process of bulk degradation of cellular proteins and organelles in lysosomes. Current methods of autophagy measurement include microscopy-based counting of autophagic vacuoles (AVs in cells. We have developed a novel method to quantitatively analyze individual AVs using flow cytometry. This method, OFACS (organelle flow after cell sonication, takes advantage of efficient cell disruption with a brief sonication, generating cell homogenates with fluorescently labeled AVs that retain their integrity as confirmed with light and electron microscopy analysis. These AVs could be detected directly in the sonicated cell homogenates on a flow cytometer as a distinct population of expected organelle size on a cytometry plot. Treatment of cells with inhibitors of autophagic flux, such as chloroquine or lysosomal protease inhibitors, increased the number of particles in this population under autophagy inducing conditions, while inhibition of autophagy induction with 3-methyladenine or knockdown of ATG proteins prevented this accumulation. This assay can be easily performed in a high-throughput format and opens up previously unexplored avenues for autophagy analysis.
"Tepid" Geysers above salt caverns
Bérest, Pierre; Brouard, Benoît; Zakharov, Vassily
2018-06-01
The formation of a brine geyser erupting from the wellhead of a large underground salt cavern is described. In most cases, the brine outflow from an opened cavern is slow; it results from the cavern creep closure and the thermal expansion of the cavern brine. These two processes are smooth; however, the brine outflow often is bumpy, as it is modulated by atmospheric pressure variations that generate an elastic increase (or decrease) of both cavern and brine volumes. In addition, when the flow is fast enough, the brine thermodynamic behavior in the wellbore is adiabatic. The cold brine expelled from the cavern wellhead is substituted with warm brine entering the borehole bottom, resulting in a lighter brine column. The brine outflow increases. In some cases, the flow becomes so fast that inertia terms must be taken into account. A geyser forms, coming to an end when the pressure in the cavern has dropped sufficiently. A better picture is obtained when head losses are considered. A closed-form solution can be reached. This proves that two cases must be distinguished, depending on whether the cold brine initially contained in the wellbore is expelled fully or not. It can also be shown that geyser formation is a rare event, as it requires both that the wellbore be narrow and that the cavern be very compressible. This study stemmed from an actual example in which a geyser was observed. However, scarce information is available, making any definite interpretation difficult. xml:lang="fr"
International Nuclear Information System (INIS)
Binder, Claudia R.; Hofer, Christoph; Wiek, Arnim; Scholz, Roland W.
2004-01-01
This paper discusses the integration of material flux analysis and agent analysis as the basis for a transition towards improved regional wood management in Appenzell Ausserrhoden (AR), a small Swiss canton located in the Pre-Alps of Switzerland. We present a wood flow analysis for forests, wood processing industries and consumption in AR, accounting for different wood products. We find that the forest is currently significantly underutilized although there are sizeable imports of wood and fuel to this small region. The underutilization of the forest contributes to a skewed age distribution, jeopardizing long-term sustainable development of the forest, as the fulfillment of its protective and production function are likely to be at risk. The wood resources, however, are capable of satisfying current wood demand among the population of AR and wood could even be exported. Underutilization has two main causes: first, wood prices are so low that harvesting trees is a money-losing proposition; second, consumer wood demand and the current supply from forest owners are not aligned. Furthermore, cultural values, lifestyle trends and traditions make an alignment of supply and demand difficult. Consensus and strategy building with the relevant stakeholders on the basis of the results obtained from the wood flow analysis and agent analysis is a reasonable next step to take. We conclude that wood flow analysis combined with agent analysis provide a useful and straightforward tool to be used as the basis of a transition process towards improved regional wood flows, which in turn should contribute to sustainable forest management
Debris flow run-out simulation and analysis using a dynamic model
Melo, Raquel; van Asch, Theo; Zêzere, José L.
2018-02-01
Only two months after a huge forest fire occurred in the upper part of a valley located in central Portugal, several debris flows were triggered by intense rainfall. The event caused infrastructural and economic damage, although no lives were lost. The present research aims to simulate the run-out of two debris flows that occurred during the event as well as to calculate via back-analysis the rheological parameters and the excess rain involved. Thus, a dynamic model was used, which integrates surface runoff, concentrated erosion along the channels, propagation and deposition of flow material. Afterwards, the model was validated using 32 debris flows triggered during the same event that were not considered for calibration. The rheological and entrainment parameters obtained for the most accurate simulation were then used to perform three scenarios of debris flow run-out on the basin scale. The results were confronted with the existing buildings exposed in the study area and the worst-case scenario showed a potential inundation that may affect 345 buildings. In addition, six streams where debris flow occurred in the past and caused material damage and loss of lives were identified.
Analysis of the flow structure of a turbulent thermal plasma jet
International Nuclear Information System (INIS)
Spores, R.A.
1989-01-01
The goal of this research project is to attain a better understanding of the fluid mechanics associated with the high temperature jet of a thermal plasma torch. The analysis of a plasma, which has the ability to vaporize anything placed inside it without proper cooling, presents a unique research challenge. Several types of non-intrusive diagnostic techniques has been used to examine the jet from different perspectives. To actually map out the mean gas velocities and turbulence intensities throughout the jet, laser Doppler anemometry has been employed. The plasma gas and entrained air him been seeded separately in order to conditionally sample the two fluids and attain information about the gas mixing process. Both radial and axial turbulence levels have been measured in order to analyze the non-isotropic nature of the jet. A parabolic numerical code has been modified and compared with the obtained experimental results. A new diagnostic technique for plasma torches, which involves the spectral analysis of voltage, optical (temperature), and acoustical (pressure) fluctuations, has been implemented. The acoustical spectrum can provide information about the existence of coherent structures in the flow while the cross correlation of the acoustical signal with the voltage fluctuations can tell one to what extent perturbations of the internal arc affect the external flow. Since temperature is a scalar that is dependent on the flow field, observing temperature fluctuations can likewise help one to understand the mechanics of the flow. Flow visualization of the plasma jet using a high speed video camera has also been undertaken in order to better understand the entrainment process
I. Magdych
2015-01-01
The article explores the methodological approaches to the analysis of cash flows in investment activity of the enterprise; the system of motion net cash flows, reflecting the impact of cash management efficiency on the amount and source of investment cash flows of the enterprise; analytical model of definition of effectiveness of cash management of the enterprise is proposed, based on the selected principals of modeling, comprehensive analysis of cash flows in investing activities and their o...
Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells
Energy Technology Data Exchange (ETDEWEB)
Durlofsky, Louis J.
2000-08-28
This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.
International Nuclear Information System (INIS)
Matsuura, Keizo; Otake, Hiroshi; Kataoka, Isao; Serizawa, Akimi
2000-01-01
A method of droplet behavior simulation in an annular dispersed flow has been developed. In this method, both droplet deposition and entrainment from liquid film are considered. The Lagrangian method and stochastic model are used to analyze droplet diffusion and deposition behavior in a turbulent flow, and droplet entrainment from liquid film is calculated by an entrainment correlation. For the verification of this method, Gill's experiment is analyzed, in which the transition from annular flow with no entrainment to equilibrium annular dispersed flow was observed. Analysis results can also show the similar transition tendency. The experimental results of radial distribution of droplet mass flux are compared with analysis results. The agreement is good for low liquid flow rate, but entrainment rate must be adjusted for high liquid flow rate, in which gas turbulence is thought to be modified by high droplet density. In future work the effect of high droplet density on turbulence should be considered. (author)
Analysis of the Budding Yeast Cell Cycle by Flow Cytometry.
Rosebrock, Adam P
2017-01-03
DNA synthesis is one of the landmark events in the cell cycle: G 1 cells have one copy of the genome, S phase cells are actively engaged in DNA synthesis, and G 2 cells have twice as much nuclear DNA as G 1 cells. Cellular DNA content can be measured by staining with a fluorescent dye followed by a flow-cytometric readout. This method provides a quantitative measurement of cell cycle position on a cell-by-cell basis at high speed. Using flow cytometry, tens of thousands of single-cell measurements can be generated in a few seconds. This protocol details staining of cells of the budding yeast Saccharomyces cerevisiae for flow cytometry using Sytox Green dye in a method that can be scaled widely-from one sample to many thousands and operating on inputs ranging from 1 million to more than 100 million cells. Flow cytometry is preferred over light microscopy or Coulter analyses for the analysis of the cell cycle as DNA content and cell cycle position are being directly measured. © 2017 Cold Spring Harbor Laboratory Press.
Analysis on the Correlation of Traffic Flow in Hainan Province Based on Baidu Search
Chen, Caixia; Shi, Chun
2018-03-01
Internet search data records user’s search attention and consumer demand, providing necessary database for the Hainan traffic flow model. Based on Baidu Index, with Hainan traffic flow as example, this paper conduct both qualitative and quantitative analysis on the relationship between search keyword from Baidu Index and actual Hainan tourist traffic flow, and build multiple regression model by SPSS.
International Nuclear Information System (INIS)
Liu Jingquan; Yoshikawa, H.; Zhou Yangping
2005-01-01
Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle sys- tem based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being, Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples. (authors)
Flow and Stress Field Analysis of Different Fluids and Blades for Fermentation Process
Cheng-Chi Wang; Po-Jen Cheng; Kuo-Chi Liu; Ming-Yi Tsai
2014-01-01
Fermentation techniques are applied for the biotechnology and are widely used for food manufacturing, materials processing, chemical reaction, and so forth. Different fluids and types of blades in the tank for fermentation cause distinct flow and stress field distributions on the surface between fluid and blade and various flow reactions in the tank appear. This paper is mainly focused on the analysis of flow field with different fluid viscosities and also studied the stress field acting on t...
International Nuclear Information System (INIS)
Naitoh, Masanori; Uchida, Shunsuke; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi
2009-01-01
Six calculation steps have been prepared for predicting flow accelerated corrosion (FAC) occurrence and evaluating wall thinning rate. (1) Flow pattern and temperature in each elemental volume along the flow path are obtained with a 1D plant system code, (2) Corrosive conditions, e.g., oxygen concentration and electrochemical corrosion potential (ECP) along the flow path are calculated with a hydrazine-oxygen reaction code, (3) Precise flow patterns and mass transfer coefficients at the structure surface are calculated with a 3D CFD code, (4) Danger zones are evaluated by combining major FAC parameters, (5) Wall thinning rates are calculated with the coupled models of static electrochemical analysis and dynamic double oxide layer analysis at the identified danger zone, and then, (6) Residual life and effects of countermeasures can be evaluated. Anodic and cathodic current densities and ECPs were calculated with the static electrochemistry model, and ferrous ion release rate determined by the anodic current density was used as input for the dynamic double oxide layer model. Thickness of the oxide film and its characteristics determined by the dynamic double oxide layer model were used for the electrochemistry model to determine the resistances of cathodic current from the bulk to the surface and anodic current from the surface to the bulk. The calculated results of the coupled models had been compared wit