WorldWideScience

Sample records for welding flux slag

  1. Thermophysical Property Measurements of Molten Slag and Welding Flux by Aerodynamic Levitator

    Science.gov (United States)

    Onodera, Kenta; Nakamura, Airi; Hakamada, Shinya; Watanabe, Masahito; Kargl, Florian

    Molten slag and welding flux are important materials for steel processing. Due to lack of durable refractory materials, there is limited publication data on the thermophysical properties of these slags. Therefore, in this study, we measured density and viscosity of CaO-Al2O3-SiO2 slag and welding flux using Aerodynamic Levitation (ADL) with CO2-laser heating in which can be achieve containerless and non-contacting conditions for measurements. For density measurements, in order to obtain correct shape of the droplet we used high-speed camera with the extended He-Ne laser to project the shadow image without the influence of the selfluminescence at the high temperature. For viscosity measurement, we also have a unique vibration method; it caused oscillation in a sample by letting gas for levitation vibrate by an acoustic speaker. Using these techniques, we succeeded to measure systematically density and viscosity of molten oxides system.

  2. Use of flux welding slag of the Mn-O-SiO2 system for the obtaining of a new alloyed agglomerated flux

    International Nuclear Information System (INIS)

    Cruz, A.; Quintana, R.; Garcia, L. L.; Perdomo, L.; Jimenez, G.; Gomez, C. R.; Alguacil, F. J.; Cores, A.

    2005-01-01

    This paper deals with the use of welding slags of the MnO-SiO 2 system fluxes, coming from the recovering by means of the submerged arc welding in the manufacturing of agglomerated fluxes for surfacing with the same propose. the composition of the matrix is studied by means of an experimental design in a restricted area of the Mc Lean Anderson kind, the technological behaviour of the different mixtures is checked, and the results of the best types that have alloy charges included are analysed by a characterization of the weld. (Author) 20 refs

  3. The effect of flux on properties of weld in submerged arc welding with filler metal

    International Nuclear Information System (INIS)

    Fattahpour, Iran.

    1984-01-01

    In the submerged-arc welding, the electrode wire is shielded by a blanket of granular fusible material called a flux. This granular material, flux, must ensure the deposition of weld metal of given chemical composition and specified mechanical properties. The flux must also ensure stable burning of the welding arc and contribute to the formation of a dense weld of required shape and size, and free from pores, cracks and slag inclusions. As the deposited molten metal solidifies, the flux must form a slag crust, easily separable from the surface of the weld. This material must be of a certain chemical composition and possess definite physical properties, such as melting point, viscosity, bulk weight. The chemical composition of the flux is chosen, depending on the composition of the welded metal and electrode wire used. (Author)

  4. Carbothermic reduction of pyrolusite for obtaining carbon bearing ferromanganese and slags, adequated to the development of welding materials

    International Nuclear Information System (INIS)

    Cruz-Crespo, A.; Garcia-Sanchez, L. L.; Quintana-Puchol, R.; Perdomo Gonzalez, L.; Gomez-Perez, C. R.; Jimenez-Vielsa, G. E.; Cores-Sanchez, A.

    2004-01-01

    The high carbon ferromanganese obtained by means of carbothermic reduction in an electric arc furnace of direct current is proposed. the ideal composition of slag oxides to achieve a flux to be used in the submerged arc welding (SAW) is established. Calculation for charge components (pyrolusite, coke, steel wool, lime, rutile and fluorite) for no fluxes technology for FeMn is carried out taking into account the welding fluxes characteristics of the SiO 2 -MnO-CaO system. Change materials reduction experiments to obtain FeMn and slag are used to develop a SAW flux. (Author) 21 refs

  5. Combined Performance of Polypropylene Fibre and Weld Slag in High Performance Concrete

    Science.gov (United States)

    Ananthi, A.; Karthikeyan, J.

    2017-12-01

    The effect of polypropylene fibre and weld slag on the mechanical properties of High Performance Concrete (HPC) containing silica fume as the mineral admixtures was experimentally verified in this study. Sixteen series of HPC mixtures(70 MPa) were designed with varying fibre fractions and Weld Slag (WS). Fibre added at different proportion (0, 0.1, 0.3 and 0.6%) to the weight of cement. Weld slag was substituted to the fine aggregate (0, 10, 20 and 30%) at volume. The addition of fibre decreases the slump at 5, 9 and 14%, whereas the substitution of weld slag decreases by about 3, 11 and 21% with respect to the control mixture. Mechanical properties like compressive strength, split tensile strength, flexural strength, Ultrasonic Pulse Velocity test (UPV) and bond strength were tested. Durability studies such as Water absorption and Sorptivity test were conducted to check the absorption of water in HPC. Weld slag of 10% and fibre dosage of 0.3% in HPC, attains the maximum strength and hence this combination is most favourable for the structural applications.

  6. Use of flux welding slag of the Mn-O-SiO{sub 2} system for the obtaining of a new alloyed agglomerated flux; Empleo de escorias de soldadura del sistema MnO-SiO{sub 2} para la obtencion de un nuevo fundente aglomerado aleado

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, A.; Quintana, R.; Garcia, L. L.; Perdomo, L.; Jimenez, G.; Gomez, C. R.; Alguacil, F. J.; Cores, A.

    2005-07-01

    This paper deals with the use of welding slags of the MnO-SiO{sub 2} system fluxes, coming from the recovering by means of the submerged arc welding in the manufacturing of agglomerated fluxes for surfacing with the same propose. the composition of the matrix is studied by means of an experimental design in a restricted area of the Mc Lean Anderson kind, the technological behaviour of the different mixtures is checked, and the results of the best types that have alloy charges included are analysed by a characterization of the weld. (Author) 20 refs.

  7. Simultaneous obtention of multicomponent ferroalloy and slag from black sands for the development of electrical arc welding consumables

    International Nuclear Information System (INIS)

    Cruz-Crespo, A.; Gomez-Rodriguez, L.; Garcia-Sanchez, L. L.; Quintana-Puchol, R.; Cerpa-Naranjo, A.; Cores-Sanchez, A.

    2004-01-01

    In this paper, chemical and mineralogical characterizations of the black sands of the Mejias placer of Sagua de Tanamo (the most important beach littoral placer of the northwest of oriental Cuba) are exposed. Starting from these characterizations a calculation strategy is developed for the making of the metallurgical load that allows to obtain simultaneously, when processed by carbothermic reduction in an electrical arc furnace, a multicomponent ferroalloy and a useful slag for the making of electric arch welding consumables. The powder of the obtained slag is agglomerated with liquid glass. The resulting pellets, due to their behavior on the submerged arc welding (SAW) present technological and metallurgical properties that correspond with the requirements of an agglomerated flux matrix. The chemical composition of the multicomponent ferroalloy is constituted by metallic elements of high metallurgical and alloyed values (V, Cr, Mo, Ti, Nb). It is appropriate for the formulation of consumables for manual welding (SMAW) and SAW, as well. (Author) 15 refs

  8. Carbothermic reduction of pyrolusite for obtaining carbon bearing ferromanganese and slags, adequated to the development of welding materials; Reduccion carbotermica de pirolusita para la obtencion de ferromanganeso y escoria, adecuados al desarrollo de materiales de soldadura

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Crespo, A.; Garcia-Sanchez, L. L.; Quintana-Puchol, R.; Perdomo Gonzalez, L.; Gomez-Perez, C. R.; Jimenez-Vielsa, G. E.; Cores-Sanchez, A.

    2004-07-01

    The high carbon ferromanganese obtained by means of carbothermic reduction in an electric arc furnace of direct current is proposed. the ideal composition of slag oxides to achieve a flux to be used in the submerged arc welding (SAW) is established. Calculation for charge components (pyrolusite, coke, steel wool, lime, rutile and fluorite) for no fluxes technology for FeMn is carried out taking into account the welding fluxes characteristics of the SiO{sub 2}-MnO-CaO system. Change materials reduction experiments to obtain FeMn and slag are used to develop a SAW flux. (Author) 21 refs.

  9. A fitness-for-purpose evaluation of fracture critical electro-slag welds.

    Science.gov (United States)

    2009-03-01

    A fitness-for-purpose evaluation was performed on the electro-slag flange welds of the West Fremont bridge approach : superstructures, per the request of FHWA. This evaluation required gathering knowledge of the material properties, fabrication : def...

  10. production of manual arc welding electrodes with local raw materials

    African Journals Online (AJOL)

    CHUKSSUCCESS 4 LOVE

    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between ... major objectives: to form fusible slags, to stabilize the arc and to produce an inert gas shielding ... Current fusion welding techniques rely.

  11. Use of refractory chromites for obtaining fluxes amassed employed in submerged arc welding (SAW); Empleo de cromitas refractarias par la obtencion de fundentes aglomerados utilizados en la soldadura automatica por arco sumegido (SAW)

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo-Gonzalez, L.; Quintana-Puchol, R.; Cruz-Crespo, A.; Castellanos-Estupinan, J.; Garcia-Sanchez, L. L.; Formoso-Prego, A.; Cores-Sanchez, A.

    2003-07-01

    In the present work high carbon ferrochrome (load ferrochrome) and slags are obtained, starting from the metallurgic reductive processing of refractory chromites. The obtaining of alloys and slags is studied using an experiment design based in the relationships among components. The chemical compositions of alloys and slags guarantee their application for the conformation of alloys loads and matrix fluxes amassed for the superficial filling by means of submerged arc welding (SAW). The melting-reduction process is carried out in an electric arc furnace. (Author) 16 refs.

  12. Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds

    Science.gov (United States)

    Lin, Hsuan-Liang; Wu, Tong-Min; Cheng, Ching-Min

    2014-01-01

    The purpose of this study is to investigate the effect of activating flux on the depth-to-width ratio (DWR) and hot cracking susceptibility of Inconel 718 alloy tungsten inert gas (TIG) welds. The Taguchi method is employed to investigate the welding parameters that affect the DWR of weld bead and to achieve optimal conditions in the TIG welds that are coated with activating flux in TIG (A-TIG) process. There are eight single-component fluxes used in the initial experiment to evaluate the penetration capability of A-TIG welds. The experimental results show that the Inconel 718 alloy welds precoated with 50% SiO2 and 50% MoO3 flux were provided with better welding performance such as DWR and hot cracking susceptibility. The experimental procedure of TIG welding process using mixed-component flux and optimal conditions not only produces a significant increase in DWR of weld bead, but also decreases the hot cracking susceptibility of Inconel 718 alloy welds.

  13. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.

  14. Behavior of Hollow Thin Welded Tubes Filled with Sand Slag Concrete

    Directory of Open Access Journals (Sweden)

    Noureddine Ferhoune

    2016-01-01

    Full Text Available This paper presents the axial bearing capacity of thin welded rectangular steel stubs filled with concrete sand. A series of tests was conducted to study the behavior of short composite columns under axial compressive load; the cross section dimensions were 100 × 70 × 2 mm. A total of 20 stubs have been tested, as follows: 4 hollow thin welded tubes were tested to axial and eccentric load compression, 4 were filled with ordinary concrete appointed by BO columns, 6 were filled with concrete whose natural sand was completely substituted by a crystallized sand slag designated in this paper by BSI, and 6 were tucked in concrete whose natural sand was partially replaced by a crystallized sand slag called BSII. The main parameters studied are the height of the specimen (300 mm–500 mm, eccentricity of load and type of filling concrete. Based on test results obtained, it is confirmed that the length of the tubes has a considerable effect on the bearing capacity and the failure mode. In all test tubes, fracture occurred by the convex local buckling of steel section due to the outward thrust of the concrete; it was observed that the sand concrete improves the bearing capacity of tubes compounds compared to those filled with ordinary concrete.

  15. Experimental study on effect of flux composition on element transfer ...

    Indian Academy of Sciences (India)

    BRIJPAL SINGH

    2018-03-10

    Mar 10, 2018 ... 3 Division of Manufacturing Processes and Automation Engineering, Netaji Subhas Institute of ... Submerged arc welding; basicity index; element transfer; slag metal reactions; oxidizing power of ... flux composition, wire and base plate composition. ..... increase in BI of the flux with increasing NiO additive. If.

  16. Influência da incorporação de resíduo de escória de fluxo de soldagem nas propriedades tecnológicas de argamassa de múltiplo uso e cerâmica vermelha para construção civil Influence of the incorporation of waste of slag of welding flux on the technological properties of multiple use mortar and red ceramic for civil construction

    Directory of Open Access Journals (Sweden)

    C. E Viana

    2010-03-01

    general, this waste has been disposal in private waste deposits. In recent years, the ceramic area has attracted great attention for recycling of industrial wastes. In this work a study was done aiming evaluate the influence of the welding flux slag waste on the technological properties of multiple use mortar and red ceramics for use in civil construction. The waste sample was characterized regarding to chemical composition, X-ray diffraction, particle size analysis, and real density. The mortar was incorporated with welding flux slag waste in total substitution of natural sand (traditional small aggregate. The prepared mortars were characterized regarding to consistency, fresh state density, incorporated air content, and compressive strength. Microstructural analysis of the mortars was done via SEM. In addition, a series of clay/waste mixtures also was prepared with up to 10 wt.% of welding flux slag waste. The ceramic pieces were prepared by uniaxial pressing and fired between 850 ºC and 950 ºC. The following technological properties after firing were determined: linear shrinkage, water absorption, apparent porosity, apparent specific mass, and flexural strength. The results show that the welding flux slag waste could replace the natural sand as small aggregate in multiple use mortar. In addition, the welding flux slag waste also could be incorporated into red ceramics (bricks and ceramic blocks as partial replacement of natural red clay.

  17. Evaluation of the AISI 904L Alloy Weld Overlays Obtained by GMAW and Electro-Slag Welding Processes

    Science.gov (United States)

    Jorge, Jorge C. F.; Meira, O. G.; Madalena, F. C. A.; de Souza, L. F. G.; Araujo, L. S.; Mendes, M. C.

    2017-05-01

    The use of superaustenitic stainless steels (SASS) as an overlay replacement for nickel-based alloys can be an interesting alternative for the oil and gas industries, due to its lower cost, when compared to superalloys. Usually, the deposition is made with several welding passes by using conventional arc welding processes, such as gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW) processes. In this respect, electro-slag welding (ESW), which promotes high heat inputs and low dilution of the welds, can also be attractive for this application, as it provides a higher productivity, once only one layer is needed for the deposition of the minimum thickness required. The present work evaluates the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by ESW and GMAW processes. Both as-welded and heat-treated conditions were evaluated and compared. A multipass welding by GMAW process with three layers and 48 passes was performed on 12.5 × 200 × 250 mm steel plates with average welding energy of 1.0 kJ/mm. For ESW process, only one layer was deposited on 50 × 400 × 400 mm steel plates with average welding energy of 11.7 kJ/mm. After welding, a post-weld heat treatment (PWHT) at 620 °C for 10 h was performed in half of the steel plate, in order to allow the comparison between this condition and the as-welded one. For both processes, the austenitic microstructure of the weld deposits was characterized by optical microscopy and scanning electron microscopy with electron backscatter diffraction. A low proportion of secondary phases were observed in all conditions, and the PWHT did not promote significant changes on the hardness profile. Martensite for GMAW process and bainite for ESW process were the microstructural constituents observed at the coarse grain heat-affected zone, due to the different cooling rates. For ESW process, no evidences of partially diluted zones were found. As a consequence of the microstructural

  18. Automatic welding and cladding in heavy fabrication

    International Nuclear Information System (INIS)

    Altamer, A. de

    1980-01-01

    A description is given of the automatic welding processes used by an Italian fabricator of pressure vessels for petrochemical and nuclear plant. The automatic submerged arc welding, submerged arc strip cladding, pulsed TIG, hot wire TIG and MIG welding processes have proved satisfactory in terms of process reliability, metal deposition rate, and cost effectiveness for low alloy and carbon steels. An example shows sequences required during automatic butt welding, including heat treatments. Factors which govern satisfactory automatic welding include automatic anti-drift rotator device, electrode guidance and bead programming system, the capability of single and dual head operation, flux recovery and slag removal systems, operator environment and controls, maintaining continuity of welding and automatic reverse side grinding. Automatic welding is used for: joining vessel sections; joining tubes to tubeplate; cladding of vessel rings and tubes, dished ends and extruded nozzles; nozzle to shell and butt welds, including narrow gap welding. (author)

  19. A Study to Increase Weld Penetration in P91 Steel During TIG Welding by using Activating Fluxes

    Science.gov (United States)

    Singh, Akhilesh Kumar; Kumar, Mayank; Dey, Vidyut; Naresh Rai, Ram

    2017-08-01

    Activated Flux TIG (ATIG) welding is a unique joining process, invented at Paton Institute of electric welding in 1960. ATIG welding process is also known as flux zoned TIG (FZTIG). In this process, a thin layer of activating flux is applied along the line on the surface of the material where the welding is to be carries out. The ATIG process aids to increase the weld penetration in thick materials. Activating fluxes used in the literature show the use of oxides like TiO2, SiO2, Cr2O3, ZnO, CaO, Fe2O3, and MnO2 during welding of steels. In the present study, ATIG was carried out on P-91 steel. Though, Tungsten Inert Gas welding gives excellent quality welds, but the penetration obtained in such welding is still demanding. P91 steel which is ferritic steel is used in high temperature applications. As this steel is, generally, used in thick sections, fabrication of such structures with TIG welding is limited, due to its low depth of penetration. To increase the depth of penetration in P91while welding with ATIG, the role of various oxides were investigated. Apart from the oxides mentioned above, in the present study the role of B2O3, V2O5 and MgO, during ATIG welding of P91 was investigated. It was seen that, compared to TIG welding, there was phenomenal increase in weld penetration during ATIG welding. Amongst all the oxides used in this study, maximum penetration was achieved in case of B2O3. The measurements of weld penetration, bead width and heat affected zone of the weldings were carried out using an image analysis technique.

  20. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    Science.gov (United States)

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  1. Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy

    Science.gov (United States)

    Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.

    2007-03-01

    Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.

  2. Effect of flux powder SiO2 for the welding of 304-austenitic stainless ...

    African Journals Online (AJOL)

    optimal weld pool geometry in the tungsten inert gas (TIG) welding of ..... Flux assisted gas tungsten arc and laser welding of titanium with cryolite containing fluxes: arc spectroscopy and corrosion resistance studies, Welding Journal, Vol.

  3. Active flux tungsten inert gas welding of austenitic stainless steel AISI 304

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2016-10-01

    Full Text Available The paper presents the effects of flux assisted tungsten inert gas (A-TIG welding of 4 (10 mm thick austenitic stainless steel EN X5CrNi1810 (AISI 304 in the butt joint. The sample dimensions were 300 ´ 50 mm, and commercially available active flux QuickTIG was used for testing. In the planned study the influence of welding position and weld groove shape was analysed based on the penetration depth. A comparison of microstructure formation, grain size and ferrit number between TIG welding and A-TIG welding was done. The A-TIG welds were subjected to bending test. A comparative study of TIG and A-TIG welding shows that A-TIG welding increases the weld penetration depth.

  4. Weld metal microstructures of hardfacing deposits produced by self-shielded flux-cored arc welding

    International Nuclear Information System (INIS)

    Dumovic, M.; Monaghan, B.J.; Li, H.; Norrish, J.; Dunne, D.P.

    2015-01-01

    The molten pool weld produced during self-shielded flux-cored arc welding (SSFCAW) is protected from gas porosity arising from oxygen and nitrogen by reaction ('killing') of these gases by aluminium. However, residual Al can result in mixed micro-structures of δ-ferrite, martensite and bainite in hardfacing weld metals produced by SSFCAW and therefore, microstructural control can be an issue for hardfacing weld repair. The effect of the residual Al content on weld metal micro-structure has been examined using thermodynamic modeling and dilatometric analysis. It is concluded that the typical Al content of about 1 wt% promotes δ-ferrite formation at the expense of austenite and its martensitic/bainitic product phase(s), thereby compromising the wear resistance of the hardfacing deposit. This paper also demonstrates how the development of a Schaeffler-type diagram for predicting the weld metal micro-structure can provide guidance on weld filler metal design to produce the optimum microstructure for industrial hardfacing applications.

  5. Study on mechanical and microstructure behavior of submerged arc welding flux using red mud

    Science.gov (United States)

    Dewangan, Rishi; Pandey, Pankaj K.; Upadhyay, Renu

    2018-05-01

    This paper emphasis on utilization of Red Mud for preparing submerged arc welding flux and study its mechanical and microstructure behavior. Among the six fluxes prepared in the laboratory, Flux no. 1 (basicity 1.106) found to be best due to its running performance, micro hardness and Brinell hardness. The hardness value (HV) of the fluxes was varying from 165.70 to 217.15 at a load of 1000gm respectively. From the micrograph of welded metal, acicular ferrite found to be optimum which helps in increasing the ductility and hardness of the welded material.

  6. Influence of weld discontinuities on strain controlled fatigue behavior of 308 stainless steel weld metal

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Mannan, S.L.; Rodriguez, P.

    1994-01-01

    Detailed investigations have been performed for assessing the importance of weld discontinuities in strain controlled low cycle fatigue (LCF) behavior of 308 stainless steel (SS) welds. The LCF behavior of 308 SS welds containing defects was compared with that of type 304 SS base material and 308 SS sound weld metal. Weld pads were prepared by shielded metal arc welding process. Porosity and slag inclusions were introduced deliberately into the weld metal by grossly exaggerating the conditions normally causing such defects. Total axial strain controlled LCF tests have been conducted in air at 823 K on type 304 SS base and 308 SS sound weld metal employing strain amplitudes in the range from ±0.25 to ±0.8 percent. A single strain amplitude of ±0.25 percent was used for all the tests conducted on weld samples containing defects. The results indicated that the base material undergoes cyclic hardening whereas sound and defective welds experience cyclic softening. Base metal showed higher fatigue life than sound weld metal at all strain amplitudes. The presence of porosity and slag inclusions in the weld metal led to significant reduction in life. Porosity on the specimen surface has been found to be particularly harmful and caused a reduction in life by a factor of seven relative to sound weld metal

  7. Effect of post weld heat treatment on the microstructure and tensile properties of activated flux TIG welds of Inconel X750

    Energy Technology Data Exchange (ETDEWEB)

    Ramkumar, K. Devendranath, E-mail: ramdevendranath@gmail.com; Ramanand, R.; Ameer, Ajmal; Simon, K. Aghil; Arivazhagan, N.

    2016-03-21

    This study addresses the effect of post weld heat treatment on the fusion zone microstructure and the mechanical properties of activated flux tungsten inert gas (A-TIG) weldments of Inconel X750. In this study, a compound flux of 50% SiO{sub 2}+50% MoO{sub 3} was used for A-TIG welding of the samples. Comparative studies on the microstructure and mechanical properties have been made on the weldments both in the as-welded and post weld heat treated conditions. Direct ageing post weld heat treatment (PWHT) was carried out at 705 °C for 22 h on the A-TIG weldment to assess the structure–property relationships. It was inferred that direct ageing post weld heat treatment resulted in better tensile strength (1142 MPa) compared to the as-welded coupons (736 MPa). The joint efficiencies of the as-welded and post weld heat treated conditions were found to be 60.7% and 94.07% respectively. The impact toughness of the as-welded coupons were found to be greater than the post weld heat treated samples; however the impact toughness of the welds are greater than the parent metal employed in both the cases. This study also attested the detailed structure–property relationships of A-TIG weldments using the combined techniques of optical and scanning electron microscopy, Electron Dispersive X-ray Analysis (EDAX) techniques.

  8. Effect of post weld heat treatment on the microstructure and tensile properties of activated flux TIG welds of Inconel X750

    International Nuclear Information System (INIS)

    Ramkumar, K. Devendranath; Ramanand, R.; Ameer, Ajmal; Simon, K. Aghil; Arivazhagan, N.

    2016-01-01

    This study addresses the effect of post weld heat treatment on the fusion zone microstructure and the mechanical properties of activated flux tungsten inert gas (A-TIG) weldments of Inconel X750. In this study, a compound flux of 50% SiO_2+50% MoO_3 was used for A-TIG welding of the samples. Comparative studies on the microstructure and mechanical properties have been made on the weldments both in the as-welded and post weld heat treated conditions. Direct ageing post weld heat treatment (PWHT) was carried out at 705 °C for 22 h on the A-TIG weldment to assess the structure–property relationships. It was inferred that direct ageing post weld heat treatment resulted in better tensile strength (1142 MPa) compared to the as-welded coupons (736 MPa). The joint efficiencies of the as-welded and post weld heat treated conditions were found to be 60.7% and 94.07% respectively. The impact toughness of the as-welded coupons were found to be greater than the post weld heat treated samples; however the impact toughness of the welds are greater than the parent metal employed in both the cases. This study also attested the detailed structure–property relationships of A-TIG weldments using the combined techniques of optical and scanning electron microscopy, Electron Dispersive X-ray Analysis (EDAX) techniques.

  9. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    Science.gov (United States)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  10. Thermite welding of Cu-Nb microcomposite wires

    Energy Technology Data Exchange (ETDEWEB)

    Visniakov, Nikolaj; Mikalauskas, Gediminas; Lukauskaite, Raimonda; Cernasejus, Olegas; Rudzinskas, Vitalijus [Vilnius Gediminas Technical Univ. (Lithuania). Faculty of Mechanics; Skamat, Jelena; Boris, Renata [Vilnius Gediminas Technical Univ. (Lithuania). Inst. of Thermal Insulation

    2017-10-15

    Thermite welding of Cu-Nb microcomposite wires was investigated. Suitable compositions of thermite material and slag were determined from the equation of the exothermic combustion synthesis reaction. The phase compositions of the thermite mixture and slag determined by X-ray diffraction analysis correspond to those assessed from the equation. According to non-destructive radiographic testing, the joint structure does not have welding defects. Microstructural examination of the joint cross-section with scanning electron microscopy showed that the Cu-Nb wire retained its shape and microstructure and only a thin surface layer of wire was melted during welding. The difference in electrical resistances of the conductor and welded joint was below 20 %. The thermite joint can withstand a maximum load equal to 62.5 % of the load-bearing capacity of microcomposite conductor.

  11. Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions

    Energy Technology Data Exchange (ETDEWEB)

    Duchesne, Marc A. [Chemical and Biological Engineering Department, University of Ottawa, 161 Louis Pasteur, Ottawa, Ont. (Canada); CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario (Canada); Macchi, Arturo [Chemical and Biological Engineering Department, University of Ottawa, 161 Louis Pasteur, Ottawa, Ont. (Canada); Lu, Dennis Y.; Hughes, Robin W.; McCalden, David; Anthony, Edward J. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario (Canada)

    2010-08-15

    Threshold slag viscosity heuristics are often used for the initial assessment of coal gasification projects. Slag viscosity predictions are also required for advanced combustion and gasification models. Due to unsatisfactory performance of theoretical equations, an artificial neural network model was developed to predict slag viscosity over a broad range of temperatures and slag compositions. This model outperforms other slag viscosity models, resulting in an average error factor of 5.05 which is lower than the best obtained with other available models. Genesee coal ash viscosity predictions were made to investigate the effect of adding Canadian limestone and dolomite. The results indicate that magnesium in the fluxing agent provides a greater viscosity reduction than calcium for the threshold slag tapping temperature range. (author)

  12. Automatic welding technologies for long-distance pipelines by use of all-position self-shielded flux cored wires

    Directory of Open Access Journals (Sweden)

    Zeng Huilin

    2014-10-01

    Full Text Available In order to realize the automatic welding of pipes in a complex operation environment, an automatic welding system has been developed by use of all-position self-shielded flux cored wires due to their advantages, such as all-position weldability, good detachability, arc's stability, low incomplete fusion, no need for welding protective gas or protection against wind when the wind speed is < 8 m/s. This system consists of a welding carrier, a guide rail, an auto-control system, a welding source, a wire feeder, and so on. Welding experiments with this system were performed on the X-80 pipeline steel to determine proper welding parameters. The welding technique comprises root welding, filling welding and cover welding and their welding parameters were obtained from experimental analysis. On this basis, the mechanical properties tests were carried out on welded joints in this case. Results show that this system can help improve the continuity and stability of the whole welding process and the welded joints' inherent quality, appearance shape, and mechanical performance can all meet the welding criteria for X-80 pipeline steel; with no need for windbreak fences, the overall welding cost will be sharply reduced. Meanwhile, more positive proposals were presented herein for the further research and development of this self-shielded flux core wires.

  13. Simplified model for determining local heat flux boundary conditions for slagging wall

    Energy Technology Data Exchange (ETDEWEB)

    Bingzhi Li; Anders Brink; Mikko Hupa [Aabo Akademi University, Turku (Finland). Process Chemistry Centre

    2009-07-15

    In this work, two models for calculating heat transfer through a cooled vertical wall covered with a running slag layer are investigated. The first one relies on a discretization of the velocity equation, and the second one relies on an analytical solution. The aim is to find a model that can be used for calculating local heat flux boundary conditions in computational fluid dynamics (CFD) analysis of such processes. Two different cases where molten deposits exist are investigated: the black liquor recovery boiler and the coal gasifier. The results show that a model relying on discretization of the velocity equation is more flexible in handling different temperature-viscosity relations. Nevertheless, a model relying on an analytical solution is the one fast enough for a potential use as a CFD submodel. Furthermore, the influence of simplifications to the heat balance in the model is investigated. It is found that simplification of the heat balance can be applied when the radiation heat flux is dominant in the balance. 9 refs., 7 figs., 10 tabs.

  14. Correlation of Flux Composition and Inclusion Characteristics With Submerged Arc Weld Metal Properties in HY-100 Steel

    Science.gov (United States)

    1993-09-01

    chemistries are complex, the welding engineer needs to obtain the correct CCT diagram for the alloy system in question. Once the CCT diagram is estimated...the CCT diagram must be pertinent to the particular chemistry of the weld metal, especially when the weld metal composition varies with flux

  15. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  16. Effective dose in SMAW and FCAW welding processes using rutile consumables.

    Science.gov (United States)

    Herranz, M; Rozas, S; Idoeta, R; Alegría, N

    2014-03-01

    The shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes use covered electrodes and flux cored wire as consumables. Among these consumables, ones containing rutile are the most widely used, and since they have a considerable natural radioactive content, they can be considered as NORM (naturally occurring radioactive material). To calculate the effective dose on workers during their use in a conservative situation, samples of slag and aerosols and particles emitted or deposited during welding were taken and measured by gamma, alpha and beta spectrometry. An analytical method was also developed for estimating the activity concentration of radionuclides in the inhaled air. (222)Rn activity concentration was also assessed. With all these data, internal and external doses were calculated. The results show that external doses are negligible in comparison with internal ones, which do not exceed 1 mSv yr(-1), either in this conservative situation or in any other more favourable one. Radionuclides after Rn in the radioactive natural series are emitted at the same activity concentration to the atmosphere, this being around 17 times higher than that corresponding to radionuclides before Rn. Taking into account these conclusions and the analytical method developed, it can be concluded that one way to assess the activity concentration of natural radionuclides in inhaled air and hence effective doses could be the early gamma-ray spectrometry of aerosols and particles sampled during the welding process.

  17. Optimization of welding variables for duplex stainless steel by GTAW and SMAW

    International Nuclear Information System (INIS)

    Ajmal, M.; Anwar, M.Y.; Nawaz, A.

    2006-01-01

    The main problems faced during the welding of duplex stainless steels are cleanliness and slag inclusions. In the present work the methods to eliminate these problems were studied during the welding of duplex stainless steel by Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW). Since the duplex stainless steel is an expensive material, the initial experiments for optimization of welding variables were. carried out on low carbon steel (CS) plates with duplex consumables. Welding of butt groove joints on CS plates was carried with various sets of welding variables i.e. current, voltage and arc energy using duplex consumables. The. radiographic inspection, micro-structural observations and hardness testing of the welds suggested the welding variables that will produce a sound weld on CS plate. These optimized variables were then used for the welding of edge groove joint and T -joint on duplex stainless steel by GTAW and SMAW processes. The hardness and micro-structural study of the joints produced on duplex stainless steel by GTAW and SMAW with duplex consumables were also studied. No slag inclusions and porosity were observed in the microstructure of these weldments and their properties were found similar to the parent metal. (author)

  18. Drop weld thermal injuries to the middle ear.

    LENUS (Irish Health Repository)

    Keogh, I J

    2009-01-01

    Drop weld injuries to the tympanic membrane and middle ear caused by hot sparks or molten slag are a rare but significant injury. Steel workers and welders who are regularly exposed to flying sparks and molten metal slag are predisposed. This type of transtympanic thermal injury occurs when the slag literally drops into the external auditory canal and burns through the tympanic membrane. A spectrum of severity of injury occurs which includes chronic tympanic membrane perforation, chronic otorrhoea, facial nerve injury and deafness. Chronic tympanic membrane perforation is the most common sequelae and is perhaps one of the most challenging of all perforations to repair The combination of direct thermal injury and foreign body reaction results in continuing or recurrent suppuration. The foreign body reaction is due to the embedding of metal slag in the promontorial mucosa. We present a case of drop weld injury to the left tympanic membrane, resulting in chronic middle ear inflammation, otorrhoea and tympanic perforation. CAT scan clearly demonstrated a metallic promontorial foreign body with localised bone erosion. We emphasise the importance of removing these foreign bodies and recommend a cartilage reinforced underlay tympanoplasty technique to repair these perforations. Transtympanic thermal trauma is a preventable occupational injury, which is best, avoided by earplugs and increased awareness.

  19. Recycling of residual IGCC slags and their benefits as degreasers in ceramics.

    Science.gov (United States)

    Iglesias Martín, I; Acosta Echeverría, A; García-Romero, E

    2013-11-15

    This work studies the evolution of IGCC slag grains within a ceramic matrix fired at different temperatures to investigate the effect of using IGCC slag as a degreaser. Pressed ceramic specimens from two clay mixtures are used in this study. The M1 mixture is composed of standard clays, whereas the M2 mixture is composed of the same clay mixture as M1 mixture but contains 15% by weight IGCC slag. The amount of IGCC slag added coincides with the amount of slag typically used as a degreaser in the ceramic industry. Specimens are fired at 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C. The mineralogical composition and the IGCC slag grain shape within the ceramic matrix are determined by X-ray diffraction, polarized light microscopy and scanning electron microscopy. The results reveal that the surface of the slag grains is welded to the ceramic matrix while the quartz grains are separated, which causes increased water absorption and reduces the mechanical strength. IGCC slag, however, reduces water absorption. This behaviour is due to the softening temperature of the slag. This property is quite important from an industrial viewpoint because IGCC slag can serve as an alternative to traditional degreasing agents in the ceramic building industry. Additionally, using IGCC slag allows for the transformation of waste into a secondary raw material, thereby avoiding disposal at landfills; moreover, these industrial wastes are made inert and improve the properties of ceramics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Recovery of metal values from copper slag and reuse of residual secondary slag.

    Science.gov (United States)

    Sarfo, Prince; Das, Avimanyu; Wyss, Gary; Young, Courtney

    2017-12-01

    Resource and environmental factors have become major forces in mining and metallurgy sectors driving research for sustainability purposes. The concept of zero-waste processing has been gaining ground readily. The scant availability of high quality raw materials has forced the researchers to shift their focus to recycling while the exceedingly stringent environmental regulations have forced researchers to explore new frontiers of minimizing/eliminating waste generation. The present work is aimed at addressing both aspects by employing recycling to generate wealth from copper slag and producing utilizable materials at the same time thus restoring the ecosystem. Copper slag was characterized and processed. The pyro-metallurgical processing prospects to generate utilizable materials were arrived at through rigorous thermodynamic analysis. Carbothermal reduction at elevated temperature (near 1440°C) helped recover a majority of the metal values (e.g., Fe, Cu and Mo) into the iron-rich alloy product which can be a feed material for steel making. On the other hand, the non-metallic residue, the secondary slag, can be used in the glass and ceramic industries. Reduction time and temperature and carbon content were shown to be the most important process variables for the reaction which were optimized to identify the most favored operating regime that maximizes the metal recovery and simultaneously maximizes the hardness of the secondary slag and minimizes its density, the two major criteria for the secondary slag product to be utilizable. The flux addition level was shown to have relatively less impact on the process performance if these are maintained at an adequate level. The work established that the copper slag, a waste material, can be successfully processed to generate reusable products through pyrometallurgical processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Influence of preheating on API 5L-X80 pipeline joint welding with self shielded flux-cored wire

    International Nuclear Information System (INIS)

    Cooper, R.; Silva, J. H. F.; Trevisan, R. E.

    2004-01-01

    The present work refers to the characterization of API 5L-X80 pipeline joints welded with self-shielded flux cored wire. This process was evaluated under preheating conditions, with an uniform and steady heat input. All joints were welded in flat position (1G), with the pipe turning and the torch still. Tube dimensions were 762 mm in external diameter and 16 mm in thickness. Welds were applied on single V-groove, with six weld beads, along with three levels of preheating temperatures (room temperature, 100 degree centigree, 160 degree centigree). These temperatures were maintained as inter pass temperature. The filler metal E71T8-K6 with mechanical properties different from parent metal was used in under matched conditions. The weld characterization is presented according to the mechanical test results of tensile strength, hardness and impact test. The mechanical tests were conducted according to API 1104, AWS and ASTM standards. API 1104 and API 51 were used as screening criteria. According to the results obtained, it was possible to remark that it is appropriate to weld API 5L-X80 steel ducts with Self-shielded Flux Cored wires, in conformance to the API standards and no preheat temperature is necessary. (Author) 22 refs

  2. Study of the flux effect nature for VVER-1000 RPV welds with high nickel content

    Energy Technology Data Exchange (ETDEWEB)

    Kuleshova, E.A., E-mail: evgenia-orm@yandex.ru [National Research Center “Kurchatov Institute”, Kurchatov Sq.1, 123182, Moscow (Russian Federation); National Research Nuclear University, “MEPhI” (Moscow Engineering Physics Institute), Kashirskoe Highway 31, 115409, Moscow (Russian Federation); Gurovich, B.A.; Lavrukhina, Z.V.; Maltsev, D.A.; Fedotova, S.V.; Frolov, A.S.; Zhuchkov, G.M. [National Research Center “Kurchatov Institute”, Kurchatov Sq.1, 123182, Moscow (Russian Federation)

    2017-01-15

    This work extends the research of the basic regularities of segregation processes in the grain boundaries (GB) of VVER-1000 reactor pressure vessel (RPV) steels. The paper considers the influence of irradiation with different fast neutron fluxes on the structure, yield strength and ductile-to-brittle transition temperature (T{sub K}) changes as well as on changes of the share of brittle intergranular fracture and development of segregation processes in the VVER-1000 RPV weld metal (WM). The obtained experimental results allow to separate the contribution of the hardening and non-hardening mechanisms to mechanical properties degradation of material irradiated at the operating temperature. It is shown that the difference in T{sub K} shift in WM irradiated to the same fluence with different fast neutron fluxes is mainly due to the difference in the GB accumulation kinetics of impurities and only to a small extent due to the material hardening. Phosphorus bulk diffusion coefficients were evaluated for the temperature exposure, accelerated irradiation and irradiation within surveillance specimens (SS) using a kinetic model of phosphorus GB accumulation in low-alloyed low-carbon steels under the influence of operational factors. The correlation between the GB segregation level of phosphorus and nickel, and the T{sub K} shift - in WM SS was obtained experimentally and indicates the non-hardening mechanism contribution to the total radiation embrittlement of VVER-1000 RPV steels throughout its extended lifetime. - Highlights: • Structural elements in high Ni welds are studied at different irradiation fluxes. • AES study demonstrated different P GB kinetics at different irradiation fluxes. • Hardening and non-hardening mechanism contributions to the flux effect are assessed. • Correlation between ΔT{sub K} and P and Ni GB content is shown for VVER-1000 RPV welds.

  3. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    Science.gov (United States)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  4. Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Xie, Xiong; Shen, Jun; Cheng, Liang; Li, Yang; Pu, Yayun

    2015-01-01

    Highlights: • Increased nano-particles strengthening activating flux degraded TIGed seams. • The reaction between SiC particles and Mg alloy produced Al 4 C 3 and Mg 2 Si phases. • Al 4 C 3 and SiC particles promoted the nucleation and suppressed the growth of α-Mg. • Refined α-Mg grains, precipitated phase and SiC particles enhanced TIGed joints. - Abstract: In this paper, AZ31 magnesium alloy joints were processed by nano-particles strengthening activating flux tungsten inert gas (NSA-TIG) welding, which was achieved by the mixed TiO 2 and nano-SiC particles coated on the samples before welding tests. The macro/micro structural observation and mechanical properties evaluation of the welding joints were conducted by using optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction and tension and microhardness tests. The results showed that nano-particles strengthening activating flux effective improved the microstructure, microhardness in fusion zone, ultimate tensile strength of the TIG welding joints. In addition, the chemical reaction between part of SiC particles and AZ31 magnesium alloy produced Al 4 C 3 and Mg 2 Si in the joints. The Al 4 C 3 performed as nucleating agents for α-Mg and the dispersed Mg 2 Si and SiC particles enhanced the mechanical properties of the NSA-TIG welding joints. However, large heat input induced by the increase of the surface coating density of the nano-particles strengthening activating flux, increased the α-Mg grain sizes and weakened the mechanical properties of the welded joints. Therefore, the grain size of α-Mg, distribution of β-Mg 17 Al 12 , Mg 2 Si and SiC particles together influenced the evolution of the mechanical properties of the NSA-TIG welded AZ31 magnesium alloy joints

  5. Pipeline welding with Flux Cored and Metal Cored Wire; Soldagem de dutos com processos Arame Tubular e de Alma Metalica

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ubirajara Pereira da [ITW Soldagem Brasil Miller-Hobart, Sao Paulo, SP (Brazil)

    2003-07-01

    Different welding process like SMAW, Semi-Automatic FCAW Gas-shielded and Self-shielded and Mechanized GMAW-MAG with Solid Wire are suggested to weld Transmission Pipelines. Presently, the largest extensions of Transmission Pipelines under construction, are in China like Lines West-East, Zong-Wu, Shan-Jing Fuxian and some others, totalizing about 8.000 km, and all using Semi-Automatic Self Shielded Flux Cored Arc Welding Process. Also, several papers and magazines that covers Transmission Pipelines Welding, not frequently mention Operational aspects of the process and some other variables like environment and site geography. This presentation intends to cover some of the Operational aspects of the Flux Cored Arc Welding and GMAW-Metal Cored in order to give sufficient information for Construction, Engineering, Projects e Contractors so they can evaluate these Process against the SMAW or even Mechanized Systems, considering the Operation Factor, Efficiency and Deposition Rate. We will not cover operational details of the GMAW Mechanized Systems but only suggest that be evaluated the possibility to replace the GMAW-Solid Wire by the GMAW-Metal Cored Wire. (author)

  6. Study of the transfer efficiency of alloyed elements in fluxes during submerged arc welding process

    International Nuclear Information System (INIS)

    Quintana, R.; Cruz, A.; Perdomo, L.; Castellanos, G.; Garcia, L. L.; Formoso, A.; Cores, A.

    2003-01-01

    It is assessed the transfer of chromium, manganese and carbon of different agglomerate fluxes constituted by 18.75% of alloyed load and 81.25% of matrix during the SAW process (submerge Arc Welding). A vitreous basic matrix corresponding to the system SiO 2 -Al 2 O 3 -(CaO+MgO) was obtained from minerals by fusion in the electric arc furnace. The current proportions of the alloyed load components (FeCr, FeMn and graphite) were carried out using a McLean Anderson experiment design. The corresponding fluxes to each experimental point were obtained by granulation with liquid glass;afterwards, their transfer coefficient for a given regimen of welding was determined. The transfer coefficients were calculated by means of a formula based on the laws of mass conservation and of distribution. (Author) 17 refs

  7. Study and development of solid fluxes for gas tungsten arc welding applied to titanium and its alloys and stainless steels

    International Nuclear Information System (INIS)

    Perry, N.

    2000-06-01

    Gas Tungsten Arc Welding uses an electric arc between the refractory tungsten electrode and the plates to be welded under an argon shielding gas. As a result, the joint quality is excellent, no pollution nor defects are to be feared, consequently this process is used in nuclear, aeronautic, chemical and food industries. Despite of this good qualities, GTAW is limited because of, on the one side, a poor penetrating weld pool and, on the other side, a week productivity rate. Indeed, up to 3 mm thick plates, machining and filler metal is needed. Multiple runs increase the defect's risks, the manufactory time and increase the deformations and the heat affected zone. The goal of this study is to break through this limits without any device investment. Active GTA welding (or ATIG) is a new technique with GTA device and an activating flux to be spread on the upper plate before welding. The arc, by plasma electrochemical equilibrium modifications, and the pool with the inner connective flows inversion, allow 7 mm thick joints in one run without edges machining or filler metal for both stainless steel and titanium alloys. This manuscript describes the development of these fluxes, highlights the several phenomena and presents the possibilities of this new process. This work, in collaboration with B.S.L. industries, leads to two flux formulations (stainless steel and titanium alloys) now in a commercial phase with CASTOLIN S.A. Moreover, B.S.L.industries produces a pressure device (nitrate column) with the ATIG process using more than 2800 ATIG welds. (author)

  8. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides

    Directory of Open Access Journals (Sweden)

    Kuang-Hung Tseng

    2014-06-01

    Full Text Available The purpose of this study was to investigate the difference between tungsten inert gas (TIG welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO2 leads to a satisfactory surface appearance compared to that of the TIG weld made with Al2O3. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO2, the TIG welding with nanoparticle SiO2 has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al2O3 does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO2 uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al2O3 results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.

  9. Analysis of the Corrosion Behavior of an A-TIG Welded SS 409 Weld Fusion Zone

    Science.gov (United States)

    Vidyarthy, R. S.; Dwivedi, D. K.

    2017-11-01

    AISI 409 (SS 409) ferritic stainless steel is generally used as the thick gauge section in freight train wagons, in ocean containers, and in sugar refinery equipment. Activating the flux tungsten inert gas (A-TIG) welding process can reduce the welding cost during fabrication of thick sections. However, corrosion behavior of the A-TIG weld fusion zone is a prime concern for this type of steel. In the present work, the effect of the A-TIG welding process parameters on the corrosion behavior of a weld fusion zone made of 8-mm-thick AISI 409 ferritic stainless-steel plate has been analyzed. Potentiodynamic polarization tests were performed to evaluate the corrosion behavior. The maximum corrosion potential ( E corr) was shown by the weld made using a welding current of 215 A, a welding speed of 95 mm/min, and a flux coating density of 0.81 mg/cm2. The minimum E corr was observed in the weld made using a welding current of 190 A, a welding speed of 120 mm/min, and a flux coating density of 1.40 mg/cm2. The current study also presents the inclusive microstructure-corrosion property relationships using the collective techniques of scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffraction.

  10. Using X-ray Diffraction to Assess Residual Stresses in Laser Peened and Welded Aluminum

    Science.gov (United States)

    2011-12-01

    inch thick. The chemical composition of this plate material is: magnesium 4.7, manganese 0.9, iron 0.20, silicon 0.10, chromium 0.08, zinc 0.03...19. The plates were clamped to the welding table using L-shaped clamps. The welded areas were surface ground to remove any slag and debris.[1] 28

  11. Uranium in ancient slag from Rajasthan

    International Nuclear Information System (INIS)

    Pradeepkumar, T.B.; Fahmi, Sohail; Sharma, S.K.

    2008-01-01

    Anomalous radioactivity was recorded in two ancient slag dumps spread on the surface near Bansda (24 deg 35'N lat., 70 deg 09'E long.) and Dhavadiya (24 deg 30'N lat., 70 deg 05'E long.) villages, Udaipur District, Rajasthan. The slag, with a range of high to low radioactivity levels, is the remnant of ancient smelting in the area, probably for copper. Six samples showing low radioactivity in Bansda contain an average of 0.030% U 3 O 8 , while five moderately radioactive samples analysed contain 0.225% U 3 O 8 and four highly radioactive samples analysed contain 1.15% U 3 O 8 . The 15 samples contain on an average 0.627% copper, 719 ppm zinc, 329 ppm cobalt and 133 ppm vanadium. Fifteen samples from Dhavadiya slag assayed on an average contain 0.040% U 3 O 8 , 0.297% Cu, 292 ppm Zn and 250 ppm Co. The extent of crystallization seen in the slag is intriguing because an over-cooled melt generally forms glass. The high rate of crystal formation may be attributed to high amounts of volatiles, particularly CO 2 and SO 4 , released during the breakdown of limestone (added as flux during smelting) and sulphide minerals in the ore. The high order of radioactivity recorded in the slags of Bansda and Dhavadiya points to the presence of ore-grade uranium concentration associated with sulphide mineralization in the vicinity of the basement Banded Gneissic Complex, intrusive granites and the cover sequence of the Bhinder basin. (author)

  12. Measurement and Analysis of the Diffusible Hydrogen in Underwater Wet Welding Joint

    Directory of Open Access Journals (Sweden)

    Kong Xiangfeng

    2016-01-01

    Full Text Available The diffusible hydrogen in steel weldments is one of the main reasons that led to hydrogen assisted cracking. In this paper, the results of literatures survey and preliminary tests of the diffusible hydrogen in underwater wet welding joint were presented. A fluid-discharge method of for measuring the diffusible hydrogen in weldment was introduced in detail. Two kinds of underwater welding electrode diffusible hydrogen are 26.5 mL/100g and 35.5 mL/100g by fluid-discharge method, which are high levels. The diffusible hydrogen of underwater welding is higher than atmospheric welding, and the result is closely related to welding material. The best way to control the diffusible hydrogen is adjusting welding material and improving fluidity of slag.

  13. Simulation of petcoke gasification in slagging moving bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, Soumitro; Sarkar, T.K.; Sen, P.K. [Research and Development Center, Engineers India Limited, Gurgaon 122001 (India)

    2005-03-25

    A mathematical model for simulation of moving bed petcoke gasifiers was developed. The model introduces a new feed characterization method, gas-phase resistance and volatilization models. The model is validated using reported data for a slagging gasifier. Effect of feed oxygen-to-coke and steam-to-coke ratios and feed coke rates on gasification performance was examined. Slagging zone moving bed gasifier operation with very high petcoke fluxes of over 4000 kg/m{sup 2}/h was possible with high petcoke conversion. Peak gas temperatures exceeded 1500 {sup o}C. Fluxes higher than 5000 kg/m{sup 2}/h are limited by an approach to fluidization of small particles in the combustion zone. The moving bed gasifier performance was found superior to performance of an entrained flow gasifier (EFG) with respect to energy efficiency and oxygen consumption.

  14. Welding Current Distribution in the Work-piece and Pool in Arc Welding

    Directory of Open Access Journals (Sweden)

    A. M. Rybachuk

    2015-01-01

    Full Text Available In order to select the optimal configuration of controlling magnetic fields and build rational construction of magnetic systems, we need to know the distribution of welding current in the molten metal of the weld pool. So the objective of the work is to establish the calculated methods for determining current density in the weld pool during arc welding. The distribution of welding current in the pool depends on the field of the electrical resistance, which is determined by the deformed temperature field while arc moves with the welding speed. The previous works have shown experimentally and by simulation on the conductive paper that deformation of temperature field defines deformation of electric field. On the basis thereof, under certain boundary conditions the problem has been solved to give a general solution of differential equation, which relates the potential distribution to the temperature in the product during arc welding. This solution is obtained under the following boundary conditions: 1 metal is homogeneous; 2 input and output surfaces of heat flux and electric current coincide; 3 input and output surfaces of heat flux and electric current are insulated and equipotential; 4 other (lateral surfaces are adiabatic boundaries. Therefore, this paper pays basic attention to obtaining the analytical solution of a general differential equation, which relates distribution of potential to the temperature in the product. It considers the temperature field of the heat source, which moves at a welding speed with normal-circular distribution of the heat flow at a certain concentration factor. The distribution of current density is calculated on the assumption that the welding current is introduced through the same surface as the heat flux and the distribution of current density corresponds to the normally circular at a certain concentration factor. As a result, we get an expression that allows us to calculate the current density from the known

  15. Field Testing Pulsed Power Inverters in Welding Operations to Control Heavy Metal Emissions

    Science.gov (United States)

    2009-12-01

    Aluminum, zinc , and barium were also present, but they are believed to be an artifact of the CI substrate filter material.) Other metals that appear in the...OPERATIONS As noted earlier, PPI technology is promoted as producing less metal-bearing particulates because less slag and spatter take place. This is...2) Also, less slag and spatter should result in reduced welding time. In addition, PPI reportedly will generate less ozone, carbon monoxide, and

  16. Mechanical properties of API X80 steel pipe joints welded by Flux Core Arc Weld Process; Propriedades mecanicas de juntas de tubos de aco API X80 soldadas com arame tubulares

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, Robert E. Cooper; Silva, Jose Hilton F.; Trevisan, Roseana E. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Fabricacao

    2003-07-01

    Flux Core Arc Welding processes (FCAW) are beginning to be applied in pipeline welds, however, very limited experimental data regarding mechanical properties of pipeline weld joints with these processes are available in the literature. In this paper, the effects of preheat temperature and type of FCAW on mechanical properties (microhardness and tensile strength) of API X80 weld joint steel are presented. FCAW processes with gas protection and self-shielded were used. Multipasses welding were applied in 30'' diameter and 0,625'' thickness tubes. Influence factors were: FCAW type and preheat temperature. Acceptance criteria of welded joints were evaluated by API 1104 standard for tensile strength test and ASTM E384-99 for microhardness test. The results obtained showed that FCAW type and preheat temperature have no influence on mechanical properties of API X80 joint steel. (author)

  17. Effects of slag composition and process variables on decontamination of metallic wastes by melt refining

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.

    1981-01-01

    Melt refining has been suggested as an alternative for decontamination and volume reduction of low-level-contaminated metallic wastes. Knowledge of metallurgical and thermochemical aspects of the process is essential for effective treatment of various metals. Variables such as slag type and composition, melting technique, and refractory materials need to be identified for each metal or alloy. Samples of contaminated metals were melted with fluxes by resistance furnace or induction heating. The resulting ingots as well as the slags were analyzed for their nuclide contents, and the corresponding partition ratios were calculated. Compatibility of slags and refractories was also investigated, and proper refractory materials were identified. Resistance furnace melting appeared to be a better melting technique for nonferrous scrap, while induction melting was more suitable for ferrous metals. In general uranium contents of the metals, except for aluminum, could be reduced to as low as 0.01 to 0.1 ppM by melt refining. Aluminum could be decontaminated to about 1 to 2 ppM U when certain fluoride slags were used. The extent of decontamination was not very sensitive to slag type and composition. However, borosilicate and basic oxidizing slags were more effective on ferrous metals and Cu; NaNO 3 -NaCl-NaOH type fluxes were desirable for Zn, Pb, and Sn; and fluoride type slags were effective for decontamination of Al. Recrystallized alumina proved to be the most compatible refractory for melt refining both ferrous and nonferrous metals, while graphite was suitable for nonferrous metal processing. In conclusion, melt refining is an effective technique for volume reduction ad decontamination of contaminated metal scrap when proper slags, melting technique, and refractories are used

  18. THE ROLE OF SHIELDING GAS ON MECHANICAL, METALLURGICAL AND CORROSION PROPERTIES OF CORTEN STEEL WELDED JOINTS OF RAILWAY COACHES USING GMAW

    Directory of Open Access Journals (Sweden)

    Byju John

    2016-12-01

    Full Text Available This analysis lays emphasis on finding a suitable combination of shielding gas for welding underframe members such as sole bar of Railway Coaches made of corten steel; for improved mechanical, metallurgical and corrosion properties of welds using copper coated solid MIG/MAG welding filler wire size 1.2 mm conforming to AWS/SFA 5.18 ER 70 S in Semi-automatic GMAW process. Solid filler wire is preferred by welders due to less fumes, practically no slag and easy manipulation of welding torch with smooth wire flow during corrosion repair attention, when compared to Flux cored wire. Three joints using Gas metal arc welding (GMAW with shielding gases viz., Pure CO2, (80% Ar – 20% CO2 and (90% Ar – 10% CO2 were made from test pieces cut from Sole bar material of Railway Coach. Study of Mechanical properties such as tensile strength, hardness and toughness revealed that welded joint made using shielding gas (80% Ar – 20% CO2 has better Mechanical properties compared to the other two shielding gases and comparable to that of Parent metal. Type of Shielding gas used has influence on the chemical composition and macro & micro structures. The Tafel extrapolation study of freshly ground samples in 3.5% NaCl solution revealed that the welded joint made using shielding gas (80% Ar – 20% CO2 has also better corrosion resistance which is comparable to the Parent metal as well as similar commercial steels.

  19. Reducción carbotérmica de pirolusita para la obtención de ferromanganeso y escoria, adecuados al desarrollo de materiales de soldadura

    OpenAIRE

    Cruz-Crespo, A.; García-Sánchez, L. L.; Quintana-Puchol, R.; Perdomo-González, L.; Gómez-Pérez, C. R.; Jiménez-Vielsa, G. E.; Cores-Sánchez, A.

    2004-01-01

    The high carbon ferromanganese obtained by means of carbothermic reduction in an electric arc furnace of direct current is proposed. The ideal composition of slag oxides to achieve a flux to be used in the submerged arc welding (SAW) is established. Calculation for charge components (pirolusite, coke, steel wool, lime, rutile and fluorite) for no fluxes technology for FeMn is carried out taking into account the welding fluxes characteristics of the SiO2-MnO-CaO system. ...

  20. Effects of Design/Operating Parameters and Physical Properties on Slag Thickness and Heat Transfer during Coal Gasification

    Directory of Open Access Journals (Sweden)

    Insoo Ye

    2015-04-01

    Full Text Available The behaviors of the slag layers formed by the deposition of molten ash onto the wall are important for the operation of entrained coal gasifiers. In this study, the effects of design/operation parameters and slag properties on the slag behaviors were assessed in a commercial coal gasifier using numerical modeling. The parameters influenced the slag behaviors through mechanisms interrelated to the heat transfer, temperature, velocity, and viscosity of the slag layers. The velocity profile of the liquid slag was less sensitive to the variations in the parameters. Therefore, the change in the liquid slag thickness was typically smaller than that of the solid slag. The gas temperature was the most influential factor, because of its dominant effect on the radiative heat transfer to the slag layer. The solid slag thickness exponentially increased with higher gas temperatures. The influence of the ash deposition rate was diminished by the high-velocity region developed near the liquid slag surface. The slag viscosity significantly influenced the solid slag thickness through the corresponding changes in the critical temperature and the temperature gradient (heat flux. For the bottom cone of the gasifier, steeper angles were favorable in reducing the thickness of the slag layers.

  1. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    International Nuclear Information System (INIS)

    Vasantharaja, P.; Vasudevan, M.

    2012-01-01

    Low Activation Ferritic–Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  2. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    Science.gov (United States)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  3. Glassy slag: A complementary waste form to homogeneous glass for the implementation of MAWS in treating DOE low level/mixed wastes

    International Nuclear Information System (INIS)

    Feng, X.; Ordaz, G.; Krumrine, P.

    1994-01-01

    Glassy slag waste forms are being developed to complement glass waste forms in implementing the Minimum Additive Waste Stabilization (MAWS) Program for supporting DOE's environmental restoration efforts. These glassy slags are composed of various metal oxide crystalline phases embedded in an alumino-silicate glass phase. The slags are appropriate final waste forms for waste streams that contain large amounts of scrap metals and elements with low solubilities in glass, and that have low-flux contents. Homogeneous glass waste forms are appropriate for wastes with sufficient fluxes and low metal contents. Therefore, utilization of both glass and glassy slag waste forms will make vitrification technology applicable to the treatment of a much larger range of radioactive and mixed wastes. The MAWS approach was a plied to glassy slags by blending multiple waste streams to produce the final waste form, minimizing overall waste form volume and reducing costs. The crystalline oxide phases formed in the glassy slags can be specially formulated so that they are very durable and contain hazardous and radioactive elements in their lattice structures. The Structural Bond Strength (SBS) Model was used to predict the chemical durability of the product from the slag composition so that optimized slag compositions could be obtain with a limited number of crucible melts and testing

  4. Enrichment of valuable elements from vanadium slag using superconducting HGMS technology

    Energy Technology Data Exchange (ETDEWEB)

    He, Sai; Yang, Chang Qiao; Li, Su Qin; Zhang, Chang Quan [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing (China)

    2017-03-15

    Vanadium slags is a kind of vanadiferous solid waste from steelmaking process. It not only occupies land, pollutes environment, but also leads to waste of resources. Based on the difference of magnetic susceptibility of different particles caused by their chemical and physical properties from vanadium slag, a new technology, superconducting high gradient magnetic separation was investigated for separation and extraction of valuable substances from vanadium slag. The magnetic concentrate was obtained under optimal parameters, i.e., a particle size -200 mesh, a magnetic flux density of 0.8 T, a slurry concentration of 5 g/L, an amount of steel wools of 25 g and a slurry flow velocity of 2 L/min. The content of Fe{sub 2}O{sub 3} in concentrate could be increased from 39.6% to 55.0% and V2O5 from 2.5% to 4.0%, respectively. The recovery rate is up to 42.9%, and the vanadium slag has been effectively reused.

  5. Characterization of a manganese ore to define the use in the fluxes synthesis for submerged arc welding

    International Nuclear Information System (INIS)

    Cruz, A.; Quintana, R.; Perdomo, L.; Garcia, L. L.; Formoso, A.; Cores, A.

    2003-01-01

    Chemical analysis, thermal analysis (DTA and TG), phase determination by X-ray diffraction and granulometric analysis of the manganese ore from the location Margarita de Cambute in the eastern part of cuba were carried out. Based on these characterization results, a flux synthesis strategy was established, comprising the definition, as a basic condition, of the MnO/SiO 2 range of values. This strategy was confirmed experimentally by obtaining a flux prototype in an electric arc furnace connected to direct current source and the carrying out of the flux in submerged arc welding tests. (Author) 26 refs

  6. Welding problems in nuclear power engineering

    International Nuclear Information System (INIS)

    Zubchenko, A.S.

    1986-01-01

    The problems of welding industry in nuclear power plant engineering, mainly related to the improvement of molten bath protection, are considered. Development of new materials for welding electrodes, for cladding and welding fluxes, is pointed out. Production of the following equipment is brought to a commercial level: welding heads and welding machines for branch pipe welding, anticorrosion cladding, zonal thermal treatment, electron beam welding facilities for the welding and maintenance of turbineblades, equipment for nondestructive testing of welded joints

  7. Method and device for weld deposit cladding

    International Nuclear Information System (INIS)

    Barger, J.J.

    1977-01-01

    In order to get weld beads of good quality, uniform thickness and faultless transition regions between neighboring beads in weld deposit cladding of metallic workpoeces, it is proposed to use a device in which the electromagnets are arranged adjacent to th zone of molten welding powder and molten metal besides having got suitable supplies for applying the welding powder, the polarity of the magnets being chosen in such a way that the lines of flux between the poles are counteracting the lines of flux surrounding the electrode band because of the welding current. Several variants of arranging the electrodes are presented in detail. (UWI) [de

  8. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    Science.gov (United States)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  9. STUDIES OF ACOUSTIC EMISSION SIGNATURES FOR QUALITY ASSURANCE OF SS 316L WELDED SAMPLES UNDER DYNAMIC LOAD CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. V. RANGANAYAKULU

    2016-10-01

    Full Text Available Acoustic Emission (AE signatures of various weld defects of stainless steel 316L nuclear grade weld material are investigated. The samples are fabricated by Tungsten Inert Gas (TIG Welding Method have final dimension of 140 mm x 15 mm x 10 mm. AE signals from weld defects such as Pinhole, Porosity, Lack of Penetration, Lack of Side Fusion and Slag are recorded under dynamic load conditions by specially designed mechanical jig. AE features of the weld defects were attained using Linear Location Technique (LLT. The results from this study concluded that, stress release and structure deformation between the sections in welding area are load conditions major part of Acoustic Emission activity during loading.

  10. New technology for production of granular adding material with nanomodifying additives for steel arc welding

    Directory of Open Access Journals (Sweden)

    BOLDYREV Alexander Mikhaylovich

    2016-12-01

    Full Text Available The chemical analysis of metal seam showed that introduction of titanium dioxide with MCA intensifies transition of Al2O3 from slag into metal pool and provides double concentration of titanium in the seam compared to the one which appears in the interaction of bathtub with melted flux AH-47 without TiO2 additives. The presence of oxides of titanium and aluminium of endogenous origin in the melt leads to formation of refractory particles with the center of TiO2 and Al2O3 in it. These particles are the centers of crystallization in the tail part of the molten pool and they remain in seam metal in the form of evenly distributed fine nonmetallic inclusions, which have crystallographic affinity with a matrix (α-iron. That provides the fine-grained seam structure with the raised and stable strength characteristics. This article compares the existing and developed technologies for production of MCA. The granulometric analysis of the powder TiO2 has demonstrated that when MCA is processed in the planetary mill, particles of titanium dioxide are crushed to a nanodimensional order. It is shown that the preparation of MCA in high-energy planetary mill (due to double increase of durability in coupling of the modifier with granulate provides its stable structure, increases the cold resistance (20–25% and stability of strength characteristics along the length of welded seam. Metalgraphic researches determined that the fine-grained structure which linear size of grain is twice smaller than the one obtained in the old technology welding is formed in a seam. However the direct introduction of nanomodifiers in a molten pool through the flux or an electrode wire is not efficient because of their deactivation and high temperature in welding zone. Therefore it was offered to use modifiers in the mix with the cooling macroparticles in case of automatic welding of a bridge metalware under flux using metalchemical additive (MCA. The MCA consists of a chopped

  11. Optimization of the A-TIG welding for stainless steels

    Science.gov (United States)

    Jurica, M.; Kožuh, Z.; Garašić, I.; Bušić, M.

    2018-03-01

    The paper presents the influence of the activation flux and shielding gas on tungsten inert gas (A-TIG) welding of the stainless steel. In introduction part, duplex stainless steel was analysed. The A-TIG process was explained and the possibility of welding stainless steels using the A-TIG process to maximize productivity and the cost-effectiveness of welded structures was presented. In the experimental part duplex, 7 mm thick stainless steel has been welded in butt joint. The influence of activation flux chemical composition upon the weld penetration has been investigated prior the welding. The welding process was performed by a robot with TIG equipment. With selected A-TIG welding technology preparation of plates and consumption of filler material (containing Cr, Ni and Mn) have been avoided. Specimens sectioned from the produced welds have been subjected to tensile strength test, macrostructure analysis and corrosion resistance analysis. The results have confirmed that this type of stainless steel can be welded without edge preparation and addition of filler material containing critical raw materials as Cr, Ni and Mn when the following welding parameters are set: current 200 A, welding speed 9,1 cm/min, heat input 1,2 kJ/mm and specific activation flux is used.

  12. Detrimental Cr-rich Phases Precipitation on SAF 2205 Duplex Stainless Steels Welds After Heat Treatment

    Directory of Open Access Journals (Sweden)

    Argelia Fabiola Miranda Pérez

    Full Text Available Abstract The austeno-ferritic Stainless Steels are commonly employed in various applications requiring structural performances with enhanced corrosion resistance. Their characteristics can be worsened if the material is exposed to thermal cycles, since the high-temperature decomposition of ferrite causes the formation of detrimental secondary phases. The Submerged Arc Welding (SAW process is currently adopted for joining DSS owing to its relatively simple execution, cost savings, and using molten slag and granular flux from protecting the seam of atmospheric gases. However, since it produces high contents of δ-ferrite in the heat affected zone and low content of γ-austenite in the weld, high-Ni filler materials must be employed, to avoid excessive ferritization of the joint. The present work is aimed to study the effect of 3 and 6 hours isothermal heat treatments at 850°C and 900°C in a SAF 2205 DSS welded joint in terms of phases precipitation. The results showed the presence of σ-phase at any time-temperature combination, precipitating at the δ/γ interphases and often accompanied by the presence of χ-phase. However, certain differences in secondary phases amounts were revealed among the different zones constituting the joint, ascribable both to peculiar elements partitioning and to the different morphology pertaining to each microstructure.

  13. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad [National Energy Technology Laboratory; Wang, Ping

    2013-02-07

    The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

  14. Use of the gapped bead-on-plate test to investigate hydrogen induced cracking of flux cored arc welds of a quenched and tempered steel

    International Nuclear Information System (INIS)

    Chen, Liang; Dunne, Druce; Davidson, Len

    2014-01-01

    Gapped bead-on-plate (G-BOP) testing of flux cored arc welds was conducted to assess the susceptibility to hydrogen induced cold cracking (HICC) of weld metal deposited on a high strength quenched and tempered steel. For preheat temperatures higher than 40°C, no weld metal cracking was observed using a shielding gas consisting of argon with 20% carbon dioxide. In contrast, the no-crack condition was not achieved for a shielding gas consisting of argon-5% carbon dioxide for preheat temperatures lower than 100°C. This extraordinary difference in weld metal HICC resistance indicates that, in general, the shielding gas mixture can exert a major influence on weld metal transverse cold cracking behaviour

  15. Sustainability assessment of shielded metal arc welding (SMAW) process

    Science.gov (United States)

    Alkahla, Ibrahim; Pervaiz, Salman

    2017-09-01

    Shielded metal arc welding (SMAW) process is one of the most commonly employed material joining processes utilized in the various industrial sectors such as marine, ship-building, automotive, aerospace, construction and petrochemicals etc. The increasing pressure on manufacturing sector wants the welding process to be sustainable in nature. The SMAW process incorporates several types of inputs and output streams. The sustainability concerns associated with SMAW process are linked with the various input and output streams such as electrical energy requirement, input material consumptions, slag formation, fumes emission and hazardous working conditions associated with the human health and occupational safety. To enhance the environmental performance of the SMAW welding process, there is a need to characterize the sustainability for the SMAW process under the broad framework of sustainability. Most of the available literature focuses on the technical and economic aspects of the welding process, however the environmental and social aspects are rarely addressed. The study reviews SMAW process with respect to the triple bottom line (economic, environmental and social) sustainability approach. Finally, the study concluded recommendations towards achieving economical and sustainable SMAW welding process.

  16. The effect of cast-to-cast variations on the quality of thin section nickel alloy welded joints

    International Nuclear Information System (INIS)

    Lambert, J.A.

    1989-02-01

    The welding behaviour of 26 commercial casts of Alloy 800 has been quantified for mechanised, autogenous, full penetration, bead-on-strip tungsten inert gas welding tests. Weld front and back widths have been measured and correlated with minor element variations. Casts with similar welding responses have been sorted into groups. The behaviour of the weld pool, surface slags and arc have been compared and a convection controlled model has been used to account for differences between the groups of casts. The main factors governing laboratory process control variability have been identified and a statistical method has been used to identify all the components of weld variance. An optimum size of welding test matrix has been proposed to determine typical cast-to-cast variations at high significance levels. (author)

  17. Development of New Materials and Technologies for Welding and Surfacing at Research and Production Center 'Welding Processes and Technologies'

    International Nuclear Information System (INIS)

    Kozyrev, N A; Kryukov, R E; Galevsky, G V; Titov, D A; Shurupov, V M

    2015-01-01

    The paper provides description of research into the influence of new materials and technologies on quality parameters of welds and added metal carried out at research and production center «Welding processes and technologies».New welding technologies of tanks for northern conditions are considered, as well as technologies of submerged arc welding involving fluxing agents AN - 348, AN - 60, AN - 67, OK. 10.71 and carbon-fluorine containing additives, new flux cored wires and surfacing technologies, teaching programs and a trainer for welders are designed. (paper)

  18. Microstructure and Porosity of Laser-welded Dissimilar Material Joints of HR-2 and J75

    Science.gov (United States)

    Shen, Xianfeng; Teng, Wenhua; Zhao, Shuming; He, Wenpei

    Dissimilar laser welding of HR-2 and J75 has a wide range of applications in high-and low-temperature hydrogen storage. The porosity distributions of the welded joints were investigated at different line energies, penetration status, and welding positions (1G, 2G, and 3G). The effect of the welding position on the welding appearance was evident only at high line energies because of the essential effect of gravity of the larger and longer dwelling molten pool. The porosity of the welded joints between the solutionised and aged J75 and HR-2 at the 3G position and partial penetration was located at the weld centre line, while the porosity at the 2G position with full penetration was distributed at the weld edges, which is consistent with the distribution of floating slag. Full keyhole penetration resulted in minimum porosity, partial penetration resulted in moderate porosity, and periodic molten pool penetration resulted in maximum porosity.

  19. Removal of Sulfur from CaF2 Containing Desulfurization Slag Exhausted from Secondary Steelmaking Process by Oxidation

    Science.gov (United States)

    Hiraki, Takehito; Kobayashi, Junichi; Urushibata, Satomi; Matsubae, Kazuyo; Nagasaka, Tetsuya

    2012-08-01

    The oxidation behavior of sulfur in desulfurization slag generated from the secondary steelmaking process with air has been investigated in the temperature range of 973 K to 1373 K (700 °C to 1100 °C). Although a high removal rate of sulfur is not achieved at temperatures lower than 1273 K (1000 °C) because of the formation of CaSO4, most of the sulfur is rapidly removed from slag as SO2 gas in the 1273 K to 1373 K (700 °C to 1100 °C) range. This finding indicates that the desulfurization slag generated from the secondary steelmaking process can be reused as a desulfurized flux through air oxidation, making it possible to reduce significantly the amount of desulfurization slag for disposal.

  20. Globalization of Japanese steel industry. Part 2. Welding materials; Tekkogyo no kokusaika. 2. Yozai

    Energy Technology Data Exchange (ETDEWEB)

    Aida, I. [Kobe Steel, Ltd., Kobe (Japan)

    1995-01-01

    This paper mainly discusses the current status and problems of arc welding materials. The domestic production of welding materials has decreased. The recent trend of demand is characterized by the change of form make-up of welding materials. Various technologies for welding materials and their operation in Japan have developed with the progress of steel materials. The high quality and high-grade welding technologies, highly efficient production processes, laborsaving, and robotization have been promoted in various fields. In response to the rapid strong yen, quality and cost have to be further pursued, and amenity and cleanliness of welding have to be realized. The welding technologies have to be developed for large structures, such as ultra high-rise buildings, energy and chemical plants, ships, marine structures, etc. For the welding materials which are applied to robots and robot systems, obstruction factors for the operation have to be removed, which include the unsteady arc, re-arc badness, spattering, wear of chip, slag formation, etc. These measures promote the globalization of welding materials. 17 refs., 4 figs.

  1. Study of the Performance of Stainless Steel A-TIG Welds

    Science.gov (United States)

    Shyu, S. W.; Huang, H. Y.; Tseng, K. H.; Chou, C. P.

    2008-04-01

    The purpose of the present work was to investigate the effect of oxide fluxes on weld morphology, arc voltage, mechanical properties, angular distortion and hot cracking susceptibility obtained with TIG welding, which applied to the welding of 5 mm thick austenitic stainless steel plates. A novel variant of the autogenous TIG welding process, oxide powders (Al2O3, Cr2O3, TiO2, SiO2 and CaO) was applied on a type 304 stainless steel through a thin layer of the flux to produce a bead on plate welds. The experimental results indicated that the increase in the penetration is significant with the use of Cr2O3, TiO2, and SiO2. A-TIG welding can increase the weld depth to bead-width ratio, and tends to reduce the angular distortion of the weldment. It was also found that A-TIG welding can increase the retained delta-ferrite content of stainless steel 304 welds and, in consequence, the hot-cracking susceptibility of as-welded is reduced. Physically constricting the plasma column and reducing the anode spot are the possible mechanism for the effect of certain flux on A-TIG penetration.

  2. EPR as a tool for studying slags and slag-like systems

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, A.; Lech, J. [Institute of Physics, Technical University of Czestochowa, Czestochowa (Poland)

    1997-12-31

    Results of possible applications of the EPR method for studying of steelwork slags properties and sintering processes involving some slag components are presented. Comparative experimental studies have been carried out at X-band both industrial slags and synthetic slag-like systems obtained by sintering mixtures of pure reagents of Ca-Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} phase diagram. Tests of evolution of EPR spectra during sintering process have also been done, including sintering row mixtures currently used in cement industry. EPR spectra of Mn{sup 2+} ions, which have been observed quite resolved in nearly all studied samples, have been established very useful for studying kinetics of sintering process in systems involving the slags and components of the CaO-Al{sub 2}O{sub 3}-SiO{sub 2} diagram. (author). 20 refs, 5 figs, 1 tab.

  3. Developments in welding and joining methods of metallic materials

    International Nuclear Information System (INIS)

    Pilarczyk, J.

    2007-01-01

    The impact of the welding technology on the economy development. The welding and joining methods review. The particular role of the laser welding and its interesting applications: with filler metal, twin spot laser welding, hybrid welding process, remote welding. The fiber lasers. The high intensity electron beams applications for surface modification. The TIG welding with the use of the active flux. Friction welding, friction stir welding and friction linear welding. (author)

  4. Advances in submerged arc, narrow-gap welding with strip electrodes and thin, dual-wire electrodes

    International Nuclear Information System (INIS)

    Nies, H.

    1990-01-01

    Container and tank construction for nuclear installations traditionally is one of the major applications of narrow-gap welding with the submerged arc technique. This type of welding presents one problem, namely to completely and reliably remove the welding slag from the deep and narrow gap. The research report in hand explains the variants of welding techniques that have been tested and describes the results obtained, which primarily are reduced occurrence of faults, i.e. enhanced reliability, and better welding economy. As an alternative to welding with thick wire electrodes, which is the standard method for the applications under review, a new technique has been conceived and extensively tested, which uses thin strip electrodes at longitudinal position in the gap. This submerged arc, dual-wire technique with thin electrodes is characterised by a significantly higher thermal efficiency compared to welding with thick wires, so that the same energy input yields better efficiency of metal deposition. (orig./MM) [de

  5. Segregation in welded nickel-base alloys

    International Nuclear Information System (INIS)

    Akhtar, J.I.; Shoaib, K.A.; Ahmad, M.; Shaikh, M.A.

    1990-05-01

    Segregation effects have been investigated in nickel-base alloys monel 400, inconel 625, hastelloy C-276 and incoloy 825, test welded under controlled conditions. Deviations from the normal composition have been observed to varying extents in the welded zone of these alloys. Least effect of this type occurred in Monel 400 where the content of Cu increased in some of the areas. Enhancement of Al and Ti has been found over large areas in the other alloys which has been attributed to the formation of low melting slag. Another common feature is the segregation of Cr, Fe or Ti, most likely in the form of carbides. Enrichment of Al, Ti, Nb, Mb, Mo, etc., to different amounts in some of the areas of these materials is in- terpretted in terms of the formation of gamma prime precipitates or of Laves phases. (author)

  6. Production of Manual Metal Arc Welding Electrodes with Local Raw ...

    African Journals Online (AJOL)

    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between the base metal and a flux covered metal electrode with electric current that depends on the type of electrode, material, welding position and the desired strength. The composition of flux coated electrodes is complex and a ...

  7. Application of Dredged Materials and Steelmaking Slag as Basal Media to Restore and Create Seagrass Beds: Mesocosm and Core Incubation Experiments

    Science.gov (United States)

    Tsukasaki, A.; Suzumura, M.; Tsurushima, N.; Nakazato, T.; Huang, Y.; Tanimoto, T.; Yamada, N.; Nishijima, W.

    2016-02-01

    Seagrass beds stabilize bottom sediments, improve water quality and light conditions, enhance species diversity, and provide habitat complexity in coastal marine environments. Seagrass beds are now experiencing worldwide decline by rapid environmental changes. Possible options of seagrass bed restoration are civil engineering works including mounding to raise the bottom to elevations with suitable light for seagrass growth. Reuse or recycling of dredged materials (DM) and various industrial by-products including steelmaking slags is a beneficial option to restore and create seagrass beds. To evaluate the applicability of DM and dephosphorization slag (Slag) as basal media of seagrass beds, we carried out mesocosm experiments and core incubation experiments in a land-based flow-through seawater tank over a year. During the mesocosm experiment, no difference was found in growth of eelgrass (Zostera marina L.) and macrobenthic community structures between Slag-based sediments and sand-based control experiments, even though Slag-based sediments exhibited substantially higher pH than sand-based sediments. During the core incubation experiment, we investigated detailed variation and distributions of pH and nutrients, and diffusion fluxes of nutrients between the sediment/seawater interface. Though addition of Slag induced high pH up to 10.7 in deep layers (sediments, whereas dissolved phosphate concentration was substantially reduced by the addition of Slag. The low concentrations of phosphate was likely due to precipitation with calcium under high pH condition. Diffusion fluxes of nutrients from the cores were comparable with those reported in natural coastal systems. It was suggested that the mixture of Slag and DM is applicable as basal media for construction of artificial seagrass beds.

  8. An introduction to acoustic emission technology for in-process inspection of welds

    International Nuclear Information System (INIS)

    Goswami, G.L.

    1983-01-01

    Weld quality monitoring, as it stands today, is primarily done by X-ray radiography and ultrasonic testing which is applied after welding is complete. Acoustic Emission Technique (AET) also presents a possible substitute for weld quality monitoring which can be used during welding. Acoustic signals are generated during welding and the sound waves of weld defects are picked up by using AE sensors. With the introduction of sophisticated instrumentation in AET, it is possible to carry out the test even in noisy shop floor environments. Large number of reports on the subject of acoustic emission in recent years is a clear indication that it is gaining importance in welding industry. The present day status of the acoustic emission technology as an on-line weld quality monitoring technique has been reviewed. This report discusses the technique and system along with the acoustic emission parameters important for weld quality analysis. This also deals with the application of this technique in different welding processes like TIG, resistance, electro slag and submerged arc. It has been reported that monitoring of emission during welding can detect crack formation, crack growth and lack of fusion precisely. Static defects like porosity and inclusion do not generate very strong acoustic signals and are therefore difficult to intercept, but, however, lately they have detected successfully. (author)

  9. Facing slag glass and slag glass ceramic produced from thermal power plant ash

    Energy Technology Data Exchange (ETDEWEB)

    Buruchenko, A.E.; Kolesnikov, A.A.; Lukoyanov, A.G.

    1990-10-01

    Evaluates properties of fly ash and slags from the Krasnoyarsk coal-fired power plants and their utilization for glass and ceramic glass production. Composition of a mixture of fly ash and slag was: silica 40-55%, aluminium oxides 10-40%, ferric trioxide 6-14%, calcium oxides 20-35%, magnesium oxides 3-6%, potassium oxides 0.3-1.5%, sodium oxides 0.2-05%, sulfur trioxide 0.9-5.0%. The analyzed fly ash and slags from the Krasnoyarsk plant were an economic waste material for glass production. Properties of sand, clay and other materials used in glass production and properties of glass and ceramic glass produced on the basis of fly ash and slags are analyzed. Economic aspects of fly ash and slag utilization are also evaluated. 3 refs.

  10. A numerical model for chemical reaction on slag layer surface and slag layer behavior in entrained-flow gasifier

    Directory of Open Access Journals (Sweden)

    Liu Sheng

    2013-01-01

    Full Text Available The paper concerns with slag layer accumulation, chemical reaction on slag layer surface, and slag layer flow, heat and mass transfer on the wall of entrained-flow coal gasifier. A slag layer model is developed to simulate slag layer behaviors in the coal gasifier. This 3-D model can predict temperature, slag particle disposition rate, disposition particle composition, and syngas distribution in the gasifier hearth. The model is used to evaluate the effects of O2/coal ratio on slag layer behaviors.

  11. Study and development of solid fluxes for gas tungsten arc welding applied to titanium and its alloys and stainless steels; Etude et developpement des flux solides en vue d'application en soudage ATIG applique au titane et ses alliages ainsi qu'aux aciers inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Perry, N

    2000-06-15

    Gas Tungsten Arc Welding uses an electric arc between the refractory tungsten electrode and the plates to be welded under an argon shielding gas. As a result, the joint quality is excellent, no pollution nor defects are to be feared, consequently this process is used in nuclear, aeronautic, chemical and food industries. Despite of this good qualities, GTAW is limited because of, on the one side, a poor penetrating weld pool and, on the other side, a week productivity rate. Indeed, up to 3 mm thick plates, machining and filler metal is needed. Multiple runs increase the defect's risks, the manufactory time and increase the deformations and the heat affected zone. The goal of this study is to break through this limits without any device investment. Active GTA welding (or ATIG) is a new technique with GTA device and an activating flux to be spread on the upper plate before welding. The arc, by plasma electrochemical equilibrium modifications, and the pool with the inner connective flows inversion, allow 7 mm thick joints in one run without edges machining or filler metal for both stainless steel and titanium alloys. This manuscript describes the development of these fluxes, highlights the several phenomena and presents the possibilities of this new process. This work, in collaboration with B.S.L. industries, leads to two flux formulations (stainless steel and titanium alloys) now in a commercial phase with CASTOLIN S.A. Moreover, B.S.L.industries produces a pressure device (nitrate column) with the ATIG process using more than 2800 ATIG welds. (author)

  12. Effect of Welding Process on Microstructure, Mechanical and Pitting Corrosion Behaviour of 2205 Duplex Stainless Steel Welds

    Science.gov (United States)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    An attempt has been made to weld 2205 Duplex stainless steel of 6mm thick plate using conventional gas tungsten arc welding (GTAW) and activated gas tungsten arc welding (A- GTAW) process using silica powder as activated flux. Present work is aimed at studying the effect of welding process on depth of penetration, width of weld zone of 2205 duplex stainless steel. It also aims to observe the microstructural changes and its effect on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel welds. Metallography is done to observe the microstructural changes of the welds using image analyzer attached to the optical microscopy. Hardness studies, tensile and ductility bend tests were evaluated for mechanical properties. Potentio-dynamic polarization studies were carried out using a basic GillAC electro-chemical system in 3.5% NaCl solution to observe the pitting corrosion behaviour. Results of the present investigation established that increased depth of penetration and reduction of weld width in a single pass by activated GTAW with the application of SiO2 flux was observed when compared with conventional GTAW process. It may be attributed to the arc constriction effect. Microstructure of the weld zones for both the welds is observed to be having combination of austenite and delta ferrite. Grain boundary austenite (GBA) with Widmanstatten-type austenite (WA) of plate-like feature was nucleated from the grain boundaries in the weld zone of A-GTAW process. Mechanical properties are relatively low in activated GTAW process and are attributed to changes in microstructural morphology of austenite. Improved pitting corrosion resistance was observed for the welds made with A-GTAW process.

  13. The prediction and representation of phase equilibria and physicochemical properties in complex coal ash slag systems

    Energy Technology Data Exchange (ETDEWEB)

    E. Jak; A. Kondratiev; S. Christie; P.C. Hayes [Centre for Coal in Sustainable Development (CCSD), Brisbane (Australia)

    2003-07-01

    A range of problems in coal utilisation technologies, including ash slag flow in slagging gasifiers, deposit formation, slagging, fouling, fusibility tests, fluxing, blending etc, are related to the melting behaviour of the mineral matter in the coal. To assist with solving these practical issues i) thermodynamic modelling of phase equilibria, and ii) viscosity modelling studies are being undertaken at the Pyrometallurgy Research Centre (The University of Queensland, Australia) with support from the Collaborative Research Centre for Coal in Sustainable Development (CCSD). The thermodynamic modelling has been carried out using the computer system FactSage, which is used for the calculation of multi-phase slag / solid / gas / matte / alloy / salt equilibria in multi-component systems of industrial interest. A modified quasi-chemical solution model is used for the liquid slag phase. New model optimisations have been carried out, which have significantly improved the accuracy of the thermodynamic models for coal combustion processes. Viscosity modelling, using a modified Urbain formalism, is carried out in conjunction with FactSage calculations to predict the viscosities of fully liquid as well as heterogeneous, partly crystallised slags. Custom designed software packages are developed using these fundamental models for wider use by industrial researchers and engineers, and for incorporation as process control modules. The new custom-designed computer software package can be used to produce limiting operability diagrams for slag systems. These diagrams are used to describe phase equilibria and physico-chemical properties in complex slag systems. The approach is illustrated with calculations on the system SiO{sub 2}-Al{sub 2}O{sub 3}-FeO-Fe{sub 2}O{sub 3}-CaO at metallic iron saturation, slags produced in coal slagging gasifiers. 28 refs., 7 figs., 1 tab.

  14. An outlook on comparison of hybrid welds of different root pass and ...

    Indian Academy of Sciences (India)

    Pritesh Prajapati

    2018-05-11

    May 11, 2018 ... pass and filler pass of flux cored arc welding and gas metal arc welding were acquired. The comparative ... [2], GMAW-plasma welding [3], laser welding-gas tung- sten arc welding ..... by optical emission spectroscopy. Plasma ...

  15. Study and development of solid fluxes for gas tungsten arc welding applied to titanium and its alloys and stainless steels; Etude et developpement des flux solides en vue d'application en soudage ATIG applique au titane et ses alliages ainsi qu'aux aciers inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Perry, N

    2000-06-15

    Gas Tungsten Arc Welding uses an electric arc between the refractory tungsten electrode and the plates to be welded under an argon shielding gas. As a result, the joint quality is excellent, no pollution nor defects are to be feared, consequently this process is used in nuclear, aeronautic, chemical and food industries. Despite of this good qualities, GTAW is limited because of, on the one side, a poor penetrating weld pool and, on the other side, a week productivity rate. Indeed, up to 3 mm thick plates, machining and filler metal is needed. Multiple runs increase the defect's risks, the manufactory time and increase the deformations and the heat affected zone. The goal of this study is to break through this limits without any device investment. Active GTA welding (or ATIG) is a new technique with GTA device and an activating flux to be spread on the upper plate before welding. The arc, by plasma electrochemical equilibrium modifications, and the pool with the inner connective flows inversion, allow 7 mm thick joints in one run without edges machining or filler metal for both stainless steel and titanium alloys. This manuscript describes the development of these fluxes, highlights the several phenomena and presents the possibilities of this new process. This work, in collaboration with B.S.L. industries, leads to two flux formulations (stainless steel and titanium alloys) now in a commercial phase with CASTOLIN S.A. Moreover, B.S.L.industries produces a pressure device (nitrate column) with the ATIG process using more than 2800 ATIG welds. (author)

  16. Influence of industrial solid waste addition on properties of soil-cement bricks

    Directory of Open Access Journals (Sweden)

    F. B. Siqueira

    Full Text Available Abstract The reuse of pollutant solid wastes produced in distinct industrial activities (avian eggshell waste and welding flux slag waste as a source of alternative raw material for producing soil-cement bricks for civil construction was investigated. Soil-cement bricks containing up to 30 wt% of industrial solid waste were uniaxially pressed and cured for 28 days. Special emphasis is given on the influence of solid waste addition on the technical properties (as such volumetric shrinkage, water absorption, bulk density, durability, and compressive strength, microstructure and mineral phases of soil-cement bricks. Microstructural evolution was evaluated via confocal microscopy. The experimental results showed that the solid wastes behave as charge material and influenced both technical properties and microstructure of the soil-cement bricks. It was found that up to 15 wt% of welding flux slag waste and up to 30 wt% of avian eggshell waste could be added into the soil-cement bricks for use as building material.

  17. Gravitational segregation of liquid slag in large ladle

    Directory of Open Access Journals (Sweden)

    J. Chen

    2012-04-01

    Full Text Available The process of gravitational segregation makes liquid steel slag components occur differentiation. And it shows that the upper part slag in the slag ladle contains higher CaO; and the lower part slag contains higher SiO2. The content of MgO (5,48 % in the upper part slag is higher than that of the lower part (2,50 %, and only Al2O3 content of the upper and the lower part slag is close to each other. The difference of chemical compositions in the slag ladle shows that there is gravitational segregation during slow solidification of liquid steel slag, which will has some impact of the steel slag processing on the large slag ladle.

  18. Welding of components of primary circuits of nuclear reactors in FRG

    International Nuclear Information System (INIS)

    Pehtts, P.; Iversen, K.

    1979-01-01

    Welding materials and methods, surfacing and soldering, applied when assembling nuclear reactors in the Federal Republic of Germany, are considered. It is noted that reactor vessel flux two-pass surfacing is mainly carried out, using the band electrode. The austenitic steel serves as filler material. Vessels are welded using electroslag flux method and nonconsumable electrodes. Tube plates claddina and tube welding during steam generator production are made by flux surfacing and inert gas shielded using nonconsumable electrode. When assembling fuel elements high temperature soldering with the solders, containing no boron of the Ni-Cr-Si and Ni-Cr-P systems is used

  19. Gamma-radiography techniques applied to quality control of welds in water pipe lines

    International Nuclear Information System (INIS)

    Sanchez, W.; Oki, H.

    1974-01-01

    Non-destructive testing of welds may be done by the gamma-radiography technique, in order to detect the presence or absence of discontinuities and defects in the bulk of deposited metal and near the base metal. Gamma-radiography allows the documentation of the test with a complete inspection record, which is a fact not common in other non-destructive testing methods. In the quality control of longitudinal or transversal welds in water pipe lines, two exposition techniques are used: double wall and panoramic exposition. Three different water pipe lines systems have analysed for weld defects, giving a total of 16,000 gamma-radiographies. The tests were made according to the criteria established by the ASME standard. The principal metallic discontinuites found in the weld were: porosity (32%), lack of penetration (29%), lack of fusion (20%), and slag inclusion (19%). The percentage of gamma-radiographies showing welds without defects was 39% (6168 gamma-radiographies). On the other hand, 53% (8502 gamma-radiographies) showed the presence of acceptable discontinuities and 8% (1330 gamma-radiographies) were rejected according to the ASME standards [pt

  20. Investigation of heat transfer and fluid flow in activating TIG welding by numerical modeling

    International Nuclear Information System (INIS)

    Wang, Xinxin; Huang, Jiankang; Huang, Yong; Fan, Ding; Guo, Yanning

    2017-01-01

    Highlights: • The heat input to the anode and subsequent thermal efficiency is almost equal for TIG and A-TIG welding. • Dominant effect heat convection and reversion of molten metal flow in weld pool causes significant increase in weld penetration. - Abstract: Heat transfer and fluid flow of arc plasma and weld pool in tungsten inert gas (TIG) welding and activated flux tungsten inert gas (A-TIG) welding of SUS 304 stainless steel are investigated comparatively though a 3D unified model. The model differs from the previous ones in that it considers the arc length more realistic for welding production. Tungsten electrode, anode (work piece) and arc plasma are all included. The effects of buoyance, plasma drag force, Lorentz force and Marangoni force on the weld pool flow are taken into account. By solving the conservation equations of mass, momentum, energy as well as Maxwell equations, the distributions of temperature and velocity of arc plasma and weld pool are obtained for TIG and A-TIG welding. The heat flux, current density and shear stress at the weld pool are presented. Dimensionless numbers are employed to compare the relative importance of the driven forces and that of convection and conduction in heat transfer of the weld pool. It is demonstrated that there is no significant difference in the heat flux at the weld pool, and total heat input to the anode and thermal efficiency is almost equal for TIG and A-TIG welding. The current density and the heat flux at the weld pool are more concentrated in more realistic welding condition. As a result, both of the temperature of the weld pool for TIG welding and A-TIG welding increases, while the latter is more significant. Marangoni force ranges from zero to 100 Pa and dominant the weld pool flow. Compared with the conventional TIG welding, the reversion of the Marangoni force results in inward flow and thus causes inward heat convection in weld pool of A-TIG welding. Heat convection was the main mechanism of

  1. Study on cementitious properties of steel slag

    Directory of Open Access Journals (Sweden)

    Zhu G.

    2013-01-01

    Full Text Available The converter steel slag chemical and mineral components in China’s main steel plants have been analysed in the present paper. The electronic microscope, energy spectrum analysis, X-ray diffraction analysis confirmed the main mineral compositions in the converter slag. Converter slag of different components were grounded to obtain a powder with specific surface area over 400m2/kg, making them to take place some part of the cement in the concrete as the admixture and carry out the standard tests. The results indicate that the converter slag can be used as cementitious materials for construction. Furthermore, physical mechanic and durability tests on the concrete that certain amount of cement be substituted by converter steel slag powder from different steel plants are carried out, the results show that the concrete with partial substitution of steel slag powder has the advantages of higher later period strength, better frost resistance, good wear resistance and lower hydration heat, etc. This study can be used as the technical basis for “Steel Slag Powder Used For Cement And Concrete”, “Steel Slag Portland Cement”, “Low Heat Portland Steel Slag Cement”, “Steel Slag Road Cement” in China, as well as a driving force to the works of steel slag utilization with high-value addition, circular economy, energy conservation and discharge reduction in the iron and steel industry.

  2. Overview of Steel Slag Application and Utilization

    Directory of Open Access Journals (Sweden)

    Lim J.W.

    2016-01-01

    Full Text Available Significant quantities of steel slag are generated as waste material or byproduct every day from steel industries. Slag is produced from different types of furnaces with different operating conditions. Slag contains Ferrous Oxide, Calcium Oxide, Silica etc. Physical and chemical properties of slag are affected by different methods of slag solidification such as air cooled, steam, and injection of additives. Several material characterization methods, such as X-ray Diffraction (XRD, Scanned Electron Microscopy (SEM and Inductive Coupled Plasma (ICP-OES are used to determine elemental composition in the steel slag. Therefore, slags can become one of the promising materials in various applications such as in transportation industry, construction, cement production, waste water and water treatment. The various applications of steel slag indicate that it can be reused and utilized rather than being disposed to the landfill. This paper presents a review of its applications and utilization.

  3. Processing and utilization of metallurgical slag

    Directory of Open Access Journals (Sweden)

    Alena Pribulová

    2016-06-01

    Full Text Available Metallurgy and foundry industry create a huge amount of slags that are by-products in production of pig iron, steel and cast iron. Slag is produced in a very large amount in pyrometallurgical processes, and is a huge source of waste if not properly recycled and utilized. With rapid growth of industrialization, land available for land-filling of large quantity of metallurgical slag is being reduced all over the world and disposal cost is becoming increasingly higher. Metallurgical slag from different metallurgical processes treated and utilized in different ways based on different slag characteristics. The most economic and efficient option for reducing metallurgical waste is through recycling, which is a significant contribution to saving natural resources and reducing CO2 emissions. Characteristic of slags as well as its treatment and utilization are given in the paper. Slag from pig iron and steel production is used most frequently in building industry. From experiments using blast furnace slag and granulated blast furnace slag as gravel, and water glass as binder it can be concluded that that the best results – the best values of compression strength and tensile strength were reached by using of 18% of water glass as a solidification activating agent. According to cubic compression strength, mixture from 50% blast furnace gravel, 50% granulated blast furnace slag and 18% water glass falls into C35/45 class of concrete. Such concrete also fulfils strength requirements for road concrete, moreover, it even exceeds them considerably and, therefore, it can find an application in construction of road communications or in production of concrete slabs.

  4. Slag-based saltstone formulations

    International Nuclear Information System (INIS)

    Langton, C.A.

    1987-01-01

    Approximately 400 x 10 6 liters of low-level alkaline salt solution will be treated at the Savannah River Plant (SRP) Defense Waste Processing Facility (DWPF) prior to disposal in concrete vaults at SRP. Treatment involves removal of CS + and Sr +2 followed by solidification and stabilization of potential contaminants in saltstone, a hydrated ceramic waste form. Chromium, technetium, and nitrate releases from saltstone can be significantly reduced by substituting hydraulic blast furnace slag for portland cement in the formulation designs. Slag-based mixes are also compatible with Class F fly ash used in saltstone as a functional extender to control heat of hydration and reduce permeability. A monolithic waste form is produced by the hydration of the slag and fly ash. Soluble ion release (NO 3 - ) is controlled by the saltstone microstructure. Chromium and technetium are less leachable from slag mixes compared to cement-based waste forms because these species are chemically reduced to a lower valence state by ferrous iron in the slag and precipitated as relatively insoluble phases, such as CR(OH) 3 and TcO 2 . 5 refs., 4 figs., 4 tabs

  5. Slag-based saltstone formulations

    International Nuclear Information System (INIS)

    Langton, C.A.

    1987-08-01

    Approximately 400 x 10 6 L of low-level alkaline salt solution will be treated at the Savannah River Plant (SRP) Defense Waste Processing Facility (DWPF) prior to disposal in concrete vaults at SRP. Treatment involves removal of Cs + and Sr +2 , followed by solidification and stabilization of potential contaminants in saltstone, a hydrated ceramic wasteform. Chromium, technetium, and nitrate releases from saltstone can be significantly reduced by substituting hydraulic blast furnace slag for portland cement in the formulation designs. Slag-based mixes are also compatible with the Class F flyash used in saltstone as a functional extender to control heat of hydration and reduce permeability. (Class F flyash is also locally available at SRP.) A monolithic wasteform is produced by the hydration of the slag and flyash. Soluble ion release (NO 3- ) is controlled by the saltstone microstructure. Chromium and technetium are less leachable from slag mixes because these species are chemically reduced to a lower valence state by ferrous iron in the slag and are precipitated as relatively insoluble phases, such as Cr(OH) 3 and TcO 2 . 3 refs., 3 figs., 2 tabs

  6. Quality improvement of steel cast-welded constructions

    Directory of Open Access Journals (Sweden)

    Аркадій Васильович Лоза

    2017-06-01

    Full Text Available Among the various types of metallurgical equipment there are structures which are welded compounds of a cast base and additional elements produced by casting or any other means. Such structures are called cast-welded constructions. Besides new working properties such constructions appear to be more efficient and provide better durability as compared to the similar structures produced by other industrial means. Meanwhile the advantages of the technology are not used in full. One reason is low quality of the compound products caused by lack of proper preparation of the elements to be welded and poor quality of the welds themselves. In the article the methods of quality production and the maintenance of steel cast-welded constructions have been considered. A ladle of a blast-furnace slag car is used as the subject of investigation and further testing of the mentioned above technologies. The ladle is a cast product. Under operating conditions, the ladle undergoes mechanical and thermal load, which results in deformation of its sides that deflect inside. To prevent the deflection stiffening ribs are welded onto the outer surface of the ladle. However, there may be casting defects in the base metal that could reduce the durability of the welds. It has been proved that welds on the unprepared cast base of the steel product cannot guarantee the combination’s durability and reliability. To prevent the influence of the casting defects it has been recommended to cover the base metal with one more metal layer before welding the elements on. Two-layer surfacing provides best result as the first layer serves for the weld penetration of the casting defects since this layer has a significant share of base metal therefore it is less malleable; the second layer is necessary for making the layer viscous enough. The viscous layer ensures the absence of sharp transition from the deposited metal to the base metal and increases the crack resistance of the weld. In

  7. Mechanical properties of welded joints of duplex steels

    International Nuclear Information System (INIS)

    Kawiak, M.; Nowacki, J.

    2003-01-01

    The paper presents the study results of mechanical properties of duplex steels UNS S31803 welded joints as well as duplex and NV A36 steels welded joints. They have ben welded by FCAW method in CO 2 using FCW 2205-H flux-cored wire. The joints have been subjected: tensile tests, impact tests, bending tests, hardness tests and metallographic investigations. The influence of welding parameters and mechanical properties of the joints was appreciated. The welding method assured high tensile strength of the joints (approximately 770 MPa) and high impact strength of the welds (approximately 770 J). All samples were broken outside of welds. (author)

  8. The hydration of slag, part 1: reaction models for alkali-activated slag

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, H.J.H.

    2007-01-01

    Reaction models are proposed to quantify the hydration products and to determine the composition of C–S–H from alkali-activated slags (AAS). Products of the slag hydration are first summarized from observations in literature. The main hydration products include C–S–H, hydrotalcite, hydrogarnet, AFm

  9. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-01-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms

  10. MAG narrow gap welding - an economic way to minimize welding expenses

    International Nuclear Information System (INIS)

    Kast, W.; Scholz, E.; Weyland, F.

    1982-01-01

    The thicker structural components are, the more important it is to take measures to reduce the volume of the weld. The welding process requiring the smallest possible weld section is the so-called narrow gap process. In submerged arc narrow gap welding as well as in MAG narrow gap welding different variants are imaginable, some of them already in practical use. With regard to efficiency and weld quality an optimum variant of the MAG narrow gap welding process is described. It constitutes a two wire system in which two wire electrodes of 1.2 mm diameter are arranged one behind the other. In order to avoid lack of fusion, the wire guides are slightly pointed towards each groove face. Thus, by inclining the two arcs burning one behind the other in the direction of weld progress, it is achieved that two separately solidifying weld pools and two beads per layer are simultaneously formed. Welding parameters are selected in such a way that a heat input of 16-20 kJ/cm and a deposition rate of 11-16 kgs/h are obtained. In spite of this comparatively high deposition rate, good impact values are found both in the weld and HAZ (largely reduced coarse-grain zone) which is due to an optimum weld build-up. With the available welding equipment the process can be applied to structural members having a thickness of 40-400 mm. The width of gap is 13 mm (root section) with a bevel angle of 1 0 . As filler metal, basic flux-cored wires are used which, depending on the base metal to be welded and the required tensile properties, can be of the Mn-, MnMo-, MnCrMo-, MnNi-, or MnNiMo-alloyed types. (orig.)

  11. Study of the characteristics of duplex stainless steel activated tungsten inert gas welds

    International Nuclear Information System (INIS)

    Chern, Tsann-Shyi; Tseng, Kuang-Hung; Tsai, Hsien-Lung

    2011-01-01

    The purpose of this study is to investigate the effects of the specific fluxes used in the tungsten inert gas (TIG) process on surface appearance, weld morphology, angular distortion, mechanical properties, and microstructures when welding 6 mm thick duplex stainless steel. This study applies a novel variant of the autogenous TIG welding, using oxide powders (TiO 2 , MnO 2 , SiO 2 , MoO 3 , and Cr 2 O 3 ), to grade 2205 stainless steel through a thin layer of the flux to produce a bead-on-plate joint. Experimental results indicate that using SiO 2 , MoO 3 , and Cr 2 O 3 fluxes leads to a significant increase in the penetration capability of TIG welds. The activated TIG process can increase the joint penetration and the weld depth-to-width ratio, and tends to reduce the angular distortion of grade 2205 stainless steel weldment. The welded joint also exhibited greater mechanical strength. These results suggest that the plasma column and the anode root are a mechanism for determining the morphology of activated TIG welds.

  12. Long-term evolution of highly alkaline steel slag drainage waters.

    Science.gov (United States)

    Riley, Alex L; Mayes, William M

    2015-07-01

    The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH (>10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible.

  13. Slags from steel production: Properties and their utilization

    Directory of Open Access Journals (Sweden)

    J. Vlcek

    2013-07-01

    Full Text Available During steel production a considerable amount of slags is produced. In addition to its usual processing, as recycling in device for steel production and preparation of aggregates, it is also possible to apply less common slag processing ways. Depending on cooling mode of the steel slags these may show some binding properties. Geopolymer type binders can be prepared from the slag using alkali activators or the hydraulic properties of the dicalciumsilicate present in the slag can be induced by water. The paper summarizes present state of material utilisation of the steel slags with focus on emphasize of the possible sources of the slag volume instability. The influence of process of slag cooling on its phase composition is documented. It was also found that slags from real sources show different parameters compared to samples obtained for laboratory examination.

  14. Glassy slag from rotary hearth vitrification

    International Nuclear Information System (INIS)

    Eschenbach, R.C.; Simpson, M.D.; Paulson, W.S.; Whitworth, C.G.

    1995-01-01

    Use of a Plasma Arc Centrifugal Treatment (PACT) system for treating mixed wastes containing significant quantities of soil results in formation of a glassy slag which melts at significantly higher temperatures than the borosilicate glasses. The slag typically contains mostly crystalline material, frequently in an amorphous matrix, thus the appellation open-quotes glassy slag.close quotes Details of the PACT process are given. The process will be used for treating buried wastes from Pit 9 at the Idaho National Engineering Laboratory and low-level mixed wastes from nuclear power plants in Switzerland. Properties of the slag after cooling to room temperature are reported, in particular the Product Consistency Test, for a number of different feedstocks. In almost all cases, the results compare favorably with conventional borosilicate glasses. In the PACT system, a transferred arc carries current from the plasma torch to a rotating molten bed of slag, which is the material being heated. Thus this transferred arc adds energy where it is needed - at and near the surface of the molten bath. Material is fed into the furnace through a sealed feeder, and falls into a rotating tub which is heated by the arc. Any organic material is quickly vaporized into the space above the slag bed and burned by the oxygen in the furnace. Metal oxides in the charge are melted into the slag. Metal in the feed tends to melt and collect as a separate phase underneath the slag, but can be oxidized if desired. When oxidized, it unites with other constituents forming a homogeneous slag

  15. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Tervola, K.; Haerkki, J.

    1996-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquids temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) (14 refs.)

  16. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Tervola, K. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  17. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J; Tervola, K [Oulu Univ. (Finland). Dept. of Process Engineering

    1997-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  18. NEW TECHNOLOGY OF ASH AND SLAG CONCRETES

    Directory of Open Access Journals (Sweden)

    PAVLENKO T. M.

    2017-03-01

    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  19. Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M.D.; Barati, M. [Department of Materials Science and Engineering, The University of Toronto, 184 College Street, Toronto, Ont. (Canada)

    2010-12-15

    The possibility of refining metallurgical grade silicon to a high-purity product for solar cell applications by the slagging of impurity elements was investigated. Distribution coefficients were determined for B, Ca, Mg, Fe, K and P between magnesia or alumina saturated Al{sub 2}O{sub 3}-CaO-MgO-SiO{sub 2} and Al{sub 2}O{sub 3}-BaO-SiO{sub 2} slags and silicon at 1500 C. The partitioning of the impurity elements between molten silicon and slag was examined in terms of basicity and oxygen potential of the slag, with particular focus on the behaviour of boron and phosphorus. The experimental results showed that both of these aspects of slag chemistry have a significant influence on the distribution coefficient of B and P. Increasing the oxygen potential by additions of silica was found to increase the distribution coefficients for both B and P. Increasing the basicity of the slag was not always effective in achieving high removal of these elements from silicon as excess amounts of basic oxides lower the activity of silica and consequently the oxygen potential. The extent of this effect is such that increasing basicity can lead to a decrease in distribution coefficient. Increasing lime in the slag increased distribution coefficients for B and P, but this counterbalancing effect was such that distributions were the lowest in barium-containing slags, despite barium oxide being the most basic of the fluxes used in this study. The highest removal efficiencies achieved were of the order of 80% and 90% for B and P, respectively. It was demonstrated that for the removal of B and P from metallurgical-grade silicon to solar-grade levels, a slag mass about 5 times the mass of silicon would be required. (author)

  20. Slag recycling of irradiated vanadium

    International Nuclear Information System (INIS)

    Gorman, P.K.

    1995-01-01

    An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium

  1. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  2. Study on electrolytic reduction with controlled oxygen flow for iron from molten oxide slag containing FeO

    Directory of Open Access Journals (Sweden)

    Gao Y.M.

    2013-01-01

    Full Text Available A ZrO2-based solid membrane electrolytic cell with controlled oxygen flow was constructed: graphite rod /[O]Fe+C saturated / ZrO2(MgO/(FeO slag/iron crucible. The feasibility of extraction of iron from molten oxide slag containing FeO at an applied voltage was investigated by means of the electrolytic cell. The effects of some important process factors on the FeO electrolytic reduction with the controlled oxygen flow were discussed. The results show that: solid iron can be extracted from molten oxide slag containing FeO at 1450ºC and an applied potential of 4V. These factors, such as precipitation and growth of solid iron dendrites, change of the cathode active area on the inner wall of the iron crucible and ion diffusion flux in the molten slag may affect the electrochemical reaction rate. The reduction for Fe2+ ions mainly appears on new iron dendrites of the iron crucible cathode, and a very small amount of iron are also formed on the MSZ (2.18% MgO partially stabilized zirconia tube/slag interface due to electronic conductance of MSZ tube. Internal electronic current through MSZ tube may change direction at earlier and later electrolytic reduction stage. It has a role of promoting electrolytic reduction for FeO in the molten slag at the earlier stage, but will lower the current efficiency at the later stage. The final reduction ratio of FeO in the molten slag can achieve 99%. A novel electrolytic method with controlled oxygen flow for iron from the molten oxide slag containing FeO was proposed. The theory of electrolytic reduction with the controlled oxygen flow was developed.

  3. Slags in steel making; Kuonat teraeksen valmistuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Paeaetalo, M.; Karhu, P.; Jauhiainen, A.; Alamaeki, P.; Koski-Laine, S.; Ollila, J. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    At the first step of the project all stages of the steelmaking processes were viewed from the blast furnace to the continuous casting. Slag knowledge of each processes were collected into a guide, which is meant to help both production and research. At the same time the essential problems caused by slags in steelmaking were focused. At the second step the focus of this slag-project were transferred into the desulphurization, converter, ladle and tundish slags. Wide slag knowledge has been divided into smaller parts and applied versatile into the steelmaking process taking into account the metallurgical, economical and qualitative aspects. (orig.) SULA 2 Research Programme; 13 refs.

  4. Slags in steel making; Kuonat teraeksen valmistuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J; Paeaetalo, M; Karhu, P; Jauhiainen, A; Alamaeki, P; Koski-Laine, S; Ollila, J [Oulu Univ. (Finland). Dept. of Process Engineering

    1997-12-31

    At the first step of the project all stages of the steelmaking processes were viewed from the blast furnace to the continuous casting. Slag knowledge of each processes were collected into a guide, which is meant to help both production and research. At the same time the essential problems caused by slags in steelmaking were focused. At the second step the focus of this slag-project were transferred into the desulphurization, converter, ladle and tundish slags. Wide slag knowledge has been divided into smaller parts and applied versatile into the steelmaking process taking into account the metallurgical, economical and qualitative aspects. (orig.) SULA 2 Research Programme; 13 refs.

  5. Recycling steel-manufacturing slag and harbor sediment into construction materials.

    Science.gov (United States)

    Wei, Yu-Ling; Lin, Chang-Yuan; Cheng, Shao-Hsiang; Wang, H Paul

    2014-01-30

    Mixtures consisting of harbor sediment and slag waste from steel industry containing toxic components are fired to produce non-hazardous construction materials. The fired pellets become lighter as firing temperature increases. At a sintering temperature of ≦1050°C, the fired pellets are in a form of brick-like product, while at 1100°C, they become lightweight aggregates. Calcium silicate, kyanite, and cristobalite are newly formed in the pellets after firing, demonstrating that calcium oxide acts as a flux component and chemically reacted with Si- and/or Al-containing components to promote sintering. Dioxin/furan content present in the pure slag is 0.003ng I-TEQg(-1) and, for the fired pellet consisting of slag and sediment, the content appears to be destructed and diminishes to 0.0003ng I-TEQg(-1) after 950°C-firing; while it is 0.002ng I-TEQg(-1) after firing at 1100°C, suggesting that dioxins/furans in the 950°C-fired pellets have a greater chance to escape to atmosphere due to a slower sintering reaction and/or that construction of dioxins/furans from molten chloride salts co-exists with their destruction. Multiple toxicity characteristic leaching procedure extracts Cu, Cr, Zn, Se, Cd, Pb, Ba, As, and Hg from all fired products at negligible levels. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Experimental Study on Hot Metal Desulfurization Using Sintered Red Mud-Based Flux

    Science.gov (United States)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-09-01

    This research presents the results of laboratory and pilot-scale tests conducted on the use of sintered red mud (RM)-based flux in the hot metal desulfurization (HMD) process. Al2O3/Na2O in RM can decrease the melting point of lime-based slag and can work as a flux in the HMD process. Good slag fluidity was observed throughout the process, and high desulfurization rates ( 80%) with a low final S content (pilot-scale test results indicated that a desulfurization rate as high as 91% and a S content <0.0099% could be acquired when RM:lime = 1:1, verifying the feasibility of using sintered RM-based flux in HMD. The data obtained provide important information for promoting the large-scale application of sintered RM in steelmaking.

  7. Investigations on steel slag re-utilization in developing countries; Hatten tojokoku ni okeru tekko slag sairiyo ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In order to promote steel slag re-utilization in developing countries, a possibility was presented for technical cooperation to India, Indonesia and Thailand upon putting the status of slag utilization in Japan into order. Blast furnace slag produced in Japan (having a re-utilization rate of 95%) is re-utilized and processed as cement aggregates and road beds, and converter slag as civil engineering materials and ores. Steel making slag (having a re-utilization rate of 80%) is re-utilized as road, processing and civil engineering materials. Since the steel making slag faces intensifying competition with ash made by incinerating construction and general wastes, it is important to improve its price competitiveness or mixed utilization with other materials. Re-utilization has not advanced to a recognizable level in developing countries because of having no difficulty for availability of lands for wastes. However, growth of full-scale steel industries and elevation in tendency of environment preservation now urge increase in the slag re-utilization rate. Required to achieve the goal would include wider use of re-utilization technologies, quality control on slag, joint use of facilities to produce re-utilization products, and governmental assistance on burdens of transportation cost. Assistance from Japan is expected to help meet these requirements. 25 figs., 31 tabs.

  8. Production of precipitated calcium carbonate from industrial byproduct slags; Saostetun kalsiumkarbonaatin tuotanto karbonaattivapaista kuonatuotteista (SLAG2PCC)

    Energy Technology Data Exchange (ETDEWEB)

    Zevenhoven, R. [Aabo Akademi, Turku (Finland). Heat Engineering Lab.; Teir, S.; Eloneva, S.; Savolahti, J. [Helsinki Univ. of Technology, Espoo (Finland). Energy Technology and Environmental Protection

    2006-12-19

    Production of precipitate calcium carbonate from industrial by- product slags-project, 'SLAG2PCC', is a spin-off from ClimBus technology programme CO{sub 2} Nordic Plus-project, financed by the Finnish Technology Agency Tekes and the Finnish Recovery Boiler Committee. 'SLAG2PCC'-project is financed by Tekes, Ruukki Productions, UPM Kymmene and Waertsilae Finland. The possibility to produce precipitated calcium carbonate, PCC, from carbonate free industrial by-products (slags), combined with binding of carbon dioxide for climate change mitigation is studied in this project. The suitability of a process found from the literature, in which calcium used for carbonation is dissolved from calcium silicates using acetic acid as a solvent, is investigated for the carbonation of slags from the steel industry. During the calcium extraction experiments performed in the CO2 Nordic Plus - project it was found out that calcium is rapidly extracted from blast furnace and basic oxygen furnace slags. Atmospheric carbonation of the solution containing the dissolved slag and acetic acid directly has not succeeded yet due to low pH of the solution. Addition of NaOH, to increase of the solution pH, resulted in calcium carbonate precipitate in atmospheric pressure. The future goal of the project is to optimize process conditions so that the formed calcium carbonate is suitable for use as PCC. (orig.)

  9. Radiological impact assessment of arc welding supplies rutile

    International Nuclear Information System (INIS)

    Rozas Guinea, S.; Herranz Soler, M.; Perez Marin, C.; Idoeta Hermandorena, R.; Alegria gutierrez, N.; Nunez-Lagos Rogla, R.; Legarda Ibanez, F.

    2013-01-01

    Consumables for welding containing rutile, the coating of the electrode or the filling of tubular thread, are the most widely used and also the most radioactive since the rutile is a mineral containing traces of natural radionuclides, and is therefore considered Normal Occurring Radioactive Material (NORM). As these electrodes and wire are consumed, small particles, aerosols and gases are emitted to the atmosphere of work, and may be inhaled by the welder. Therefore, and also according to the current regulatory framework and work carried out previously by the author on the radiological impact of the process of manufacture and storage of coated rutile electrodes, the objectives are: 1Calcular the internal dose for inhalation during two types of welding, one with electrodes coated and the other with thread. 2 calculate the external dose due to the deposition of particles in the work environment, slag and the immersion of the soldering iron in the cloud of smoke. 3 to assess the radiological impact. (Author)

  10. Hydrology and geochemistry of a slag-affected aquifer and chemical characteristics of slag-affected ground water, northwestern Indiana and northeastern Illinois

    Science.gov (United States)

    Bayless, E. Randall; Greeman, T.K.; Harvey, C.C.

    1998-01-01

    Slag is a by-product of steel manufacturing and a ubiquitous fill material in northwestern Indiana. Ground water associated with slag deposits generally is characterized by high pH and elevated concentrations of many inorganic water-quality constituents. The U.S. Geological Survey, in cooperation with the Indiana Department of Environmental Management, conducted a study in northwestern Indiana from June 1995 to September 1996 to improve understanding of the effects of slag deposits on the water quality of a glacial-outwash aquifer. The Bairstow Landfill, a slag-fill deposit overlying the Calumet aquifer near Hammond, Indiana, was studied to represent conditions in slag-deposit settings that are common in northwestern Indiana. Ground water from 10 observation wells, located in four nests at the site, and surface water from the adjacent Lake George were analyzed for values of field-measured parameters and concentrations of major ions, nutrients, trace elements, and bulk properties. Solid-phase samples of slag and aquifer sediment collected during drilling were examined with X-ray diffraction and geochemical digestion and analysis. Concentrations of calcium, potassium, sodium, and sulfate were highest in wells screened partly or fully in slag. Potassium concentrations in ground water ranged from 2.9 to 120 milligrams per liter (mg/L), were highest in water from slag deposits, and decreased with depth. The highest concentrations for aluminum, barium, molybdenum, nickel, and selenium were in water from the slag. Silica concentrations were highest in wells screened directly beneath the slag?aquifer interface, and magnesium concentrations were highest in intermediate and deep aquifer wells. Silica concentrations in shallow and intermediate aquifer wells ranged from 27 to 41 mg/L and were about 10 times greater than those in water from slag deposits. The highest concentrations for chromium, lead, and zinc were in ground water from immediately below the slag

  11. Investigation of a weld defect, reactor vessel head Ringhals 2

    International Nuclear Information System (INIS)

    Embring, G.; Pers-Anderson, E.B.

    1994-01-01

    During the summer-outage 1993 Ringhals unit 2 vessel head was inspected at weld-area of Alloy 182. One major defect was found Two plus two ''boat-samples'' were taken out from the zone between the weld and the stainless cladding. All samples were sent to Studsviks laboratories for detailed investigations. The metallographic and fractographic investigations revealed that the major weld-defect had been there from manufacturing. The defect was located between the Alloy 182-buttering and the pressure vessel steel SA 533 grB cl 1. No indications of PWSCC or IDSCC were found. An inspection programme was defined. Different types of reference blocks were provided by Ringhals in cooperation with ABB TRC. Reference reflectors of type flat bottom hole (FBH) and eroded notches (EDM), with different sizes and separation were manufactured. One weld sample with manufacturing defects -lack of fusion and slag was inclusions- was present. ABB TRC performed UT inspection in the gap between the penetration and the thermal sleeve. Inspection results like defect identification, defect separation and defect sizing accuracy were compared with result from the destructive inspection. No relevant additional defects were found. An analysing and repair program was performed. A special designed disc sealed off the defect area. (authors). 5 figs., 3 refs

  12. Modelling of slag emulsification and slag reduction in CAS-OB process

    OpenAIRE

    Sulasalmi, P. (Petri)

    2016-01-01

    Abstract Composition Adjustment by Sealed argon bubbling – Oxygen Blowing (CAS-OB) process is a ladle treatment process that was developed for chemical heating and alloying of steel. The main stages of the process are heating, (possible) alloying and reduction of slag. The CAS-OB process aims for homogenization and control of the composition and temperature of steel. In this dissertation, a mathematical reaction model was developed for the slag reduction stage of the CAS-OB process. Sl...

  13. Welding of high-strength stainless steel 03Kh12N10MT for cryogenic engineering

    International Nuclear Information System (INIS)

    Pustovit, A.I.

    1989-01-01

    Consideration is being given to weld resistance to cold and hot cracking at 93 and 77K and to mechanical properties of welded joints of high-strength stainless steel 03Kh12N10MT, produced under the fluxes AN-17M, AN-18, AN-26, AN-45, ANF-5, 48-OF-6, ANK-45 and ANK-49 in combination with various welding wires. It is shown that welds on 03Kh12N10MT steel meet the requirements only when using 48-OF-6 or ANK-49 flux. It is noted that impact strength of welds at 77K is sufficiently affected by the volume fraction of non-metallic inclusions in weld metal

  14. Characteristics and environmental aspects of slag: a review

    Science.gov (United States)

    Piatak, Nadine M.; Parsons, Michael B.; Seal, Robert R.

    2015-01-01

    Slag is a waste product from the pyrometallurgical processing of various ores. Based on over 150 published studies, this paper provides an overview of mineralogical and geochemical characteristics of different types of slag and their environmental consequences, particularly from the release of potentially toxic elements to water. This chapter reviews the characteristics of both ferrous (steel and blast furnace Fe) and non-ferrous (Ag, Cu, Ni, Pb, Sn, Zn) slag. Interest in slag has been increasing steadily as large volumes, on the order of hundreds of millions of tonnes, are produced annually worldwide. Research on slag generally focuses on potential environmental issues related to the weathering of slag dumps or on its utility as a construction material or reprocessing for secondary metal recovery. The chemistry and mineralogy of slag depend on the metallurgical processes that create the material and will influence its fate as waste or as a reusable product.

  15. Fracture toughness of stainless steel welds

    International Nuclear Information System (INIS)

    Mills, W.J.

    1985-11-01

    The effects of temperature, composition and weld-process variations on the fracture toughness behavior for Types 308 and 16-8-2 stainless steel (SS) welds were examined using the multiple-specimen J/sub R/-curve procedure. Fracture characteristics were found to be dependent on temperature and weld process but not on filler material. Gas-tungsten-arc (GTA) welds exhibited the highest fracture toughness, a shielded metal-arc (SMA) weld exhibited an intermediate toughness and submerged-arc (SA) welds yielded the lowest toughness. Minimum-expected fracture properties were defined from lower-bound J/sub c/ and tearing modulus values generated here and in previous studies. Fractographic examination revealed that microvoid coalescence was the operative fracture mechanism for all welds. Second phase particles of manganese silicide were found to be detrimental to the ductile fracture behavior because they separated from the matrix during the initial stages of plastic straining. In SA welds, the high density of inclusions resulting from silicon pickup from the flux promoted premature dimple rupture. The weld produced by the SMA process contained substantially less manganese silicide, while GTA welds contained no silicide inclusions. Delta ferrite particles present in all welds were substantially more resistant to local failure than the silicide phase. In welds containing little or no manganese silicide, delta ferrite particles initiated microvoid coalescence but only after extensive plastic straining

  16. Thermodynamic modelling of alkali-activated slag cements

    International Nuclear Information System (INIS)

    Myers, Rupert J.; Lothenbach, Barbara; Bernal, Susan A.; Provis, John L.

    2015-01-01

    Highlights: • A thermodynamic modelling analysis of alkali-activated slag cements is presented. • Thermodynamic database describes zeolites, alkali carbonates, C–(N–)A–S–H gel. • Updated thermodynamic model for Mg–Al layered double hydroxides. • Description of phase assemblages in Na 2 SiO 3 - and Na 2 CO 3 -activated slag cements. • Phase diagrams for NaOH-activated and Na 2 SiO 3 -activated slag cements are simulated. - Abstract: This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO 2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH-ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg–Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na 2 SiO 3 -activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na 2 SiO 3 -activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na 2 CO 3 -activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags

  17. Welding Emissions in Shipbuilding and Repair (Briefing Charts)

    Science.gov (United States)

    2009-09-03

    gas – GTAW –uses shield gas, but low emissions –aka TIG – SAW – lowest rate, solid wire weld covered with flux material 7 Naval Facilities...Reduced fume generation rate •Measurement of Cr(VI) –SMAW over operating range of consumable –GTAW or other processes of interest to DoD • Welding ...Engineering Service Center Welding Emissions in Shipbuilding and Repair Kathleen M Paulson, PE Port Hueneme, CA 3 September 2009 Report

  18. Qualification of flat welding of nuclear fuel bars

    International Nuclear Information System (INIS)

    Romero C, J.; Rivera M, H.

    2001-01-01

    The qualification of flat welding consists in the process (procedures (11), instructions (5), specifications (4) and programs (3)) and equipment (systems (4), equipment (6)) with the Personal Qualification (operators and supervisors) that was done in simultaneous form and supported with test and training programs with its respective technical reports, liberated by the Quality Assurance Office of ININ. Moreover, specific procedures of process and personal qualification are realized with the respective supervision by Quality Assurance Office. For the process, 20 welding were realized as follow: 5 welding with maximum contributing of heat, 10 welding with nominal contributing of heat, 5 welding with minimum contributing of heat. The heat contributing for the qualification was done maximum, of increasing the welding current, diminishing the helium flux and the revolutions per minute of the bar, at the moment of welding, with respect to nominal values. In the minimum contributing of heat it is diminished the welding current, increasing the helium flux and the revolutions per minute of the bar with respect to nominal values. With the qualification it has been finished the development of flat welding with results which define an own method of ININ. It was implemented a pneumatic system, for the elimination of micron cracks. It was required a control of turn velocity of the bar of hundredth of revolution. Moreover the main welding parameters each 40 μs are acquired. Also it was automated completely the process to avoid possible human mistakes. The standard deviations of the values of the realized inspections in the quality, are lower. Process, equipment and personnel with their respective Quality reports and registries are qualified, as well as the Quality certificates of two operators and one supervisor. (Author)

  19. Influence of M-TIG and A-TIG Welding Process on Microstructure and Mechanical Behavior of 409 Ferritic Stainless Steel

    Science.gov (United States)

    Vidyarthy, R. S.; Dwivedi, D. K.; Vasudevan, M.

    2017-03-01

    The current study investigates the effects of activating flux tungsten inert gas welding (A-TIG) and multipass tungsten inert gas welding (M-TIG) on the weld morphology, angular distortion, microstructures and mechanical properties when welding 8-mm-thick 409 ferritic stainless steel (FSS). SiO2 was used as activating flux for A-TIG welding, while SUPERTIG ER309L was used as filler for M-TIG welding. Bead-on-plate weld trials were carried out to obtain the full penetration by using different combinations of flux coating density, welding speed and welding current. An optical microscope, field emission scanning microscope (FESEM), and x-ray diffractometer were used for the metallurgical characterizations. Vickers hardness, tensile test, Charpy toughness test, and creep behavior test were carried out to evaluate the mechanical properties of the base and weld metals. Experimental results indicate that the A-TIG process can increase the joint penetration and tends to reduce the angular distortion of the 409 FSS weldment. The A-TIG welded joint also exhibited greater mechanical strength. However, a critically low Charpy toughness was measured for the A-TIG weld fusion zone, which was later sufficiently improved after post weld heat treatment (PWHT). It was concluded that PWHT is mandatory for A-TIG welded 409 FSS.

  20. Preparing hydraulic cement from oil-shale slag

    Energy Technology Data Exchange (ETDEWEB)

    1921-11-19

    A process for the preparation of hydraulic cementing material from oil shale or oil-shale slag according to Patent 411,584 is characterized by the fact that the oil-shale slag is added to burnt marl, blast-furnace slag, and the like, whereupon the mixture is milled to dust in the known way.

  1. Joining of Materials with Diferent Properties Through Submerged Arc Welding Process and Destructive and Non-Destructive Testing of the Joints

    Directory of Open Access Journals (Sweden)

    Yakup Kaya

    2013-01-01

    Full Text Available In this study, X60, X65 and X70 steels used in petroleum and natural gas pipeline were joined with Submerged Arc Welding by using different type of welding fluxes (LN761 and P223 and wires (S1 and S2Mo. Initially, visual and radiographic inspection techniques were subjected to welded joints for determining surface and subsurface defects. After that, spectral analyses were carried out in order to determine the compositions of wire-flux-base metal on the joints. Impact toughness test were performed for determining toughness properties the joints. Furthermore, hardness and microstructure studies were also carried out on the samples. As a result of the visual and radiographic inspection on the welded samples, there were no weld defects on joints were observed. It was clearly understood that carbon ratio in the compositions of weld metal higher than base metal but lower than filler metal in terms of spectral analyses results. According to impact toughness test results, the joints obtained by using S2Mo welding wire and P223 welding flux had better impact toughness value than the joints obtained by S1 welding wire and LN 761 welding flux. With respect to hardness test, the highest hardness values were measured on weld metal. When the microstructure images were examined, it is clearly understood that similar images for all the joints were shown adjacent zones to weld metals heat affected zones and welding boundary, due to heat input constant.

  2. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    Science.gov (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  3. Efficacy of dry-ice blasting in preventive maintenance of auto robotic assemblies

    Science.gov (United States)

    Baluch, Nazim; Mohtar, Shahimi; Abdullah, Che Sobry

    2016-08-01

    Welding robots are extensively applied in the automotive assemblies and `Spot Welding' is the most common welding application found in the auto stamping assembly manufacturing. Every manufacturing process is subject to variations - with resistance welding, these include; part fit up, part thickness variations, misaligned electrodes, variations in coating materials or thickness, sealers, weld force variations, shunting, machine tooling degradation; and slag and spatter damage. All welding gun tips undergo wear; an elemental part of the process. Though adaptive resistance welding control automatically compensates to keep production and quality up to the levels needed as gun tips undergo wear so that the welds remain reliable; the system cannot compensate for deterioration caused by the slag and spatter on the part holding fixtures, sensors, and gun tips. To cleanse welding robots of slag and spatter, dry-ice blasting has proven to be an effective remedy. This paper describes Spot welding process, analyses the slag and spatter formation during robotic welding of stamping assemblies, and concludes that the dry ice blasting process's utility in cleansing of welding robots in auto stamping plant operations is paramount and exigent.

  4. The Integration of Plant Sample Analysis, Laboratory Studies, and Thermodynamic Modeling to Predict Slag-Matte Equilibria in Nickel Sulfide Converting

    Science.gov (United States)

    Hidayat, Taufiq; Shishin, Denis; Grimsey, David; Hayes, Peter C.; Jak, Evgueni

    2018-02-01

    The Kalgoorlie Nickel Smelter (KNS) produces low Fe, low Cu nickel matte in its Peirce-Smith converter operations. To inform process development in the plant, new fundamental data are required on the effect of CaO in slag on the distribution of arsenic between slag and matte. A combination of plant sample analysis, high-temperature laboratory experiments, and thermodynamic modeling was carried out to identify process conditions in the converter and to investigate the effect of slag composition on the chemical behavior of the system. The high-temperature experiments involved re-equilibration of industrial matte-slag-lime samples at 1498 K (1225 °C) and P(SO2) = 0.12 atm on a magnetite/quartz substrate, rapid quenching in water, and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). A private thermodynamic database for the Ca-Cu-Fe-Mg-Ni-O-S-Si-(As) system was used together with the FactSage software package to assist in the analysis. Thermodynamic predictions combined with plant sample characterization and the present experimental data provide a quantitative basis for the analysis of the effect of CaO fluxing on the slag-matte thermochemistry during nickel sulfide converting, in particular on the spinel liquidus and the distribution of elements between slag and matte as a function of CaO addition.

  5. Process-integrated slag treatment; Prozessintegrierte Schlackebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Koralewska, R.; Faulstich, M. [Technische Univ., Garching (Germany). Lehrstuhl fuer Wasserguete- und Abfallwirtschaft

    1998-09-01

    The present study compares two methods of washing waste incineration slag, one with water only, and one which uses additives during wet deslagging. The presented aggregate offers ideal conditions for process-integrated slag treatment. The paper gives a schematic description of the integrated slag washing process. The washing liquid serves to wash out the readily soluble constituents and remove the fines, while the additives are for immobilising heavy metals in the slag material. The study is based on laboratory and semi-technical trials on the wet chemical treatment of grate slag with addition of carbon dioxide and phosphoric acid. [Deutsch] Die dargestellten Untersuchungen beziehen sich auf den Vergleich zwischen einer Waesche der Muellverbrennungsschlacke mit Wasser und unter Zugabe von Additiven im Nassentschlacker. In diesem Aggregat bieten sich optimale Voraussetzungen fuer eine prozessintegrierte Schlackebehandlung. Die Durchfuehrung der integrierten Schlackewaesche wird schematisch gezeigt. Durch die Waschfluessigkeit sollen die leichtloeslichen Bestandteile ausgewaschen und die Feinanteile ausgetragen sowie durch die Additive zusaetzlich die Schwermetalle im Schlackematerial immobilisiert werden. Dazu erfolgten Labor- und halbtechnische Versuche zur nasschemischen Behandlung der Rostschlacken unter Zugabe von Kohlendioxid und Phosphorsaeure. (orig./SR)

  6. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO

    International Nuclear Information System (INIS)

    Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F.

    2011-01-01

    The hydration and the microstructure of three alkali activated slags (AAS) with MgO contents between 8 and 13 wt.% are investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na 2 SiO 3 .5H 2 O (WG). Higher MgO content of the slag resulted in a faster reaction and higher compressive strengths during the first days. The formation of C(- A)-S-H and of a hydrotalcite-like phase was observed in all samples by X-ray diffraction (XRD), thermal analysis (TGA) and scanning electron microscopy (SEM) techniques. Increasing the MgO content of the slag from 8 to 13% increased the amount of hydrotalcite and lowered the Al uptake by C-S-H resulting in 9% higher volume of the hydrates and a 50 to 80% increase of the compressive strength after 28 days and longer for WG activated slag pastes. For NaOH activated slags only a slight increase of the compressive strength was measured.

  7. Chemical durability of slag produced by thermal plasma melting of low-level miscellaneous solid wastes. Effects of slag composition

    International Nuclear Information System (INIS)

    Amakawa, Tadashi; Yasui, Shinji

    2001-01-01

    Low-level radioactive miscellaneous solid wastes are generated from commercial operation of nuclear power plants and will be generated from decommissioning of nuclear power plants in future. Static leaching tests were carried out in deionized water of 10degC on slag obtained by thermal plasma melting of simulating materials of the miscellaneous solids wastes with surrogate elements of radionuclides. It is found that logarithm of normalized elemental mass loss from the slag is proportional to the basicity represented by mole fractions of main structural oxides of the slag, such as SiO 2 , Al 2 O 3 , CaO, FeO and MgO. The range of static leaching rates from the slag is determined based on the above results and the basicity range of the miscellaneous solid wastes. Then we compared the leaching rates form the slag and from high level waste glasses. On these grounds, we concluded that the slag obtained by thermal plasma melting of miscellaneous solid wastes can stabilize radio-nuclides in it by no means inferior to the high level waste glasses. (author)

  8. Utilizing steel slag in environmental application - An overview

    Science.gov (United States)

    Lim, J. W.; Chew, L. H.; Choong, T. S. Y.; Tezara, C.; Yazdi, M. H.

    2016-06-01

    Steel slags are generated as waste material or byproduct every day from steel making industries.The potential environmental issues which are related with the slag dump or reprocessing for metal recovery are generally being focused in the research. However the chemistry and mineralogy of slag depends on metallurgical process which is able to determine whether the steel slag can be the reusable products or not. Nowadays, steel slag are well characterized by using several methods, such as X-ray Diffraction, ICP-OES, leaching test and many more. About the industrial application, it is mainly reused as aggregate for road construction, as armour stones for hydraulic engineering constructions and as fertilizers for agricultural purposes. To ensure the quality of steel slag for the end usage, several test methods are developed for evaluating the technical properties of steel slag, especially volume stability and environmental behaviour. In order to determine its environmental behaviour, leaching tests have been developed. The focus of this paper however is on those applications that directly affect environmental issues including remediation, and mitigation of activities that negatively impact the environment.

  9. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-03-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  10. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-06-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  11. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  12. Environmental characteristics and utilization potential of metallurgical slag: Chapter 19

    Science.gov (United States)

    Piatak, Nadine; De Vivo, Benedetto; Belkin, Harvey E.; Lima, Annamaria

    2018-01-01

    Slag, an abundant byproduct from the pyrometallurgical processing of ores, can be an environmental liability or a valuable resource. The most common environmental impact of slag is from the leaching of potentially toxic elements, acidity, or alkalinity that may impact nearby soils and surface water and groundwater. Factors that influence its environmental behavior include physical characteristics, such as grain size and porosity, chemical composition with some slag being enriched in certain elements, the mineralogy and partitioning of elements in more or less reactive phases, water-slag interactions, and site conditions. Many of these same factors also influence its resource potential. For example, crystalline ferrous slag is most commonly used as construction aggregate, whereas glassy (i.e., granulated) slag is used in cement. Also, the calcium minerals found in ferrous slag result in useful applications in water treatment. In contrast, the high trace-element content of some base-metal slags makes the slags economically attractive for extraction of residual elements. An evaluation tool is used to help categorize a particular slag as an environmental hazard or valuable byproduct. Results for one type of slag, legacy steelmaking slag from the Chicago area in the USA, suggest the material has potential to be used for treating phosphate-rich or acidic waters; however, the pH and trace-element content of resulting solutions may warrant further examination.

  13. Comparative results of copper flotation from smelter slag and granulated smelter slag

    OpenAIRE

    Milanović, Dragan; Stanujkić, Dragiša; Ignjatović, Miroslav R.

    2013-01-01

    Smelter slag is obtained in the process of metallurgical converting of copper concentrate in the Smelter Plant in Bor, Serbia. Today, the reserves of this material are evaluated at about more of a year, with the average copper content of 0.6-0.9%. Production of copper concentrate by flotation of smelter slag has started in 2001. Flotation concentrate goes to the Copper Smelter once more for production of copper cathodes and the rough flotation tailings go to the flotation tailing dump. Copper...

  14. Moderate Dilution of Copper Slag by Natural Gas

    Science.gov (United States)

    Zhang, Bao-jing; Zhang, Ting-an; Niu, Li-ping; Liu, Nan-song; Dou, Zhi-he; Li, Zhi-qiang

    2018-01-01

    To enable use of copper slag and extract the maximum value from the contained copper, an innovative method of reducing moderately diluted slag to smelt copper-containing antibacterial stainless steel is proposed. This work focused on moderate dilution of copper slag using natural gas. The thermodynamics of copper slag dilution and ternary phase diagrams of the slag system were calculated. The effects of blowing time, temperature, matte settling time, and calcium oxide addition were investigated. The optimum reaction conditions were identified to be blowing time of 20 min, reaction temperature of 1250°C, settling time of 60 min, CaO addition of 4% of mass of slag, natural gas flow rate of 80 mL/min, and outlet pressure of 0.1 MPa. Under these conditions, the Fe3O4 and copper contents of the residue were 7.36% and 0.50%, respectively.

  15. Upgraded HFIR Fuel Element Welding System

    International Nuclear Information System (INIS)

    Sease, John D.

    2010-01-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  16. Decalcification resistance of alkali-activated slag

    Energy Technology Data Exchange (ETDEWEB)

    Komljenovic, Miroslav M., E-mail: miroslav.komljenovic@imsi.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Bascarevic, Zvezdana, E-mail: zvezdana@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Marjanovic, Natasa, E-mail: natasa@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Nikolic, Violeta, E-mail: violeta@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer The effects of decalcification on properties of alkali-activated slag were studied. Black-Right-Pointing-Pointer Decalcification was performed by concentrated NH{sub 4}NO{sub 3} solution (accelerated test). Black-Right-Pointing-Pointer Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Black-Right-Pointing-Pointer Decalcification led to strength decrease and noticeable structural changes. Black-Right-Pointing-Pointer Alkali-activated slag showed significantly higher resistance to decalcification. - Abstract: This paper analyses the effects of decalcification in concentrated 6 M NH{sub 4}NO{sub 3} solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si {approx}0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification.

  17. Effects on the efficiency of activated carbon on exposure to welding fumes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D. [Southern Company Services, Inc., Birmingham, AL (United States)

    1995-02-01

    It is the intention of this paper to document that certain types of welding fumes have little or no effect on the effectiveness of the carbon filter air filtration efficiency when directly exposed to a controlled amount of welding fumes for a short-term period. The welding processes studied were restricted to shielded metal arc welding (SMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes. Contrary to the SMAW and FCAW processes, the GTAW (or TIG) and the GMAW (or MIG) welding processes do not require the use of flux as part of the overall process. Credit was taken for these processes occurring in inert gas environments and producing minimal amount of smoke. It was concluded that a study involving the SMAW process would also envelop the effects of the TIG and MIG welding processes. The quantity of welding fumes generated during the arc welding process is a function of the particular process, the size and type of electrode, welding machine amperage, and operator proficiency. For this study, the amount of welding for specific testing was equated to the amount of welding normally conducted during plant unit outages. Different welding electrodes were also evaluated, and the subsequent testing was limited to an E7018 electrode which was judged to be representative of all carbon and stainless steel electrodes commonly used at the site. The effect of welding fumes on activated charcoal was tested using a filtration unit complete with prefilters, upstream and downstream high efficiency particulate air (HEPA) filters, and a carbon adsorber section. The complete system was field tested in accordance with ANSI N510 standards prior to exposing the filters and the adsorber bed to welding fumes. The carbon samples were tested at an established laboratory using ASTM D3803-1989 standards.

  18. Simulation of slag control for the Plasma Hearth Project

    International Nuclear Information System (INIS)

    Power, M.A.; Carney, K.P.; Peters. G.G.

    1996-01-01

    The goal of the Plasma Hearth Project is to stabilize alpha-emitting radionuclides in a vitreous slag and to reduce the effective storage volume of actinide-containing waste for long-term burial. The actinides have been shown to partition into the vitreous slag phase of the melt. The slag composition may be changed by adding glass-former elements to ensure that this removable slag has the most desired physical and chemical properties for long-term burial. A data acquisition and control system has been designed to regulate the composition of five elements in the slag

  19. Leaching of heavy metals from steelmaking slags

    International Nuclear Information System (INIS)

    Gomez, J. F. P.; Pino, C. G.

    2006-01-01

    Leaching tests with EAF and Ladle slags were performed, using a flow through tests and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. the chemical analysis of the leachates during this period shows, in general, for both types of slag, and increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slang samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-though test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5% (Ca) and 1% (other elements). (Author) 12 refs

  20. Review of Liquidus Surface and Phase Equilibria in the TiO2-SiO2-Al2O3-MgO-CaO Slag System at PO2 Applicable in Fluxed Titaniferous Magnetite Smelting

    Science.gov (United States)

    Goso, Xolisa; Nell, Johannes; Petersen, Jochen

    The current liquidus surface and phase equilibria established in air for fluxed titaniferous magnetite (titanomagnetite) slags conforming to a composition of 37.19% TiO2, 19.69% SiO2, 13.12% Al2O3, and 30.00% of various ratios of CaO+MgO were reviewed at applicable PO2 using FactSage simulation and phase composition of a real plant titanomagnetite slag. The testwork included the incorporation into FactSage of a private MgTi2O5-Al2TiO5 pseudobrookite solution model. The results of the investigation showed that the liquidus surface and Ti3+/ Ti4+ mass fraction ratio increased with decreasing the PO2, At low PO2, perovskite crystallizes as a primary phase at high CaO content. The spinel solution, i.e. (Mg)(Al,Ti)O4, generally crystallizes as the primary phase at high MgO contents, though it is replaced by MgTi2O5-Al2TiO5 solution at PO2 of 10-10 atm to 10-15 atm. An intermediate equilibrium phase diagram established at PO2 of 10-16 atm is proposed. This phase diagram does not show the observed primary phase crystallization competition, however, the phase composition of a real titanomagnetite slag produced by Evraz Highveld Steel and Vanadium Corporation in South Africa does show primary phase crystallization competition between (Mg)(Al,Ti)2O4 and MgTi2O5-Al2TiO5. Smelting involving such slags is likely conducted around the transition PO2, i.e. PO2 of about 10-16 atm. Complex modelling with MgTi2O5, Al2TiO5 and Ti3O5 end members and experiments are underway to verify and update the intermediate phase diagram.

  1. Treatment of LF slag to prevent powdering during cooling

    Directory of Open Access Journals (Sweden)

    Ghorai S.

    2017-01-01

    Full Text Available The polymorphic transformation of the monoclinic β-polymorph to the orthorhombic γ-polymorph of di-calcium silicate at around 500°C during cooling results in disintegration of slag. The slag generated, during the production of thermo mechanically treated steel in ladle furnace at M/s Tata Steel Limited, Jamshedpur, India, behaves in similar manner. An attempt has been made to prevent the crumbling of ladle furnace slag. The experiments were conducted in 10 kg air induction furnace. Various types of silica source were used to prevent the disintegration of ladle furnace slag by reducing the basicity and optimizing the additives amount. Apart from silica sources, other additives like borax and barium carbonate were also used to stabilize the β phase. Present investigation reveals that disintegration of ladle furnace slag can be prevented either by addition of 0.2% boarx or 2% barium carbonate. Dust formation can also be prevented by decreasing the ladle furnace slag basicity to about 1.7. Toxicity Characteristic Leaching Procedure test, of the borax and barium carbonate treated slag samples, indicates that barium carbonate treated slag cannot be used for the dusting prevention as it contains high level of barium.

  2. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  3. HCl removal using cycled carbide slag from calcium looping cycles

    International Nuclear Information System (INIS)

    Xie, Xin; Li, Yingjie; Wang, Wenjing; Shi, Lei

    2014-01-01

    Highlights: • Cycled carbide slag from calcium looping cycles is used to remove HCl. • The optimum temperature for HCl removal of cycled carbide slag is 700 °C. • The presence of CO 2 restrains HCl removal of cycled carbide slag. • CO 2 capture conditions have important effects on HCl removal of cycled carbide slag. • HCl removal capacity of carbide slag drops with cycle number rising from 1 to 50. - Abstract: The carbide slag is an industrial waste from chlor-alkali plants, which can be used to capture CO 2 in the calcium looping cycles, i.e. carbonation/calcination cycles. In this work, the cycled carbide slag from the calcium looping cycles for CO 2 capture was proposed to remove HCl in the flue gas from the biomass-fired and RDFs-fired boilers. The effects of chlorination temperature, HCl concentration, particle size, presence of CO 2 , presence of O 2 , cycle number and CO 2 capture conditions in calcium looping cycles on the HCl removal behavior of the carbide slag experienced carbonation/calcination cycles were investigated in a triple fixed-bed reactor. The chlorination product of the cycled carbide slag from the calcium looping after absorbing HCl is not CaCl 2 but CaClOH. The optimum temperature for HCl removal of the cycled carbide slag from the carbonation/calcination cycles is 700 °C. The chlorination conversion of the cycled carbide slag increases with increasing the HCl concentration. The cycled carbide slag with larger particle size exhibits a lower chlorination conversion. The presence of CO 2 decreases the chlorination conversions of the cycled carbide slag and the presence of O 2 has a trifling impact. The chlorination conversion of the carbide slag experienced 1 carbonation/calcination cycle is higher than that of the uncycled calcined sorbent. As the number of carbonation/calcination cycles increases from 1 to 50, the chlorination conversion of carbide slag drops gradually. The high calcination temperature and high CO 2

  4. Outcomes of experimental researches on stainless steel decontamination from radioactive contamination using electric slag remelting method

    International Nuclear Information System (INIS)

    Vurim, A.D.; Pakhnitz, A.V.; Trukhachev, A.G.; Bukhtoyarov, O.I.; Goncharov, A.Ye.

    2003-01-01

    Full text: Institute of Atomic Energy prepared and conducted the experiments the purpose of researching a possibility of applying of stainless steel electric slag remelting for its decontamination from radioactive contamination. The activities were conducted at participating of the specialists of Kurgan State University, Kurgan (Russian Federation). A stand, which includes the electroslag furnace (power - 150 kW, current - to 3000 A) and auxiliary equipment (the system of common and special ventilation, system of remote control, system of parameters measuring and registering and others) was created to conduct the experiments. The properties of slag compositions were researched in the course of experiments preparation. Oxide (CaO-Al 2 O 3 - CaO-SiO 2 - MgO-B 2 O 3 ) and fluoride-oxide (CaF 2 -SiO 2 - MgF 2 -SiO 2 ) slag systems and some their modifications were chosen to research physical and chemical properties. Physical and chemical properties of the slag systems were experimentally researched and it included: measuring of surface tension using the method of maximum pressure in a gas bubble (at the same time density was measured); measuring of slag alloys electrical conductivity; measuring of melt volt-ampere characteristics. The flue tubes of high temperature reactor gas cooling KET technological channels were chosen as a source of radioactive contaminated stainless steel. This reactor is meant for testing of the fuel pin and FA of the nuclear pulse propulsion. Decontamination effect for all the remelted flue tubes was indirectly confirmed by the outcomes of measuring of radioactive radiation dose rate of the materials, extracted of the crystallizer after experiments finishing. The outcomes of the experiments show that the following processes pass at electroslag remelting of radioactively contaminated steel: uranium extraction from steel; uranium transfer from steel to slag; saving or insignificant modification of steel initial composition; radionuclides deposing

  5. Production and testing of flexible welding flux rods, used for protecting briquetting press molds from wear

    Energy Technology Data Exchange (ETDEWEB)

    Loescher, B.; Czerwinski, M.; Dittrich, V.

    1985-11-01

    Production, properties and trial application are discussed for the Feroplast ZIS 218 welding powder rod, developed for automated surface armouring of brown coal briquetting press moulds by arc welding. The welding rod has a diameter of 8 mm and can be bent to a radius of less than 150 mm for reeling. The welding rod is produced by mixing 9% plasticizer (Miravithen and polyisobutylene according to GDR patent 203 269) to the steel welding powder. Weldability of the rod proved to be favourable; there was no emission of toxic fumes during welding. Microscopic studies of the welded surface coating showed that welding with 650A achieved the best coat pore structure. At the Schwarze Pumpe Gasworks the trial service life of various briquet press moulds, reinforced with Ferroplast ZIS 218, proved to be not shorter than that of moulds reinforced with the conventional ZIS powder welding method. 1 reference.

  6. Long term mechanical properties of alkali activated slag

    Science.gov (United States)

    Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.

    2018-01-01

    This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.

  7. Gas Shielding Technology for Welding and Brazing

    Science.gov (United States)

    Nunes, Arthur J.; Gradl, Paul R.

    2012-01-01

    Welding is a common method that allows two metallic materials to be joined together with high structural integrity. When joints need to be leak-tight, light-weight, or free of contaminant-trapping seams or surface asperities, welding tends to be specified. There are many welding techniques, each with its own advantages and disadvantages. Some of these techniques include Forge Welding, Gas Tungsten Arc Welding, Friction Stir Welding, and Laser Beam Welding to name a few. Whichever technique is used, the objective is a structural joint that meets the requirements of a particular component or assembly. A key practice in producing quality welds is the use of shielding gas. This article discusses various weld techniques, quality of the welds, and importance of shielding gas in each of those techniques. Metallic bonds, or joints, are produced when metals are put into intimate contact. In the solid-state "blacksmith welding" process, now called Forge Welding (FOW), the site to be joined is pounded into intimate contact. The surfaces to be joined usually need to be heated to make it easier to deform the metal. The surfaces are sprinkled with a flux to melt surface oxides and given a concave shape so that surface contamination can be squeezed out of the joint as the surfaces are pounded together; otherwise the surface contamination would be trapped in the joint and would weaken the weld. In solid-state welding processes surface oxides or other contamination are typically squeezed out of the joint in "flash."

  8. Modified DHTT Equipment for Crystallization Studies of Mold Slags

    Science.gov (United States)

    Kölbl, Nathalie; Harmuth, Harald; Marschall, Irmtraud

    2018-04-01

    The double hot thermocouple technique (DHTT) enables simulations of the temperature gradient at near-service conditions during continuous casting of steel. With the equipment applied so far, a rectangular slag film of even thickness often cannot be achieved. Further, the minimum temperature frequently lies within the slag film. Modified equipment can avoid these disadvantages via the following design features. The entire furnace chamber is heated to the selected temperature of the cold wire, and the minimum temperature is not located within the slag film. Furthermore, the shape of the heating wire is improved, which enables mounting of a thin, rectangular slag film between four platinum wires. This modification allows for investigations on transparent and translucent slags. So far, the results from DHTT investigations were represented via snapshots of the samples at certain experimental times. Therefore, appropriate methods for the graphical representation of the results were suggested: the maximum crystallinity, the time related to certain crystallinities with a dependence on the position within the slag film, and the crystal growth rate. The CaO-MgO-Al2O3-SiO2 slag investigated with this equipment was mineralogically examined additionally, and based on thermodynamic calculations, the allocation of temperatures to certain positions within the crystallized slag film was possible.

  9. Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh, V. R.; Seyedkashi, S. M. H.

    2011-01-01

    Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.

  10. Alkali-slag cements for the immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Shi, C.; Day, R.L.

    1996-01-01

    Alkali-slag cements consist of glassy slag and an alkaline activator and can show both higher early and later strengths than Type III Portland cement, if a proper alkaline activator is used. An examination of microstructure of hardened alkali-slag cement pastes with the help of XRD and SEM with EDAX shows that the main hydration product is C-S-H (B) with low C/S ratio and no crystalline substances exist such as Ca(OH) 2 , Al (OH) 3 and sulphoaluminates. Mercury intrusion tests indicate that hardened alkali-slag cement pastes have a lower porosity than ordinary Portland cement, and contain mainly gel pores. The fine pore structure of hardened alkali-slag cement pastes will restrict the ingress of deleterious substances and the leaching of harmful species such as radionuclides. The leachability of Cs + from hardened alkali-slag cement pastes is only half of that from hardened Portland cement. From all these aspects, it is concluded that alkali-slag cements are a better solidification matrix than Portland cement for radioactive wastes

  11. Applicability of slags as waste forms for hazardous waste

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.; Dietz, N.L.; Wronkiewicz, D.J.; Feng, X.; Whitworth, C.; Filius, K.; Battleson, D.

    1994-01-01

    Slags, which are a combination of glassy and ceramic phases, were produced by the Component Development and Integration Facility, using a combination of soil and metal feeds. The slags were tested for durability using accelerated test methods in both water vapor and liquid water for time periods up to 179 days. The results indicated that under both conditions there was little reaction of the slag, in terms of material released to solution, or the reaction of the slag to form secondary mineral phases. The durability of the slags tested exceeded that of current high-level nuclear glass formulations and are viable materials, for waste disposal

  12. Influence of preheating on API 5L-X80 pipeline joint welding with self shielded flux-cored wire; Influencia del precalentamiento en las propiedades de uniones soldadas de acero API 5L-X80 soldadas con alambre tubular autoprotegido

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.; Silva, J. H. F.; Trevisan, R. E.

    2004-07-01

    The present work refers to the characterization of API 5L-X80 pipeline joints welded with self-shielded flux cored wire. This process was evaluated under preheating conditions, with an uniform and steady heat input. All joints were welded in flat position (1G), with the pipe turning and the torch still. Tube dimensions were 762 mm in external diameter and 16 mm in thickness. Welds were applied on single V-groove, with six weld beads, along with three levels of preheating temperatures (room temperature, 100 degree centigree, 160 degree centigree). These temperatures were maintained as inter pass temperature. The filler metal E71T8-K6 with mechanical properties different from parent metal was used in under matched conditions. The weld characterization is presented according to the mechanical test results of tensile strength, hardness and impact test. The mechanical tests were conducted according to API 1104, AWS and ASTM standards. API 1104 and API 51 were used as screening criteria. According to the results obtained, it was possible to remark that it is appropriate to weld API 5L-X80 steel ducts with Self-shielded Flux Cored wires, in conformance to the API standards and no preheat temperature is necessary. (Author) 22 refs.

  13. Thermodynamic properties of chromium bearing slags and minerals. A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yanping; Holappa, L.

    1996-12-31

    In this report, the thermodynamic properties of chromium bearing slags and minerals were reviewed based on the available information in the literature. It includes the analysing methods for oxidation state of chromium in slags, oxidation state of chromium and activities of chromium oxides in slags and minerals. The phase diagrams of chromium oxide systems and chromium distributions between slag and metal phases are also covered ill this review. Concerning the analysing methods, it was found that most of the available approaches are limited to iron free slag systems and the sample preparation is very sensitive to the analysing results. In silicate slags under reducing atmosphere, divalent and trivalent chromium co-exist in the slags. It is agreed that the fraction of divalent chromium to total chromium increases with higher temperature, lower slag basicity and oxygen potential. For the slags under oxidising atmosphere, trivalent, pentavalent and hexavalent states were reported to be stable. The activities of CrO and CrO{sub 1.5} were concluded to have positive deviation from ideal solution. Slag basicity has a positive effect and temperature has a negative effect on the activities of chromium oxides. The phase diagrams of the Cr-O, binary, and ternary chromium containing oxide systems have been examined systematically. The analysis shows that the data on the quaternary and quinary systems are insufficient, and require further investigation. The most important features of the chromium containing silicate slags are the large miscibility gaps and the stability of the chromite spinel. (orig.) (76 refs.)

  14. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  15. Brief summary of slag handling options reviewed for the slagging pyrolysis incinerator in the transuranic waste treatment facility (TWIF) at the INEL

    International Nuclear Information System (INIS)

    Darnell, G.R.

    1980-06-01

    This report summarizes the technical problems associated with molten transuranic waste slag as it flows from the incinerator shaft (gasifier) of the slagging pyrolysis incinerator. It addresses essential gasifier seals, slag casting and pouring technology, and transportation and packaging problems. Areas requiring further study and testing are identified

  16. Evolution of precipitation in reactor pressure vessel steel welds under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Kristina, E-mail: kristina.lindgren@chalmers.se [Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Boåsen, Magnus [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Stiller, Krystyna [Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Efsing, Pål [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Vattenfall Ringhals AB, SE-430 22 Väröbacka (Sweden); Thuvander, Mattias [Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2017-05-15

    Reactor pressure vessel steel welds are affected by irradiation during operation. The irradiation results in nanometre cluster formation, which in turn affects the mechanical properties of the material, e.g. the ductile-to-brittle transition temperature is shifted to higher levels. In this study, cluster formation is characterised in high Ni (1.58%) low Cu (0.04%) steel welds identical to Ringhals R4 welds, using atom probe tomography in both surveillance material and in material irradiated at accelerated dose rates. Clusters containing mainly Ni and Mn, but also some Si and Cu were observed in all of the irradiated materials. Their evolution did not change drastically during irradiation; the clusters grew and new clusters were nucleated. Hence, both the cluster number density and the average size increased with irradiation time. Some flux effects were observed when comparing the high flux material and the surveillance material. The surveillance material has a lower cluster number density, but larger clusters. The resulting impact on the mechanical properties of these two effects cancel out, resulting in a measured hardness that seems to be on the same trend as the high flux material. The dispersed barrier hardening model with an obstacle strength factor of 0.15 was found to reproduce the increase in hardness. In the investigated high flux materials, the clusters' Cu content was higher. - Highlights: •Clustering in a low Cu, high Ni reactor pressure vessel steel weld is studied. •The clusters nucleate and grow during irradiation, and consist of Ni, Mn, Si, and Cu. •High flux neutron irradiated material is compared to surveillance material. •High flux was found to result in smaller clusters with a larger number density. •Hardness follows the same dependence on fluence, independent of flux.

  17. Influences of Steelmaking Slags on Hydration and Hardening of Concretes

    Science.gov (United States)

    Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.

    2017-11-01

    It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.

  18. Reprocessing of metallurgical slag into materials for the building industry

    International Nuclear Information System (INIS)

    Pioro, L.S.; Pioro, I.L.

    2004-01-01

    Several methods of reprocessing metallurgical (blast furnace) slag into materials for the building industry, based on melting aggregates with submerged combustion, were developed and tested. The first method involves melting hot slag with some additives directly in a slag ladle with a submerged gas-air burner, with the objective of producing stabilized slag or glass-ceramic. The second method involves direct draining of melted slag from a ladle into the slag receiver, with subsequent control of the slag draining into the converter where special charging materials are added to the melt, with the objective of producing glass-ceramic. A third method involves melting cold slag with some additives inside a melting converter with submerged gas-air burners, with the objective of producing glass-ceramic fillers for use in road construction. Specific to the melting process is the use of a gas-air mixture with direct combustion inside the melt. This feature provides melt bubbling to help achieve maximum heat transfer from combustion products to the melt, improve mixing (and therefore homogeneity of the melt), and increases the rate of chemical reactions. The experimental data for different aspects of the proposed methods are presented. The reprocessed blast-furnace slag in the form of granules can be used as fillers for concretes, asphalts, and as additives in the production of cement, bricks and other building materials. As well, reprocessed blast-furnace slag can be poured into forms for the production of glass-ceramic tiles

  19. Reuse of steel slag in bituminous paving mixtures.

    Science.gov (United States)

    Sorlini, Sabrina; Sanzeni, Alex; Rondi, Luca

    2012-03-30

    This paper presents a comprehensive study to evaluate the mechanical properties and environmental suitability of electric arc furnace (EAF) steel slag in bituminous paving mixtures. A variety of tests were executed on samples of EAF slag to characterize the physical, geometrical, mechanical and chemical properties as required by UNI EN specifications, focusing additionally on the volumetric expansion associated with hydration of free CaO and MgO. Five bituminous mixtures of aggregates for flexible road pavement were designed containing up to 40% of EAF slag and were tested to determine Marshall stability and indirect tensile strength. The leaching behaviour of slag samples and bituminous mixtures was evaluated according to the UNI EN leaching test. The tested slag showed satisfactory physical and mechanical properties and a release of pollutants generally below the limits set by the Italian code. Tests on volume stability of fresh materials confirmed that a period of 2-3 months is necessary to reduce effects of oxides hydration. The results of tests performed on bituminous mixtures with EAF slag were comparable with the performance of mixtures containing natural aggregates and the leaching tests provided satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Calibration-free electrical conductivity measurements for highly conductive slags

    International Nuclear Information System (INIS)

    Macdonald, Christopher J.; Gao, Huang; Pal, Uday B.; Van den Avyle, James A.; Melgaard, David K.

    2000-01-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF 2 - 20 wt.% CaO - 20 wt.% Al 2 O 3 ) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments

  1. Influence of slag-seed interaction on MHD generator performance

    International Nuclear Information System (INIS)

    Luongo, C.A.; Kruger, C.M.

    1984-01-01

    An overview of past work in the field of slag/seed interaction is presented. The ideal solution model for the slag and its failure to lead to accurate predictions are discussed. The non-ideal solution model is introduced. Data on potassium vapor pressure over slags taken at the National Bureau of Standards and Montana State University were compiled and compared. Large disagreement between these sources was observed. The shortcomings of the complete thermodynamic equilibrium models led to over predictions in the fraction of seed lost to the slag. A model including non-equilibrium effects is introduced. The heat/mass transfer analogy is invoked to calculate the mass transfer rate of potassium towards the slag. Using typical conditions for a large MHD generator, an integral method is used to evaluate the potassium concentration boundary layer thickness. The calculations are performed with the slag runoff (ash rejection) as a parameter. The increase in boundary layer resistance due to potassium depletion is calculated

  2. SLAG CHARACTERIZATION AND REMOVAL USING PULSE DETONATION TECHNOLOGY DURING COAL GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    DR. DANIEL MEI; DR. JIANREN ZHOU; DR. PAUL O. BINEY; DR. ZIAUL HUQUE

    1998-07-30

    Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of

  3. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  4. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  5. Steel desulphurization with synthetic slag

    Directory of Open Access Journals (Sweden)

    Heput, T.

    2007-02-01

    Full Text Available Generally speaking, sulphur is considered a harmful element for steel quality, reason why all the technological steps are being taken in order to eliminate it from the metal bath. This paper deals with the influence of the chemical composition, on the slag quantity and of the bath stirring condition upon the desulphurization process in the casting ladle by treatment with synthetic slag. The experiments were made at an open-hearth plant with the steel tapping in two ladles (the desulphurization was made with synthetic slag at one ladle while the other one was considered standard and at the electric steel plant and for the synthetic slag formation a mix was used, made, according to several receipts, of: lime (50-75%, fluorine (0-17%, bauxite (0-32% and aluminous slag (8-22%. The data were processed in the calculation programs EXCEL and MATLAB, which resulted in a series of correlations between the desulphurization degree and the chemical composition of the slag, respectively the slag quantity both for the charges bubbled with Argon and the unbubbled ones.

    En general, el azufre es considerado un elemento nocivo para la calidad del acero y, por eso, en la práctica, se toman todas las medidas de orden tecnológico para su eliminación del baño metálico. En este trabajo se analiza la influencia de la composición química, de la cantidad de escoria y del estado de agitación del baño sobre el proceso de desulfuración en la cuchara para fundir por tratamiento con escoria sintética. Los experimentos se han realizado en una acería evacuando el acero en dos ollas (en una cuchara se efectuó la desulfuración con escoria sintética y a la otra se consideró como patrón y en un acería eléctrica y para la formación de la escoria sintética se utilizó una mezcla producida según muchas recetas, formada por: cal (50-75%, fluorina (0-17%, bauxita (0-32% y escoria aluminosa (8-22%. Los datos han sido procesados en los programas de c

  6. Characterization and recovery of copper values from discarded slag.

    Science.gov (United States)

    Das, Bisweswar; Mishra, Barada Kanta; Angadi, Shivakumar; Pradhan, Siddharth Kumar; Prakash, Sandur; Mohanty, Jayakrushna

    2010-06-01

    In any copper smelter large quantities of copper slag are discarded as waste material causing space and environmental problems. This discarded slag contains important amounts of metallic values such as copper and iron. The recovery of copper values from an Indian smelter slag that contains 1.53% Cu, 39.8% Fe and 34.65% SiO(2) was the focus of the present study. A complete investigation of the different phases present in the slag has been carried out by means of optical microscopy, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. It is observed that iron and silica are mostly associated with the fayalite phase whereas copper is present in both oxide and sulfide phases. These oxide and sulfide phases of copper are mostly present within the slag phase and to some extent the slag is also embedded inside the oxide and sulfide phases. The recovery of copper values from the discarded slag has been explored by applying a flotation technique using conventional sodium isopropyl xanthate (SIX) as the collector. The effects of flotation parameters such as pH and collector concentration are investigated. Under optimum flotation conditions, it is possible to achieve 21% Cu with more than 80% recovery.

  7. Vanadium bioavailability in soils amended with blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Maja A., E-mail: maja.larsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Baken, Stijn, E-mail: stijn.baken@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Smolders, Erik, E-mail: erik.smolders@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Cubadda, Francesco, E-mail: francesco.cubadda@iss.it [Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161 (Italy); Gustafsson, Jon Petter, E-mail: jon-petter.gustafsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Division of Land and Water Resources Engineering, KTH Royal Institute of Technology, Brinellvägen 28, 100 44 Stockholm (Sweden)

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg{sup −1}) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  8. Mechanism of formation and methods of removing magnetic blowing in welding

    International Nuclear Information System (INIS)

    Korol'kov, P.

    1998-01-01

    All welding processes using the electric arc or electron beams are characterised by the detrimental effect of magnetic fields: the electrons of the welding arc are subjected to the effect of the magnetic force distorting their trajectory. In most cases, the arc is deflected along the area of preparation for welding but, in this case, a natural magnetic field forms around the are and, consequently, arc in his unstable and, under severe conditions, the arc breaks up. The effect of the magnetic field of the welding are depends not only on its strength but also the shape and the depth of the area of preparation for welding, the specific pass in welding and arc voltage. Thus, the effect of the magnetic fields is the strongest in the deep and narrow areas of preparation for welding. In most cases, this effect is stronger in welding the weld root, and in subsequent passes the magnetic flux is shunted by the deposited metal. (author)

  9. INFLUENCE OF CURING TEMPERATURE ON THE PHYSICO-MECHANICAL, CHARACTERISTICS OF CALCIUM ALUMINATE CEMENT WITH AIR-COOLED SLAG OR WATER-COOLED SLAG

    Directory of Open Access Journals (Sweden)

    M. Heikal

    2004-12-01

    Full Text Available The nature, sequence, crystallinity and microstructure of hydrated phases were analyzed using differential scanning calorimetry (DSC, X-ray diffraction (XRD and scanning electron microscopy (SEM. The results showed that the formation of different hydrated phases was temperature dependence. The physico-mechanical and microstructural characteristics were investigated after curing at 20, 40 and 60° C. The results indicated that for the substitution of calcium aluminate cement (CAC by air-cooled slag (AS or water-cooled slag (WS at 20° C, the compressive strength increases with slag content up to 10 wt.%, then followed by a decrease with further slag substitution up to 25 wt.%; but the values are still higher than those of the neat CAC pastes at different curing ages up to 60 days. After 28 days of hydration at 40-60° C, the compressive strength increases with the slag content. This is attributed to the prevention of the conversion reaction, which was confirmed by XRD, DSC and SEM techniques, and the preferential formation of stratlingite (gehleinte-like phase. The SEM micrographs showed a close texture of hydrated CAC/slag blends made with AS or WS at 40°C due to the formation of C2ASH8 and C-S-H phases.

  10. High Temperature Fatigue Crack Growth Rate Studies in Stainless Steel 316L(N Welds Processed by A-TIG and MP-TIG Welding.

    Directory of Open Access Journals (Sweden)

    Thomas Manuel

    2018-01-01

    Full Text Available Welded stainless steel components used in power plants and chemical industries are subjected to mechanical load cycles at elevated temperatures which result in early fatigue failures. The presence of weld makes the component to be liable to failure in view of residual stresses at the weld region or in the neighboring heat affected zone apart from weld defects. Austenitic stainless steels are often welded using Tungsten Inert Gas (TIG process. In case of single pass welding, there is a reduced weld penetration which results in a low depth-to-width ratio of weld bead. If the number of passes is increased (Multi-Pass TIG welding, it results in weld distortion and subsequent residual stress generation. The activated flux TIG welding, a variant of TIG welding developed by E.O. Paton Institute, is found to reduce the limitation of conventional TIG welding, resulting in a higher depth of penetration using a single pass, reduced weld distortion and higher welding speeds. This paper presents the fatigue crack growth rate characteristics at 823 K temperature in type 316LN stainless steel plates joined by conventional multi-pass TIG (MP-TIG and Activated TIG (A-TIG welding process. Fatigue tests were conducted to characterize the crack growth rates of base metal, HAZ and Weld Metal for A-TIG and MP-TIG configurations. Micro structural evaluation of 316LN base metal suggests a primary austenite phase, whereas, A-TIG weld joints show an equiaxed grain distribution along the weld center and complete penetration during welding (Fig. 1. MP-TIG microstructure shows a highly inhomogeneous microstructure, with grain orientation changing along the interface of each pass. This results in tortuous crack growth in case of MP-TIG welded specimens. Scanning electron microscopy studies have helped to better understand the fatigue crack propagation modes during high temperature testing.

  11. Slag corrosion of gamma aluminium oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xidong; Li Wen Chao [Beijing Univ. of Science and Technology, BJ (China). Dept. of Physical Chemistry of Metals; Sichen Du; Seetharaman, S. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Science and Technology

    2002-03-01

    Corrosion of {gamma}-aluminium oxynitride (AlON) by CaO-MgO-''FeO''-Al{sub 2}O{sub 3}-SiO{sub 2} melts corresponding to blast furnace slag was examined from 1693 to 1753 K under static and forced convection conditions. An intermediate layer was observed between the unreacted oxynitride and slag. After a certain time interval, the rate of the growth of this layer was found to be equal to the rate of the dissolution of the layer. Slag corrosion of AlON is a strongly thermally activated process, the overall activation energy being 1002 kJ/mol. The rate of corrosion was found to be significantly enhanced by the addition of ''FeO''. (orig.)

  12. DEVELOPMENT OF FLUORINE-FREE MOULD FLUX APPLIED IN LOW CARBON STEEL

    Directory of Open Access Journals (Sweden)

    Jayme Alves de Souza Junior

    2012-12-01

    Full Text Available ract The mould flux is a mixture of non-metallic oxides that, in contact with liquid steel melts, becomes a liquid slag which the mainly function is to lubricate and control heat transfer between mould and strand during the continuous casting process. The mould flux without fluoride has the advantage of decreasing the wear of machine and the SEN in comparison to common mould flux. The application in Continuous Casting of Slabs has been a great challenge in relation to the operational viability together with internal and surface quality of slabs. Another differential is the decrease of environmental issues on account of the contamination of secondary cooling water by the fluorides. It is considered that properties of mould flux as chemical composition, viscosity, softening, melting flowing temperatures, fusion rate, etc, should be suitable to the chemical composition and the mechanical properties at elevated temperatures of steel and also the operational parameters such as casting temperature, casting speed, mould frequency, among others. This work presents a preliminary analysis in relation to operational viability, analysis of surface quality of slabs, measurements of fluorides content in the water of secondary cooling of machine. In addition to that, the analyses of operational features as measurements of wear of SEN, mould flux consumption, slag pool and behavior of thermocouples of detection system break outs (MSD are considered.

  13. Alkali-Activated Natural Pozzolan/Slag Binder for Sustainable Concrete

    Science.gov (United States)

    Najimi, Meysam

    This study aimed to fully replace Portland cement (PC) with environmentally friendly binders capable of improving longevity of concrete. The new binders consisted of different proportions of natural Pozzolan and slag which were alkaline-activated with various combinations of sodium hydroxide and sodium silicate. A step-by-step research program was designed to (1) develop alkali-activated natural Pozzolan/slag pastes with adequate fresh and strength properties, (2) produce alkali-activated natural Pozzolan/slag mortars to assess the effects of dominant variables on their plastic and hardened properties, and (3) finally produce and assess fresh, mechanical, dimensional, transport and durability properties of alkali-activated natural Pozzolan/slag concretes. The major variables included in this study were binder combination (natural Pozzolan/slag combinations of 70/30, 50/50 and 30/70), activator combination (sodium silicate/sodium hydroxide combinations of 20/80, 25/75 and 30/70), and sodium hydroxide concentration (1, 1.75 and 2.5M). The experimental program assessed performance of alkali-activated natural Pozzolan/slag mixtures including fresh properties (flow and setting times), unit weights (fresh, demolded and oven-dry), mechanical properties (compressive and tensile strengths, and modulus of elasticity), transport properties (absorption, rapid chloride penetration, and rapid chloride migration), durability (frost resistance, chloride induced corrosion, and resistance to sulfuric acid attack), and dimensional stability (drying shrinkage). This study also compared the performance of alkali-activated natural Pozzolan/slag concretes with that of an equivalent reference Portland cement concrete having a similar flow and strength characteristics. The results of this study revealed that it was doable to find optimum binder proportions, activator combinations and sodium hydroxide concentrations to achieve adequate plastic and hardened properties. Nearly for all studied

  14. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    Science.gov (United States)

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  15. performance of steel slag performance of steel slag as fine

    African Journals Online (AJOL)

    eobe

    Suitability of using steel slag (SS) as substitute for sand in concrete was ... The strength of SS concrete increased with increase in proporti. 10 mm. .... additives used. All other oxides ..... low lime coal fly ash in foamed concrete”, Fuel, Vol. 84,.

  16. Investigation and assessment of lead slag concrete as nuclear shields

    International Nuclear Information System (INIS)

    Zaghloul, Y.R.

    2009-01-01

    The present work is concerned with the efficiency of heavy weight concrete as a shielding material in constructing nuclear installations as well as for radioactive wastes disposal facilities.In this context, lead slag was used as a replacement for fine aggregates in heavy concrete shields that include local heavy weight aggregates (namely; barite and ilmenite) as well as normal concrete includes dolomite and sand as coarse and fine aggregates, as a reference. The effect of different percentages of lead slag was investigated to assess the produced lead slag concrete as a nuclear shielding material. The different properties (physical, mechanical and nuclear) of the produced lead slag concrete were investigated. The results obtained showed that increasing the lead slag percentage improving the investigated properties of the different concrete mixes. In addition, ilmenite concrete with 20% lead slag showed the best results for all the investigated properties.

  17. Nickel recovery from electric arc furnace slag by magnetic separation

    Directory of Open Access Journals (Sweden)

    Sakaroglou Marianna

    2017-01-01

    Full Text Available During the pyrometallurgical treatment of the nickel-bearing laterite in the plant of G.M.M. S.A. LARCO, slag is produced after treatment in electric-arc furnace (EAF that contains 0.10 to 0.20 % Ni. Taking into account the great quantity of slag produced per year, the recovery of nickel from the EAF slag will add benefits to the entire process. The target of the current work is to investigate the possibility of nickel recovery from EAF slag by magnetic separation. To meet the target, the effect of the following parameters was studied: grain size, magnetic field intensity, thickness of slag layer, moisture content, and re-grinding of the coarser slag particles. The results show that it is possible to obtain a magnetic product with nickel grade close to that of the primary raw material or even better, with sufficient nickel recovery.

  18. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag

    Science.gov (United States)

    Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin

    2015-08-01

    Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.

  19. Study of glass ceramic material on the base of ash group simulating slag of plasma shaft furnace for high temperature reprocessing of radioactive wastes

    International Nuclear Information System (INIS)

    Aloj, A.S.; Dmitriev, S.A.; Stefanovskij, S.V.

    1997-01-01

    Using the methods of X-ray diffraction, differential thermal and micro-probe analysis it is shown that the processes of minerals formation and homogenization in ash residue based charge under the heating up to 1450 deg C take place with a high rate and completely finish during 10 minutes. Homogeneous materials containing besides glassy phase crystalline phases and metallic shots are formed in this process. The products obtained with fluxes (dolomite and clay) additions are more homogeneous than a flux-less fused slag. Losses of α-radioactive nuclides during the melting of ash residue at 1300 deg C do not exceed 1.5% and is likely attributed with the products of uranium decay. Hydrolytic stability of the slags estimated from the rate of α-radioactive elements lixiviation is on the level of (1.4-5.7)x10 -4 g/(cm 2 x day) at 95 deg C

  20. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    International Nuclear Information System (INIS)

    None

    1998-01-01

    The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and

  1. Characterization of Ladle Furnace Slag from Carbon Steel Production as a Potential Adsorbent

    Directory of Open Access Journals (Sweden)

    Ankica Rađenović

    2013-01-01

    Full Text Available A promising type of steel slag for applications is the ladle furnace (LF slag, which is also known as the basic slag, the reducing slag, the white slag, and the secondary refining slag. The LF slag is a byproduct from further refining molten steel after coming out of a basic oxygen furnace (BOF or an electric arc furnace (EAF. The use of the LF slag in further applications requires knowledge of its characteristics. The LF slag characterization in this paper has been performed using the following analytical methods: chemical analysis by energy dispersive spectrometry (EDS, mineralogical composition by X-ray diffraction (XRD, surface area properties by the Brunauer-Emmett-Teller (BET and the Barrett-Joyner-Halenda (BJH methods, surface chemistry by infrared absorption (FTIR spectroscopy, and morphological analysis by scanning electron microscopy (SEM. The results showed that the main compounds are calcium, silicon, magnesium, and aluminium oxides, and calcium silicates under their various allotropic forms are the major compounds in the LF slag. Surface area properties have shown that the LF slag is a mesoporous material with relatively great BET surface area. The ladle furnace slag is a nonhazardous industrial waste because the ecotoxicity evaluation by its eluate has shown that the LF slag does not contain constituents which might in any way affect the environment harmfully.

  2. Applicability of Carbonated Electric Arc Furnace Slag to Mortar

    International Nuclear Information System (INIS)

    Yokoyama, S; Izaki, M; Arisawa, R; Hisyamudin, M N N; Murakami, K; Maegawa, A

    2012-01-01

    Authors have been studying the absorption of CO 2 in the steelmaking slag. In this study, an application of the electric arc furnace slag after the carbonation to admixture of mortar was investigated with the JIS (A6206-1997) method for ground granulated blast-furnace slag for concrete. The percent flows for the test mortar were smaller than that for the standard mortar. The percent flow of the carbonated slag whose average particle size of more than approximately 4 μm increased with an increase in the average size of the particles. Because the compressive strengths of the test mortar cured for 91 days were almost the same as those cured 28 days, the slag after the carbonation was thought not to have self-hardening property for a medium and long term. The compressive strength for the test mortar was almost unchanged within a range of approximately 2 to 7 μm of the average particle size, and it in this range was highest. The activity indexes for the test mortar prepared with the slag after the carbonation ranged from approximately 40 to 60%.

  3. Properties and hydration of blended cements with steelmaking slag

    International Nuclear Information System (INIS)

    Kourounis, S.; Tsivilis, S.; Tsakiridis, P.E.; Papadimitriou, G.D.; Tsibouki, Z.

    2007-01-01

    The present research study investigates the properties and hydration of blended cements with steelmaking slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and three cements containing up to 45% w/w steel slag were tested. The steel slag fraction used was the '0-5 mm', due to its high content in calcium silicate phases. Initial and final setting time, standard consistency, flow of normal mortar, autoclave expansion and compressive strength at 2, 7, 28 and 90 days were measured. The hydrated products were identified by X-ray diffraction while the non-evaporable water was determined by TGA. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. It is concluded that slag can be used in the production of composite cements of the strength classes 42.5 and 32.5 of EN 197-1. In addition, the slag cements present satisfactory physical properties. The steel slag slows down the hydration of the blended cements, due to the morphology of contained C 2 S and its low content in calcium silicates

  4. Stabilization of Black Cotton Soil Using Micro-fine Slag

    Science.gov (United States)

    Shukla, Rajesh Prasad; Parihar, Niraj Singh

    2016-09-01

    This work presents the results of laboratory tests conducted on black cotton soil mixed with micro-fine slag. Different proportions of micro-fine slag, i.e., 3, 6, 9, 12 and 15 % were mixed with the black cotton soil to improve soil characteristics. The improvement in the characteristics of stabilized soil was assessed by evaluating the changes in the physical and strength parameters of the soil, namely, the Atterberg limits, free swell, the California Bearing Ratio (CBR), compaction parameters and Unconfined Compressive Strength (UCS). The mixing of micro-fine slag decreases the liquid limit, plasticity index and Optimum Moisture Contents (OMC) of the soil. Micro-fine slag significantly increases the plastic limit, UCS and CBR of the soil up to 6-7 % mixing, but mixing of more slag led to decrease in the UCS and CBR of the soil. The unsoaked CBR increased by a substantial amount unlike soaked CBR value. The swell potential of the soil is reduced from medium to very low. The optimum amount of micro-fine slag is found to be approximately 6-7 % by the weight of the soil.

  5. Reduction of chromium oxide from slags

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Paredes, J.

    2005-12-01

    Full Text Available Experimental and theoretical work were performed to estimate the effect of slag basicity and amount of reducing agents on the reduction of chromium oxide from the slag which interacted with molten steel at 1,600 °C. The slag system contained CaO, MgO, SiO2, CaF2 and Cr2O3 together with Fe-alloys (Fe-Si and Fe-Si-Mg. The CaF2 and MgO contents in the slags were 10 mass % each; Cr2O3 was 25%. The amount of the ferroalloys ranged from 12.5 to 50 g per 100 g of slag. The (CaO+MgO/SiO2 ratio was held at 1 and 2. The Cr yield was determined using both Fe-alloys as reducing agents. Some estimations were made to determine the theoretical effect of temperature, slag basicity, (CaO+MgO/SiO2, and amount of reducing agents in the slag on the chromium recovery. The FACT (Facility for the Analysis of Chemical Thermodynamics computational package is used to determine the equilibrium between the slag and molten steel.

    En el presente trabajo se realiza un estudio teórico y experimental para determinar el efecto de la basicidad de la escoria y la cantidad de agentes reductores sobre la reducción de óxidos de cromo contenidos en la escoria, la cual está en contacto con acero líquido a 1.600 °C. La escoria se prepara con los reactivos CaO, MgO, SiO2, CaF2 y ferroaleaciones (Fe-Si y Fe-Si-Mg. Los contenidos de CaF2 y MgO en la escoria son de 10 %, cada uno, y el de Cr2O3 es 25 %. La cantidad de la ferroaleación varía de 12,5 a 50 g por cada 100 g de escoria. La relación (CaO+MgO/SiO2 tiene los valores de 1 y 2. Se determina la eficiencia de recuperación de cromo empleando los dos tipos de ferroaleaciones. Se realizaron cálculos para determinar el efecto teórico de la temperatura, la basicidad de la escoria, (CaO+MgO/SiO2, y la cantidad de agentes reductores sobre la reducci

  6. Estimated accuracy of classification of defects detected in welded joints by radiographic tests

    International Nuclear Information System (INIS)

    Siqueira, M.H.S.; De Silva, R.R.; De Souza, M.P.V.; Rebello, J.M.A.; Caloba, L.P.; Mery, D.

    2004-01-01

    This work is a study to estimate the accuracy of classification of the main classes of weld defects detected by radiography test, such as: undercut, lack of penetration, porosity, slag inclusion, crack or lack of fusion. To carry out this work non-linear pattern classifiers were developed, using neural networks, and the largest number of radiographic patterns as possible was used as well as statistical inference techniques of random selection of samples with and without repositioning (bootstrap) in order to estimate the accuracy of the classification. The results pointed to an estimated accuracy of around 80% for the classes of defects analyzed. (author)

  7. Estimated accuracy of classification of defects detected in welded joints by radiographic tests

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, M.H.S.; De Silva, R.R.; De Souza, M.P.V.; Rebello, J.M.A. [Federal Univ. of Rio de Janeiro, Dept., of Metallurgical and Materials Engineering, Rio de Janeiro (Brazil); Caloba, L.P. [Federal Univ. of Rio de Janeiro, Dept., of Electrical Engineering, Rio de Janeiro (Brazil); Mery, D. [Pontificia Unversidad Catolica de Chile, Escuela de Ingenieria - DCC, Dept. de Ciencia de la Computacion, Casilla, Santiago (Chile)

    2004-07-01

    This work is a study to estimate the accuracy of classification of the main classes of weld defects detected by radiography test, such as: undercut, lack of penetration, porosity, slag inclusion, crack or lack of fusion. To carry out this work non-linear pattern classifiers were developed, using neural networks, and the largest number of radiographic patterns as possible was used as well as statistical inference techniques of random selection of samples with and without repositioning (bootstrap) in order to estimate the accuracy of the classification. The results pointed to an estimated accuracy of around 80% for the classes of defects analyzed. (author)

  8. Influence of lithium slag from lepidolite on the durability of concrete

    Science.gov (United States)

    Qi, Luo; Shaowen, Huang; Yuxuan, Zhou; Jinyang, Li; Weiliang, Peng; Yufeng, Wen

    2017-04-01

    This paper mainly studies the effect of lithium slag from lepidolite on the property of concrete including dry shrinkage, anti-carbonation, wear resistance and chloride ion resistance. Concrete interface structure has been observed with SEM. The results show that adding lithium slag to concrete can improve concrete property including dry shrinkage, wear resistance and chloride ion resistance. However, the wear resistance tends to decrease when the amount of lithium slag reach 20%. Lithium slag also has negative effect on anti-carbonation property. With the increasing amount of lithium slag, anti-carbonation property of concrete decrease gradually.

  9. Effect of nickel content on mechanical properties and fracture toughness of weld metal of WWER-1000 reactor vessel welded joints

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Vasilchenko, G.S.; Starchenko, E.G.; Nosov, S.I.

    2004-01-01

    Welding of WWER-1000 reactor vessel of steel 15X2HMPHIA is performed using the C B -12X2H2MAA wire and PHI-16 or PHI-16A flux. Nickel content in the weld metal usually lays within the limits 1.2-1.9%. The experimental data is shown on the weld metal with the nickel contents 1.28-2.45% after irradiation with fluence up to 260.10 22 n/m 2 at energy more than 0.5 MEV. The embrittlement was measured by shift of critical brittleness temperature. Has appeared, that the weld metal with the low nickel content is the least responsive to irradiation embrittlement. The mechanical properties and fracture toughness of the weld metal with the contents of a nickel less than 1.3% are studied. Specimens CT-1T are tested, the 'master-curve', and its confidence bounds with probability of destruction 5 and 95% is built. 'Master-curve' in the specified confidence interval is affirmed by CT-4T specimens test data. Is shown, that the mechanical properties and fracture toughness of the weld metal with the contents of nickel less than 1.3% satisfy the normative requirements

  10. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  11. Steels and welding nuclear

    International Nuclear Information System (INIS)

    Sessa, M.; Milella, P.P.

    1987-01-01

    This ENEA Data-Base regards mechanical properties, chemical composition and heat treatments of nuclear pressure vessel materials: type A533-B, A302-B, A508 steel plates and forgings, submerged arc welds and HAZ before and after nuclear irradiation. Irradiation experiments were generally performed in high flux material test reactors. Data were collected from international available literature about water nuclear reactors pressure vessel materials embrittlement

  12. Preparation of fly ash-granulated blast furnace slag-carbide slag binder and application in total tailings paste backfill

    Science.gov (United States)

    Li, Chao; Hao, Ya-fei; Zhao, Feng-qing

    2018-03-01

    Based on activation and synergistic effect among various materials, a low-cost mine backfill cementing material, FGC binder, was prepared by using fly ash, granulated blast-furnace slag (GBFS), carbide slag and composite activator. The proper proportioning of FGC binder is obtained by response surface experiment optimization method: fly ash 62 %, GBFS 20 %, carbide slag 8 % and compound activators 10 %. Adjusting the material ratio obtains different cementing material which could satisfy requirements of different mined-out areas. With the mass ratio of cementing material and tailings 1:4∼1:8, the concentration of total solid 70 %, the compressive strength values of total tailings filling body at 28 d reaches 1.64∼4.14 MPa, and the backfilling cost is 20 % lower than using OPC cement.

  13. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3

    International Nuclear Information System (INIS)

    Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F.

    2012-01-01

    The hydration and microstructural evolution of three alkali activated slags (AAS) with Al 2 O 3 contents between 7 and 17% wt.% have been investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na 2 SiO 3 ·5H 2 O. The formation of C(-A)–S–H and hydrotalcite was observed in all samples by X-ray diffraction, thermal analysis and scanning electron microscopy. Higher Al 2 O 3 content of the slag decreased the Mg/Al ratio of hydrotalcite, increased the Al incorporation in the C(-A)-S-H and led to the formation of strätlingite. Increasing Al 2 O 3 content of the slag slowed down the early hydration and a lower compressive strength during the first days was observed. At 28 days and longer, no significant effects of slag Al 2 O 3 content on the degree of hydration, the volume of the hydrates, the coarse porosity or on the compressive strengths were observed.

  14. Stabilization of carbon dioxide and chromium slag via carbonation.

    Science.gov (United States)

    Wu, Xingxing; Yu, Binbin; Xu, Wei; Fan, Zheng; Wu, Zucheng; Zhang, Huimin

    2017-08-01

    As the main greenhouse gas, CO 2 is considered as a threat in the context of global warming. Many available technologies to reduce CO 2 emission was about CO 2 separation from coal combustion and geological sequestration. However, how to deal with the cost-effective storage of CO 2 has become a new challenge. Moreover, chromium pollution, the treatment of which requires huge energy consumption, has attracted people's widespread attention. This study is aimed to develop the sequestration of CO 2 via chromium slag. A dynamic leaching experiment of chromium slag was designed to testify the ability of CO 2 adsorption onto chromium slag and to release Cr(VI) for stabilization. The results showed that the accumulative amounts of Cr(VI) were ca. 2.6 mg/g released from the chromium slag after 24 h of leaching. In addition, ca. 89 mg/g CO 2 was adsorbed by using pure CO 2 in the experiment at 12 h. Calcite is the only carbonate species in the post-carbonated slag analyzed by powder X-ray diffraction and thermal analysis. The approach provides the feasibility of the utilization of chromium slag and sequestration of the carbon dioxide at the same time at ordinary temperatures and pressures.

  15. Alteration of municipal and industrial slags under atmospheric conditions

    Science.gov (United States)

    Rafał Kowalski, Piotr; Michalik, Marek

    2014-05-01

    The Waste Management System in Poland is being consequently built since 1998. After important changes in legislation, local governments have taken over the duty of waste collection. New points of selective collection of wastes have been opened and new sorting and composting plants were built. The last stage of introducing the Waste Management System is construction of waste incineration power plants. From nine installations which were planned, six are now under construction and they will start operating within the next two years. It is assumed that the consumption of raw wastes for these installations will reach 974 thousand tons per year. These investments will result in increased slags and ashes production. Now in Poland several local waste incinerators are operating and predominant amount of produced incineration residues is landfilled. These materials are exposed to atmospheric conditions in time of short term storage (just after incineration) and afterwards for a longer period of time on the landfill site. During the storage of slags low temperature mineral transformations and chemical changes may occur and also some components can be washed out. These materials are stored wet because of the technological processes. The aim of this study is to investigate the influence of storage in atmospheric conditions on slags from incineration of industrial and municipal wastes. The experiment started in January 2013. During this period slag samples from incineration of industrial and municipal wastes were exposed to atmospheric conditions. Samples were collected after 6 and 12 months. Within this time the pH value was measured monthly, and during the experimental period remained constant on the level of 9.5. After 6 months of exposure only slight changes in mineral compositions were observed in slags. The results of XRD analysis of municipal slags showed increase in content of carbonate minerals in comparison to the raw slag samples. In industrial slags, a decrease in

  16. Impact of steel slag on the ammonium adsorption by zeolite and a new configuration of zeolite-steel slag substrate for constructed wetlands.

    Science.gov (United States)

    Shi, Pengbo; Jiang, Yingbo; Zhu, Hongtao; Sun, Dezhi

    2017-07-01

    The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca 2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied in this paper. Modeling results of Ca 2+ and OH - release from slag indicated that pseudo-second-order reaction had a better fitness than pseudo-first-order reaction. Changing pH value from 7 to 12 resulted in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak adsorption capacity at pH 7. High Ca 2+ concentration in solution also inhibited the adsorption of ammonium onto zeolite. There are two proposed mechanisms for steel slag inhibiting the ammonium adsorption capacity of zeolite. On the one hand, OH - released from steel slag can react with ammonium ions to produce the molecular form of ammonia (NH 3 ·H 2 O), which would cause the dissociation of NH 4 + from zeolite. On the other hand, Ca 2+ could replace the NH 4 + ions to adhere onto the surface of zeolite. An innovative substrate filling configuration with zeolite placed upstream of the steel slag was then proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that this novel filling configuration was superior to two other filling configurations in terms of ammonium removal.

  17. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality

    Directory of Open Access Journals (Sweden)

    Bölükbaşı Ö.S.

    2014-01-01

    Full Text Available Basic oxygen furnaces (BOF slag is the main problem at all iron and steel factories. About more than 6 million tons/year of BOF slag has been accumulated from the waste stockyards in Turkey. Dumps slags can be revaluated by a processing technology which makes it possible to obtain products that meet the requirements of sintering and blast furnace production. The slags with particle size of -10 mm were enriched by the magnetic separator resulting and increase in Fe grade from 18% to 33%. The use of BOF slag in sinter blend provided additional Mn, CaO, MgO and introduced a good solution to environmental problems.

  18. Superconducting magnetic separation of ground steel slag powder for recovery of resources

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. W.; Kim, J. J.; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, D. W. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of); Choi, J. H. [Dept. of Environmental Engineering, Catholic University of Pusan, Pusan (Korea, Republic of)

    2017-03-15

    Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.

  19. Products of steel slags an opportunity to save natural resources.

    Science.gov (United States)

    Motz, H; Geiseler, J

    2001-01-01

    In Germany, and in the most industrial countries, the use of blast furnace and steel slags as an aggregate for civil engineering, for metallurgical use and as fertiliser has a very long tradition. Since the introduction of the basic oxygen steel making furnace (BOF) process and the electric arc furnace (EAF) process the German steel industry started extensive research on the development of fields of application for BOF and EAF slags. These investigations have been mainly performed by Forschungsgemeinschaft Eisenhüttenschlacken e. V. (FEhS), the Research Association for blast furnace and steel slags. Today steel slags are well characterised and long-term experienced materials mainly used as aggregates for road construction (e.g. asphaltic or unbound layers), as armour-stones for hydraulic engineering constructions (e.g. stabilisation of shores), and as fertiliser for agriculture purposes. These multifarious fields of application could only be achieved because the steelworks influence the quality of slags by a careful selection of raw materials and a suitable process route. Furthermore, subsequent procedures like a treatment of the liquid slag, an appropriate heat treatment and a suitable processing have been developed to ensure that the quality of steel slags is always adequate for the end use. Depending on the respective field of application, the suitability of steel slags has to be proven by determining the technical properties, as well as the environmental compatibility. For this reason test methods have been developed to evaluate the technical properties especially the volume stability and the environmental behaviour. To evaluate the volume stability a suitable test (steam test) has been developed and the results from laboratory tests were compared with the behaviour of steel slags under practical conditions, e.g. in a road. To determine the environmental behaviour leaching tests have been developed. In the meanwhile most of these test methods are drafted or

  20. Reducción carbotérmica de pirolusita para la obtención de ferromanganeso y escoria, adecuados al desarrollo de materiales de soldadura

    Directory of Open Access Journals (Sweden)

    Cruz-Crespo, A.

    2004-06-01

    Full Text Available The high carbon ferromanganese obtained by means of carbothermic reduction in an electric arc furnace of direct current is proposed. The ideal composition of slag oxides to achieve a flux to be used in the submerged arc welding (SAW is established. Calculation for charge components (pirolusite, coke, steel wool, lime, rutile and fluorite for no fluxes technology for FeMn is carried out taking into account the welding fluxes characteristics of the SiO2-MnO-CaO system. Charge materials reduction experiments to obtain FeMn and slag are used to develop a SAW flux.

    Se plantea la obtención de ferromanganeso de alto carbono mediante la reducción carbotérmica de pirolusita, en horno eléctrico de arco de corriente continua. Se establece la composición ideal de los óxidos de la escoria para la obtención de un fundente utilizable en la soldadura por arco sumergido (SAW. Se realiza el cálculo de los componentes de la carga (pirolusita, coque, virutas de acero, caliza, rutilo y fluorita para la tecnología sin fundente, de obtención de FeMn, teniendo en cuenta las características de los fundentes para la soldadura del sistema SiO2-MnO-CaO. Se realizan ensayos de reducción de los materiales de la carga para la obtención de FeMn y escoria, que luego se utilizan en el desarrollo de un fundente para SAW.

  1. Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (Oryza sativa L.).

    Science.gov (United States)

    Gwon, Hyo Suk; Khan, Muhammad Israr; Alam, Muhammad Ashraful; Das, Suvendu; Kim, Pil Joo

    2018-04-13

    Over the past decades, with increasing steel manufacturing, the huge amount of by-products (slags) generated need to be reused in an efficient way not only to reduce landfill slag sites but also for sustainable and eco-friendly agriculture. Our preliminary laboratory study revealed that compared to blast furnace slag, electric arc furnace slag and ladle furnace slag, the Linz-Donawitz converter (LD) slag markedly decreased CH 4 production rate and increased microbial activity. In the greenhouse experiment, the LD slag amendment (2.0 Mg ha -1 ) significantly (p < 0.05) increased grain yield by 10.3-15.2%, reduced CH 4 emissions by 17.8-24.0%, and decreased inorganic As concentrations in grain by 18.3-19.6%, compared to the unamended control. The increase in yield is attributed to the increased photosynthetic rates and increased availability of nutrients to the rice plant. Whereas, the decrease in CH 4 emissions could be due to the higher Fe availability in the slag amended soil, which acted as an alternate electron acceptor, thereby, suppressed CH 4 emissions. The more Fe-plaque formation which could adsorb more As and the competitive inhibition of As uptake with higher availability of Si could be the reason for the decrease in As uptake by rice cultivated with LD slag amendment. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia

    International Nuclear Information System (INIS)

    Ettler, Vojtech; Johan, Zdenek; Kribek, Bohdan; Sebek, Ondrej; Mihaljevic, Martin

    2009-01-01

    Three types of smelting slags originating from historically different smelting technologies in the Tsumeb area (Namibia) were studied: (i) slags from processing of carbonate/oxide ore in a Cu-Pb smelter (1907-1948), (ii) slags from Cu and Pb smelting of sulphide ores (1963-1970) and (iii) granulated Cu smelting slags (1980-2000). Bulk chemical analyses of slags were combined with detailed mineralogical investigation using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS) and electron microprobe (EPMA). The slags are significantly enriched in metals and metalloids: Pb (0.97-18.4 wt.%), Cu (0.49-12.2 wt.%), Zn (2.82-12.09 wt.%), Cd (12-6940 mg/kg), As (930-75,870 mg/kg) and Sb (67-2175 mg/kg). Slags from the oldest technology are composed of primary Ca- and Pb-bearing feldspars, spinels, complex Cu-Fe and Cu-Cr oxides, delafossite-mcconnellite phases and Ca-Pb arsenates. The presence of arsenates indicates that these slags underwent long-term alteration. More recent slags are composed of high-temperature phases: Ca-Fe alumosilicates (olivine, melilite), Pb- and Zn-rich glass, spinel oxides and small sulphide/metallic inclusions embedded in glass. XRD and SEM/EDS were used to study secondary alteration products developed on the surface of slags exposed for decades to weathering on the dumps. Highly soluble complex Cu-Pb-(Ca) arsenates (bayldonite, lammerite, olivenite, lavendulan) associated with litharge and hydrocerussite were detected. To determine the mineralogical and geochemical parameters governing the release of inorganic contaminants from slags, two standardized short-term batch leaching tests (European norm EN 12457 and USEPA TCLP), coupled with speciation-solubility modelling using PHREEQC-2 were performed. Arsenic in the leachate exceeded the EU regulatory limit for hazardous waste materials (2.5 mg/L). The toxicity limits defined by USEPA for the TCLP test were exceeded for Cd, Pb and As. The PHREEQC-2 calculation predicted that

  3. The hydration of slag, part 2: reaction models for blended cement

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, H.J.H.

    2007-01-01

    The hydration of slag-blended cement is studied by considering the interaction between the hydrations of slag and Portland cement clinker. Three reaction models for the slag-blended cement are developed based on stoichiometric calculations. These models correlate the compositions of the unhydrated

  4. A novel comprehensive utilization of vanadium slag: As gamma ray shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Mengge [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Xue, Xiangxin, E-mail: xuexx@mail.neu.edu.cn [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Yang, He; Liu, Dong [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Wang, Chao [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Zhefu [Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-11-15

    Highlights: • A novel comprehensive utilization method for vanadium slag is proposed. • Shielding properties of vanadium slag are better than ordinary concrete. • HVL of vanadium slag is between Lead and concrete to shield {sup 60}Co gamma ray. • HVL of composite is higher than concrete when adding amount of vanadium slag is 900. • Composite can be used as injecting mortar for cracks developed in concrete shields. - Abstract: New exploration of vanadium slag as gamma ray shielding material was proposed, the shielding properties of vanadium slag was higher than concrete when the energy of photons was in 0.0001 MeV–100000 MeV. Vanadium slag/epoxy resin composites were prepared, shielding and material properties of materials were tested by {sup 60}Co gamma ray, simultaneous DSC-TGA, electronic universal testing machine and scanning electron microscopy, respectively. The results showed that the shielding properties of composite would be better with the increase of vanadium slag addition amount. The HVL (half value layer thickness) of vanadium slag was between Lead and concrete while composite was higher than concrete when the addition amount of vanadium slag was 900 used as material to shield {sup 60}Co gamma ray, also the resistance temperature of composite was about 215 °C and the bending strength was over 10 MPa. The composites could be used as injecting mortar for cracks developed in biological concrete shields, coating for the floor of the nuclear facilities, and shielding materials by itself.

  5. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Dong-Yoon; Kang, Moon-Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-06-15

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  6. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    International Nuclear Information System (INIS)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho; Kim, Dong-Yoon; Kang, Moon-Jin

    2017-01-01

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  7. The leaching characteristics of vitrified slag

    International Nuclear Information System (INIS)

    Zhang, Jinlong; Li, Yaojian; Tian, Junguo; Sheng, Hongzhi; Xu, Yongxiang

    2010-01-01

    Full Text: Plasma-arc technology was developed to fix the heavy metal of flying ash by the Institute of Mechanics, Chinese Academy of Sciences (CAS-IMECH). A direct current (DC) experimental facility of 30 kW with plasma-arc technology was setup to form vitrified slag. The additives (CaO, SiO 2 ) were added into the reactor to form vitrified slag and fix the heavy metal (Cr, Pb), under dissimilar condition (long and short heating-up time, natural and water cooling). Vitrified slag was broken into different particle size, from 0.1 mm to 1 cm. The particles with different specific surface area were used to study the leaching of heavy metals in vitrified slag rate of speed. The pH value of leaching solution are from 2 to 12, the experiment was kept at different external temperature, from 4 degree Celsius to 70 degree celsius, for 1 week to 1 month. Heavy metal leaching concentration was used to measure the chemical stability of vitrified slag. The results show that the higher specific surface area, the higher heavy metal leaching concentration, but when the specific surface area reaches a certain value, little change in leaching concentration. The impact of temperature on leaching concentration was not significant, from 4 degree Celsius to 70 degree Celsius. The leaching concentration increases with decreasing of the pH value of leaching solution when the pH value of leaching solution less than 7, and little change in concentration increases with pH value when the pH value of leaching solution more than 7. Compared with the leaching concentration after 1 month, the leaching concentration after 1 week has not changed significantly. (Author)

  8. Some aspects on the role of hydrogen in the cold crack develoment process on welding

    International Nuclear Information System (INIS)

    Bourges, P.; Faure, F.

    1983-03-01

    Examination of the hydrogen input during welding (humidity of the electrode coatings, humidity of the wires, ribbon, and weld fluxing) and the means to minimize these hydrogen inputs. Description of various examples of cold crack development in welded joints caused by hydrogen, influence of the chemical composition, of the thermal processing on the two metals joints, influence of sulfur on cold crack on low alloy steels [fr

  9. Heat Recovery from High Temperature Slags: A Review of Chemical Methods

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2015-03-01

    Full Text Available Waste heat recovery from high temperature slags represents the latest potential way to remarkably reduce the energy consumption and CO2 emissions of the steel industry. The molten slags, in the temperature range of 1723–1923 K, carry large amounts of high quality energy. However, the heat recovery from slags faces several fundamental challenges, including their low thermal conductivity, inside crystallization, and discontinuous availability. During past decades, various chemical methods have been exploited and performed including methane reforming, coal and biomass gasification, and direct compositional modification and utilization of slags. These methods effectively meet the challenges mentioned before and help integrate the steel industry with other industrial sectors. During the heat recovery using chemical methods, slags can act as not only heat carriers but also as catalysts and reactants, which expands the field of utilization of slags. Fuel gas production using the waste heat accounts for the main R&D trend, through which the thermal heat in the slag could be transformed into high quality chemical energy in the fuel gas. Moreover, these chemical methods should be extended to an industrial scale to realize their commercial application, which is the only way by which the substantial energy in the slags could be extracted, i.e., amounting to 16 million tons of standard coal in China.

  10. Field test on sand compaction pile method with copper slag sand; Dosuisai slag wo mochiita SCP koho no shiken seko

    Energy Technology Data Exchange (ETDEWEB)

    Minami, K.; Matsui, H.; Naruse, E.; Kitazume, M. [Port and Harbour Research Inst., Kanagawa (Japan)

    1997-09-20

    This paper describes the sand compaction pile (SCP) method using copper slag sand. The SCP method is a method by which sand compaction piles are constructed in the ground, and improvement can be obtained in a short period. This method has been widely used even in the port areas for enhancing the bearing power of soft clay ground and the lateral resistance of sheet pile. A great deal of sand is required as a material. The sand requires high permeability, proper size distribution with less fine particle fraction content, easy compaction property with enough strength, and easy discharging property from the casing of construction machines as required properties. Recently, it becomes hard to secure proper sand materials. The copper slag sand is obtained from refining process of copper as a by-product which is quenched in water flow and crushed in water. The copper slag sand has higher particle density than that of sand, excellent permeability, and similar size distribution to that of sand. From compaction drainage triaxial compression test and permeability test, it was found that the mechanical properties of copper slag sand did not change by the crushing of grains with keeping excellent permeability. Through the test construction, applicability of the copper slag sand to the SCP method could be confirmed as an alternate material of sand. 17 refs., 9 figs., 4 tabs.

  11. Application of aluminum slag incorporated in lightweigh aggregate

    International Nuclear Information System (INIS)

    Takahashi, Elisa Akiko Nakano

    2006-01-01

    The use of industrial waste materials as additives in the manufacture of ceramic product has been attracting a growing interest in the last few years and is becoming common practice. The main purpose of this work is to evaluate the possibility of incorporation of aluminum slag into clay materials. Expansive clays are obtained from a pyro plastic expansion, and are usually employed like lightweight aggregate in structural concrete as ornamental garden products. The characterization of the aluminum slag and clay materials was carried out by Xray fluorescence spectrometry, Xray diffraction, granulometry, differential thermal analysis, thermal gravimetry (DTA and TG) and scanning electron microscopy. The studied compositions contained 5, 10, 15 and 20 weight % of aluminum slag into clay mass. The linear expansion, mass variation, apparent specific mass and water absorption of all compositions were determined. Leaching and solubilization experiments were also performed. The main results show the viability of using up to 5 wt% aluminum slag for producing expansive clays with characteristics within the accepted standards. (author)

  12. Utilization of High-Temperature Slags From Metallurgy Based on Crystallization Behaviors

    Science.gov (United States)

    Sun, Yongqi; Zhang, Zuotai

    2018-05-01

    Here, following the principle of modifying crystallization behaviors, including avoidance and optimization, we review recent research on the utilization of hot slags. Because of the high-temperature property (1450-1650°C), the utilization of hot slags are much different from that of other wastes. We approach this issue from two main directions, namely, material recycling and heat utilization. From the respect of material recycling, the utilization of slags mainly follows total utilization and partial utilization, whereas the heat recovery from slags follows two main paths, namely, physical granulation and chemical reaction. The effective disposal of hot slags greatly depends on clarifying the crystallization behaviors, and thus, we discuss some optical techniques and their applicable scientific insights. For the purpose of crystallization avoidance, characterizing the glass-forming ability of slags is of great significance, whereas for crystallization modification, the selection of chemical additives and control of crystallization conditions comprise the central routes.

  13. Accelerated Carbonation of Steel Slag Compacts: Development of High-Strength Construction Materials

    Energy Technology Data Exchange (ETDEWEB)

    Quaghebeur, Mieke; Nielsen, Peter, E-mail: peter.nielsen@vito.be; Horckmans, Liesbeth [Sustainable Materials Management, VITO, Mol (Belgium); Van Mechelen, Dirk [RECMIX bvba, Genk (Belgium)

    2015-12-17

    Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags [stainless steel (SS) slag and basic oxygen furnace (BOF) slags] in high-quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO{sub 2} at elevated pressure (up to 2 MPa) and temperatures (20–140°C). For SS slags, raising the temperature from 20 to 140°C had a positive effect on the CO{sub 2} uptake, strength development, and the environmental properties (i.e., leaching of Cr and Mo) of the carbonated slag compacts. For BOF slags, raising the temperature was not beneficial for the carbonation process. Elevated CO{sub 2} pressure and CO{sub 2} concentration of the feed gas had a positive effect on the CO{sub 2} uptake and strength development for both types of steel slags. In addition, the compaction force had a positive effect on the strength development. The carbonates that are produced in situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones) have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100–150 g CO{sub 2}/kg slag. The technology was developed on lab scale by the optimization of process parameters with regard to compressive strength development, CO{sub 2} uptake, and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-)industrial equipment and process conditions.

  14. Effect of nickel content on mechanical properties and fracture toughness of weld metal of WWER-1000 reactor vessel welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Zubchenko, A.S.; Vasilchenko, G.S.; Starchenko, E.G.; Nosov, S.I

    2004-08-01

    Welding of WWER-1000 reactor vessel of steel 15X2HMPHIA is performed using the C{sub B}-12X2H2MAA wire and PHI-16 or PHI-16A flux. Nickel content in the weld metal usually lays within the limits 1.2-1.9%. The experimental data is shown on the weld metal with the nickel contents 1.28-2.45% after irradiation with fluence up to 260.10{sup 22}n/m{sup 2} at energy more than 0.5 MEV. The embrittlement was measured by shift of critical brittleness temperature. Has appeared, that the weld metal with the low nickel content is the least responsive to irradiation embrittlement. The mechanical properties and fracture toughness of the weld metal with the contents of a nickel less than 1.3% are studied. Specimens CT-1T are tested, the 'master-curve', and its confidence bounds with probability of destruction 5 and 95% is built. 'Master-curve' in the specified confidence interval is affirmed by CT-4T specimens test data. Is shown, that the mechanical properties and fracture toughness of the weld metal with the contents of nickel less than 1.3% satisfy the normative requirements.

  15. The use of steel slag in concrete

    Science.gov (United States)

    Martauz, P.; Vaclavik, V.; Cvopa, B.

    2017-10-01

    This paper presents the results of a research dealing with the use of unstable steel slag as a 100% substitute for natural aggregate in the production of concrete. Portland cement CEM I 42.5N and alkali activated hybrid cement H-CEMENT were used as the binder. The test results confirm the possibility to use steel slag as the filler in the production of concrete.

  16. Thermal and sintering characterization of IGCC slag

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, A.; Iglesias, I.; Aineto, M.; Romero, M.; Rincon, J.M. [University of Castilla La Mancha, Ciudad Real (Spain)

    2002-07-01

    IGCC slag is a vitreous residual product from the new induction gasification combined cycle gasification thermal power plants. In order to characterize this waste as secondary raw material for the production of glasses and glass-ceramics as construction materials, slag from the Puertollano, Ciudad Real, Spain power plants was thermally investigated. After controlled heating this waste gives rise to hematite, anorthite, and cristobalite crystallized materials.

  17. Comparison of possibilities the blast furnace and cupola slag utilization by concrete production

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2010-04-01

    Full Text Available In process of pig iron and cast iron production secondary raw materials and industrial wastes are formed The most abundant secondaryproduct originating in these processes are furnace slag. Blast furnace slag and cupola furnace slag originates from melting of gangue parts of metal bearing materials, slag forming additions and coke ash. In general, slag are compounds of oxides of metallic and non-metallic elements, which form chemical compounds and solutions with each other and also contain small volume of metals, sulfides of metals and gases. Chemical, mineralogical and physical properties of slag determinate their utilisation in different fields of industry.The paper presents results from the research of the blast furnace and cupola furnace slag utilization in the concrete production. Pilotexperiments of the concrete production were performed, by that the blast furnace and cupola furnace slag with a fractions of 0–4mm;4–8mm; 8–16mm were used as a natural substitute. A cupola furnace slag and combination of the blast furnace and cupola furnace slagwere used in the experiments. The analysis results show that such concretes are suitable for less demanding applications.

  18. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  19. Wetting Behavior of Mold Flux Droplet on Steel Substrate With or Without Interfacial Reaction

    Science.gov (United States)

    Zhou, Lejun; Li, Jingwen; Wang, Wanlin; Sohn, Il

    2017-08-01

    The slag entrapment in mold tends to cause severe defects on the slab surface, especially for casting steels containing active alloy elements such as Al, Ti, and Mn. The wetting behavior of molten mold flux on the initial solidified shell is considered to be a key factor to determine the entrapment of mold slag on the shell surface. Therefore, the wetting behavior of mold flux droplet on the steel substrate with or without interfacial reaction was investigated by the sessile drop method. The results indicated that the melting process of mold flux has a significant influence on the variation of contact angle, and the final contact angle for Flux1 droplet on 20Mn23AlV is only 15 deg, which is lower than the other two cases due to the intensive interracial reactions occurring in this case. In addition, the thickness of the interaction layer for the case of Flux1 on 20Mn23AlV is 10- μm greater than the other two cases, which confirms that the most intensive reactions occurred at the interface area. The microstructure and element distribution at the interface analyzed by a scanning electron microscope (SEM) and energy dispersive spectrum (EDS) suggested that the increase of wettability of mold flux droplet on the steel substrate is caused by the migration of Al, Mn, and Si elements occurring in the vicinity of the interface. The results obtained in this article can reveal the mechanism of flux entrapment by hook or shell and provide theoretic guidance for mold flux design and optimization.

  20. Minimizing lead release levels in secondary smelters slags

    International Nuclear Information System (INIS)

    Shenkler, E.S.; Graham, S.; Ghosh, R.; Greenhut, V.A.

    1991-01-01

    Five lead-containing slags and four mattes were analyzed to reveal microstructure, semi-quantitative microchemistry, and phases present. To determine if the slags could be incorporated as a glass so that lead release levels could be stabilized, glass batches were formulated based on slag compositions. Leaching tests showed that all materials that were fritted in a glass batch had lower lead release levels than non-adjusted materials, and all could satisfy EPA test requirements. The mole ratio of glass modifiers to glass formers played an important role in the extent of lead release. Small additions of phosphate to a batch had a significant effect on lowering lead release levels

  1. Numerical Investigations on the Slag Eye in Steel Ladles

    Directory of Open Access Journals (Sweden)

    Yan-He Liu

    2014-04-01

    Full Text Available A numerical model has been developed to analyze the transient three-dimensional and three-phase flow in a bottom stirring ladle with a centered porous plug, which takes into account the steel, gas, and slag phases; it enables us to predict the fluid flow and heat transfer in the very important steel/slag region. The numerical results of the present model show that the obtained relationship between nondimensional areas of slag eye and the Froude number is in good agreement with the reported data.

  2. STOCHASTIC MODELING OF COMPRESSIVE STRENGTH OF PHOSPHORUS SLAG CONTENT CEMENT

    Directory of Open Access Journals (Sweden)

    Ali Allahverdi

    2016-07-01

    Full Text Available One of the common methods for quick determination of compressive strength as one of the most important properties for assessment of cement quality is to apply various modeling approaches. This study is aimed at finding a model for estimating the compressive strength of phosphorus slag content cements. For this purpose, the compressive strengths of chemically activated high phosphorus slag content cement prepared from phosphorus slag (80 wt.%, Portland cement (14 wt.% and a compound chemical activator containing sodium sulfate and anhydrite (6 wt.% were measured at various Blaine finenesses and curing times. Based on the obtained results, a primary stochastic model in terms of curing time and Blaine fineness has been developed. Then, another different dataset was used to incorporate composition variable including weight fractions of phosphorus slag, cement, and activator in the model. This model can be effectively used to predict the compressive strength of phosphorus slag content cements at various Blaine finenesses, curing times, and compositions.

  3. Pyrometallurgical slags as a potential source of selected metals recovery

    Directory of Open Access Journals (Sweden)

    K. Nowińska

    2014-10-01

    Full Text Available Complex analysis of concentration and form of occurrence such metals as Zn, Pb, Fe and Cu in slags formed during a current zinc production in the Imperial Smelting Process (ISP is a possible basis for development of optimal recovery technology. For this purpose studies of slags from the current production of the Shaft Furnace Unit and of the Lead Refining of the “Miasteczko Śląskie” Zinc Smelting Plant were carried out. The studies results show that slags includes high concentrations of: Zn from 0,064 % to 1,680 %, Pb from 10,56 % to 50,71 %, Fe from 0,015 % to 2,576 %, Cu from 7,48 % to 64,95 %, and change in a broad range. This slags show significant heterogeneity, caused by intermetallic phases (Zn - Pb, Cu - Zn, Cu - Pb formed on the surface thereof. It is so possible that slag can be a potential source of this metals recovery.

  4. Synthesis of inorganic polymers using fly ash and primary lead slag.

    Science.gov (United States)

    Onisei, S; Pontikes, Y; Van Gerven, T; Angelopoulos, G N; Velea, T; Predica, V; Moldovan, P

    2012-02-29

    The present work reports on the synthesis and properties of inorganic polymers ("geopolymers") made of 100% fly ash from lignite's combustion, 100% primary lead slag and mixtures of the two. In the inorganic polymers with both fly ash and lead slag the main crystalline phases detected are wüstite, magnetite, sodium zinc silicate, quartz, anorthite, and gehlenite; litharge partially dissolves. FTIR analysis in these samples revealed that the main peaks and bands of end members also exist, along with a new amorphous reaction product. In terms of microstructure, both fly ash and lead slag dissolve and contribute in the binding phase whereas the larger particles act as aggregates. For an increasing lead slag in the composition, the binding phase is changing in chemistry and reaches PbO values higher than 50 wt.% for the 100% lead slag inorganic polymer. Regarding the properties of fly ash and lead slag inorganic polymers, compressive strength is higher than 35 MPa in all cases and water absorption diminishes as the lead slag content increases. A comparison of leaching results before and after polymerisation reveals that pH is an important factor as Pb is immobilised in the binding phase, unlike Zn and As. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Numerical simulations of slagging dynamics using a meshmeshless strategy

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Spliethoff, H. [Technische Universitaet Muenchen (Germany). Lehrstuhl fuer Energiesysteme

    2009-07-01

    In pulverized co-firing and gasification facilities such as coal and biomass power plants, ash deposition, fouling and slagging, may significantly affect heat exchange and gasification per-formance Deposit growth dramatically increases production loss and may lead to the shut-down of the facility. Computational Fluid Dynamics (CFD) calculations can be used as a valid 'non-intrusive' investigation tool in an efficient problem solving strategy. At TU Munich, an ongoing project aims to develop a dedicated numerical tool to monitor and predict deposition, deposit growth and slagging dynamics in pulverized solid fuel furnaces and gasifiers. A novel in-house code was developed to track solid particles and predict deposit growth and slag dynamics. The adopted numerical strategy uses a Mesh-Meshless approach combined with a Lagrangian particle tracking. Ash particles are tracked in a Lagrangian frame post-processing CFD gas phase results (RANS or LES). Growth and thermo-mechanical proper-ties of the deposit are simultaneously evaluated. Slag dynamics is computed by using a meshless approach: deposit mesh nodes are considered point-mass particles interacting only with mesh connected node-particle neighbours. Forces are modelled applying a visco-elastic model and calculated by means of a Galerking weight (kernel) function. The final goal is to mathematically describe both particle adhesion and slag dynamics applying visco-elastic models using a mesh-meshless approach aiming to investigate slag/slurry dynamics. Pre-liminary numerical results on one layer encourage further development on this subject. (orig.)

  6. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  7. Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Mao-chieh Chi

    2012-01-01

    Full Text Available The aim of this study is to investigate the strengths and drying shrinkage of alkali-activated slag paste and mortar. Compressive strength, tensile strength, and drying shrinkage of alkali-activated slag paste and mortar were measured with various liquid/slag ratios, sand/slag ratios, curing ages, and curing temperatures. Experimental results show that the higher compressive strength and tensile strength have been observed in the higher curing temperature. At the age of 56 days, AAS mortars show higher compressive strength than Portland cement mortars and AAS mortars with liquid/slag ratio of 0.54 have the highest tensile strength in all AAS mortars. In addition, AAS pastes of the drying shrinkage are higher than AAS mortars. Meanwhile, higher drying shrinkage was observed in AAS mortars than that observed comparable Portland cement mortars.

  8. Effects of slag-based silicon fertilizer on rice growth and brown-spot resistance.

    Science.gov (United States)

    Ning, Dongfeng; Song, Alin; Fan, Fenliang; Li, Zhaojun; Liang, Yongchao

    2014-01-01

    It is well documented that slag-based silicon fertilizers have beneficial effects on the growth and disease resistance of rice. However, their effects vary greatly with sources of slag and are closely related to availability of silicon (Si) in these materials. To date, few researches have been done to compare the differences in plant performance and disease resistance between different slag-based silicon fertilizers applied at the same rate of plant-available Si. In the present study both steel and iron slags were chosen to investigate their effects on rice growth and disease resistance under greenhouse conditions. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the effects of slags on ultrastructural changes in leaves of rice naturally infected by Bipolaris oryaze, the causal agent of brown spot. The results showed that both slag-based Si fertilizers tested significantly increased rice growth and yield, but decreased brown spot incidence, with steel slag showing a stronger effect than iron slag. The results of SEM analysis showed that application of slags led to more pronounced cell silicification in rice leaves, more silica cells, and more pronounced and larger papilla as well. The results of TEM analysis showed that mesophyll cells of slag-untreated rice leaf were disorganized, with colonization of the fungus (Bipolaris oryzae), including chloroplast degradation and cell wall alterations. The application of slag maintained mesophyll cells relatively intact and increased the thickness of silicon layer. It can be concluded that applying slag-based fertilizer to Si-deficient paddy soil is necessary for improving both rice productivity and brown spot resistance. The immobile silicon deposited in host cell walls and papillae sites is the first physical barrier for fungal penetration, while the soluble Si in the cytoplasm enhances physiological or induced resistance to fungal colonization.

  9. Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture.

    Science.gov (United States)

    Xue, Yongjie; Wu, Shaopeng; Hou, Haobo; Zha, Jin

    2006-11-16

    Chinese researchers have commenced a great deal of researches on the development of application fields of basic oxygen steel making furnace slag (BOF slag) for many years. Lots of new applications and properties have been found, but few of them in asphalt mixture of road construction engineering. This paper discussed the feasibility of BOF steel slag used as aggregate in asphalt pavement by two points of view including BOF steel slag's physical and micro-properties as well as steel slag asphalt materials and pavement performances. For the former part, this paper mainly concerned the mechanochemistry and physical changes of the steel slag and studied it by performing XRD, SEM, TG and mercury porosimeter analysis and testing method. In the second part, this paper intended to use BOF steel slag as raw material, and design steel slag SMA mixture. By using traditional rutting test, soak wheel track and modified Lottman test, the high temperature stability and water resistance ability were tested. Single axes compression test and indirect tensile test were performed to evaluate the low temperature crack resistance performance and fatigue characteristic. Simultaneously, by observing steel slag SMA pavement which was paved successfully. A follow-up study to evaluate the performance of the experimental pavement confirmed that the experimental pavement was comparable with conventional asphalt pavement, even superior to the later in some aspects. All of above test results and analysis had only one main purpose that this paper validated the opinion that using BOF slag in asphalt concrete is feasible. So this paper suggested that treated and tested steel slag should be used in a more extensive range, especially in asphalt mixture paving projects in such an abundant steel slag resource region.

  10. Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA

    Science.gov (United States)

    Piatak, Nadine; Seal, Robert

    2012-01-01

    compared to the other piles. In general, piles 1 and 2 are chemically similar to each other, whereas pile 3 is distinct – a conclusion that reflects their mineralogy. The similarities and differences among piles in terms of mineralogy and major element chemistry result from the different smelting conditions under which the slag formed and include the fuel source, the composition of the ore and flux, the type of blast (cold versus hot), which affects the furnace temperature, and other beneficiation methods.The three distinct slag piles at Hopewell are enriched in numerous trace elements, such as As (up to 12 mg/kg), Cd (up to 0.4 mg/kg), Co (up to 31.8 mg/kg), Cu (up to 647 mg/kg), Mn (up to 0.69 wt.%), Pb (up to 172 mg/kg) and Zn (up to 393 mg/kg), together with Fe (13.9 wt.%), when compared to the average for the continental crust, with the <2 mm-size fraction commonly containing the highest concentrations. Enrichments in various elements (e.g., Cd, Co, Cu, Pb, Zn) were also found in the ore samples. Despite these enrichments, comparison of bulk chemistry trace-element concentrations to the environmental guidelines suggests most elements are likely not problematic with the exception of As, Co, Fe and Mn. Leachate tests that simulate weathering indicate Fe (up to 973 μg/L) and Mn (up to 133 μg/L) are readily released in potentially harmful concentrations compared to secondary drinking water and some aquatic ecosystem toxicity criteria. Aluminum and Cu, although not high in the solid compared to environmental guidelines, also exceed relevant criteria in leachate extracts with maximum concentrations of 2700 μg/L and 17.7 μg/L, respectively. In contrast, As and Co, which are significant in the solids, are not leached in concentrations that exceed guidelines (i.e., 3 μg/L or less for both elements). The weathering rates of the Fe metal and Fe oxides, which host Cu and some Fe, are likely higher than the silicate glass, which hosts the majority of Al, Mn and

  11. Autoclave-hardening slag-alkali binder with high water content

    International Nuclear Information System (INIS)

    Korenevskij, V.V.; Kozyrin, N.A.; Melikhova, N.I.; Narkevich, N.K.; Ryabov, G.G.

    1987-01-01

    The results of investigations into properties of slag-alkali binder, that may be used for concretes of reactor radiation and thermal shieldings, are presented. These concretes have increased chemical stability and mechanical strength, high content of chemically bound water (approximately 14%), that is not lost under heating up to 550 deg C. Dumping and granulated slags of blast-furnace process, sodium-bicarbonate-alkali fusion cake formed at burning of adipic acid residues, technical sodium hydroxide and sodium liquid glass are used as raw material for slag-alkali binder

  12. Kinetic Investigations of SiMn Slags From Different Mn Sources

    Science.gov (United States)

    Kim, Pyunghwa Peace; Tangstad, Merete

    2018-03-01

    The kinetics of MnO and SiO2 reduction were investigated for Silicomanganese (SiMn) slags using a Thermogravimetric analysis (TGA) between 1773 K and 1923 K (1500 °C and 1650 °C) under CO atmospheric pressure. The charge materials were based on Assmang ore and HC FeMn Slag. Rate models for MnO and SiO2 reduction were applied to describe the metal-producing rates, as shown by the following equations: r_{MnO} = k_{MnO} × A × ( {a_{MnO} - {a_{Mn} }/{K_{T }}} ) r_{{{SiO}2 }} = k_{SiO2} × A × ( {a_{{{SiO}2 }} - {a_{Si} }/{K_{T }}} ). The results show that the choice of raw materials in the charge considerably affected the reduction rate of MnO and SiO2. The highest reduction rate was found to be from charges using HC FeMn slag. The difference in the driving forces was insignificant among the SiMn slags, and the similar slag viscosities could not explain the different reduction rates. Instead, the difference is attributed to small amounts of sulfur and the amount of iron in the charge. In addition, the rate models were applicable to describe the reduction of MnO and SiO2 in SiMn slags.

  13. Influence of industrial solid waste addition on properties of soil-cement bricks

    OpenAIRE

    Siqueira, F. B.; Amaral, M. C.; Bou-Issa, R. A.; Holanda, J. N. F.

    2016-01-01

    Abstract The reuse of pollutant solid wastes produced in distinct industrial activities (avian eggshell waste and welding flux slag waste) as a source of alternative raw material for producing soil-cement bricks for civil construction was investigated. Soil-cement bricks containing up to 30 wt% of industrial solid waste were uniaxially pressed and cured for 28 days. Special emphasis is given on the influence of solid waste addition on the technical properties (as such volumetric shrinkage, wa...

  14. Formed electroslag welded joint from austenitic steel 18/10 CrNi

    International Nuclear Information System (INIS)

    Jilek, L.; Kusak, L.; Martinak, A.

    1987-01-01

    The electroslag welded joint from titanium stabilized steel 18/10 CrNi of 150 mm in thickness showed positive results for both nondestructive and destructive testing. Czechoslovak flux VUZ-4F and the optimized welding mode were completely proven. The weldment was subject to deformation by forging with a removal of 20 to 50% and to bending deformation. A 40% to 50% deformation was necessary for breaking the coarse-grain casting structure. The bending deformation resulted in breaking the coarse-grain casting structure in the entire cross-section, it was, however, only acting in a narrow band corresponding to the largest curvature. At the same time, the heat affected zone decayed. Following heat treatment, especially forming, the delta ferrite content in the weld metal decreased, the mechanical properties of the weld metal and the welded joint following welding and heat treatment showed a relatively large scatter. Forming reduced the scatter and improved plastic properties. Machining within 40 and 50% resulted in good echogenicity of the welded joint in ultrasound testing. The welded joint showed equal properties as the base material of the weldment. (author). 15 figs., 2 tabs., 16 refs

  15. Steel slag in hot mix asphalt concrete : final report

    Science.gov (United States)

    2000-04-01

    In September 1994, steel slag test and control sections were constructed in Oregon to evaluate the use of steel slag in hot mix asphalt concrete (HMAC). This report covers the construction and five-year performance of a pavement constructed with 30% ...

  16. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  17. Fracture toughness of austenitic stainless steel weld metal at 4 K

    International Nuclear Information System (INIS)

    Goodwin, G.M.

    1984-08-01

    Selection of the welding processess and weld filler metals for fabrication of a large toroidal superconducting magnet is described. Data available in the literature are collected and compared with data generated in this study for three welding processes, shielded metal arc (SMA), gas tungsten arc (GTA), and flux cored arc (FCA) welds had the highest fracture toughness as measured by K/sub Ic/ estimated from J/sub Ic/. The SMA and FCA welds had about the same toughness, below the GTA values but above the average from the literature. The fracture mode for all three processes was typified by ductile dimples. The fracture morphology of the FCA weld specimens was influenced by the solidification substructure, and small particles were found to be nucleation sites for void formation, especially for the GTA welds. All three welding processes were deemed adequate for the intended service and were used to fabricate the large magnet. A trunnion-type turning fixture eliminated the need for welding in the vertical and overhead positions. The GTA process was used for all root passes, and the horizontal welds were filled by the SMA process. Over 80% of the welds were done in the flat position with the FCA process, and its high deposition rate and ease of operation are credited with contributing greatly to the success of the effort

  18. Technology of Welding Joints Mixed with Duplex Steel

    Directory of Open Access Journals (Sweden)

    Słania J.

    2016-03-01

    Full Text Available Results of the examinations of sample plates of mixed joints with the duplex steel were discussed. Examinations were taken on the sample plates of mixed joints of sheet plates type P355NL1 and X2CrNiMoN22-5-3 welded by the flux-cored wire DW-329A by the Kobelco company of the following category T 22 9 3 NL RC/M3 in the gas shroud M21 (Ar+18%CO2 (plate no.1, and nickel covered electrodes E Ni 6082 by the Böhler company (plate no. 2. Results of the side bend test of welded joint, transverse tensile test, stretching of the weld metal, impact strength, micro and macroscopic metallographic examinations, and measurements of the delta ferrite content were presented.

  19. Development and prevention of porosity in the fusion welding of thick titanium alloys

    International Nuclear Information System (INIS)

    Kulikov, F.R.; Redchits, V.V.; Khokhlov, V.V.

    1975-01-01

    This article describes the results of experimental investigations of the mechanics of formation of porosity in electron-beam welding, single-pass and multipass welding in argon with a consumable and non-consumable electrode, and also in the electroslag welding of alloys VT14 and VT22 from 10 to 60mm thick. It was established that nuclei of gas phase form at the moment of fusion of the edges of the parts being welded, the end surfaces of which have machining defects. The weld metal porosity can be prevented by: careful machining of the faying surfaces of the parts to be welded immediately before welding; the use of welding conditions ensuring long pool existence time, sufficient for hydrogen bubbles to float up and escape; intensification of the weld pool degassing process by using fluxes based on metal fluorides and chlorides, applied to the ends of the root part of the faying edges, and on the filler wire; reduction of the gas pressure in the beam channel by making gas-escape paths

  20. Influence of the impurities on the depth of penetration with carbon steel weldings

    Directory of Open Access Journals (Sweden)

    O. Savytsky

    2014-04-01

    Full Text Available In this paper the results of the research about the influence of the impurities on the depth of penetration with carbon steels weldings of different chemical composition are presented. These data suggest that presence of those impurities, such as sulphure and oxygen, in the steel, increases the depth of penetration to 1,3 - 1,5 times compared to welding refined steels. Applying activating fluxes for welding high tensile steels, provides an increase in the depth of penetration of 2 - 3 times.

  1. Artificial neural networks application for solid fuel slagging intensity predictions

    Directory of Open Access Journals (Sweden)

    Kakietek Sławomir

    2017-01-01

    Full Text Available Slagging issues present in pulverized steam boilers very often lead to heat transfer problems, corrosion and not planned outages of boilers which increase the cost of energy production and decrease the efficiency of energy production. Slagging especially occurs in regions with reductive atmospheres which nowadays are very common due to very strict limitations in NOx emissions. Moreover alternative fuels like biomass which are also used in combustion systems from two decades in order to decrease CO2 emissions also usually increase the risk of slagging. Thus the prediction of slagging properties of fuels is not the minor issue which can be neglected before purchasing or mixing of fuels. This however is rather difficult to estimate and even commonly known standard laboratory methods like fusion temperature determination or special indexers calculated on the basis of proximate and ultimate analyses, very often have no reasonable correlation to real boiler fuel behaviour. In this paper the method of determination of slagging properties of solid fuels based on laboratory investigation and artificial neural networks were presented. A fuel data base with over 40 fuels was created. Neural networks simulations were carried out in order to predict the beginning temperature and intensity of slagging. Reasonable results were obtained for some of tested neural networks, especially for hybrid feedforward networks with PCA technique. Consequently neural network model will be used in Common Intelligent Boiler Operation Platform (CIBOP being elaborated within CERUBIS research project for two BP-1150 and BB-1150 steam boilers. The model among others enables proper fuel selection in order to minimize slagging risk.

  2. Preliminary study of tin slag concrete mixture

    Science.gov (United States)

    Hashim, Mohd Jamil; Mansor, Ishak; Pauzi Ismail, Mohamad; Sani, Suhairy; Azmi, Azhar; Sayuti, Shaharudin; Zaidi Ibrahim, Mohd; Adli Anuar, Abul; Rahim, Abdul Adha Abdul

    2018-01-01

    The study focuses on practices to facilitate tin smelting industry to reduce radioactive waste product (Tin Slag) by diluting its radioactivity to a safe level and turning it to a safer infrastructural building product. In the process the concrete mix which include Portland cement, sand, tin slag, water and plasticizer are used to produce interlocking brick pavements, piles and other infrastructural products. The mixing method follows DOE (UK) standard method of mixing targeted at in selected compressive strength suitable for its function and durability. A batching machine is used in the mixing and six test cubes are produced for the test. The testing equipment used are a compressional machine, ultrasonic measurement and a Geiger Muller counter to evaluate of the concrete mix to find the lowest emission of radiation surface dose without compromising the strength of concrete mix. The result obtained indicated the radioactivity of tin slag in the mixing process has reduced to background level that is 0.5μSv/h while the strength and workability of the concrete has not been severely affected. In conclusion, the concrete mix with tin slag has shown the potential it can be turned into a safe beneficial infrastructural product with good strength.

  3. Slagging in a pulverised-coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Devir, G.P.; Pohl, J.H.; Creelman, R.A. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Chemical Engineering

    2000-07-01

    This paper describes a technique to evaluate the severity of slagging of a coal in a pulverised-coal-fired boiler. There are few data in the literature on the nature of in-situ boiler slags, their rate of growth and/or their strength properties relevant to sootblowing. The latter is thought to be of more concern to boiler operators and gives rise to the significance of selecting suitable strength tests. As well as standardised methods for characterising pulverised coal performance in a boiler, several novel and less popular techniques are discussed in detail. A suite of three sub-bituminous coals from the Callide Coalfields, Biloela (600 km north of Brisbane), has been selected for slagging tests in the 350 MW{sub e} units of Callide 'B' power station. Disposable air-cooled mild steel slagging probes have been constructed to simulate the conditions for deposit formation in the boiler region. To date, tests for one of these coals has been completed and preliminary results are presented. Once testing for the remaining coals has been completed, it is anticipated that the differences exhibited in deposit growth and strength may be correlated with typical variations in physical and chemical properties of the pulverised coal.

  4. Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA

    Science.gov (United States)

    Piatak, Nadine; Seal, Robert

    2012-01-01

    The Hopewell Furnace National Historic Site in southeastern Pennsylvania, which features an Fe smelter that was operational in the 18th and 19th centuries, is dominated by three slag piles. Pile 1 slag, from the Hopewell Furnace, and pile 2 slag, likely from the nearby Cornwall Furnace, were both produced in cold-blast charcoal-fired smelters. In contrast, pile 3 slag was produced in an anthracite furnace. Ore samples from the nearby Jones and Hopewell mines that fed the smelter are mainly magnetite-rich with some sulfides (pyrite, chalcopyrite, sphalerite) and accessory silicates (quartz, garnet, feldspar, and clay minerals). Slag piles 1 and 2 are similar mineralogically containing predominantly skeletal and dendritic aluminian diopside and augite, skeletal forsteritic olivine, glass, rounded blebs of metallic Fe, and exotic quartz. Olivine is a major phase in all samples from pile 2, whereas it occurs in only a few samples from pile 1. Samples of the bearing aluminian diopside, dendritic or fine-grained subhedral melilite, glass, euhedral spinel, metallic Fe, alabandite–oldhamite solid solution, as well as a sparse Ti carbonitride phase. The bulk chemistry of the slag is dominated by Al2O3 (8.5–16.2 wt.%), CaO (8.2–26.2 wt.%), MgO (4.2–24.7 wt.%), and SiO2 (36.4–59.8 wt.%), constituting between 81% and 97% of the mass of the samples. Piles 1 and 2 are chemically similar; pile 1 slag overall contains the highest Fe2O3, K2O and MnO, and the lowest MgO concentrations. Pile 3 slag is high in Al2O3, CaO and S, and low in Fe2O3, K2O and SiO2 compared to the other piles. In general, piles 1 and 2 are chemically similar to each other, whereas pile 3 is distinct – a conclusion that reflects their mineralogy. The similarities and differences among piles in terms of mineralogy and major element chemistry result from the different smelting conditions under which the slag formed and include the fuel source, the composition of the ore and flux, the type of

  5. X-ray diffractometry of steam cured ordinary Portland and blast-furnace-slag cements

    International Nuclear Information System (INIS)

    Camarini, G.; Djanikian, J.G.

    1994-01-01

    This work studies some aspects of the phases produced by hydration of ordinary and blast-furnace-slag cements, at normal conditions and steam cured (60 and 95 0 C), using an X-ray diffraction technique. The blast-furnace-slag cement was a mixture of 50% of ordinary Portland cement and 50% of blast-furnace-slag (separately grinding). After curing the X-ray diffraction reveals that, in relation to ordinary Portland cement, the main phases in blast-furnace-slag cement are hydrated silicates and aluminates, hydro garnet, etringitte and mono sulphate. After steam curing the hydration of blast-furnace-slag cement proceeds. This is a result of the slag activation by the curing temperature. (author). 8 refs., 3 figs., 1 tab

  6. Study on the Effect of Straw Fiber on the Performance of Volcanic Slag Concrete

    Science.gov (United States)

    Xiao, Li-guang; Liu, Xi-xu

    2018-03-01

    In this paper, the effects of straw fiber on the working performance, mechanical properties and frost resistance of volcanic slag lightweight aggregate concrete were studied. The experimental results show that the straw fiber is subjected to surface carbonization treatment and mixed into the volcanic slag light aggregate concrete. The flexural strength and fracture pressure ratio of volcanic slag lightweight aggregate concrete are improved obviously Improved volcanic slag lightweight aggregate concrete brittleness improves toughness. Carbonized straw fiber greatly improves the frost resistance of volcanic slag lightweight aggregate concrete. So that the volcanic slag light aggregate concrete freeze-thaw cycle can reach 300 times.

  7. Corrosion Behavior of Ceramic Cup of Blast Furnace Hearth by Liquid Iron and Slag

    Science.gov (United States)

    Li, Yanglong; Cheng, Shusen; Wang, Zhifeng

    2016-10-01

    Three kinds of sample bricks of ceramic cups for blast furnace hearth were studied by dynamic corrosion tests based on different corrosion systems, i.e., liquid iron system, liquid slag system and liquid iron-slag system. Considering the influence of temperature and sample rotational speed, the corrosion profiles and mass loss of the samples were analyzed. In addition, the microstructure of the corroded samples was observed by optical microscope (OM) and scanning electron microscope (SEM). It was found that the corrosion profiles could be divided into iron corrosion region, slag corrosion region and iron-slag corrosion region via corrosion degree after iron-slag corrosion experiment. The most serious corrosion occurred in iron-slag corrosion region. This is due to Marangoni effect, which promotes a slag film formed between liquid iron and ceramic cup and results in local corrosion. The corrosion of the samples deepened with increasing temperature of liquid iron and slag from 1,623 K to 1,823 K. The variation of slag composition had greater influence on the erosion degree than that of rotational speed in this experiment. Taking these results into account the ceramic cup composition should be close to slag composition to decrease the chemical reaction. A microporous and strong material should be applied for ceramic cup.

  8. STEEL-SLAG AS SUBSTITUTE TO NATURAL AGGREGATES, PROPERTIES AND THE INTERFACIAL TRANSITION ZONE

    Directory of Open Access Journals (Sweden)

    Han Ay Lie

    2012-02-01

    Full Text Available Steel-slag is a residual product of the steel industry that has potential ability to pollute the ground water and soil containing heavy metals. To overcome this problem, attempts have been made for using the slag as substitute for both coarse and fine aggregates in concrete. The solidification process will prevent the metal components from polluting the water and soil. Test results on the mechanical properties of slag-concrete showed that while the compression strength of slag-concrete increased significantly as a function of slag-to-natural aggregate’s use, the tensile strength dropped accordingly. The substitution of fine-slag to Muntilan sand was even more negative, the compression strength decreased as a function of slag use. Research into the influences of the Interfacial Transition Zone was conducted, since the ITZ itself forms a weak link within the concrete matrix. The SEM tests were performed at the Quarter Laboratory, Department of Geology in Bandung using a Scanning Electron Microscope type JEOL.

  9. Welding of a neutron high-flux reactor made of aluminum

    International Nuclear Information System (INIS)

    Zinser, P.; Schupp, N.

    1996-01-01

    The HFR300 of the Institute ''Max von Laue - Paul Langevin (ILL)'' at Grenoble was found to be damaged by a number of serious defects which could not be made good by repair work, so that a new reactor had to be installed. Some of the welding tasks performed so far in this installation are explained. (orig./MM) [de

  10. Moessbauer study of ancient iron smelting slag in Japan

    International Nuclear Information System (INIS)

    Nakanishi, A.

    2008-01-01

    For an investigation of the ancient iron manufacturing technique, a reproducing experiment was carried out by archaeologists, where ancient type of iron smelting furnace was built and iron sand with high titanium contents was used as the raw material. During the operation of furnace, a large amount of slag flowed away from the furnace. In order to investigate the possibility for the estimation about the operative condition of furnace and the raw material, 57 Fe Moessbauer spectroscopy was applied for characterizing these slags and it was found that these slags mainly consisted of ferropseudobrookite (FeTi 2 O 5 ).

  11. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  12. Weld metal design data for 316L(N)

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.A.F. [Commissariat a l' Energie Atoique, CEA, Saclay (France)

    2007-07-01

    This paper extends the ITER materials properties documentations to weld metal types 316L, 19-12-2 and 16-8-2, used for welding of Type 316L(N), i.e. the structural material retained for manufacturing of ITER main components such as the vacuum vessel. The data presented include those of the low temperature (316L) and high temperature (19-12-2) grades, as well as, the more readily available grade (16-8-2). Weld metal properties data for all three grades are collected, sorted and analyzed according to the French design and construction rules for nuclear components (RCC-MR). Particular attention is paid to the type of weld metal (e.g. wire for TIG, covered electrode for manual arc, flux wire for automatic welding), and the type and the position of welding. Design allowables are derived for each category of weld and compared with those of the base metal. The data sheets established for each physical and mechanical properties follow the presentation established for the ITER Materials Properties Handbook (MPH). They are part of the documentation that when combined with codification and inspection documents should satisfy ITER licensing needs. In most cases, the analyses performed, go beyond conventional analyses required in present international codes and pay attention to specific needs of ITER. These include, possible effects of exposures to high temperatures during various manufacturing stages e.g. HIPing, and effects of irradiation at low and medium temperatures. In general, it is noticed that all three weld metals satisfy the RCC-MR requirements, provided compositions and types of welds used correspond to those specified in RCC-MR. (orig.)

  13. Controlled short-circuiting MIG-MAG welding process and procedures applied to the root pass in pipeline construction; Processo de soldagem MIG/MAG em curto-circuito controlado e procedimentos aplicados ao passe de raiz na construcao de linhas dutoviarias

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Regis H.G. e; Gohr Junior, Raul; Weck, Leonardo W.A. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Soldagem e Mecatronica (LABSOLDA)

    2005-07-01

    The work deals with the study and development of the Controlled Short-Circuiting MIG/MAG Welding Process (CCC) and procedures for the root pass on pipes, in pipelines construction. The developed process (CCC) consists in an semi-automatic slag free operation, yielding higher productivity than the Coated Electrode and TIG processes, with satisfactory properties on the root weld. The significant influence of the welding over the time schedule and construction cost makes the development of this technology attractive, in order to become available at low cost, enhancing the companies' competitiveness in the globalized oil sector. The developed system, a MIG/MAG variant, features the advantages of short-circuiting metal transfer and avoids its inconveniences (mainly with high CO{sub 2} content gases), enabling its use on pipes root welding. This is possible through current waveform control, providing process and weld pool stability. Procedures for the root pass were determined for each of the welding positions reached in thick walled pipes welding, with the CCC. Also, the low welder training time was notable. (author)

  14. Post-irradiation mechanical tests on F82H EB and TIG welds

    International Nuclear Information System (INIS)

    Rensman, J.; Osch, E.V. van; Horsten, M.G.; D'Hulst, D.S.

    2000-01-01

    The irradiation behaviour of electron beam (EB) and tungsten inert gas (TIG) welded joints of the reduced-activation martensitic steel IEA heat F82H-mod. was investigated by neutron irradiation experiments in the high flux reactor (HFR) in Petten. Mechanical test specimens, such as tensile specimens and KLST-type Charpy impact specimens, were neutron irradiated up to a dose level of 2-3 dpa at a temperature of 300 deg. C in the HFR reactor in Petten. The tensile results for TIG and EB welds are as expected with practically no strain hardening capacity left. Considering impact properties, there is a large variation in impact properties for the TIG weld. The irradiation tends to shift the DBTT of particularly the EB welds to very high values, some cases even above +250 deg. C. PWHT of EB-welded material gives a significant improvement of the DBTT and USE compared to the as-welded condition

  15. To the problem of nonmetallic inclusions assimilation by slags in the course of steel casting

    International Nuclear Information System (INIS)

    Klimov, Yu.V.; Krupman, L.I.; Medzhibozhskij, M.Ya.; Povkh, Yu.I.; Belanenko, A.A.

    1975-01-01

    The effect of slag viscosity as well as a method of steel pouring with slag-forming mixtures used upon the slag assimilation of oxide inclusions has been studied with a radioactive tracer method. The inclusions are absorbed by slag primarily in the course of filling casting moulds when a relatively intensive metal circulation occurs. The ensuing decrease of slag viscosity results in better purification of steel from inclusions. In the period of natural convection the inclusions are not removed irrespective of the slag properties. The bottom pouring results in the lowest degree of steel purification from inclusions due to the limited surface of a slag-metal contact

  16. Study of the Mechanism of Liquid Slag Infiltration for Lubrication in Slab Continuous Casting

    Science.gov (United States)

    Zhang, Shaoda; Wang, Qiangqiang; He, Shengping; Wang, Qian

    2018-04-01

    Consistent and uniform lubrication of the solidifying shell, especially in the meniscus, is crucial for the smooth continuous casting operation and production of strands free of surface defects. Thus, the current study established a coupled model to study the inflow behavior of liquid slag to the mold-strand channel, taking the solidification of steel and slag and the periodic oscillation of mold into account. The difficulties and solutions for the simulation were described in detail. The predicted profiles of the slag rim and initial shell were in good agreement with the reports. The main results indicated that liquid slag could be squeezed out and back into the slag pool in a negative strip period while a large amount of liquid slag could infiltrate into the mold-strand channel. Thus, the amount of slag consumed in the negative strip period was relatively small compared with that in the positive strip period. The predicted variation of slag consumption during mold oscillation was periodic, and the average value was 0.274 kg/m2, which agreed well with the slag consumption in industrial practice. The current model can predict and optimize the oscillation parameters aiming at stable lubrication conditions.

  17. Equipment for inspection of austenitic stainless steel pipe welds

    International Nuclear Information System (INIS)

    Boehmer, W.D.; Horn, J.E.

    1979-01-01

    A computer controlled ultrasonic scanning system and a data acquisition and analysis system have been developed to perform the inservice inspection of welds in stainless steel sodium piping in the Fast Flux Test Facility. The scanning equipment consists of a six axis motion mechanism and control system which allows full articulation of an ultrasonic transducer as it follows the circumferential pipe welds. The data acquisition and analysis system consists of high speed ultrasonic waveform digitizing equipment, dedicated processors to perform on-line analysis, and data storage and display equipment

  18. ENERGY ASPECTS OF STEELMAKING SLAGS APPLICATION IN METALLURGY

    Directory of Open Access Journals (Sweden)

    V. L. Naydek

    2013-01-01

    Full Text Available A comparative assessment of energy intensity of converter steel production in different types of smelting with slag processing in the ladle was made. Analysis of the data shows that the use of liquid steel slag in steel production for its refining saves about 2.2 GJ or 75 kg of coal equivalent for each ton of metal.

  19. Utilization of steel slag for Portland cement clinker production.

    Science.gov (United States)

    Tsakiridis, P E; Papadimitriou, G D; Tsivilis, S; Koroneos, C

    2008-04-01

    The aim of the present research work is to investigate the possibility of adding steel slag, a by-product of the conversion of iron to steel process, in the raw meal for the production of Portland cement clinker. Two samples of raw meals were prepared, one with ordinary raw materials, as a reference sample ((PC)(Ref)), and another with 10.5% steel slag ((PC)(S/S)). Both raw meals were sintered at 1450 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the steel slag did not affect the mineralogical characteristics of the so produced Portland cement clinker. Furthermore, both clinkers were tested by determining the grindability, setting times, compressive strengths and soundness. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of the steel slag did not negatively affect the quality of the produced cement.

  20. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  1. Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil

    International Nuclear Information System (INIS)

    Andrade Lima, L.R.P. de; Bernardez, L.A.

    2011-01-01

    For 33 years, a primary lead smelter operated in Santo Amaro (Brazil). Since the 1970s, large amounts of Pb and Cd have been widely documented in the blood and hair of people living near the smelter. The plant closed down in 1993, and several years later, the Pb levels in the blood of children under 4 years of age living near the smelter were high, where the disposed lead slag was suspected to be the main source of this contamination. The objective of this study is to elucidate the source of the Pb contamination and any other potentially toxic contamination, focusing on the characterization of the slag. The samples used for this characterization study were taken from the slag heaps. The results of the chemical analysis showed that the major constituents of the slag, in decreasing order of wt%, were the following: Fe 2 O 3 (28.10), CaO (23.11), SiO 2 (21.39), ZnO (9.47), MgO (5.44), PbO (4.06), Al 2 O 3 (3.56), C (2.26), MnO (1.44), Na 2 O (0.27), S (0.37), K 2 O (0.26), and TiO 2 (0.25). The Cd content of the slag was 57.3 mg/kg, which is relatively low. The X-ray diffraction and the electron probe microanalyzer X-ray mapping indicated that the major phases in the slag were wuestite, olivine, kirschsteinite, and franklinite. Only spheroidal metallic Pb was found in the slag. The leaching study showed that the slag was stable at a pH greater than 2.8, and only in an extremely acidic environment was the solubilization of the Pb enhanced significantly. The solubilization of Zn was very limited in the acidic and alkaline environments. These results can be explained by the limited leachability of the metallic Pb and Zn-bearing compounds. The leaching study used TCLP, SPLP, and SWEP and indicated that the lead slag was stable in weak acidic environments for short contact times.

  2. Toxicity assessment and geochemical model of chromium leaching from AOD slag.

    Science.gov (United States)

    Liu, Bao; Li, Junguo; Zeng, Yanan; Wang, Ziming

    2016-02-01

    AOD (Argon Oxygen Decarburization) slag is a by-product of the stainless steel refining process. The leaching toxicity of chromium from AOD slag cannot be ignored in the recycling process of the AOD slag. To assess the leaching toxicity of the AOD slag, batch leaching tests have been performed. PHREEQC simulations combined with FactSage were carried out based on the detailed mineralogical analysis and petrophysical data. Moreover, Pourbaix diagram of the Cr-H2O system was protracted by HSC 5.0 software to explore the chromium speciation in leachates. It was found that AOD slag leachate is an alkaline and reductive solution. The Pourbaix diagram of the Cr-H2O system indicated that trivalent chromium, such as Cr(OH)4(-), is the major chromium species in the experimental Eh-pH region considered. However, toxic hexavalent chromium was released with maximum concentrations of 30 µg L(-1) and 18 µg L(-1) at L/S 10 and 100, respectively, during the earlier leaching stage. It concluded that the AOD slag possessed a certain leaching toxicity. After 10 d of leaching, trivalent chromium was the dominant species in the leachates, which corresponded to the results of PHREEQC simulation. Leaching toxicity of AOD slag is based on the chromium speciation and its transformation. Great attention should be focused on such factors as aging, crystal form of chromium-enriched minerals, and electrochemical characteristics of the leachates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. NONEQUILIBRIUM SULFUR CAPTURE AND RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    International Nuclear Information System (INIS)

    Dr. Bert Zauderer

    1999-01-01

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. They are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, slag must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 36 days of testing on the combustor were completed prior to the end of this reporting period, 12/31/98. This compares with 16 tests required in the original project plan. Combustor tests in early 1997 with high (37%) ash, Indian coal confirmed that high slag mass flow rates of about 500 lb/hr resulted in retention in the slag of up to 20% of the injected sulfur content mineral matter. To further increase the slag flow rate, rice husks, which contain 20% ash, and rice husk char, which contain 70% ash, were co-fired with coal in the combustor. A series of 13 combustor tests were performed in fourth quarter of 1997 and a further 6 tests were performed in January 1998 and in the summer of 1998. The test objective was to achieve slag flow rates between 500 and 1,000 lb/hr. Due to the very low bulk density of rice husk, compared to pulverized coal, almost the entire test effort focused on developing methods for feeding the rice husks into combustor. In the last test of December 1997, a peak mineral matter, injection rate of 592 lb/hr was briefly achieved by injection of coal, rice husk char, gypsum, and limestone into the combustor. However, no significant sulfur concentration was measured in the slag removed from the combustor. The peak injection rate reached with biomass in the 1997 tests was 310 lb/hr with rice husk, and 584 lb/hr with rice husk char

  4. Copper recovery from slag by indirect bio leaching

    International Nuclear Information System (INIS)

    Mazuelos, A.; Iglesias, N.; Romero, R.; Forcat, O.; Carranza, F.

    2009-01-01

    The main source of copper loss from a smelter is copper in discard slag. Slag can contain Cu in concentrations very much higher than those of many ores. Cu is present in slag entrained in very small drops of matte, white metal and blister copper occluded in fayalitic phase. In this work, the technical viability of the BRISA process, that is based on the indirect bio leaching, for this residue has been proved. A sample of slag, containing 2 % of copper, has been chemical, granulometric and metallographic characterized and it has been leached with ferric sulphate solutions in agitated reactors. The influence of several variables have been investigated. Once the best operating conditions had been selecting and an economic estimation had been done (with very really attractive results), the leaching stage has been designed for a plant of 30 tonnes per hour capacity. Cu extractions higher than 70% can be achieved with a residence time of only five hours. Despite of Cu(II) concentration in fed is as high as 30 g/l, bio oxidation stage can supply Fe(III) demanded by ferric leaching stage. (Author) 17 refs

  5. Partitioning of heavy metals in a soil contaminated by slag: A redistribution study

    International Nuclear Information System (INIS)

    Bunzl, K.; Trautmannsheimer, M.; Schramel, P.

    1999-01-01

    In order to interpret reasonably the partitioning of heavy metals in a contaminated soil as observed from applying a sequential extraction procedure, information on possible redistribution processes of the metals during the various extraction steps is essential. For this purpose, sequential extraction was used to study the chemical partitioning of Ag, Cu, Ni, Pb, and Zn in a soil contaminated wither by a slag from coal firing or by a slag from pyrite roasting. Through additional application of sequential extraction to the pure slags as well as to the uncontaminated soil, it was shown that during the various extraction steps applied to the soil/slag mixtures, substantial redistribution processes of the metals between the slag- and soil particles can occur. In many cases, metals ions released during the extraction with acid hydroxylamine or acid hydrogen peroxide are partially readsorbed by solid constituents of the mixture and will therefore be found in the subsequent fractions extracted. As a result, one has to realize that (1) it will be difficult to predict the chemical partitioning of these metals in contaminated soils by investigating pure slags only, and (2) information on the partitioning of a metal in a slag contaminated soil will not necessarily give any relevant information on the form of this metal in the slag or in the slag/soil mixture, because the redistribution processes during sequential extraction will not be the same as those occurring in the soil solution under natural conditions

  6. Influence of the slags treatment on the heavy metals binding

    Czech Academy of Sciences Publication Activity Database

    Blahová, L.; Navrátilová, Z.; Mucha, M.; Navrátilová, Eva; Neděla, Vilém

    2018-01-01

    Roč. 15, č. 4 (2018), s. 697-706 ISSN 1735-1472 Institutional support: RVO:68081731 Keywords : slag * binding * metal cations * slag modification Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.915, year: 2016

  7. Analyses results of the EHF FW Panel with welded fingers

    International Nuclear Information System (INIS)

    Sviridenko, M.N.; Leshukov, A.Yu.; Razmerov, A.V.; Tomilov, S.N.; Danilov, I.V.; Strebkov, Yu.S.; Mazul, I.V.; Labusov, A.; Gervash, A.A.; Belov, A.V.; Semichev, D.

    2014-01-01

    Highlights: • The design of FW panel with welded fingers has been developed. • The FW panel with welded fingers has been analyzed. • The pressure drop in FW panel coolant path do not exceed allowable one. • The mass flow rate distribution between finger pairs are on acceptable level. • Temperatures in FW components do not exceed allowable one. - Abstract: According to Procurement Arrangement (PA) Russian Federation will procure 40% of enhanced heat flux first wall (FW) panels. The signing of PA is scheduled on November 2013. In framework of PA preparation the RF specialists perform EHF FW design optimization in order to provide the ability to operation of EHF FW panel under ITER conditions. This article contains the design description of EHF FW 14 developed by RF and following analysis have been performed: • Hydraulic analysis; • Transient thermal analysis; • Structural analysis. Analyses results show that new design of FW panel with two straight welds for finger fixation on FW beam developed by RF specialists can be used as a reference design for ITER blanket EHF FW panel loaded by 5 MW/m 2 peak heat flux

  8. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.

    Science.gov (United States)

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson

    2015-04-01

    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness. © The Author(s) 2015.

  9. Fracture toughness curve shift in low upper-shelf welds (series 8)

    International Nuclear Information System (INIS)

    Iskander, S.K.; Nanstad, R.K.; Manneschmidt, E.T.

    1995-01-01

    This task examines the fracture toughness curve shifts and changes in shape for irradiated welds with low CVN upper-shelf energy (USE). The information developed under this task will augment information obtained from other HSSI tasks performed on two high-USE weldments under the Fifth and Sixth Irradiation Series and on a commercial, low USE under the Tenth Irradiation Series. The results will provide an expanded basis for accounting for irradiation-induced embrittlement in RPV materials. Three low-USE welds have been ordered from ABB-Combustion Engineering (ABB-CE), Chattanooga, Tennessee, and two of them have been delivered to ORNL. ABB-CE fabricated the welds for the Fifth and Sixth Series. Preliminary results of mechanical and chemical tests from these two welds are presented below. The Linde 80 flux was used for all three welds. One weld, Weld 1, was made with the 73W weld wire. Weld wire 73W had copper added to the melt to reduce the variations that are associated with copper-coated weld wire. The other two welds were fabricated with a commercially available copper-coated weld wire, L-TEC 44 heat 44112. One of these two welds, Weld 2, has a target copper level of 0.31 %. This copper level could not be attained using the copper-coated wire, and the coating will be stripped from the wire, which contains 0.07 % Cu. To attain the target copper level, supplemental copper will be added to the weld puddle using an ABB-CE proprietary process. This will slightly delay the delivery of weld 2, the expected delivery date is now the end of April 1995. Weld 3 was fabricated with the same heat of the L-TEC 44 copper-coated weld wire as weld 2, but with supplemental copper added to the weld puddle, which resulted in a weldment containing an average of 0.424 % Cu. The semiannual report for October 1993 through March 1994 discusses the reasons for the above choices of copper content and welding wire

  10. Utilizing of the metallurgical slag for production of cementless concrete mixtures

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-10-01

    Full Text Available In process of pig iron, steel and cast iron production besides main product, also secondary products are formed, that have character of secondary raw materials and industrial wastes. The most abundant secondary product originating in the metallurgical process is furnace slag. Total amount of accured slag, also its chemical, mineralogical, physical – chemical properties and similarity with natural stones predestinate its utilisation in different fields of industry. The contribution deals with production of cementless concrete mixtures, where the main parts were formed by blast furnace granulated slag grinded and different gravel slag from blast furnace, oxygen converter and electric arc furnace. As activators of solidification different kinds of water glass were tested.

  11. A discussion on improving hydration activity of steel slag by altering its mineral compositions.

    Science.gov (United States)

    Wang, Qiang; Yan, Peiyu; Feng, Jianwen

    2011-02-28

    This study aims to investigate the ways to improve the cementitious properties of steel slag. The results show that the cementitious phase of steel slag is composed of silicate and aluminate, but the large particles of these phases make a very small contribution to the cementitious properties of steel slag. RO phase (CaO-FeO-MnO-MgO solid solution), Fe(3)O(4), C(2)F and f-CaO make no contribution to the cementitious properties of steel slag. A new kind of steel slag with more cementitious phase and less RO phase can be obtained by removing some large particles. This new steel slag possesses better cementitious properties than the original steel slag. The large particles can be used as fine aggregates for concrete. Adding regulating agent high in CaO and SiO(2) during manufacturing process of steel slag to increase the cementitious phase to inert phase ratio is another way to improve its cementitious properties. The regulating agent should be selected to adapt to the specific steel slag and the alkalinity should be increased as high as possible on the premise that the f-CaO content does not increase. The cooling rate should be enhanced to improve the hydration activity of the cementitious phase at the early ages and the grindability of steel slag. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Non-destructive testing of assemblies by welding, brazing or bonding, and material to use for this process

    International Nuclear Information System (INIS)

    Benoit, J.

    1983-01-01

    The process consists in doing a neutron photography of the pieces assembled with the aid of a joining material containing a neutrophage element, such as gadolinium, samarium, europium, boron, cadmium. The neutrophage element, e.g. gadolinium, is dispersed in the joining material with contents between 0,5 and 7,5% of weight. Its granulometry must be less than 1000 MESH. The incorporation of a neutrophage element in the joining material of metallic pieces by welding or brazing, allows to visualize, among others, the following defects: blistering, cracks, slag inclusions, undercuts, bad distribution of the successive passes [fr

  13. Adaptive Neuro-Fuzzy Inference System (ANFIS)-Based Models for Predicting the Weld Bead Width and Depth of Penetration from the Infrared Thermal Image of the Weld Pool

    Science.gov (United States)

    Subashini, L.; Vasudevan, M.

    2012-02-01

    Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.

  14. Optimisation of welding procedures for duplex and superduplex stainless steels

    International Nuclear Information System (INIS)

    Westin, Elin M.

    2014-01-01

    Austenitic stainless steels are increasingly being replaced by duplex grades that can offer similar corrosion resistance with far higher strength. This increased strength makes it possible to reduce material consumption whilst also decreasing transport and construction costs. Although established welding methods used for austenitic steels can be used for duplex steels, modification of the procedures can lead to improved results. This paper reviews the welding of duplex stainless steel and examines precautions that may be required. The advantages and disadvantages of different welding methods are highlighted and some high productivity solutions are presented. The application of a more efficient process with a high deposition rate (e.g. flux- cored arc welding) can decrease labour costs. Further close control of heat input and interpass temperature can result in more favourable microstructures and final properties. Although welding adversely affects the corrosion resistance of austenitic and duplex stainless steels, particularly the pitting resistance, relative to the parent material, this problem can be minimised by proper backing gas protection and subsequent pickling.

  15. Disintegration and size reduction of slags and metals after melt refining of contaminated metallic wastes

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1981-04-01

    Melting under an oxidizing slag is an attractive method of decontaminating and reducing the volume of radioactively contaminated metal scrap. The contaminants are concentrated in a relatively small volume of slag, which leaves the metal essentially clean. A potential method of permanently disposing of the resulting slags (and metals if necessary) is emplacing them into deep shale by grout hydrofracture. Suspension in grout mixtures requires that the slag and metal be granular. The feasibility of size-reducing slags and disintegrating metals and subsequently incorporating both into grout mixtures was demonstrated. Various types of slags were crushed with a small jaw crusher into particles smaller than 3 mm. Several metals were also melted and water-blasted into coarse metal powder or shot ranging in size from 0.05 to 3 mm. A simple low-pressure water atomizer having a multiple nozzle with a converging-line jet stream was developed and used for this purpose. No significant slag dust and steam were generated during slag crushing and liquid-metal water-blasting tests, indicating that contamination can be well contained within the system. The crushed slags and the coarse metal powders were suspendable in group fluids, which indicates probable disposability by shale hydrofracture. The granulation of slags and metals facilitates their containment, transport, and storage

  16. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    Science.gov (United States)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  17. Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA

    International Nuclear Information System (INIS)

    Piatak, Nadine M.; Seal, Robert R.

    2012-01-01

    The Hopewell Furnace National Historic Site in southeastern Pennsylvania, which features an Fe smelter that was operational in the 18th and 19th centuries, is dominated by three slag piles. Pile 1 slag, from the Hopewell Furnace, and pile 2 slag, likely from the nearby Cornwall Furnace, were both produced in cold-blast charcoal-fired smelters. In contrast, pile 3 slag was produced in an anthracite furnace. Ore samples from the nearby Jones and Hopewell mines that fed the smelter are mainly magnetite-rich with some sulfides (pyrite, chalcopyrite, sphalerite) and accessory silicates (quartz, garnet, feldspar, and clay minerals). Slag piles 1 and 2 are similar mineralogically containing predominantly skeletal and dendritic aluminian diopside and augite, skeletal forsteritic olivine, glass, rounded blebs of metallic Fe, and exotic quartz. Olivine is a major phase in all samples from pile 2, whereas it occurs in only a few samples from pile 1. Samples of the 2 O 3 (8.5–16.2 wt.%), CaO (8.2–26.2 wt.%), MgO (4.2–24.7 wt.%), and SiO 2 (36.4–59.8 wt.%), constituting between 81% and 97% of the mass of the samples. Piles 1 and 2 are chemically similar; pile 1 slag overall contains the highest Fe 2 O 3 , K 2 O and MnO, and the lowest MgO concentrations. Pile 3 slag is high in Al 2 O 3 , CaO and S, and low in Fe 2 O 3 , K 2 O and SiO 2 compared to the other piles. In general, piles 1 and 2 are chemically similar to each other, whereas pile 3 is distinct – a conclusion that reflects their mineralogy. The similarities and differences among piles in terms of mineralogy and major element chemistry result from the different smelting conditions under which the slag formed and include the fuel source, the composition of the ore and flux, the type of blast (cold versus hot), which affects the furnace temperature, and other beneficiation methods. The three distinct slag piles at Hopewell are enriched in numerous trace elements, such as As (up to 12 mg/kg), Cd (up to 0.4 mg

  18. THERMAL AND SINTERING CHARACTERIZATION OF A IGCC SLAG

    OpenAIRE

    Acosta, Anselmo; Iglesias, Isabel; Aineto, Mónica; Romero, Maximina; Rincón López, Jesús María

    2002-01-01

    IGCC slag is a vitreous residual product from the new induction gasification combined cycle gasification thermal power plants. In order to characterize this waste as secondary new material for the production of new glasses and glass-ceramics as construction materials; this slag from the Puertollano, Ciudad Real, Spain power plants has been fully thermally investigated. After controlled heating this waste gives rise to hematite, anorthite, and cristobalite crystallized materials.

  19. Bacterially-mediated weathering of crystalline and amorphous Cu-slags

    International Nuclear Information System (INIS)

    Potysz, Anna; Grybos, Malgorzata; Kierczak, Jakub; Guibaud, Gilles; Lens, Piet N.L.; Hullebusch, Eric D. van

    2016-01-01

    Two types of Cu-slags (CS: crystalline massive slag and GS: granulated amorphous slag) exhibiting a different chemical and mineral phase composition were compared with respect to their susceptibility to bacterial weathering using Pseudomonas aeruginosa (n° CIP 105094). Abiotic conditions e.g. sterile growth medium and ultrapure water were used for comparison. The experiments were extended up to 112 days with a systematic liquid phase renewal every 14 days. The results revealed significant release of elements in the bacterially mediated weathering experiments. Concentrations of elements (Si, Fe, Cu, Zn and Pb) in the biotic solutions were increased at least by 20% up to 99% compared to abiotic ones. From 3 to 77% of the leached elements were associated to the fraction >0.22 μm. Scanning electron microscope observations demonstrated greater weathering of mineral phases in biotic experiments than in abiotic ones which is in accordance with the solution chemistry exhibiting higher concentrations of elements leached in biotic set-ups. In the case of CS, glass and sulfides weathering was yet observed in abiotic experiment, whereas partial dissolution of fayalite (Fe_2SiO_4) was solely affected by the presence of bacteria. GS having a higher bulk content of metallic elements was found to be more stable than sulfide-bearing CS, while its (GS) glass matrix was found to weather easier under biotic conditions. - Highlights: • Pseudomonas aeruginosa significantly enhance the release of elements from Cu-slags. • Bacteria and/or associated metabolites assist as biosorbent (e.g. Zn). • Amorphous slag is more susceptible to bio-weathering. • Metal carriers of crystalline slag are prone to dissolution. • Fe-bearing fayalite is altered solely due to the presence of bacteria.

  20. Reductive-sulfurizing smelting treatment of smelter slag for copper and cobalt recovery

    Directory of Open Access Journals (Sweden)

    Li Y.

    2018-01-01

    Full Text Available Recovery of copper and cobalt from smelter slag using reductive-sulfurizing smelting method was performed in this study. The effects of reductive agent (coke, sulfurizing agent (pyrite, slag modifier (CaO and smelting temperature and duration on the extractive efficiencies of Cu, Co and Fe were discussed. The phase compositions and microstructure of the materials, copper-cobalt matte and cleaned slag were determined. The results showed that copper and cobalt contents in cleaned slag could decrease averagely to 0.18% and 0.071% respectively after cleaning. 91.99% Cu and 92.94% Co and less than 38.73% Fe were recovered from the smelter slag under the optimum conditions: 6 wt.% coke, 20 wt.% pyrite and 6 wt.% CaO addition to the smelter slag, smelting temperature of 1350°C and smelting duration of 3h. The addition of CaO can increase the selectivity of Co recovery. The cleaning products were characterized by XRD and SEM-EDS analysis. The results showed that the main phases of copper-cobalt matte were iron sulfide (FeS, geerite (Cu8S5, iron cobalt sulfide (Fe0.92Co0.08S and Fe-Cu-Co alloy. The cleaned slag mainly comprised fayalite (Fe2SiO4, hedenbergite (CaFe(Si2O6 and magnetite (Fe3O4.

  1. Elementary composition of the siderurgy slag by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Oliveira, Helder de; Piau, Wilson Caixeta; Mortatti, Jefferson; Sarries, Gabriel Adrian

    2000-01-01

    The slag has been applied to the ground to neutralize its acidity, in similar way to the calcareous rock, contributing in the agriculture as corrective of the acidity alone it and source of nutrients for the plants. However, the alternative for the agricultural slag exploitation is related to metal texts heavy gifts in the slag. The objective of the present work was to survey of the chemical composition of trashes generated in blast high-oven, steel, oven of pan and fertilizers that had used in its manufacture slag of siderurgy for the technique of instrumental neutron activation analysis. The results had evidenced the existence of high variations in the elements Ce, Cr, In, K, Sb and Zn in the distinct analyzed samples. (author)

  2. Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Lima, L.R.P. de, E-mail: lelo@ufba.br [Department of Materials Science and Technology, Federal University of Bahia, C.P. 6974, Salvador, BA 41810-971 (Brazil); Bernardez, L.A. [Ingenium Consultoria em Engenharia Ltda (Brazil)

    2011-05-30

    For 33 years, a primary lead smelter operated in Santo Amaro (Brazil). Since the 1970s, large amounts of Pb and Cd have been widely documented in the blood and hair of people living near the smelter. The plant closed down in 1993, and several years later, the Pb levels in the blood of children under 4 years of age living near the smelter were high, where the disposed lead slag was suspected to be the main source of this contamination. The objective of this study is to elucidate the source of the Pb contamination and any other potentially toxic contamination, focusing on the characterization of the slag. The samples used for this characterization study were taken from the slag heaps. The results of the chemical analysis showed that the major constituents of the slag, in decreasing order of wt%, were the following: Fe{sub 2}O{sub 3} (28.10), CaO (23.11), SiO{sub 2} (21.39), ZnO (9.47), MgO (5.44), PbO (4.06), Al{sub 2}O{sub 3} (3.56), C (2.26), MnO (1.44), Na{sub 2}O (0.27), S (0.37), K{sub 2}O (0.26), and TiO{sub 2} (0.25). The Cd content of the slag was 57.3 mg/kg, which is relatively low. The X-ray diffraction and the electron probe microanalyzer X-ray mapping indicated that the major phases in the slag were wuestite, olivine, kirschsteinite, and franklinite. Only spheroidal metallic Pb was found in the slag. The leaching study showed that the slag was stable at a pH greater than 2.8, and only in an extremely acidic environment was the solubilization of the Pb enhanced significantly. The solubilization of Zn was very limited in the acidic and alkaline environments. These results can be explained by the limited leachability of the metallic Pb and Zn-bearing compounds. The leaching study used TCLP, SPLP, and SWEP and indicated that the lead slag was stable in weak acidic environments for short contact times.

  3. Leaching of heavy metals from steelmaking slags

    Directory of Open Access Journals (Sweden)

    Gomes, J. F. P

    2006-12-01

    Full Text Available Leaching tests with EAF and Ladle slags were performed, using a flow through test and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. The chemical analysis of the leachates during this period shows, in general, for both types of slag, an increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slag samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-through test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5 % (Ca and 1% (other elements.

    Este articulo contiene los resultados obtenidos en ensayos de lixiviación de escorias de acero (horno electrico y cuchara ejecutados siguiendo la metodologia de flujo dinámico así como el ensayo normalizado DIN 38414-S4. El primer ensayo intenta simular el comportamiento de lixiviación de las escorias en vertedero. Para las escorias ensayadas se han complementado los ensayos con el análisis químico de los lixiviados y se ha verificado un aumento de la liberación de metales pesados. El ensayo DIN 38414-S4 se ha utilizado para evaluar la lixiviación por agua de metales pesados, en muestras de escorias originales. Despues de un año de ensayos, se han observado niveles muy bajos de lixiviación. Los elementos mas lixiviados han sido calcio y magnesio. No obstante, en los ensayos de flujo dinámico, el calcio y el magnesio lixiviados de las escorias sólidas era menor de 0,5% y el resto de los otros metales era inferior a 0,1%. Los lixiviados obtenidos con el ensayo DIN 38414-S4 presentan, como era de esperar, valores

  4. The electrical characteristics of copper slags in a 270 kVA DC arc furnace

    International Nuclear Information System (INIS)

    Derin, Bora; Sahin, Filiz Cinar; Yucel, Onuralp

    2003-01-01

    The electrical resistance of slags is the main criteria to determine the design and the operation conditions of slag resistance furnace (SRF) depending on temperature and composition. In this study, a 270 kVA DC electric arc furnace were used to determine the electrical characteristic of molten ancient copper slags. The specific conductivity of the slag was estimated by using furnace geometric factor given in the literature as an empirical formula and by using furnace resistance measured during smelting of the copper slag with or without different additives such as coke, CaO and Al 2 O 3 . (Original)

  5. Using mineralogy as a guide to understanding slagging: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A. [R.A. Creelman & Associates (Australia)

    1994-12-31

    This paper details the mineralogy that accompanied the Callide B Power station slagging investigations. Investigations were made of coal mineral matter, particles collected from the furnace, flyash and the slag deposits. Objectives were to characterise the particles formed from burning Callide coal, to relate them to the slag deposits and flyash, and by applying thermodynamics gain an understanding of the underlying mechanisms that lead to attachment and accumulation of particles in the furnace. 9 refs., 2 figs., 7 tabs.

  6. Heat source model for welding process

    International Nuclear Information System (INIS)

    Doan, D.D.

    2006-10-01

    One of the major industrial stakes of the welding simulation relates to the control of mechanical effects of the process (residual stress, distortions, fatigue strength... ). These effects are directly dependent on the temperature evolutions imposed during the welding process. To model this thermal loading, an original method is proposed instead of the usual methods like equivalent heat source approach or multi-physical approach. This method is based on the estimation of the weld pool shape together with the heat flux crossing the liquid/solid interface, from experimental data measured in the solid part. Its originality consists in solving an inverse Stefan problem specific to the welding process, and it is shown how to estimate the parameters of the weld pool shape. To solve the heat transfer problem, the interface liquid/solid is modeled by a Bezier curve ( 2-D) or a Bezier surface (3-D). This approach is well adapted to a wide diversity of weld pool shapes met for the majority of the current welding processes (TIG, MlG-MAG, Laser, FE, Hybrid). The number of parameters to be estimated is weak enough, according to the cases considered from 2 to 5 in 20 and 7 to 16 in 3D. A sensitivity study leads to specify the location of the sensors, their number and the set of measurements required to a good estimate. The application of the method on test results of welding TIG on thin stainless steel sheets in emerging and not emerging configurations, shows that only one measurement point is enough to estimate the various weld pool shapes in 20, and two points in 3D, whatever the penetration is full or not. In the last part of the work, a methodology is developed for the transient analysis. It is based on the Duvaut's transformation which overpasses the discontinuity of the liquid metal interface and therefore gives a continuous variable for the all spatial domain. Moreover, it allows to work on a fixed mesh grid and the new inverse problem is equivalent to identify a source

  7. Application of Expectation Maximization Method for Purchase Decision-Making Support in Welding Branch

    Directory of Open Access Journals (Sweden)

    Kujawińska Agnieszka

    2016-06-01

    Full Text Available The article presents a study of applying the proposed method of cluster analysis to support purchasing decisions in the welding industry. The authors analyze the usefulness of the non-hierarchical method, Expectation Maximization (EM, in the selection of material (212 combinations of flux and wire melt for the SAW (Submerged Arc Welding method process. The proposed approach to cluster analysis is proved as useful in supporting purchase decisions.

  8. A Brief Review of Viscosity Models for Slag in Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad; Wang, Ping

    2011-11-01

    Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties

  9. Physicochemical characterization of copper slag and alternatives of friendly environmental management

    Directory of Open Access Journals (Sweden)

    Sánchez M.

    2013-01-01

    Full Text Available Copper slags are usually considered a waste and characterized only by the final copper content. Large and increasing quantities are being produced and disposed of by stockpiling near the metallurgical plants. This paper stresses the importance of physico-chemical characterization when considering uses for slags and the possibility of recovering the valuable metals still remaining in this phase. The purpose of this work is to support and encourage a change in the classical perception of slag from a ‘waste’ to a ‘resource’; promote the development of new technologies for treatment to recover residual values and encourage a search for new uses; with the ultimate objective of eliminating slag stockpiles thereby diminishing the environmental impact of smelting operations. Some of the results of experimental laboratory work done by the authors and examples of commercial applications will be shown. A promising future for valorization and utilization of slags is expected and will provide an example when considering the use of all the other large quantities of wastes generated by the mining industry.

  10. Friction and Braking Application of Unhazardous Palm Slag Brake Pad Composite

    Science.gov (United States)

    Khoni, Norizzahthul Ainaa Abdul; Ruzaidi Ghazali, Che Mohd; Bakri Abdullah, Mohd Mustafa Al

    2018-03-01

    This paper reveals new alternative friction materials for brake pads. Palm slag was studied as new friction materials in brake pads but its much harder made it difficult to be applied. As a way to reduce the hardness, tire dust was including as purpose on stabilizing the hardness of brake pads. The palm slag was sieves to get desired size that is 150 μm, 300 μm and 600 μm. The percentage weight of materials used are 20% graphite, 20% aluminium oxide, 20% steel fiber, 20% polyester resin and another 40% are varied between tire dust and palm slag. All of materials were blend and compress by using hot pressed machine. The composites properties that were examined are density, porosity, hardness, compressive strength, microstructure analysis and wear rate. The composition of 30% palm slag, 10% tire dust and larger size of filler give better result of mechanical properties and less wear rate of brake pads composites. Then, palm slag can be used in producing of non asbestos brake pads.

  11. Precipitation of metallic chromium during rapid cooling of Cr2O3 slags

    Directory of Open Access Journals (Sweden)

    J. Burja

    2017-01-01

    Full Text Available The slag systems of CaO-SiO2- Cr2O3 and Al2O3-CaO-MgO-SiO2- Cr2O3 were analyzed. These slag systems occur in the production of stainless steel and are important from the process metallurgy point of view. Synthetic slag samples with different chromium oxide content were prepared and melted. The melted slag samples where then rapidly cooled on large steel plates, so that the high temperature microstructure was preserved. The samples were analyzed by scanning electron microscopy (SEM and X-ray diffraction (XRD. The precipitation of different chromium oxide phases was studied, but most importantly the precipitation of metallic chromium was observed. These findings help us interpret industrial slag samples.

  12. The reaction of slag in cement, theory and computer modelling

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, H.J.H.; Fischer, H.B

    2006-01-01

    For a better understanding of the performance of slag in concrete, evaluating the feasibility of using one certain type of slag and possible improvement of its use in practice, fundamental knowledge about its reaction and interaction with other constituents is important. While the researches on

  13. Evaluation of the suitability of tin slag in cementitious materials: Mechanical properties and Leaching behaviour

    Science.gov (United States)

    Rustandi, Andi; Wafa' Nawawi, Fuad; Pratesa, Yudha; Cahyadi, Agung

    2018-01-01

    Tin slag, a by-product of tin production has been used in cementitious application. The present investigation focuses on the suitability of tin slag as primary component in cement and as component that substitute some amount of Portland Cement. The tin slags studied were taken from Bangka, Indonesia. The main contents of the tin slag are SiO2, Al2O3, and Fe2O3 according to the XRF investigation. The aim of this article was to study the mechanical behaviour (compressive strength), microstructure and leaching behaviour of tin slag blended cement. This study used air-cooled tin slag that had been passed through 400# sieve to replace Portland Cement with ratio 0, 10, 20, 30, 40 by weight. Cement pastes and tin slag blended cement pastes were prepared by using water/cement ratio (W/C) of 0.40 by weight and hydrated for various curing ages of 3, 7, 14 days The microstructure of the raw tin slag was investigated using Scanning Electron Microscope (SEM). The phase composition of each cement paste was investigated using X-ray Diffraction (XRD). The aim of the leachability test was to investigate the environmental impacts of tin slag blended cement product in the range 4-8 pH by using static pH-dependent leaching test. The result show that the increase of the tin slag content decreasing the mortar compressive strength at early ages. The use of tin slag in cement provide economic benefits for all related industries.

  14. Energy and Resource Saving of Steelmaking Process: Utilization of Innovative Multi-phase Flux During Dephosphorization Process

    Science.gov (United States)

    Matsuura, Hiroyuki; Hamano, Tasuku; Zhong, Ming; Gao, Xu; Yang, Xiao; Tsukihashi, Fumitaka

    2014-09-01

    An increase in the utilization efficiency of CaO, one of the major fluxing agents used in various steelmaking processes, is required to reduce the amount of discharged slag and energy consumption of the process. The authors have intensively focused on the development of innovative dephosphorization process by using so called "multi-phase flux" composed of solid and liquid phases. This article summarizes the research on the above topic done by the authors, in which the formation mechanisms of P2O5-containing phase during CaO or 2CaO·SiO2 dissolution into molten slag, the phase relationship between solid and liquid phases at equilibrium, and thermodynamic properties of P2O5-containing phase have been clarified. The reactions between solid CaO or 2CaO·SiO2 and molten CaO-FeO x -SiO2-P2O5 slag were observed by dipping solid specimen in the synthesized slag at 1573 K or 1673 K. The formation of the CaO-FeO layer and dual-phase layer of solid 2CaO·SiO2 and FeO x -rich liquid phase was observed around the interface from the solid CaO side toward the bulk slag phase side. Condensation of P2O5 into 2CaO·SiO2 phase as 2CaO·SiO2-3CaO·P2O5 solid solution was observed in both cases of CaO and 2CaO·SiO2 as solid specimens. Measurement of the phase relationship for the CaO-FeO x -SiO2-P2O5 system confirmed the condensation of P2O5 in solid phase at low oxygen partial pressure. The thermodynamics of 2CaO·SiO2-3CaO·P2O5 solid solution are to be clarified to quantitatively simulate the dephosphorization process, and the current results are also introduced. Based on the above results, the reduction of CaO consumption, the discharged slag curtailment, and energy-saving effects have been discussed.

  15. X-ray diffraction study of slags forming during corrosion resistant steel production

    International Nuclear Information System (INIS)

    Slavov, V.I.; Zadorozhnaya, V.N.; Shurygina, A.V.

    1990-01-01

    Using X-ray diffraction analysis slags, forming during corrosion-resistant 12Kh18N10T grade steel production by two flowsheets, are studied. Standard two-slag technology of steel production does not provide efficient disintegration of chromospinelides in slags, gives high steel contamination with respect to nonmetallic impurities, coarse structure and, as a consequence, presence of macrodefects on rolled products surface. One-slag steel melting technology with titanium alloying of the steel at vacuum causes fast removal of chromospinelides at the beginning of reduction period, promotes titanium absorption by the steel, refines nonmetallic inclusions, provides more fine structure and steel plasticity, removes surface defects

  16. Behaviour of fibre reinforced concrete using steel slag coarse aggregate produced in Qatar

    Directory of Open Access Journals (Sweden)

    Alnahhal Wael

    2017-01-01

    Full Text Available The state of Qatar suffers from the shortage of natural resources needed for concrete production. Therefore, it is essential to investigate the feasibility of using by-product recycled materials as aggregates to maintain the concrete construction industry. Several types of recyclable materials are currently used in concrete. One of the potential resources of recycled concrete is steel slag. Knowing that Steel slag is the most significant solid waste generated by Qatar Steel Company in Qatar, replacing of natural coarse aggregate with steel slag aggregate will have a significant environmental and economic impact to the state of Qatar. This paper presents the compression and flexural test results of different concrete mixes made of steel slag coarse aggregate combined with a newly developed basalt chopped fibres. The parameters investigated included the volume fraction of the fibre used and the type of coarse aggregates (natural aggregates “Gabbro” and steel slag aggregates. Plain concrete specimens containing natural coarse aggregates and steel slag aggregates with no fibres added were also tested to serve as control. Test results showed that adding the basalt chopped fibres to the concrete mixes enhanced their flexural tensile strengths at different percentages. In addition, the compressive strength of concrete made with steel slag aggregate was higher than that made with natural gabbro aggregate. Test results clearly showed that steel slag aggregates can be used as sustainable and eco-friendly alternative materials in concrete structures.

  17. Prediction of Weld Residual Stress of Narrow Gap Welds

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  18. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.

    Science.gov (United States)

    Mattila, Hannu-Petteri; Zevenhoven, Ron

    2014-03-01

    A mineral carbonation process "slag2PCC" for carbon capture, utilization, and storage is discussed. Ca is extracted from steel slag by an ammonium salt solvent and carbonated with gaseous CO2 after the separation of the residual slag. The solvent is reused after regeneration. The effects of slag properties such as the content of free lime, fractions of Ca, Si, Fe, and V, particle size, and slag storage on the Ca extraction efficiency are studied. Small particles with a high free-lime content and minor fractions of Si and V are the most suitable. To limit the amount of impurities in the process, the slag-to-liquid ratio should remain below a certain value, which depends on the slag composition. Also, the design of a continuous test setup (total volume ∼75 L) is described, which enables quick process variations needed to adapt the system to the varying slag quality. Different precipitated calcium carbonate crystals (calcite and vaterite) are generated in different parts of the setup. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of mineral oxides on slag formation tendency of Mae Moh lignites

    Directory of Open Access Journals (Sweden)

    Anuwat Luxsanayotin

    2010-08-01

    Full Text Available Slagging is one of major ash deposition problems experienced in the boilers of coal–fired power plants especially theplants that use lignite, like Mae Moh lignites. The occurrence of slag is a complex phenomenon depending on several factorssuch as ash properties, furnace operating conditions, and coal properties. The main objective of this work is to study theeffect of mineral components in Mae Moh lignite on ash fusion temperatures (AFTs, which is commonly used as a keyindicator for slag formation tendency under pulverized combustion conditions. Two Mae Moh lignites from the coal seamsplanned to be used in the future were selected for the study to represent low CaO and high CaO lignite. The two lignites,namely K1 and K3, have 3.6 and 40.4 wt% CaO in ash, respectively. The AFT characterization shows that their initial deformationtemperatures (ITs were almost identical and considered as low for the typical flue gas temperature in the radiationsection of Mae Moh boilers, i.e. 1050-1100°C. These observed similar ITs were rather unexpected, especially for K1 consideringits sufficiently low base to acid (B/A ratios. The X-ray diffraction analyses evidently show the presence of illite, pyriteand anhydrite in K1, which explains the observed lower IT of the sample. Anhydrite, which is known to lower the ITs, is alsothe most abundant mineral in K3. Washing the lignite samples with HCl can significantly reduce CaO, MgO, and SO3 contentin the ash but not Fe2O3 as it is present in the form of pyrite. The addition of Al2O3, SiO2 and Fe2O3 can help increase AFTs ofthe studied samples. The Al2O3 addition gives the strongest effect on increasing AFTs, especially for the sample with lowAl2O3 content. When the CaO is added to the low CaO samples, the fluxing effect will initially occur. However, when the CaOcontent is higher than a critical value (i.e. CaO > 38%, the effect of its high melting point will dominate hence the AFTsincreased. Ternary phase diagrams

  20. An Analysis of the Mechanical Characteristics and Constitutive Relation of Cemented Mercury Slag

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    2017-01-01

    Full Text Available This study focuses on mercury slag in the Tongren area of Guizhou Province, China. Computed tomography (CT is used with uniaxial and triaxial compression tests to examine the mechanical changes in cemented mercury slag and its formation. The CT results for the uniaxial compression test reveal the overall failure process of the mercury slag structure. Based on the coarse-grained soil triaxial test, a modified Duncan-Chang model is compared with the actual monitoring results and is found to be suitable for the analysis of the slag constitutive model.

  1. Reclamation and reuse of MWI slags under the aspect of ground water protection

    International Nuclear Information System (INIS)

    Lahl, U.; Struth, R.

    1993-01-01

    Some importants aspects of ground water protection are discussed, with regard to MWI-slag reclamation and reuse as construction material. The effects of a treatment process on residual organic compounds of slag material have to be regarded as very positive. Directed chemical influencing of the hydratation process directly after incineration offers new perspectives for generating slag with potentially little and constant elution behaviour. The authors welcome the new, sharpened demands on reuse of MWI-slag in Northrhine-Westfalia. This challenge can be met by the proposed treatment procedure without problems. (orig.) [de

  2. Efficiency of open-hearth slag under different levels of nitrogen nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Merzlyakov, L A

    1979-01-01

    Field and vegetational experiments have been carried out in the turf-podsolic soil in 1974-1977. Efficiency of open-hearth slag from the Izhevsk metallurgical plant depends on the level of nitrogen nutrition. The greatest addition from the slag is received at the elevated level of nitrogen nutrition. The maximum total addition for 3 years resulting from the use of slag in the field experiment constituted 54.5 double centner forage units which is higher than the addition resulting from lime by 52.7 %. Besides, the slag produced a positive effect upon the balance of the labelled /sup 15/N nitrogen in fertilizer: coefficient of the use of nitrogen in fertilizer during 2 years in the average increased by 7.1 and 11.2 % according to the nitrogen background of 230 and 460 mg/vessel.

  3. Efficiency of open-hearth slag under different levels of nitrogen nutrition

    International Nuclear Information System (INIS)

    Merzlyakov, L.A.

    1979-01-01

    Field and vegetational experiments have been carried out in the turf-podsolic soil in 1974-1977. Efficiency of open-hearth slag from Izhevsk metallurgical plant depends on the level of nitrogen nutrition. The greatest addition from the slag is received at the elevated level of nitrogen nutrition. The maximum total addition for 3 years resulting from the use of slag in the field experiment constituted 54.5 double centner forage units which is higher than the addition resulting from lime by 52.7 %. Besides, the slag produced positive effect upon the balance of the labelled 15 N nitrogen in fertilizer: coefficient of the use of nitrogen in fertilizer during 2 years in the average increased by 7.1 and 11.2 % according to the nitrogen background of 230 and 460 mg/vessel

  4. Reactivation properties of carbide slag as a CO{sub 2} sorbent during calcination/carbonation cycles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingjie; Sun, Rongyue; Liu, Hongling; Lu, Chunmei [Shandong Univ., Jinan (China). School of Energy and Power Engineering

    2013-07-01

    The carbide slag from polyvinyl chloride production as industry hazardous wastes was proposed as CO{sub 2} sorbent at high temperature in calcium looping cycle. The cyclic CO{sub 2} capture behavior and the microstructure characteristics of the carbide slag as one of the typical calcium-based industrial wastes during the multiple calcination/carbonation cycles. Also, the comparisons between the carbide slag and the natural limestone in cyclic CO{sub 2} capture behavior were made. XRD analysis demonstrates that the predominating constituent of the carbide slag is Ca(OH){sub 2}. The carbonation temperature ranging from 650 to 700 C is favourable to cyclic carbonation of the carbide slag. The cyclic carbonation conversions of the carbide slag is lower than that of the limestone before a certain time, but the situation is converse after that time in a thermogravimetric analyzer. The carbide slag has better cyclic CO{sub 2} capture capacity. The carbonation conversion of the carbide slag retains 0.28 after 100 calcination/carbonation cycles, while the two limestones achieve 0.08 and 0.14 respectively at the same reaction conditions in a dual fixed-bed reactor. The microstructure of the carbide slag by SEM reveals the reason why it possesses better CO{sub 2} capture capacity.

  5. In situ observation of the role of alumina particles on the crystallization behavior of slags

    Energy Technology Data Exchange (ETDEWEB)

    Orrling, C.

    2000-09-01

    The confocal laser scanning microscope (CLSM) allows crystallization behavior in liquid slags to he observed in situ at high temperatures. Slags in the lime-silica-alumina-magnesia system are easily tinder cooled and it is possible to construct time temperature transformation (TTT) diagrams for this system. The presence of solid alumina particles its these liquid slags was studied to determine if these particles act as heterogeneous nucleation sites that cause she precipitation of solid material within slags. The introduction of alumina particles reduced the incubation time for the onset of crystallization and increased the temperature at which crystallization was observed in the slags to close to the liquidus temperature for the slag. Crystal growth rates are in a good agreement with Ivantsov's solution of the problem of diffusion controlled dendritic growth. Alumina appears to be a potent nucleating agent in the slag systems that were studied. (author)

  6. High-Temperatures Rheometric Analysis Of Selected Heterogeneous Slag Systems

    Directory of Open Access Journals (Sweden)

    Migas P.

    2015-06-01

    Full Text Available It is known that the dynamic viscosity coefficient of slag – with an increased titanium compounds content in the reducing conditions of the blast furnace - may rapidly change. The products of the reduction reaction, precipitation and separation of titanium compounds are responsible for the thickening effect of the slag and the problems of permeability of blast furnace, causing anomalies in the dipping zone. The presence of solid components (particles in the melts determines the rheological character of the entire system. Identifying the rheological character of semi-solid slag systems provides opportunities for the development of mathematical modeling of liquid phase flows in a dripping zone of the blast furnace, allowing e.g to indentify the unstable parts of a metallurgical aggregate.

  7. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    Science.gov (United States)

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  8. Three dimensional, thermal stress analysis of a welded plate

    International Nuclear Information System (INIS)

    Koening, H.A.; Lai, C.K.-F.; Morral, J.E.

    1985-01-01

    A general finite element thermal stress analysis has been developed. The analysis can be uncoupled to solve either the heat transfer problem or the stress problem independently and it can accommodate non-linear material behavior, initial states of stress and strain, and moving boundary conditions. A unique feature of the model it that it properly accounts for the latent heat effect during phase changes. Applying the moving heat flux boundary condition to simulate arc welding, the model has been used to predict the transient thermal mechanical response of a welded plate. It is the absorption and liberation of latent heat in the fusion zone of a weld which complicates numerical methods of treating welding. For pure materials and eutectic alloys the latent heat effect is less of a problem because phase changes take place at a specific temperature. But for most alloys, phase changes take place over a range of temperatures bounded by the solidus, T S , and liquidus, T L , and the latent heat effect occurs continuously over the temperature range. (author)

  9. Profiling mild steel welding processes to reduce fume emissions and costs in the workplace.

    Science.gov (United States)

    Keane, Michael J; Siert, Arlen; Chen, Bean T; Stone, Samuel G

    2014-05-01

    To provide quantitative information to choose the best welding processes for minimizing workplace emissions, nine gas metal arc welding (GMAW) processes for mild steel were assessed for fume generation rates, normalized fume generation rates (milligram fume per gram of electrode consumed), and normalized generation rates for elemental manganese, nickel, and iron. Shielded metal arc welding (SMAW) and flux-cored arc-welding (FCAW) processes were also profiled. The fumes were collected quantitatively in an American Welding Society-type fume chamber and weighed, recovered, homogenized, and analyzed by inductively coupled atomic emission spectroscopy for total metals. The processes included GMAW with short circuit, globular transfer, axial spray, pulsed spray, Surface Tension Transfer™, Regulated Metal Deposition™, and Cold Metal Transfer™ (CMT) modes. Flux-cored welding was gas shielded, and SMAW was a single rod type. Results indicate a wide range of fume emission factors for the process variations studied. Fume emission rates per gram of electrode consumed were highest for SMAW (~13 mg fume g(-1) electrode) and lowest for GMAW processes such as pulsed spray (~1.5mg g(-1)) and CMT (~1mg g(-1)). Manganese emission rates per gram of electrode consumed ranged from 0.45 mg g(-1) (SMAW) to 0.08 mg g(-1) (CMT). Nickel emission rates were generally low and ranged from ~0.09 (GMAW short circuit) to 0.004 mg g(-1) (CMT). Iron emission rates ranged from 3.7 (spray-mode GMAW) to 0.49 mg g(-1) (CMT). The processes studied have significantly different costs, and cost factors are presented based on a case study to allow comparisons between processes in specific cost categories. Costs per linear meter of weld were $31.07 (SMAW), $12.37 (GMAW short circuit), and $10.89 (FCAW). Although no single process is the best for minimizing fume emissions and costs while satisfying the weld requirements, there are several processes that can minimize emissions. This study provides

  10. Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800

    International Nuclear Information System (INIS)

    Sireesha, M.; Sundaresan, S.

    2000-01-01

    For joining type 316LN austenitic stainless steel to modified 9Cr-1Mo steel for power plant application, a trimetallic configuration using an insert piece (such as alloy 800) of intermediate thermal coefficient of expansion (CTE) has been sometimes suggested for bridging the wide gap in CTE between the two steels. Two joints are thus involved and this paper is concerned with the weld between 316LN and alloy 800. These welds were produced using three types of filler materials: austenitic stainless steels corresponding to 316,16Cr-8Ni-2Mo, and the nickel-base Inconel 182 1 . The weld fusion zones and the interfaces with the base materials were characterised in detail using light and transmission electron microscopy. The 316 and Inconel 182 weld metals solidified dendritically, while the 16-8-2(16%Cr-8%Ni-2%Mo) weld metal showed a predominantly cellular substructure. The Inconel weld metal contained a large number of inclusions when deposited from flux-coated electrodes, but was relatively inclusion-free under inert gas-shielded welding. Long-term elevated-temperature aging of the weld metals resulted in embrittling sigma phase precipitation in the austenitic stainless steel weld metals, but the nickel-base welds showed no visible precipitation, demonstrating their superior metallurgical stability for high-temperature service. (orig.)

  11. Effect of Iron Redox Equilibrium on the Foaming Behavior of MgO-Saturated Slags

    Science.gov (United States)

    Park, Youngjoo; Min, Dong Joon

    2018-04-01

    In this study, the foaming index of CaO-SiO2-FetO and CaO-SiO2-FetO-Al2O3 slags saturated with MgO was measured to understand the relationship between their foaming behavior and physical properties. The foaming index of MgO-saturated slags increases with the FetO content due to the redox equilibrium of FetO. Experimental results indicated that MgO-saturated slag has relatively high ferric ion concentration, and the foaming index increases due to the effect of ferric ion. Therefore, the foaming behavior of MgO-saturated slag is more reasonably explained by considering the effect of ferric ion on the estimation of slag properties such as viscosity, surface tension, and density. Specifically, the estimation of slag viscosity was additionally verified by NBO/T, and this is experimentally obtained through Raman spectroscopy.

  12. Kinetics of steel slag leaching: Batch tests and modeling

    International Nuclear Information System (INIS)

    De Windt, Laurent; Chaurand, Perrine; Rose, Jerome

    2011-01-01

    Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.

  13. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    Science.gov (United States)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  14. Optimizing of Work Arc Furnace to Decopperisation of Flash Slag

    Directory of Open Access Journals (Sweden)

    Bydałek A.W.

    2015-09-01

    Full Text Available Discusses an attempt to optimize the operation of an electric furnace slag to be decopperisation suspension of the internal recycling process for the production of copper. The paper presents a new method to recover copper from metallurgical slags in arc-resistance electric furnace. It involves the use of alternating current for a first period reduction, constant or pulsed DC in the final stage of processing. Even distribution of the electric field density in the final phase of melting caused to achieve an extremely low content of metallic copper in the slag phase. They achieved by including the economic effects by reducing the time reduction.

  15. EFFECTS OF BLAST-FURNACE SLAG ON NATURAL POZZOLAN-BASED GEOPOLYMER CEMENT

    Directory of Open Access Journals (Sweden)

    MAHSHAD YAZDANIPOUR

    2011-03-01

    Full Text Available A number of geopolymer cement mixes were designed and produced by alkali-activation of a pumice-type natural pozzolan. Effects of blast-furnace slag on basic engineering properties of the mixes were studied. Different engineering properties of the mixes such as setting times and 28-day compressive strength were studied at different amounts of blast-furnace slag, sodium oxide content, and water-to-cement ratio. The mix comprising of 5 wt.% blast-furnace slag and 8 wt.% Na2O with a water-to-dry binder ratio of 0.30 exhibits the highest 28-day compressive strength, i.e. 36 MPa. Mixes containing 5 wt.% of ground granulated blast furnace slag showed the least efflorescence or best soundness. Laboratory techniques of X-ray diffractometry (XRD, fourier transform infrared spectroscopy (FTIR, and scanning electron microscopy (SEM were utilized for characterizing a number of mixes and studying their molecular and micro-structure. Investigations done by scanning electron microscopy confirm that smaller blast-furnace slag particles react totally while the larger ones react partially with alkaline activators and contribute to the formation of a composite microstructure.

  16. IASCC susceptibility under BWR conditions of welded 304 and 347 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Castano, M.L. [CIEMAT, Complutense 22, 28040 Madrid (Spain); Schaaf, B. van der [NRG, Petten (Netherlands); Roth, A. [Framatome ANP, Erlangen (Germany); Ohms, C. [JRC-IE, Petten (Netherlands); Gavillet, D. [PSI, Villigen (Switzerland); Dyck, S. van [SCK - CEN, Mol (Belgium)

    2004-07-01

    In-service cracking of Boiling Water Reactors (BWR) and Pressurized Water Reactors (PWR) internal components has been attributed to Irradiation Assisted Stress Corrosion Cracking (IASCC), a high temperature degradation process that austenitic stainless steels exhibit, when subjected to stress and exposed to relatively high fast neutron flux. Most of the cracking incidents in BWRs were associated to the heat-affected zone (HAZ) of welds. Although the maximum end-of- life dose for this structure is about 3 x 10{sup 20} n/cm{sup 2}, below the threshold fluence of 5 x 10{sup 20} n/cm{sup 2} (equivalent to {approx} 1 dpa) for IASCC in BWR of annealed materials, the influence of neutron irradiation in the weld and HAZ is still an open question. As a consequence of the welding process, residual stresses, microstructural and microchemical modifications are expected. In addition, exposure to neutron irradiation can induce variations in the material's characteristics that can modify the stress corrosion resistance of the welded components. While the IASCC susceptibility of base materials is being widely studied in many international projects, the specific conditions of irradiated weldments are rarely assessed. The INTERWELD project, partially financed by the 5. Framework program of the European Commission, was defined to elucidate neutron radiation induced changes in the HAZ of austenitic stainless steel welds that may promote intergranular cracking. To achieve this goal the evolution of residual stresses, microstructure, micro-chemistry, mechanical properties and the stress corrosion behaviour of irradiated materials are being evaluated. Fabrication of appropriate welds of 304 and 347 stainless steels, representative of core components, was performed. These weld materials were irradiated in the High Flux Reactor (HFR) in Petten to two neutron dose levels, i.e. 0.3 and 1 dpa. Complete characterization of the HAZ of both materials, before and after irradiation is

  17. Wetting Behavior of Calcium Ferrite Slags on Cristobalite Substrates

    Science.gov (United States)

    Yang, Mingrui; Lv, Xuewei; Wei, Ruirui; Xu, Jian; Bai, Chenguang

    2018-03-01

    Calcium ferrite (CF) is a significant intermediate adhesive phase in high-basicity sinters. The wettability between calcium ferrite (CF) and gangue plays an important role in the assimilation process. The wettability of CF-based slags, in which a constant amount (2 mass pct.) of Al2O3, MgO, SiO2, and TiO2 was added, on solid SiO2 (cristobalite) substrates at 1523 K (1250 °C) was investigated. The interfacial microstructure and spreading mechanisms were discussed for each sample. All the tested slag samples exhibited good wettability on the SiO2 substrate. The initial apparent contact angles were in the range of 20 to 50 deg, while the final apparent contact angles were 5 deg. The wetting process could be divided into three stages on the basis of the change in diameter, namely the "linear spreading" stage, "spreading rate reduction" stage, and "wetting equilibrium" stage. It was found that the CF-SiO2 wetting system exhibits dissolutive wetting and the dissolution of SiO2 into slag influences its spreading process. The spreading rate increases with a decrease in the ratio of viscosity to interfacial tension, which is a result of the addition of Al2O3, MgO, SiO2, and TiO2. After cooling, a deep corrosion pit was formed in the substrate and a diffusion layer was generated in front of the residual slag zone; further, some SiO2 and Fe2O3 solid solutions precipitated in the slag.

  18. Welding of Nb micro-alloyed steel by the submerged arc process using Brazilian consumables

    International Nuclear Information System (INIS)

    Scotti, A.; Quites, A.M.

    1982-01-01

    A set of procedures was established for welding of Nb micro-alloyed steel by the submerged arc process, using national consumables, in order to simultaneously achieve a more economic welding and better mechanical properties. From all the wire-flux combinations the better were the correspondent to AWS F84ED1, F74EM12K and F84EH14, the last being the best. (Author) [pt

  19. Recovery of americium from slag and crucible wastes and its purification

    International Nuclear Information System (INIS)

    Michael, K.M.; Dabholkar, G.M.; Vijayan, K.; Ramamoorthy, N.; Narayanan, C.V.; Jambunathan, U.; Kapoor, S.C.

    1990-01-01

    A method of recovery and purification of americium-241 from slag waste streams is described. Extraction of Am from slag solution of 0.16 M HNO 3 was carried out by tri-n-butyl phosphate. After stripping with acetic acid, Am was precipitated at pH 1. This was followed by metathesis to remove Ca. Final separation of Pu from Am solution was achieved by anion exchange method using Dowex 1x4 anion exchange resin. Details of large scale recovery of Am from slag are also described. (author). 12 refs., 11 tabs., 1 fig

  20. Characterization study of heavy metal-bearing phases in MSW slag

    International Nuclear Information System (INIS)

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Motomura, Yoshinobu; Watanabe, Koichiro

    2009-01-01

    Slag products derived from the pyrolysis/melting and plasma/melting treatment of municipal solid waste (MSW) in Japan were examined for the characterization study of heavy metal-bearing phases using petrographic techniques. Detailed microscopic observations revealed that the shapes of heavy metal-rich inclusions are generally spherical to semi-spherical and their sizes range from submicron to scarcely large size spheres (over 100 μm). The experiments (both optical microscopy and electron probe microanalysis) indicated that Fe and Cu participate in mutual substitution and different proportions, and form mainly two-phase Fe-Cu alloys that bound in the silicate glass. This alloy characterizes the composition of more than 80% of the metal-rich inclusions. Other metals and non-metals (such as Pb, Ni, Sb, Sn, P, Si, Al and S) with variable amounts and uneven distributions are also incorporated in the Fe-Cu alloy. In average, the bulk concentration of heavy metals in samples from pyrolysis/melting type is almost six times greater than samples treated under plasma/arc processing. The observations also confirmed that slag from pyrolysis origin contains remarkably higher concentration of metallic inclusions than slag from plasma treatment. In the latter, the metallic compounds are separately tapped from molten slag during the melting treatment that might lead to the generation of safer slag product for end users from environmental viewpoint.

  1. Research on the use of Ferro-Chrome slag in civil engineering applications

    Directory of Open Access Journals (Sweden)

    Al-Jabri Khalifa S.

    2018-01-01

    Full Text Available Over recent decades there has been rapid increase in the industrial waste materials and by-products yields due to the progressive growth rate of population, development of industry and technology and the growth of consumerism. With the growing environmental pressures to reduce waste and pollution, Intensive research studies have been conducted to explore all suitable reuse methods. Wastes such as construction waste, blast furnace, steel slag, coal fly ash and bottom ash have been approved in many places as alternative materials in bridges, roads, pavements, foundations and building construction. The use of industrial solid waste as a partial replacement of raw materials in construction activities not only saves landfill space but also reduces the demand for extraction of natural raw materials. Ferrochrome slag is a by-product from the production of chrome. There are environmental and economic advantages in seeing slags as a potentially useful resource rather than as waste products. Slag management at ferrochrome producing companies has been influenced by the limited space available and financial cost implications of the slag dumps. Internationally, e.g. South Africa, India, Norway, Turkey, East Europe, China, Sweden and USA, ferrochrome slag is used commercially in the road and construction Industries. This material is being used for road construction, as aggregates in concrete industry, brick manufacturing, and in pavement construction as engineering fill and has recently been tried in cement. This paper presents an overview of the recent advances of the use of ferrochrome slag in various civil engineering applications such as road construction, and cement and concrete industries.

  2. Method and Apparatus for Assessing the Properties of Slags

    Directory of Open Access Journals (Sweden)

    Biernat S.

    2017-09-01

    Full Text Available A special Slag-Prop Cu database has been developed to archive data from laboratory and industrial tests related to post-reduction slags. In order to enrich the data areas, it was decided to design a system for measuring the temperature of the liquid slag and its viscosity. Objectives of research work are to gather information on the properties of post-slags such as the temperature of liquid slag and its viscosity. The discussed issues are especially important in the foundry practice. Designed research stand and using of database applications can greatly facilitate the work of metallurgists, foundrymen, technologists and scientists. The viscosity measurement was developed and presented earlier. The author’s analytical methodology was supplemented by a thyristor measuring system (described in the article. The system temperature measurement can be performed simultaneously in 3 ways to reduce the measurement error. Measurement of the voltage mV - using the Seebeck effect can be measured throughout the entire range of thermocouple resistance, up to 1300 °C. Direct temperature measurement °C - measurement only below 1000 °C. Additional measurement - the measurement can also be read from the pyrometer set above the bath. The temperature and the reading frequency depend on the device itself. The principle of measurement is that in a molten metal / slag crucible, we put a N-type thermocouple. The thermocouples are hung by means of a tripod above the crucible and placed in a crucible. The thermocouple is connected to a compensating line dedicated to this type of thermocouple. The cable is in turn connected to a special multimeter that has the ability to connect to a computer and upload results. Temperature measurement can be performed simultaneously in 3 ways to reduce the measurement error. The Sn-Pb alloy has been subjected to testing for proper operation of the device. In this foot should be observed the supercooling of the liquid, which initiates

  3. Visualisation and quantification of heavy metal accessibility in smelter slags: The influence of morphology on availability

    International Nuclear Information System (INIS)

    Morrison, Anthony L.; Swierczek, Zofia; Gulson, Brian L.

    2016-01-01

    The Imperial Smelting Furnace (ISF) for producing lead and zinc simultaneously has operated on four continents and in eleven countries from the 1950's. One of the process changes that the ISF introduced was the production of a finely granulated slag waste. Although this slag contained significant amounts of residual lead (Pb) and zinc (Zn), because of its glassy nature it was considered environmentally benign. From the Cockle Creek smelter near Boolaroo at the northern end of Lake Macquarie, NSW, Australia, it is estimated that around 2.1 million tonnes of the fine slag was distributed into the community and most remains where it was originally utilised. Residual tonnages of slag of this magnitude are common worldwide wherever the ISF operated. Studies of base metal smelting slags have concluded that mineralogical and morphological characteristics of the slag play a critical role in moderating environmental release of toxic elements. Scanning electron microscopy (SEM) and microanalysis of the ISF slags has shown that the Pb and associated elements are present as discrete nodules (∼6–22 μm) in the slag and that they are not associated with Zn which is contained in the glass slag phase. Using an automated SEM and analysis technique (QEMSCAN"®) to “map” the mineralogical structure of the particles, it was possible to quantitatively determine the degree of access infiltrating fluids might have to the reaction surface of the Pb phases. The level of access decreases with increasing particle size, but in even the largest sized particles (−3350 + 2000 μm) nearly 80% of the Pb-containing phases were totally or partially accessible. These results provide evidence that the toxic elements in the slags are not contained by the glassy phase and will be vulnerable to leaching over time depending on their individual phase reactivity. - Highlights: • QEMSCAN"® allowed determination of access to infiltrating fluids to Pb in smelter slags. • Pb and associated

  4. Computational Fluid Dynamic Modeling of Zinc Slag Fuming Process in Top-Submerged Lance Smelting Furnace

    Science.gov (United States)

    Huda, Nazmul; Naser, Jamal; Brooks, Geoffrey; Reuter, Markus A.; Matusewicz, Robert W.

    2012-02-01

    Slag fuming is a reductive treatment process for molten zinciferous slags for extracting zinc in the form of metal vapor by injecting or adding a reductant source such as pulverized coal or lump coal and natural gas. A computational fluid dynamic (CFD) model was developed to study the zinc slag fuming process from imperial smelting furnace (ISF) slag in a top-submerged lance furnace and to investigate the details of fluid flow, reaction kinetics, and heat transfer in the furnace. The model integrates combustion phenomena and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with a number of user-defined subroutines in FORTRAN programming language were used to develop the model. The model is based on three-dimensional (3-D) Eulerian multiphase flow approach, and it predicts the velocity and temperature field of the molten slag bath, generated turbulence, and vortex and plume shape at the lance tip. The model also predicts the mass fractions of slag and gaseous components inside the furnace. The model predicted that the percent of ZnO in the slag bath decreases linearly with time and is consistent broadly with the experimental data. The zinc fuming rate from the slag bath predicted by the model was validated through macrostep validation process against the experimental study of Waladan et al. The model results predicted that the rate of ZnO reduction is controlled by the mass transfer of ZnO from the bulk slag to slag-gas interface and rate of gas-carbon reaction for the specified simulation time studied. Although the model is based on zinc slag fuming, the basic approach could be expanded or applied for the CFD analysis of analogous systems.

  5. Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2013-02-01

    Full Text Available In the entrained-flow gasifiers used in integrated gasification combined cycle (IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter is entrained (as fly ash with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. To improve gasification availability through better design and operation of the gasification process, a better understanding of slag behavior and the characteristics of the slagging process is needed. Char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio all affect slagging behavior. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. In Part I, we review the main types and the operating conditions of entrained-flow gasifiers and coal properties used in IGCC plants; we identify and discuss the key coal ash properties and the operating conditions impacting slag behavior; finally, we summarize the coal quality criteria and the operating conditions in entrained-flow gasifiers. In Part II, we discuss the constitutive modeling related to the rheological studies of slag flow.

  6. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    International Nuclear Information System (INIS)

    Huanosta-Gutiérrez, T.; Dantas, Renato F.; Ramírez-Zamora, R.M.; Esplugas, S.

    2012-01-01

    Highlights: ► We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. ► The copper slag was effective to remove organic pollutants (phenol) from water. ► During experimentation, Cu and Fe leaching were not higher than the acceptable levels. ► Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments promoted biodegradability increment of the contaminated water. ► The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H 2 O 2 (slag/H 2 O 2 ) and H 2 O 2 /UV (slag/H 2 O 2 /UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD 5 /TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  7. A Review of Granulation Process for Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Yu Pengfei

    2016-01-01

    Full Text Available Molten slags of blast furnace is a second resources with great value of 1600~1 800 MJ sensible heat per ton. At present, water-quenching process plays a leading role in recovering waste heat of the molten slags. However, this method not only cost lots of water, but also recover little sensible heat and can pollute the surrounding environment. Dry granulation process, as an environmentally friendly method with high-efficiency heat recovery, have attracted widespread attentions. In this paper, the water quenching and dry granulation processes were discussed in detail. After a thorough comparative analysis of various treatment technologies, it can be concluded that centrifugal granulation affiliated with dry granulation is the optimum process, with smaller slag particle size (about 2mm, more glassy phase and higher recovery rate.

  8. Physics of magnetic flux tubes

    CERN Document Server

    Ryutova, Margarita

    2015-01-01

    This book is the first account of the physics of magnetic flux tubes from their fundamental properties to collective phenomena in an ensembles of flux tubes. The physics of magnetic flux tubes is absolutely vital for understanding fundamental physical processes in the solar atmosphere shaped and governed by magnetic fields. High-resolution and high cadence observations from recent space and  ground-based instruments taken simultaneously at different heights and temperatures not only show the ubiquity of filamentary structure formation but also allow to study how various events are interconnected by system of magnetic flux tubes. The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms are tailored for practical applications. These are welded with state-of-the-art observations from early decisive ones to the most recent data that open a new phase-space for exploring the Sun and sun-like stars. Concept of magnetic flux tubes is central to various magn...

  9. Substitution of TOFD technique for nondestructive testing of welds and thick layers of steel-A. Comparative investigation

    International Nuclear Information System (INIS)

    Riakhi, M.; Abolkhazani, M.R.

    2006-01-01

    The use of time of flight diffraction flaw detection procedure is under discussion. The procedure is based on measurement of the time of ultrasonic wave propagation after wave diffraction from both ends of a defect. It is shown that the method is effective in defect size determination for welded joints and thick-walled structures. Such defects as cracks, incomplete fusion, porosity and slag inclusions can be detected and their dimensions can be determined using the method of time of flight diffraction control. Advantages and disadvantages of the method discussed are described. A consideration is given to the fundamentals of the method of time of flight diffraction control [ru

  10. Microstructural Effects on Hydrogen Delayed Fracture of 600 MPa and 800 MPa grade Deposited Weld Metal

    International Nuclear Information System (INIS)

    Kang, Hee Jae; Lee, Tae Woo; Cho, Kyung Mox; Kang, Namhyun; Yoon, Byung Hyun; Park, Seo Jeong; Chang, Woong Seong

    2012-01-01

    Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

  11. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    Science.gov (United States)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  12. Overview on the welding technologies of CLAM steel and the DFLL TBM fabrication

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    2016-12-01

    Full Text Available Dual Functional Lithium Lead (DFLL blanket was proposed for its advantages of high energy exchange efficiency and on-line tritium extraction, and it was selected as the candidate test blanket module (TBM for China Fusion Engineering Test Reactor (CFETR and the blanket for Fusion Design Study (FDS series fusion reactors. Considering the influence of high energy fusion neutron irradiation and high heat flux thermal load on the blanket, China Low Activation Martensitic (CLAM steel was selected as the structural material for DFLL blanket. The structure of the blanket and the cooling internal components were pretty complicated. Meanwhile, high precision and reliability were required in the blanket fabrication. Therefore, several welding techniques, such as hot isostatic pressing diffusion bonding, tungsten inner gas welding, electron beam welding and laser beam welding were developed for the fabrication of cooling internals and the assembly of the blanket. In this work, the weldability on CLAM steel by different welding methods and the properties of as-welded and post-weld heat-treated joints were investigated. Meanwhile, the welding schemes and the assembly strategy for TBM fabrication were raised. Many tests and research efforts on scheme feasibility, process standardization, component qualification and blanket assembly were reviewed.

  13. ANALYSIS OF KINETICS OF CAST IRON ALLOYING THROUGH SLAG PHASE

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2012-01-01

    Full Text Available The mechanism of cast iron alloying through slag phase due to use of nickel and copper oxides is considered and the analysis of kinetics regularity of alloying in case of absence of fuse in the form of milled cast-iron chips in slag and at their presence in it is carried out.

  14. Corrosion Behavior of Carbon Steel in Concrete Material Composed of Tin Slag Waste in Aqueous Chloride Solution

    Science.gov (United States)

    Rustandi, Andi; Cahyadi, Agung; Taruli Siallagan, Sonia; Wafa' Nawawi, Fuad; Pratesa, Yudha

    2018-01-01

    Tin slag is a byproduct of tin ore smelting process which is rarely utilized. The main purpose of this work is to investigate the use of tin slag for concrete cement material application compared to the industrial Ordinary Portland Cement (OPC). Tin slag composition was characterized by XRD and XRF analysis. The characterization results showed the similar chemical composition of tin slag and OPC. It also revealed the semi crystalline structure of tin slag sample. Several electrochemical tests were performed to evaluate corrosion behavior of tin slag, OPC and various mixed composition of both materials and the addition of CaO. The corrosion behavior of OPC and tin slag were evaluated by using Cyclic Polarization, Electrochemical Impedance Spectroscopy (EIS) and Electrochemical Frequency Modulation (EFM) methods. Aqueous sodium chloride (NaCl) solution with 3.5% w.t concentration which similar to seawater was used as the electrolyte in this work. The steel specimen used as the reinforce bar (rebar) material of the concrete was carbon steel AISI 1045. The rebar was embedded in the concrete cement which composed of OPC and the various composition of tin slag including slag without addition of CaO and slag mixed with addition of 50 % CaO. The electrochemical tests results revealed that tin slag affected its corrosion behavior which becoming more active and increasing the corrosion rate as well as decreasing the electrochemical impedance.

  15. Design and evaluation of a heat recuperator for steel slags

    International Nuclear Information System (INIS)

    Gutiérrez Trashorras, Antonio J.; Álvarez, Eduardo Álvarez; Río González, José Luis; Suarez Cuesta, José Manuel; Bernat, Jorge Xiberta

    2013-01-01

    New techniques for emissions reduction and energy efficiency are important challenges of the steel industry. Although great advantages have been reached in these fields, there are still new opportunities. One of them is the possible development of systems to recover energy from slags. The recent policies that encourage the use of renewable and alternative energies determine a favorable scenario for the development of new techniques of heat recovering. In this context, this article presents a new heat recuperation system for the slags produced in the factories of Arcelor–Mittal in Asturias (Spain) and study in detail the design of an innovative slags heat exchanger. To adjust its performance and to determine the influence of the geometric and flow design parameters, the heat exchanger has been simulated using numerical analysis software (CFD). -- Highlights: • A new design of a heat recuperator for slags energy recovery is presented. • The effects of the design parameters have been studied with a numerical model. • Refractory materials with high thermal conductivity improve heat recuperation

  16. ECOLOGICAL AND TECHNOLOGYCAL ASPECTS OF ASH AND SLAG WASTES UTILIZATION

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrova

    2017-07-01

    Full Text Available The article presents the results of investigation focused on the utilization of ash and slag wastes (ASW in Russia including investigation of chemical and physical properties of ASW and processing products. Many factors influence the technological properties of ash and slag materials: naturals, processes and environments. The integrated treatment of ash and slag wastes of both stored and re-formed types will allow obtaining the following commercial products: coal concentrate, iron concentrate, aluminosilicate cenospheres, aluminosilicate product. In this study we have analyzed the methods for separation of ASW iron-containing part using the different types of the magnetic separation from the ash and slag material from one of the combined heat and power plant (CHPP in the Russian Far East Federal District. The greatest interest is the dry magnetic separation with travelling electromagnetic field. The subject of research was a sample taken from one of ash dump of CHPP in the Far East. In the study iron concentrate containing Fetotal = 64% was obtained recovery 68% in the low intensity (up to 5 kOe travelling magnetic field.

  17. Prevalent material parameters governing spalling of a slag-impregnated refractory

    Energy Technology Data Exchange (ETDEWEB)

    Blond, E.; Schmitt, N.; Arnould, O.; Hild, F. [LMT-Cachan (ENS de Cachan / CNRS-UMR 8535 / Univ. Paris 6), Cachan (France); Blumenfeld, P. [CRDM / ARCELOR Grande Synthe, Dunkerque (France); Poirier, J. [CRDM / ARCELOR Grande Synthe, Dunkerque (France); CRMHT-CNRS, Orleans (France)

    2004-07-01

    In steel ladle linings, bauxite refractories in contact with iron and steel slag are subjected to complex loadings. To identify the causes of degradation in different reactor linings, a coupling diagram made up of three poles is established: namely, slag impregnation (I), Thermomechanics (TM) and phase transformations (P). The variation of the microstructure and the gradient of the chemical composition resulting from the (I-P) coupling are characterized by microprobe analyses; a natural impregnation tracer is identified. The (I-T) coupling is studied by modeling the refractory lining behavior subjected to a cyclic thermal loading within the framework of the mechanics of porous continua. Parameters governing the location and amplitude of the maximum pore pressure are obtained and their influences are studied. The analysis of the (TM) pole leads to the identification of a thermo-elasto-viscoplastic model for bauxite in various states of slag impregnation. Numerical simulations show that the stress state developed during the heating stages can induce spalling, probably generated by a localized over-pressure of slag. (orig.)

  18. Effect of Temperature and Graphite Immersion Method on Carbothermic Reduction of Fayalite Slag

    Science.gov (United States)

    Mitrašinović, Aleksandar

    2017-09-01

    In this work, graphite flakes were used to reduce fayalite slag originated from the pyrometallurgical copper extraction process. Experiments were conducted with a significantly different contact area between graphite and slag at two temperatures, 1300°C and 1400°C. The process was continuously monitored via the concentration change of CO and CO2 in off-gas. Reduction rate values in experiments where 150-micron-diameter graphite flakes were submerged into the slag and left to float slowly to the top are about four times higher compared with when graphite flakes were dispersed at the top surface of liquid slag. The activation energy for instigating reduction was 302.61 kJ mol-1 and 306.67 kJ mol-1 in the case where graphite flakes were submerged into the slag and dispersed at the surface, respectively. The reduction process is characterized by two distinctive periods: an initial steep increase in the concentration of CO and CO2 controlled by the Boudouard reaction and a subsequent slow decrease of CO and CO2 concentrations in the off-gas controlled by mass transfer of reducible oxides from bulk to the gas-slag interface.

  19. Recovery of uranium and lining material from magnesium fluoride slag at UMP

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.K.; Singh, H.; Shadakshari, B.M.; Meghal, A.M.

    1991-01-01

    At Uranium Metal Plant, uranium metal is produced by reduction of UF 4 with magnesium metal, in a closed reactor lined with refractory MgF 2 lining material. During this reduction, more MgF 2 is produced as the slag. This slag generally contains 2-4% uranium and hence is processed to recover these values and part of the slag, free from uranium is reused for lining the reactor. This paper describes the process parameters finalised for crushing and grinding of the slag and for leaching uranium with nitric acid. The leach liquor contains appreciable amount of fluoride and hence is processed through a separate solvent extraction cycle with tributyl phosphate. The resultant purified uranyl nitrate solution is mixed with the main stream crude solution for final purification. The conditions optimised for the solvent extraction step, the problems faced during the regular operation over the last few years and the experience gained are described. An outline of the scheme to treat larger quantities of the slag on a regular basis is presented. (author). 6 refs., 1 fig., 1 tab

  20. Determination of natural radionuclide level in industrial waste slags and evaluation of comprehensive utilization

    International Nuclear Information System (INIS)

    Li Ruixiang; Liu Xinhua; Gan Lin

    1994-09-01

    Natural radionuclide contents were measured in various industrial waste slags in China by a low background HPGe γ spectrometer and the radiological impact was estimated for some comprehensive utilization of these slags. Most waste slags can be used for building materials except for tailing and waste rock form nuclear industry

  1. Evaluation of the use of steelmaking slag as an aggregate in concrete mix: A factorial design approach

    Directory of Open Access Journals (Sweden)

    Aljbour Salah H.

    2017-01-01

    Full Text Available Slag is investigated towards its potential use as an aggregate in concrete mix production. Full factorial design methodology is applied to study the effect of two process input variables, namely: slag as coarse aggregate and slag as medium aggregate on the properties of concrete mix. Additionally, the interaction between input variables is also examined. Incorporating steel slag aggregate in the concrete mix affected its compressive strength. Enhanced compressive strength concrete mix was obtained with 70 wt.% coarse slag aggregate and 70 wt.% medium slag aggregate. Under these proportions, the 28-days compressive strength was higher than the 28-days compressive strength of a concrete mix prepared from normal aggregate. Strong interaction effect exists between slag aggregate size on the compressive strength at 7-days curing. Lower compressive strength for the concrete mix might be obtained if improper proportions of mixed medium and coarse slag aggregate were employed.

  2. Investigation of compressive strength of concrete with slag and silica fu

    International Nuclear Information System (INIS)

    Mostofinejad, D.; Mirtalee, K.; Sadeghi, M.

    2002-01-01

    Without doubt, concrete has special place in construction of different types of structures, and used as one of the most important materials in construction industry. Today, with development and modernization of human knowledge in construction industry, it is possible to reach h igh performance concrete . Mechanical properties and durability of high performance concrete is quite better than that of conventional concrete. In present, the use of supplementary cementitious materials, mainly silica fume, fly ash and blast furnace slag has become increasingly common for reasons of economy and technical benefits imparted by these materials. The aim of present research is investigation and comparison compressive strength of concrete specimens due to variation of water to cementitious materials ratio (W/C M), silica fume and slag percent and their proportions as cement replacement. Furthermore, it is intended to determine best combination of these materials with cement in concrete (optimum percent) to reach to maximum compressive strength. In the current study, specimens were made in 0.5,0.4 and 0.3 W/C M ratio contained 0,20,35 and 50 percent of slag as cement replacement, where in each slag replacement percent, 0, 5, 10 and 15 percent of of silica fume were used as cement replacement. Results of the current study show that the combination effect of slag and silica fume replacement in concrete leads to the maximum compressive strength in concrete; also there are some optimum percents for replacement of slag and silica fume to cement to get the best results

  3. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    Science.gov (United States)

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Submerged arc narrow gap welding of the steel DIN 20MnMoNi55

    International Nuclear Information System (INIS)

    Moraes, M.M.

    1987-01-01

    The methodology for submerged arc narrow gap welding for high thickness rolled steel DIN 20MnMoNi55 was developed, using din S3NiMo1 04 mm and 05 mm wires, and DIN 8B435 flux. For this purpose, submerged arc narrow gap welded joints with 50 mm and 120 mm thickness were made aiming the welding parameters optimization and the study of the influence of welding voltage, wire diameter and wire to groove face distance on the operational performance and on the welded joint quality, specially on the ISO-V impact toughness. These welded joints were checked by non-destructive mechanical and metallographic tests. Results were compared with those obtained by one 120 mm thickness submerged arc conventional gap welded joint, using the same base metal and consumables (05 mm wire). The analysis of the results shows that the increasing of the wire to groove face distance and the welding voltage increases the hardness and the ISO-V impact toughness of the weld metal. It shows that the reduction of the gap angle is the main cause for the obtained of a heat affected zone free from coarse grains, the reduction of the welding voltage, the increasing of the wire to groove face distance, and the grounding optimization also contribute for that. It was also concluded that the quality and the execution complexity level of a narrow gap welded joint are identical to a conventional gap welded joint. (author) [pt

  5. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  6. Design and properties of plaster mortars manufactured with ladle furnace slag

    International Nuclear Information System (INIS)

    Rodríguez, A.; Gutiérrez-González, S.; Horgnies, M.; Calderón, V.

    2013-01-01

    Highlights: • This study analyses plaster with ladle furnace slag as a mineral aggregate. • Tests are completed by characterizing the influences of two admixtures. • Microstructure, physical and mechanical results confirm the feasibility of these materials. • These new materials are potentially useful as plaster mortars for use in masonry. - Abstract: This study deals with the properties of a series of plasters containing different proportions of ladle furnace slag used as mineral aggregate. The tests characterise the influences of two admixtures: a superfluidifier to reduce the water absorption (SikaMix®) of mortar plaster and an adhesive emulsion to improve the surface adherence (SikaLatex®). The physical and mechanical results confirm the feasibility of employing ladle furnace slag as a mineral aggregate, which induces an increase in density, in vapour permeability and in porosity. The results highlight also a decrease of adherence, durability and mechanical strength, proportionally to the amount of plaster substituted by slag. Scanning electron microscopy imaging and elemental mapping show good interaction between the various constituents. The thermal degradation of the mixtures reflects an improvement in strength resistance in relation to temperature, as further slag is incorporated. The economical study suggests that these recycled materials are cost-effectively viable and may be applied as plaster mortars for use in masonry

  7. Transition welds in welding of two-ply steels

    International Nuclear Information System (INIS)

    Fartushnyj, V.G.; Evsyukov, Yu.G.

    1977-01-01

    Studied were physico-mechanical properties of welds made by various welding wires of chromium-nickel and nickel-chromium steels in submerged arc welding of double-layer steels with main layer of the VSt.3sp. carbon steel. It is shown that service-reliable structures welded of two-layer steels are obtained by providing the content from 11 to 20 % Ni in the automatically welded transition layer

  8. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    International Nuclear Information System (INIS)

    Huang, Haoliang; Ye, Guang; Damidot, Denis

    2014-01-01

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH) 2 solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO 4 2− ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. - Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation

  9. Characteristics and properties of oil-well cements auditioned with blast furnace slag

    International Nuclear Information System (INIS)

    Sanchez, R.; Palacios, M.; Puertas, F.

    2011-01-01

    The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% by cement weight) with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activator partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. Due to such partial inhibition, the cement/slag blends had significantly lower mechanical strength than Portland cements hydrated with water. 2 9Si and 2 7Al MAS NMR and BSE/EDX studies, in turn, showed that the CSH gel forming in the alkali-activated cement/slag pastes contained Al in tetrahedral positions and low Ca/Si ratios. (Author) 29 refs.

  10. Statistical approach to predict compressive strength of high workability slag-cement mortars

    International Nuclear Information System (INIS)

    Memon, N.A.; Memon, N.A.; Sumadi, S.R.

    2009-01-01

    This paper reports an attempt made to develop empirical expressions to estimate/ predict the compressive strength of high workability slag-cement mortars. Experimental data of 54 mix mortars were used. The mortars were prepared with slag as cement replacement of the order of 0, 50 and 60%. The flow (workability) was maintained at 136+-3%. The numerical and statistical analysis was performed by using database computer software Microsoft Office Excel 2003. Three empirical mathematical models were developed to estimate/predict 28 days compressive strength of high workability slag cement-mortars with 0, 50 and 60% slag which predict the values accurate between 97 and 98%. Finally a generalized empirical mathematical model was proposed which can predict 28 days compressive strength of high workability mortars up to degree of accuracy 95%. (author)

  11. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles

    International Nuclear Information System (INIS)

    Choo, R.T.C.; Szekely, J.; David, S.A.

    1992-01-01

    By combining a mathematical model of the welding arc and of the weld pool, calculations are presented here to describe the free surface temperature of weld pools for spot welding operations. The novel aspects of the treatment include the calculation of the heat and current fluxes falling on the free weld pool surface from first principles, a realistic allowance for heat losses due to vaporization, and a realistic allowance for the temperature dependence of the surface tension. The most important finding reported in this article is that the free surface temperature of weld pools appears to be limited by Marangoni convection, rather than heat losses due to vaporization. Furthermore, it was found that once thermocapillary flow can produce high enough surface velocities (>25 cm/s), the precise nature of the relationship between temperature and surface tension will become less important

  12. Weld controller for automated nuclear service welding

    International Nuclear Information System (INIS)

    Barfield, K.L.; Strubhar, P.M.; Green, D.I.

    1995-01-01

    B and W Nuclear Technologies (BWNT) uses many different types of weld heads for automated welding in the commercial nuclear service industry. Some weld heads are purchased as standard items, while others are custom designed and fabricated by BWNT requiring synchronized multiaxis motion control. BWNT recently completed a development program to build a common weld controller that interfaces to all types of weld heads used by BWNT. Their goal was to construct a system that had the flexibility to add different modules to increase the capability of the controller as different application needs become necessary. The benefits from having a common controller are listed. This presentation explains the weld controller system and the types of applications to which it has been applied

  13. The hydration of slag, part 1: reaction models for blended cement

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2007-01-01

    Reaction models are proposed to quantify the hydration products and to determine the composition of C–S–H from alkali-activated slags (AAS). Products of the slag hydration are first summarized from observations in literature. The main hydration products include C–S–H, hydrotalcite, hydrogarnet, AFm

  14. EFFECT OF REACTIVE MAGNESIUM OXIDE ON PROPERTIES OF ALKALI ACTIVATED SLAG GEOPOLYMER CEMENT PASTES

    Directory of Open Access Journals (Sweden)

    H. A. Abdel-Gawwad

    2015-03-01

    Full Text Available The effect of different proportions and different reactivities of MgO on the drying shrinkage and compressive strength of alkali activated slag pastes (AAS has been investigated. The slag was activated by 6 wt.% sodium hydroxide and liquid sodium silicate at ratio of 3:3 (wt.. The different reactivities of MgOs were produced from the calcination of hydromagnesite at different temperatures (550, 1000, 1250 C. The results showed that the reactivity of magnesium oxide decreases with increasing the calcination temperature. Also, the drying shrinkage of AAS was reduced by the replacement of slag with MgOs. The highly reactive MgO accelerated the hydration of AAS at early ages. The replacement of slag with 5% MgO550 increased one day compressive strength by ~26 % while MgO1250 had little effect. A significant increase in strength was observed after 7 days in case of replacement of slag with 5 % MgO1250. The MgO reacts with slag to form hydrotalcite likephases (Ht as detected by XRD, FTIR spectroscopy, TGA/DTG analysis and SEM.

  15. Experimental Study on the Utilization of Fine Steel Slag on Stabilizing High Plastic Subgrade Soil

    OpenAIRE

    Hussien Aldeeky; Omar Al Hattamleh

    2017-01-01

    The three major steel manufacturing factories in Jordan dump their byproduct, steel slag, randomly in open areas, which causes many environmental hazardous problems. This study intended to explore the effectiveness of using fine steel slag aggregate (FSSA) in improving the geotechnical properties of high plastic subgrade soil. First soil and fine steel slag mechanical and engineering properties were evaluating. Then 0%, 5%, 10%, 15%, 20%, and 25% dry weight of soil of fine steel slag (FSSA) w...

  16. Use of servo controlled weld head for end closure welding

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, S.K.; Setty, D.S.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2010-07-01

    In the PHWR fuel fabrication line resistance welding processes are used for joining various zirconium based alloy components to fuel tube of similar material. The quality requirement of these welding processes is very stringent and has to meet all the product requirements. At present these welding processes are being carried out by using standard resistance welding machines. In the resistance welding process in addition to current and time, force is one of the critical and important parameter, which influences the weld quality. At present advanced feed back type fast response medium frequency weld controllers are being used. This has upslope/down slope, constant and repetitive weld pattern selection features makes this critical welding process more reliable. Compared to weld controllers, squeeze force application devices are limited and normally standard high response pneumatic cylinders are used in the welding process. With this type of devices the force is constant during welding process and cannot be varied during welding process as per the material deformation characteristics. Similarly due to non-availability of feed back systems in the squeeze force application systems restricts the accuracy and quality of the welding process. In the present paper the influence of squeeze force pattern on the weld quality using advanced feed back type servo based force control system was studied. Different squeeze forces were used during pre and post weld heat periods along with constant force and compared with the weld quality. (author)

  17. Recovery of Copper from Slow Cooled Ausmelt Furnace Slag by Floatation

    Science.gov (United States)

    Xue, Ping; Li, Guangqiang; Qin, Qingwei

    Ausmelt furnace slag contains about 0.9% Cu (mass %). With increasing the amount of Ausmelt furnace slag, the recovery of copper from it will produce an enormous economic yield. The recovery of copper by floatation from slow cooled Ausmelt furnace slag was studied in this paper. The phases and composition of the slow cooled slag were analyzed. The factors which affected the copper recovery efficiency such as grinding fineness, pH value of flotation medium, different collectors and floating process were investigated. It was shown that the size distribution of the primary grinding and secondary grinding of middling were 75% for particles less than 0.074mm and 82% for particles less than 0.043mm respectively. The closed-circuit experimental results with butyl xanthate as collector in laboratory showed that the copper grade reached 16.11% and the recovery rate of copper reached 69.90% and the copper grade of tailings was only 0.2%.

  18. The influence of electric ARC activation on the speed of heating and the structure of metal in welds

    Directory of Open Access Journals (Sweden)

    Savytsky Oleksandr M.

    2016-01-01

    Full Text Available This paper presents the results of a research related to the impact of electric arc activation onto drive welding energy and metal weld heating speed. It is confirmed that ATIG and AMIG methods, depending on metal thickness, single pass weldability and chemical composition of activating flux, enable the reduction of welding energy by 2-6 times when compared to conventional welding methods. Additionally, these procedures create conditions to increase metal weld heating speed up to 1,500-5,500°C/s-1. Steel which can be rapidly heated, allows for a hardened structure to form (with carbon content up to 0.4%, together with a released martensitic structure or a mixture of bainitic-martensitic structures. Results of the research of effectiveness of ATIG and AMIG welding showed that increase in the penetration capability of electric arc, which increases welding productivity, is the visible side of ATIG and AMIG welding capabilities.

  19. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  20. 16-8-2 weld metal design data for 316L(N) steel

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. [Commissariat a l' Energie Atomique, CEA/Saclay, 91191 Gif sur Yvette (France)], E-mail: tavassoli@cea.fr

    2008-12-15

    ITER materials properties documentation is extended to weld metals used for welding Type 316L(N) steel, i.e. the structural material retained for manufacturing ITER major components, such as the vacuum vessel. The data presented here are mainly for the Type 16-8-2 and complete those already reported for the low temperature (Type 316L) and the high temperature (Type 19-12-2) filler metals. The weld metal properties data for Type 16-8-2 filler metal and its joints are collected, sorted and analysed according to the French design and construction rules for nuclear components (RCC-MR). Particular attention is paid to the type of weld metal (e.g. wire for TIG, covered electrode for manual arc, flux wire for automatic welding), as well as, to the weld geometry and welding position. Design allowables are derived from validated data for each category of weld and compared with those of the base metal. In most cases, the analyses performed are extended beyond the conventional analyses required for codes to cover specific needs of ITER. These include effects of exposures to high temperature cycles during component fabrication, e.g. HIPing and low dose neutron irradiation at low and medium temperatures. The ITER Materials Properties Handbook (MPH) is, here, enriched with files for physical and mechanical properties of Type 16-8-2 weld metal. These files, combined with the codification and inspection files, are part of the documentation required for ITER licensing needs. They show that all three weld-metals satisfy the code requirements, provided compositions and types of welds used correspond to those specified in RCC-MR.

  1. Treatment of metallurgical wastes : recovery of metal values from smelter slags by pressure oxidative leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Perederiy, I.; Papangelakis, V.G. [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry

    2008-07-01

    Vast quantities of slag are produced and dumped as waste by-products during the production of base metals by smelting operations. These slags contain large amounts of valuable metals which lead to a decrease in metal yield and, combined with the entrapped sulphur, pose a danger to the environment. The dissolution of fayalite is important for the selective recovery of valuable metals and the cleanup of slags in high pressure oxidative leaching. The nature of base metals and iron in solidified slag must be investigated in order to understand the mechanism of the process. This paper discussed the application of powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) for the characterization of a smelter slag microstructure. The study used leaching tests with the same smelter slag to measure and monitor the results of leaching, including metal extraction levels, the extent of iron dissolution as well as impurity contents. The paper provided information on the experiment with particular reference to slag leaching, chemical analysis, and characterization. It was concluded that slag consists of several solid phases with base metal sulfide and oxide droplets entrapped in the fayalite matrix or silica regions. Therefore, nickel, copper, cobalt, and zinc need to be exposed either chemically or mechanically to promote their recovery. 21 refs., 4 tabs., 5 figs.

  2. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Huanosta-Gutierrez, T. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Dantas, Renato F., E-mail: falcao@angel.qui.ub.es [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Ramirez-Zamora, R.M. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Esplugas, S. [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. Black-Right-Pointing-Pointer The copper slag was effective to remove organic pollutants (phenol) from water. Black-Right-Pointing-Pointer During experimentation, Cu and Fe leaching were not higher than the acceptable levels. Black-Right-Pointing-Pointer Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments promoted biodegradability increment of the contaminated water. Black-Right-Pointing-Pointer The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H{sub 2}O{sub 2} (slag/H{sub 2}O{sub 2}) and H{sub 2}O{sub 2}/UV (slag/H{sub 2}O{sub 2}/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD{sub 5}/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  3. Experiment research of slag renovation in the corner-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Zhijun; Wu, Wenfei [Inner Mongolia Univ. of Science and Technology, Baotou (China). School of Energy and Environment

    2013-07-01

    Aiming at serious slag on the water wall around the burner of corner-fired boiler with low-ash-fusion-point coal, cold experimental model has been established. In this experiment, particle image velocimetry (PIV) has been employed to accurately measure aerodynamic field of burner region, and the experimental research of furnace slag renovation has been conducted through changing the burner jet arrangement. The experiment results show that it has significantly effect on aerodynamic field in the furnace by changing burner jet deflection angle. A reasonable actual tangential circle diameter can be formed through adjusting the burner jet deflection angle, to prevent primary air attacking the wall, and further more, to effectively prevent serious slag on the water wall around the burner.

  4. Welding of CuZr-based metallic glasses on air

    International Nuclear Information System (INIS)

    Batalha, W.; Gargarella, P.; Kiminami, C.S.

    2016-01-01

    Metallic glass alloys have been studied aiming at its exceptional mechanical properties. This alloys processing's requires high cooling rates, which diminishes the sample's size. There by welding these samples without the loss of amorphous structure is a good alternative. The DEMa group has developed a technique based on Joule effect heating. By applying pressure and electric current, reaching temperatures of super cold liquids (the temperature between crystallizing and vitric transition), the vitric metal has it’s viscosity reduced and sample binding occur. The objective of this paper was to weld samples of cylindrical geometry of 2 and 3 mm in diameter and 4 mm in length of the compositions Cu46Zr42Al7Y5 and (Cu47Zr45Al8)98Y2. The process was done using 2 copper electrodes under(over) argon flux. The samples were later analysed by microscopy, differential scanning calorimetry and X ray diffraction. The results showed that this kind of welding process is possible since crystal formation on the welding region did not occur and there were no faults like cracks or porosity. (author)

  5. Size-separated particle fractions of stainless steel welding fume particles - A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium.

    Science.gov (United States)

    Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S

    2018-01-15

    Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Room temperature zeolitization of boiler slag from a Bulgarian thermal power plant

    Directory of Open Access Journals (Sweden)

    Pascova Radost D.

    2017-01-01

    Full Text Available A simple and cost-effective method was applied for the synthesis of zeolite composites utilising wet bottom boiler slag from the Bulgarian coal-fired thermal power plant “Sviloza”, near the town of Svishtov. The method consisted of a prolonged alkali treatment at room temperature of this waste. Experimental techniques, such as scanning electron microscopy, energy-dispersive X-ray and X-ray diffraction analyses, are employed to characterize the initial slag and the final products with respect to their morphology, and elemental and mineral compositions. The composites synthesized in this way contained two Na-type zeolite phases: zeolite X (type FAU and zeolite Linde F (type EDI. The zeolited products and the starting slag were tested as adsorbents for a textile dye (Malachite Green from aqueous solutions. In comparison with the initial slag, the zeolite composite possessed substantially better adsorption properties: it almost completely adsorbs the dye in much shorter times. The results of this investigations revealed a new, easy and low cost route for recycling boiler slag into a material with good adsorption characteristics, which could find different applications, e.g., for purifying polluted waters, including those from the textile industry.

  7. Fresh and mechanical properties of self compacting concrete containing copper slag as fine aggregates

    Directory of Open Access Journals (Sweden)

    Rahul Sharma

    2017-03-01

    Full Text Available An investigation is carried out on the development of Self Compacting Concrete (SCC using copper slag (CS as fine aggregates with partial and full replacement of sand. Six different SCC mixes (60% OPC and 40% Fly Ash with 0% as control mix, 20%, 40%, 60%, 80% and 100% of copper slag substituting sand with constant w/b ratio of 0.45 were cast and tested for fresh properties of SCC. Compressive strength and splitting tensile strength were evaluated at different ages and microstructural analysis was observed at 120 days. It has been observed that the fluidity of SCC mixes was significantly enhanced with the increment of copper slag. The test results showed that the compressive strength increases up to 60% copper slag as replacement of sand, beyond which decrease in strength was observed. The highest compressive strength was obtained at 20% copper slag substitution at different curing ages among all the mixes, except for 7 days curing. The splitting tensile strength of the CS substituted mixes in comparison to control concrete was found to increase at all the curing ages but the remarkable achievement of strength was detected at 60% copper slag replacement. The microscopic view from Scanning electron microscopy (SEM demonstrated more voids, capillary channels, and micro cracks with the increment of copper slag as substitution of sand as compared to the control mix.

  8. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  9. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  10. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  11. Practical Application of Residual Stress Measurements on Maritime Vessels

    Science.gov (United States)

    2012-06-01

    is alloyed with copper, zinc or magnesium. While these alloys still have reasonably good overall corrosion characteristics they are all vulnerable to...welding. Four welding passes were utilized, three on the top side and once along the root. Upon cooling all excess and slag was ground off of the...stress in this area. Further investigation showed that this result most likely came from compressive stresses caused by grinding off slag and spill from

  12. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  13. Generation rate of carbon monoxide from CO2 arc welding.

    Science.gov (United States)

    Ojima, Jun

    2013-01-01

    CO poisoning has been a serious industrial hazard in Japanese workplaces. Although incomplete combustion is the major cause of CO generation, there is a risk of CO poisoning during some welding operations. The aim of the present study was to evaluate the generation rate of CO from CO2 arc welding under controlled laboratory conditions and estimate the ventilation requirements for the prevention of CO poisoning. Bead on plate welding was carried out with an automatic welding robot on a rolled steel base metal under several conditions. The concentration of emitted CO from the welding was measured by a real-time CO monitor in a well-ventilated laboratory that was free from ambient CO contamination. The generation rate of CO was obtained from the three measurements-the flow rate of the welding exhaust gas, CO concentration in the exhaust gas and the arcing time. Then the ventilation requirement to prevent CO poisoning was calculated. The generation rate of CO was found to be 386-883 ml/min with a solid wire and 331-1,293 ml/min with a flux cored wire respectively. It was found that the CO concentration in a room would be maintained theoretically below the OSHA PEL (50 ppm) providing the ventilation rate in the room was 6.6-25.9 m3/min. The actual ventilation requirement was then estimated to be 6.6-259 m3/min considering incomplete mixing. In order to prevent CO poisoning, some countermeasures against gaseous emission as well as welding fumes should be taken eagerly.

  14. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  15. Radiological impact assessment of arc welding supplies rutile; Evaluacion del impacto radiologico de la soldadura por arco con consumibles de rutilo

    Energy Technology Data Exchange (ETDEWEB)

    Rozas Guinea, S.; Herranz Soler, M.; Perez Marin, C.; Idoeta Hermandorena, R.; Alegria gutierrez, N.; Nunez-Lagos Rogla, R.; Legarda Ibanez, F.

    2013-07-01

    Consumables for welding containing rutile, the coating of the electrode or the filling of tubular thread, are the most widely used and also the most radioactive since the rutile is a mineral containing traces of natural radionuclides, and is therefore considered Normal Occurring Radioactive Material (NORM). As these electrodes and wire are consumed, small particles, aerosols and gases are emitted to the atmosphere of work, and may be inhaled by the welder. Therefore, and also according to the current regulatory framework and work carried out previously by the author on the radiological impact of the process of manufacture and storage of coated rutile electrodes, the objectives are: 1Calcular the internal dose for inhalation during two types of welding, one with electrodes coated and the other with thread. 2 calculate the external dose due to the deposition of particles in the work environment, slag and the immersion of the soldering iron in the cloud of smoke. 3 to assess the radiological impact. (Author)

  16. Low-Chrome/Chrome Free Refractories for Slagging Gasifiers

    International Nuclear Information System (INIS)

    Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Thomas, H.; Petty, A.V. Jr.

    2007-01-01

    Gasifiers are containment vessels used to react carbon-containing materials with oxygen and water, producing syngas (CO and H2) that is used in chemical and power production. It is also a potential source of H2 in a future hydrogen economy. Air cooled slagging gasifiers are one type of gasifier, operating at temperatures from 1275-1575 C and at pressures of 400 psi or higher. They typically use coal or petroleum coke as the carbon source, materials which contain ash impurities that liquefy at the gasification temperatures, producing liquid slag in quantities of 100 or more tons/day, depending on the carbon fed rate and the percent ash present in the feedstock. The molten slag is corrosive to refractory linings, causing chemical dissolution and spalling. The refractory lining is composed of chrome oxide, alumina, and zirconia; and is replaced every 3-24 months. Gasifier users would like greater on-line availability and reliability of gasifier liners, something that has impacted gasifier acceptance by industry. Research is underway at NETL to improve refractory service life and to develop a no-chrome or low-chrome oxide alternative refractory liner. Over 250 samples of no- or low-chrome oxide compositions have been evaluated for slag interactions by cup testing; with potential candidates for further studies including those with ZrO2, Al2O3, and MgO materials. The development of improved liner materials is necessary if technologies such as IGCC and DOE's Near Zero Emissions Advanced Fossil Fuel Power Plant are to be successful and move forward in the marketplace

  17. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  18. In situ x-ray diffraction of an arc weld showing the phase transformations of Ti and Fe as a function of position in the weld performed at a synchrotron

    International Nuclear Information System (INIS)

    Wong, J.; Elmer, J.W.; Waide, P.A.

    1994-01-01

    The synchrotron x-ray source provides a unique opportunity to observe open-quotes in-situclose quotes processes. The formation of the open-quotes short-livedclose quotes intermediate species, Ta 2 C, during the combustion synthesis of TaC, has been observed and reported by monitoring the Bragg diffraction peaks of the reactants and products. Similarly, the synthesis of the ferroelectric material, BaTiO 3 , and subsequent phase transformation from cubic to tetragonal have also been investigated. These experiments would not have been possible without the high incident x-ray flux available at a synchrotron source. The physical and mechanical properties of a weld join are highly independent upon the thermal history of the weld. Factors such as grain size, which increases with annealing, influence the tensile strength of the weld. This work presents the results of an investigation of the phase changes in two materials, titanium and stainless steel, which occur during the welding process. 4 refs., 3 figs

  19. [Hygienic assessment of metal-lurgical slag crushed stone for its use in road-building].

    Science.gov (United States)

    Tikhomirov, Iu P; Ippolitova, V P; Bezrokov, M E

    2010-01-01

    The increasing amount of industrial waste generates a need for its use as recycled materials. The paper presents the results of hygienic assessment of metallurgic slag crushed stone to be added to natural materials in highway building. The research program has included the measurement of content of water-soluble forms of metals, the evaluation of the acute toxicity of waste after oral administration to mice and rats, the study of the toxicity of waste by biotesting and the activity of natural radionuclides. The slag crushed stone virtually lacks water-soluble elements when it contains a high level of bulk forms of metals. According to acute toxicity for warm-blooded animals, the slag crushed stone belongs to Hazard Class IV by GOST 12.1.007-76 (low hazard substances). The biotesting on hydrocoles, the slag crushed stone is also referred to as Class IV (low hazard substances). In terms of the level of natural radionuclides, the slag crushed stone poses no hazard to the environment. The performed studies give grounds to recommend metallurgical slag crushed stone to be added to natural materials for highway building.

  20. Connection between radon emanation and some structural properties of coal-slag as building material

    International Nuclear Information System (INIS)

    Somlai, J.; Jobbagy, V.; Somlai, K.; Kovacs, J.; Nemeth, Cs.; Kovacs, T.

    2008-01-01

    Radionuclides of natural origin may accumulate in different industrial waste materials and by-products. The use of coal bottom ash or coal-slag as building material in Hungary is widespread. Because of the elevated radium content of coal-slag, high radon concentration has been detected in buildings containing coal-slag as building material. In two towns, where buildings contain coal-slag with almost the same radium concentration, the indoor radon concentrations have been found to differ significantly. In order to investigate the cause of the difference in the emanation coefficients, slag samples from the two locations were examined for grain-size distribution, density, pore volume, and specific surface. The applied methods were: gamma spectrometry for the radium concentration of the samples; Lucas cell method for the radon emanation; nitrogen absorption-desorption isotherms analyzed using the BET theory and mercury poremeter for the specific surface and pore volume. It was found that the great difference in the emanation coefficients (1.35±0.13% and 14.3±0.92%) of the coal-slag samples is primarily influenced by the pore volume and the specific surface

  1. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  2. Use of steel slag as a new material for roads

    Science.gov (United States)

    Ochoa Díaz, R.; Romero Farfán, M.; Cardenas, J.; Forero, J.

    2017-12-01

    This research paper aims to analyse the behaviour of MDC-19 hot dense asphalt mixtures with steel slag as coarse aggregate, by using asphalt 80-100, in order to verify if this residue has suitable characteristics that allow its use. The physical and mechanical characterization was accomplished using phosphorous slag from the company Acerías Paz del Río S.A. The working formula was then determined for each mixture using the RAMCODES methodology, the briquettes were produced in the laboratory and then, the design verification was performed. Taking into account the results obtained, it is concluded that the use of phosphorous slag as coarse aggregate in asphalt mixtures is workable, since acceptable design parameters and verification are obtained that meet the specifications for use as a rolling layer.

  3. Production of brown and black pigments by using flotation waste from copper slag.

    Science.gov (United States)

    Ozel, Emel; Turan, Servet; Coruh, Semra; Ergun, Osman Nuri

    2006-04-01

    One of the major problems in copper-producing countries is the treatment of the large amount of copper slag or copper flotation waste generated from copper slag which contains significant amounts of heavy metals such as Cu, Zn, Pb and Co. Dumping or disposal of such large quantities of flotation waste from copper slag causes environmental and space problems. In this study, the treatment of flotation waste from copper slag by a thermal method and its use as an iron source in the production of inorganic brown and black pigments that are used in the ceramic industry were investigated. The pigments were produced by calcining different amounts of flotation waste and chromite, Cr2O3, ZnO and CoO mixtures. The pigments obtained were added to transparent ceramic glazes and porcelainized tile bodies. Their colours were defined by L*a*b* measurements with a spectrophotometer. The results showed that flotation waste from copper slag could be used as an iron source to produce brown and black pigments in both ceramic body and glazes.

  4. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  5. Alternate Welding Processes for In-Service Welding

    Science.gov (United States)

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  6. High temperature slagging incinerator for alpha contaminated wastes

    International Nuclear Information System (INIS)

    Van de Voorde, N.

    1985-01-01

    This report describes the experiences collected by the treatment of plutonium-contaminated wastes, in the High Temperature Slagging Incinerator at the C.E.N./S.C.K. at Mol, with the support of the Commission of the European Communities. The major objective of the exercise is to demonstrate the operability of this facility for the treatment of mixed transuranic (TRU) and beta-gamma solid waste material. The process will substantially reduce the TRU waste volume by burning the combustibles and converting the non-combustibles into a chemically inert and physically stable basalt-like slag product, suitable for safe transport and final disposal. (Auth.)

  7. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  8. EAF Slag Aggregate in Roller-Compacted Concrete Pavement: Effects of Delay in Compaction

    Directory of Open Access Journals (Sweden)

    My Ngoc-Tra Lam

    2018-04-01

    Full Text Available This study investigates the effect of delay in compaction on the optimum moisture content and the mechanical propertie s (i.e., compressive strength, ultrasonic pulse velocity, splitting tensile strength, and modulus of elasticity of roller-compacted concrete pavement (RCCP made of electric arc furnace (EAF slag aggregate. EAF slag with size in the range of 4.75–19 mm was used to replace natural coarse aggregate in RCCP mixtures. A new mixing method was proposed for RCCP using EAF slag aggregate. The optimum moisture content of RCCP mixtures in this study was determined by a soil compaction method. The Proctor test assessed the optimum moisture content of mixtures at various time after mixing completion (i.e., 0, 15, 30, 60, and 90 min. Then, the effect of delay in compaction on the mechanical properties of RCCP mixtures at 28 days of age containing EAF slag aggregate was studied. The results presented that the negative effect on water content in the mixture caused by the higher water absorption characteristic of EAF slag was mitigated by the new mixing method. The optimum water content and maximum dry density of RCCP experience almost no effect from the delay in compaction. The compressive strength and splitting tensile strength of RCCP using EAF slag aggregate fulfilled the strength requirements for pavement with 90 min of delay in compaction.

  9. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  10. The copper losses in the slags from the El Teniente process

    International Nuclear Information System (INIS)

    Imris, I.; Rebolledo, S.; Sanchez, M.; Castro, G.; Achurra, G.; Hernandez, F.

    2000-01-01

    The current El Teniente Pyrometallurgical Process for copper concentrate was commissioned at Caletones Smelter during the period 1988 - 1991 following an intensive research and development program that led to several improvements to the original process developed during the seventies. The Caletones Smelter production capacity is 370,000 tons of cast copper annually related to a concentrate smelting capacity of 1,250,000 tons per year. Several industrial applications of the process, in Chile and abroad, have shown its capability to treat copper concentrates in a wide range of chemical and mineralogical compositions. The main operational parameters that determine the performance of the process are oxygen enriched air flow rate, degree of oxygen enrichment, moisture content of the solid materials processed, molten material levels inside the vessel, frequency of molten materials tapping, bath temperature and copper losses in slags. The copper losses in the slags from the El Teniente Pyrometallurgical Process, predicted by calculation from thermodynamic data, have been compared with those determined by microscopic examination and quantitative electron microprobe analysis of the slag samples and by flotation tests of finely ground slag. (author)

  11. Elemental properties of copper slag and measured airborne exposures at a copper slag processing facility.

    Science.gov (United States)

    Mugford, Christopher; Gibbs, Jenna L; Boylstein, Randy

    2017-08-01

    In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of abrasives containing >1% silica, giving rise to abrasive substitutes like copper slag. We present results from a National Institute for Occupational Safety and Health industrial hygiene survey at a copper slag processing facility that consisted of the collection of bulk samples for metals and silica; and full-shift area and personal air samples for dust, metals, and respirable silica. Carcinogens, suspect carcinogens, and other toxic elements were detected in all bulk samples, and area and personal air samples. Area air samples identified several areas with elevated levels of inhalable and respirable dust, and respirable silica: quality control check area (236 mg/m 3 inhalable; 10.3 mg/m 3 respirable; 0.430 mg/m 3 silica), inside the screen house (109 mg/m 3 inhalable; 13.8 mg/m 3 respirable; 0.686 mg/m 3 silica), under the conveyor belt leading to the screen house (19.8 mg/m 3 inhalable), and inside a conveyor access shack (11.4 mg/m 3 inhalable; 1.74 mg/m 3 respirable; 0.067 mg/m 3 silica). Overall, personal dust samples were lower than area dust samples and did not exceed published occupational exposure limits. Silica samples collected from a plant hand and a laborer exceeded the American Conference of Governmental Industrial Hygienist Threshold Limit Value of 0.025 µg/m 3 . All workers involved in copper slag processing (n = 5) approached or exceeded the Occupational Safety and Health Administration permissible exposure limit of 10 µg/m 3 for arsenic (range: 9.12-18.0 µg/m 3 ). Personal total dust levels were moderately correlated with personal arsenic levels (R s = 0.70) and personal respirable dust levels were strongly correlated with respirable silica levels (R s = 0.89). We identified multiple areas with elevated levels of dust, respirable silica, and metals that may have implications for personal exposure at other facilities if preventive

  12. Effect of different electrode tip angles with tilted torch in stationary gas tungsten arc welding: A 3D simulation

    International Nuclear Information System (INIS)

    Abid, M.; Parvez, S.; Nash, D.H.

    2013-01-01

    In this study, the effect of different tip angles (30°, 60°, 90° and 120°) on the arc and weld pool behavior is analyzed in 2 mm and 5 mm arc lengths with tilted (70°) torch. Arc temperature, velocity, current density, heat flux and gas shear are investigated in the arc region and pool convection and puddle shapes are studied in the weld pool region. The arc temperature at the tungsten electrode is found the maximum with sharp tip and decreases as the tip angle increases. The arc temperature on the anode (workpiece) surface becomes concentrated with increase in tip angle. The arc velocity and gas shear stress are observed large with sharp tip and decreasing as the tip angle increases. Current density on the anode surface does not change with tip angle and observed almost the same in all the tip angles in both 2 mm and 5 mm arc lengths. Heat flux due to conduction and convection is observed more sensitive to the tip angle and decreases as the tip angle increases. The electromagnetic force is slightly observed increasing and the buoyancy force is observed slightly decreasing with increase in tip angle. Analyzing each driving force in the weld pool individually shows that the gas drag and Marangoni forces are much stronger than the electromagnetic and buoyancy forces. The weld pool shape is observed wide and shallow in sharp and narrow and deep in large tip angle. Increasing the arc length does not change the weld pool width; however, the weld pool depth significantly changes with arc length and is observed deep in short arc length. The arc properties and weld pool shapes are observed wide ahead of the electrode tip in the weld direction due to 70° torch angle. Good agreement is observed between the numerical and experimental weld pool shapes

  13. Reproducing ten years of road ageing - Accelerated carbonation and leaching of EAF steel slag

    International Nuclear Information System (INIS)

    Suer, Pascal; Lindqvist, Jan-Erik; Arm, Maria; Frogner-Kockum, Paul

    2009-01-01

    Reuse of industrial aggregates is still hindered by concern for their long-term properties. This paper proposes a laboratory method for accelerated ageing of steel slag, to predict environmental and technical properties, starting from fresh slag. Ageing processes in a 10-year old asphalt road with steel slag of electric arc furnace (EAF) type in the subbase were identified by scanning electron microscopy (SEM) and leaching tests. Samples from the road centre and the pavement edge were compared with each other and with samples of fresh slag. It was found that slag from the pavement edge showed traces of carbonation and leaching processes, whereas the road centre material was nearly identical to fresh slag, in spite of an accessible particle structure. Batches of moisturized road centre material exposed to oxygen, nitrogen or carbon dioxide (CO 2 ) were used for accelerated ageing. Time (7-14 days), temperature (20-40 o C) and initial slag moisture content (8-20%) were varied to achieve the carbonation (decrease in pH) and leaching that was observed in the pavement edge material. After ageing, water was added to assess leaching of metals and macroelements. 12% moisture, CO 2 and seven days at 40 o C gave the lowest pH value. This also reproduced the observed ageing effect for Ca, Cu, Ba, Fe, Mn, Pb, Ca (decreased leaching) and for V, Si, and Al (increased leaching). However, ageing effects on SO 4 , DOC and Cr were not reproduced.

  14. Recycling of the rare earth oxides from spent rechargeable batteries using waste metallurgical slags

    Directory of Open Access Journals (Sweden)

    Tang K.

    2013-01-01

    Full Text Available A high temperature process for recycling spent nickel-metal hydride rechargeable batteries has been recently developed at SINTEF/NTNU. The spent battery modules were first frozen with liquid nitrogen for the de-activation and brittle fracture treatment. The broken steel scraps and plastics were then separated by the mechanical classification and magnetic separation. The remaining positive and negative electrodes, together with the polymer separator, were heated to 600-800oC in order to remove the organic components and further separate the Ni-based negative electrode. XRF analyses indicate that the heat-treated materials consist mainly of nickel, rare earth and cobalt oxides. The valuable rare earth oxides were further recovered by the high-temperature slagging treatment. The waste metallurgical slags, consist mainly of SiO2 and CaO, were used as the rare earth oxide absorbent. After the high temperature slagging treatment, over 98% of nickel and cobalt oxides were reduced to the metal phase; meanwhile almost all rare earth oxides remain in the molten slags. Furthermore, EPMA and XRF analyses of the slag samples indicate that the rare earth oxides selectively precipitate in the forms of solid xSiO2•yCaO•zRe2O3. The matrix of slag phase is Re2O3 deficient, typically being less than 5 wt%. This provides a sound basis to further develop the high-temperature process of concentrating the Re2O3 oxides in slags.

  15. Process for selectively concentrating the radioactivity of thorium containing magnesium slag

    International Nuclear Information System (INIS)

    Wilson, D.A.; Christiansen, S.H.; Simon, J.; Morin, D.W.

    1993-01-01

    In a process for separating magnesium from a magnesium slag using water and carbon dioxide, the improvement described comprises: (a) forming an aqueous magnesium slurry from the magnesium slag, which slag contains radioactive thorium and its daughters, and water; (b) solubilizing magnesium from the magnesium slurry by reacting the aqueous magnesium slurry with carbon dioxide wherein the carbon dioxide is at a pressure from greater than ambient to about 1,000 psig (about 7,000 kPa); (c) selectively concentrating by filtering the radioactive thorium and its daughters such that the radioactive thorium and its daughters are separated from the solubilized magnesium filtrate; and (d) reducing volume and/or weight of radioactive solids for disposal as radioactive waste

  16. Smelting reduction of MgO in molten slag by liquid ferrosilicon

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Q.; Gao, J.; Chen, X.; Wei, X.

    2016-10-01

    The smelting reduction of magnesium oxide was researched in this paper. The effect of molten slag composition and reduction temperature on percent reduction of magnesium oxide were discussed, and kinetics of smelting reduction of magnesium oxide in molten slag was studied. The results showed that the reduction extent of magnesium oxide increased by increasing either one of the following factors: the initial mass ratio of Al{sub 2}O{sub 3}/SiO{sub 2}, the addition of CaF{sub 2}, the initial molar ratio of Si/2MgO, and reaction temperature. The overall smelting reduction was controlled by mass transfer in slag with an apparent activation energy 586 kJ mol{sup -}1. (Author)

  17. Radiation dose contribution from coal-slags used as structural building material

    International Nuclear Information System (INIS)

    Somlai, J.; Kanyar, B.; Bodnar, R.; Lendvai, Z.; Nemeth, Cs.

    1996-01-01

    A significant dose distribution on the population could be derived from coal slags used as isolation material. Extremely high natural activities are measured in the coal slag, derived from the region of the settlement Ajka, Hungary. In some buildings monitored, the elevated γ-doses were nearly 5-10 times higher than the world average ones. The annual average indoor radon concentrations from the slag exceeded 400 Bq/m 3 and in some cases up to 1200 Bq/m 3 . Due to the elevated exposure and the radon concentrations in the dwellings the annual dose was estimated to 8-24 mSv/y more than 5-10 times of the world average one. (author). 10 refs., 1 fig., 3 tabs

  18. Development and application of specially-focused ultrasonic transducers to location and sizing of defects in 75 mm- to 127 mm-thick austenitic stainless steel weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E.N.C.; Benson, S.; McKinley, B.J.; Carodiskey, T.

    1992-08-01

    Special UT transducer parts, capable of focusing incident signals within a 25 mm {times} 25 mm {times} 25 mm volume in an austenitic stainless weld metal at depths that varied from 25 mm to 127 mm, were developed and demonstrated to be capable of detecting a defect with cross section equivalent to that of a 4.76 mm-dia flat-bottom hole. Defect length sizing could be accomplished to {plus_minus}50% for 100% of the time and to {plus_minus}25% on selected defect types as follows: porosity groups, 100%; cracks, 67%; combined slag and porosity, 60%; and linear slag indications, 59%. Extensive linear elastic-fracture-mechanics analyses were performed to establish allowable defect sizes at functions of stress, based on a cyclic-life criterion of 10{sup 3} full power cycles of the MFTF-B magnet system. These defect sizes were used to determine which UT indicating were to be removed and repaired and which were to be retained and their recorded sizes and locations.

  19. Study of controlled leaching process of steel slag in Soxhlet extractor aiming employment in pavements

    International Nuclear Information System (INIS)

    Costa, Kissyla Avila; Guimaraes, Antonio Carlos Rodrigues; Reis, Marcelo de Miranda; Santana, Claudeny Simone Alves

    2017-01-01

    This work addresses the characterization of physical, chemical and mechanical properties of steel slag as an alternative aggregation before and after leaching testing controlled Soxhlet extractor. The material it was characterized before going through the natural leaching process and after controlled leaching in different periods of 24, 56, 96, 120 hours. The steel slag was subjected in the laboratory to simulate the precipitation in Soxhlet equipment to evaluate its physical, chemical and mechanical properties after each period described. The study of the process of leaching in steel slag searched to understand the influence of the washing process in a slag behavior in such a process. The physical characterization occurred through traditional testing of coarse aggregates, the chemical characterization through the testing of Scanning Electron Microscopy (SEM) completed by Dispersive Spectroscopy Energy (DSE) and X- ray diffraction and the mechanical characterization through testing of standardized expansion and adapted. The sample virgin, without receiving process of stabilization by controlled leaching, showed satisfactory results in the physics characterization when compared to conventional aggregates, the chemical characterization proved to be a steel slag with high contents of CaO, MgO and FeO, the mechanical characterization demonstrated that, although the degree of expansibility of the slag is low demonstrated that this should not be disregarded in the paving work. After controlled leaching the steel slag showed no significant loss of its physical properties. As the mechanical testing of expansion had decreased the potential of expansibility after leaching periods. It is concluded that the leaching process in a Soxhlet extractor is of importance in the study the properties of steel slag, once covering several days of leaching was reduced potential for expansion, limiting feature in the use of steel slag for paving. (author)

  20. The effect of primary copper slag cooling rate on the copper valorization in the flotation process

    Directory of Open Access Journals (Sweden)

    Aleksandar Mihajlović

    2015-06-01

    Full Text Available Technological procedure of slow cooling slag from primary copper production is applied in the purpose of copper recovery in the level of 98.5% to blister. This technological procedure is divided into two phases, first slow cooling of slag on the air for 24 hours, and then accelerated cooling with water for 48 hours. Within the research following methods were used: calculation of nonstationary slag cooling, verification of the calculation using computer simulation of slag cooling in the software package COMSOL Multiphysics and experimental verification of simulation results. After testing of the experimentally gained samples of slowly cooled slag it was found that this technological procedure gives the best results in promoting growth or coagulation of dispersed particles of copper sulfide and copper in the slag, thereby increasing the utilization of the flotation process with a decrease of copper losses through very fine particles.

  1. Visualisation and quantification of heavy metal accessibility in smelter slags: The influence of morphology on availability.

    Science.gov (United States)

    Morrison, Anthony L; Swierczek, Zofia; Gulson, Brian L

    2016-03-01

    The Imperial Smelting Furnace (ISF) for producing lead and zinc simultaneously has operated on four continents and in eleven countries from the 1950's. One of the process changes that the ISF introduced was the production of a finely granulated slag waste. Although this slag contained significant amounts of residual lead (Pb) and zinc (Zn), because of its glassy nature it was considered environmentally benign. From the Cockle Creek smelter near Boolaroo at the northern end of Lake Macquarie, NSW, Australia, it is estimated that around 2.1 million tonnes of the fine slag was distributed into the community and most remains where it was originally utilised. Residual tonnages of slag of this magnitude are common worldwide wherever the ISF operated. Studies of base metal smelting slags have concluded that mineralogical and morphological characteristics of the slag play a critical role in moderating environmental release of toxic elements. Scanning electron microscopy (SEM) and microanalysis of the ISF slags has shown that the Pb and associated elements are present as discrete nodules (∼6-22 μm) in the slag and that they are not associated with Zn which is contained in the glass slag phase. Using an automated SEM and analysis technique (QEMSCAN(®)) to "map" the mineralogical structure of the particles, it was possible to quantitatively determine the degree of access infiltrating fluids might have to the reaction surface of the Pb phases. The level of access decreases with increasing particle size, but in even the largest sized particles (-3350 + 2000 μm) nearly 80% of the Pb-containing phases were totally or partially accessible. These results provide evidence that the toxic elements in the slags are not contained by the glassy phase and will be vulnerable to leaching over time depending on their individual phase reactivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2017-12-01

    Full Text Available The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding parameters and micro-jet cooling parameters is very important to achieve a proper steel structure. In this study, the metallographic structure, tensile results and impact toughness of welded joints have been analysed in terms of welding parameters.

  3. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    Science.gov (United States)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  4. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  5. Influence of the soluble fraction of blast furnace slag on the growth of some algae

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, H.

    1977-01-01

    The sea water-soluble fraction of the pulverized slag was prepared in anaerobic condition, and mixed with a basal medium in various ratios for preparation of a culture medium, on which the growth of a diatom, Skeletonema costatum, was suppressed. The inhibitory effect of the soluble fraction to this alga was reduced to a certain degree when the culture medium had been aerated with nitrogen preceding inoculation. The growth of Skel. costatum was also inhibited on the basal medium containing the untreated slag powder in various amounts, while it was stimulated when the slag powder was washed for several days before addition to the basal medium. The soluble fraction of the slag affected unfavorably the growth of a laver, Porphyra yezoensis, also. A diatom, Nitzschia closterium, was able to grow closely adhering to the slag powder. The inhibitory effect of the soluble fraction of the slag to algae seems to be caused largely by potassium or sodium sulfide, and slightly by sulfur oxides and some heavy metals dissolved in trace amounts.

  6. Studies on use of Copper Slag as Replacement Material for River Sand in Building Constructions

    Science.gov (United States)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Rajamane, N. P.

    2014-09-01

    This work focuses on the use of copper slag, as a partial replacement of sand for use in cement concrete and building construction. Cement mortar mixtures prepared with fine aggregate made up of different proportions of copper slag and sand were tested for use as masonry mortars and plastering. Three masonry wall panels of dimensions 1 × 1 m were plastered. The studies showed that although copper slag based mortar is suitable for plastering, with the increase in copper slag content, the wastage due to material rebounding from the plastered surfaces increases. It is therefore suggested that the copper slag can be used for plastering of floorings and horizontal up to 50 % by mass of the fine aggregate, and for vertical surfaces, such as, brick/block walls it can be used up to 25 %. In this study on concrete mixtures were prepared with two water cement ratios and different proportions of copper slag ranging from 0 % (for the control mix) to 100 % of fine aggregate. The Concrete mixes were evaluated for workability, density, and compressive strength.

  7. Introduction of Nickel Coated Silicon Carbide Particles in Aluminum Metal Matrix Hardfaced by MIG/TIG Processes on Precoated Flux Layer

    Directory of Open Access Journals (Sweden)

    V. Kamburov

    2018-03-01

    Full Text Available The aim of the study was to investigate an aluminium metal matrix surface layer hardfaced by shielded gas metal arc welding processes applying either metal inert gas (MIG or tungsten inert gas (TIG, with standard wire filler onto the precoated flux layer - a baked resistant film containing electroless nickel coated micro/nano SiC particles. During baking, the components of the flux (MgCl2, NaCl, KCl and Na3AlF6 form a low melting eutectic, which: protects the hardfaced surface from oxidation, provides electrical conductance and keeps the particles on the surface during welding, as well as facilitates particles wettability and their interfacial bonding with the molten metal into the weld puddle.

  8. Short review on the origin and countermeasure of biomass slagging in grate furnace

    Directory of Open Access Journals (Sweden)

    Yiming eZhu

    2014-02-01

    Full Text Available Given the increasing demand for energy consumption, biomass has been more and more important as a new type of clean renewable energy source. Biomass direct firing is the most mature and promising utilization method to date, while it allows a timely solution to slagging problems. Alkali metal elements in the biomass fuel and the ash fusion behavior, as the two major origins contributing to slagging during biomass combustion, are analyzed in this paper. The slag presents various layered structures affected by the different compositions of ash particles. Besides, the high-temperature molten material which provides a supporting effect on the skeletal structure in biomass ash was proposed to evaluate the ash fusion characteristics. In addition, numerous solutions to biomass slagging, such as additives, fuel pretreatment and biomass co-firing, were also discussed.

  9. Perspectives regarding the use of metallurgical slags as secondary metal resources - A review of bioleaching approaches.

    Science.gov (United States)

    Potysz, Anna; van Hullebusch, Eric D; Kierczak, Jakub

    2018-05-05

    Smelting activity by its very nature produces large amounts of metal-bearing waste, often called metallurgical slag(s). In the past, industry used to dispose of these waste products at dumping sites without the appropriate environmental oversight. Once there, ongoing biogeochemical processes affect the stability of the slags and cause the release of metallic contaminants. Rather than viewing metallurgical slags as waste, however, such deposits should be viewed as secondary metal resources. Metal bioleaching is a "green" treatment route for metallurgical slags, currently being studied under laboratory conditions. Metal-laden leachates obtained at the bioleaching stage have to be subjected to further recovery operations in order to obtain metal(s) of interest to achieve the highest levels of purity possible. This perspective paper considers the feasibility of the reuse of base-metal slags as secondary metal resources. Special focus is given to current laboratory bioleaching approaches and associated processing obstacles. Further directions of research for development of more efficient methods for waste slag treatment are also highlighted. The optimized procedure for slag treatment is defined as the result of this review and should include following steps: i) slag characterization (chemical and phase composition and buffering capacity) following the choice of initial pH, ii) the choice of particle size, iii) the choice of the liquid-to-solid ratio, iv) the choice of microorganisms, v) the choice of optimal nutrient supply (growth medium composition). An optimal combination of all these parameters will lead to efficient extraction and generation of metal-free solid residue. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Availability of arsenic, copper, lead, thallium, and zinc to various vegetables grown in slag-contaminated soils.

    Science.gov (United States)

    Bunzl, K; Trautmannsheimer, M; Schramel, P; Reifenhäuser, W

    2001-01-01

    To anticipate a possible hazard resulting from the plant uptake of metals from slag-contaminated soils, it is useful to study whether vegetables exist that are able to mobilize a given metal in the slag to a larger proportion than in an uncontaminated control soil. For this purpose, we studied the soil to plant transfer of arsenic, copper, lead, thallium, and zinc by the vegetables bean (Phaseolus vulgaris L. 'dwarf bean Modus'), kohlrabi (Brassica oleracea var. gongylodes L.), mangold (Beta vulgaris var. macrorhiza ), lettuce (Lactuca sativa L. 'American gathering brown'), carrot (Daucus carota L. 'Rotin', 'Sperlings's'), and celery [Apium graveiolus var. dulce (Mill.) Pers.] from a control soil (Ap horizon of a Entisol) and from a contaminated soil (1:1 soil-slag mixtures). Two types of slags were used: an iron-rich residue from pyrite (FeS2) roasting and a residue from coal firing. The metal concentrations in the slags, soils, and plants were used to calculate for each metal and soil-slag mixture the plant-soil fractional concentration ratio (CRfractional,slag), that is, the concentration ratio of the metal that results only from the slag in the soil. With the exception of TI, the resulting values obtained for this quantity for As, Cu, Pb, and Zn and for all vegetables were significantly smaller than the corresponding plant-soil concentration ratios (CRcontrol soil) for the uncontaminated soil. The results demonstrate quantitatively that the ability of a plant to accumulate a given metal as observed for a control soil might not exist for a soil-slag mixture, and vice versa.

  11. Cu-Fe welding techniques by electromagnetic and electron beam welding processes

    International Nuclear Information System (INIS)

    Kumar, Satendra; Saroj, P.C.; Kulkarni, M.R.; Sharma, A.; Rajawat, R.K.; Saha, T.K.

    2015-01-01

    Electromagnetic welding being a solid state welding process has been found suitable for welding Copper and Iron which are conventionally very tricky. Owing to good electrical conductivity of both copper and iron, they are best suited combination for EM welding. For the experimental conditions presented above, 1.0 mm wall thickness of Cu tube was lap welded to Fe disc. A heavy duty four disc stainless steel coil was used for electromagnetic welding of samples. MSLD of the welded samples indicated leak proof joints. Metallographic examination of the welds also revealed defect free interfaces. Electron beam welding is also a non-conventional welding process used for joining dissimilar materials. Autogenous welding of the above specimen was carried out by EBW method for the sake of comparison. A characterization analysis of the above mentioned joining processes will be discussed in the paper. (author)

  12. Artificial intelligence-based computer modeling tools for controlling slag foaming in electric arc furnaces

    Science.gov (United States)

    Wilson, Eric Lee

    Due to increased competition in a world economy, steel companies are currently interested in developing techniques that will allow for the improvement of the steelmaking process, either by increasing output efficiency or by improving the quality of their product, or both. Slag foaming is one practice that has been shown to contribute to both these goals. However, slag foaming is highly dynamic and difficult to model or control. This dissertation describes an effort to use artificial intelligence-based tools (genetic algorithms, fuzzy logic, and neural networks) to both model and control the slag foaming process. Specifically, a neural network is trained and tested on slag foaming data provided by a steel plant. This neural network model is then controlled by a fuzzy logic controller, which in turn is optimized by a genetic algorithm. This tuned controller is then installed at a steel plant and given control be a more efficient slag foaming controller than what was previously used by the steel plant.

  13. Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching

    Science.gov (United States)

    Wei, Lim Jin; Haan, Ong Teng; Shean Yaw, Thomas Choong; Chuah Abdullah, Luqman; Razak, Mus'ab Abdul; Cionita, Tezara; Toudehdehghan, Abdolreza

    2018-03-01

    Electric Arc Furnace steel slag (EAFS) is the waste produced in steelmaking industry. Environmental problem such as pollution will occur when dumping the steel slag waste into the landfill. These steel slags have properties that are suitable for various applications such as water treatment and wastewater. The objective of this study is to develop efficient and economical chlorination route for EAFS extraction by using leaching process. Various parameters such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature are investigated to determine the optimum conditions. As a result, the dissolution rate can be determined by changing the parameters, such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature. The optimum conditions for dissolution rates for the leaching process is at 3.0 M hydrochloric acid, particle size of 1.18 mm, reaction time of 2.5 hour and the temperature of 90°C.

  14. Rare earth elements leaching from Tin slag using Acid Chloride after Alkaline fusion process

    International Nuclear Information System (INIS)

    Kurnia Trinopiawan; Budi Yuli Ani; June Mellawati; Mohammad Zaki Mubarok

    2016-01-01

    Tin slag, a waste product from tin smelting process, has a potency to be utilized further by extracting the valuable metals inside, such as rare earth elements(REE). The objective of this study is to determine the optimum leaching condition of REE from tin slag after alkali fusion. Silica structure in slag is causing the direct leaching uneffectively. Therefore, pre-treatment step using alkali fusion is required to break the structure of silica and to increase the porosity of slag. Fusion is conducted in 2 hours at 700°C, with ratio of natrium hydroxide (NaOH) : slag = 2 : 1. Later, frit which is leached by water then leached by chloride acid to dissolve REE. As much as 87,5% of REE is dissolved at 2 M on chloride acid (HCl) concentration, in 40°C temperature, -325 mesh particle size, 15 g/100 ml of S/L, 150 rpm of agitation speed, and 5 minutes of leaching time. (author)

  15. Design of a Subscale Propellant Slag Evaluation Motor Using Two-Phase Fluid Dynamic Analysis

    Science.gov (United States)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.; Sambamurthi, Jay K.

    1996-01-01

    Small pressure perturbations in the Space Shuttle Reusable Solid Rocket Motor (RSRM) are caused by the periodic expulsion of molten aluminum oxide slag from a pool that collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes that may relate to subtle differences in propellant ingredient characteristics such as particle size distributions or processing variations. A subscale motor experiment was designed to determine the effect of propellant ingredient characteristics on the propensity for slag production. An existing 5 inch ballistic test motor was selected as the basic test vehicle. The standard converging/diverging nozzle was replaced with a submerged nose nozzle design to provide a positive trap for the slag that would increase the measured slag weights. Two-phase fluid dynamic analyses were performed to develop a nozzle nose design that maintained similitude in major flow field features with the full scale RSRM. The 5 inch motor was spun about its longitudinal axis to further enhance slag collection and retention. Two-phase flow analysis was used to select an appropriate spin rate along with other considerations, such as avoiding bum rate increases due to radial acceleration effects. Aluminum oxide particle distributions used in the flow analyses were measured in a quench bomb for RSRM type propellants with minor variations in ingredient characteristics. Detailed predictions for slag accumulation weights during motor bum compared favorably with slag weight data taken from defined zones in the subscale motor and nozzle. The use of two-phase flow analysis proved successful in gauging the viability of the experimental program during the planning phase and in guiding the design of the critical submerged nose nozzle.

  16. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  17. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  18. Residual stress reduction in the penetration nozzle weld joint by overlay welding

    International Nuclear Information System (INIS)

    Jiang, Wenchun; Luo, Yun; Wang, B.Y.; Tu, S.T.; Gong, J.M.

    2014-01-01

    Highlights: • Residual stress reduction in penetration weld nozzle by overlay welding was studied. • The overlay weld can decrease the residual stress in the weld root. • Long overlay welding is proposed in the actual welding. • Overlay weld to decrease residual stress is more suitable for thin nozzle. - Abstract: Stress corrosion cracking (SCC) in the penetration nozzle weld joint endangers the structural reliability of pressure vessels in nuclear and chemical industries. How to decrease the residual stress is very critical to ensure the structure integrity. In this paper, a new method, which uses overlay welding on the inner surface of nozzle, is proposed to decrease the residual stresses in the penetration joint. Finite element simulation is used to study the change of weld residual stresses before and after overlay welding. It reveals that this method can mainly decrease the residual stress in the weld root. Before overlay welding, large tensile residual stresses are generated in the weld root. After overlay weld, the tensile hoop stress in weld root has been decreased about 45%, and the radial stress has been decreased to compressive stress, which is helpful to decrease the susceptibility to SCC. With the increase of overlay welding length, the residual stress in weld root has been greatly decreased, and thus the long overlay welding is proposed in the actual welding. It also finds that this method is more suitable for thin nozzle rather than thick nozzle

  19. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  20. Literature Review: Theory and Application of In-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection

    Science.gov (United States)

    Feng, Qingshan; Li, Rui; Nie, Baohua; Liu, Shucong; Zhao, Lianyu; Zhang, Hong

    2016-01-01

    Girth weld cracking is one of the main failure modes in oil and gas pipelines; girth weld cracking inspection has great economic and social significance for the intrinsic safety of pipelines. This paper introduces the typical girth weld defects of oil and gas pipelines and the common nondestructive testing methods, and systematically generalizes the progress in the studies on technical principles, signal analysis, defect sizing method and inspection reliability, etc., of magnetic flux leakage (MFL) inspection, liquid ultrasonic inspection, electromagnetic acoustic transducer (EMAT) inspection and remote field eddy current (RFDC) inspection for oil and gas pipeline girth weld defects. Additionally, it introduces the new technologies for composite ultrasonic, laser ultrasonic, and magnetostriction inspection, and provides reference for development and application of oil and gas pipeline girth weld defect in-line inspection technology. PMID:28036016

  1. Repair welding of fusion reactor components. Final technical report

    International Nuclear Information System (INIS)

    Chin, B.A.; Wang, C.A.

    1997-01-01

    The exposure of metallic materials, such as structural components of the first wall and blanket of a fusion reactor, to neutron irradiation will induce changes in both the material composition and microstructure. Along with these changes can come a corresponding deterioration in mechanical properties resulting in premature failure. It is, therefore, essential to expect that the repair and replacement of the degraded components will be necessary. Such repairs may require the joining of irradiated materials through the use of fusion welding processes. The present ITER (International Thermonuclear Experimental Reactor) conceptual design is anticipated to have about 5 km of longitudinal welds and ten thousand pipe butt welds in the blanket structure. A recent study by Buende et al. predict that a failure is most likely to occur in a weld. The study is based on data from other large structures, particularly nuclear reactors. The data used also appear to be consistent with the operating experience of the Fast Flux Test Facility (FFTF). This reactor has a fuel pin area comparable with the area of the ITER first wall and has experienced one unanticipated fuel pin failure after two years of operation. The repair of irradiated structures using fusion welding will be difficult due to the entrapped helium. Due to its extremely low solubility in metals, helium will diffuse and agglomerate to form helium bubbles after being trapped at point defects, dislocations, and grain boundaries. Welding of neutron-irradiated type 304 stainless steels has been reported with varying degree of heat-affected zone cracking (HAZ). The objectives of this study were to determine the threshold helium concentrations required to cause HAZ cracking and to investigate techniques that might be used to eliminate the HAZ cracking in welding of helium-containing materials

  2. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  3. Soldagem de um aço inoxidável ferrítico com o processo A-TIG Ferritic stainless steel welding with the A-TIG process

    Directory of Open Access Journals (Sweden)

    Alessandra Gois Luciano de Azevedo

    2009-03-01

    Full Text Available O processo de soldagem TIG com fluxo (processo A-TIG apresenta como principal vantagem a possibilidade de se obter uma maior penetração do cordão de solda empregando os mesmos parâmetros de soldagem do processo TIG convencional. Diversos estudos mostram a influência dos fluxos ativos sobre as características geométricas das soldas em aços inoxidáveis austeníticos, porém pouco se sabe sobre a influência deste processo nas características geométricas e metalúrgicas de cordões de solda em aços inoxidáveis ferríticos. Neste trabalho são aplicados diferentes tipos de fluxo na soldagem de aço inoxidável ferrítico com o objetivo de verificar possíveis influências no perfil do cordão de solda, no seu aspecto visual, na microestrutura, na dureza da zona fundida e na resistência ao impacto (ensaio Charpy. As soldagens "bead-on-plate" foram realizadas sem metal de adição. Foram utilizados seis tipos de fluxo, sendo um óxido elaborado em laboratório (TiO2 e cinco fluxos comerciais. Os resultados mostraram que a utilização do fluxo permite um aumento na penetração com mudanças significativas no aspecto do cordão de solda. Verificou-se ainda que a microestrutura e a dureza do cordão de solda do aço estudado não foram afetadas pelo tipo de fluxo utilizado, com a microestrutura analisada em microscópio óptico. O aço em estudo mostrou um alto grau de fragilidade à temperatura ambiente.The A-TIG welding process presents as main advantage the possibility of increase in the penetration depth using the same parameters as conventional TIG welding. Many researchers show the influence of the active flux on the weld geometry in austenitic stainless steel, however little it is known of the influence of this process in the weld fillet shape and metallurgic characteristics of the weld fillet in ferritic stainless steel. In this work different types of flux are applied with the objective to verify possible influences on the weld

  4. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.

    Science.gov (United States)

    Maweja, Kasonde; Mukongo, Tshikele; Mutombo, Ilunga

    2009-05-30

    Cleaning experiments of a copper matte smelting slag from the water-jacket furnace was undertaken by direct reduction in a laboratory-scale electric furnace. The effects of coal-to-slag ratio, w, and the reduction time, t, were considered for two different coal/slag mixing procedures. In the first procedure, metallurgical coal was added to the molten slag, whereas in the second procedure, coal was premixed with the solid slag before charging into the furnace. The recovery of heavy metals (Cu, Co), and the fuming of Pb and Zn were investigated. Contamination of the metal phase by iron and the acidity index of the final slag were analysed as these may impede the economical viability of the process. The lower w value of 2.56% yielded a recovery rate of less than 60% for copper and less than 50% for cobalt, and around 70% for zinc. However, increasing w to 5% allowed the recovery of 70-90% for Cu, Co and Zn simultaneously after 30-60 min reduction of the molten slag. After reduction, the cleaned slags contained only small amounts of copper and cobalt (zinc was efficient as the %Pb of the residual slag dropped to levels lower than 0.04% after 30 min of reduction. Ninety percent of the lead was removed from the initial slag and collected in the dusts. The zinc content of the cleaned slags quickly dropped to between 1 and 3 wt% from the initial 8.2% after 30 min reduction for w value of 5 and after 60 min reduction for w value of 2.56. The dusts contained about 60% Zn and 10% Pb. Recovery of lead from fuming of the slag was higher than 90% in all the experimental conditions considered in this study.

  5. ROLE OF FCA WELDING PROCESS PARAMETERS ON BEAD PROFILE, ANGULAR AND BOWING DISTORTION OF FERRITIC STAINLESS STEEL SHEETS

    Directory of Open Access Journals (Sweden)

    VENKATESAN M. V.

    2014-02-01

    Full Text Available This paper discusses the influence of flux cored arc welding (FCAW process parameters such as welding current, travel speed, voltage and CO2 shielding gas flow rate on bead profile, bowing distortion and angular distortion of 409 M ferritic stainless steel sheets of 2 mm thickness. The bowing and angular distortions of the welded plates were measured using a simple device called profile tracer and Vernier bevel protractor respectively. The study revealed that the FCAW process parameters have significant effect on bead profile, and distortion. The relationship between bead profile and distortions were analyzed. Most favorable process parameters that give uniform bead profile and minimum distortion for the weld are recommended for fabrication.

  6. The Interfacial Transition Zone in Alkali-Activated Slag Mortars

    Directory of Open Access Journals (Sweden)

    Rackel eSan Nicolas

    2015-12-01

    Full Text Available The interfacial transition zone (ITZ is known to strongly influence the mechanical and transport properties of mortars and concretes. This paper studies the ITZ between siliceous (quartz aggregates and alkali activated slag binders in the context of mortar specimens. Backscattered electron images (BSE generated in an environmental scanning electron microscope (ESEM are used to identify unreacted binder components, reaction products and porosity in the zone surrounding aggregate particles, by composition and density contrast. X-ray mapping is used to exclude the regions corresponding to the aggregates from the BSE image of the ITZ, thus enabling analysis of only the binder phases, which are segmented into binary images by grey level discrimination. A distinct yet dense ITZ region is present in the alkali-activated slag mortars, containing a reduced content of unreacted slag particles compared to the bulk binder. The elemental analysis of this region shows that it contains a (C,N-A-S-H gel which seems to have a higher content of Na (potentially deposited through desiccation of the pore solution and a lower content of Ca than the bulk inner and outer products forming in the main binding region. These differences are potentially important in terms of long-term concrete performance, as the absence of a highly porous interfacial transition zone region is expected to provide a positive influence on the mechanical and transport properties of alkali-activated slag concretes.

  7. Investigation on un-peened and laser shock peened weldment of Inconel 600 fabricated by ATIG welding process

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekar, G., E-mail: gopalsamychandrasekar@gmail.com [Department of Mechanical Engineering, PSNA College of Engineering and Technology, Dindigul 624622, Tamilnadu (India); Kailasanathan, C., E-mail: uthrakailash@yahoo.co.in [Department of Mechanical Engineering, Sethu Institute of Technology, Virudhunagar District, Kariapatti 626115, Tamilnadu (India); Verma, Dhanesh Kant, E-mail: dkverma@bheltry.co.in [Welding Research Institute, Bharat Heavy Electricals Limited, Thiruchirappalli 620014, Tamilnadu (India)

    2017-04-06

    The present investigation articulates the joining of Inconel 600 plates using activated tungsten inert gas (ATIG) welding process. Before joining of Inconel 600 plates, welding parameters have been optimized and suitable flux has been selected to produce complete weld penetration in a single pass welding. The various mechanical and metallurgical characterizations were performed on the un-peened ATIG (UP-ATIG) weldment. The experimental results attested that the tensile failure occurred in the weld zone and also the tensile strength is lower than the base metal (BM) because of coarser grain structures and tensile residual stresses in the weld zone. Laser shock peening (LSP) was carried out on the welded joint to enhance its properties. After LSP treatment, the significant improvement was observed in the laser peened ATIG (LP-ATIG) weldment and the fracture occurred at the parent metal side owing to the compressive residual stresses developed by LSP. Residual stress measurements indicated that the compressive residual stresses were higher at the surface and they decrease with increasing depth.

  8. Investigation on un-peened and laser shock peened weldment of Inconel 600 fabricated by ATIG welding process

    International Nuclear Information System (INIS)

    Chandrasekar, G.; Kailasanathan, C.; Verma, Dhanesh Kant

    2017-01-01

    The present investigation articulates the joining of Inconel 600 plates using activated tungsten inert gas (ATIG) welding process. Before joining of Inconel 600 plates, welding parameters have been optimized and suitable flux has been selected to produce complete weld penetration in a single pass welding. The various mechanical and metallurgical characterizations were performed on the un-peened ATIG (UP-ATIG) weldment. The experimental results attested that the tensile failure occurred in the weld zone and also the tensile strength is lower than the base metal (BM) because of coarser grain structures and tensile residual stresses in the weld zone. Laser shock peening (LSP) was carried out on the welded joint to enhance its properties. After LSP treatment, the significant improvement was observed in the laser peened ATIG (LP-ATIG) weldment and the fracture occurred at the parent metal side owing to the compressive residual stresses developed by LSP. Residual stress measurements indicated that the compressive residual stresses were higher at the surface and they decrease with increasing depth.

  9. Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years.

    Science.gov (United States)

    Luo, Youfa; Wu, Yonggui; Wang, Hu; Xing, Rongrong; Zheng, Zhilin; Qiu, Jing; Yang, Lian

    2018-05-01

    This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N 2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.

  10. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    OpenAIRE

    Jan PIWNIK; Bożena SZCZUCKA-LASOTA; Tomasz WĘGRZYN; Wojciech MAJEWSKI

    2017-01-01

    The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding paramet...

  11. Reproducing ten years of road ageing - Accelerated carbonation and leaching of EAF steel slag

    Energy Technology Data Exchange (ETDEWEB)

    Suer, Pascal, E-mail: pascal.suer@swedgeo.se [Swedish Geotechnical Institute, Linkoeping (Sweden); Lindqvist, Jan-Erik [Swedish Cement and Concrete Research Institute, Boras (Sweden); Arm, Maria; Frogner-Kockum, Paul [Swedish Geotechnical Institute, Linkoeping (Sweden)

    2009-09-01

    Reuse of industrial aggregates is still hindered by concern for their long-term properties. This paper proposes a laboratory method for accelerated ageing of steel slag, to predict environmental and technical properties, starting from fresh slag. Ageing processes in a 10-year old asphalt road with steel slag of electric arc furnace (EAF) type in the subbase were identified by scanning electron microscopy (SEM) and leaching tests. Samples from the road centre and the pavement edge were compared with each other and with samples of fresh slag. It was found that slag from the pavement edge showed traces of carbonation and leaching processes, whereas the road centre material was nearly identical to fresh slag, in spite of an accessible particle structure. Batches of moisturized road centre material exposed to oxygen, nitrogen or carbon dioxide (CO{sub 2}) were used for accelerated ageing. Time (7-14 days), temperature (20-40 {sup o}C) and initial slag moisture content (8-20%) were varied to achieve the carbonation (decrease in pH) and leaching that was observed in the pavement edge material. After ageing, water was added to assess leaching of metals and macroelements. 12% moisture, CO{sub 2} and seven days at 40 {sup o}C gave the lowest pH value. This also reproduced the observed ageing effect for Ca, Cu, Ba, Fe, Mn, Pb, Ca (decreased leaching) and for V, Si, and Al (increased leaching). However, ageing effects on SO{sub 4}, DOC and Cr were not reproduced.

  12. Use of soil-steel slag-class-C fly ash mixtures in subgrade applications.

    Science.gov (United States)

    2012-12-07

    In Indiana, large quantities of recyclable : materials - such as steel slag, blast furnace : slag and fly ash - are generated each year as : by-products of various industries. Instead of : disposing these by-products into landfills, : we can recycle ...

  13. Comparison of glassy slag waste forms produced in laboratory crucibles and in a bench-scale plasma furnace

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Brown, N.R.; Gong, M.; Whitworth, C.; Filius, K.; Battleson, D.

    1994-01-01

    Vitrification is currently the best demonstrated available technology for the disposal of high-level radioactive wastes. An innovative vitrification approach known as minimum additive waste stabilization (MAWS) is being developed. Both homogeneous glass and glassy slags have been used in implementing MAWS. Glassy slags (vitro-ceramics) are glass-crystal composites, and they are composed of various metal oxide crystalline phases embedded in an aluminosilicate glass matrix. Glassy slags with compositions developed in crucible melts at Argonne National Laboratory (ANL) were successfully produced in a bench-scale Retech plasma centrifugal furnace (PCF) by MSE, Inc. Detailed examinations of these materials showed that the crucible melts and the PCF produced similar glass and crystalline phases. The two sets of glassy slags exhibited similar chemical durability in terms of normalized releases of their major components. The slags produced in the PCF furnace using metals were usually less oxidized, although this had no effect on the corrosion behavior of the major components of the slags. However, the normalized release rate of cerium was initially lower for the PCF slags. This difference diminished with time as the redox sates of the metal oxides in slags began to be controlled by exposure to air in the tests. Thus, the deference in cerium release due to the differences in slag redox state may be transitory. The cerium solubility is a complex function of redox state and solution pH and Eh

  14. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  15. Suitability of adsorption isotherms for predicting the retention capacity of active slag filters removing phosphorus from wastewater.

    Science.gov (United States)

    Pratt, C; Shilton, A

    2009-01-01

    Active slag filters are an emerging technology for removing phosphorus (P) from wastewater. A number of researchers have suggested that adsorption isotherms are a useful tool for predicting P retention capacity. However, to date the appropriateness of using isotherms for slag filter design remains unverified due to the absence of benchmark data from a full-scale, field filter operated to exhaustion. This investigation compared the isotherm-predicted P retention capacity of a melter slag with the P adsorption capacity determined from a full-scale, melter slag filter which had reached exhaustion after five years of successfully removing P from waste stabilization pond effluent. Results from the standard laboratory batch test showed that P adsorption correlated more strongly with the Freundlich Isotherm (R(2)=0.97, Pretention capacity of 0.014 gP/kg slag; markedly lower than the 1.23 gP/kg slag adsorbed by the field filter. Clearly, the result generated by the isotherm bears no resemblance to actual field capacity. Scanning electron microscopy analysis revealed porous, reactive secondary minerals on the slag granule surfaces from the field filter which were likely created by weathering. This slow weathering effect, which generates substantial new adsorption sites, is not accounted for by adsorption isotherms rendering them ineffective in slag filter design.

  16. Thermodynamics of Boron Removal from Silicon Using CaO-MgO-Al2O3-SiO2 Slags

    Science.gov (United States)

    Jakobsson, Lars Klemet; Tangstad, Merete

    2018-04-01

    Slag refining is one of few metallurgical methods for removal of boron from silicon. It is important to know the thermodynamic properties of boron in slags to understand the refining process. The relation of the distribution coefficient of boron to the activity of silica, partial pressure of oxygen, and capacity of slags for boron oxide was investigated. The link between these parameters explains why the distribution coefficient of boron does not change much with changing slag composition. In addition, the thermodynamic properties of dilute boron oxide in CaO-MgO-Al2O3-SiO2 slags was determined. The ratio of the activity coefficient of boron oxide and silica was found to be the most important parameter for understanding changes in the distribution coefficient of boron for different slags. Finally, the relation between the activity coefficient of boron oxide and slag structure was investigated. It was found that the structure can explain how the distribution coefficient of boron changes depending on slag composition.

  17. Evaluation of the use of steelmaking slag as an aggregate in concrete mix: A factorial design approach

    OpenAIRE

    Aljbour Salah H.; Tarawneh Sultan A.; Al-Harahsheh Adnan M.

    2017-01-01

    Slag is investigated towards its potential use as an aggregate in concrete mix production. Full factorial design methodology is applied to study the effect of two process input variables, namely: slag as coarse aggregate and slag as medium aggregate on the properties of concrete mix. Additionally, the interaction between input variables is also examined. Incorporating steel slag aggregate in the concrete mix affected its compressive strength. Enhanced compressive strength concrete mix was obt...

  18. Sustainability of Welding Process through Bobbin Friction Stir Welding

    Science.gov (United States)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  19. Enabling high speed friction stir welding of aluminum tailor welded blanks

    Science.gov (United States)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  20. Slag Evaluation to Reduce Energy Consumption and EAF Electrical Instability

    OpenAIRE

    Vieira,Deisi; Almeida,Rodolfo Arnaldo Montecinos de; Bielefeldt,Wagner Viana; Vilela,Antônio Cezar Faria

    2016-01-01

    In steel mills that operate with electric arc furnaces (EAF), it is interesting to ensure greater stability to the electric arc to aim at less distortion in the electrical system, with consequent reduction in electric power consumption. The slag foaming increases electric arc stability by reducing the total harmonic distortion (THD) between EAF phases. In this study, information about the chemical composition of the slag and electrical parameters of an EAF were collected. With the composition...

  1. Case cluster of pneumoconiosis at a coal slag processing facility.

    Science.gov (United States)

    Fagan, Kathleen M; Cropsey, Erin B; Armstrong, Jenna L

    2015-05-01

    During an inspection by the Occupational Safety and Health Administration (OSHA) of a small coal slag processing plant with 12 current workers, four cases of pneumoconiosis were identified among former workers. The OSHA investigation consisted of industrial hygiene sampling, a review of medical records, and case interviews. Some personal sampling measurements exceeded the OSHA Permissible Exposure Limit (PEL) for total dust exposures of 15 mg/m(3), and the measured respirable silica exposure of 0.043 mg/m(3), although below OSHA's current PEL for respirable dust containing silica, was above the American Conference of Governmental Industrial Hygienists' Threshold Limit Value (TLV). Chest x-rays for all four workers identified small opacities consistent with pneumoconiosis. This is the first known report of lung disease in workers processing coal slag and raises concerns for workers exposed to coal slag dust. © 2015 Wiley Periodicals, Inc.

  2. The Influence of Friction Stir Weld Tool Form and Welding Parameters on Weld Structure and Properties: Nugget Bulge in Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.

    2010-01-01

    Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.

  3. Effects of Temperature, Oxygen Partial Pressure, and Materials Selection on Slag Infiltration into Porous Refractories for Entrained-Flow Gasifiers

    Science.gov (United States)

    Kaneko, Tetsuya Kenneth

    The penetration rate of molten mineral contents (slag) from spent carbonaceous feedstock into porous ceramic-oxide refractory linings is a critical parameter in determining the lifecycle of integrated gasification combined cycle energy production plants. Refractory linings that withstand longer operation without interruption are desirable because they can mitigate consumable and maintenance costs. Although refractory degradation has been extensively studied for many other high-temperature industrial processes, this work focuses on the mechanisms that are unique to entrained-flow gasification systems. The use of unique feedstock mixtures, temperatures from 1450 °C to 1600 °C, and oxygen partial pressures from 10-7 atm to 10-9 atm pose engineering challenges in designing an optimal refractory material. Experimentation, characterization, and modeling show that gasifier slag infiltration into porous refractory is determined by interactions between the slag and the refractory that either form a physical barrier that impedes fluid flow or induce an increased fluid viscosity that decelerates the velocity of the fluid body. The viscosity of the slag is modified by the thermal profile of the refractory along the penetration direction as well as reactions between the slag and refractory that alter the chemistry, and thereby the thermo-physical properties of the fluid. Infiltration experiments reveal that the temperature gradient inherently present along the refractory lining limits penetration. A refractory in near-isothermal conditions demonstrates deeper slag penetration as compared to one that experiences a steeper thermal profile. The decrease in the local temperatures of the slag as it travels deeper into the refractory increases the viscosity of the fluid, which in turn slows the infiltration velocity of fluid body into the pores of the refractory microstructure. With feedstock mixtures that exhibit high iron-oxide concentrations, a transition-metal-oxide, the oxygen

  4. Cold experiments on ligament formation for blast furnace slag granulation

    International Nuclear Information System (INIS)

    Liu Junxiang; Yu Qingbo; Li Peng; Du Wenya

    2012-01-01

    Rotary cup atomization for molten slag granulation is an attractive alternative to water quenching. However, the mechanism of disintegration of molten slag must be assessed. In the present study, a glycerol/water mixture was substituted for molten slag, and the mechanism of ligament formation in a rotary cup was investigated using photos taken by a high-speed camera. The effects of the angular speed and inner depth of the rotary cup on ligament disintegration was investigated. The results showed that one state of disintegration may transform into another state as the angular speed of the rotary cup increases at a given liquid flow rate. During ligament formation, the number of ligaments increased with an increase in the angular speed of the rotary cup, and a decrease in the diameter of ligament and liquid drop was observed. Moreover, the initial point of disintegration of the ligament moved to the lip of the rotary cup as the angular speed increased. An equation describing the relationship between the diameter of the liquid drop and various factors was used to predict the diameter of the liquid drop. A rotary cup with an inner depth of 30 mm was the best choice for granulation. The results of the present study will be useful for designing devices used in molten slag granulation. - Highlights: ►The results can be used in the granulation of molten blast furnace slag. ► The three different states of disintegration occur as the angular speed of rotary cup increases. ► The mechanism of ligament disintegration is analyzed. ► Eq. can be used to predict the diameter of liquid drop. ► A rotary cup with an inner depth of 30 mm is optimal for granulation.

  5. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    Science.gov (United States)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  6. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    Science.gov (United States)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  7. Criteria determining the selection of slags for the melt decontamination of radioactively contaminated stainless steel by electroslag remelting

    International Nuclear Information System (INIS)

    Buckentin, J.M.R.; Damkroger, B.K.; Shelmidine, G.J.; Atteridge, D.G.

    1997-01-01

    Electroslag remelting is an excellent process choice for the melt decontamination of radioactively contaminated metals. ESR furnaces are easily enclosed and do not make use of refractories which could complicate thermochemical interactions between molten metal and slag. A variety of cleaning mechanisms are active during melting; radionuclides may be partitioned to the slag by means of thermochemical reaction, electrochemical reaction, or mechanical entrapment. At the completion of melting, the slag is removed from the furnace in solid form. The electroslag process as a whole is greatly affected by the chemical and physical properties of the slag used. When used as a melt decontamination scheme, the ESR process may be optimized by selection of the slag. In this research, stainless steel bars were coated with non-radioactive surrogate elements in order to simulate surface contamination. These bars were electroslag remelted using slags of various chemistries. The slags investigated were ternary mixtures of calcium fluoride, calcium oxide, and alumina. The final chemistries of the stainless steel ingots were compared with those predicted by the use of a Free Energy Minimization Modeling technique. Modeling also provided insight into the chemical mechanisms by which certain elements are captured by a slag. Slag selection was also shown to have an impact on the electrical efficiency of the process as well as the surface quality of the ingots produced

  8. Some Insights to the Reuse of Dredged Marine Soils by Admixing with Activated Steel Slag

    Directory of Open Access Journals (Sweden)

    Chee-Ming Chan

    2014-01-01

    Full Text Available Regular dredging is necessary for the development of coastal regions and the maintenance of shipping channels. The dredging process dislodges sediments from the seabed, and the removed materials, termed dredged marine soils, are generally considered a geowaste for dumping. However, disposal of the dredged soils offshores can lead to severe and irreversible impact on the marine ecosystem, while disposal on land often incurs exorbitant costs with no guarantee of zero-contamination. It is therefore desirable to reuse the material, and one option is solidification with another industrial waste, that is, steel slag. This paper describes the exploratory work of admixing dredged marine soil with activated steel slag for improvement of the mechanical properties. An optimum activation concentration of NaOH was introduced to the soil-slag mixture for uniform blending. Specimens were prepared at different mix ratios then left to cure for up to 4 weeks. The unconfined compressive strength test was conducted to monitor the changes in strength at predetermined intervals. It was found that the strength does not necessarily increase with higher steel slag content, indicating an optimum slag content required for the maximum solidification effect to take place. Also, regardless of the slag content, longer curing time produces greater strength gain. In conclusion, steel slag addition to dredged sediments can effectively strengthen the originally weak soil structure by both the “cementation” and “filler” effects, though the combined effects were not distinguished in the present study.

  9. Influence of Welding Process and Post Weld Heat Treatment on Microstructure and Pitting Corrosion Behavior of Dissimilar Aluminium Alloy Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    Welding of dissimilar Aluminum alloy welds is becoming important in aerospace, shipbuilding and defence applications. In the present work, an attempt has been made to weld dissimilar aluminium alloys using conventional gas tungsten arc welding (GTAW) and friction stir welding (FSW) processes. An attempt was also made to study the effect of post weld heat treatment (T4 condition) on microstructure and pitting corrosion behaviour of these welds. Results of the present investigation established the differences in microstructures of the base metals in T4 condition and in annealed conditions. It is evident that the thickness of the PMZ is relatively more on AA2014 side than that of AA6061 side. In FS welds, lamellar like shear bands are well noticed on the top of the stir zone. The concentration profile of dissimilar friction stir weld in T4 condition revealed that no diffusion has taken place at the interface. Poor Hardness is observed in all regions of FS welds compared to that of GTA welds. Pitting corrosion resistance of the dissimilar FS welds in all regions was improved by post weld heat treatment.

  10. A control system for uniform bead in fillet arc welding on tack welds

    International Nuclear Information System (INIS)

    Kim, Jae Woong; Lee, Jun Young

    2008-01-01

    Positioning a workpiece accurately and preventing weld distortion, tack welding is often adopted before main welding in the construction of welded structures. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually performed for a uniform weld bead profile. In this study, a control system for uniform weld bead is proposed for the fillet arc welding on tack welds. The system consists of GMA welding machine, torch manipulator, laser vision sensor for measuring the tack weld size and the database for optimal welding conditions. Experiments have been performed for constructing the database and for evaluating the control capability of the system. It has been shown that the system has the capability to smooth the bead at the high level of quality

  11. Stud arc welding in a magnetic field – Investigation of the influences on the arc motion

    International Nuclear Information System (INIS)

    Hartz-Behrend, K; Forster, G; Schein, J; Marqués, J L; Jenicek, A; Müller, M; Cramer, H; Jilg, A; Soyer, H

    2014-01-01

    Stud arc welding is widely used in the construction industry. For welding of studs with a diameter larger than 14 mm a ceramic ferrule is usually necessary in order to protect the weld pool. Disadvantages of using such a ferrule are that more metal is molten than necessary for a high quality welded joint and that the ferrule is a consumable generally thrown away after the welding operation. Investigations show that the ferrule can be omitted when the welding is carried out in a radially symmetric magnetic field within a shielding gas atmosphere. Due to the Lorentz force the arc is laterally shifted so that a very uniform and controlled melting of the stud contact surface as well as of the work piece can be achieved. In this paper a simplified physical model is presented describing how the parameters welding current, flux density of the magnetic field, radius of the arc and mass density of the shielding gas influence the velocity of the arc motion. The resulting equation is subsequently verified by comparing it to optical measurements of the arc motion. The proposed model can be used to optimize the required field distribution for the magnetic field stud welding process

  12. The Effect of CaO on Gas/Slag/Matte/Tridymite Equilibria in Fayalite-Based Copper Smelting Slags at 1473 K (1200 °C) and P(SO2) = 0.25 Atm

    Science.gov (United States)

    Fallah-Mehrjardi, Ata; Hayes, Peter C.; Jak, Evgueni

    2018-04-01

    Fundamental experimental studies have been undertaken to determine the effect of CaO on the equilibria between the gas phase (CO/CO2/SO2/Ar) and slag/matte/tridymite phases in the Cu-Fe-O-S-Si-Ca system at 1473 K (1200 °C) and P(SO2) = 0.25 atm. The experimental methodology developed in the Pyrometallurgy Innovation Centre was used. New experimental data have been obtained for the four-phase equilibria system for fixed concentrations of CaO (up to 4 wt pct) in the slag phase as a function of copper concentration in matte, including the concentrations of dissolved sulfur and copper in slag, and Fe/SiO2 ratios in slag at tridymite saturation. The new data provided in the present study are of direct relevance to the pyrometallurgical processing of copper and will be used as an input to optimize the thermodynamic database for the copper-containing multi-component multi-phase system.

  13. Torque Measurement of Welding of Endplug-Endplate using Multi-pin Remote Welding System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae-Seo; Kim, Soo-Sung; Park, Geun-Il; Lee, Jung-Won; Song, Kee-Chan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    As fuel bundles in PHWR irradiates, inner pressure in claddings of fuel rods increases owing to outer pressure and fission products of nuclear fissions. Because of leak possibility of welding between cladding and end plug, this welding part connects with safety of nuclear fuel rods. Because of importance of this welding part, weldability of end plug-cladding of nuclear fuel rods is continually researched. Welding method for research and commercialization is classified as melting, solid type welding or resistance welding. End plug cladding welding of nuclear fuel rods in PHWR takes advantage of resistance upset butt welding using multicycle mode. This method makes weld flash and shapes re-entrant corner owing to welding heat due to resistivity, contact resistance of cladding-end plug, and inelasticity deformation due to pressure. Welding part between cladding and end plug receives stresses and makes small cracks. In this study, remote welding system for multi-pin assembly was designed, fabricated and welding specimens of end plug-endplate were made using electrical resistance method. The torques of welding between end plug and endplate were measured. These results on welding current, pressure of main electrode and pressure of branch electrode were analyzed. Weldability between end plug and endplate was confirmed through metallographic examinations. In the future, optimal welding examinations due to welding current, welding pressure and welding time will be performed to improve weldability of end plug-endplate.

  14. The production of hydrogen-rich gas by wet sludge pyrolysis using waste heat from blast-furnace slag

    International Nuclear Information System (INIS)

    Luo, Siyi; Feng, Yu

    2016-01-01

    Blast furnace (BF) slag, a byproduct of steelmaking industry, contains a large amount of sensible heat and is composed of some metal oxides, which exhibits preferable catalytic performance in improving tar cracking and C_nH_m reforming. This paper presents a heat recovery system from the heat of BF slag, which generates hydrogen-rich gas via the endothermic reactions of sludge pyrolysis. The effects of various parameters including the slag temperature, the mass ratio of slag to sludge (B/S), particle size and feed moisture on product yields and gas characteristics were evaluated separately. It was found that the pyrolysis products distribution was significantly influenced by the BF slag temperature. The differences resulting from varying B/S practically disappear as higher temperature heat carrier is approached. The optimum feed moisture was in favour of sludge pyrolysis by getting char and tar participate in gasification reactions, improving gas yield and quality. BF slag as catalyst can greatly increase H_2 and CO contents of gas by improving tar degradation and reforming of biogas (CO_2 and CH_4). Decreasing the slag particles size was helpful to sludge primary pyrolysis to produce more light gases, less char and condensate, while its effects on gas compositions was not evident. - Highlights: • The sensible heat of molten slag was recovered and converted into combustible gas. • A novel rotary pyrolysis reactor using BF slag as heat carrier was presented. • The moisture in sludge was used as the gasification medium and hydrogen source.

  15. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications.

    Science.gov (United States)

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Kříbek, Bohdan; Mapani, Ben

    2017-02-01

    The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Advantages of new micro-jet welding technology on weld microstructure control

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2013-01-01

    Full Text Available An innovative apparatus to welding process with micro-jet cooling of the weld made it possible to carry out technological tests, which have proved theoretical considerations about this problem. This project gives real opportunities for professional development in the field of welding with controlling the parameters of weld structure. These tests have proved that the new micro-jet technology has the potential for growth. It may be great achievement of welding technology in order to increase weld metal strength. The new technology with micro-jet cooling may have many practical applications in many fields, for example such as in the transport industry or to repair damaged metal elements. The advantages of the new device over the traditional system are the ability to control the structure of the weld, the weld mechanical performance increases and improve the quality of welded joints.

  17. ALKALI-ACTIVATION KINETICS OF PHOSPHORUS SLAG CEMENT USING COMPRESSIVE STRENGTH DATA

    Directory of Open Access Journals (Sweden)

    Hojjatollah Maghsoodloorad

    2015-09-01

    Full Text Available In this research, through compressive strength data, the order and kinetics of alkali-activation of phosphorus slag activated with two compound activators of NaOH + Na2CO3 and Na2CO3 + Ca(OH2, has been evaluated. The kinetics and order of alkali activation is a key factor to forecasting the mechanical behavior of alkali activated cement at different curing time and temperatures without carrying out experimental tests. The apparent activation energy was obtained as 35.6 kJ.mol-1 and 60.7 kJ.mol-1 for the two activators, respectively. Investigations proved that the alkali-activation kinetics of phosphorus slag resembles chemical reactions of second order. Moreover, the order of alkali-activation of phosphorus slag does not depend on the type of activator.

  18. TECHNOLOGICAL ISSUES IN MECHANISED FEED WIG/TIG WELDING SURFACING OF WELDING

    Directory of Open Access Journals (Sweden)

    BURCA Mircea

    2016-09-01

    manual welding tests in the light of using the process for welding surfacing being known that in such applications mechanised operations are recommended whenever possible given the latter strengths i.e. increased productivity and quality deposits. The research also aims at achieving a comparative a study between wire mechanised feed based WIG manual welding and the manual rod entry based manual welding in terms of geometry deposits, deposits aesthetics, operating technique, productivity, etc . In this regard deposits were made by means of two welding procedures, and subsequently welding surfacing was made with the optimum values of the welding parameters in this case.

  19. Foaming Index of CaO-SiO2-FeO-MgO Slag System

    Science.gov (United States)

    Park, Youngjoo; Min, Dong Joon

    A study on the effect of FeO and MgO content on foaming index in EAF slag system was carried out. The height of the slag foam was measured by electric probe maintaining steady state in gas formation and escape. Foaming index, which is the measurement of gas capturing potential of the slag, is calculated from the foam height and gas flow rate. Viscosity and surface tension, which are the key properties for the foaming index, are calculated by Urbain's model and additive method, respectively. Dimensional analysis also performed to determine the dominancy of properties and resulted that the important factor was a ratio between viscosity and surface tension. The effect of each component on the viscosity, surface tension and foaming index of the slag is evaluated to be in strong relationship.

  20. Rheological Characterization of Warm-Modified Asphalt Mastics Containing Electric Arc Furnace Steel Slags

    Directory of Open Access Journals (Sweden)

    M. Pasetto

    2016-01-01

    Full Text Available The environmental sustainability of road materials and technologies plays a key role in pavement engineering. In this sense, the use of Warm Mix Asphalt (WMA, that is, a modified asphalt concrete that can be produced and applied at lower temperature, is considered an effective solution leading to environmental and operational benefits. The environmental sustainability of WMA can be further enhanced with the inclusion of steel slag in partial substitution of natural aggregates. Nevertheless, such innovative material applied at lower temperatures containing warm additives and steel slag should be able to guarantee at least the same performance of traditional hot mix asphalts, thus assuring acceptable mechanical properties and durability. Therefore, the purpose of this study is to investigate the rheological behaviour of bituminous mastics obtained combining a warm-modified binder and a filler (material passing to 0.063 mm coming from electric arc furnace steel slag. To evaluate the influence of both warm additive and steel slag, a plain binder and limestone filler were also used for comparison purposes. Complex modulus and permanent deformation resistance of bitumens and mastics were assessed using a dynamic shear rheometer. Experimental results showed that steel slag warm mastics assure enhanced performance demonstrating promising applicability.

  1. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  2. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  3. Quality of structural steel melted by single-slag process

    International Nuclear Information System (INIS)

    Levin, A.M.; Andreev, V.I.; Monastyrskij, A.V.; Drozdova, M.F.; Pashchenko, V.E.; Orzhekh, M.B.

    1982-01-01

    The 40Kh and 12KhN3A steels were used to compare the quality of the metal manufactured according to several variants of a single-slag process with the metal of a conventional melting technology. Investigation results show, that a single-slag process metal has higher sulfides and oxides contents as well as an increased anisotropy of mechanical properties while its tendency to flake formation is weaker due to a less degree of gas saturation. It is marked that anisotropy in the properties and a sulfide content may be decreased by out-of-furnace treatment of steels

  4. Attenuation of Gamma Rays by Concrete . Lead Slag Composites

    International Nuclear Information System (INIS)

    Ismail, I.M.; Sweelam, M.H.; Zaghloul, Y.R.; Aly, H.F.

    2008-01-01

    Using of wastes and industrial by-products as concrete aggregate to be used as structural and radiation shielded material has increased in the recent years. Concrete was mixed with different amounts of lead slag extracted from recycling of the spent automotive batteries as fine aggregates. The lead slag was used as partial replacement of sand in the studied composites. The concrete composites obtained were characterized in terms of density, water absorption, porosity, compressive strength and attenuation of γ- rays with different energies. The attenuation coefficient and the half value thickness of the different matrices were calculated and discussed

  5. Study on factors affecting the droplet temperature in plasma MIG welding process

    Science.gov (United States)

    Mamat, Sarizam Bin; Tashiro, Shinichi; Tanaka, Manabu; Yusoff, Mahani

    2018-04-01

    In the present study, the mechanism to control droplet temperature in the plasma MIG welding was discussed based on the measurements of the droplet temperature for a wide range of MIG currents with different plasma electrode diameters. The measurements of the droplet temperatures were conducted using a two color temperature measurement method. The droplet temperatures in the plasma MIG welding were then compared with those in the conventional MIG welding. As a result, the droplet temperature in the plasma MIG welding was found to be reduced in comparison with the conventional MIG welding under the same MIG current. Especially when the small plasma electrode diameter was used, the decrease in the droplet temperature reached maximally 500 K. Also, for a particular WFS, the droplet temperatures in the plasma MIG welding were lower than those in the conventional MIG welding. It is suggested that the use of plasma contributes to reducing the local heat input into the base metal by the droplet. The presence of the plasma surrounding the wire is considered to increase the electron density in its vicinity, resulting in the arc attachment expanding upwards along the wire surface to disperse the MIG current. This dispersion of MIG current causes a decrease in current density on the droplet surface, lowering the droplet temperature. Furthermore, dispersed MIG current also weakens the electromagnetic pinch force acting on the neck of the wire above the droplet. This leads to a larger droplet diameter with increased surface area through lower frequency of droplet detachment to decrease the MIG current density on the droplet surface, as compared to the conventional MIG welding at the same MIG current. Thus, the lower droplet temperature is caused by the reduction of heat flux into the droplet. Consequently, the mechanism to control droplet temperature in the plasma MIG welding was clarified.

  6. Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of pulsed gas metal arc welding (GMAW) variables on the dilution and weld bead geometry in cladding X65 pipeline steel with 316L stainless steel was studied. Using a full factorial method, a series of experiments were carried out to know the effect of wire feed rate, welding speed, distance between gas nozzle and plate, and the vertical angle of welding on dilution and weld bead geometry. The findings indicate that the dilution of weld metal and its dimension i.e. width, height and depth increase with the feed rate, but the contact angle of the bead decreases first and then increases. Meantime, welding speed has an opposite effect except for dilution. There is an interaction effect between welding parameters at the contact angle. The results also show forehand welding or decreasing electrode extension decrease the angle of contact. Finally,a mathematical model is contrived to highlight the relationship between welding variables with dilution and weld bead geometry.

  7. Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth

    Science.gov (United States)

    Liu, Yan-xiang; Zhang, Jian-liang; Wang, Zhi-yu; Jiao, Ke-xin; Zhang, Guo-hua; Chou, Kuo-chih

    2017-02-01

    To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces, experiments were carried out based on the laboratory-scale packed bed systems. It is concluded that the initial temperature of slag dripping increases with decreasing FeO content and increasing TiO2 content. The slag holdup decreases when the FeO content is in the range of 5wt%-10wt%, whereas it increases when the FeO content exceeds 10wt%. Meanwhile, the slag holdup decreases when the TiO2 content increases from 5wt% to 10wt% but increases when the TiO2 content exceeds 10wt%. Moreover, slag/coke interface analysis shows that the reaction between FeO and TiO2 occurs between the slag and the coke. The slag/coke interface is divided into three layers: slag layer, iron-rich layer, and coke layer. TiO2 in the slag is reduced by carbon, and the generated Ti diffuses into iron.

  8. Basalt Fiber for Volcanic Slag Lightweight Aggregate Concrete Research on the Impact of Performance

    Science.gov (United States)

    Xiao, Li-guang; Li, Gen-zhuang

    2018-03-01

    In order to study the effect of basalt fiber on the mechanical properties and durability of volcanic slag lightweight aggregate concrete, the experimental study on the flexural strength, compressive strength and freeze-thaw resistance of volcanic slag concrete with different basalt fiber content were carried out, the basalt fiber was surface treated with NaOH and water glass, the results show that the surface treatment of basalt fiber can significantly improve the mechanical properties, durability and other properties of volcanic slag lightweight aggregate concrete.

  9. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  10. Fusion welding process

    Science.gov (United States)

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  11. EFFECT OF CaO/SiO₂ AND HEAT TREATMENT ON THE MICROSTRUCTURE OF GLASS-CERAMICS FROM BLAST FURNACE SLAG

    OpenAIRE

    Chunshai Xie; Yongliang Gui; Song Chunyan; Hu Binsheng

    2016-01-01

    Glass-ceramics, with molten blast furnace (BF) slag as the major raw material, were prepared successfully by the melting method. The effect of the CaO/SiO₂ ratio in the molten BF slag and heat treatment on the viscosity and microstructure of glass-ceramics produced from BF slag were traced using the melt property tester, DSC, XRD and SEM. The results showed that increasing the CaO/SiO₂ ratio of BF slag caused a decrease not only in the viscosity of the BF slag at high temperature but also in ...

  12. Method to reduce arc blow during DC arc welding of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J. H.; Rueda-Morales, G.L.; Caleyo, F.; Hallen, J. M. [Instituto Politecnico Nacional, Mexico, (Mexico); Lopez-Montenegro, A.; Perz-Baruch, E. [Pemex Exploracion y Produccion, Tabasco, (Mexico)

    2010-07-01

    Steel pipelines are huge ferromagnetic structures and can be easily subjected to arc blow during the DC arc welding process. The development of methods to avoid arc blow during pipeline DC arc welding is a major objective in the pipeline industry. This study developed a simple procedure to compensate the residual magnetic field in the groove during DC arc welding. A Gaussmeter was used to perform magnetic flux density measurements in pipelines in southern Mexico. These data were used to perform magnetic finite element simulations using FEMM. Different variables were studied such as the residual magnetic field in the groove or the position of the coil with respect to the groove. An empirical predictive equation was developed from these trials to compensate for the residual magnetic field. A new method of compensating for the residual magnetic field in the groove by selecting the number of coil turns and the position of the coil with respect to the groove was established.

  13. [Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].

    Science.gov (United States)

    Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo

    2015-08-01

    The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.

  14. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace.

    Science.gov (United States)

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this

  15. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    OpenAIRE

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan

    2015-01-01

    Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). ...

  16. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag

    International Nuclear Information System (INIS)

    Tsai, T.T.; Kao, C.M.

    2009-01-01

    The contamination of subsurface soils with petroleum hydrocarbons is a widespread environmental problem. The objective of this study was to evaluate the potential of applying waste basic oxygen furnace slag (BOF slag) as the catalyst to enhance the Fenton-like oxidation to remediate fuel oil or diesel contaminated soils. The studied controlling factors that affect the removal efficiency of petroleum hydrocarbons included concentrations of H 2 O 2 , BOF slag dosages, types of petroleum hydrocarbons (e.g., fuel oil and diesel), and types of iron mineral. Experimental results indicate that oxidation of petroleum hydrocarbon via the Fenton-like process can be enhanced with the addition of BOF slag. Results from the X-ray powder diffraction analysis reveal that the major iron type of BOF slag/sandy loam system was iron mineral (e.g., α-Fe 2 O 3 and α-FeOOH). Approximately 76% and 96% of fuel oil and diesel removal were observed (initial total petroleum hydrocarbon (TPH) concentration = 10,000 mg kg -1 ), respectively, with the addition of 15% of H 2 O 2 and 100 g kg -1 of BOF slag after 40 h of reaction. Because BOF slag contains extractable irons such as amorphous iron and soluble iron, it can act as an iron sink to supply iron continuously for Fenton-like oxidation. Results demonstrate that Fenton-like oxidation catalyzed by BOF slag is a potential method to be able to remediate petroleum-hydrocarbon contaminated soils efficiently and effectively.

  17. Characterization of Iron and Steel Industry Slags to be Recycled under Ecological Aspects as a Recycling Concept for Waste Treatment

    International Nuclear Information System (INIS)

    Khalil, T.K.; Aly, H.F.; Bossert, J.

    1999-01-01

    The recycling and final disposal of different types of industrial waste play an important role in decreasing environmental pollution all over the world. Three different solid waste slags from steel industries situated in the Helwan area (Cairo-Egypt), namely blast furnace slags, oxygen converter slags arc furnace slags were studied. The morphology of the collected slag powders was examined using scanning electron microscopy (SEM). Surface characteristics of the slag powders were measured through nitrogen gas adsorption and application of the BET equation at 77 K. The thermal behaviour of the slag powders was studied with the help of differential thermal analysis (DTA) and thermogravimetry(TG)> Due to the presence of some changes in the DTA base lines, possibly as a result of phase transformations, X-ray diffraction was applied to identify these phases. The sintering behaviour of the compact slag powders after isostatic pressing was evaluated using dilatometry. The sintering and melting temperature of the studied samples were determined using heating microscopy. The effect of changing sintering temperature and of applying different isostatic pressures on the density and porosity of the slag powder compacts was investigated

  18. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  19. Metal droplet holdup in the thick slag layer subjected to bottom gas injection; Gas sokofuki wo tomonau atsui slag sonai ni okeru metal teki no holdup

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, S; Iguchi, M [Hokkaido University, Sapporo (Japan)

    2000-04-01

    Model experiments were carried out to investigate the bubble and liquid flow characteristics in a bottom blowing bath covered with a thick slag layer typical of in-bath smelting reduction processes. An aqueous ZnCl{sub 2} solution and silicone oil were used as the models for molten metal and molten slag, respectively. The density ratio of the solution to the silicone oil was 1.7, being close to a steel/slag density ratio of 2.0 to 2.2 in practice. The diameter of a vessel containing the two liquids was changed over a wide range. The holdup of the solution carried up by bubbles into the upper silicone oil layer was measured with a suction tube. The volume of the solution, V{sub m}, was dependent mainly on the density difference. Empirical correlations of V{sub m} and the penetration height of the solution were derived. (author)

  20. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.