WorldWideScience

Sample records for welded duplex stainless

  1. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Koray Yurtisik

    2013-09-01

    Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.

  2. Yb-fibre Laser Welding of 6 mm Duplex Stainless Steel 2205

    Science.gov (United States)

    Bolut, M.; Kong, C. Y.; Blackburn, J.; Cashell, K. A.; Hobson, P. R.

    Duplex stainless steel (DSS) is one of the materials of choice for structural and nuclear applications, having high strength and good corrosion resistance when compared with other grades of stainless steel. The welding process used to join these materials is critical as transformation of the microstructure during welding directly affects the material properties. High power laser welding has recently seen an increase in research interest as it offers both speed and flexibility. This paper presents an investigation into the important parameters affecting laser welding of DSS grade 2205, with particular focus given to the critical issue of phase transformation during welding. Bead-on-plate melt-run trials without filler material were performed on 6mm thick plates using a 5 kW Yb-fibre laser. The laser beam was characterized and a Design of Experiment approach was used to quantify the impact of the process parameters. Optical metallographic methods were used to examine the resulting microstructures.

  3. Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel

    Science.gov (United States)

    Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang

    2013-09-01

    The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (δ) and austenite (γ) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided single-pass (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the σ phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the σ phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with σ phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.

  4. X-Ray diffraction technique applied to study of residual stresses after welding of duplex stainless steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Monin, Vladimir Ivanovitch; Assis, Joaquim Teixeira de [Instituto Politecnico do Rio e Janeiro (IPRJ), Nova Friburgo, RJ (Brazil); Lopes, Ricardo Tadeu; Turibus, Sergio Noleto; Payao Filho, Joao C., E-mail: sturibus@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2014-08-15

    Duplex stainless steel is an example of composite material with approximately equal amounts of austenite and ferrite phases. Difference of physical and mechanical properties of component is additional factor that contributes appearance of residual stresses after welding of duplex steel plates. Measurements of stress distributions in weld region were made by X-ray diffraction method both in ferrite and austenite phases. Duplex Steel plates were joined by GTAW (Gas Tungsten Arc Welding) technology. There were studied longitudinal and transverse stress components in welded butt joint, in heat affected zone (HAZ) and in points of base metal 10 mm from the weld. Residual stresses measured in duplex steel plates jointed by welding are caused by temperature gradients between weld zone and base metal and by difference of thermal expansion coefficients of ferrite and austenite phases. Proposed analytical model allows evaluating of residual stress distribution over the cross section in the weld region. (author)

  5. Finite element modelling and characterization of friction welding on UNS S31803 duplex stainless steel joints

    Directory of Open Access Journals (Sweden)

    Mohammed Asif. M

    2015-12-01

    Full Text Available Solid state joining techniques are increasingly employed in joining duplex stainless steel materials due to their high integrity. Continuous drive friction welding is a solid state welding technique which is used to join similar and dissimilar materials. This joining technique is characterized by short cycle time, low heat input and narrow heat affected zones. The simulation becomes an important tool in friction welding because of short welding cycle. In the present work, a three dimensional non-linear finite element model was developed. The thermal history and axial shortening profiles were predicted using ANSYS, a software tool. This numerical model was validated using experimental results. The results show that the frictional heating stage of the process has more influence on temperature and upsetting stage has more impact on axial shortening. The knowledge of these parameters would lead to optimization of input parameters and improvement of design and machine tools.

  6. The Microstructure and Pitting Resistance of Weld Joints of 2205 Duplex Stainless Steel

    Science.gov (United States)

    Wu, Mingfang; Liu, Fei; Pu, Juan; Anderson, Neil E.; Li, Leijun; Liu, Dashuang

    2017-11-01

    2205 duplex stainless steel (DSS) was welded by submerged arc welding. The effects of both heat input and groove type on the ferrite/austenite ratio and elemental diffusion of weld joints were investigated. The relationships among welding joint preparation, ferrite/austenite ratio, elemental diffusion, and pitting corrosion resistance of weld joints were analyzed. When the Ni content of the weld wire deposit was at minimum 2-4% higher than that of 2205 DSS base metal, the desired ratio of ferrite/austenite and elemental partitioning between the austenite and ferrite phases were obtained. While the pitting sensitivity of weld metal was higher than that of base metal, the self-healing capability of the passive film of weld metal was better than that of the base metal when a single V-type groove was used. Furthermore, the heat input should be carefully controlled since pitting corrosion occurred readily in the coarse-grained heat-affected zone near the fusion line of welded joints.

  7. Effects of Heat Input on Microstructure, Corrosion and Mechanical Characteristics of Welded Austenitic and Duplex Stainless Steels: A Review

    Directory of Open Access Journals (Sweden)

    Ghusoon Ridha Mohammed

    2017-01-01

    Full Text Available The effects of input heat of different welding processes on the microstructure, corrosion, and mechanical characteristics of welded duplex stainless steel (DSS are reviewed. Austenitic stainless steel (ASS is welded using low-heat inputs. However, owing to differences in the physical metallurgy between ASS and DSS, low-heat inputs should be avoided for DSS. This review highlights the differences in solidification mode and transformation characteristics between ASS and DSS with regard to the heat input in welding processes. Specifically, many studies about the effects of heat energy input in welding process on the pitting corrosion, intergranular stress, stresscorrosion cracking, and mechanical properties of weldments of DSS are reviewed.

  8. Effect of electromagnetic interaction during fusion welding of AISI 2205 duplex stainless steel on the corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: marcogarciarenteria@uadec.edu.mx [Faculty of Metallurgy, Autonomous University of Coahuila, Carretera 57 Km. 5, CP 25720, Monclova, Coahuila (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: franciscocl7@yahoo.com.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); Curiel-López, F.F., E-mail: franciscocl7@yahoo.com.mx [Faculty of Metallurgy, Autonomous University of Coahuila, Carretera 57 Km. 5, CP 25720, Monclova, Coahuila (Mexico)

    2017-02-28

    Highlights: • Application of EMILI during welding 2205 Duplex stainless steel hindered the coarsening of δ grains in HTHAZ and promoted regeneration of γ. • Welds made with simultaneous EMILI presented TPI values at the HTHAZ similar to those for BM. • Welds made under 3, 12 and 15 mT presented a mass loss by anodic polarisation similar to that observed for the as-received BM. • This behaviour is due to changes in the dynamics of microstructural evolution during welding with EMILI. - Abstract: The effect of electromagnetic interaction of low intensity (EMILI) applied during fusion welding of AISI 2205 duplex stainless steel on the resistance to localised corrosion in natural seawater was investigated. The heat affected zone (HAZ) of samples welded under EMILI showed a higher temperature for pitting initiation and lower dissolution under anodic polarisation in chloride containing solutions than samples welded without EMILI. The EMILI assisted welding process developed in the present work enhanced the resistance to localised corrosion due to a modification on the microstructural evolution in the HAZ and the fusion zone during the thermal cycle involved in fusion welding. The application of EMILI reduced the size of the HAZ, limited coarsening of the ferrite grains and promoted regeneration of austenite in this zone, inducing a homogeneous passive condition of the surface. EMILI can be applied during fusion welding of structural or functional components of diverse size manufactured with duplex stainless steel designed to withstand aggressive environments such as natural seawater or marine atmospheres.

  9. Microstructure characterization and corrosion testing of MAG pulsed duplex stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Mitelea, Ion; Utu, Ion Dragos; Urlan, Sorin Dumitru; Karancsi, Olimpiu [Politehnica Univ. Timisoara (Romania). Faculty of Mechanical Engineering

    2017-08-01

    Duplex stainless steels are extremely attractive construction materials for their usage in intense aggressive environments. They offer numerous advantages compared to the austenitic stainless steels having an excellent behavior to pitting and cavernous corrosion, and a high resistance to stress cracking corrosion in chlorides media. However, their corrosion properties are largely dependent on the microstructural factors such as: the quantitative ratio of the two phases ferrite/austenite (F/A), the presence of intermetallic compounds and the distribution of the alloying elements between the ferrite and austenite. As a result of the thermal cycles experienced by the base metal without a post-weld heat treatment, the mechanical properties are significantly different in the heat affected zone and the deposited metal compared with the properties of the base metal. The present paper highlights the effect of the post-weld solution treatment in order to restore the balance between austenite and ferrite in the welded joint areas and also to limit undesirable precipitation of secondary phases with implications for increasing the corrosion resistance.

  10. Multiobjective optimization of friction welding of UNS S32205 duplex stainless steel

    Directory of Open Access Journals (Sweden)

    P.M. Ajith

    2015-06-01

    Full Text Available The present study is to optimize the process parameters for friction welding of duplex stainless steel (DSS UNS S32205. Experiments were conducted according to central composite design. Process variables, as inputs of the neural network, included friction pressure, upsetting pressure, speed and burn-off length. Tensile strength and microhardness were selected as the outputs of the neural networks. The weld metals had higher hardness and tensile strength than the base material due to grain refinement which caused failures away from the joint interface during tensile testing. Due to shorter heating time, no secondary phase intermetallic precipitation was observed in the weld joint. A multi-layer perceptron neural network was established for modeling purpose. Five various training algorithms, belonging to three classes, namely gradient descent, genetic algorithm and Levenberg–Marquardt, were used to train artificial neural network. The optimization was carried out by using particle swarm optimization method. Confirmation test was carried out by setting the optimized parameters. In conformation test, maximum tensile strength and maximum hardness obtained are 822 MPa and 322 Hv, respectively. The metallurgical investigations revealed that base metal, partially deformed zone and weld zone maintain austenite/ferrite proportion of 50:50.

  11. Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhang, Jianli

    2017-02-01

    The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N2 in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr2N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitro`gen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T1). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N2-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential corrosion. The Cr2N precipitation led to relatively poor resistance to pitting corrosion in three HAZs and pure Ar shielding GTAW weld root. The N2-supplemented shielding gas improved pitting corrosion resistance of GTAW joint by increasing PREN of secondary austenite and suppressing Cr2N precipitation. In addition, the FCAW WM had much poorer resistance to pitting corrosion than the GTAW WM due to many O-Ti-Si-Mn inclusions. In the BM, since the austenite with lower PREN compared

  12. Hardness analysis of welded joints of austenitic and duplex stainless steels

    Science.gov (United States)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  13. Metallurgical and Corrosion Characterization of POST Weld Heat Treated Duplex Stainless Steel (uns S31803) Joints by Friction Welding Process

    Science.gov (United States)

    Asif M., Mohammed; Shrikrishna, Kulkarni Anup; Sathiya, P.

    2016-02-01

    The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080∘C, 1150∘C and 1200∘C with 15min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080∘C followed by water quench and at 1150∘C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov-Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100∘C and that for oil quenching was around 1140∘C. The pit depths were found to be in the range of 100nm and width of 1.5-2μm.

  14. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    Science.gov (United States)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-11-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  15. Assessment of Stress Corrosion Cracking Resistance of Activated Tungsten Inert Gas-Welded Duplex Stainless Steel Joints

    Science.gov (United States)

    Alwin, B.; Lakshminarayanan, A. K.; Vasudevan, M.; Vasantharaja, P.

    2017-12-01

    The stress corrosion cracking behavior of duplex stainless steel (DSS) weld joint largely depends on the ferrite-austenite phase microstructure balance. This phase balance is decided by the welding process used, heat input, welding conditions and the weld metal chemistry. In this investigation, the influence of activated tungsten inert gas (ATIG) and tungsten inert gas (TIG) welding processes on the stress corrosion cracking (SCC) resistance of DSS joints was evaluated and compared. Boiling magnesium chloride (45 wt.%) environment maintained at 155 °C was used. The microstructure and ferrite content of different weld zones are correlated with the outcome of sustained load, SCC test. Irrespective of the welding processes used, SCC resistance of weld joints was inferior to that of the base metal. However, ATIG weld joint exhibited superior resistance to SCC than the TIG weld joint. The crack initiation and final failure were in the weld metal for the ATIG weld joint; they were in the heat-affected zone for the TIG weld joint.

  16. Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiqiang; Jing, Hongyang [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Xu, Lianyong, E-mail: xulianyong@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Han, Yongdian; Zhao, Lei [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Zhang, Jianli [Welding laboratory, Offshore Oil Engineering (Qing Dao) Company, Qing Dao 266520 (China)

    2017-02-01

    Highlights: • N{sub 2}-supplemented shielding gas promoted nitrogen solid-solution in the austenite. • Secondary austenite had higher Ni but lower Cr and Mo than primary austenite. • Pitting corrosion preferentially occurred at secondary austenite and Cr{sub 2}N. • Adding N{sub 2} in shielding gas improved pitting corrosion resistance of GTAW joint. • E2209T{sub 1} weld metal had very poor pitting corrosion resistance due to inclusions. - Abstract: The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N{sub 2} in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr{sub 2}N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitrogen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T{sub 1}). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N{sub 2}-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential

  17. Microstructural characterization and electron backscatter diffraction analysis across the welded interface of duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiqiang; Jing, Hongyang [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Xu, Lianyong, E-mail: xulianyong@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Han, Yongdian; Gao, Zhanqi; Zhao, Lei [School of Materials Science and Engineering, Tianjin University, Tianjin 300350 (China); Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300350 (China); Zhang, Jianli [Welding laboratory, Offshore Oil Engineering (Qing Dao) Company, Qing Dao 266520 (China)

    2017-08-15

    Highlights: • Apparent change in LTHAZ was the intergranular secondary austenite precipitation. • Ferrite in HAZ maintained same distribution as ferrite texture in base metal. • Different austenite in different zones showed different orientation with ferrite. • Ferrite and austenite grains exhibited different boundary characteristics. • Local deformations were generated in grain boundary and within deformed grain. - Abstract: The microstructural evolution, orientation relationships, boundary characteristics, grain type, local deformation, and microhardness across the welded interface of duplex stainless steel (DSS) were investigated. The DSS welded joint consisted of four typical zones: base metal (BM), low-temperature heat-affected zone (LTHAZ), high-temperature heat-affected zone (HTHAZ), and weld metal (WM). The apparent microstructural changes in the HTHAZ and LTHAZ were secondary austenite and Cr{sub 2}N precipitation. A modified cooperative precipitation mechanism of secondary austenite and Cr{sub 2}N at the interface was proposed. Furthermore, the ferrite in both the HTHAZ and LTHAZ maintained the same distribution as the ferrite texture in the BM, while this ferrite texture disappeared completely in the WM. Different austenite grains in the different zones exhibited different orientation relationships with the ferrite matrix. Special grain boundaries were mainly distributed between the austenite grains, while the ferrite grains primarily contained random grain boundaries. Austenite twins constituted the largest proportion of the special boundaries. The special austenite grain boundaries in the BM and LTHAZ were higher in relative frequency than those in the HTHAZ and WM. The ferrite grains in the HTHAZ and WM mainly consisted of substructured grains. In the BM, the recrystallization degree of ferrite was significantly lower than that of austenite grains. The local deformations were mainly generated in the grain boundaries and within the deformed

  18. Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.4062

    Science.gov (United States)

    Rosemann, P.; Müller, C.; Baumann, O.; Modersohn, W.; Halle, T.

    2017-03-01

    The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polished or blasting depending on the application and the requested corrosion resistance. Blasted surfaces are often used in industrial practice due to the easier and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the different performed corrosion tests (potential measurement, KorroPad-test and pitting potential) on welding seams with different surface treatments.

  19. Melting of SiC powders preplaced duplex stainless steel using TIG welding

    Science.gov (United States)

    Maleque, M. A.; Afiq, M.

    2018-01-01

    TIG torch welding technique is a conventional melting technique for the cladding of metallic materials. Duplex stainless steels (DSS) show decrease in performance under aggressive environment which may lead to unanticipated failure due to poor surface properties. In this research, surface modification is done by using TIG torch method where silicon carbide (SiC) particles are fused into DSS substrate in order to form a new intermetallic compound at the surface. The effect of particle size, feed rate of SiC preplacement, energy input and shielding gas flow rate on surface topography, microstructure, microstructure and hardness are investigated. Deepest melt pool (1.237 mm) is produced via TIG torch with highest energy input of 1080 J/mm. Observations of surface topography shows rippling marks which confirms that re-solidification process has taken place. Melt microstructure consist of dendritic and globular carbides precipitate as well as partially melted silicon carbides (SiC) particles. Micro hardness recorded at value ranging from 316 HV0.5 to 1277 HV0.5 which shows increment from base hardness of 260 HV0.5kgf. The analyzed result showed that incorporation of silicon carbide particles via TIG Torch method increase the hardness of DSS.

  20. Effect of Dynamic Reheating Induced by Weaving on the Microstructure of GTAW Weld Metal of 25% Cr Super Duplex Stainless Steel Weld Metal

    Directory of Open Access Journals (Sweden)

    Hee-Joon Sung

    2017-11-01

    Full Text Available The importance of the additional growth and/or transformation of the austenite phase that occurs in weld metals of super duplex stainless steel upon reheating is known. However, the effects have not been fully investigated, especially with respect to reheating induced by weaving during single-pass welding. In this work, bead-on-pipe gas tungsten arc welding (GTAW was conducted on super duplex stainless steel to understand the effect of weaving on the microstructure of weld metal. Microstructural analysis, electron backscatter diffraction (EBSD, and focused ion beam transmission electron microscopy (FIB-TEM were carried out to investigate the relationship between weaving and microstructural change. The weaving of GTAW produced a dynamic reheated area just before the weld bead during welding. It was revealed that extensive reheated weld existed even after one welding pass, and that the content of the austenite phase in the reheated area was higher than that in the non-reheated area, indicating the existence of a large quantity of intragranular austenite phase. In addition, the Cr2N content in the reheated area was lower than that in the non-reheated area. This reduction of Cr2N was closely related to the reheating resulting from weaving. TEM analysis revealed that Cr2N in the non-reheated area was dispersed following heating and transformed to secondary austenite.

  1. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-11-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  2. Detailed Microstructural Characterization and Restoration Mechanisms of Duplex and Superduplex Stainless Steel Friction-Stir-Welded Joints

    Science.gov (United States)

    Santos, T. F. A.; Torres, E. A.; Lippold, J. C.; Ramirez, A. J.

    2016-12-01

    Duplex stainless steels are successfully used in a wide variety of applications in areas such as the food industry, petrochemical installations, and sea water desalination plants, where high corrosion resistance and high mechanical strength are required. However, during fusion welding operations, there can be changes to the favorable microstructure of these materials that compromise their performance. Friction stir welding with a non-consumable pin enables welded joints to be obtained in the solid state, which avoids typical problems associated with solidification of the molten pool, such as segregation of alloying elements and the formation of solidification and liquefaction cracks. In the case of superduplex stainless steels, use of the technique can avoid unbalanced proportions of ferrite and austenite, formation of deleterious second phases, or growth of ferritic grains in the heat-affected zone. Consolidated joints with full penetration were obtained for 6-mm-thick plates of UNS S32101 and S32205 duplex stainless steels, and S32750 and S32760 superduplex steels. The welding heat cycles employed avoided the conditions required for formation of deleterious phases, except in the case of the welded joint of the S32760 steel, where SEM images indicated the formation of secondary phases, as corroborated by decreased mechanical performance. Analysis using EBSD and transmission electron microscopy revealed continuous dynamic recrystallization by the formation of cellular arrays of dislocations in the ferrite and discontinuous dynamic recrystallization in the austenite. Microtexture evaluation indicated the presence of fibers typical of shear in the thermomechanically affected zone. These fibers were not obviously present in the stir zone, probably due to the intensity of microstructural reformulation to which this region was subjected.

  3. Corrosion Resistance and Mechanical Properties of TIG and A-TIG Welded Joints of Lean Duplex Stainless Steel S82441 / 1.4662

    Directory of Open Access Journals (Sweden)

    Brytan Z.

    2016-06-01

    Full Text Available This paper presents results of pitting corrosion resistance of TIG (autogenous and with filler metal and A-TIG welded lean duplex stainless steel S82441/1.4662 evaluated according to ASTM G48 method, where autogenous TIG welding process was applied using different amounts of heat input and shielding gases like pure Ar and Ar+N2 and Ar+He mixtures. The results of pitting corrosion resistance of the welded joints of lean duplex stainless steel S82441 were studied in as weld conditions and after different mechanical surface finish treatments. The results of the critical pitting temperature (CPT determined according to ASTM G48 at temperatures of 15, 25 and 35°C were presented. Three different surface treatment after welding were applied: etching, milling, brushing + etching. The influence of post weld surface treatment was studied in respect to the pitting corrosion resistance, basing on CPT temperature.

  4. Effects of nitrogen in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel welding joint

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhou, Chao

    2017-05-01

    The effects of nitrogen addition in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel (DSS) welds were studied. N2-supplemented shielding gas facilitated the primary austenite formation, suppressed the Cr2N precipitation in weld root, and increased the microhardnesses of weld metal. Furthermore, N2-supplemented shielding gas increased pitting resistance equivalent number (PREN) of austenite, but which decreased slightly PREN of ferrite. The modified double loop electrochemical potentiokinetic reactivation in 2 M H2SO4 + 1 M HCl was an effective method to study the localized corrosion of the different zones in the DSS welds. The adding 2% N2 to pure Ar shielding gas improved the localized corrosion resistance in the DSS welds, which was due to compensation for nitrogen loss and promoting nitrogen further solution in the austenite phases, suppression of the Cr2N precipitation in the weld root, and increase of primary austenite content with higher PREN than the ferrite and secondary austenite. Secondary austenite are prone to selective corrosion because of lower PREN compared with ferrite and primary austenite. Cr2N precipitation in the pure Ar shielding weld root and heat affected zone caused the pitting corrosion within the ferrite and the intergranular corrosion at the ferrite boundary. In addition, sigma and M23C6 precipitation resulted in the intergranular corrosion at the ferrite boundary.

  5. Structural stability of super duplex stainless weld metals and its dependence on tungsten and copper

    Science.gov (United States)

    Nilsson, J.-O.; Huhtala, T.; Jonsson, P.; Karlsson, L.; Wilson, A.

    1996-08-01

    Three different superduplex stainless weld metals have been produced using manual metal arc welding under identical welding conditions. The concentration of the alloying elements tungsten and copper corresponded to the concentrations in commercial superduplex stainless steels (SDSS). Aging experiments in the temperature range 700 °C to 1110 °C showed that the formation of intermetallic phase was enhanced in tungsten-rich weld metal and also dissolved at higher temperatures compared with tungsten-poor and tungsten-free weld metals. It could be inferred from time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams produced in the present investigation that the critical cooling rate to avoid 1 wt pct of intermetallic phase was 2 times faster for tungsten-rich weld metal. Microanalysis in combination with thermodynamic calculations showed that tungsten was accommodated in χ phase, thereby decreasing the free energy. Experimental evidence supports the view that the formation of intermetallic phase is enhanced in tungsten-rich weld metal, owing to easier nucleation of nonequilibrium χ phase compared with σ phase. The formation of secondary austenite (γ2) during welding was modeled using the thermodynamic computer program Thermo-Calc. Satisfactory agreement between theory and practice was obtained. Thermo-Calc was capable of predicting observed lower concentrations of chromium and nitrogen in γ2 compared with primary austenite. The volume fraction of γ2 was found to be significantly higher in tungsten-rich and tungsten + copper containing weld metal. The results could be explained by a higher driving force for precipitation of γ2 in these.

  6. Detrimental Cr-rich Phases Precipitation on SAF 2205 Duplex Stainless Steels Welds After Heat Treatment

    Directory of Open Access Journals (Sweden)

    Argelia Fabiola Miranda Pérez

    Full Text Available Abstract The austeno-ferritic Stainless Steels are commonly employed in various applications requiring structural performances with enhanced corrosion resistance. Their characteristics can be worsened if the material is exposed to thermal cycles, since the high-temperature decomposition of ferrite causes the formation of detrimental secondary phases. The Submerged Arc Welding (SAW process is currently adopted for joining DSS owing to its relatively simple execution, cost savings, and using molten slag and granular flux from protecting the seam of atmospheric gases. However, since it produces high contents of δ-ferrite in the heat affected zone and low content of γ-austenite in the weld, high-Ni filler materials must be employed, to avoid excessive ferritization of the joint. The present work is aimed to study the effect of 3 and 6 hours isothermal heat treatments at 850°C and 900°C in a SAF 2205 DSS welded joint in terms of phases precipitation. The results showed the presence of σ-phase at any time-temperature combination, precipitating at the δ/γ interphases and often accompanied by the presence of χ-phase. However, certain differences in secondary phases amounts were revealed among the different zones constituting the joint, ascribable both to peculiar elements partitioning and to the different morphology pertaining to each microstructure.

  7. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: crazyfim@gmail.com [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: luirdzib@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Ochoa, E.M., E-mail: emgarcia@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico)

    2014-12-01

    Highlights: • Electromagnetic interaction in welding improved localised corrosion resistance. • Electromagnetic interaction in welding enhanced γ/δ phase balance of DuplexSS. • Welding under Electromagnetic interaction repress formation and growth of detrimental phases. • Welds made with gas protection (2% O{sub 2} + 98% Ar) have better microstructural evolution during welding. - Abstract: The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O{sub 2} (M1) and 97% Ar + 3% N{sub 2} (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  8. Transformation and Precipitation Reactions by Metal Active Gas Pulsed Welded Joints from X2CrNiMoN22-5-3 Duplex Stainless Steels

    Science.gov (United States)

    Utu, Ion-Dragos; Mitelea, Ion; Urlan, Sorin Dumitru; Crăciunescu, Corneliu Marius

    2016-01-01

    The high alloying degree of Duplex stainless steels makes them susceptible to the formation of intermetallic phases during their exposure to high temperatures. Precipitation of these phases can lead to a decreasing of the corrosion resistance and sometimes of the toughness. Starting from the advantages of the synergic Metal Active Gas (MAG) pulsed welding process, this paper analyses the structure formation particularities of homogeneous welded joints from Duplex stainless steel. The effect of linear welding energy on the structure morphology of the welded joints was revealed by macro- and micrographic examinations, X-ray energy dispersion analyses, measurements of ferrite proportion and X-ray diffraction analysis. The results obtained showed that the transformation of ferrite into austenite is associated with the chromium, nickel, molybdenum and nitrogen distribution between these two phases and their redistribution degree is closely linked to the overall heat cycle of the welding process. The adequate control of the energy inserted in the welded components provides an optimal balance between the two microstructural constituents (Austenite and Ferrite) and avoids the formation of undesirable intermetallic phases. PMID:28773727

  9. Microstructural, Mechanical, and Electrochemical Analysis of Duplex and Superduplex Stainless Steels Welded with the Autogenous TIG Process Using Different Heat Input

    Directory of Open Access Journals (Sweden)

    Gláucio Soares da Fonseca

    2017-12-01

    Full Text Available Duplex Stainless Steels (DSS and Superduplex Stainless Steels (SDSS have a strong appeal in the petrochemical industry. These steels have excellent properties, such as corrosion resistance and good toughness besides good weldability. Welding techniques take into account the loss of alloying elements during the process, so this loss is usually compensated by the addition of a filler metal rich in alloying elements. A possible problem would be during the welding of these materials in adverse conditions in service, where the operator could have difficulties in welding with the filler metal. Therefore, in this work, two DSS and one SDSS were welded, by autogenous Tungsten Inert Gas (TIG, i.e., without addition of a filler metal, by three different heat inputs. After welding, microstructural, mechanical, and electrochemical analysis was performed. The microstructures were characterized for each welding condition, with the aid of optical microscopy (OM. Vickers hardness, Charpy-V, and cyclic polarization tests were also performed. After the electrochemical tests, the samples were analyzed by scanning electron microscopy (SEM. The SDSS welded with high heat input kept the balance of the austenite and ferrite, and toughness above the limit value. The hardness values remain constant in the weld regions and SDSS is the most resistant to corrosion.

  10. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    OpenAIRE

    Prabhu Paulraj; Rajnish Garg

    2015-01-01

    Duplex Stainless Steels (DSS) and Super Duplex Stainless Steel (SDSS) have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic pha...

  11. THE INFLUENCE OF POSTHEAT TREATMENT ON FERRITE REDISTRIBUTION IN DUPLEX STEELS ELECTRON BEAM WELDS

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2009-04-01

    Full Text Available The duplex stainless steel is two-phase steel with the structure composed of austenite and ferrite with optimum austenite/ferrite proportion 50%. At present, classical arc processes for welding duplex steels are generally regarded as acceptable. On the other hand electron and laser beam welding is up to now considered less suitable for welding duplex steels. The submitted work presents the results of testing various thermal conditions at welding duplex stainless steel with electron beam. It was shown, that application of suitable postheat made possible to reduce the ferrite content in weld metal.

  12. Investigation of the Microstructural, Mechanical and Corrosion Properties of Grade A Ship Steel-Duplex Stainless Steel Composites Produced via Explosive Welding

    Science.gov (United States)

    Kaya, Yakup; Kahraman, Nizamettin; Durgutlu, Ahmet; Gülenç, Behçet

    2017-08-01

    Grade A ship-building steel-AISI 2304 duplex stainless steel composite plates were manufactured via explosive welding. The AISI 2304 plates were used to clad the Grade A plates. Optical microscopy studies were conducted on the joining interface for characterization of the manufactured composite plates. Notch impact, tensile-shear, microhardness, bending and twisting tests were carried out to determine the mechanical properties of the composites. In addition, the surfaces of fractured samples were examined by scanning electron microscopy (SEM), and neutral salt spray (NSS) and potentiodynamic polarization tests were performed to examine corrosion behavior. Near the explosion zone, the interface was completely flat, but became wavy as the distance from the explosion zone increased. The notch impact tests indicated that the impact strength of the composites decreased with increasing distance from the explosion zone. The SEM studies detected brittle behavior below the impact transition temperature and ductile behavior above this temperature. Microhardness tests revealed that the hardness values increased with increasing distance from the explosion zone and mechanical tests showed that no visible cracking or separation had occurred on the joining interface. The NSS and potentiodynamic polarization tests determined that the AISI 2304 exhibited higher corrosion resistance than the Grade A steel.

  13. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Prabhu Paulraj

    2015-08-01

    Full Text Available Duplex Stainless Steels (DSS and Super Duplex Stainless Steel (SDSS have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic phases and their effects on corrosion and mechanical properties. First the effect of various alloying elements on DSS and SDSS has been discussed followed by formation of various intermetallic phases. The intermetallic phases affect impact toughness and corrosion resistance significantly. Their deleterious effect on weldments has also been reviewed.

  14. Avaliação da soldagem multipasse de chapas espessas de aços inoxidáveis lean duplex UNS S32304 soldadas pelos processos SMAW, GMAW e FCAW: parte 1: propriedades mecânicas Evaluation of multipass welding of thick lean duplex stainless steel UNS S32304 plates welded by SMAW, GMAW and FCAW: part 1: Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Ronaldo Cardoso Junior

    2012-12-01

    Full Text Available Os aços inoxidáveis duplex (AID vêm se apresentando como uma excelente alternativa para aplicações em que alta resistência à corrosão e alta resistência mecânica são requeridas. Contudo, os AID, incluindo os aços inoxidáveis lean duplex, apresentam soldabilidade inferior em relação aos aços inoxidáveis austeníticos. Nesse sentido, esse trabalho tem como objetivo a avaliação da soldagem multipasse de chapas 22 mm de espessura da liga inoxidável lean duplex UNS S32304, utilizando-se os processo SMAW, GMAW e FCAW e consumíveis com dois tipos de composição química, 22%Cr9%Ni3%Mo e 23%Cr7%Ni, totalizando seis experimentos. Foram empregados chanfros em V com 60º e suporte cerâmico para soldagem do passe de raiz, sendo que o aporte térmico foi mantido praticamente constante em 1,6 kJ.mm-1. Determinou-se os tempos de soldagem e a seqüência de passes, objetivando uma análise de produtividade, em seguida as juntas soldadas foram submetidas à END por raios x. Foram extraídos corpos de prova para ensaios de tração, dobramento, Charpy a -30 ºC e microdureza. A produtividade dos processos semi-automáticos se mostrou pelo menos 63 % maior que a do processo SMAW, enquanto o processo FCAW se mostrou de 6 a 18% mais rápido que o GMAW. Foram encontradas descontinuidades (porosidade consideradas aceitáveis segundo ASME B31.3 em alguns dos experimentos, que não influenciaram negativamente os resultados mecânicos, os quais se apresentaram acima requerimento do metal de base e especificado por normas de fabricação.The duplex stainless steels (DSS's have been placed as an excellent alternative for applications where high corrosion resistance and high mechanical strength are required. However, DSS's, including the lean duplex, present lower weldability than the austenitic stainless steels. Thus, this study aims to evaluate the multipass welding of 22 mm plates of lean duplex stainless steel alloy UNS S32304, using the process

  15. Characterization of Stainless Steel Welding Fume Particles : Influence of Stainless Steel Grade, Welding Parameters and Particle Size

    OpenAIRE

    Mei, Nanxuan

    2016-01-01

    Welding is a widely used method to join two pieces of stainless steel. Since it produces a large amount of fume during the process, it can cause adverse health effects. The welding fume particles contain many elements. Among them Cr, Mn and Ni are of concern. These three elements can cause diseases if inhaled by humans, especially Cr(VI). In this project, welding fume particles are collected during welding of different stainless steel grades (austenitic AISI 304L and duplex LDX2101). Furtherm...

  16. Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-09-01

    Full Text Available The activated TIG (ATIG welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention. The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency. The major influencing ATIG welding parameters, such as electrode gap, travel speed, current and voltage, that aid in controlling the aspect ratio of DSS joints, must be optimized to obtain desirable aspect ratio for DSS joints. Hence in this study, the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array (OA experimental design and other statistical tools such as Analysis of Variance (ANOVA and Pooled ANOVA techniques. The optimum process parameters are found to be 1 mm electrode gap, 130 mm/min travel speed, 140 A current and 12 V voltage. The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.

  17. Numerical Simulation of Duplex Steel Multipass Welding

    Directory of Open Access Journals (Sweden)

    Giętka T.

    2016-12-01

    Full Text Available Analyses based on FEM calculations have significantly changed the possibilities of determining welding strains and stresses at early stages of product design and welding technology development. Such an approach to design enables obtaining significant savings in production preparation and post-weld deformation corrections and is also important for utility properties of welded joints obtained. As a result, it is possible to make changes to a simulated process before introducing them into real production as well as to test various variants of a given solution. Numerical simulations require the combination of problems of thermal, mechanical and metallurgical analysis. The study presented involved the SYSWELD software-based analysis of GMA welded multipass butt joints made of duplex steel sheets. The analysis of the distribution of stresses and displacements were carried out for typical welding procedure as during real welding tests.

  18. Estudo da soldagem de tubos de aço inoxidável duplex e superduplex na posição 5G Study of the welding of duplex and superduplex stainless steel pipes in the 5G position

    Directory of Open Access Journals (Sweden)

    Pedro Ivo Guimarães de Vasconcellos

    2010-09-01

    Full Text Available Os aços inoxidáveis duplex e superduplex possuem uma microestrutura austeno-ferrítica com fração média de cada fase de cerca 50%. A microestrutura duplex é responsável pelas excelentes propriedades mecânicas, especialmente o limite de escoamento e a tenacidade, e pela elevada resistência a corrosão por pites e sob tensão em meios contendo cloretos. A soldagem destes aços é frequentemente uma operação crítica. Neste trabalho, um tubo de superduplex SAF 2207 foi soldado pelo processo TIG (GTAW no passe de raiz e eletrodo revestido (SMAW nos passes de enchimento, e um tubo de duplex SAF 2205 foi todo soldado pelo processo GTAW. A microestrutura do metal base, zona afetada termicamente (ZTA e metal de solda foi caracterizada e quantificada. As propriedades de tenacidade, resistência a corrosão e composição química foram avaliadas e correlacionadas. Os valores de tenacidade ao impacto Charpy-V foram considerados adequados. Não foi observada a precipitação de intermetálicos, carbonetos e nitretos. O melhor resultado no teste de corrosão da junta soldada de aço inox superduplex, comparado ao duplex, foi atribuído ao baixo teor de ferrita delta na solda e ZTA, e composição química da solda enriquecida em Cr, Mo, W e N.The duplex and superduplex stainless steels have an austenitic-ferritic microstructure with an average fraction of each phase of approximately 50%. This duplex microstructure is responsible for the excellent mechanical properties, specially the yield strength and toughness, and for the improved pitting and stress corrosion cracking resistance in chloride environments. Welding of these steels is often a critical operation. In this work, a superduplex stainless steel SAF 2507 pipe was welded by the GTAW process in the root pass and by SMAW process on filler passes, and one pipe of duplex SAF 2205 was entirely welded by the GTAW process. The microstructure of the base metal, heat affected zone (HAZ and weld

  19. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.

    2004-01-01

    This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding. Th...

  20. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  1. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  2. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  3. The influence of intermetallic phases on corrosion properties in duplex stainless weld metals. Influencia de las fases intermetalicas sobre las propiedades de corrosion de los metales de soldadura de aceros inoxidables duplex

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, L.; Pak, S. (The Esab Group, Goe Teborg (El Salvador))

    1994-01-01

    The effect corrosion resistance and toughness of intermetallic phases, formed in the temperature range 675-1.000 degree centigree, was studied for 22% Cr-9% Ni 3% Mo-0,15% N duplex weld metals. Mo rich R.phase formed rapidly at 700 degree centigree and was the major phase precipitating at 800 degree centigree whereas only sigma- phase formed at 900 degree centigree. Some chi-phase formed at 800 degree centigree. A significant decrease of ferrite content of ferrite content or an increase in hardness indicates a lowered corrosion resistance. Corrosion resistance and toughness are affected simultaneously above 800 degree centigree whereas deterioration of corrosion resistance precedes embrittlement below 800 degree centigree. However, loss of corrosion resistance will not occur if recommended welding procedures are followed. (Author) 18 refs.

  4. Duplex 2209 Weld Overlay by ESSC Process

    OpenAIRE

    Er. Manoj Kumar; Dr. Abhishek Kamboj

    2017-01-01

    In the modern world of industrialization the wear is eating metal assets worth millions of dollars per year. The wear is in the form of corrosion, erosion, abrasion etc. which occur in the process industries like oil & gas, refineries, cement plants, steel plants, shipping and offshore working structures. The equipments like pressure vessels, heat exchangers, hydro processing reactors which very often work at elevated temperatures face corrosion in the internal diameter. Duplex 2209 weld over...

  5. Avaliação da proporção de fases em juntas soldadas de tubulações de aço inoxidável duplex mediante aplicação de ensaios não destrutivos Evaluation of phases proportions in welded joints of duplex stainless steel by non-destructive testing

    Directory of Open Access Journals (Sweden)

    Guttemberg Chagas de Souza

    2013-06-01

    Full Text Available Os aços inoxidáveis Duplex (AID aliam uma excelente resistência à corrosão com elevada resistência mecânica devido à fina microestrutura bifásica composta por quantidades similares de ferrita (δ e austenita (γ. Portanto, estas ligas são utilizados em tubulações e equipamentos industriais onde se requer elevada relação resistência/peso, especialmente em empreendimentos de construção e montagem off-shore. Entretanto, as condições operacionais, na soldagem de campo, podem promover um significativo desbalanço microestrutural destas fases, resultando em decréscimo das propriedades mencionadas. A inspeção com o ferritoscópio é uma avaliação normalmente utilizada nestas atividades. Durante a avaliação com esta técnica pode ocorrer a rejeição da junta soldada quando o metal de solda se encontra com valores de ferrita fora das faixas estabelecidas pelas especificações de projeto. Assim, torna-se importante a análise destas juntas, com outras técnicas complementares, tal como a utilização das réplicas metalográficas. Este fato motivou a avaliação da proporção de fases em spools de AID de espessuras relativamente finas, soldados no campo, comparando-se as técnicas não destrutivas descritas. Os resultados denotam valores semelhantes, contudo o resultado pode ser influenciado pela forma e condições superficiais da junta soldada.Duplex stainless steels are high strength and corrosion resistant alloys, whose properties are devoted to the fine microstructure composed by similar amounts of ferrite and austenite and also to the high concentrations of Cr, Mo and N in solid solution. Not for coincidence, duplex steels are extensively used in chemical and petrochemical industries. However, welding operations conditions can promote the unbalance of the ferrite/austenite proportions mainly in the welding metal, with decrease of the properties mentioned. For this reason, non destructive measurements of ferrite content

  6. Electromagnetic non-destructive technique for duplex stainless steel characterization

    Science.gov (United States)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  7. Mechanical characteristics of welded joints between different stainless steels grades

    Science.gov (United States)

    Topolska, S.; Łabanowski, J.

    2017-08-01

    Investigation of mechanical characteristics of welded joints is one of the most important tasks that allow determining their functional properties. Due to the very high, still rising, cost of some stainless steels it is justified, on economic grounds, welding austenitic stainless steel with steels that are corrosion-resistant like duplex ones. According to forecasts the price of corrosion resistant steels stil can increase by 26 ÷ 30%. For technical reasons welded joints require appropriate mechanical properties such as: tensile strength, bending, ductility, toughness, and resistance to aggressive media. Such joints are applied in the construction of chemical tankers, apparatus and chemical plants and power steam stations. Using the proper binder makes possible the welds directly between the elements of austenitic stainless steels and duplex ones. It causes that such joits behave satisfactorily in service in such areas like maritime constructions and steam and chemical plants. These steels have high mechanical properties such as: the yield strength, the tensile strength and the ductility as well as the resistance to general corrosion media. They are resistant to both pitting and stress corrosions. The relatively low cost of production of duplex steels, in comparison with standard austenitic steels, is inter alia, the result of a reduced amount of scarce and expensive Nickel, which is seen as a further advantage of these steels.

  8. Mechanical properties of duple stainless steels laser joints; Propiedades mecanicas de las uniones por laser de aceros inoxidables duplex

    Energy Technology Data Exchange (ETDEWEB)

    Amigo, V.; Bonache, V.; Teruel, L.; Vicente, A.

    2005-07-01

    The welded joints of stainless steels always present problems for the microstructural modifications that occur in the heat affected zone. Particularly, duplex stainless steels present very important changes when the weld pool solidifies forming fundamentally ferritic structures with some austenite in grain boundaries. These microstructural modifications, and those which occur in the HAZ, justify the mechanical properties of the joint and mainly those of plasticity, being all of them influenced by the processing conditions. In this work the influence of the laser welding speed on the tensile behaviour od duplex stainless steel welded joints is presented. The microstructure of the obtained seams and of the heat affected zone will be evaluated by means of optic and scanning electron microscopy. Also, different microhardness profiles have been obtained to evaluate the modifications in the mechanical properties both in the seam and the zone of thermal affection. (Author) 23 refs.

  9. Phase Transformations in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon-Jun [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  10. Ferrite Quantification Methodologies for Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Arnaldo Forgas Júnior

    2016-07-01

    Full Text Available In order to quantify ferrite content, three techniques, XRD, ferritoscope and optical metallography, were applied to a duplex stainless steel UNS S31803 solution-treated for 30 min at 1,000, 1,100 and 1,200 °C, and then compared to equilibrium of phases predicted by ThermoCalc® simulation. As expected, the microstructure is composed only by austenite and ferrite phases, and ferrite content increases as the solution treatment temperature increases. The microstructure presents preferred grains orientation along the rolling directions even for a sample solution treated for 30 min at 1,200 °C. For all solution treatment temperatures, the ferrite volume fractions obtained by XRD measurements were higher than those achieved by the other two techniques and ThermoCalc® simulation, probably due to texturing effect of previous rolling process. Values obtained by quantitative metallography look more assertive as it is a direct measurement method but the ferritoscope technique should be considered mainly for in loco measurement.

  11. Corrosion behaviour of sintered duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Utrilla, M. Victoria; Urena, Alejandro; Otero, Enrique; Munez, Claudio Jose [Escuela Superior de Ciencias Experimentales y Tecnologia, Universidad Rey Juan Carlos, C/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)

    2004-07-01

    Duplex austenite-ferrite stainless steels were prepared by mixing austenitic (316L) and ferritic (434L) atomized powders. Although different 316L/434L ratios were prepared, present work centred its study on 50% ferrite - 50% austenite sintered steel. The powders were mixed and pressed at 700 MPa and sintered at 1250 deg. C for 30 min in vacuum. The cooling rate was 5 deg. C/min. Solution treatment was carried out to homogenize the microstructure at 1100 deg. C during 20 min. A microstructural study of the material in solution was performed, evaluating the microstructure, proportion and shape of porosity, and ferrite percentage. This last was measured by two methods, quantitative metallography and Fischer ferrito-metry. The materials were heat treated in the range of 700 to 1000 deg. C, for 10, 30 and 60 min and water quenched, to study the microstructural changes and the influence on the intergranular corrosion resistance. The method used to evaluate the sensitization to the intergranular corrosion was the electrochemical potentio-kinetic reactivation procedure (EPR). The test solution was 0.5 M H{sub 2}SO{sub 4} + 0,01 M KSCN at 30 deg. C. The criterion used to evaluate the sensitization was the ratio between the maximum reactivation density (Ir) and the maximum activation density (Ia). The results of the electrochemical tests were discussed in relation with the microstructures observed at the different heat treatments. (authors)

  12. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  13. Rapid solidification in laser welding of stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, A. (Univ. di Padova (Italy)); Bonollo, F.

    1994-04-30

    The microstructural characterization of both weld beads and heat affected zones (HAZ) was carried out on austenitic (AISI 304, 316) and duplex (UNS 31803) stainless steels, laser welded under various working parameters (power, traverse speed, shielding gas), by means of light microscopy, SEM, TEM, and image analysis, with the aim of pointing out changes in the amounts of the present phases, with respect to those predicted by equilibrium diagrams. Moreover, an analytical thermal model of laser beam welding was employed in order to evaluate the cooling rates involved in the process. The thermal field analysis, checked by comparing the calculated and the actual weld beads, has been used as a tool aimed at correlating cooling rates and microstructural characteristics. (orig.)

  14. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    Energy Technology Data Exchange (ETDEWEB)

    Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, Morteza [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Eskandarian, Masoomeh [Department of Materials Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Zabolian, Azam [Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Szpunar, Jerzy A. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada)

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld

  15. Estudo dos efeitos da restrição na microestrutura, microdureza e tenacidade em juntas soldadas em aço inoxidável duplex Study of restriction effects on mMicrostructure, microhardness and toughness in welded joints of duplex stainless steel

    Directory of Open Access Journals (Sweden)

    Everton Barbosa Nunes

    2011-06-01

    microhardness and the toughness of both HAZ and FZ. Shielded electrode AWS E2209-17 was used to weld V joints in the duplex stainless steel UNS S31803. Welding has been performed in two levels of energy C1 (15 kJ/cm and C2 (20 kJ/cm, with and without restriction. In a generalized manner, it was observed a greater amount of ferrite in the finishing passes when compared to the first passes. Bigger amounts of Widmanstätten austenite in the conditions welded with restriction had been observed. Generally, the HAZ presented a coarser microstructure in the finishing passes, in way that did not show significant differences when compared with the conditions with and without restriction. Microhardness level was lower when large amount of Widmanstätten has been presented. Differences in energy absorbed in HAZ and FZ has not been observed when comparing conditions with and without restriction. The influence of the use of restraint in welding, especially in balancing phase, microstructure and microhardness has been observed.

  16. Automatic welding of stainless steel tubing

    Science.gov (United States)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  17. Assessment of Lean Grade Duplex Stainless Steels for Nuclear Power Applications

    Science.gov (United States)

    Young, George A.; Tucker, Julie D.; Lewis, Nathan; Plesko, Eric; Sander, Paul

    This research assesses the thermal stability of lean grades of duplex stainless steel relative to standard grade alloys. Both hot rolled plate and gas-tungsten-arc weld deposits of selected alloys were isothermally aged in the temperature regime of α-α' phase separation (T = 800°F / 427°C) for times up to 1,000 hours. The degree of embrittlement was assessed via changes in hardness and Charpy impact energy. Additionally, the materials were characterized by light optical microscopy, electron microprobe analysis (EMPA), analytical electron microscopy (AEM), and x-ray diffraction (XRD) to better understand the factors that affect embrittlement. Impact testing shows that at equivalent thermal exposure, small changes in alloy composition have a significant effect on the degree of embrittlement. Microscopy reveals that spinodal decomposition of the ferrite occurs in all the alloys tested at 800°F (427°C). Additionally, transmission electron microscopy shows complex intermetallic formation, likely G phase, in the standard grade weld metal. Relative to their standard grade counterparts, both the lean grade plate and the lean grade weld deposit display 10X slower embrittlement kinetics for the conditions studied. Despite the relatively complex metallurgy of these alloys, this research indicates that lean grade duplex stainless steels could have broad applicability to lower temperature components in nuclear power systems.

  18. Weld bead profile of laser welding dissimilar joints stainless steel

    Science.gov (United States)

    Mohammed, Ghusoon R.; Ishak, M.; Aqida, S. N.; Abdulhadi, Hassan A.

    2017-10-01

    During the process of laser welding, the material consecutively melts and solidifies by a laser beam with a peak high power. Several parameters such as the laser energy, pulse frequency, pulse duration, welding power and welding speed govern the mode of the welding process. The aim of this paper is to investigate the effect of peak power, incident angle, and welding speed on the weld bead geometry. The first investigation in this context was conducted using 2205-316L stainless steel plates through the varying of the welding speed from 1.3 mm/s to 2.1 mm/s. The second investigation was conducted by varying the peak power from 1100 W to 1500 W. From the results of the experiments, the welding speed and laser power had a significant effect on the geometry of the weld bead, and the variation in the diameter of the bead pulse-size. Due to the decrease in the heat input, welding speed affected penetration depth more than bead width, and a narrow width of heat affected zone was achieved ranging from 0.2 to 0.5 mm. Conclusively, weld bead geometry dimensions increase as a function of peak power; at over 1350 W peak power, the dimensions lie within 30 μm.

  19. Ductility of stabilized ferritic stainless steel welds

    Science.gov (United States)

    Hunter, G. B.; Eagar, T. W.

    1980-02-01

    An investigation was made into the mechanism of ductility loss in low interstitial 18 Cr-2Mo ferritic stainless steel welds stabilized with Ti and Nb. It was found that stabilizing TiN or Nb(C,N) precipitates are dissolved during the welding process, resulting in a finer distribution of precipitates in the weld metal than in the base metal. Furthermore, the FATT was found to increase by more than 200°C, leading to decreased room temperature ductility. Such an increase in FATT may not be explained solely in terms of grain growth. Internal friction measurements indicate that no free nitrogen is present in the weld metal, yet wet chemical analysis reveals that the nitrogen is present in a soluble form. Kinetic arguments suggest that the stabilized nitrogen dissolved during welding tends to reprecipitate during solidification in the form of a chromium rich nitride phase.

  20. Caracterização e avaliação da resistência à corrosão na soldagem de tubulação de aço inoxidável duplex UNS S31803 pelo processo a arco submerso Characterization and evaluation of corrosion resistance of welded joint of duplex stainless steel pipe UNS S31803 by submerged arc process

    Directory of Open Access Journals (Sweden)

    Juan Manuel Pardal

    2011-12-01

    Full Text Available O presente trabalho apresenta os resultados da caracterização e avaliação da resistência à corrosão de uma junta soldada correspondente a uma tubulação de aço inoxidável duplex (AID UNS S31803 de 35 mm de espessura de parede soldada pelos processos de soldagem TIG (GTAW na raiz e arco submerso (SAW no enchimento e acabamento. Foram empregados como consumíveis de soldagem metais de adição de liga 25Cr-9Ni-4Mo (% em peso. Os resultados da caracterização das propriedades mecânicas, composição química e resistência à corrosão em diversas regiões da junta soldada foram comparados com os obtidos para o metal de base da tubulação, assim como com os valores mínimos exigidos pelas normas de projeto. Os resultados obtidos demonstram claramente a possibilidade da implementação do processo SAW na pré fabricação de tubulações de paredes espessas de AID, tendo em vista os resultados das propriedades analisadas e a grande demanda na construção e montagem de tubulações desta família de aço inoxidáveis na indústria offshore.This work presents the mechanical properties, microstructural and corrosion resistance evaluation of a welded joint of duplex stainless steel (DSS pipe with 35 mm wall thickness. The joint was welded by gas tungsten arc welding (GTAW process in the root passes and submerged arc welding (SAW in the filling and cap passes using filler metals with composition 25Cr-9Ni-4Mo (%wt.. The results of mechanical properties, chemical composition and corrosion resistance characterization in different regions of the welded joint were compared to the base metal and to the specifications required by the standards applied in the project. The main focus of this work was to show the successful utilization of SAW process in the welding of thick wall pipes of DSS. The application of high productivity process such as SAW has a crescent demand in offshore industry.

  1. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    Science.gov (United States)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-01

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  2. Numerical modeling and optimization of machining duplex stainless steels

    Directory of Open Access Journals (Sweden)

    Rastee D. Koyee

    2015-01-01

    Full Text Available The shortcomings of the machining analytical and empirical models in combination with the industry demands have to be fulfilled. A three-dimensional finite element modeling (FEM introduces an attractive alternative to bridge the gap between pure empirical and fundamental scientific quantities, and fulfill the industry needs. However, the challenging aspects which hinder the successful adoption of FEM in the machining sector of manufacturing industry have to be solved first. One of the greatest challenges is the identification of the correct set of machining simulation input parameters. This study presents a new methodology to inversely calculate the input parameters when simulating the machining of standard duplex EN 1.4462 and super duplex EN 1.4410 stainless steels. JMatPro software is first used to model elastic–viscoplastic and physical work material behavior. In order to effectively obtain an optimum set of inversely identified friction coefficients, thermal contact conductance, Cockcroft–Latham critical damage value, percentage reduction in flow stress, and Taylor–Quinney coefficient, Taguchi-VIKOR coupled with Firefly Algorithm Neural Network System is applied. The optimization procedure effectively minimizes the overall differences between the experimentally measured performances such as cutting forces, tool nose temperature and chip thickness, and the numerically obtained ones at any specified cutting condition. The optimum set of input parameter is verified and used for the next step of 3D-FEM application. In the next stage of the study, design of experiments, numerical simulations, and fuzzy rule modeling approaches are employed to optimize types of chip breaker, insert shapes, process conditions, cutting parameters, and tool orientation angles based on many important performances. Through this study, not only a new methodology in defining the optimal set of controllable parameters for turning simulations is introduced, but also

  3. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  4. A study of chromium carbide precipitation at interphase boundaries in stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Willis, C.F.

    1990-04-01

    Sensitization is a deleterious process which can occur in stainless steels. It is caused by grain boundary or phase boundary precipitation of chromium carbides and the resulting formation of a chromium depleted zone adjacent to these boundaries. The carbides in question actually have the composition (Cr,Fe){sub 23}C{sub 6} (usually written M{sub 23}C{sub 6}), and precipitate in the temperature range 450--900{degree}C. Since a minimum chromium content is required to maintain the passive film necessary for resistance to electrochemical attack, the result of chromium depletion is that the steel becomes sensitized'' to possible intergranular corrosion. Sensitization often occurs as a result of welding operations. The material close to the fusion line reaches temperatures within the sensitization range. This region is called the heat affected zone (HAZ). Since many welds are multi-pass welds, the actual weld bead of one pass may lie in the heat affected zone of the next pass. The weld bead of the first pass might therefore be sensitized. Furthermore there are applications where welds will be exposed to sensitizing temperatures for very long periods of time, such as welded labels on retrievable nuclear waste containers. For these reasons the sensitization behavior of the actual weld-bead microstructures must be understood. It has been known for many years that duplex stainless steels (steels with both ferrite and austenite phases present at room temperature) have superior resistance to intergranular corrosion. A model has been proposed to explain the sensitization behavior of these alloys. This work will be concerned with testing the validity of aspects of this model using transmission electron microscopy and further understanding of the sensitization process in duplex stainless steel welds. 52 refs., 23 figs.

  5. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kai Wang Chan

    2014-07-01

    Full Text Available Duplex stainless steels (DSSs with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700–900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350–550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs.

  6. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels

    Science.gov (United States)

    Chan, Kai Wang; Tjong, Sie Chin

    2014-01-01

    Duplex stainless steels (DSSs) with austenitic and ferritic phases have been increasingly used for many industrial applications due to their good mechanical properties and corrosion resistance in acidic, caustic and marine environments. However, DSSs are susceptible to intergranular, pitting and stress corrosion in corrosive environments due to the formation of secondary phases. Such phases are induced in DSSs during the fabrication, improper heat treatment, welding process and prolonged exposure to high temperatures during their service lives. These include the precipitation of sigma and chi phases at 700–900 °C and spinodal decomposition of ferritic grains into Cr-rich and Cr-poor phases at 350–550 °C, respectively. This article gives the state-of the-art review on the microstructural evolution of secondary phase formation and their effects on the corrosion behavior of DSSs. PMID:28788129

  7. Welding Behavior of Free Machining Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    BROOKS,JOHN A.; ROBINO,CHARLES V.; HEADLEY,THOMAS J.; MICHAEL,JOSEPH R.

    2000-07-24

    The weld solidification and cracking behavior of sulfur bearing free machining austenitic stainless steel was investigated for both gas-tungsten arc (GTA) and pulsed laser beam weld processes. The GTA weld solidification was consistent with those predicted with existing solidification diagrams and the cracking response was controlled primarily by solidification mode. The solidification behavior of the pulsed laser welds was complex, and often contained regions of primary ferrite and primary austenite solidification, although in all cases the welds were found to be completely austenite at room temperature. Electron backscattered diffraction (EBSD) pattern analysis indicated that the nature of the base metal at the time of solidification plays a primary role in initial solidification. The solid state transformation of austenite to ferrite at the fusion zone boundary, and ferrite to austenite on cooling may both be massive in nature. A range of alloy compositions that exhibited good resistance to solidification cracking and was compatible with both welding processes was identified. The compositional range is bounded by laser weldability at lower Cr{sub eq}/Ni{sub eq} ratios and by the GTA weldability at higher ratios. It was found with both processes that the limiting ratios were somewhat dependent upon sulfur content.

  8. Effect of Electrode Types on the Solidification Cracking Susceptibility of Austenitic Stainless Steel Weld Metal

    Directory of Open Access Journals (Sweden)

    J. U. Anaele

    2015-01-01

    Full Text Available The effect of electrode types on the solidification cracking susceptibility of austenitic stainless steel weld metal was studied. Manual metal arc welding method was used to produce the joints with the tungsten inert gas welding serving as the control. Metallographic and chemical analyses of the fusion zones of the joints were conducted. Results indicate that weldments produced from E 308-16 (rutile coated, E 308-16(lime-titania coated electrodes, and TIG welded joints fall within the range of 1.5≤Creq./Nieq.≤1.9 and solidified with a duplex mode and were found to be resistant to solidification cracking. The E 308-16 weld metal had the greatest resistance to solidification cracking. Joints produced from E 310-16 had Creq./Nieq. ratio 1.9 and solidified with ferrite mode. It had a low resistance to solidification cracking.

  9. Corrosion Behavior of Austenitic and Duplex Stainless Steels in Lithium Bromide

    Directory of Open Access Journals (Sweden)

    Ayo Samuel AFOLABI

    2009-07-01

    Full Text Available The corrosion behavior of austenitic and duplex stainless steels in various concentrations of lithium, bromide solution was investigated by using the conventional weight loss measurement method. The results obtained show that corrosion of these steels occurred due to the aggressive bromide ion in the medium. Duplex stainless steel shows a greater resistance to corrosion than austenitic stainless steel in the medium. This was attributed to equal volume proportion of ferrite and austenite in the structure of duplex stainless steel coupled with higher content of chromium in its composition. Both steels produced electrochemical noise at increased concentrations of lithium bromide due to continuous film breakdown and repair caused by reduction in medium concentration by the alkaline corrosion product while surface passivity observed in duplex stainless steel is attributed to film stability on this steel.

  10. Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Macedo Silva, Edgard de, E-mail: edgard@cefetpb.edu.br [Centro federal de Educacao Tecnologica da Paraiba (CEFET PB), Area da Industria, Avenida 1o de Maio, 720 - 58015-430 - Joao Pessoa/PB (Brazil); Costa de Albuquerque, Victor Hugo, E-mail: victor.albuquerque@fe.up.pt [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pereira Leite, Josinaldo, E-mail: josinaldo@ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Gomes Varela, Antonio Carlos, E-mail: varela@cefetpb.edu.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pinho de Moura, Elineudo, E-mail: elineudo@pq.cnpq.br [Universidade Federal do Ceara (UFC), Departamento de Engenharia Metalurgica e de Materiais, Campus do Pici, Bloco 715, 60455-760 - Fortaleza/CE (Brazil); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.pt [Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecanica e Gestao Industrial (DEMEGI)/Instituto de Engenharia Mecanica e Gestao Industrial - INEGI, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2009-08-15

    Duplex stainless steel presents special mechanical properties such as, for example, mechanical and corrosion strength, becoming competitive in relation to the other types of stainless steel. One of the great problems of duplex stainless steel microstructural changes study is related to embrittlement above 300 deg. C, with the precipitation of the {alpha}' phase occurring over the ferritic microstructure. Aiming to characterise embrittlement of duplex stainless steel, hardening kinetics, from 425 to 475 deg. C, was analysed through the speed of sound, Charpy impact energy, X-ray diffraction, hardness and microscopy parameters. The presence of two hardening stages, detected through the speed of sound, was observed, one being of brittle characteristic and the other ductile. Moreover, the speed of sound showed a direct correlation with the material's hardness. Thus, it is concluded that the speed of sound is a promising nondestructive parameter to follow-up embrittlement in duplex stainless steel.

  11. Identification of sigma and chi phases in duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Llorca-Isern, Núria, E-mail: nullorca@ub.edu [Departament de Ciència dels Materials i Enginyeria Metallurgica, Facultat de Química, Universitat de Barcelona, Marti-Franqués 1, 08028 Barcelona (Spain); López-Luque, Héctor, E-mail: hlopezlu7@alumnes.ub.edu [Departament de Ciència dels Materials i Enginyeria Metallurgica, Facultat de Química, Universitat de Barcelona, Marti-Franqués 1, 08028 Barcelona (Spain); López-Jiménez, Isabel, E-mail: ilopezji9@alumnes.ub.edu [Departament de Ciència dels Materials i Enginyeria Metallurgica, Facultat de Química, Universitat de Barcelona, Marti-Franqués 1, 08028 Barcelona (Spain); Biezma, Maria Victoria, E-mail: maria.biezma@unican.es [Department of Earth, Materials Science and Engineering, University of Cantabria - UC, Gamazo, 1, 39004 Santander (Spain)

    2016-02-15

    The aim of this work is to find out the most suitable method for detecting and analyzing accurately the formation conditions of secondary phases, particularly Sigma-phase (σ-phase) and Chi-phase (χ-phase) in duplex stainless steels (UNS S32205 and UNS S32750). The microstructure was characterized after a solution annealing at 1080 °C followed by an isothermal heating at 830 °C for different time ranges, ranging from 1 min to 9 h, in order to enlighten the controversial point concerning the mechanism of χ-phase nucleation in relation with the σ-phase. Etched samples were observed using optical microscopy (MO), and scanning electron microscopy (FESEM) with a backscattered electron detector (BSE) was used on unetched samples. Compositional microanalysis (EDS) was carried out for identifying the different phases present in the steels. Sigma phase was easily observed using different etching procedures, whereas χ-phase was only clearly detected with FESEM–BSE on unetched samples. The compositional analyses showed that the molybdenum content in χ-phase almost doubles the content of this element in σ-phase, and as a result the kinetics of nucleation and growth were also found to be remarkably faster when the alloy content in the steel is higher. In addition, chromium nitrides and carbides were also observed to precipitate as a result of the heat treatments and, in the case of the chromium nitrides, they act as a favorable site for the nucleation of σ-phase and χ-phase. - Highlights: • Microscopy was used on heat treated duplex steels for microstructure identification. • FESEM–BSE observation on unetched samples provided the best contrast between phases. • Analyses of carbides, nitrides, chi and sigma phases were possible by EDS and WDS. • Chromium nitrides act as favorable site for the nucleation of chi and sigma phases. • Secondary phases nucleation kinetics are faster in superduplex than in duplex steels.

  12. Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications – A recent review

    Directory of Open Access Journals (Sweden)

    A. Vinoth Jebaraj

    2017-05-01

    Full Text Available In the present review, attempts have been made to analyze the metallurgical, mechanical, and corrosion properties of commercial marine alloy duplex stainless steel AISI 2205 with special reference to its weldability, machinability, and surfacing. In the first part, effects of various fusion and solid-state welding processes on joining DSS 2205 with similar and dissimilar metals are addressed. Microstructural changes during the weld cooling cycle such as austenite reformation, partitioning of alloying elements, HAZ transformations, and the intermetallic precipitations are analyzed and compared with the different welding techniques. In the second part, machinability of DSS 2205 is compared with the commercial ASS grades in order to justify the quality of machining. In the third part, the importance of surface quality in a marine exposure is emphasized and the enhancement of surface properties through peening techniques is highlighted. The research gaps and inferences highlighted in this review will be more useful for the fabrications involved in the marine applications.

  13. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be ...

  14. Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Devendranath Ramkumar, K., E-mail: ramdevendranath@gmail.com; Bajpai, Ankur; Raghuvanshi, Shubham; Singh, Anshuman; Chandrasekhar, Aditya; Arivarasu, M.; Arivazhagan, N.

    2015-06-25

    This research work articulated the effect of SiO{sub 2} flux assisted tungsten inert gas (TIG) welding on the microstructure and mechanical properties of marine grade stainless steel weldments, such as super-duplex stainless steel (UNS S32750) and austenitic stainless steel (AISI 316L). The studies showed that the use of flux decreased the heat input required to obtain complete penetration. Microstructure studies revealed the presence of ferrite at the heat affected zone of AISI 316L and the fusion zone which obviated the hot cracking tendency. Tensile studies corroborated that the joint strength was sufficiently greater than that of the parent metals. Impact toughness slightly impoverished owing to the presence of large platelets of Widmanstätten austenite in the fusion zone. The study also explored the structure–property relationships of the flux assisted weldments using the combined techniques of optical and scanning electron microscopy analysis. Owing to the better metallurgical and mechanical properties, this study recommends the use of SiO{sub 2} flux for joining the dissimilar metals involving austenitic and super-duplex stainless steels.

  15. Effect of Nanosize Yittria and Tungsten Addition to Duplex Stainless Steel During High Energy Planetary Milling

    Science.gov (United States)

    Nayak, A. K.; Shashanka, R.; Chaira, D.

    2016-02-01

    In this present investigation, elemental powders of duplex stainless steel composition (Fe-18Cr-13Ni) with 1 wt. % nano yittria and tungsten were milled separately in dual drive planetary mill (DDPM) for 10 h to fabricate yittria dispersed and tungsten dispersed duplex stainless steel powders. The milled powder samples were characterized by X-Ray diffraction and scanning electron microscopy (SEM) to study the size, morphology and phase evolution during milling. The gradual transformation from ferrite to austenite is evident from XRD spectra during milling. The crystallite size and lattice strain of yittria dispersed duplex stainless steel after 10 h milling were found to be 7 nm and 1.1% respectively. The crystallite size of tungsten dispersed duplex stainless steel was 5 nm. It has been observed from SEM analysis that particles size has been reduced from 40 to 5 μm in both cases. Annealing of 10 h milled powder was performed at 750°C for 1 h under argon atmosphere to study phase transformation in both yittria and tungsten dispersed duplex stainless steel. The XRD analysis of annealed stainless steel depicts the phase transformation from α-Fe to γ-Fe with the formation of oxides of Y,Fe and Cr. The differential scanning calorimetry analysis was conducted by heating the milled powder from room temperature to 1200°C under argon atmosphere to investigate the thermal analysis of both the stainless steel powders.

  16. Hardfacing of duplex stainless steel using melting and diffusion processes

    Science.gov (United States)

    Lailatul, H.; Maleque, M. A.

    2017-03-01

    Duplex stainless steel (DSS) is a material with high potential successes in many new applications such as rail car manufacturing, automotive and chemical industries. Although DSS is widely used in various industries, this material has faced wear and hardness problems which obstruct a wider capability of this material and causes problems in current application. Therefore, development of surface modification has been introduced to produce hard protective layer or coating on DSS. The main aim of this work is to brief review on hard surface layer formation on DSS using melting and diffusion processes. Melting technique using tungsten inert gas (TIG) torch and diffusion technique using gas nitriding are the effective process to meet this requirement. The processing route plays a significant role in developing the hard surface layer for any application with effective cost and environmental factors. The good understanding and careful selection of processing route to form products are very important factors to decide the suitable techniques for surface engineering treatment. In this paper, an attempt is also made to consolidate the important research works done on melting and diffusion techniques of DSS in the past. The advantages and disadvantages between melting and diffusion technique are presented for better understanding on the feasibility of hard surface formation on DSS. Finally, it can be concluded that this work will open an avenue for further research on the application of suitable process for hard surface formation on DSS.

  17. Pitting corrosion in austenitic and duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Jargelius-Pettersson, R.F.A.; Pires Duarte, B.; Duchamp, G. [Swedish Inst. for Metals Research, Stockholm (Sweden)

    1998-12-31

    Various electrochemical methods have been used to evaluate the pitting corrosion resistance of two austenitic and two duplex stainless steels. Testing has been performed in a purpose-built electrochemical cell which permits simultaneous evaluation of twelve specimens and in which crevice corrosion is avoided using a flushed-port design. A potential-independent critical pitting temperature below which pitting is not observed has been evaluated from potentiodynamic measurements, pitting potentials and pit induction times have also been evaluated at various temperatures above this critical value. Statistical treatment of the data has been used to evaluate the elementary pitting probability and pit generation rates. The good differentiation obtained using a large number of pitting potential measurements has permitted quantitative evaluation of the effect of testing and alloy variables. The surface finish is shown to have a significant effect on measured pitting resistance, as has the passivation time between specimen preparation and testing. The decrease in pitting resistance as a result of short-term sensitising heat treatment of the steels has also been evaluated. (orig.) 9 refs.

  18. Behavior of duplex stainless steel casting defects under mechanical loadings

    Energy Technology Data Exchange (ETDEWEB)

    Jayet-Gendrot, S. [Electricite de France, 77 - Moret-sur-Loing (France). Dept. of Materials Study; Gilles, P.; Migne, C. [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-04-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster`s envelope. The tests are analyzed in order to develop a method that takes into account the behavior of castings defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modelling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (author) 18 refs.

  19. Tooling solutions for sheet metal forming and punching of lean duplex stainless steel

    DEFF Research Database (Denmark)

    Wadman, Boel; Madsen, Erik; Bay, Niels

    2012-01-01

    .4509 and lean duplex EN1.4162 in a production designed for austenitic stainless steels, such as EN1.4301 and 1.4401. The result is a guideline that summarizes how stainless material properties may affect tool degradation, and suggests tool solutions for reduced production disturbances and tool maintenance cost....

  20. Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel

    Science.gov (United States)

    Yang, Se-fei; Wen, Ying; Yi, Pan; Xiao, Kui; Dong, Chao-fang

    2017-11-01

    The effects of chitosan inhibitor on the corrosion behavior of 2205 duplex stainless steel were studied by electrochemical measurements, immersion tests, and stereology microscopy. The influences of immersion time, temperature, and chitosan concentration on the corrosion inhibition performance of chitosan were investigated. The optimum parameters of water-soluble chitosan on the corrosion inhibition performance of 2205 duplex stainless steel were also determined. The water-soluble chitosan showed excellent corrosion inhibition performance on the 2205 duplex stainless steel. Polarization curves demonstrated that chitosan acted as a mixed-type inhibitor. When the stainless steel specimen was immersed in the 0.2 g/L chitosan solution for 4 h, a dense and uniform adsorption film covered the sample surface and the inhibition efficiency (IE) reached its maximum value. Moreover, temperature was found to strongly influence the corrosion inhibition of chitosan; the inhibition efficiency gradually decreased with increasing temperature. The 2205 duplex stainless steel specimen immersed in 0.4 g/L water-soluble chitosan at 30°C displayed the best corrosion inhibition among the investigated specimens. Moreover, chitosan decreased the corrosion rate of the 2205 duplex stainless steel in an FeCl3 solution.

  1. Deformation Induced Martensitic Transformation and Its Initial Microstructure Dependence in a High Alloyed Duplex Stainless Steel

    DEFF Research Database (Denmark)

    Xie, Lin; Huang, Tian Lin; Wang, Yu Hui

    2017-01-01

    Deformation induced martensitic transformation (DIMT) usually occurs in metastable austenitic stainless steels. Recent studies have shown that DIMT may occur in the austenite phase of low alloyed duplex stainless steels. The present study demonstrates that DIMT can also take place in a high alloyed...... Fe–23Cr–8.5Ni duplex stainless steel, which exhibits an unexpectedly rapid transformation from γ-austenite into α′-martensite. However, an inhibited martensitic transformation has been observed by varying the initial microstructure from a coarse alternating austenite and ferrite band structure...

  2. Development of nano-structured duplex and ferritic stainless steels by pulverisette planetary milling followed by pressureless sintering

    Energy Technology Data Exchange (ETDEWEB)

    R, Shashanka, E-mail: shashankaic@gmail.com; Chaira, D., E-mail: chaira.debasis@gmail.com

    2015-01-15

    Nano-structured duplex and ferritic stainless steel powders are prepared by planetary milling of elemental Fe, Cr and Ni powder for 40 h and then consolidated by conventional pressureless sintering. The progress of milling and the continuous refinement of stainless steel powders have been confirmed by means of X-ray diffraction and scanning electron microscopy. Activation energy for the formation of duplex and ferritic stainless steels is calculated by Kissinger method using differential scanning calorimetry and is found to be 159.24 and 90.17 KJ/mol respectively. Both duplex and ferritic stainless steel powders are consolidated at 1000, 1200 and 1400 °C in argon atmosphere to study microstructure, density and hardness. Maximum sintered density of 90% and Vickers microhardness of 550 HV are achieved for duplex stainless steel sintered at 1400 °C for 1 h. Similarly, 92% sintered density and 263 HV microhardness are achieved for ferritic stainless steel sintered at 1400 °C. - Highlights: • Synthesized duplex and ferritic stainless steels by pulverisette planetary milling • Calculated activation energy for the formation of duplex and ferritic stainless steels • Studied the effect of sintering temperature on density, hardness and microstructure • Duplex stainless steel exhibits 90% sintered density and microhardness of 550 HV. • Ferritic stainless steel shows 92% sintered density and 263 HV microhardness.

  3. On the kinetics of martensite formation in a duplex stainless steel ...

    African Journals Online (AJOL)

    Studies have been made of the kinetics of martensite transformation in a duplex stainless steel of composition 21Cr-6.6Ni, 2.5M0, 1.6Cu, <.0.03C (wt.%) Solution treatment at 1050οC for 1 hr was followed by deformation at the subzero temperatures of –70 and –196οC. The kinetics of the γ → α1 transformation in the duplex ...

  4. Size-separated particle fractions of stainless steel welding fume particles - A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium.

    Science.gov (United States)

    Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S

    2018-01-15

    Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Comparison of Hydrogen Embrittlement Resistance between 2205 Duplex Stainless Steels and type 316L Austenitic Stainless Steels Under the Cathodic Applied Potential

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Il; Lee, Jae-Bong [Kookmin University, Seoul (Korea, Republic of)

    2016-10-15

    2205 duplex stainless steels have been used for the construction of the marine environment, because of their excellent corrosion resistance and high strength. However, the resistance to hydrogen embrittlement (HE) may be less than that of 316L austenitic stainless steel. The reason why 316L stainless steels have better resistance to HE is associated with crystal structure (FCC, face centered cubic) and the higher stacking faults energy than 2205 duplex stainless steels. Furthermore 2205 stainless steels with or without tungsten were also examined in terms of HE. 2205 stainless steels containing tungsten is less resistible to HE. It is because dislocation tangle was formed in 2205 duplex stainless steels. Slow strain-rate tensile test (SSRT) was conducted to measure the resistance to HE under the cathodic applied potential. Hydrogen embrittlement index (HEI) was used to evaluate HE resistance through the quantitative calculation.

  6. Influence of surface texture on the galling characteristics of lean duplex and austenitic stainless steels

    DEFF Research Database (Denmark)

    Wadman, Boel; Eriksen, J.; Olsson, M.

    2010-01-01

    Two simulative test methods were used to study galling in sheet forming of two types of stainless steel sheet: austenitic (EN 1.4301) and lean duplex LDX 2101 (EN 1.4162) in different surface conditions. The pin-on-disc test was used to analyse the galling resistance of different combinations...

  7. Yield stress of duplex stainless steel specimens estimated using a compound Hall–Petch equation

    Directory of Open Access Journals (Sweden)

    Noriaki Hirota, Fuxing Yin, Tsukasa Azuma and Tadanobu Inoue

    2010-01-01

    Full Text Available In this study, the 0.2% yield stress of duplex stainless steel was evaluated using a compound Hall–Petch equation. The compound Hall–Petch equation was derived from four types of duplex stainless steel, which contained 0.2–64.4 wt% δ-ferrite phase, had different chemical compositions and were annealed at different temperatures. Intragranular yield stress was measured with an ultra-microhardness tester and evaluated with the yield stress model proposed by Dao et al. Grain size, volume fraction and texture were monitored by electron backscattering diffraction measurement. The kγ constant in the compound equation for duplex stainless steel agrees well with that for γ-phase SUS316L steel in the temperature range of 1323–1473 K. The derived compound Hall–Petch equation predicts that the yield stress will be in good agreement with the experimental results for the Cr, Mn, Si, Ni and N solid-solution states. We find that the intragranular yield stress of the δ-phase of duplex stainless steel is rather sensitive to the chemical composition and annealing conditions, which is attributed to the size misfit parameter.

  8. Tribological study in roll forming of lean duplex stainless steel sheets

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Nielsen, Morten Strogaard; Bay, Niels

    2012-01-01

    focus on tribological issues are galling and pick-up formation as well as tool life in roll forming of stainless duplex steel sheets. The roll forming process is exemplified by production of an s-shaped profile used in interlock carcass production for flexible pipes used in off-shore oil extraction...

  9. Investigation of Selected Surface Integrity Features of Duplex Stainless Steel (DSS) after Turning

    Czech Academy of Sciences Publication Activity Database

    Krolczyk, G.; Nieslony, P.; Legutko, S.; Hloch, Sergej; Samardžić, I.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 91-94 ISSN 0543-5846 Institutional support: RVO:68145535 Keywords : duplex stainless steel * machining * turning * surface integrity * surface roughness Subject RIV: JQ - Machines ; Tools Impact factor: 0.959, year: 2014 http://hrcak.srce.hr/126702

  10. 75 FR 53714 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Science.gov (United States)

    2010-09-01

    ... 564 (Third Review)] Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan AGENCY... antidumping duty orders on stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan. SUMMARY: The... stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan would be likely to lead to...

  11. STUDY AND ANALYSIS OF THE EFFECT OF WELDING PROCESS ON DISTORTION WITH 304L STAINLESS STEEL WELD JOINTS

    OpenAIRE

    Dhananjay Kumar*, Dharamvir mangal

    2017-01-01

    The effect of welding process on the distortion with 304L stainless steel 12thk weld joints made by TIG (tungsten inert gas) and SMAW (Shielded metal arc welding) welding process involving different type joint configuration have been studied. The joint configurations employed were double V-groove edge preparation for double side SMAW welding and square – butt preparation for double side TIG welding. All weld joints passed by radiographic. Distortion measurements were carried out using height ...

  12. Forta FDX 27 - duplex stainless steel for high strength gasket plate heat exchangers

    Science.gov (United States)

    Groth, A.; Schedin, E.; Sun, CC; He, Hailan; Guan, Li

    2017-09-01

    Outokumpu has developed a new duplex stainless steel with improved formability compared to other duplex grades. The so-called Forta FDX grades allows the utilization of duplex grades in more forming intensive products previously not possible and at the same time benefit from other duplex stainless steel properties for increased application performance. In this paper a Gasket Plate Heat Exchanger (GPHE) plate is formed with the new duplex grade Forta FDX 27 and compared to the baseline grade Supra 316L/4404. Detailed material characterization, strain measurements and Finite Element Analysis (FEA) were performed to further investigate the case. Small differences in measured strain distribution between Forta FDX 27 and Supra 316L/4404 were found after the stamping operation for both material grades and for the same design feature. Strain measurements showed reasonable agreement between measured experimental results and the numerical simulation for Forta FDX 27. Additionally, FEA predicts an improvement of the final strength of the product up to 30 % at the final configuration by using Forta FDX 27 instead of Supra 316L/4404.

  13. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    Science.gov (United States)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  14. Assessment of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    2003-01-01

    Crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including (1) Application of known information to predict solidification phases, (2) Weld metal solidification rate...... measurements for prediction of phases, (3) Various crack tests to assess the crack susceptibility of alloys and (4) A combination of the above for selection of suitable, weldable alloys. The possibility of using such specific methods for alloys and applications has been investigated and recommendations...... crack tests, the Weeter spot weld test has been chosen to form a basis for the development of a practicable method to select specific alloys for welding applications. A new test, the Groove weld test was developed, which has reduced the time consumption and lightened the analysis effort considerably...

  15. Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stability

    DEFF Research Database (Denmark)

    Moallemi, Mohammad; Zarei-Hanzaki, Abbas; Eskandari, Mostafa

    2017-01-01

    A new metastable Ni-free duplex stainless steel has been designed with superior plasticity by optimizing austenite stability using thermodynamic calculations of stacking fault energy and with reference to literature findings. Several characterization methods comprising optical microscopy, magneti...

  16. Classification of Induced Magnetic Field Signals for the Microstructural Characterization of Sigma Phase in Duplex Stainless Steels

    OpenAIRE

    Edgard M. Silva; Leandro B. Marinho; Pedro P. Rebouças Filho; Leite, João P.; Josinaldo P. Leite; Walter M. L. Fialho; Victor Hugo C. de Albuquerque; Tavares, João Manuel R. S.

    2016-01-01

    Duplex stainless steels present excellent mechanical and corrosion resistance properties. However, when heat treated at temperatures above 600 ∘ C, the undesirable tertiary sigma phase is formed. This phase presents high hardness, around 900 HV, and it is rich in chromium, the material toughness being compromised when the amount of this phase is not less than 4%. This work aimed to develop a solution for the detection of this phase in duplex stainless steels through the computational ...

  17. Studies of Hot Crack Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther

    During the present work crack testing concerning small and fast solidifying laser welds in austenitic stainless steel has been studied. A set of methods has been applied to investigate alloy properties, including ·Application of known information to predict solidification phases from the alloy...... composition. ·Weld metal solidification rate measurements for prediction of phases. ·Various crack tests to assess the crack susceptibility of alloys. ·A combination of the above for selection of suitable, weldable alloys. The possibility of using such specific methods for alloys and applications has been...... investigated and recommendations are given. From studies of literature it is found that the austenitic stainless steels have lowest crack susceptibility by a solidification course leaving approximately 15% rest ferrite in the weld metal. The alloys properties and the solidification rate determines the amount...

  18. Effect of solution treatment on microstructure and properties of duplex stainless steel

    Science.gov (United States)

    Wang, X. Y.; Luo, J. M.; Huang, L. Q.; Wang, H. B.; Ma, C. W.

    2017-09-01

    The influence of solution treatment on microstructure and properties of 2205 duplex stainless steel (DSS) was studied. The microstructure, precipitates and corrosion resisting property were observed and analyzed by means of optical microscopy (OM), scanning electron microscopy (SEM) and electrochemical methods. The results showed that a large number of brittle σ-phase precipitates, which deteriorate the plasticity and corrosion resistance of the material, were easy to produce in the duplex stainless steel under the low temperature. The precipitation of σ-phase can be decreased and the plasticity and corrosion resistance can be improved by increasing solution temperature. In addition, the ferrite content increases with the increase of solution temperature, while less affected by cooling rate.

  19. Effect of solution treatment on pitting behavior of 2205 duplex stainless steel

    Directory of Open Access Journals (Sweden)

    H. Luo

    2017-02-01

    Full Text Available The effect of solution heat treatment on pitting behavior of 2205 duplex stainless steel was investigated by EDS, potentiodynamic polarization and SECM. The contrast experiments were carried out on the original steel. The results demonstrate that for the original sample, when the potential was at the open circuit potential, there were many pitting precursor areas, due to the local breakdown of passive film on the surface, the pitting current fluctuations on the scale of pA. On the contrary, after 1100 °C solution treatment, the passive film was more stable than the original one. Therefore, the solution treatment can markedly improve the pitting resistance of 2205 duplex stainless steel due to the reduction of pitting precursor areas.

  20. Eddy Current Transducer Dedicated for Sigma Phase Evaluation in Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Grzegorz Psuj

    2012-01-01

    Full Text Available The paper describes a new transducer dedicated for evaluation of a duplex stainless steel (DSS. Different phases which exist in DSS have influence on mechanical as well as on electrical properties. Therefore, an eddy current transducer was utilized. In order to achieve high sensitivity, a differential type of the transducer was selected. The performance of the transducer was verified by utilizing the samples which had a different amount of sigma phase.

  1. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm

    OpenAIRE

    Huabing Li; Enze Zhou; Dawei Zhang; Dake Xu; Jin Xia; Chunguang Yang; Hao Feng; Zhouhua Jiang; Xiaogang Li; Tingyue Gu; Ke Yang

    2016-01-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift...

  2. Effect of solution treatment on pitting behavior of 2205 duplex stainless steel

    OpenAIRE

    Luo, H.; Li, X.G.; Dong, C.F.; Xiao, K.

    2012-01-01

    The effect of solution heat treatment on pitting behavior of 2205 duplex stainless steel was investigated by EDS, potentiodynamic polarization and SECM. The contrast experiments were carried out on the original steel. The results demonstrate that for the original sample, when the potential was at the open circuit potential, there were many pitting precursor areas, due to the local breakdown of passive film on the surface, the pitting current fluctuations on the scale of pA. On the contrary, a...

  3. Nitride alloy layer formation of duplex stainless steel using nitriding process

    Science.gov (United States)

    Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.

    2018-01-01

    Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.

  4. Corrosion behavior of a welded stainless-steel orthopedic implant.

    Science.gov (United States)

    Reclaru, L; Lerf, R; Eschler, P Y; Meyer, J M

    2001-02-01

    The corrosion behavior of combinations of materials used in an orthopedic implant: the spherical part (forged or forged and annealed) constituting the head, the weld (tungsten inert gas (TIG) or electron beam (EB) techniques), and the cylindrical part (annealed) constituting the shaft of a femoral prosthesis - has been investigated. Open-circuit potentials, potentiodynamic curves, Tafel slope, mixed potential theory and susceptibility to intergranular attack are electrochemical and chemical procedures selected for this work. Electrochemical measurements using a microelectrode have been made in the following zones: spherical part, cylindrical part, weld, and weld/sphere, and weld/shaft interfaces. To detect intergranular attack, the Strauss test has been used. At the interfaces, corrosion currents, measured (Icorr) and predicted (Icouple) are low, in the order of the pico- to nanoampere. The electrochemical behavior of the electron beam (EB) weld is better than that of the tungsten inert gas (TIG). Welds at interfaces can behave either anodically or cathodically. It is better if welds, which are sensitive parts of the femoral prosthesis, behave cathodically. In this way, the risk of starting localized corrosion (pitting, crevice or intergranular corrosion) from a galvanic couple, remains low. From this point of view, the sample with the EB weld offers the best behavior. All the other samples containing a TIG type of weld exhibit a less favorable behavior. The mechanical treatments (forged, and forged and annealed) of the steel sphere did not show any difference in the corrosion behavior. No intergranular corrosion has been observed at the weld/steel interface for unsensitized samples. With sensitized samples, however, a TIG sample has exhibited some localized intergranular corrosion at a distance of 500 microm along the weld/stainless steel (sphere) interface.

  5. Arc characteristics of submerged arc welding with stainless steel wire

    Science.gov (United States)

    Li, Ke; Wu, Zhi-sheng; Liu, Cui-rong; Chen, Feng-hua

    2014-08-01

    The arc characteristics of submerged arc welding (SAW) with stainless steel wire were studied by using Analysator Hannover (AH). The tests were carried out under the same preset arc voltage combined with different welding currents. By comparing the probability density distribution (PDD) curves of arc voltage and welding current, the changes were analyzed, the metal transfer mode in SAW was deduced, and the characteristics of a stable arc were summarized. The analysis results show that, with an increase of welding parameters, the short-circuiting peak in the PDD curves of arc voltage decreases gradually until it disappears, and the dominant metal transfer mode changes from flux-wall guided transfer to projected transfer and then to streaming transfer. Moreover, when the PDD curves of arc voltage are both unimodal and generally symmetrical, the greater the peak probability and the smaller the peak span, the more stable the arc becomes.

  6. Weld Properties of a Free Machining Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Brooks; S. H. Goods; C. V. Robino

    2000-08-01

    The all weld metal tensile properties from gas tungsten arc and electron beam welds in free machining austenitic stainless steels have been determined. Ten heats with sulfur contents from 0.04 to 0.4 wt.% and a wide range in Creq/Nieq ratios were studied. Tensile properties of welds with both processes were related to alloy composition and solidification microstructure. The yield and ultimate tensile strengths increased with increasing Creq/Nieq ratios and ferrite content, whereas the ductility measured by RA at fracture decreased with sulfur content. Nevertheless, a range in alloy compositions was identified that provided a good combination of both strength and ductility. The solidification cracking response for the same large range of compositions are discussed, and compositions identified that would be expected to provide good performance in welded applications.

  7. Duplex stainless steel surface bay laser cladding; Modificacion de las propiedades superficiales de aceros inoxidables Duplex mediante recubrimientos por laser

    Energy Technology Data Exchange (ETDEWEB)

    Amigo, V.; Pineda, Y.; Segovia, F.; Vicente, A.

    2004-07-01

    Laser cladding is one of the most promising techniques to restore damaged surfaces and achieve properties similar to those of the base metal. In this work, duplex stainless steels have been cladded by a nickel alloy under different processing conditions. The influence of the beam speed and defocusing variables ha been evaluated in the microstructure both of the cladding and heat affected zone, HAZ. These results have been correlated to mechanical properties by means of microhardness measurements from cladding area to base metal through the interface. This technique has shown to be very appropriate to obtain controlled mechanical properties as they are determined by the solidification microstructure, originated by the transfer of mass and heat in the system. (Author) 21 refs.

  8. Surface analysis of localized corrosion of austenitic 316L and duplex 2205 stainless steels in simulated body solutions

    NARCIS (Netherlands)

    Conradi, Marjetka; Schön, Peter Manfred; Kocijan, Aleksandra; Jenko, M.; Vancso, Gyula J.

    2011-01-01

    We report on cyclic voltammetry and in situ electrochemical atomic force microscopy (EC-AFM) studies of localized corrosion of duplex 2205 stainless steel (DSS 2205) and austenitic stainless steel of the type AISI 316L in two model solutions, including artificial saliva (AS) and a simulated

  9. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    OpenAIRE

    Chen Ying An; Francisco Piorino Neto; Eder Paduan Alves

    2010-01-01

    Abstract: The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW), which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The ...

  10. Welding stainless steels for structures operating at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  11. Welding of stainless and nickel based materials in the chemical industry. Consumables and procedures. Soldadura de aceros inoxidables y de materiales de base niquel en la industria quimica. Consumibles y procedimientos

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, J.; Budgifvars, S. (The ESA Grouo, Geoteborg (Sweden))

    1994-01-01

    In the chemical and petrochemical process industry a large range of various stainless and nickel based materials are used to meet high demands on corrosion resistance for optimum service performance. These materials include standard stainless steels, duplex and super duplex steels, super austenitic steels and nickel based alloys. Many components are being welded in the construction stage or may later on have to be repaired by welding. The design of components also often calls for joining or cladding of dissimilar materials to optimize the use of the material properties and for economical reasons to reduce the amount of expensive materials. Consumables and procedures have been developed to give weld metals to match the corrosion and strength requirements of the materials. There is a wide selection of MM electrodes with different coatings available and new types of stainless flux cored wires are being introduced. Especially for cladding of large surfaces the submerged arc strip cladding process offer high productivity solutions. (Author) 6 ref.

  12. Passivation of duplex stainless steel in solutions simulating chloride-contaminated concrete

    Directory of Open Access Journals (Sweden)

    Takenouti, H.

    2007-12-01

    Full Text Available Most studies published to date on the corrosion behaviour of stainless reinforcing steel are based on austenitic steel. The market presence of corrugated duplex steel is growing, however. The present study compared passivity in 2205 type duplex and 304 type austenitic stainless steel. Polarization tests in chloride-containing Ca(OH2 solutions confirmed the exceptional performance of duplex steels. X-ray photoelectronic spectroscopy (XPS showed that the passive layer generated on duplex stainless steel in media simulating concrete pore solutions had a higher Cr content than the layer formed on steel in contact with the air. The XPS results also revealed that in duplex steel the form adopted by the passive layer Fe oxides was Fe3O4 in the solutions simulating concrete, rather than Fe2O3, as in duplex steel exposed to air. Electrochemical impedance spectroscopy (EIS can be used to monitor the transformations taking place in the passive layer and analyze the factors involved.La mayoría de los estudios publicados hasta el momento sobre el comportamiento frente a la corrosión de armaduras de acero inoxidable se basan en aceros austeníticos. Sin embargo, la presencia en el mercado de aceros corrugados dúplex es cada vez más importante. En este trabajo se analiza la pasividad de un acero inoxidable dúplex tipo 2205 en comparación con la de un inoxidable austenítico tipo 304. Los ensayos de polarización en disoluciones de Ca(OH2 con cloruros confirman el excepcional comportamiento de los aceros dúplex. La espectroscopía fotoelectrónica de rayos X (XPS informa de que la capa pasiva generada en aceros inoxidables dúplex en medios que simulan la disolución de los poros del hormigón posee mayor contenido en óxidos de Cr que la formada en aire. También se puede deducir de los resultados de XPS que los óxidos de Fe de la capa pasiva de los aceros dúplex se encuentran en forma de Fe3O4 en las disoluciones que simulan el hormigón en vez de en

  13. Hydrogen permeation characteristics of welded 316 stainless steel using nickel welding filler

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, T.; Ikeshoji, T.T.; Suzumura, A.; Kobayashi, D.; Naito, T. [Tokyo Inst. of Technology, Tokyo (Japan)

    2007-07-01

    Low carbon stainless steel of 316L has been utilized for an ultra high vacuum chamber assembled by welding, and it contains 12-15% nickel. We investigate the work of nickel element with hydrogen atoms as the hydrogen catalysis near heat affected zone. Hydrogen permeation tests for welded specimens using nickel filler were performed to prevent from hydrogen embrittlement cracking in the heat affected zone. In this study, the hydrogen permeation technique using an orifice and a quadrupole mass spectrometer (QMS) is utilized to measure the hydrogen gas flux in the stainless steel. A stationary hydrogen flux from the stainless steel surface was measured by using a system with an orifice. The hydrogen pressure difference which applied to the specimen was enabled us to maintain constant by constant gas flow rate from the orifice in low pressure vessel. The value of hydrogen permeability, K, at 620K for welded specimen using the nickel filler is 3.62 times 10{sup -12} m{sup 2}s{sup -1}Pa{sup 1/2}. It is 1.9 times grater than that of normal non-welded 316 stainless steel substrate. The value at 520 K for the welded specimen is 7.31 times 10{sup -14} m{sup 2}s{sup -1}Pa{sup 1/2}. It is as same as that of the non-welded substrate. It is considered that the role of nickel at high temperature near 620K is to release hydrogen atom, and the role of nickel at temperature below 520K is to trap hydrogen atoms, and that the weld metal become hydrogen diffusion path. (orig.)

  14. Analysis of features of stainless steels in dissimilar welded joints in chloride inducted corrosion

    Science.gov (United States)

    Topolska, S.; Łabanowski, J.

    2017-08-01

    Stainless steels of femtic-austenitic microstructure that means the duplex Cr-Ni-Mo steels, in comparison with austenitic steel includes less expensive nickel and has much better mechanical properties with good formability and corrosion resistance, even in environments containing chloride ions. Similar share of high chromium ferrite and austenite, which is characterized by high ductility, determines that the duplex steels have good crack resistance at temperatures up to approximately -40°C. The steels containing approximately 22% Cr, 5% Ni, 3% Mo and 0.2% N crystallizes as a solid solution δ, partially transforming from the temperature of about 1200°C to 850°C into the phase α. The stable structure of considered steels, at temperatures above 850°C, is ferrite, and at lower temperatures the mixture of phase γ+α +σ. The two-phase structure α+γ the duplex steel obtains after hyperquenching at the temperature of stability of the mixture of α+γ phases, and the share of the phases depends on the hyper quenching attributes. Hyperquenching in water, with a temperature close to 1200°C, ensures the instance in the microstructure of the steel a large share of ferrite and a small share of the high chromium austenite. This causes the increase of strength properties and reducing the plasticity of the steel and its resistance ability to cracking and corrosion. Slower cooling from the mentioned temperature, for example in the air, enables the partial transformation of the a phase into the γ one (α → γ) and increasing the share of austenite in the steel structure. It leads to improvement of plasticity properties. In the paper are presented the results of investigations of heteronymous welded joints of duplex steel and austenitic one. The results include the relation between the chemical composition of steels and their weldability.

  15. Fatigue behavior of welded austenitic stainless steel in different environments

    Directory of Open Access Journals (Sweden)

    D.S. Yawas

    2014-01-01

    Full Text Available The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat treated sample and 0.1 × 10−5 N/mm2 for the unheat-treated sample compared to the corresponding hydrochloric acid and steam samples. The post-welding heat treatment was found to increase the mechanical properties of the austenitic stainless steel especially tensile strength but it reduces the transformation and thermal stresses of the samples. These findings were further corroborated by the microstructural examination of the stainless steel specimen.

  16. Elemental distribution inside a heat treated stainless steel weld.

    CERN Multimedia

    2017-01-01

    The video shows the elemental distribution of Molybdenum (red), Manganese (green) and Chromium (blue) within a 20 μm × 20 μm × 20 μm region of a heat treated stainless steel weld. This data has been collected using 3D Focused Ion Beam Milling and Energy Dispersive X-ray Spectroscopy, an elemental characterisation analysis technique. High resolution (75 nm voxel size) mapping is necessary to gain insight into the distribution of regions with distinct elemental composition (phases), which are shown in purple (sigma) and yellow (delta ferrite) in the video. These features have important implications for the toughness and the magnetic properties of the weld, especially at cryogenic temperatures. The video shows the individual slices which were collected in a direction perpendicular to the weld bead direction, followed by a 3D representation of the gauge volume.

  17. Weld solidification cracking in 304 to 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-01-01

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  18. Weld solidification cracking in 304 to 204L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-09-15

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  19. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding

    Science.gov (United States)

    KEANE, M.; SIERT, A.; STONE, S.; CHEN, B.; SLAVEN, J.; CUMPSTON, A.; ANTONINI, J.

    2015-01-01

    Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr6+) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr6+ fractions were measured in the fumes; fume generation rates, Cr6+ generation rates, and Cr6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr6+ ranged from 69 to 7800 μg/min, and Cr6+ generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr6+ (ppm) in the fume did not necessarily correlate with the Cr6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). Conclusion: The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use. PMID:26690276

  20. Stainless steel welding and semen quality

    DEFF Research Database (Denmark)

    Jelnes, J E; Knudsen, Lisbeth E.

    1988-01-01

    Questionnaire studies of patients from fertility clinics suggest that welders may have an increased risk of reduced semen quality. In this study, welders and nonwelders from the same plants were asked to provide blood, urine, and semen samples. Urine was analyzed for chromium and nickel, and for ...... and nonwelders. Because the metal dust exposure of nonwelders in the plant may be higher than that in the general population, welders were also compared to referents not working in the metal industry. Again, no decrease in semen quality associated with welding was demonstrated....

  1. Process for stabilizing dimensions of duplex stainless steels for service at elevated temperatures

    Science.gov (United States)

    Hull, Frederick C.; Tobin, John C.

    1981-01-01

    Duplex stainless steel materials containing austenite plus delta ferrite, are dimensionally stabilized by heating the material to a reaction temperature between about 1050.degree.-1450.degree. F. (566.degree.-788.degree. C.), holding it at this temperature during transformation of delta ferrite to austenite plus sigma phase, and subsequently heating to a reversion temperature between about 1625.degree.-1750.degree. F. (885.degree.-954.degree. C.), whereby the sigma phase transforms back to ferrite, but the austenite remains dispersed in the ferrite phase. Final controlled cooling permits transformation of ferrite to austenite plus sigma and, later, precipitation of carbides.

  2. Microhardness changes gradient of the duplex stainless steel (DSS surface layer after dry turning

    Directory of Open Access Journals (Sweden)

    G. Krolczyk

    2014-10-01

    Full Text Available The article presents the gradient of microhardness changes as a function of the distance from the material surface after turning with a wedge provided with a coating with a ceramic intermediate layer. The investigation comprised the influence of cutting speed on surface integrity microhardness in dry machining. The tested material was duplex stainless steel (DSS with two-phase, ferritic-austenitic structure. The tests have been performed under production conditions during machining of parts for electric motors and deep-well pumps.

  3. Stainless steel welding and semen quality

    Energy Technology Data Exchange (ETDEWEB)

    Jelnes, J.E.; Knudsen, L.E. (Department of Biology and Toxicology, Danish National Institute of Occupational Health, Copenhagen (Denmark))

    1988-01-01

    Questionnaire studies of patients from fertility clinics suggest that welders may have an increased risk of reduced semen quality. In this study, welders and nonwelders from the same plants were asked to provide blood, urine, and semen samples. Urine was analyzed for chromium and nickel, and for mutagenic activity and metal concentration; blood for metal concentrations, immunoglobulin G, total protein, and measures of genotoxicity in lymphocytes; and semen was evaluated by standard semen analysis. Results of the semen evaluation, presented here, showed no difference in semen quality between welders and nonwelders. Because the metal dust exposure of nonwelders in the plant may be higher than that in the general population, welders were also compared to referents not working in the metal industry. Again, no decrease in semen quality associated with welding was demonstrated.

  4. Prediction of solidification and phase transformation in weld metals for welding of high performance stainless steels; Kotaishoku kotainetsu stainless koyo yosetsu kinzoku no gyoko hentai no yosoku gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Koseki, T.; Inoue, H.; Morimoto, H.; Okita, S. [Nippon Steel Corp., Tokyo (Japan)

    1995-02-28

    Prediction technology is introduced on the solidification and transformation of weld metals used for high performance stainless steel. A model has been developed which uses Thermo Calc, a multiple balanced calculation program, as a means to analyze the solidification of multi-component alloys including the polyphase solidification such as eutectic and peritectic. Verification has been in progress concerning the adequacy of this model and the adaptability as a practical steel. The following are the prediction technologies for solidification and transformation which have been derived from experiments and applied to welding techniques: the effects of nitrogen on the solidification mode and residual {gamma}quantity of a welding metal that is required for controlling the welding/solidification of high nitrogen content {gamma}system stainless steel; the structural control of weld metal for high corrosion resistance high Mo stainless steel, in which high Ni and high Mo contents are indispensable for attaining the optimum structure; the structural control of weld metal for two-phase stainless steel containing Mo and N, in which it is essential to secure a high nitrogen content and a {delta}/{gamma}phase balance in a weld metal; and the precipitation prediction of intermetallic compound in a high alloy weld metal for a high alloy stainless steel, for which an explanation is there by Cieslak et al. based on the phase stability theory. 22 refs., 16 figs.

  5. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... to remove an appendix that has been incorporated into relevant specifications. ADDRESSES: Please... procedure for the control of ferrite content in stainless steel weld metal. This guide provides methods that..., Safety Guide 31, ``Control of Stainless Steel Welding,'' issued August 1972, provided guidance to test...

  6. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff... guide describes a method that the staff of the U.S. Nuclear Regulatory Commission (NRC) considers... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission...

  7. 78 FR 45271 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam

    Science.gov (United States)

    2013-07-26

    ... COMMISSION Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam Determination On the... injured by reason of imports from Malaysia, Thailand, and Vietnam of welded stainless steel pressure pipe... the Department of Commerce (Commerce) of affirmative preliminary determinations in these...

  8. 78 FR 31574 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam; Institution of...

    Science.gov (United States)

    2013-05-24

    ...)] Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam; Institution of Antidumping... materially retarded, by reason of imports from Malaysia, Thailand, and Vietnam of welded stainless steel... value. Unless the Department of Commerce extends the time for initiation pursuant to section 732(c)(1)(B...

  9. 76 FR 79651 - Stainless Steel Butt-Weld Pipe Fittings From Italy: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2011-12-22

    ... International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy: Preliminary Results of... antidumping duty order on stainless steel butt-weld pipe fittings (SSBW pipe fittings) from Italy. The review... results of the review to no later than December 15, 2011. See Stainless Steel Butt-Weld Pipe Fittings From...

  10. 77 FR 24459 - Stainless Steel Butt-Weld Pipe Fittings From Italy: Final Results of Antidumping Duty...

    Science.gov (United States)

    2012-04-24

    ... International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy: Final Results of... stainless steel butt-weld pipe fittings (SSBW pipe fittings) from Italy.\\1\\ This review covers two... results remain unchanged from the preliminary results of review. \\1\\ See Stainless Steel Butt-Weld Pipe...

  11. 76 FR 78614 - Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan: Continuation of Antidumping...

    Science.gov (United States)

    2011-12-19

    ... International Trade Administration Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan... welded ASTM A-312 stainless steel pipe from South Korea (Korea) and Taiwan would likely lead to... published the antidumping duty orders on welded ASTM A-312 stainless steel pipe from Korea and Taiwan.\\1\\ On...

  12. 76 FR 67673 - Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan: Final Results of Expedited...

    Science.gov (United States)

    2011-11-02

    ... International Trade Administration Welded ASTM A-312 Stainless Steel Pipe From South Korea and Taiwan: Final... (the Department) initiated sunset reviews of the antidumping duty orders on welded ASTM A-312 stainless... the antidumping duty orders on welded ASTM A-312 stainless steel pipe from South Korea and Taiwan...

  13. An ultrasonic non-destructive testing method for the measurement of weld width in laser welding of stainless steel

    Science.gov (United States)

    Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang

    2017-10-01

    In order to inspect welding defects of the laser welding of stainless steel, the piezoelectric bimorph focusing method is presented, the non-destructive testing system is setup. The cutting part of the laser weld sample is used to measure the welding width by metallography and the non-destructive testing system. The results show that the welding width is unevenly distributed, the relation between the ultrasonic signal amplitude and metallography is showed a good linearity, which means the ultrasonic signal amplitude can be used to measure the welding width.

  14. The Effect of Welding Current and Composition of Stainless steel on the Panetration in GTAW

    Directory of Open Access Journals (Sweden)

    Ramazan Yılmaz

    2012-06-01

    Full Text Available In this study, welding was performed on the plates of two different types of AISI 316 and AISI 316Ti austenitic stainless steels by GTAW (Gas Tungsten Arc Welding without using welding consumable in flat position. Automatic GTAW welding machine was used to control and obtain the exact values. The effects of welding currents used in welding process and the compositions of the stainless steels materials on the penetration were investigated. Weld bead size and shape such as bead width and dept were important considerations for penetration. Welding process was performed using various welding current values. The study showed that both welding parameters and composition of the stainless steels has influence on the penetration and It is increased with increasing of welding current. Besides, P/W rate of the weldments were influenced by the current and hardness values of the weld metal decrease with increasing welding current. The microstructure of the weld metal was also changed by variation of welding current.

  15. Investigation on Mechanical Properties of Austenitic Stainless-Steel Pipes Welded by TIG Method

    Directory of Open Access Journals (Sweden)

    Mushtaq Albdiry

    2017-11-01

    Full Text Available This paper investigates the mechanical properties of austenitic stainless steel (type 204 pipes welded by Tungsten Inert Gas (TIG welding process. Testing of hardness (HRC, tensile strength and bending strength was performed for the steel pipes welded at two different welding temperatures (700 °C and 900 °C with and without using the weld filler wire. The microstructure of the welding regions was examined by using an optical microscopy. The properties showed that the steel pipes welded by 900 °C with using the weld filler obtained the highest tensile strength and bending strength versus these welded by 700 °C without the use of the weld filler. This is attributed to the weld filler heated and melt at sufficient temperature (900 °C and compensate losing in the Ni metal occurred in the base steel metal during the welding process.

  16. Novel Approach for Welding Stainless Steel Using Cr-Free Welding Consumables

    Science.gov (United States)

    2004-12-31

    chromium in the 6+ oxidation state and is commonly referred to as chromate). Fumes containing Cr(VI) can cause lung cancer . Shielded Metal Arc...Fumes containing Cr(VI) can cause lung cancer .1,4. In shipbuilding operations, manual Shielded Metal Arc Welding (SMAW) of stainless steel is...Service, Canberra 1990. 6. E. Zumelzu and C. Cabezas , J. Mat. Proc. Tech. 57 (1996): p. 249. 7. S. A. Campbell, G. J. W. Radford, C. D. S. Tuck, and B

  17. Swelling behavior of welded type 316 stainless steel and its improvement

    Science.gov (United States)

    Sawai, T.; Fukai, K.; Kodaira, T.; Nishida, T.; Nayama, M.; Hishinuma, A.

    1988-07-01

    Type 316 stainless steel was electron beam welded with titanium foil insertion. The concentration of introduced titanium in the weld metal was 0.1, 0.3 and 0.6 wt% corresponding to the inserted foil thickness of 10, 30 and 60 μm, respectively. All the weld joint showed good mechanical performance. The swelling resistance of the weld metal is effectively improved by the introduced titanium. Although inhomogeneous distribution of titanium makes it difficult to estimate the extent of the improvement quantitatively, the results suggest the applicability of this method to Ti-modified 316 stainless steel, where weld metal is already reported to show reduced swelling resistance.

  18. Environmental cracking behavior of submerged arc-welded supermartensitic stainless steel weldments

    Science.gov (United States)

    Srinivasan, P. Bala; Sharkawy, S. W.; Dietzel, W.

    2004-04-01

    Supermartensitic stainless steel welds produced by submerged are welding were assessed for their microstructure and properties. Slow strain rate tests conducted on these specimens revealed that both the parent material and the weld metals are susceptible to cracking under conditions of hydrogen (H) charging.

  19. Microstructure of reaction zone in WCp/duplex stainless steels matrix composites processing by laser melt injection

    NARCIS (Netherlands)

    Do Nascimento, A. M.; Ocelik, V.; Ierardi, M. C. F.; De Hosson, J. Th. M.

    2008-01-01

    The laser melt injection (LMI) process has been used to create a metal matrix composite consisting of 80gm sized multi-grain WC particles embedded in three cast duplex stainless steels. The microstruture was investigated by scanning electron microscopy with integrated EDS and electron back-scatter

  20. Wear resistance of WCp/Duplex Stainless Steel metal matrix composite layers prepared by laser melt injection

    NARCIS (Netherlands)

    Do Nascimento, A. M.; Ocelik, V.; Ierardi, M. C. F.; De Hosson, J. Th. M.

    2008-01-01

    Laser Melt Injection (LMI) was used to prepare metal matrix composite layers with a thickness of about 0.7 mm and approximately 10% volume fraction of WC particles in three kinds of Cast Duplex Stainless Steels (CDSSs). WC particles were injected into the molten surface layer using Nd:YAG high power

  1. Structural refinement and property optimization in an Fe-23Cr-8.5Ni duplex stainless steel

    DEFF Research Database (Denmark)

    Xie, L.; Huang, T. L.; Wang, Y. H.

    2017-01-01

    An Fe-23Cr-8.5Ni duplex stainless steel was used to prepare samples with different volume-fraction-weighted grain sizes (d(alpha gamma)), ranging from the nano-scale to the micrometer-scale by cold rolling and subsequent annealing. The cold rolled sample with d(alpha gamma) of 72 nm showed a high...

  2. Mechanical Properties of Thermally Aged Austenitic Stainless Steel Welds and Cast Austenitic Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sunghoon; Seo, Myeong-Gyu; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Kyoung Soo [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    Conventional test methods for tensile and J-R properties of such weld require large size specimens. Meanwhile, small punch (SP) test has advantages of using small size samples at specific location. In this study, the mechanical property changes caused by the thermal aging were evaluated for the stainless steel welds and CASSs using tensile, J-R, and SP test. Based on the results, correlations were developed to estimate the fracture toughness using the load-displacement curve of SP tests. Finally, the fracture surfaces of compact tension (CT) and SP test specimens are compared and discussed in view of the effect of thermal aging on microstructure. Stainless steel welds of ER316L and ER347 as well as CASS (CF8M) were thermally aged at 400 .deg. C for 5,000 h. So far, tensile properties and fracture toughness of un-aged materials were carried out at room temperature and 320 .deg. C as a reference data. In order to evaluate the effect of thermal aging on mechanical properties, aged specimens are being tested and the changes in these properties will be discussed. In addition, correlations will be developed to estimate the fracture toughness in between J-R curve and SP curve.

  3. Hybrid/Tandem Laser-Arc Welding of Thick Low Carbon Martensitic Stainless Steel Plates =

    Science.gov (United States)

    Mirakhorli, Fatemeh

    High efficiency and long-term life of hydraulic turbines and their assemblies are of utmost importance for the hydropower industry. Usually, hydroelectric turbine components are made of thick-walled low carbon martensitic stainless steels. The assembly of large hydroelectric turbine components has been a great challenge. The use of conventional welding processes involves typical large groove design and multi-pass welding to fill the groove which exposes the weld to a high heat input creating relatively large fusion zone and heat affected zone. The newly-developed hybrid/tandem laser-arc welding technique is believed to offer a highly competitive solution to improve the overall hydro-turbine performance by combining the high energy density and fast welding speed of the laser welding technology with the good gap bridging and feeding ability of the gas metal arc welding process to increase the productivity and reduce the consumable material. The main objective of this research work is to understand different challenges appearing during hybrid laser-arc welding (HLAW) of thick gauge assemblies of low carbon 13%Cr- 4%Ni martensitic stainless steel and find a practical solution by adapting and optimizing this relatively new welding process in order to reduce the number of welding passes necessary to fill the groove gap. The joint integrity was evaluated in terms of microstructure, defects and mechanical properties in both as-welded and post-welded conditions. A special focus was given to the hybrid and tandem laser-arc welding technique for the root pass. Based on the thickness of the low carbon martensitic stainless steel plates, this work is mainly focused on the following two tasks: • Single pass hybrid laser-arc welding of 10-mm thick low carbon martensitic stainless steel. • Multi-pass hybrid/tandem laser-arc welding of 25-mm thick martensitic stainless steel.

  4. PREDICTION OF SURFACE ROUGHNESS IN END MILLING OPERATION OF DUPLEX STAINLESS STEEL USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    S. D. PHILIP

    2015-03-01

    Full Text Available Response surface methodology has been used to study the effects of the machining parameters such as spindle speed, feed rate and axial depth of cut on surface roughness of duplex stainless steel in end milling operation. Dry milling experiments were conducted with three levels of spindle speed, feed rate and axial depth of cut. A mathematical model has been developed to predict the surface roughness in terms of the machining parameters using Box-Behnken design response surface methodology. The adequacy of the model was verified using analysis of variance. The prediction equation shows that the feed rate is the most important factor that influences the surface roughness followed by axial depth of cut and spindle speed. The validity of the model was verified by conducting the confirmation experiment.

  5. Magnetic Characterization of Selective Laser-Melted Saf 2507 Duplex Stainless Steel

    Science.gov (United States)

    Davidson, Karl P.; Singamneni, Sarat

    2017-03-01

    Selective laser melting (SLM) is disruptive in terms of the sensitive balance between constituent phases of the biphasic duplex stainless steel material options. While adversely affecting the mechanical and corrosion properties, the predominantly ferritic structures resulting from the high thermal gradients were also noted to impart significant magnetic responses. Scientific attention is essential for ascertaining the material-process-magnetic response relationships to establish the underlying principles and critical responses. This is attempted here through magnetic characterization based on results from saturation hysteresis loops and evaluation of austenite-ferrite ratios allowing for identification of the structure-magnetic property relationships. Overall, the experimental results indicated strong process-property relationships, whereas the magnetic saturation levels of SLM samples are much higher compared with the wrought counterparts.

  6. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm.

    Science.gov (United States)

    Xu, Dake; Xia, Jin; Zhou, Enze; Zhang, Dawei; Li, Huabing; Yang, Chunguang; Li, Qi; Lin, Hai; Li, Xiaogang; Yang, Ke

    2017-02-01

    Microbiologically influenced corrosion (MIC) of 2205 duplex stainless steel (DSS) in the presence of Pseudomonas aeruginosa was investigated through electrochemical and surface analyses. The electrochemical results showed that P. aeruginosa significantly reduced the corrosion resistance of 2205 DSS. Confocal laser scanning microscopy (CLSM) images showed that the depths of the largest pits on 2205 DSS with and without P. aeruginosa were 14.0 and 4.9μm, respectively, indicating that the pitting corrosion was accelerated by P. aeruginosa. X-ray photoelectron spectroscopy (XPS) results revealed that CrO 3 and CrN formed on the 2205 DSS surface in the presence of P. aeruginosa. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Short fatigue cracks nucleation and growth in lean duplex stainless steel LDX 2101

    Energy Technology Data Exchange (ETDEWEB)

    Strubbia, R., E-mail: strubbia@ifir-conicet.gov.ar [Instituto de Física Rosario – CONICET, Universidad Nacional de Rosario (Argentina); Hereñú, S.; Alvarez-Armas, I. [Instituto de Física Rosario – CONICET, Universidad Nacional de Rosario (Argentina); Krupp, U. [Faculty of Engineering and Computer Science, University of Applied Sciences Osnabrück (Germany)

    2014-10-06

    This work is focused on the fatigue damage of lean duplex stainless steels (LDSSs) LDX 2101. Special interest is placed on analyzing short fatigue crack behavior. In this sense, short crack initiation and growth during low cycle fatigue (LCF) and short crack nucleation during high cycle fatigue (HCF) of this LDSS have been studied. The active slip systems and their associated Schmid factors (SF) are determined using electron backscattered diffraction (EBSD). Additionally, the dislocation structure developed during cycling is observed by transmission electron microscopy (TEM). Regardless of the fatigue regime, LCF and HCF, short cracks nucleate along intrusion/extrusions in ferritic grains. Moreover, during the LCF phase boundaries decelerate short crack propagation. These results are rationalized by the hardness of the constitutive phases and the dependence of screw dislocation mobility in the ferrite phase on strain rate and stress amplitude.

  8. Effect of laser shock processing on fatigue life of 2205 duplex stainless steel notched specimens

    Science.gov (United States)

    Vázquez Jiménez, César A.; Gómez Rosas, Gilberto; Rubio González, Carlos; Granados Alejo, Vignaud; Hereñú, Silvina

    2017-12-01

    The effect laser shock processing (LSP) on high cycle fatigue behavior of 2205 duplex stainless steel (DSS) notched samples was investigated. The swept direction parallel (LSP 1) and perpendicular (LSP 2) to rolling were used in order to examine the sensitivity of LSP to manufacturing process since this steel present significantly anisotropy. The Nd:YAG pulsed laser operating at 10 Hz frequency and 1064 nm wavelength was utilized. The LSP configuration was the water jet mode without protective coating. Notched specimens 4 mm thick were treated on both sides, and then fatigue loading was applied with R = 0.1. The results showed that the LSP 2 condition induces higher compressive residual stresses as well as a higher fatigue life than the LSP 1 condition. By applying LSP 2 condition, an enhancement of fatigue life up to 402% is reported. In addition, the microhardness profiles showed different depths of hardening layer for each direction, according to the anisotropy observed.

  9. Effect of heat treatment on corrosion behavior of duplex stainless steel in orthodontic applications

    Science.gov (United States)

    Sabea Hammood, Ali; Faraj Noor, Ahmed; Talib Alkhafagy, Mohammed

    2017-12-01

    Heat treatment is necessary for duplex stainless steel (DSS) to remove or dissolve intermetallic phases, to remove segregation and to relieve any residual thermal stress in DSS, which may be formed during production processes. In the present study, the corrosion resistance of a DSS in artificial saliva was studied by potentiodynamic measurements. The microstructure was investigated by scanning electron microscopy (SEM),x-ray diffraction (XRD) and Vickers hardness (HV). The properties were tested in as–received and in thermally treated conditions (800–900 °C, 2–8 min). The research aims to evaluate the capability of DSS for orthodontic applications, in order to substitute the austenitic grades. The results indicate that the corrosion resistance is mainly affected by the ferrite/austenite ratio. The best result was obtained with a treatment at 900 °C for 2 min.

  10. Effect of thermal aging conditions on the corrosion properties and hardness of a duplex stainless steel

    Directory of Open Access Journals (Sweden)

    José Eduardo May

    2010-12-01

    Full Text Available The corrosion properties of a 22.5 wt. (% Cr duplex stainless steel were investigated after long-term aging of 3000, 5000 and 7000 hours at 300 and 400 ºC. The corrosion resistance was measured based on mass loss in a FeCl3 10 wt. (% solution and electrochemical measurements in a 0.1 M H2SO4 solution. The results indicate that the corrosion resistance decreased steadily up to 5000 hours of aging. However, the samples subjected to 7000 hours of aging showed better corrosion resistance than those aged for 3000 and 5000 hours. This effect is attributed to the phase transformation that occurs during aging, a finding which was confirmed by hardness, transmission electron microscopy and X-ray photoelectron spectroscopy measurements.

  11. Relative merits of duplex and austenitic stainless steels for applications in the oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Elisabeth; Wegrelius, Lena; Pettersson, Rachel [Outokumpu Stainless AB, Avesta (Sweden)

    2012-07-01

    The broad range of available stainless steel grades means that these materials can fulfil a wide variety of requirements within the oil and gas industry. The duplex grades have the advantage of higher strength than standard austenitic grades, while the superaustenitic grades provide a cost-effective alternative to nickel-base alloys in a number of cases. The paper presents the results of various types of laboratory testing to rank the grades in terms of resistance to pitting, crevice corrosion and stress corrosion cracking. Results from field testing in actual or simulated service conditions are discussed and a number of application examples, including process piping flexible, heat exchangers and topside equipment are presented. (author)

  12. Effect of Electrode Types on the Solidification Cracking Susceptibility of Austenitic Stainless Steel Weld Metal

    OpenAIRE

    J. U. Anaele; O. O. ONYEMAOBI; C. S. Nwobodo; C. C. Ugwuegbu

    2015-01-01

    The effect of electrode types on the solidification cracking susceptibility of austenitic stainless steel weld metal was studied. Manual metal arc welding method was used to produce the joints with the tungsten inert gas welding serving as the control. Metallographic and chemical analyses of the fusion zones of the joints were conducted. Results indicate that weldments produced from E 308-16 (rutile coated), E 308-16(lime-titania coated) electrodes, and TIG welded joints fall within the range...

  13. Influence of electrical Field on Pulsed Laser beam welding of Stainless Steel (304)

    OpenAIRE

    FAWZİ, Salah A. H.; ARİF, RAZ N.

    1999-01-01

    Pulsed laser beam welding experiment were carried out on stainless steel (SUS 304), using vertical and horizontal electric fields of different intensities to study its effectiveness on the welding process, regarding depth and weld quality. Pulsed Nd: YAG laser emitting 10 ms pulses in the TEM00 mode at 1.06 m m wave length was employed, microstructure of welded zone and defect were investigated using optical and scanning electron microscopes. Tensile test and microhardness measuremen...

  14. Influence of electrical Field on Pulsed Laser beam welding of Stainless Steel (304)

    Science.gov (United States)

    Fawzý, Salah A. H.; Arýf, Raz N.

    1999-06-01

    Pulsed laser beam welding experiment were carried out on stainless steel (SUS 304), using vertical and horizontal electric fields of different intensities to study its effectiveness on the welding process, regarding depth and weld quality. Pulsed Nd: YAG laser emitting 10 ms pulses in the TEM00 mode at 1.06 m m wave length was employed, microstructure of welded zone and defect were investigated using optical and scanning electron microscopes. Tensile test and microhardness measurements were carried out to evaluate the weld quality. Welding by this method increased the efficiency tremendously and a depth increase of 85% was achieved.

  15. Microbial corrosion in weld zone of stainless steel. Stainless ko yosetsubu no biseibutsu fushoku

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, E. (National Chemical Laboratory for Industry, Tsukuba (Japan)); Nishimura, M. (Mitsubishi Kakoki Kaisha, Ltd., Tokyo (Japan))

    1992-10-15

    Microbial corrosion may happen wherever water is treated in many kinds of practical metal except titan, such as common steel, copper alloy, stainless steel, and high-nickel alloy. Although microbes causing microbial corrosion are not limited to specified microbes, specially affecting microbes are iron bacteria, iron-oxidizing bacteria, and sulfate-reducing bacteria. mechanism in these microbial corrosion, which is fundamentally caused through formation of oxygen concentration cells and production of metabolites, is complex and different by each microbe. In the case of stainless steel, the corrosion is located mainly in weld zones or heat affected zones, the shape of corrosion is like a pot, and the pattern is a type of pitting corrosion. Microbes are apt to adhere to the surface near weld zones, then oxygen becomes consequently insufficient beneath the surface, where the self-mending capacity of passive films is deprived, resulting in occurrence of pitting corrosion. For protection of microbial corrosion, it is essential to control water so that habitation of microbes is not formed. 9 refs., 3 figs.

  16. Microstructure, Hardness, and Corrosion Behavior of TiC-Duplex Stainless Steel Composites Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Han, Ying; Zhang, Wei; Sun, Shicheng; Chen, Hua; Ran, Xu

    2017-08-01

    Duplex stainless steel composites with various weight fractions of TiC particles are prepared by spark plasma sintering. Ferritic 434L and austenitic 316L stainless steel powders are premixed in a 50:50 weight ratio and added with 3-9 wt.% TiC. The compacts are sintered in the solid state under vacuum conditions at 1223 K for 5 min. The effects of TiC content on the microstructure, hardness, and corrosion resistance of duplex stainless steel composites fabricated by powder metallurgy are evaluated. The results indicate that the TiC particulates as reinforcements can be distributed homogeneously in the steel matrix. Densification of sintered composites decreases with increasing TiC content. M23C6 carbide precipitates along grain boundary, and its neighboring Cr-Mo-depleted region is formed in the sintered microstructure, which can be eliminated subsequently with appropriate heat treatment. With the addition of TiC, the hardness of duplex stainless steel fabricated by powder metallurgy can be markedly enhanced despite increased porosity in the composites. However, TiC particles increase the corrosion rate and degrade the passivation capability, particularly for the composite with TiC content higher than 6 wt.%. Weakened metallurgical bonding in the composite with high TiC content provides the preferred sites for pitting nucleation and/or dissolution.

  17. Shielding gas effect on weld characteristics in arc-augmented laser welding process of super austenitic stainless steel

    Science.gov (United States)

    Sathiya, P.; Kumar Mishra, Mahendra; Soundararajan, R.; Shanmugarajan, B.

    2013-02-01

    A series of hybrid welding (gas metal arc welding-CO2 laser beam welding) experiments were conducted on AISI 904L super austenitic stainless steel sheet of 5 mm thickness. A detailed study of CO2 Laser-GMAW hybrid welding experiments with different shielding gas mixtures (100% He, 50% He+50% Ar, 50%He+45% Ar+5% O2, and 45% He+45% Ar+10% N2) were carried out and the results are presented. The resultant welds were subjected to detailed mechanical and microstructural characterization. Hardness testing revealed that the hardness values in the fusion zone were higher than the base material irrespective of the parameters. Transverse tensile testing showed that the joint efficiency is 100% with all the shielding gas experimented. Impact energy values of the welds were also found to be higher than the base material and the fractrograph taken in scanning electron microscope (SEM) has shown that the welds exhibited dimple fracture similar to the base material.

  18. Tribocorrosion Failure Mechanism of TiN/SiOx Duplex Coating Deposited on AISI304 Stainless Steel.

    Science.gov (United States)

    Chen, Qiang; Xie, Zhiwen; Chen, Tian; Gong, Feng

    2016-11-26

    TiN/SiOx duplex coatings were synthesized on AISI304 stainless steel by plasma immersion ion implantation and deposition (PIIID) followed by radio frequency magnetron sputtering (RFMS). The microstructure and tribocorrosion failure behaviors of the duplex coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, reciprocating-sliding tribometer, and electrochemical tests. The as-deposited duplex coating had a two-layered columnar growth structure consisting of face-centered cubic TiN and amorphous SiOx. Sliding tests showed that the TiN interlayer had good adhesion with the substrate, but the SiOx layer suffered from severe delamination failure. Friction force induced a number of micro-cracks in the coating, which provided channels for the diffusion of NaCl solution. The tribocorrosion test showed that the duplex coating exhibited a lower wear-performance in NaCl solution than in ambient atmosphere. Multi-scale chloride ion corrosion occurred simultaneously and substantially degraded the bonding strength of the columnar crystals or neighboring layers. Force-corrosion synergy damage eventually led to multi-degradation failure of the duplex coating. The presented results provide a comprehensive understanding of the tribocorrosion failure mechanism in coatings with duplex architecture.

  19. Tribocorrosion Failure Mechanism of TiN/SiOx Duplex Coating Deposited on AISI304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2016-11-01

    Full Text Available TiN/SiOx duplex coatings were synthesized on AISI304 stainless steel by plasma immersion ion implantation and deposition (PIIID followed by radio frequency magnetron sputtering (RFMS. The microstructure and tribocorrosion failure behaviors of the duplex coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, reciprocating-sliding tribometer, and electrochemical tests. The as-deposited duplex coating had a two-layered columnar growth structure consisting of face-centered cubic TiN and amorphous SiOx. Sliding tests showed that the TiN interlayer had good adhesion with the substrate, but the SiOx layer suffered from severe delamination failure. Friction force induced a number of micro-cracks in the coating, which provided channels for the diffusion of NaCl solution. The tribocorrosion test showed that the duplex coating exhibited a lower wear-performance in NaCl solution than in ambient atmosphere. Multi-scale chloride ion corrosion occurred simultaneously and substantially degraded the bonding strength of the columnar crystals or neighboring layers. Force-corrosion synergy damage eventually led to multi-degradation failure of the duplex coating. The presented results provide a comprehensive understanding of the tribocorrosion failure mechanism in coatings with duplex architecture.

  20. 75 FR 76025 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Science.gov (United States)

    2010-12-07

    ... stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan would be likely to lead to... can be obtained by contacting the Commission's TDD terminal on 202-205-1810. Persons with mobility...

  1. 78 FR 62583 - Welded Stainless Pressure Pipe From Malaysia, Thailand, and the Socialist Republic of Vietnam...

    Science.gov (United States)

    2013-10-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Welded Stainless Pressure Pipe From Malaysia, Thailand, and the Socialist...: Import Administration, International Trade Administration, Department of Commerce. DATES: October 22...

  2. Effect of welding parameters on mechanical properties of GTAW of UNS S31803 and UNS S32750 weldments

    OpenAIRE

    Paulraj Prabhu; Garg Rajnish

    2015-01-01

    Duplex Stainless Steel (DSS) and Super Duplex Stainless Steel (SDSS) pipes were welded by Gas Tungsten Arc Welding (GTAW) process. The effect of welding parameters such as heat input, cooling rate, shielding/purging gas composition and interpass temperature on tensile strength, hardness and impact toughness were studied. The microstructure analysis revealed presence of intermetallic phases at root region of the weldments. All mechanical properties were improved at lower heat input and high co...

  3. Active flux tungsten inert gas welding of austenitic stainless steel AISI 304

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2016-10-01

    Full Text Available The paper presents the effects of flux assisted tungsten inert gas (A-TIG welding of 4 (10 mm thick austenitic stainless steel EN X5CrNi1810 (AISI 304 in the butt joint. The sample dimensions were 300 ´ 50 mm, and commercially available active flux QuickTIG was used for testing. In the planned study the influence of welding position and weld groove shape was analysed based on the penetration depth. A comparison of microstructure formation, grain size and ferrit number between TIG welding and A-TIG welding was done. The A-TIG welds were subjected to bending test. A comparative study of TIG and A-TIG welding shows that A-TIG welding increases the weld penetration depth.

  4. Adhesion of Salmonella Enteritidis and Listeria monocytogenes on stainless steel welds.

    Science.gov (United States)

    Casarin, Letícia Sopeña; Brandelli, Adriano; de Oliveira Casarin, Fabrício; Soave, Paulo Azevedo; Wanke, Cesar Henrique; Tondo, Eduardo Cesar

    2014-11-17

    Pathogenic microorganisms are able to adhere on equipment surfaces, being possible to contaminate food during processing. Salmonella spp. and Listeria monocytogenes are important pathogens that can be transmitted by food, causing severe foodborne diseases. Most surfaces of food processing industry are made of stainless steel joined by welds. However currently, there are few studies evaluating the influence of welds in the microorganism's adhesion. Therefore the purpose of the present study was to investigate the adhesion of Salmonella Enteritidis and L. monocytogenes on surface of metal inert gas (MIG), and tungsten inert gas (TIG) welding, as well as to evaluate the cell and surface hydrophobicities. Results demonstrated that both bacteria adhered to the surface of welds and stainless steel at same levels. Despite this, bacteria and surfaces demonstrated different levels of hydrophobicity/hydrophilicity, results indicated that there was no correlation between adhesion to welds and stainless steel and the hydrophobicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Friction welding of Al-Cu-SiC composite to AISI 304 austenitic stainless steel

    OpenAIRE

    Özdemir, Niyazi; Balaban, Zülküf

    2017-01-01

    The present study investigates thefeasibility of joining an aluminium matrix composite reinforced with 5, 10 and15 vol. % of SiCp particles to AISI 304 austenitic stainless steel by usingfriction welding technique. In the present study, optical and electronmicroscopy as well as lap shear strength test and microhardness measurementswere used to evaluate the quality of bonding of Al-Cu-SiC and AISI 304austenitic stainless steel joints produced by friction welding

  6. The numerical simulation of Lamb wave propagation in laser welding of stainless steel

    Science.gov (United States)

    Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang

    2017-12-01

    In order to explore the Lamb wave propagation in laser welding of stainless steel, the numerical simulation is used to show the feature of Lamb wave. In this paper, according to Lamb dispersion equation, excites the Lamb wave on the edge of thin stainless steel plate, and presents the reflection coefficient for quantizing the Lamb wave energy, the results show that the reflection coefficient is increased with the welding width increasing,

  7. Study of corrosive effect of oil in super duplex stainless steels; Estudo do efeito corrosivo do petroleo em acos super duplex

    Energy Technology Data Exchange (ETDEWEB)

    Gusmao, E.F.; Azambuja, V.M. [IFES, Coordenadoria de Metalurgia, Vitoria, ES (Brazil); Santos, D.S. [Universidade Federal do Rio de Janeiro (PEMM/COPPE/UFRJ), RJ (Brazil). Pos-Graduacao em Engenharia Metalurgica e de Materiais

    2010-07-01

    The super duplex stainless steel was exposed in an environment at 75 degree C with oil for days, weeks and month to observe the change in mass. The corrosion leads to loss of weight of material which could harm the economy of a company, as this will have to stop production to replace the corroded part. Hence the great importance of studies on ways to mitigate the corrosion. There was a chemical attack by the reagent Behara and testing to study the quality of the protective coating after the tests with oil by electrochemical impedance. (author)

  8. Influence of the heat treatment on the cold deformation od duplex stainless steels; Influencia de los tratamientos termicos en la deformacion en frio de los aceros inoxidables duplex

    Energy Technology Data Exchange (ETDEWEB)

    Fargas, G.; Manero, J. M.; Anglada, M.; Mateo, A.

    2004-07-01

    The purpose of this paper is to study the compression behavior of a duplex stainless steel after several annealing conditions, in order to simulate the response during cold rolling in the industrial process. For each studied condition, stress-strain curves present serrations in the flow zone due to austenite and ferrite twinning and the austenite phase transformation to martensite. At the same time, it is shown that sigma phase increases the strength and diminish the cold deformation capacity of the steel. (Author) 15 refs.

  9. Law of mixture used to model the flow behavior of a duplex stainless steel at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, A., E-mail: ammomeni@aut.ac.ir [Department of Materials Science and Engineering, Hamedan University of Technology, Hamedan (Iran, Islamic Republic of); Dehghani, K. [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Poletti, M.C. [Institute for Materials Science and Welding, Graz University of Technology (Austria)

    2013-05-15

    In this investigation the flow curves of a duplex stainless steel were drawn by performing hot compression tests over a wide temperature range of 950–1200 °C and strain rates of 0.001–100 s{sup −1}. The flow curves of ferrite and austenite phases in the duplex structure were depicted by conducting similar hot compression tests on two steels that were cast and prepared with the same chemical compositions. The flow curves of the austenitic steel were found typical of dynamic recrystallization. They were successfully modeled by using the experimental exponential equation proposed by Cingara and McQueen. The flow curves of the ferritic steel were typical of dynamic recovery. They were modeled by the dislocation density evolution function proposed by Estrin and Meckning. Comparing the flow curves of three studied steels, it was found that the flow curves of the duplex steel were very similar and close to those of the ferrite steel. It was understood that in a duplex structure of ferrite and austenite the flow behavior is mostly controlled by the softer phase, i.e. ferrite. The law of mixture was modified to consider the strain partitioning between ferrite and austenite. The distribution coefficients of ferrite and austenite were described and determined at different deformation conditions. The results of modeling satisfactorily predicted the experimental curves. It was shown that the influence of austenite on the flow behavior of the duplex structure is almost low. However, it increases as strain rate or temperature rises. - Highlights: ► Flow curves of austenite and ferrite in the duplex steel were modeled separately. ► The flow behavior of the duplex steel is mostly controlled by ferrite. ► The effect of austenite on flow curve increases with temperature and strain rate. ► The flow curve of the duplex steel is modeled by the modified law of mixture.

  10. Qualification of electron-beam welded joints between copper and stainless steel for cryogenic application

    Science.gov (United States)

    Lusch, C.; Borsch, M.; Heidt, C.; Magginetti, N.; Sas, J.; Weiss, K.-P.; Grohmann, S.

    2015-12-01

    Joints between copper and stainless steel are commonly applied in cryogenic systems. A relatively new and increasingly important method to combine these materials is electron-beam (EB) welding. Typically, welds in cryogenic applications need to withstand a temperature range from 300K down to 4K, and pressures of several MPa. However, few data are available for classifying EB welds between OFHC copper and 316L stainless steel. A broad test program was conducted in order to qualify this kind of weld. The experiments started with the measurement of the hardness in the weld area. To verify the leak-tightness of the joints, integral helium leak tests at operating pressures of 16 MPa were carried out at room- and at liquid nitrogen temperature. The tests were followed by destructive tensile tests at room temperature, at liquid nitrogen and at liquid helium temperatures, yielding information on the yield strength and the ultimate tensile strength of the welds at these temperatures. Moreover, nondestructive tensile tests up to the yield strength, i.e. the range in which the weld can be stressed during operation, were performed. Also, the behavior of the weld upon temperature fluctuations between room- and liquid nitrogen temperature was tested. The results of the qualification indicate that EB welded joints between OFHC copper and 316L stainless steel are reliable and present an interesting alternative to other technologies such as vacuum brazing or friction welding.

  11. Study of the Performance of Stainless Steel A-TIG Welds

    Science.gov (United States)

    Shyu, S. W.; Huang, H. Y.; Tseng, K. H.; Chou, C. P.

    2008-04-01

    The purpose of the present work was to investigate the effect of oxide fluxes on weld morphology, arc voltage, mechanical properties, angular distortion and hot cracking susceptibility obtained with TIG welding, which applied to the welding of 5 mm thick austenitic stainless steel plates. A novel variant of the autogenous TIG welding process, oxide powders (Al2O3, Cr2O3, TiO2, SiO2 and CaO) was applied on a type 304 stainless steel through a thin layer of the flux to produce a bead on plate welds. The experimental results indicated that the increase in the penetration is significant with the use of Cr2O3, TiO2, and SiO2. A-TIG welding can increase the weld depth to bead-width ratio, and tends to reduce the angular distortion of the weldment. It was also found that A-TIG welding can increase the retained delta-ferrite content of stainless steel 304 welds and, in consequence, the hot-cracking susceptibility of as-welded is reduced. Physically constricting the plasma column and reducing the anode spot are the possible mechanism for the effect of certain flux on A-TIG penetration.

  12. Evaluation of weld defects in stainless steel 316L pipe using guided wave

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Lee, Jin Kyung [Dept. of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of)

    2015-02-15

    Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

  13. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Naiming Lin

    2016-10-01

    Full Text Available Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316, surface-textured 316 (ST-316, and duplex-treated 316 (DT-316 in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication.

  14. 49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.

    Science.gov (United States)

    2010-10-01

    ... procedure. A heat of steel made under the specifications in table 1 in this paragraph (b), check chemical... abrupt change in wall thickness is permitted. Welding procedures and operators must be qualified in... 49 Transportation 2 2010-10-01 2010-10-01 false Specification 4DS welded stainless steel cylinders...

  15. The induction of hyperthermia in rabbit liver by means of duplex stainless steel thermoseeds

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byeong Ho [Donga University College of Medicine, Busan (Korea, Republic of); Koo, Bong Sig [Medical Radiology Clinic, (Korea, Republic of); Kim, Young Kon [Inje University, Daegu (Korea, Republic of); Kim, Moon Kon [Shine, Ltd., (Korea, Republic of)

    2002-06-01

    To determine the heating characteristics of needle-shaped duplex stainless steel thermoseeds, and to evaluate their effectiveness in the induction of hyperthermia in rabbit liver. Thermoseeds of the two different shapes, L-shaped for single doses of hyperthermia and I-shaped for in-vitro study and repeated hyperthermic induction, were prepared. For the in-vitro study, an I-shaped thermoseed 0.23 mm in diameter and 25 mm long was placed inside a plastic tube filled with water. Heat was applied for 30 minutes within an induction magnetic field, and during this time changes in temperature were recorded using three thermocouples. For the in-vivo study, fifteen New Zealand white rabbits were divided into five equal groups. An I-shaped or L-shaped thermoseed was inserted in each rabbit's liver, and then placed within the center of the magnetic induction coil during a 30-minute period of hyperthermia. The rabbits in the first group were sacrificed immediately after hyperthermia was induced once, while those in the other groups were sacrificed at 1, 3, and 7 days, respectively, also after one induction. The remaining three rabbits were sacrificed 4 days after three consecutive daily treatment sessions. The resected segments of liver were subsequently evaluated histopathologically for the extent of coagulation necrosis caused by heating of the thermoseed. The in-vitro study demonstrated that the temperature in the thermoseed, which was 25.9. deg. C before heating and 54.8 .deg. C after heating, rose rapidly at first but progressively less rapidly as time elapsed. Light microscopic examination of the rabbits' livers revealed coagulation necrosis and infiltration by inflammatory cells around the insertion site of the thermoseed. The maximum diameter of coagulation necrosis was 2.81{+-}1.68 mm, and this occurred in the rabbits that were sacrificed 7 days after heat induction. Needle-shaped duplex stainless steel thermoseeds show temperature-dependent-type heating

  16. Clean cast steel technology. Determination of transformation diagrams for duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chumbley, S. L. [Iowa State Univ., Ames, IA (United States)

    2005-09-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma ( can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling- transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe 22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ( formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations, The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, was stabilized with increasing Cr addition and by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by local

  17. Classification of Induced Magnetic Field Signals for the Microstructural Characterization of Sigma Phase in Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Edgard M. Silva

    2016-07-01

    Full Text Available Duplex stainless steels present excellent mechanical and corrosion resistance properties. However, when heat treated at temperatures above 600 ∘ C, the undesirable tertiary sigma phase is formed. This phase presents high hardness, around 900 HV, and it is rich in chromium, the material toughness being compromised when the amount of this phase is not less than 4%. This work aimed to develop a solution for the detection of this phase in duplex stainless steels through the computational classification of induced magnetic field signals. The proposed solution is based on an Optimum Path Forest classifier, which was revealed to be more robust and effective than Bayes, Artificial Neural Network and Support Vector Machine based classifiers. The induced magnetic field was produced by the interaction between an applied external field and the microstructure. Samples of the 2205 duplex stainless steel were thermal aged in order to obtain different amounts of sigma phases (up to 18% in content. The obtained classification results were compared against the ones obtained by Charpy impact energy test, amount of sigma phase, and analysis of the fracture surface by scanning electron microscopy and X-ray diffraction. The proposed solution achieved a classification accuracy superior to 95% and was revealed to be robust to signal noise, being therefore a valid testing tool to be used in this domain.

  18. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    Science.gov (United States)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  19. Welding of AA1050 aluminum with AISI 304 stainless steel by rotary friction welding process

    Directory of Open Access Journals (Sweden)

    Chen Ying An

    2010-09-01

    Full Text Available The purpose of this work was to assess the development of solid state joints of dissimilar material AA1050 aluminum and AISI 304 stainless steel, which can be used in pipes of tanks of liquid propellants and other components of the Satellite Launch Vehicle. The joints were obtained by rotary friction welding process (RFW, which combines the heat generated from friction between two surfaces and plastic deformation. Tests were conducted with different welding process parameters. The results were analyzed by means of tensile tests, Vickers microhardness, metallographic tests and SEM-EDX. The strength of the joints varied with increasing friction time and the use of different pressure values. Joints were obtained with superior mechanical properties of the AA1050 aluminum, with fracture occurring in the aluminum away from the bonding interface. The analysis by EDX at the interface of the junction showed that interdiffusion occurs between the main chemical components of the materials involved. The RFW proves to be a great method for obtaining joints between dissimilar materials, which is not possible by fusion welding processes.

  20. Precipitation and Phase Transformations in 2101 Lean Duplex Stainless Steel During Isothermal Aging

    Science.gov (United States)

    Maetz, Jean-Yves; Cazottes, Sophie; Verdu, Catherine; Kleber, Xavier

    2016-01-01

    The effect of isothermal aging at 963 K (690 °C) on the microstructure of a 2101 lean duplex stainless steel, with the composition Fe-21.5Cr-5Mn-1.6Ni-0.22N-0.3Mo, was investigated using a multi-technique and multi-scale approach. The kinetics of phase transformation and precipitation was followed from a few minutes to thousands of hours using thermoelectric power measurements; based on these results, certain aging states were selected for electron microscopy characterization. Scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy were used to quantitatively describe the microstructural evolution through crystallographic analysis, chemical analysis, and volume fraction measurements from the macroscopic scale down to the nanometric scale. During aging, the precipitation of M23C6 carbides, Cr2N nitrides, and σ phase as well as the transformation of ferrite into austenite and austenite into martensite was observed. These complex microstructural changes are controlled by Cr volume diffusion. The precipitation and phase transformation mechanisms are described.

  1. Effect of silver on microstructure and antibacterial property of 2205 duplex stainless steel.

    Science.gov (United States)

    Yang, Sheng-Min; Chen, Yi-Chun; Pan, Yeong-Tsuen; Lin, Dong-Yih

    2016-06-01

    In this study, 2205 duplex stainless steel (DSS) was employed to enhance the antibacterial properties of material through silver doping. The results demonstrated that silver-doped 2205 DSS produces an excellent bacteria-inhibiting effect against Escherichia coli and Staphylococcus aureus. The antibacterial rates were 100% and 99.5%, respectively. Because the mutual solubility of silver and iron is very low in both the solid and liquid states, a silver-rich compound solidified and dispersed at the ferrite/austenite interface and the ferrite, austenite, and secondary austenite phases in silver-doped 2205 DSS. Doping 2205 DSS with silver caused the Creq/Nieq ratio of ferrite to decrease; however, the lower Creq/Nieq ratio promoted the rapid nucleation of γ2-austenite from primary α-ferrite. After 12h of homogenisation treatment at 1200 °C, the solubility of silver in the γ-austenite and α-ferrite phases can be increased by 0.10% and 0.09%, respectively. Moreover, silver doping was found to accelerate the dissolution of secondary austenite in a ferrite matrix during homogenisation. Copyright © 2016. Published by Elsevier B.V.

  2. Effect of aging temperature on phase decomposition and mechanical properties in cast duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mburu, Sarah; Kolli, R. Prakash; Perea, Daniel E.; Schwarm, Samuel C.; Eaton, Arielle; Liu, Jia; Patel, Shiv; Bartrand, Jonah; Ankem, Sreeramamurthy

    2017-04-01

    The microstructure and mechanical properties in unaged and thermally aged (at 280 oC, 320 oC, 360 oC, and 400 oC to 4300 h) CF–3 and CF–8 cast duplex stainless steels (CDSS) are investigated. The unaged CF–8 steel has Cr-rich M23C6 carbides located at the δ–ferrite/γ– austenite heterophase interfaces that were not observed in the CF–3 steel and this corresponds to a difference in mechanical properties. Both unaged steels exhibit incipient spinodal decomposition into Fe-rich α–domains and Cr-rich α’–domains. During aging, spinodal decomposition progresses and the mean wavelength (MW) and mean amplitude (MA) of the compositional fluctuations increase as a function of aging temperature. Additionally, G–phase precipitates form between the spinodal decomposition domains in CF–3 at 360 oC and 400 oC and in CF–8 at 400 oC. The microstructural evolution is correlated to changes in mechanical properties.

  3. Evolutions of Microstructure and Properties During Cold Rolling of 19Cr Duplex Stainless Steel

    Science.gov (United States)

    Ran, Qingxuan; Xu, Wanjian; Wu, Zhaoyu; Li, Jun; Xu, Yulai; Xiao, Xueshan; Hu, Jincheng; Jiang, Laizhu

    2016-10-01

    Evolutions of microstructure, mechanical, and corrosion properties of 19Cr (Fe-18.9Cr-10.1Mn-0.3Ni-0.261N-0.030C-0.5Si) duplex stainless steel have been investigated during cold rolling at room temperature. Dislocation slip dominated deformation mode of ferrite phase. However, deformation mechanism of austenite phase was different with the increasing cold-rolling reductions. Dislocation slip and strengthening effect of twin boundaries caused pile-up phenomenon at the initial deformation stage. When the amount of cold-rolling reduction attained greater than 50 pct, induced α'-martensite appeared in deformed austenite phase. Hardness of austenite phase was higher than that of the deformed ferrite because of its higher strengthening effect during cold-rolling process. Cold-rolling deformation caused deterioration of the pitting corrosion resistance in 3.5 wt pct NaCl aqueous solution. Pitting corrosion always initiated in the ferrite phase and the phase boundary in the solution-treated alloy. Additional pitting holes appeared in deformed austenite phase because of the decrease in corrosion resistance caused by dislocation accumulation and induced α'-martensite.

  4. SCC of 2304 Duplex Stainless Steel—Microstructure, Residual Stress and Surface Grinding Effects

    Directory of Open Access Journals (Sweden)

    Nian Zhou

    2017-02-01

    Full Text Available The influence of surface grinding and microstructure on chloride induced stress corrosion cracking (SCC behavior of 2304 duplex stainless steel has been investigated. Grinding operations were performed both parallel and perpendicular to the rolling direction of the material. SCC tests were conducted in boiling magnesium chloride according to ASTM G36; specimens were exposed both without external loading and with varied levels of four-point bend loading. Residual stresses were measured on selected specimens before and after exposure using the X-ray diffraction technique. In addition, in-situ surface stress measurements subjected to four-point bend loading were performed to evaluate the deviation between the actual applied loading and the calculated values according to ASTM G39. Micro-cracks, initiated by grinding induced surface tensile residual stresses, were observed for all the ground specimens but not on the as-delivered surfaces. Loading transverse to the rolling direction of the material increased the susceptibility to chloride induced SCC. Grinding induced tensile residual stresses and micro-notches in the as-ground surface topography were also detrimental.

  5. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm

    Science.gov (United States)

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-02-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm.

  6. Ferrite Measurement in Austenitic and Duplex Stainless Steel Castings - Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, C.D.; Zhou, G.; Ruprecht, W.

    1999-08-01

    The ability to determine ferrite rapidly, accurately and directly on a finished casting, in the solution annealed condition, can enhance the acceptance, save on manufacturing costs and ultimately improve service performance of duplex stainless steel cast products. If the suitability of a non-destructive ferrite determination methodology can be demonstrated for standard industrial measurement instruments, the production of cast secondary standards for calibration of these instruments is a necessity. With these concepts in mind, a series of experiments were carried out to demonstrate, in a non-destructive manner, the proper methodology for determining ferrite content. The literature was reviewed, with regard to measurement techniques and vagaries, an industrial ferrite measurement round-robin was conducted, the effects of casting surface finish, preparation of the casting surface for accurate measurement and the evaluation of suitable means for the production of cast secondary standards for calibration were systematically investigated. The data obtained from this research program provides recommendations to insure accurate, repeatable and reproducible ferrite measurement and qualifies the Feritscope for field use on production castings.

  7. Ferrite Measurement in Austenitic and Duplex Stainless Steel Castings - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, C.D.; Zhou, G.; Ruprecht, W.

    1999-08-01

    The ability to determine ferrite rapidly, accurately and directly on a finished casting, in the solution annealed condition, can enhance the acceptance, save on manufacturing costs and ultimately improve service performance of duplex stainless steel cast products. If the suitability of a non-destructive ferrite determination methodology can be demonstrated for standard industrial measurement instruments, the production of cast secondary standards for calibration of these instruments is a necessity. With these concepts in mind, a series of experiments were carried out to demonstrate, in a non-destructive manner, the proper methodology for determining ferrite content. The literature was reviewed, with regard to measurement techniques and vagaries, an industrial ferrite measurement round-robin was conducted, the effects of casting surface finish, preparation of the casting surface for accurate measurement and the evaluation of suitable means for the production of cast secondary standards for calibration were systematically investigated. The data obtained from this research program provide recommendations to ensure accurate, repeatable, and reproducible ferrite measurement and qualifies the Feritscope for field use on production castings.

  8. The effect of σ-phase precipitation at 800°C on the corrosion resistance in sea-water of a high alloyed duplex stainless steel

    NARCIS (Netherlands)

    Wilms, M.E.; Gadgil, V.J.; Krougman, J.M.; Ijsseling, F.P.

    1994-01-01

    Super-duplex stainless steels are recently developed high alloyed stainless steels that combine good mechanical properties with excellent corrosion resistance. Because of a high content of chromium and molybdenum, these alloys are susceptible to σ-phase precipitation during short exposure to

  9. Heat sink welding of austenitic stainless steel pipes to control distortion and residual stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H.; Albert, S.K.; Bhaduri, A.K. [Materials Technology Div., Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2007-07-01

    Construction of India's Prototype Fast Breeder Reactor (PFBR) involves extensive welding of austenitic stainless steels pipes of different dimensions. Due to high thermal expansion coefficient and poor thermal conductivity of this class of steels, welding can result in significant distortion of these pipes. Attempts to arrest this distortion can lead to high levels of residual stresses in the welded parts. Heat sink welding is one of the techniques often employed to minimize distortion and residual stress in austenitic stainless steel pipe welding. This technique has also been employed to repair welding of the piping of the Boiling Water Reactors (BWRs) subjected to radiation induced intergranular stress corrosion cracking (IGSCC). In the present study, a comparison of the distortion in two pipe welds, one made with heat sink welding and another a normal welds. Pipes of dimensions 350{phi} x 250(L) x 8(t) mm was fabricated from 316LN plates of dimensions 1100 x 250 x 8 mm by bending and long seam (L-seam) welding by SMAW process. Two fit ups with a root gap of 2 mm, land height of 1mm and a groove angle of 70 were prepared using these pipes for circumferential seam (C-seam) welding. Dimensions at predetermined points in the fit up were made before and after welding to check the variation in radius, circumference and and ovality of the pipes. Root pass for both the pipe fit up were carried out using conventional GTAW process with 1.6 mm AWS ER 16-8-2 as consumables. Welding of one of the pipe fit ups were completed using conventions GTAW process while the other was completed using heat sink welding. For second and subsequent layers of welding using this process, water was sprayed at the root side of the joint while welding was in progress. Flow rate of the water was {proportional_to}6 1/minute. Welding parameters employed were same as those used for the other pipe weld. Results of the dimensional measurements showed that there is no circumferential shrinkage in

  10. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides.

    Science.gov (United States)

    Tseng, Kuang-Hung; Lin, Po-Yu

    2014-06-20

    The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO₂ and Al₂O₃ were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO₂ leads to a satisfactory surface appearance compared to that of the TIG weld made with Al₂O₃. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO₂, the TIG welding with nanoparticle SiO₂ has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al₂O₃ does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO₂ uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al₂O₃ results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.

  11. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides

    Directory of Open Access Journals (Sweden)

    Kuang-Hung Tseng

    2014-06-01

    Full Text Available The purpose of this study was to investigate the difference between tungsten inert gas (TIG welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results show that the use of SiO2 leads to a satisfactory surface appearance compared to that of the TIG weld made with Al2O3. The surface appearance of the TIG weld made with nanoparticle oxide has less flux slag compared with the one made with microparticle oxide of the same type. Compared with microparticle SiO2, the TIG welding with nanoparticle SiO2 has the potential benefits of high joint penetration and less angular distortion in the resulting weldment. The TIG welding with nanoparticle Al2O3 does not result in a significant increase in the penetration or reduction of distortion. The TIG welding with microparticle or nanoparticle SiO2 uses a heat source with higher power density, resulting in a higher ferrite content and hardness of the stainless steel weld metal. In contrast, microparticle or nanoparticle Al2O3 results in no significant difference in metallurgical properties compared to that of the C-TIG weld metal. Compared with oxide particle size, the thermal stability of the oxide plays a significant role in enhancing the joint penetration capability of the weld, for the UNS S31603 stainless steel TIG welds made with activated oxides.

  12. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2017-04-01

    Full Text Available High nitrogen stainless steel (HNS is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding (SMAW, gas tungsten arc welding (GTAW, electron beam welding (EBW and friction stir welding (FSW processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

  13. INVESTIGATING SPOT WELD GROWTH ON 304 AUSTENITIC STAINLESS STEEL (2 mm SHEETS

    Directory of Open Access Journals (Sweden)

    NACHIMANI CHARDE

    2013-02-01

    Full Text Available Resistance spot welding (RSW has revolutionized automotive industries since early 1970s for its mechanical assemblies. To date one mechanical assembly out five is welded using spot welding technology in various industries and stainless steel became very popular among common materials. As such this research paper analyses the spot weld growth on 304 austenitic stainless steels with 2mm sample sheets. The growth of a spot weld is primarily determined by its parameters such as current, weld time, electrode tip and force. However other factors such as electrode deformations, corrosions, dissimilar materials and material properties are also affect the weld growth. This paper is intended to analyze only the effects of nuggets growth due to the current and weld time increment with constant force and unchanged electrode tips. A JPC 75kVA spot welder was used to accomplish it and the welded samples were undergone tensile test, hardness test and metallurgical test to characterize the formation of weld nuggets.

  14. Pulsed Nd:YAG laser welding of AISI 304 to AISI 420 stainless steels

    Science.gov (United States)

    Berretta, José Roberto; de Rossi, Wagner; David Martins das Neves, Maurício; Alves de Almeida, Ivan; Dias Vieira Junior, Nilson

    2007-09-01

    The technique to weld AISI 304 stainless steel to AISI 420 stainless steel with a pulsed Nd:YAG laser has been investigated. The main objective of this study was to determine the influence of the laser beam position, with respect to the joint, on weld characteristics. Specimens were welded with the laser beam incident on the joint and moved 0.1 and 0.2 mm on either side of the joint. The joints were examined in an optical microscope for cracks, pores and to determine the weld geometry. The microstructure of the weld and the heat affected zones were observed in a scanning electron microscope. An energy dispersive spectrometer, coupled to the scanning electron microscope, was used to determine variations in (weight %) the main chemical elements across the fillet weld. Vickers microhardness testing and tensile testing were carried out to determine the mechanical properties of the weld. The results of the various tests and examinations enabled definition of the best position for the incident laser beam with respect to the joint, for welding together the two stainless steels.

  15. Acoustic emisson and ultrasonic wave characteristics in TIG-welded 316 stainless steel

    Science.gov (United States)

    Lee, Jin Kyung; Lee, Joon Hyun; Lee, Sang Pill; Son, In Su; Bae, Dong Su

    2014-05-01

    A TIG welded 316 stainless steel materials will have a large impact on the design and the maintenance of invessel components including pipes used in a nuclear power plant, and it is important to clear the dynamic behavior in the weld part of stainless steel. Therefore, nondestructive techniques of acoustic emission (AE) and ultrasonic wave were applied to investigate the damage behavior of welded stainless steel. The velocity and attenuation ratio of the ultrasonic wave at each zone were measured, and a 10 MHz sensor was used. We investigated the relationship between dynamic behavior and AE parameters analysis and derived the optimum parameters to evaluate the damage degree of the specimen. By measuring the velocity and the attenuation of an ultrasonic wave propagating each zone of the welded stainless steel, the relation of the ultrasonic wave and metal structure at the base metal, heat affected zone (HAZ) metal and weld metal is also discussed. The generating tendency of cumulated counts is similar to that of the load curve. The attenuation ratios from the ultrasonic test results were 0.2 dB/mm at the base zone, and 0.52 dB/mm and 0.61 dB/mm at the HAZ zone and weld zone, respectively.

  16. Development of stress corrosion cracking resistant welds of 321 stainless steel by simple surface engineering

    Science.gov (United States)

    Mankari, Kamal; Acharyya, Swati Ghosh

    2017-12-01

    We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.

  17. Temperature distribution of multipass TIG welded AISI 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Esme, Ugur; Guven, Onur [Mersin Univ., Tarsus (Turkey); Bayramoglu, Melih; Serin, Hasan [Cukurova Univ., Adana (Turkey); Aydin, Hakan [Uludag Unaiv., Bursa (Turkey); Kazancoglu, Yigit [Izmir Univ. of Economics (Turkey). Dept. of Business Administration

    2011-07-01

    Tungsten inert gas welding (TIG) is one of the most important material-joining processes widely used in industry. AISI type 304L stainless steel plates with 8 and 10 mm thicknesses are widely used in the fabrication of pressure vessels and other components. These plates are mostly joined together by multipass welding methods. The temperature distribution that occurs during multipass welding affects the material microstructure, hardness, mechanical properties, and the residual stresses that will be present in the welded material. Very limited experimental data regarding temperature distribution during multipass welding of plates is available in the literature. Experimental work was carried out to find out the temperature distribution during multipass welding of the AISI 304L stainless steel plates. The temperature distribution curves obtained during the experiments are presented. The average maximum temperature rise during each pass of welding is calculated and plotted against the distance from the weld pad centre line. From these plots, the maximum temperature rise expected in the base plate region during any pass of welding operation can be estimated. (orig.)

  18. Microstructure and Mechanical Properties of 21-6-9 Stainless Steel Electron Beam Welds

    Science.gov (United States)

    Elmer, John W.; Ellsworth, G. Fred; Florando, Jeffrey N.; Golosker, Ilya V.; Mulay, Rupalee P.

    2017-04-01

    Welds can either be stronger or weaker than the base metals that they join depending on the microstructures that form in the fusion and heat-affected zones of the weld. In this paper, weld strengthening in the fusion zone of annealed 21-6-9 stainless steel is investigated using cross-weld tensile samples, hardness testing, and microstructural characterization. Due to the stronger nature of the weld, the cross-weld tensile tests failed in the base metal and were not able to generate true fusion zone mechanical properties. Nanoindentation with a spherical indenter was instead used to predict the tensile behavior for the weld metal. Extrapolation of the nanoindentation results to higher strains was performed using the Steinberg-Guinan and Johnson-Cook strength models, and the results can be used for weld strength modeling purposes. The results illustrate how microstructural refinement and residual ferrite formation in the weld fusion zone can be an effective strengthener for 21-6-9 stainless steel.

  19. Influence of annealing on the shot-peened surface of duplex stainless steel at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qiang; Wu, Xueyan [School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Jiang, Chuanhai, E-mail: chjiang2011@163.com [School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Xu, Zhou; Zhan, Ke [School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China)

    2013-02-15

    Highlights: ► The relaxations of residual stresses caused by thermal treatments were studied. ► Dislocation density of γ-phase is higher than that of α-phase in the surface after shot peening. ► A new phase appeared apparently at the annealing temperature of 700 °C. ► Activation enthalpy for stress relaxation of γ-phase is lowered than that of α-phase. ► Microhardness is influenced by dislocation density relief and composition of phases. -- Abstract: In order to investigate the residual stress relaxations of shot-peened surface, isothermal annealing treatments were carried out on duplex stainless steel (DSS) S32205 after shot peening (SP) with temperature ranging from 600 to 700 °C. A new phase with a tetragonal crystal structure (σ-phase) appears apparently at the annealing temperature of 700 °C for 64 min. The rates of residual stress relaxation in austenite (γ-phase) are higher than that in ferrite (α-phase) under the corresponding annealing temperature for 64 min. The residual-stress relaxation process during isothermal annealing could be described by Zener–Wert–Avrami function. The activation enthalpy for residual stress relaxation in γ-phase is lower than that in α-phase. At temperature of 700 °C, the microhardness increases gradually after reduction at the initial stage because the strengthening of the new σ-phase is dominating with the prolongation of annealing time, the content-increased γ-phase may also have a certain contribution.

  20. Influence o the microstructure of duplex stainless steels on their failure characteristics during hot deformation

    Directory of Open Access Journals (Sweden)

    Reis G.S.

    2000-01-01

    Full Text Available Two types of duplex stainless steels were deformed by torsion at a temperature range of 900 to 1200 °C and strain rate of 1.0 s-1 and their final microstructures were observed. The austenite volume fraction of steel A (26.5Cr - 4.9Ni - 1.6Mo is approximately 25% at room temperature, after conventional annealing, while that of steel B (24Cr - 7.5Ni - 2.3Mo is around 55%. Experimental data show that steel A is ductile at high temperatures and displays low ductility at low temperatures, while steel B has low ductility in the entire range of temperatures studied. At high temperatures, steel A is essentially ferritic and shows dynamic recrystallized grains after deformation. When steel A is strained at low temperatures and displays low austenite volume fraction, microstructural observations indicate that failure is triggered by grain boundary sliding due to the formation of an austenite net structure at the ferrite grain boundaries. At intermediate volume fraction, when austenite forms a dispersed second-phase in steels A and B, failure begins at the ferrite/ferrite boundaries since some of the new ferrite grains may become immobilized by the austenite particles. When steel B is strained at volume fraction of around 50% of austenite and both phases percolate the microstructure, failure occurs after low straining as a consequence of the different plastic behaviors of each of the phases. The failure characteristics of both steels are correlated not only with the volume fraction of austenite but also with its distribution within the ferrite matrix, which limits attainable strain without failure.

  1. 77 FR 10773 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Scheduling of...

    Science.gov (United States)

    2012-02-23

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Scheduling of... antidumping duty orders on stainless steel butt-weld pipe fittings from Italy, Malaysia, and the Philippines...

  2. Non destructive method to follow the phase sigma in a duplex stainless steel; Metodologia nao destrutiva para acompanhamento da fase sigma, em um aco inoxidavel duplex

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.M.; Andrade, A.L.S. Souza; Fialho, W.M.L.; Araujo, B.R., E-mail: edgard@ifpb.edu.br [Instituto Federal de Educacao Ciencia e Tecnologia da Paraiba (IFPB), Joao Pessoa, PB (Brazil); Silva, J.H.R.; Leite, Josinaldo P.; Silva, Eloy M. [Instituto Federal de Educacao Ciencia e Tecnologia do Ceara (IFCE), CE (Brazil); Leite, Joao P. [Universidade Federal da Paraiba (UFPB), PB (Brazil)

    2014-07-01

    Duplex stainless steels are subject to embrittlement due to the formation of sigma phase, which is one with the greatest effect of weakening because they are rich in chromium and deplete the matrix of this element. In this paper, a non-destructive methodology based on measurements of Hall voltage, is presented for monitoring the formation of sigma phase at temperatures of 800 deg C and 900 deg C. Different field intensities are generated by an electromagnet and the flow of field lines is detected by a Hall effect sensor. Hall voltage measurements are proportional to the formation of sigma phase generated by different times of aging methods. The results are correlated with results of microscopic, hardness and X-ray diffraction. It was showed that exist a correlation between the Hall voltage and the amount of sigma phase. The formation of this phase influences the signal voltage by reducing the voltage. (author)

  3. Heat transfer and fluid flow during laser spot welding of 304 stainless steel

    CERN Document Server

    He, X; Debroy, T

    2003-01-01

    The evolution of temperature and velocity fields during laser spot welding of 304 stainless steel was studied using a transient, heat transfer and fluid flow model based on the solution of the equations of conservation of mass, momentum and energy in the weld pool. The weld pool geometry, weld thermal cycles and various solidification parameters were calculated. The fusion zone geometry, calculated from the transient heat transfer and fluid flow model, was in good agreement with the corresponding experimentally measured values for various welding conditions. Dimensional analysis was used to understand the importance of heat transfer by conduction and convection and the roles of various driving forces for convection in the weld pool. During solidification, the mushy zone grew at a rapid rate and the maximum size of the mushy zone was reached when the pure liquid region vanished. The solidification rate of the mushy zone/liquid interface was shown to increase while the temperature gradient in the liquid zone at...

  4. Determination of Susceptibility to Intergranular Corrosion of UNS 31803 Type Duplex Stainless Steel by Electrochemical Reactivation Method

    OpenAIRE

    ARIKAN, Mehmet Emin; DORUK, Mustafa

    2008-01-01

    Specimens taken from a hot rolled cylindrical duplex stainless steel (DSS) bar with 22% Cr and 5% Ni grade were solution annealed at 1050 °C and then sensitization heat treatments were conducted at 650 °C. A series of specimens with ageing times ranging from 100 to 31,622 min were held for sensitization treatment. The effects of isothermal ageing treatments on the microstructure and on the localized corrosion resistance of the DSS were investigated, through the double loop electrochemi...

  5. Determination of Susceptibility to Intergranular Corrosion of UNS 31803 Type Duplex Stainless Steel by Electrochemical Reactivation Method

    OpenAIRE

    Mehmet Emin Arıkan; Rafet Arıkan; Mustafa Doruk

    2012-01-01

    Specimens taken from a hot-rolled cylindrical duplex stainless steel (DSS) bar with 22% Cr grade were solution annealed at 1050∘C and then aged at 725∘C from 100 to 31622 min for sensitization treatment. Double loop electrochemical potentiodynamic reactivation and standard weight loss immersion acid tests were conducted. The solution-annealed samples were found unsensitized. Those samples aged for 100 and 316 min were less sensitized whereas samples aged for 1000 min and especially those aged...

  6. Determination of Susceptibility to Intergranular Corrosion of UNS 31803 Type Duplex Stainless Steel by Electrochemical Reactivation Method: A Comparative Study

    OpenAIRE

    Mehmet Emin Arıkan; Rafet Arıkan; Mustafa Doruk

    2012-01-01

    In the present study as in our previous studies (Arikan and Doruk, 2008 and Arikan et al., 2012), similar specimens taken from a hot rolled cylindrical duplex stainless steel (DSS) bar with 22% Cr grade were solution annealed at 1050°C and then aged at 800∘C from 100 to 31622 min for sensitization treatment. Double loop electrochemical potentiodynamic reactivation and standard weight loss immersion acid tests were conducted. The solution annealed samples were found unsensitized. The samples a...

  7. Identification and analysis of slip systems activated during low-cycle fatigue in a duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    El Bartali, A.; Aubin, V.; Sabatier, L. [Laboratoire de Mecanique de Lille, LML, UMR CNRS 8107, Ecole Centrale de Lille, BP 48, 59651 Villeneuve d' Ascq Cedex (France); Villechaise, P. [Laboratoire de Mecanique et de Physique des Materiaux, LMPM, UMR CNRS 6617, Ecole Nationale Superieure de Mecanique et Aerotechnique, Teleport 2, 1 Avenue C. Ader, BP 40109, 86961 Futuroscope, Chasseneuil Cedex (France); Degallaix-Moreuil, S. [Laboratoire de Mecanique de Lille, LML, UMR CNRS 8107, Ecole Centrale de Lille, BP 48, 59651 Villeneuve d' Ascq Cedex (France)], E-mail: suzanne.degallaix@ec-lille.fr

    2008-12-15

    This paper focuses on the identification of activated slip systems in low-cycle fatigue ({delta}{epsilon}{sub t}/2 = 5 x 10{sup -3}) in a duplex stainless steel. From electron backscattered diffraction measurements and scanning electron microscopy observations, the slip systems and their associated Schmid factor are analyzed in both constitutive phases. In austenitic grains, one or two slip systems are activated with Schmid factors greater than 0.25. While in the ferritic grains, several slip systems are activated, with a variety of Schmid factors.

  8. Effect of weld thermal cycle on helium bubble formation in stainless steel

    Science.gov (United States)

    Kano, F.; Nakahigashi, S.; Nakamura, H.; Uesugi, N.; Mitamura, T.; Terasawa, M.; Irie, H.; Fukuya, K.

    1998-10-01

    Helium bubble structure was examined on a helium-implanted stainless steel after applying two kinds of heat input. Helium ions were implanted on Type 304 stainless steel at 573 K from 2 to 200 appm to a peak depth of 0.5 μm from the surface. After that, weld thermal history was applied by an electron beam. The cooling rates were selected to be 370 and 680 K/s from 1023 to 773 K. TEM observation revealed that nucleation and growth of helium bubbles were strongly dependent on the cooling rate after welding and the helium concentration.

  9. Stress corrosion cracking behaviour of gas tungsten arc welded super austenitic stainless steel joints

    OpenAIRE

    Vinoth Kumar, M.; Balasubramanian, V.; Rajakumar, S.; Albert, Shaju K.

    2015-01-01

    Super 304H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of t...

  10. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    Science.gov (United States)

    2014-04-11

    stainless steel (Ref 13). The work Fig. 1 A schematic of a single cycle of the Linear Friction Welding (LFW) process Fig. 2 First four phases of the LFW...have a small electronegativity difference. This is achieved by ensuring that the precipitate phase is of an intermetallic character (Ref 18). 2.1 Heat...thermodynamics and kinetics of various interacting and competing phase transformations which may take place within the weld region of this material. For example

  11. Thick-section Laser and Hybrid Welding of Austenitic Stainless Steels

    Science.gov (United States)

    Kujanpää, Veli

    Austenitic stainless steels are generally known to have very good laser weldability, when ordinary grades of sheets are concerned. But it is not necessarily the case, if special grades of fully austenitic structures with e.g. high molybdenum, or thick-section are used. It is also known that hot cracking susceptibility is strictly controlled by composition and welding parameters. If solidification is primary ferritic, hot cracking resistance is dramatically increased. It is also well known that laser welding needs a careful control of weld edge preparation and air gap between the edges. The dependence on edge quality can be decreased by using filler metal, either cold wire, hot wire or hybrid laser-arc welding. An additional role is high molybdenum contents where micro segregation can cause low local contents in weld which can decrease the corrosion properties, if filler metal is not used. Another feature in laser welding is its incomplete mixing, especially in thick section applications. It causes inhomogeneity, which can make uneven microstructure, as well as uneven mechanical and corrosion properties In this presentation the features of laser welding of thick section austenitic stainless steels are highlighted. Thick section (up to 60 mm) can be made by multi-pass laser or laser hybrid welding. In addition to using filler metal, it requires careful joint figure planning, laser head planning, weld parameter planning, weld filler metal selection, non-destructive and destructive testing and metallography to guarantee high-quality welds in practice. In addition some tests with micro segregation is presented. Also some examples of incomplete mixing is presented.

  12. Evaluation of Distortion in Welding Unions of 304 Stainless Steel with Elliptic Trajectory Using a Welding Robot

    Science.gov (United States)

    Carrasco-González, L. A.; Hurtado-Delgado, E.; Reyes-Valdés, F. A.

    The aim of this investigation is to evaluate the distortions generated in welding unions of stainless steel 304 by effect of the welding temperature and the microestructural changes. The joint design is a 100 × 100 mm steel plate of 3 mm thickness. The plate was joined to a tube of 50 mm diameter and 2 mm thickness, which has a defined angular cut; therefore, the trajectory followed by the seam has an elliptic form. Temperature data acquisition was developed by type K thermocouples, placed in pairs at 0°, 90°, 180° and 270° along the welding trajectory and connected to a data acquisition device yo obtain the measures to generate time-temperature plots. The welding process was executed by a KUKA ®; KR16 welding robot with an integrated GMAW (Gas metal arc welding) process where the input parameters of voltage, wire feed and travel speed are set to constant. The distortion of the work piece was measured using a laser scanning technique that generates a point cloud with the VXelements TM software for comparison between the pre and post-weld condition. Microstructural evaluation was performed on transversal sections of the seam, at the mentioned angles for correlation.

  13. Influence of ageing time on hardness, microstructure and wear behaviour of AISI2507 super duplex stainless steel

    Science.gov (United States)

    Davanageri, Mahesh; Narendranath, S.; Kadoli, Ravikiran

    2017-08-01

    The effect of ageing time on hardness, microstructure and wear behaviour of super duplex stainless AISI 2507 is examined. The material was solution treated at 1050 °C and water quenched, further the ageing has been carried out at 850 °C for 30 min, 60 min and 90 min. The chromium (Cr) and molybdenum (Mo) enriched intermetallic sigma phase (σ) were found to precipitate at the ferrite/austenite interface and within the ferrite region. The concentration of intermetallic sigma phase (σ), which was quantified by a combination of scanning electron microscopy and image analysis, increases with increasing ageing time, leading to significant increase in the hardness. The x-ray diffraction (XRD) and energy dispersive x-ray (EDX) was employed to investigate the element distribution and phase identification. Wear characterstics of the aged super duplex stainless steel were measured by varying normal loads, sliding speeds, sliding distance and compared with solution treated (as-cast) specimens. Scanning electron microscopy was used to assist in analysis of worn out surfaces. The outcomes suggested that the increase in percentage of sigma phase increases hardness and wear resistance in heat-treated specimens compared to solution treated specimens (as-cast).

  14. Effect of Aging on Precipitation Behavior and Pitting Corrosion Resistance of SAF2906 Super Duplex Stainless Steel

    Science.gov (United States)

    Li, Jianchun; Li, Guoping; Liang, Wei; Han, Peide; Wang, Hongxia

    2017-09-01

    The effect of aging temperature and holding time on the precipitation of secondary phases and pitting corrosion resistance of SAF2906 super duplex stainless steel was examined. Chromium nitride and σ phase were observed to preferentially precipitate at the ferrite/austenite interface. An amount of nitrides was also observed within the ferrite grain. The precipitation of chromium nitride occurred before the σ phase. The increase in aging temperature and holding time did not affect the concentration of the nitrides but increased the area fraction of the σ phase at a faster rate. The Cr2N precipitation in SAF2906 is more evident than that of the other duplex stainless steels. The variation tendency of the precipitation concentrations is primarily consistent with the prediction results of Thermo-Calc software. The electrochemical results showed that Cr2N and σ phase significantly reduced the pitting potential. Scanning electron microscope observations revealed that pits appear mainly in regions adjacent to sigma phase and Cr2N.

  15. Creep-fatigue damage characteristics for a welded cylindrical structure of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeo Yeon; Kim, Jong Bum; Kim, Seok Hoon; Joo, Young Sang; Lee, Jae Han [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    In the design and assessment of a high temperature structure, it is important to ensure the structural integrity for the welded joint subjected to a creep-fatigue load because a statistical investigation shows that 29 events out of 46 leaks in liquid metal reactors were caused at the welded joints. As for the structural integrity due to thermal ratchet load at the welded joint, KAERI has performed the test and analysis work for a cylindrical structure with welded joints. As a continuation of the study on welded joints at a high temperature structure, a creep-fatigue structural test and analysis work is now on-going and this paper present the interim findings for the structural test and analysis work. Recently the structural and analysis work for the Y-piece made of a 316L stainless steel structure has been carried out. The objectives of the present structural creep-fatigue test with the welded cylindrical specimen are to compare the creep-fatigue damage mechanisms for the 304 and 316L stainless steels, to compare the different behavior of the welding methods in a high temperature austenitic structures and to quantify the conservatism of the design guidelines for a high temperature structure.

  16. A Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove

    1997-01-01

    A prototype shield gas box with different plasma control nozzles have been investigated for laser welding of stainless steel (AISI 316). Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and gas flows show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 4000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  17. Plasma Control and Gas Protection System for Laser Welding of Stainless Steel

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Olsen, Flemming Ove; Petersen, Kaj

    1997-01-01

    An integrated plasma nozzle and a shield gas box have been investigated for laser welding of 2 mm stainless steel sheets. Different gases for plasma control and gas protection of the weld seam have been used. The gas types, welding speed and coaxial and plasma flow show the impact on process...... stability and protection against oxidation. Also oxidation related to special conditions at the starting edge has been investigated. The interaction between coaxial and plasma gas flow show that the coaxial flow widens the band in which the plasma gas flow suppresses the metal plasma. In this band the welds...... are oxide free. With 2.7 kW power welds have been performed at 3000 mm/min with Ar / He (70%/30%) as coaxial, plasma and shield gas....

  18. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven, W.; Lundin, Carl, W.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope® and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope® were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought

  19. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven, W.; Lundin, Carl, D.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope{reg_sign} and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope{reg_sign} were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the

  20. Effect of the purging gas on properties of Ti stabilized AISI 321 stainless steel TIG welds

    Energy Technology Data Exchange (ETDEWEB)

    Taban, Emel; Kaluc, Erdinc; Aykan, T. Serkan [Kocaeli Univ. (Turkey). Dept. of Mechanical Engineering

    2014-07-01

    Gas purging is necessary to provide a high quality of stainless steel pipe welding in order to prevent oxidation of the weld zone inside the pipe. AISI 321 stabilized austenitic stainless steel pipes commonly preferred in refinery applications have been welded by the TIG welding process both with and without the use of purging gas. As purging gases, Ar, N{sub 2}, Ar + N{sub 2} and N{sub 2} + 10% H{sub 2} were used, respectively. The aim of this investigation is to detect the effect of purging gas on the weld joint properties such as microstructure, corrosion, strength and impact toughness. Macro sections and microstructures of the welds were investigated. Chemical composition analysis to obtain the nitrogen, oxygen and hydrogen content of the weld root was done by Leco analysis. Ferrite content of the beads including root and cap passes were measured by a ferritscope. Vickers hardness (HV10) values were obtained. Intergranular and pitting corrosion tests were applied to determine the corrosion resistance of all welds. Type of the purging gas affected pitting corrosion properties as well as the ferrite content and nitrogen, oxygen and hydrogen contents at the roots of the welds. Any hot cracking problems are not predicted as the weld still solidifies with ferrite in the primary phase as confirmed by microstructural and ferrite content analysis. Mechanical testing showed no significant change according to the purge gas. AISI 321 steel and 347 consumable compositions would permit use of nitrogen rich gases for root shielding without a risk of hot cracking.

  1. 77 FR 39735 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines

    Science.gov (United States)

    2012-07-05

    ...)] Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines Determination On the basis..., Malaysia, and the Philippines would be likely to lead to continuation or recurrence of material injury to... Pipe Fittings from Italy, Malaysia, and the Philippines: Inv. Nos. 731-TA-865-867 (Second Review...

  2. 78 FR 35253 - Welded Stainless Pressure Pipe From Malaysia, Thailand, and the Socialist Republic of Vietnam...

    Science.gov (United States)

    2013-06-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE...-3931, (202) 482-5075, or at (202) 482-2924, respectively, AD/CVD Operations, Office 7, Import... Initiation Checklist: Welded Stainless Pressure Pipe from Malaysia (Malaysia Checklist), Antidumping Duty...

  3. Effects of stop-start features on residual stresses in a multipass austenitic stainless steel weld

    Energy Technology Data Exchange (ETDEWEB)

    Turski, M., E-mail: Mark.Turski@magnesium-elektron.com [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Francis, J.A. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)] [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hurrell, P.R. [Rolls-Royce Plc., Raynesway, Derby DE21 7XX (United Kingdom); Bate, S.K. [Serco Technical Services, Birchwood Park, Warrington, Cheshire WA3 6GA (United Kingdom); Hiller, S. [Materials Engineering, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Withers, P.J. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2012-01-15

    In this article we describe experiments that characterise and quantify the localised perturbations in residual stress associated with both ramped and abrupt stop-start features in a multipass weld. Residual stress distributions in AISI Grade 304L/308L stainless steel groove-welded specimens, containing weld interruptions that were introduced in a controlled manner, have been characterised using both neutron diffraction and the incremental deep hole drilling method. The extent to which the localised stresses associated with the interruptions were annealed by overlayed passes was also assessed. The results suggest that, regardless of the type of interruption, there can be significant localised increases in residual stress if the stop-start feature is left exposed. If further weld passes are deposited, then the localised increases in stress are likely to persist if the interruption was abrupt, whereas for a ramped interruption they may be dissipated. - Highlights: Black-Right-Pointing-Pointer In this study the residual stress-field surrounding weld interruptions was measured. Black-Right-Pointing-Pointer Localised stresses were found to increase at weld interruptions. Black-Right-Pointing-Pointer Both ramped and abrupt weld interruptions were investigated. Black-Right-Pointing-Pointer After subsequent weld passes, localised stresses persisted for abrupt interruptions. Black-Right-Pointing-Pointer After subsequent weld passes, localised stresses dissipated for ramped interruptions.

  4. Prediction of microsegregation and pitting corrosion resistance of austenitic stainless steel welds by modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1999-07-01

    The present study focuses on the ability of several computer models to accurately predict the solidification, microsegregation and pitting corrosion resistance of austenitic stainless steel weld metals. Emphasis was given to modelling the effect of welding speed on solute redistribution and ultimately to the prediction of weld pitting corrosion resistance. Calculations were experimentally verified by applying autogenous GTA- and laser processes over the welding speed range of 0.1 to 5 m/min for several austenitic stainless steel grades. Analytical and computer aided models were applied and linked together for modelling the solidification behaviour of welds. The combined use of macroscopic and microscopic modelling is a unique feature of this work. This procedure made it possible to demonstrate the effect of weld pool shape and the resulting solidification parameters on microsegregation and pitting corrosion resistance. Microscopic models were also used separately to study the role of welding speed and solidification mode in the development of microsegregation and pitting corrosion resistance. These investigations demonstrate that the macroscopic model can be implemented to predict solidification parameters that agree well with experimentally measured values. The linked macro-micro modelling was also able to accurately predict segregation profiles and CPT-temperatures obtained from experiments. The macro-micro simulations clearly showed the major roles of weld composition and welding speed in determining segregation and pitting corrosion resistance while the effect of weld shape variations remained negligible. The microscopic dendrite tip and interdendritic models were applied to welds with good agreement with measured segregation profiles. Simulations predicted that weld inhomogeneity can be substantially decreased with increasing welding speed resulting in a corresponding improvement in the weld pitting corrosion resistance. In the case of primary austenitic

  5. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    Science.gov (United States)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  6. Friction Stir Welding of Stainless Steel to Al Alloy: Effect of Thermal Condition on Weld Nugget Microstructure

    Science.gov (United States)

    Ghosh, M.; Gupta, R. K.; Husain, M. M.

    2014-02-01

    Joining of dissimilar materials is always a global challenge. Sometimes it is unavoidable to execute multifarious activities by a single component. In the present investigation, 6061 aluminum alloy and 304 stainless steel were joined by friction stir welding (FSW) at different tool rotational rates. Welded joints were characterized in optical and scanning electron microscopes. Reaction products in the stirring zone (SZ) were confirmed through X-ray diffraction. Joint strength was evaluated by tensile testing. It was found that the increment in average heat input and temperature at the weld nugget (WN) facilitated iron enrichment near the interface. Enhancement in the concentration of iron shifted the nature of intermetallics from the Fe2Al5 to Fe-rich end of the Fe-Al binary phase diagram. The peak microhardness and ultimate tensile strength were found to be maxima at the intermediate tool rotational rate, where Fe3Al and FeAl2 appeared along with Fe2Al5.

  7. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  8. Study of the temperature distribution on welded thin plates of duplex steel to be used for the external clad of a cask for transportation of radiopharmaceuticals products

    Energy Technology Data Exchange (ETDEWEB)

    Betini, Evandro G.; Ceoni, Francisco C.; Mucsi, Cristiano S.; Politano, Rodolfo; Rossi, Jesualdo L., E-mail: egbetini@ipen.br, E-mail: fceoni@hotmail.com, E-mail: csmucsi@ipen.br, E-mail: politano@ipen.br, E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Orlando, Marcos T.D., E-mail: mtdorlando@gmail.com [Universidade Federal do Espirito Santo (CCE/DFIS/UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Departamento de Fisica

    2015-07-01

    The clad material for a proprietary transport device for radiopharmaceutical products is the main focus of the present work. The production of {sup 99}Mo-{sup 99m}Tc transport cask requires a receptacle or cask where the UNS S32304 duplex steel sheet has shown that it meets high demands as the required mechanical strength and the spread of impact or shock waves mitigation. This work reports the experimental efforts in recording the thermal distribution on autogenous thin plates of UNS S32304 steel during welding. The UNS S32304 duplex steel is the most probable candidate for the external clad of the containment package for the transport of radioactive substances so it is highly relevant the understanding of all its physical parameters and its behavior under the thermal cycle imposed by a welding process. For the welding of the UNS S32304 autogenous plates the GTAW (gas tungsten arc welding) process was used with a pure argon arc protection atmosphere in order to simulate a butt joint weld on a thin duplex steel plate without filler metal. The thermal cycles were recorded by means of K-type thermocouples embedded by electrical spot welding near the weld region and connected to a multi-channel data acquisition system. The obtained results validate the reliability of the experimental apparatus for the future complete analysis of the welding experiment and further comparison to numerical analysis. (author)

  9. Mehanical Properties of Electron Beam Welded Joints in Thick Gage CA6NM Stainless Steel

    Science.gov (United States)

    Sarafan, Sheida; Wanjara, Priti; Gholipour, Javad; Champliaud, Henri; Mathieu, Louis

    2017-10-01

    Design of hydroelectric turbine components requires high integrity welds (without detectable volumetric defects) in heavy gage sections of stainless steel materials, such as ASTM A743 grade CA6NM—a low carbon 13% Cr-4% Ni martensitic stainless steel that is manufactured in cast form. In this work, 90-mm-thick plates of CA6NM were joined using a single-pass autogenous electron beam (EB) welding process and the mechanical properties were evaluated in the as-welded condition to characterize the performance of the joints. The static tensile properties that were evaluated in two directions—transverse and longitudinal to the EB weld seam—demonstrated conformance of the joints with the requirements of the ASME Section IX standard. The Charpy impact energies of the EB welds—measured at -18 °C on samples with V-notch roots located in the fusion and heat-affected zones—met the minimum requirements of 27 J specified in ASME Section VIII standard. In addition, bend tests that were conducted on the entire weld cross section displayed no discontinuities on the tension side of the bent joints. Hence, the developed EB welding process was demonstrated to render high-performance joints and promises key advantages for industrialization, such as cost savings through reductions in consumable material, production time and labor intensity.

  10. Mehanical Properties of Electron Beam Welded Joints in Thick Gage CA6NM Stainless Steel

    Science.gov (United States)

    Sarafan, Sheida; Wanjara, Priti; Gholipour, Javad; Champliaud, Henri; Mathieu, Louis

    2017-09-01

    Design of hydroelectric turbine components requires high integrity welds (without detectable volumetric defects) in heavy gage sections of stainless steel materials, such as ASTM A743 grade CA6NM—a low carbon 13% Cr-4% Ni martensitic stainless steel that is manufactured in cast form. In this work, 90-mm-thick plates of CA6NM were joined using a single-pass autogenous electron beam (EB) welding process and the mechanical properties were evaluated in the as-welded condition to characterize the performance of the joints. The static tensile properties that were evaluated in two directions—transverse and longitudinal to the EB weld seam—demonstrated conformance of the joints with the requirements of the ASME Section IX standard. The Charpy impact energies of the EB welds—measured at -18 °C on samples with V-notch roots located in the fusion and heat-affected zones—met the minimum requirements of 27 J specified in ASME Section VIII standard. In addition, bend tests that were conducted on the entire weld cross section displayed no discontinuities on the tension side of the bent joints. Hence, the developed EB welding process was demonstrated to render high-performance joints and promises key advantages for industrialization, such as cost savings through reductions in consumable material, production time and labor intensity.

  11. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  12. Microbially influenced corrosion of stainless steel welds; Stainless ko yosetsubu no biseibutsu yuki fushoku no kisoteki kento

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Y.; Tomoto, K.; Okayama, C.; Matsuda, F. [Osaka University, Osaka (Japan). Joining and Welding Research Institute; Nishimura, M. [Mitsubishi Kakoki Kaisha Ltd., Tokyo (Japan); Sakane, T. [Institute for Fermentation, Osaka (Japan); Kaneko, Y. [Osaka University, Osaka (Japan). Faculty of Engineering

    1997-06-20

    This paper describes sensitivities of microbiologically influenced corrosion (MIC) for various stainless steels. The failure in the weld joint of SUS steel pipes occurred in about 60 days from the start-up of the sewage treatment plant. Any welding defects were not found, and the corrosion rate of welds was estimated to be 18 mm per year which was too fast. The corrosion was reproduced using the residual liquid from effluent treatment plant in laboratory. Corrosion pits and bacteria adhering around these were observed at the same time. For the experiments using boiled and sterilized waste water, corrosion did not occur. As a result, MIC was confirmed. Seven kinds of bacteria were separated and identified from the waste water. Among individual bacteria separated and incubated, Methylobacterium sp. and Arthrobacter sp. showed the most strong corrosion properties. It was estimated that these bacteria produced organic acid and its concentration became high locally at the site adhered by bacteria to generate the corrosion. The MIC was observed for several kinds of stainless steels used. There was not a significant difference in anti-corrosion due to the kind of steel. 19 refs., 10 figs., 4 tabs.

  13. Low Cycle Fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kchaou, Y., E-mail: yacinekchaou@yahoo.fr [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia); Pelosin, V.; Hénaff, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Haddar, N.; Elleuch, K. [Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia)

    2016-01-10

    This paper focused on the study of Low Cycle Fatigue of welded joints of superaustenitic (Alloy28) stainless steels. Chemical composition and microstructure investigation of Base Metal (BM) and Weld Metal (WM) were identified. The results showed that both of composition is fully austenitic with a dendritic microstructure in the WM. Low cycle fatigue tests at different strain levels were performed on Base Metal (BM) and Welded Joint (WJ) specimens with a strain ratio R{sub ε}=−1. The results indicated that the fatigue life of welded joints is lower than the base metal. This is mainly due to the low ductility of the Welded Metal (WM) and the presence of welding defects. Simultaneously, Scanning Electron Microscope (SEM) observations of fractured specimens show that WJ have brittle behavior compared to BM with the presence of several welding defects especially in the crack initiation site. An estimation of the crack growth rate during LCF tests of BM and WJ was performed using distance between striations. The results showed that the crack initiation stage is shorter in the case of WJ compared to BM because of the presence of welding defects in WJ specimens.

  14. Residual Stresses Due to Circumferential Girth Welding of Austenitic Stainless Steel Pipes

    Science.gov (United States)

    Tarak, Farzan

    Welding, as a joining method in fabrication of engineering products and structural elements, has a direct influence on thermo-mechanical behavior of components in numerous structural applications. Since these thermo-mechanical behaviors have a major role in the life of welding components, predicting thermo-mechanical effects of welding is a major factor in designing of welding components. One of the major of these effects is generation of residual stresses due to welding. These residual stresses are not the causes of failure in the components solely, but they will add to external loads and stresses in operating time. Since, experimental methods are time consuming and expensive, computational simulation of welding process is an effective method to calculate these residual stresses. This investigation focuses on the evaluation of residual stresses and distortions due to circumferential girth welding of austenitic stainless steel pipes using the commercial finite element software ESI Visual-Environment and SYSWELDRTM to simulate welding process. Of particular importance is the comparison of results from three different types of mechanics models: 1) Axisymmetric, 2) Shell, and 3) Full 3-D.

  15. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Frazer David

    2010-11-01

    Full Text Available Abstract Background Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Results Our results show that hydroxyl radicals (.OH were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Conclusion Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute

  16. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species.

    Science.gov (United States)

    Leonard, Stephen S; Chen, Bean T; Stone, Samuel G; Schwegler-Berry, Diane; Kenyon, Allison J; Frazer, David; Antonini, James M

    2010-11-03

    Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Our results show that hydroxyl radicals (.OH) were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute lung injury. Since type of fume generated, particle size

  17. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  18. Risk of lung cancer according to mild steel and stainless steel welding

    DEFF Research Database (Denmark)

    Sørensen, Anita Rath; Thulstrup, Ane Marie; Hansen, Johnni

    2007-01-01

    OBJECTIVES: Whether the elevated risk of lung cancer observed among welders is caused by welding emissions or by confounding from smoking or asbestos exposure is still not resolved. This question was addressed in a cohort with a long follow-up and quantified estimates of individual exposure...... to welding fume particulates. METHODS: Male metal workers employed at least 1 year at one or more Danish stainless or mild steel industrial companies from 1964 through 1984 were enrolled in a cohort. Data on occupational and smoking history were obtained by questionnaire in 1986. Welders in the cohort who...... started welding in 1960 or later (N=4539) were followed from April 1968 until December 2003, when information on cancer diagnosis was obtained from the Danish Cancer Registry. During the follow-up, 75 cases of primary lung cancer were identified. Lifetime accumulated exposure to welding fume particulates...

  19. Evaluation of self-welding susceptibility of an austenitic stainless steel (alloy D9) in sodium

    Science.gov (United States)

    Kumar, Hemant; Albert, S. K.; Ramakrishnan, V.; Meikandamurthy, C.; Amarendra, G.; Bhaduri, A. K.

    2008-02-01

    Self-welding susceptibility of a 15Cr-15Ni-2Mo titanium-modified austenitic stainless steel (alloy D9), in both annealed and 20% cold-worked conditions, have been evaluated in flowing sodium at 823 K for 2160 and 4320 h under contact stress of 9.4 MPa. Tests were performed on flat-on-flat geometry of hollow cylindrical specimens under compression. One pair of 20% cold-worked alloy D9 vs. 20% cold-worked alloy D9 specimens tested for 4320 h was self-welded for which the breakaway shear force was measured. Scanning electron micrographs of the self-welded region showed that portions of the original interface no longer existed. The paper discusses the experimental set-up installed in the sodium loop test facility and the results of self-welding susceptibility studies on this material.

  20. Stress corrosion cracking behaviour of gas tungsten arc welded super austenitic stainless steel joints

    Directory of Open Access Journals (Sweden)

    M. Vinoth Kumar

    2015-09-01

    Full Text Available Super 304H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of the material. Stress corrosion cracking susceptibility of Super 304H parent metal and gas tungsten arc (GTA welded joints were studied by constant load tests in 45% boiling MgCl2 solution. Stress corrosion cracking resistance of Super 304H stainless steel was deteriorated by GTA welding due to the formation of susceptible microstructure in the HAZ of the weld joint and the residual stresses. The mechanism of cracking was found to be anodic path cracking, with transgranular nature of crack propagation. Linear relationships were derived to predict the time to failure by extrapolating the rate of steady state elongation.

  1. 77 FR 14002 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Final Results...

    Science.gov (United States)

    2012-03-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the... AGENCY: Import Administration, International Trade Administration, Department of Commerce. SUMMARY: On...

  2. 77 FR 18266 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Revised...

    Science.gov (United States)

    2012-03-27

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines; Revised Schedule for the Subject Reviews AGENCY: United States International Trade Commission. ACTION: Notice...

  3. Effect of Post-weld Heat Treatment on the Mechanical Properties of Supermartensitic Stainless Steel Deposit

    Science.gov (United States)

    Zappa, Sebastián; Svoboda, Hernán; Surian, Estela

    2017-02-01

    Supermartensitic stainless steels have good weldability and adequate tensile property, toughness and corrosion resistance. They have been developed as an alternative technology, mainly for oil and gas industries. The final properties of a supermartensitic stainless steel deposit depend on its chemical composition and microstructure: martensite, tempered martensite, ferrite, retained austenite and carbides and/or nitrides. In these steels, the post-weld heat treatments (PWHTs) are usually double tempering ones, to ensure both complete tempering of martensite and high austenite content, to increase toughness and decrease hardness. The aim of this work was to study the effect of post-weld heat treatments (solution treatment with single and double tempering) on the mechanical properties of a supermartensitic stainless steel deposit. An all-weld metal test coupon was welded according to standard ANSI/AWS A5.22-95 using a GMAW supermartensitic stainless steel metal cored wire, under gas shielding. PWHTs were carried out varying the temperature of the first tempering treatment with and without a second tempering one, after solution treatment. All-weld metal chemical composition analysis, metallurgical characterization, hardness and tensile property measurements and Charpy-V tests were carried out. There are several factors which can be affected by the PWHTs, among them austenite content is a significant one. Different austenite contents (0-42%) were found. Microhardness, tensile property and toughness were affected with up to 15% of austenite content, by martensite tempering and carbide precipitation. The second tempering treatment seemed not to have had an important effect on the mechanical properties measured in this work.

  4. Development of Duplex Stainless Steels by Field-Assisted Hot Pressing: Influence of the Particle Size and Morphology of the Powders on the Final Mechanical Properties

    Science.gov (United States)

    García-Junceda, A.; Rincón, M.; Torralba, J. M.

    2018-01-01

    The feasibility of processing duplex stainless steels with promising properties using a powder metallurgical route, including the consolidation by field-assisted hot pressing, is assessed in this investigation. The influence of the particle size and morphology of the raw austenitic and ferritic powders on the final microstructure and properties is also evaluated for an austenitic content of 60 wt pct. In addition, the properties of a new microconstituent generated between the initial constituents are analyzed. The maximum sintered density (98.9 pct) and the best mechanical behavior, in terms of elastic modulus, nanohardness, yield strength, ultimate tensile strength, and ductility, are reached by the duplex stainless steel processed with austenitic and ferritic gas atomized stainless steel powders.

  5. Determination of Susceptibility to Intergranular Corrosion of UNS 31803 Type Duplex Stainless Steel by Electrochemical Reactivation Method: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Arıkan

    2012-01-01

    Full Text Available In the present study as in our previous studies (Arikan and Doruk, 2008 and Arikan et al., 2012, similar specimens taken from a hot rolled cylindrical duplex stainless steel (DSS bar with 22% Cr grade were solution annealed at 1050°C and then aged at 800∘C from 100 to 31622 min for sensitization treatment. Double loop electrochemical potentiodynamic reactivation and standard weight loss immersion acid tests were conducted. The solution annealed samples were found unsensitized. The samples aged for 100 min were less sensitized whereas samples aged for 316 min and more time were sensitized. The degree of sensitization (DOS can be attributed to higher contribution of chromium and molybdenum depleted areas that result from intermetallic phases. However, especially the samples aged from 3162 to 31622 min have revealed chromium replenishment. Consequently, the degree of sensitization was lowered in comparison to the results obtained in previous studies.

  6. Effect of W on stress corrosion cracking susceptibility of newly developed Ni-saving duplex stainless steels

    Science.gov (United States)

    Ha, Heon-Young; Lee, Tae-Ho; Kim, Sangshik

    2017-01-01

    Effect of W on stress corrosion cracking behavior (SCC) of Ni-saving duplex stainless steels (Fe18Cr6Mn3Mo0.4N (2.13, 5.27)W, in wt%) was investigated in 4 M NaCl solution using a slow strain rate test method. The change in the W content from 2.13 to 5.27 wt% marginally affected the tensile properties of the investigated DSSs. Alloying W clearly improved the pitting initiation resistance and repassivation tendency of the investigated alloys, but the SCC susceptibility was not remarkably decreased by addition of W. The slight enhancement in the SCC resistance of the alloy containing 5.27 wt% W was revealed to be correlated with the accelerated galvanic corrosion between the ferrite and austenite phases as a result of the W partitioning preferentially into the ferrite phase which could encourage the propagation of pitting.

  7. Determination of Susceptibility to Intergranular Corrosion of UNS 31803 Type Duplex Stainless Steel by Electrochemical Reactivation Method

    Directory of Open Access Journals (Sweden)

    Mehmet Emin Arıkan

    2012-01-01

    Full Text Available Specimens taken from a hot-rolled cylindrical duplex stainless steel (DSS bar with 22% Cr grade were solution annealed at 1050∘C and then aged at 725∘C from 100 to 31622 min for sensitization treatment. Double loop electrochemical potentiodynamic reactivation and standard weight loss immersion acid tests were conducted. The solution-annealed samples were found unsensitized. Those samples aged for 100 and 316 min were less sensitized whereas samples aged for 1000 min and especially those aged for 3162, 10000, and 31622 min were heavily sensitized. The degree of sensitization (DOS can be attributed to higher contribution of chromium- and molybdenum-depleted areas resulting from intermetallic phases.

  8. Application of electrochemical methods for the investigation of intergranular corrosion welded joint austenitic stainless steel 19Cr-9Ni

    Directory of Open Access Journals (Sweden)

    Jegdić Bore V.

    2011-01-01

    Full Text Available Sensitization degree of the austenitic stainless steel welded joints was investigated by electrochemical methods of the double loop electrochemical potentiokinetic reactivation (DL EPR in H2SO4 + KSCN solution, and by the measurement of corrosion potential of the steel in the drop of the solution of HNO3 + FeCl3 + HCl. The welded joints were tested by X-ray radiographic method in order to check the presence of the weld defects. Grain size of the base metal and the welded joints were determined by optical microscopy. Good agreement between the results obtained by different electrochemical methods was obtained. Heat-affected zone (HAZ of the austenitic stainless steel welded joints has shown significant degree of sensitization. The double loop electrochemical potentiokinetic method gave quantitative evidence about susceptibility of the stainless steel to intergranular corrosion.

  9. Development of TRIP-Aided Lean Duplex Stainless Steel by Twin-Roll Strip Casting and Its Deformation Mechanism

    Science.gov (United States)

    Zhao, Yan; Zhang, Weina; Liu, Xin; Liu, Zhenyu; Wang, Guodong

    2016-12-01

    In the present work, twin-roll strip casting was carried out to fabricate thin strip of a Mn-N alloyed lean duplex stainless steel with the composition of Fe-19Cr-6Mn-0.4N, in which internal pore defects had been effectively avoided as compared to conventional cast ingots. The solidification structure observed by optical microscope indicated that fine Widmannstatten structure and coarse-equiaxed crystals had been formed in the surface and center, respectively, with no columnar crystal structures through the surface to center of the cast strip. By applying hot rolling and cold rolling, thin sheets with the thickness of 0.5 mm were fabricated from the cast strips, and no edge cracks were formed during the rolling processes. With an annealing treatment at 1323 K (1050 °C) for 5 minutes after cold rolling, the volume fractions of ferrite and austenite were measured to be approximately equal, and the distribution of alloying elements in the strip was further homogenized. The cold-rolled and annealed sheet exhibited an excellent combination of strength and ductility, with the ultimate tensile strength and elongation having been measured to be 1000 MPa and 65 pct, respectively. The microstructural evolution during deformation was investigated by XRD, EBSD, and TEM, indicating that ferrite and austenite had different deformation mechanisms. The deformation of ferrite phase was dominated by dislocation slipping, and the deformation of austenite phase was mainly controlled by martensitic transformation in the sequence of γ→ ɛ-martensite→ α'-martensite, leading to the improvement of strength and plasticity by the so-called transformation-induced plasticity (TRIP) effect. By contrast, lean duplex stainless steels of Fe-21Cr-6Mn-0.5N and Fe-23Cr-7Mn-0.6N fabricated by twin-roll strip casting did not show TRIP effects and exhibited lower strength and elongation as compared to Fe-19Cr-6Mn-0.4N.

  10. Comprehensive Deformation Analysis of a Newly Designed Ni-Free Duplex Stainless Steel with Enhanced Plasticity by Optimizing Austenite Stability

    Science.gov (United States)

    Moallemi, Mohammad; Zarei-Hanzaki, Abbas; Eskandari, Mostafa; Burrows, Andrew; Alimadadi, Hossein

    2017-08-01

    A new metastable Ni-free duplex stainless steel has been designed with superior plasticity by optimizing austenite stability using thermodynamic calculations of stacking fault energy and with reference to literature findings. Several characterization methods comprising optical microscopy, magnetic phase measurements, X-ray diffraction (XRD) and electron backscattered diffraction were employed to study the plastic deformation behavior and to identify the operating plasticity mechanisms. The results obtained show that the newly designed duplex alloy exhibits some extraordinary mechanical properties, including an ultimate tensile strength of 900 MPa and elongation to fracture of 94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity. The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001} texture in ferrite and martensite (BCC phases) are the main active components during tensile deformation. The predominance of these components is logically related to the strain-induced martensite and/or twin formation.

  11. Thermally Sprayed Aluminum (TSA) Coatings for Extended Design Life of 22%Cr Duplex Stainless Steel in Marine Environments

    Science.gov (United States)

    Paul, S.; Shrestha, S.; Lee, C. M.; Harvey, M. D. F.

    2013-03-01

    In this article, evaluation of sealed and unsealed thermally sprayed aluminum (TSA) for the protection of 22%Cr duplex stainless steel (DSS) from corrosion in aerated, elevated temperature synthetic seawater is presented. The assessments involved general and pitting corrosion tests, external chloride stress corrosion cracking (SCC), and hydrogen-induced stress cracking (HISC). These tests indicated that DSS samples, which would otherwise fail on their own in a few days, did not show pitting or fail under chloride SCC and HISC conditions when coated with TSA (with or without a sealant). TSA-coated specimens failed only at very high stresses (>120% proof stress). In general, TSA offered protection to the underlying or exposed steel by cathodically polarizing it and forming a calcareous deposit in synthetic seawater. The morphology of the calcareous deposit was found to be temperature dependent and in general was of duplex nature. The free corrosion rate of TSA in synthetic seawater was measured to be ~5-8 μm/year at ~18 °C and ~6-7 μm/year at 80 °C.

  12. Cavitation Erosion Tests Performed by Indirect Vibratory Method on Stainless Steel Welded Samples with Hardened Surface

    Directory of Open Access Journals (Sweden)

    Marian-Dumitru Nedeloni

    2012-09-01

    Full Text Available The paper presents the results of cavitation erosion tests performed on two types of samples. The materials of the samples are frequently used for manufacturing and repairs of the hydro turbines components submitted to cavitation. The first sample was made by welding of an austenitic stainless steel on austenito-feritic base material. The second sample was made similarly with the first but with a martensitic base material. After the welding processes, on both samples was applied a hardening treatment by surface peening. The cavitation erosion tests were performed on vibratory equipment using the indirect method with stationary specimen. The results show a good cavitation erosion resistance on both samples.

  13. Joining silicon carbide to austenitic stainless steel through diffusion welding; Stellingen behorende bij het proefschrift

    Energy Technology Data Exchange (ETDEWEB)

    Krugers, Jan-Paul

    1993-01-19

    In this thesis, the results are presented of a study dealing with joining silicon carbide to austenitic stainless steel AIS316 by means of diffusion welding. Welding experiments were carried out without and with the use of a metallic intermediate, like copper, nickel and copper-nickel alloys at various conditions of process temperature, process time, mechanical pressure and interlayer thickness. Most experiments were carried out in high vacuum. For reasons of comparison, however, some experiments were also carried out in a gas shielded environment of 95 vol.% Ar and 5 vol.% H2.

  14. Plasma plume oscillations monitoring during laser welding of stainless steel by discrete wavelet transform application.

    Science.gov (United States)

    Sibillano, Teresa; Ancona, Antonio; Rizzi, Domenico; Lupo, Valentina; Tricarico, Luigi; Lugarà, Pietro Mario

    2010-01-01

    The plasma optical radiation emitted during CO2 laser welding of stainless steel samples has been detected with a Si-PIN photodiode and analyzed under different process conditions. The discrete wavelet transform (DWT) has been used to decompose the optical signal into various discrete series of sequences over different frequency bands. The results show that changes of the process settings may yield different signal features in the range of frequencies between 200 Hz and 30 kHz. Potential applications of this method to monitor in real time the laser welding processes are also discussed.

  15. Plasma Plume Oscillations Monitoring during Laser Welding of Stainless Steel by Discrete Wavelet Transform Application

    Directory of Open Access Journals (Sweden)

    Teresa Sibillano

    2010-04-01

    Full Text Available The plasma optical radiation emitted during CO2 laser welding of stainless steel samples has been detected with a Si-PIN photodiode and analyzed under different process conditions. The discrete wavelet transform (DWT has been used to decompose the optical signal into various discrete series of sequences over different frequency bands. The results show that changes of the process settings may yield different signal features in the range of frequencies between 200 Hz and 30 kHz. Potential applications of this method to monitor in real time the laser welding processes are also discussed.

  16. Study on Microstructure and Mechanical Properties of 304 Stainless Steel Joints by Tig-Mig Hybrid Welding

    Science.gov (United States)

    Ogundimu, Emmanuel O.; Akinlabi, Esther T.; Erinosho, Mutiu F.

    Stainless steel is a family of Fe-based alloys having excellent resistance to corrosion and as such has been used imperatively for kitchen utensils, transportation, building constructions and much more. This paper presents the work conducted on the material characterizations of a tungsten inert gas (TIG)-metal inert gas (MIG) hybrid welded joint of type 304 austenitic stainless steel. The welding processes were conducted in three phases. The phases of welding employed are MIG welding using a current of 170A, TIG welding using a current of 190A, and a hybrid TIG-MIG welding with currents of 190/170A, respectively. The MIG, TIG, and hybrid TIG-MIG weldments were characterized with incomplete penetration, full penetration and excess penetration of weld. Intergranular austenite was created toward transition and heat affected zones. The thickness of the delta ferrite (δ-Fe) formed in the microstructures of the TIG weld is more than the thickness emerged in the microstructures of MIG and hybrid TIG-MIG welds. A TIG-MIG hybrid weld of specimen welded at the currents of 190/170A has the highest ultimate tensile strength value and percentage elongation of 397.72MPa and 35.7%. The TIG-MIG hybrid welding can be recommended for high-tech industrial applications such as nuclear, aircraft, food processing, and automobile industry.

  17. Similar and Dissimilar Nd:YAGlaser Welding of NiTi Shape Memory Alloy to AISI 420Stainless Steel

    Directory of Open Access Journals (Sweden)

    Jassim Mohammed Salman Al-Murshdy

    2017-03-01

    Full Text Available Similar NiTi shape memory alloy(SMA plates, 420 Martensitic stainless steelplates and dissimilar NiTi shape memory alloy with Martensiticstainless steel were welded by a pulsed Nd:YAGlaser welding method.The nature microstructure of the base metal (BM, weld zone (WZ, interface and the heat affected zones(HAZ were showedby in a scanning electron microscope (SEM and optical microscope.Vickers hardness tests wasconducted to specifythe properties of the weld. The outcomes showed that the hardness of dissimilar NiTi-Stainless steel (St.St. weld is higher than that in similar NiTi-NiTi and St.St.-St.St. weld.TheMicrostructural examination in both NiTi-St.St. and NiTi-NiTi welds illustrates that the solidification process in the fusion zone changed the kind of plan to the cell type as well as the changes that occur in the cell to dentritic kind of intra- region of the weld through the weld center in the welded sample sides but in the St.St.-St.St. weld showed dendrite microstructure. In this study it is found that the increase of the welding speed leads to a decrease in hardness in all jointsNiTi-NiTi, NiTi-St.St. and St.St.-St.St.

  18. Effect of reversion treatment on strength and ductility of low C, Cr-Ni martensitic stainless steel with high resistance to weld softening. Yosetsu nanka teiko no takai teitanso Cr-Ni maruten saito kei stainless ko no kyodo, ensei ni oyobosu gyaku hentai shori no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Igawa, T.; Takemoto, T.; Uematsu, Y. (Nisshin Steel Co. Ltd., Tokyo (Japan). Steel R and D Lab.); Hoshino, K. (Nisshin Steel Co. Ltd., Tokyo (Japan))

    1993-08-01

    Like the stainless steel and the stainless steel belt used in the rolling stock, materials treated by process and weld has a high strength and a good ductility, moreover, was expected that weld softening would not occurred. In this study, formation of the ultra-fine crystal grains based on the M to [gamma] reversion transformation of low C, Cr-Ni martensitic stainless steel and effect of Si on change of mechanical properties were investigated. A high-strength stainless steel with a good ductility and without weld softening was developed. Main results obtained are as follows: After a steel was cold-rolled, the reversion treatment at the region between As and Af temperatures (600 to 640[degree]C) was carried out, a duplex structure with diameter of the ultra-fine grains of about 0.5 micron meter that is composed of [gamma] phase concentrated Ni and sintered M phase was formatted, and excellent mechanical properties with a high strength and a good ductility could be obtained, diameter of reversion [gamma] grains was dependent on reversion temperature. Diameter of [gamma] grains became large, and more homogeneous and uniform at higher reversion temperature. 20 refs., 11 figs., 2 tabs.

  19. Testing of intergranular and pitting corrosion in sensitized welded joints of austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Bore V. Jegdic

    2017-06-01

    Full Text Available Pitting corrosion resistance and intergranular corrosion of the austenitic stainless steel X5Cr Ni18-10 were tested on the base metal, heat affected zone and weld metal. Testing of pitting corrosion was performed by the potentiodynamic polarization method, while testing of intergranular corrosion was performed by the method of electrochemical potentiokinetic reactivation with double loop. The base metal was completely resistant to intergranular corrosion, while the heat affected zone showed a slight susceptibility to intergranular corrosion. Indicators of pitting corrosion resistance for the weld metal and the base metal were very similar, but their values are significantly higher than the values for the heat affected zone. This was caused by reduction of the chromium concentration in the grain boundary areas in the heat affected zone, even though the carbon content in the examined stainless steel is low (0.04 wt. % C.

  20. Effect of Microstructure on Mechanical Properties and Corrosion Resistance of 2205 Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Łabanowski Jerzy

    2015-01-01

    Full Text Available This paper presents results of the research on impact of microstructure of austenitic-ferritic steel of duplex type on its mechanical properties and susceptibility to stress corrosion cracking. As showed, improper processing technologies more and more often used in shipbuilding industry for plates and other half-finished products made of duplex steel may cause significant lowering their properties, which frequently makes their replacing necessary. Results of the tests on stress corrosion under tension with low strain rate (SSRT conducted in an inert and corrosion (boiling magnesium chloride environment, are presented. It was proved that even minor structural transformations taking place in 500°C ageing temperature lower corrosion resistance of the steel. Structural transformations occurring in 700°C temperature to a smaller extent influence susceptibility to stress corrosion of the steel, however they cause drastic drop in its plasticity.

  1. The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Kocijan, Aleksandra, E-mail: Aleksandra.Kocijan@imt.s [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia); Merl, Darja Kek [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Jenko, Monika [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia)

    2011-02-15

    Research highlights: The corrosion behaviour of AISI 316L and 2205 DSS in orthodontics. The increased passive range for DSS 2205 compared to AISI 316L in artificial saliva. Higher R{sub p} values of DSS compared to AISI 316L in artificial saliva. The main constituent of the passive layers on DSS at the OCP in saliva was Cr-oxide. DSS 2205 is suitable for orthodontic applications in artificial saliva. - Abstract: The evolution of the passive films on 2205 duplex stainless steel (2205 DSS) and AISI 316L stainless steel in artificial saliva, and with the addition of fluoride, was studied using electrochemical impedance spectroscopy (EIS) and potentiodynamic measurements. The extent of the passive range increased for the 2205 DSS compared to the AISI 316L in both solutions. The formation of the passive film was studied by EIS at the open-circuit potential (OCP). The passive layers were studied at the OCP by X-ray photoelectron spectroscopy (XPS). The passive films on both materials predominantly contained Cr-oxides, whereas the Fe species were markedly depleted.

  2. Mechanical properties of type 316L stainless steel welded joint for ITER vacuum vessel (1). Experiment of unirradiated welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Fukaya, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Takahashi, Hiroyuki; Koizumi, Kouichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-01-01

    In design activity of ITER, the vacuum vessel (VV) is ranked as one of the most important components in core reactor from the view point of first barrier to tritium release from the reactor. The VV of ITER is designed as double walled structure so that some parts of them are not qualified in the conventional design standards. So it is necessary to prepare the new design standards to be applied them. JAERI has executed the preparation activity of the new design standards and the technical data to support them. In this study, the results of metallographic observation and mechanical properties of unirradiated type 316L stainless steel welded joint were reported. (author)

  3. Heat input effect on the microstructural transformation and mechanical properties in GTAW welds of a 409L ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J. A.; Ambriz, R. R.; Cuenca-Alvarez, R.; Alatorre, N.; Curiel, F. F.

    2016-10-01

    Welds without filler metal and welds using a conventional austenitic stainless steel filler metal (ER308L) were performed to join a ferritic stainless steel with Gas Tungsten Arc Welding process (GTAW). Welding parameters were adjusted to obtain three different heat input values. Microstructure reveals the presence of coarse ferritic matrix and martensite laths in the Heat Affected Zone (HAZ). Dilution between filler and base metal was correlated with the presence of austenite, martensite and ferrite in the weld metal. Weld thermal cycles were measured to correlate the microstructural transformation in the HAZ. Microhardness measurements (maps and profiles) allow to identify the different zones of the welded joints (weld metal, HAZ, and base metal). Comparing the base metal with the weld metal and the HAZ, a hardness increment (∼172 HV{sub 0}.5 to ∼350 HV{sub 0}.5 and ∼310 HV{sub 0}.5, respectively) was observed, which has been attributed to the martensite formation. Tensile strength of the welded joints without filler metal increased moderately with respect to base metal. In contrast, ductility was approximately 25% higher than base metal, which provided a toughness improvement of the welded joints. (Author)

  4. Phenomena Elucidation of High Brightness Fiber Laser Welding of Stainless Steel

    Science.gov (United States)

    Kawahito, Yousuke; Mizutani, Masami; Katayama, Seiji

    A high-brigthness fiber laser can produce an ultra-high peak power density of MW/mm2 level corresponding to a focused electron beam, and is promising as one of the desirable heat sources for deep-penetration welding. The objectives of this research are to elucidate the factors affecting weld penetration and defects formation mechanisms, to obtain a fundamental knowledge of interaction between a fiber laser beam and the laser-induced plume, and to assess laser absorption with water-calorimetric method in bead-on-plate welding of Type 304 austenitic stainless steel plates with a 10 kW fiber laser beam. Concerning the weldablity and defects, the penetration depth reached 18 mm at the maximum. At 50 mm/s or lower welding speeds, porosity was generated under the conventionally-focused and tightly-focused conditions. X-ray transmission in-site observation images demonstrated that pores were formed not only at the tip of the keyhole but also near the upper part. The keyhole behavior was stabilized by using nitrogen shielding gas, which led to the porosity prevention. As for the interaction under the normal Ar shielding gas conditions, the temperature and ionization degree of the laser-induced plumes were calculated to be 6,000 K and 0.02, respectively, by the Bolzman plots and Saha's equation. It was also found that the attenuation and the refraction between the 10-kW fiber laser beam and the short weakly-ionized plume were too small to exert the reduction in weld penetration. The laser absorption of the stainless steel plate was approximately 85 % high at 10 kW laser power and 50 mm/s welding speed. Compared X-ray transmission observation images of the keyhole with the focusing feature of the fiber laser beam, most of the incident laser passed through the keyhole inlet, and the center part of the beam was delivered directly to the tip of the deep keyhole. Consequently, as far as the adquate welding procedures were utilized on the basis of eclucidation of the welding

  5. Welding Characteristics of Nitrogen Added Stainless Steels for Nuclear Application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. D. [Pohang Iron and Steel Co., Ltd, Pohang (Korea, Republic of)

    1997-07-01

    Characteristics of properties and manufacturing process was evaluated in development of high strength and corrosion resistant stainless steel. The continuous cast structure of STS 316L was similar to that of STS 304. The most of residual {delta}-ferrite of STS 316L was vermicular type. The residual {delta}-ferrite content increased from the surface towards the center of the slab and after reaching a maximum value at about 50mm distance from surface and steeply decreased towards the center itself. Hot ductility of STS 304L and STS 316L stainless steels containing below 1000 ppm N was appeared to be reasonably good in the range of hot rolling temperature. In case of the steels containing over 1000 ppm N, the hot ductility was decreased rapidly when sulfur content of the steel was above 20 ppm. Therefore, to achieve good hot ductility of the high nitrogen containing steel, reduction of sulfur contents is required as low as possible. The inter granular corrosion resistance and impact toughness of STS 316L were increased with increasing the nitrogen contents. Yield strength and tensile strength of 304 and 316 stainless steels are increased linearly with increasing the nitrogen contents but their elongations are decreased with increasing the nitrogen contents. Therefore, the mechanical properties of these stainless steels could be controlled with variation of nitrogen. The effects of nitrogen on the resistance of stress corrosion cracking (SCC) can be explained by improvement of the load bearing capacity with increasing tensile strength rather than inhibition of trans granular SCC crack generation and propagation. 101 refs., 17 tabs., 105 figs. (author)

  6. Microstructural observations of HFIR-irratiated austenitic stainless steels including welds from JP9-16

    Energy Technology Data Exchange (ETDEWEB)

    Sawai, T.; Shiba, K.; Hishinuma, A.

    1996-04-01

    Austenitic stainless steels, including specimens taken from various electron beam (EB) welds, have been irradiated in HFIR Phase II capsules, JP9-16. Fifteen specimens irradiated at 300, 400, and 500{degrees}C up to 17 dpa are so far examined by a transmission electron microscope (TEM). In 300{degrees}C irradiation, cavities were smaller than 2nm and different specimens showed little difference in cavity microstructure. At 400{degrees}C, cavity size was larger, but still very small (<8 nm). At 500{degrees}C, cavity size reached 30 nm in weld metal specimens of JPCA, while cold worked JPCA contained a small (<5 nm) cavities. Inhomogeneous microstructural evolution was clearly observed in weld-metal specimens irradiated at 500{degrees}C.

  7. A GTA Welding Cooling Rate Analysis on Stainless Steel and Aluminum Using Inverse Problems

    Directory of Open Access Journals (Sweden)

    Elisan dos Santos Magalhaes

    2017-01-01

    Full Text Available This work presents an analysis of the thermal influence of the heat transfer by convection and radiation during GTA (gas tungsten arc welding process. The authors’ in-house C++ previously-developed code was modified to calculate the amount of heat transfer by convection and radiation. In this software, an iterative Broydon-Fletcher-Goldfarb-Shanno (BFGS inverse method was applied to estimate the amount of heat delivered to the plate when the appropriate sensitivity criteria were defined. The methodology was validated by accomplishing lab-controlled experiments on stainless steel AISI 304L and aluminum 6065 T5 plates. Due to some experimental singularities, the forced thermal convection induced by the electromagnetic field and thermal-capillary force were disregarded. Significant examples of these singularities are the relatively small weld bead when compared to the sample size and the reduced time of the welding process. In order to evaluate the local Nusselt number, empirical correlations for flat plates were used. The thermal emission was a dominant cooling effect on the aluminum cooling. However, it did not present the same behavior as the stainless steel samples. The study found that the heat losses by convection and radiation of the weld pool do not affect the cooling process significantly.

  8. Influence of Material Model on Prediction Accuracy of Welding Residual Stress in an Austenitic Stainless Steel Multi-pass Butt-Welded Joint

    Science.gov (United States)

    Deng, Dean; Zhang, Chaohua; Pu, Xiaowei; Liang, Wei

    2017-04-01

    Both experimental method and numerical simulation technology were employed to investigate welding residual stress distribution in a SUS304 steel multi-pass butt-welded joint in the current study. The main objective is to clarify the influence of strain hardening model and the yield strength of weld metal on prediction accuracy of welding residual stress. In the experiment, a SUS304 steel butt-welded joint with 17 passes was fabricated, and the welding residual stresses on both the upper and bottom surfaces of the middle cross section were measured. Meanwhile, based on ABAQUS Code, an advanced computational approach considering different plastic models as well as annealing effect was developed to simulate welding residual stress. In the simulations, the perfect plastic model, the isotropic strain hardening model, the kinematic strain hardening model and the mixed isotropic-kinematic strain hardening model were employed to calculate the welding residual stress distributions in the multi-pass butt-welded joint. In all plastic models with the consideration of strain hardening, the annealing effect was also taken into account. In addition, the influence of the yield strength of weld metal on the simulation result of residual stress was also investigated numerically. The conclusions drawn by this work will be helpful in predicting welding residual stresses of austenitic stainless steel welded structures used in nuclear power plants.

  9. Effect of Stress Relief Annealing on Microstructure & Mechanical Properties of Welded Joints Between Low Alloy Carbon Steel and Stainless Steel

    Science.gov (United States)

    Nivas, R.; Das, G.; Das, S. K.; Mahato, B.; Kumar, S.; Sivaprasad, K.; Singh, P. K.; Ghosh, M.

    2017-01-01

    Two types of welded joints were prepared using low alloy carbon steel and austenitic stainless steel as base materials. In one variety, buttering material and weld metal were Inconel 82. In another type, buttering material and weld metal were Inconel 182. In case of Inconel 82, method of welding was GTAW. For Inconel 182, welding was done by SMAW technique. For one set of each joints after buttering, stress relief annealing was done at 923 K (650 °C) for 90 minutes before further joining with weld metal. Microstructural investigation and sub-size in situ tensile testing in scanning electron microscope were carried out for buttered-welded and buttered-stress relieved-welded specimens. Adjacent to fusion boundary, heat-affected zone of low alloy steel consisted of ferrite-pearlite phase combination. Immediately after fusion boundary in low alloy steel side, there was increase in matrix grain size. Same trend was observed in the region of austenitic stainless steel that was close to fusion boundary between weld metal-stainless steel. Close to interface between low alloy steel-buttering material, the region contained martensite, Type-I boundary and Type-II boundary. Peak hardness was obtained close to fusion boundary between low alloy steel and buttering material. In this respect, a minimum hardness was observed within buttering material. The peak hardness was shifted toward buttering material after stress relief annealing. During tensile testing no deformation occurred within low alloy steel and failure was completely through buttering material. Crack initiated near fusion boundary between low alloy steel-buttering material for welded specimens and the same shifted away from fusion boundary for stress relieved annealed specimens. This observation was at par with the characteristics of microhardness profile. In as welded condition, joints fabricated with Inconel 82 exhibited superior bond strength than the weld produced with Inconel 182. Stress relief annealing

  10. Experimental Analysis of Residual Stresses in Samples of Austenitic Stainless Steel Welded on Martensitic Stainless Steel Used for Kaplan Blades Repairs

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2011-01-01

    Full Text Available Residual stresses occur in materials as a result of mechanical processes: welding, machining, grinding etc. If residual stresses reach high values they can accelerate the occurrence of cracks and erosion of material. An experimental research was made in order to study the occurrence of residual stresses in the repaired areas of hydraulic turbine components damaged by cavitation erosion. An austenitic stainless steel was welded in various layer thicknesses on a martensitic stainless steel base. The residual stresses were determined using the hole drilling strain gage method.

  11. Three-dimensional transient thermoelectric currents in deep penetration laser welding of austenite stainless steel

    Science.gov (United States)

    Chen, Xin; Pang, Shengyong; Shao, Xinyu; Wang, Chunming; Xiao, Jianzhong; Jiang, Ping

    2017-04-01

    The existence of thermoelectric currents (TECs) in workpieces during the laser welding of metals has been common knowledge for more than 15 years. However, the time-dependent evolutions of TECs in laser welding remain unclear. The present study developed a novel three-dimensional theoretical model of thermoelectric phenomena in the fiber laser welding of austenite stainless steel and used it to observe the time-dependent evolutions of TECs for the first time. Our model includes the complex physical effects of thermal, electromagnetic, fluid and phase transformation dynamics occurring at the millimeter laser ablated zone, which allowed us to simulate the TEC, self-induced magnetic field, Lorentz force, keyhole and weld pool behaviors varying with the welding time for different parameters. We found that TECs are truly three-dimensional, time-dependent, and uneven with a maximum current density of around 107 A/m2 located at the liquid-solid (L/S) interface near the front or bottom part of the keyhole at a laser power of 1.5 kW and a welding speed of 3 m/min. The TEC formed three-dimensional circulations moving from the melting front to solidification front in the solid part of workpiece, after which the contrary direction was followed in the liquid part. High frequency oscillation characteristics (2.2-8.5 kHz) were demonstrated in the TEC, which coincides with that of the keyhole instability (2.0-5.0 kHz). The magnitude of the self-induced magnetic field and Lorentz force can reach 0.1 mT and 1 kN/m3, respectively, which are both consistent with literature data. The predicted results of the weld dimensions by the proposed model agree well with the experimental results. Our findings could enhance the fundamental understanding of thermoelectric phenomena in laser welding.

  12. Phase-Field Modeling of Sigma-Phase Precipitation in 25Cr7Ni4Mo Duplex Stainless Steel

    Science.gov (United States)

    Malik, Amer; Odqvist, Joakim; Höglund, Lars; Hertzman, Staffan; Ågren, John

    2017-10-01

    Phase-field modeling is used to simulate the formation of sigma phase in a model alloy mimicking a commercial super duplex stainless steel (SDSS) alloy, in order to study precipitation and growth of sigma phase under linear continuous cooling. The so-called Warren-Boettinger-McFadden (WBM) model is used to build the basis of the multiphase and multicomponent phase-field model. The thermodynamic inconsistency at the multiple junctions associated with the multiphase formulation of the WBM model is resolved by means of a numerical Cut-off algorithm. To make realistic simulations, all the kinetic and the thermodynamic quantities are derived from the CALPHAD databases at each numerical time step, using Thermo-Calc and TQ-Interface. The credibility of the phase-field model is verified by comparing the results from the phase-field simulations with the corresponding DICTRA simulations and also with the empirical data. 2D phase-field simulations are performed for three different cooling rates in two different initial microstructures. A simple model for the nucleation of sigma phase is also implemented in the first case. Simulation results show that the precipitation of sigma phase is characterized by the accumulation of Cr and Mo at the austenite-ferrite and the ferrite-ferrite boundaries. Moreover, it is observed that a slow cooling rate promotes the growth of sigma phase, while a higher cooling rate restricts it, eventually preserving the duplex structure in the SDSS alloy. Results from the phase-field simulations are also compared quantitatively with the experiments, performed on a commercial 2507 SDSS alloy. It is found that overall, the predicted morphological features of the transformation and the composition profiles show good conformity with the empirical data.

  13. Stainless steel submerged arc weld fusion line toughness

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M. [Battelle, Columbus, OH (United States)

    1995-04-01

    This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations.

  14. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    Science.gov (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  15. Microstructural characterization of autogenous laser welds on 316L stainless steel using EBSD and EDS.

    Science.gov (United States)

    Kell, J; Tyrer, J R; Higginson, R L; Thomson, R C

    2005-02-01

    This research is concerned with autogenous welding of 316L stainless steel and the microstructure generated by such a process. Autogenous welding does not require a filler material and in this case relies on an initial shallow melt phase to maintain a conduction limited weld. Essentially, a high power laser beam traverses the substrate, with the beam shaped by conventional optics, which produces a Gaussian irradiance distribution; or with a diffractive optical element, used to produce a uniform irradiance distribution. Initial results have shown that due to the nature of the heating cycle, complex microstructures are developed. These fine, complicated microstructures cannot be satisfactorily resolved and quantified using standard optical microscopy techniques. Electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) have been carried out on a number of different microstructures prepared using a range of welding parameters. It is demonstrated that the simultaneous determination of the chemistry and crystallography is a very useful tool for rapid identification of the different phases formed on solidification as a consequence of varying welding procedures.

  16. Effect of Cryogenic Treatment on Sensitization of 304 Stainless Steel in TIG Welding

    Science.gov (United States)

    Singh, Rupinder; Slathia, Ravinder Singh

    2016-04-01

    Stainless steel (SS) is sensitized by a thermal treatment in the range of 400-850 °C and inter-granular attack would occur upon subsequent exposure to certain media. In many practical situations, such as welding, sensitization is best studied by continuous cooling through the sensitizing temperature range wherein the variables are the peak temperature reached and the cooling rate in contrast to temperature and time of the isothermal hold which has been the customary practice. There are also various methods of controlling the inter-granular corrosion viz. lowering the carbon content, adding stabilizers and applying solution heat treatment but all these methods are either costly or difficult to apply. This study is focussed on the effect of cryogenically treated tungsten electrode of TIG welding on the sensitization behaviour of 304SS by taking into consideration the weld properties (like: hardness, tensile strength, percentage elongation and micro-structure). The parameters of significance are current, pulse frequency and gas flow rate. Further the study suggested that the results of non cryo treated electrode were better than the treated one on sensitization of welded joints during TIG welding within the range of selected parameters.

  17. The effect of chloride ions on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation.

    Science.gov (United States)

    Wan, Tong; Xiao, Ning; Shen, Hanjie; Yong, Xingyue

    2016-11-01

    The effects of Cl(-) on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation in chloride solutions were investigated using nanoindentation in conjunction with XRD and XPS. The results demonstrate that Cl(-) had a strong effect on the nano-mechanical properties of the corroded surface layer under cavitation, and there was a threshold Cl(-) concentration. Furthermore, a close relationship between the nano-mechanical properties and the cavitation corrosion resistance of 00Cr22Ni5Mo3N duplex stainless steel was observed. The degradation of the nano-mechanical properties of the corroded surface layer was accelerated by the synergistic effect between cavitation erosion and corrosion. A key factor was the adsorption of Cl(-), which caused a preferential dissolution of the ferrous oxides in the passive film layer on the corroded surface layer. Cavitation further promoted the preferential dissolution of the ferrous oxides in the passive film layer. Simultaneously, cavitation accelerated the erosion of the ferrite in the corroded surface layer, resulting in the degradation of the nano-mechanical properties of the corroded surface layer on 00Cr22Ni5Mo3N duplex stainless steel under cavitation. Copyright © 2016. Published by Elsevier B.V.

  18. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    Science.gov (United States)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  19. Residual stress, micro-hardness and tensile properties of ANSI 304 stainless steel thick sheet by fiber laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Lu, J.Z., E-mail: blueesky2005@163.com [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Luo, K.Y., E-mail: luokaiyu2012@gmail.com [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Feng, A.X. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); College of Mechanical Engineering, Wenzhou University, Wenzhou 325035 (China); Dai, F.Z.; Zhong, J.S.; Luo, M. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); Zhang, Y.K. [School of Mechanical Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang 212013 (China); School of Mechanical Engineering, Southeast University, Nanjing 211189 (China)

    2013-01-20

    A fiber laser was chosen to weld the ANSI 304 stainless steel (ANSI 304 SS) sheets with a thickness of 5 mm. The effects of laser power, defocusing distance and welding speed on the weld appearances were investigated by the orthogonal test and the analyses on the appearances and properties of laser welds. Residual stress, micro-hardness and tensile properties of ANSI 304 SS welds were measured, and the cross section and surface morphologies were characterized by optical microscope (OM) compared with the two conventional laser (CO{sub 2}, Nd:YAG) welding methods. Results showed that ANSI 304 SS welds with good quality can be obtained if the appropriate fiber laser welding parameters were chosen. Tensile residual stresses of the fiber laser weld with the appropriate welding parameters were the lowest and micro-hardness and tensile properties were the highest among the three laser welding methods. In addition, the crystal solidification process induced by the fiber laser welding was schematically illustrated and systematically revealed.

  20. Partially degradable friction-welded pure iron-stainless steel 316L bone pin.

    Science.gov (United States)

    Nasution, A K; Murni, N S; Sing, N B; Idris, M H; Hermawan, H

    2015-01-01

    This article describes the development of a partially degradable metal bone pin, proposed to minimize the occurrence of bone refracture by avoiding the creation of holes in the bone after pin removal procedure. The pin was made by friction welding and composed of two parts: the degradable part that remains in the bone and the nondegradable part that will be removed as usual. Rods of stainless steel 316L (nondegradable) and pure iron (degradable) were friction welded at the optimum parameters: forging pressure = 33.2 kPa, friction time = 25 s, burn-off length = 15 mm, and heat input = 4.58 J/s. The optimum tensile strength and elongation was registered at 666 MPa and 13%, respectively. A spiral defect formation was identified as the cause for the ductile fracture of the weld joint. A 40-µm wide intermetallic zone was identified along the fusion line having a distinct composition of Cr, Ni, and Mo. The corrosion rate of the pin gradually decreased from the undeformed zone of pure iron to the undeformed zone of stainless steel 316L. All metallurgical zones of the pin showed no toxic effect toward normal human osteoblast cells, confirming the ppb level of released Cr and Ni detected in the cell media were tolerable. © 2014 Wiley Periodicals, Inc.

  1. Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality

    Science.gov (United States)

    Liu, Bo

    2017-03-01

    Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.

  2. New developments for the ultrasonic inspection of austenitic stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Chassignole, Bertrand; Doudet, Loic; Dupond, Olivier; Fouquet, Thierry; Richard, Benoit [Electricite de France - EDF, 2, rue Louis-Murat, 75008 Paris (France)

    2006-07-01

    EDF R and D undertakes studies in non destructive testing (NDT) for better understanding the influence of various parameters (material, type of defect, geometry) on the 'controllability' of the critical components for nuclear safety. In the field of ultrasonic testing, one of the principal research orientations is devoted to the study of the austenitic stainless steel welds of the primary cooling system. Indeed, the structure of these welds present characteristics making difficult their examination, for example: - a strong anisotropy of the properties of elasticity which, coupled with the heterogeneity of the grain orientations, can involve phenomena of skewing, division and distortion of the beam; - a significant scattering of the waves by the grains involving an high attenuation and sometimes backscattered signals. For several years, actions have been launched to improve comprehension of these disturbing phenomena and to evaluate the controllability of those welds. This work is based on the one hand on experimental analyses on representative mock-ups and on the other hand on the developments of modelling codes taking into account the characteristics of the materials. We present in this document a synthesis of this work by developing the following points in particular: - a description of the phenomena of propagation; - the works undertaken to characterize the structure of the welds; - an example of study coupling experimental and modelling analyses for a butt weld achieved by manual arc welding with coated electrodes. The paper has the following contents: 1. Context; 2. Presentation of the problem; 3. Characterization of austenitic welds; 4. From comprehension to industrial application; 5. Conclusion and perspectives; 5. Conclusion and perspectives. This synthesis shows that each austenitic stainless steel weld is a particular case for the ultrasonic testing. This work allowed to better apprehend the disturbances of the ultrasonic propagation in the

  3. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding: Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium in stainless steel welding fumes.

    Science.gov (United States)

    Keane, M; Siert, A; Stone, S; Chen, B; Slaven, J; Cumpston, A; Antonini, J

    2012-09-01

    Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr(6+)) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr(6+) fractions were measured in the fumes; fume generation rates, Cr(6+) generation rates, and Cr(6+) generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr(6+) in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr(6+) ranged from 69 to 7800 μg/min, and Cr(6+) generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr(6+) (ppm) in the fume did not necessarily correlate with the Cr(6+) generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr(6+) generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use.

  4. Effect of Rolling and Subsequent Annealing on Microstructure, Microtexture, and Properties of an Experimental Duplex Stainless Steel

    Science.gov (United States)

    Mandal, Arka; Patra, Sudipta; Chakrabarti, Debalay; Singh, Shiv Brat

    2017-12-01

    A lean duplex stainless steel (LDSS) has been prepared with low-N content and processed by different thermo-mechanical schedules, similar to the industrial processing that comprised hot-rolling, cold-rolling, and annealing treatments. The microstructure developed in the present study on low-N LDSS has been compared to that of high-N LDSS as reported in the literature. As N is an austenite stabilizer, lower-N content reduced the stability of austenite and the austenite content in low-N LDSS with respect to the conventional LDSS. Due to low stability of austenite in low-N LDSS, cold rolling resulted in strain-induced martensitic transformation and the reversion of martensite to austenite during subsequent annealing contributed to significant grain refinement within the austenite regions. δ-ferrite grains in low-N LDSS, on the other hand, are refined by extended recovery mechanism. Initial solidification texture (mainly cube texture) within the δ-ferrite region finally converted into gamma-fiber texture after cold rolling and annealing. Although MS-brass component dominated the austenite texture in low-N LDSS after hot rolling and cold rolling, that even transformed into alpha-fiber texture after the final annealing. Due to the significant grain refinement and formation of beneficial texture within both austenite and ferrite, good combination of strength and ductility has been achieved in cold-rolled and annealed sample of low-N LDSS steel.

  5. Experimental investigation and numerical description of the damage evolution in a duplex stainless steel subjected to VHCF-loading

    Energy Technology Data Exchange (ETDEWEB)

    Dönges, B., E-mail: benjamin.doenges@uni-siegen.de [Institut für Werkstofftechnik, Universität Siegen, D-57068 Siegen (Germany); Institut für Mechanik und Regelungstechnik – Mechatronik, Universität Siegen, D-57068 Siegen (Germany); Istomin, K. [Festkörperphysik, Universität Siegen, D-57068 Siegen (Germany); Söker, M. [Fakultät für Ingenieurwissenschaften und Informatik, Hochschule Osnabrück, D-49009 Osnabrück (Germany); Schell, N. [Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung, D-21502 Geesthacht (Germany); Krupp, U. [Fakultät für Ingenieurwissenschaften und Informatik, Hochschule Osnabrück, D-49009 Osnabrück (Germany); Pietsch, U. [Festkörperphysik, Universität Siegen, D-57068 Siegen (Germany); Fritzen, C.-P. [Institut für Mechanik und Regelungstechnik – Mechatronik, Universität Siegen, D-57068 Siegen (Germany); Christ, H.-J. [Institut für Werkstofftechnik, Universität Siegen, D-57068 Siegen (Germany)

    2015-10-14

    The present study documents how the irreversible fraction of cyclic plastic strain, induced by loading amplitudes close to the durability limit, causes fatigue damage such as (i) slip band development, (ii) fatigue crack initiation and (iii) short fatigue crack propagation. The damage evolution of the austenitic–ferritic duplex stainless steel X2CrNiMoN22-5-3 (318 LN) was investigated up to one billion load cycles by means of high resolution electron microscopy (HR-SEM, TEM), focused ion beam (FIB) cutting, confocal laser scanning microscopy (CLSM), in-situ far field microscopy and high-energy (87.1 keV) X-ray diffraction (XRD) experiments. The experimentally identified damage mechanisms were implemented into three-dimensional finite element simulations, which consider crystal plasticity. These simulations enable fatigue life predictions of real microstructures obtained for instance by means of, e.g. automated electron back scatter diffraction (EBSD) analysis. The simulations allow for determining whether microcracks (i) initiate in a microstructure, (ii) arrest in the midst of the first grain, (iii) are permanently, (iv) temporary or (v) not at all blocked by grain or phase boundaries. Moreover, this concept is capable to contribute to the concept of tailored microstructures for improved cyclic-loading behavior.

  6. Effects of the strain rate on the tensile properties of a TRIP-aided duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeom Yong [Stainless Steel Product Group, Technical Research Laboratories, POSCO, Pohang 790-785 (Korea, Republic of); Lee, Jaeeun; Lee, Keunho; Koh, Ji-Yeon [Department of Materials Science and Engineering, RIAM, Seoul National University, Seoul 151–744 (Korea, Republic of); Cho, Jae-Hyung [Light Metal Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Han, Heung Nam, E-mail: hnhan@snu.ac.kr [Department of Materials Science and Engineering, RIAM, Seoul National University, Seoul 151–744 (Korea, Republic of); Park, Kyung-Tae, E-mail: ktpark@hanbat.ac.kr [Department of Materials Science and Engineering, Hanbat National University, Daejeon 305-719 (Korea, Republic of)

    2016-06-01

    Factors influencing the strain-rate dependence of the tensile properties of TRIP-aided lean duplex stainless steel were investigated by employing several characterization techniques of EBSD, TEM, and nanoindentation. The steel exhibited excellent tensile strength over 800 MPa and elongation, which exceeded 70% at a strain rate of 10{sup −3} s{sup −1} due to strain-induced martensitic transformation (SIMT), but both values decreased considerably with an increase in the strain rate. The hardness and the maximum shear stress for dislocation nucleation of the austenite were found to be higher than those of the ferrite by sub-grain scale nanoindentation tests. As a result, strain partitioning to the ferrite rather than the austenite was more significant from an early stage of deformation, suppressing the SIMT in the austenite. An EBSD strain analysis on the intra- and inter-grain scale revealed that this strain partitioning became more pronounced as the strain rate increased. Adiabatic heating, which induces austenite stabilization, also became more significant as the strain rate increased. Therefore, the present results indicate that the diminishing TRIP effects at high strain rates can be attributed to preferential strain partitioning to the soft ferrite phase from an early stage of deformation, as well as adiabatic heating.

  7. Effect of Annealing Temperature on the Mechanical and Corrosion Behavior of a Newly Developed Novel Lean Duplex Stainless Steel

    Science.gov (United States)

    Guo, Yanjun; Hu, Jincheng; Li, Jin; Jiang, Laizhu; Liu, Tianwei; Wu, Yanping

    2014-01-01

    The effect of annealing temperature (1000–1150 °C) on the microstructure evolution, mechanical properties, and pitting corrosion behavior of a newly developed novel lean duplex stainless steel with 20.53Cr-3.45Mn-2.08Ni-0.17N-0.31Mo was studied by means of optical metallographic microscopy (OMM), scanning electron microscopy (SEM), magnetic force microscopy (MFM), scanning Kelvin probe force microscopy (SKPFM), energy dispersive X-ray spectroscopy (EDS), uniaxial tensile tests (UTT), and potentiostatic critical pitting temperature (CPT). The results showed that tensile and yield strength, as well as the pitting corrosion resistance, could be degraded with annealing temperature increasing from 1000 up to 1150 °C. Meanwhile, the elongation at break reached the maximum of 52.7% after annealing at 1050 °C due to the effect of martensite transformation induced plasticity (TRIP). The localized pitting attack preferentially occurred at ferrite phase, indicating that the ferrite phase had inferior pitting corrosion resistance as compared to the austenite phase. With increasing annealing temperature, the pitting resistance equivalent number (PREN) of ferrite phase dropped, while that of the austenite phase rose. Additionally, it was found that ferrite possessed a lower Volta potential than austenite phase. Moreover, the Volta potential difference between ferrite and austenite increased with the annealing temperature, which was well consistent with the difference of PREN. PMID:28788201

  8. Effect of Rolling and Subsequent Annealing on Microstructure, Microtexture, and Properties of an Experimental Duplex Stainless Steel

    Science.gov (United States)

    Mandal, Arka; Patra, Sudipta; Chakrabarti, Debalay; Singh, Shiv Brat

    2017-10-01

    A lean duplex stainless steel (LDSS) has been prepared with low-N content and processed by different thermo-mechanical schedules, similar to the industrial processing that comprised hot-rolling, cold-rolling, and annealing treatments. The microstructure developed in the present study on low-N LDSS has been compared to that of high-N LDSS as reported in the literature. As N is an austenite stabilizer, lower-N content reduced the stability of austenite and the austenite content in low-N LDSS with respect to the conventional LDSS. Due to low stability of austenite in low-N LDSS, cold rolling resulted in strain-induced martensitic transformation and the reversion of martensite to austenite during subsequent annealing contributed to significant grain refinement within the austenite regions. δ-ferrite grains in low-N LDSS, on the other hand, are refined by extended recovery mechanism. Initial solidification texture (mainly cube texture) within the δ-ferrite region finally converted into gamma-fiber texture after cold rolling and annealing. Although MS-brass component dominated the austenite texture in low-N LDSS after hot rolling and cold rolling, that even transformed into alpha-fiber texture after the final annealing. Due to the significant grain refinement and formation of beneficial texture within both austenite and ferrite, good combination of strength and ductility has been achieved in cold-rolled and annealed sample of low-N LDSS steel.

  9. Real Time Imaging of Deuterium in a Duplex Stainless Steel Microstructure by Time-of-Flight SIMS

    Science.gov (United States)

    Sobol, O.; Straub, F.; Wirth, Th.; Holzlechner, G.; Boellinghaus, Th.; Unger, W. E. S.

    2016-02-01

    For more than one century, hydrogen assisted degradation of metallic microstructures has been identified as origin for severe technical component failures but the mechanisms behind have not yet been completely understood so far. Any in-situ observation of hydrogen transport phenomena in microstructures will provide more details for further elucidation of these degradation mechanisms. A novel experiment is presented which is designed to elucidate the permeation behaviour of deuterium in a microstructure of duplex stainless steel (DSS). A hydrogen permeation cell within a TOF-SIMS instrument enables electrochemical charging with deuterium through the inner surface of the cell made from DSS. The outer surface of the DSS permeation cell exposed to the vacuum has been imaged by TOF-SIMS vs. increasing time of charging with subsequent chemometric treatment of image data. This in-situ experiment showed evidently that deuterium is permeating much faster through the ferrite phase than through the austenite phase. Moreover, a direct proof for deuterium enrichment at the austenite-ferrite interface has been found.

  10. Effect of Annealing Temperature on the Mechanical and Corrosion Behavior of a Newly Developed Novel Lean Duplex Stainless Steel

    Directory of Open Access Journals (Sweden)

    Yanjun Guo

    2014-09-01

    Full Text Available The effect of annealing temperature (1000–1150 °C on the microstructure evolution, mechanical properties, and pitting corrosion behavior of a newly developed novel lean duplex stainless steel with 20.53Cr-3.45Mn-2.08Ni-0.17N-0.31Mo was studied by means of optical metallographic microscopy (OMM, scanning electron microscopy (SEM, magnetic force microscopy (MFM, scanning Kelvin probe force microscopy (SKPFM, energy dispersive X-ray spectroscopy (EDS, uniaxial tensile tests (UTT, and potentiostatic critical pitting temperature (CPT. The results showed that tensile and yield strength, as well as the pitting corrosion resistance, could be degraded with annealing temperature increasing from 1000 up to 1150 °C. Meanwhile, the elongation at break reached the maximum of 52.7% after annealing at 1050 °C due to the effect of martensite transformation induced plasticity (TRIP. The localized pitting attack preferentially occurred at ferrite phase, indicating that the ferrite phase had inferior pitting corrosion resistance as compared to the austenite phase. With increasing annealing temperature, the pitting resistance equivalent number (PREN of ferrite phase dropped, while that of the austenite phase rose. Additionally, it was found that ferrite possessed a lower Volta potential than austenite phase. Moreover, the Volta potential difference between ferrite and austenite increased with the annealing temperature, which was well consistent with the difference of PREN.

  11. Effect of Annealing Temperature on the Mechanical and Corrosion Behavior of a Newly Developed Novel Lean Duplex Stainless Steel.

    Science.gov (United States)

    Guo, Yanjun; Hu, Jincheng; Li, Jin; Jiang, Laizhu; Liu, Tianwei; Wu, Yanping

    2014-09-12

    The effect of annealing temperature (1000-1150 °C) on the microstructure evolution, mechanical properties, and pitting corrosion behavior of a newly developed novel lean duplex stainless steel with 20.53Cr-3.45Mn-2.08Ni-0.17N-0.31Mo was studied by means of optical metallographic microscopy (OMM), scanning electron microscopy (SEM), magnetic force microscopy (MFM), scanning Kelvin probe force microscopy (SKPFM), energy dispersive X-ray spectroscopy (EDS), uniaxial tensile tests (UTT), and potentiostatic critical pitting temperature (CPT). The results showed that tensile and yield strength, as well as the pitting corrosion resistance, could be degraded with annealing temperature increasing from 1000 up to 1150 °C. Meanwhile, the elongation at break reached the maximum of 52.7% after annealing at 1050 °C due to the effect of martensite transformation induced plasticity (TRIP). The localized pitting attack preferentially occurred at ferrite phase, indicating that the ferrite phase had inferior pitting corrosion resistance as compared to the austenite phase. With increasing annealing temperature, the pitting resistance equivalent number (PREN) of ferrite phase dropped, while that of the austenite phase rose. Additionally, it was found that ferrite possessed a lower Volta potential than austenite phase. Moreover, the Volta potential difference between ferrite and austenite increased with the annealing temperature, which was well consistent with the difference of PREN.

  12. On the effects of gravity and sulfur content on the weld shape in horizontal narrow gap GTAW of stainless steels

    KAUST Repository

    Traidia, Abderrazak

    2013-07-01

    A simplified 2D axisymmetric model and a comprehensive 3D weld pool model, accounting for the free surface deformation and the filler metal addition, have been developed to investigate the factors that lead to asymmetric bead shapes in horizontal GTA welding of stainless steels. Buoyancy-induced flow and the sagging of the pool free surface, under the action of gravity, are found to be responsible for the weld asymmetry and the decrease in the weld penetration at the bottom sidewall. The numerical results clearly emphasized the beneficial role of the Marangoni shear stress in limiting the asymmetry of horizontal GTA welds. An additional experimental investigation showed that the asymmetry in the weld shape can be reduced when placing the lowest sulfur content component at the bottom side. © 2013 Elsevier B.V. All rights reserved.

  13. Microstructural, compositional and residual stress evaluation of CO{sub 2} laser welded superaustenitic AISI 904L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, A. [DIMEG, University of Padova, Via Marzolo, 9 I-35131 Padova (Italy)]. E-mail: a.zambon@unipd.it; Ferro, P. [Department of Management and Engineering, University of Padova, Str.lla S. Nicola, 3 I-36100 Vicenza (Italy); Bonollo, F. [Department of Management and Engineering, University of Padova, Str.lla S. Nicola, 3 I-36100 Vicenza (Italy)

    2006-05-25

    CO{sub 2} laser welding was performed on AISI 904L superaustenitic stainless steel sheets, with optimised processing parameters determined by means of melt run trial evaluations. X-ray diffraction phase identification and light microscopy confirmed that the weld structure is fully austenitic and dendritic. A hardness increase in the weld bead with respect to the parent metal occurred and was related to both the microstructural refinement induced by a rapid cooling of the fusion zone and the presence of nanometric scale precipitates observed by TEM in the weld bead. Residual stresses were determined by means of X-ray diffraction, exhibiting tensile stresses, close to the yield strength, in the longitudinal direction in the weld bead, while the stresses were compressive in the transverse direction and in the base material. Tensile tests showed that welded specimens retained strength and ductility values comparable to those of the base material.

  14. Evaluation of welding by MIG in martensitic stainless steel; Avaliacao da soldagem pelo processo MIG em aco inoxidavel martensitico

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, M.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Mariano, N.A.; Marinho, D.H.C. Marinho, E-mail: neideaparecidamariano@gmail.co [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil)

    2010-07-01

    This work evaluated structure's characterization and mechanical properties after the welding process of the stainless steel CA6NM. The employed welding process was the metal active gas with tubular wire. The control of the thermal cycle in the welding process has fundamental importance regarding the properties of the welded joint, particularly in the thermally affected zone. The mechanical properties were appraised through impact resistance tests and the hardness and microstructure through metallographic characterization and Ray-X diffraction. The parameters and the process of welding used promoted the hardness and toughness appropriate to the applications of the steel. Welding energy's control becomes an essential factor that can affect the temperature of carbide precipitation and the nucleation of the retained austenite in the in the region of the in the thermally affected zone. (author)

  15. Mathematical Modeling of Weld Bead Geometry, Quality, and Productivity for Stainless Steel Claddings Deposited by FCAW

    Science.gov (United States)

    Gomes, J. H. F.; Costa, S. C.; Paiva, A. P.; Balestrassi, P. P.

    2012-09-01

    In recent years, industrial settings are seeing a rise in the use of stainless steel claddings. The anti-corrosive surfaces are made from low cost materials such as carbon steel or low alloy steels. To ensure the final quality of claddings, however, it is important to know how the welding parameters affect the process's outcome. Beads should be defect free and deposited with the desired geometry, with efficiency, and with a minimal waste of material. The objective of this study then is to analyze how the flux-cored arc welding (FCAW) parameters influence geometry, productivity, and the surface quality of the stainless steel claddings. It examines AISI 1020 carbon steel cladded with 316L stainless steel. Geometry was analyzed in terms of bead width, penetration, reinforcement, and dilution. Productivity was analyzed according to deposition rate and process yield, and surface quality according to surface appearance and slag formation. The FCAW parameters chosen included the wire feed rate, voltage, welding speed, and contact-tip-workpiece distance. To analyze the parameters' influences, mathematical models were developed based on response surface methodology. The results show that all parameters were significant. The degrees of importance among them varied according to the responses of interest. What also proved to be significant was the interaction between parameters. It was found that the combined effect of two parameters significantly affected a response; even when taken individually, the two might produce little effect. Finally, the development of Pareto frontiers confirmed the existence of conflicts of interest in this process, suggesting the application of multi-objective optimization techniques to the sequence of this study.

  16. Hardness and microstructural studies of electron beam welded joints of Zircaloy-4 and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M.; Akhter, J.I. E-mail: jiakhter@yahoo.comakhterji@hotmail.com; Shaikh, M.A.; Akhtar, M.; Iqbal, M.; Chaudhry, M.A

    2002-03-01

    Electron beam welded joints between Zircaloy-4 and stainless steel 304L are investigated due to their importance in the nuclear industry. The molten and heat affected zones (HAZs) are found to be free of defects. Diffusion of Fe, Cr and Ni is observed in Zircaloy-4 near the molten zone and of Zr and Sn in the stainless steel. A rod-shaped intermetallic compound Zr(Cr,Fe){sub 2} and eutectic phases ZrCr{sub 2}-liquid (Zr,Fe) and Zr{sub 2}Fe-Zr{sub 2}Ni are present in the molten zone. The hardness of the molten zone, containing Zr(Cr,Fe){sub 2,} is much higher than the rest of the molten zone and the HAZs.

  17. Evolution of microstructure and residual stress under various vibration modes in 304 stainless steel welds.

    Science.gov (United States)

    Hsieh, Chih-Chun; Wang, Peng-Shuen; Wang, Jia-Siang; Wu, Weite

    2014-01-01

    Simultaneous vibration welding of 304 stainless steel was carried out with an eccentric circulating vibrator and a magnetic telescopic vibrator at subresonant (362 Hz and 59.3 Hz) and resonant (376 Hz and 60.9 Hz) frequencies. The experimental results indicate that the temperature gradient can be increased, accelerating nucleation and causing grain refinement during this process. During simultaneous vibration welding primary δ -ferrite can be refined and the morphologies of retained δ-ferrite become discontinuous so that δ-ferrite contents decrease. The smallest content of δ-ferrite (5.5%) occurred using the eccentric circulating vibrator. The diffraction intensities decreased and the FWHM widened with both vibration and no vibration. A residual stress can obviously be increased, producing an excellent effect on stress relief at a resonant frequency. The stress relief effect with an eccentric circulating vibrator was better than that obtained using a magnetic telescopic vibrator.

  18. Physicochemical Characterization of Aerosol Generated in the Gas Tungsten Arc Welding of Stainless Steel.

    Science.gov (United States)

    Miettinen, Mirella; Torvela, Tiina; Leskinen, Jari T T

    2016-10-01

    Exposure to stainless steel (SS) welding aerosol that contain toxic heavy metals, chromium (Cr), manganese (Mn), and nickel (Ni), has been associated with numerous adverse health effects. The gas tungsten arc welding (GTAW) is commonly applied to SS and produces high number concentration of substantially smaller particles compared with the other welding techniques, although the mass emission rate is low. Here, a field study in a workshop with the GTAW as principal welding technique was conducted to determine the physicochemical properties of the airborne particles and to improve the understanding of the hazard the SS welding aerosols pose to welders. Particle number concentration and number size distribution were measured near the breathing zone (50cm from the arc) and in the middle of the workshop with condensation particle counters and electrical mobility particle sizers, respectively. Particle morphology and chemical composition were studied using scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy. In the middle of the workshop, the number size distribution was unimodal with the geometric mean diameter (GMD) of 46nm. Near the breathing zone the number size distribution was multimodal, and the GMDs of the modes were in the range of 10-30nm. Two different agglomerate types existed near the breathing zone. The first type consisted of iron oxide primary particles with size up to 40nm and variable amounts of Cr, Mn, and Ni replacing iron in the structure. The second type consisted of very small primary particles and contained increased proportion of Ni compared to the proportion of (Cr + Mn) than the first agglomerate type. The alterations in the distribution of Ni between different welding aerosol particles have not been reported previously. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  19. CHOSEN PROPERTIES OF SANDWICH MATERIAL Ti-304 STAINLESS STEEL AFTER EXPLOSIVE WELDING

    Directory of Open Access Journals (Sweden)

    Dmytro Ostroushko

    2011-05-01

    Full Text Available The work deals with evaluation of joint of stainless steel 304 SS (sheet and commercially pure Ti both after welding explosion and followed-up annealing at 600°C/1.5h/air. The bonding line shows sinusoidal character with curls in crest unlike the trough of the sine curve. The heat treatment does not change the character of the interface. In work amplitude, wave length and the interface thickness were measured. Thickness of compressed cladded matrix of Ti was measured in area of crests and troughs. In crest of joint melted zones were studied, where complex oxides and intermetallic phases were revealed.

  20. Electrochemical Study of Welded AISI 304 and 904L Stainless Steel in Seawater in View of Corrosion

    Directory of Open Access Journals (Sweden)

    Richárd Székely

    2010-10-01

    Full Text Available This is a comparative study of the corrosion behaviour of welds in AISI 304 and AISI 904L stainless steels carried out in seawater model solution in the temperature range 5-35°C and the standard of corrosion testing of welds was followed. The corrosion rate and corrosion attack characteristics were determined for welds of the examined steels with several type of treatment. The aim of this work was to compare the steels based on their resistance against the corrosion in terms of pitting potential (Epit and repassivation potential (Erepass. Seawater is an electrochemically aggressive medium, which can initiate localised corrosion in welded stainless steels. Different electrochemical and testing methods were used, including cyclic voltammetry, chronopotentiometry, electrochemical impedance spectroscopy (EIS, pH measuring and penetration tests.

  1. Final Report, Volume 4, The Development of Qualification Standards for Cast Super Duplex Stainless Steel (2507 Wrought Equivalent)

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30

    The objective of the program is to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). Different tests were carried out on the materials procured from various steel foundries as stated in the ASTM A923. The foundries were designated as Foundry A, B, C and D. All the materials were foundry solution annealed. Materials from Foundry D were solution heat treated at The University of Tennessee also and then they were subjected to heat treatment schedule which was derived from the testing of wrought DSS to establish the A923 specification. This was possible because the material from the same heat was sufficient for conducting the full scope of heat treatment. This was done prior to carrying out various other tests. Charpy samples were machined. The Ferrite content was measured in all the Charpy samples using Feritscope® and ASTM E562 Manual Point Count Method. After the ferrite content was measured the samples were sent to AMC-Vulcan, Inc. in Alabama to conduct the Charpy impact test based on ASTM A923 Test Method B. This was followed by etch testing and corrosion analysis based on ASTM A923 Test Methods A and C respectively at University of Tennessee. Hardness testing using Rockwell B and C was also carried out on these samples. A correlation was derived between all the three test methods and the best method for evaluating the presence of intermetallic in the material was determined. The ferrite content was correlated with the toughness values. Microstructural analysis was carried out on the etch test samples using Scanning Electron Microscopy in order to determine if intermetallic phases were present. The fracture surfaces from Charpy test specimens were also observed under SEM in order to determine the presence of any cracks and whether it was a brittle or a ductile fracture. A correlation was

  2. Final Report, Volume 4, The Develpoment of Qualification Standards forCast Super Duplex Stainless Steel (2507 Wrought Equivalent)

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, Vasudevan; Lundin, Carl, D.

    2005-09-30

    The objective of the program is to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). Different tests were carried out on the materials procured from various steel foundries as stated in the ASTM A923. The foundries were designated as Foundry A, B, C and D. All the materials were foundry solution annealed. Materials from Foundry D were solution heat treated at The University of Tennessee also and then they were subjected to heat treatment schedule which was derived from the testing of wrought DSS to establish the A923 specification. This was possible because the material from the same heat was sufficient for conducting the full scope of heat treatment. This was done prior to carrying out various other tests. Charpy samples were machined. The Ferrite content was measured in all the Charpy samples using Feritscope{reg_sign} and ASTM E562 Manual Point Count Method. After the ferrite content was measured the samples were sent to AMC-Vulcan, Inc. in Alabama to conduct the Charpy impact test based on ASTM A923 Test Method B. This was followed by etch testing and corrosion analysis based on ASTM A923 Test Methods A and C respectively at University of Tennessee. Hardness testing using Rockwell B and C was also carried out on these samples. A correlation was derived between all the three test methods and the best method for evaluating the presence of intermetallic in the material was determined. The ferrite content was correlated with the toughness values. Microstructural analysis was carried out on the etch test samples using Scanning Electron Microscopy in order to determine if intermetallic phases were present. The fracture surfaces from Charpy test specimens were also observed under SEM in order to determine the presence of any cracks and whether it was a brittle or a ductile fracture. A correlation

  3. Feasibility of surface-coated friction stir welding tools to join AISI 304 grade austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    A.K. Lakshminarayanan

    2014-12-01

    Full Text Available An attempt is made to develop the tools that are capable enough to withstand the shear, impact and thermal forces that occur during friction stir welding of stainless steels. The atmospheric plasma spray and plasma transferred arc hardfacing processes are employed to deposit refractory ceramic based composite coatings on the Inconel 738 alloy. Five different combinations of self-fluxing alloy powder and 60% ceramic reinforcement particulate mixtures are used for coating. The best friction stir welding tool selected based on tool wear analysis is used to fabricate the austenitic stainless steel joints.

  4. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure, and Corrosion Resistance of 304 Stainless Steel Welds

    Science.gov (United States)

    Ye, Chang; Telang, Abhishek; Gill, Amrinder; Wen, Xingshuo; Mannava, Seetha R.; Qian, Dong; Vasudevan, Vijay K.

    2018-01-01

    In this study, ultrasonic nanocrystal surface modification (UNSM) of 304 stainless steel welds was carried out. UNSM effectively eliminates the tensile stress generated during welding and imparts beneficial compressive residual stresses. In addition, UNSM can effectively refine the grains and increase hardness in the near-surface region. Corrosion tests in boiling MgCl2 solution demonstrate that UNSM can significantly improve the corrosion resistance due to the compressive residual stresses and changes in the near-surface microstructure.

  5. Utilization of aluminum to obtaining a duplex type stainless steel using high energy ball milling; Obtencao de um aco inoxidavel de estrutura duplex do sistema FeMnAl processado por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Pavlak, I.E.; Cintho, O.M., E-mail: eng.igorpavlak@yahoo.com.b [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Capocchi, J.D.T. [Universidade de Sao Paulo (USP), SP (Brazil)

    2010-07-01

    The obtaining of stainless steel using aluminum in its composition - FeMnAl system, has been researches subject since the sixties, by good mechanical properties and resistance to oxidation presented, when compared with conventional FeNiCr stainless steel system. In another point, the aluminum and manganese are low cost then traditional elements. This work, metallic powders of iron, manganese and pure aluminum, were processed in a Spex type high-energy ball mill in nitrogen atmosphere. The milling products were compressed into pastille form and sintered under inert atmosphere. The final products were characterized by optical and electronic microscopy and microhardness test. The metallographic analysis shows a typical austenite and ferrite duplex type microstructure. The presence of these phases was confirmed according X ray diffraction analysis. (author)

  6. Through-Thickness Residual Stress Profiles in Austenitic Stainless Steel Welds: A Combined Experimental and Prediction Study

    Science.gov (United States)

    Mathew, J.; Moat, R. J.; Paddea, S.; Francis, J. A.; Fitzpatrick, M. E.; Bouchard, P. J.

    2017-10-01

    Economic and safe management of nuclear plant components relies on accurate prediction of welding-induced residual stresses. In this study, the distribution of residual stress through the thickness of austenitic stainless steel welds has been measured using neutron diffraction and the contour method. The measured data are used to validate residual stress profiles predicted by an artificial neural network approach (ANN) as a function of welding heat input and geometry. Maximum tensile stresses with magnitude close to the yield strength of the material were observed near the weld cap in both axial and hoop direction of the welds. Significant scatter of more than 200 MPa was found within the residual stress measurements at the weld center line and are associated with the geometry and welding conditions of individual weld passes. The ANN prediction is developed in an attempt to effectively quantify this phenomenon of `innate scatter' and to learn the non-linear patterns in the weld residual stress profiles. Furthermore, the efficacy of the ANN method for defining through-thickness residual stress profiles in welds for application in structural integrity assessments is evaluated.

  7. Through-Thickness Residual Stress Profiles in Austenitic Stainless Steel Welds: A Combined Experimental and Prediction Study

    Science.gov (United States)

    Mathew, J.; Moat, R. J.; Paddea, S.; Francis, J. A.; Fitzpatrick, M. E.; Bouchard, P. J.

    2017-12-01

    Economic and safe management of nuclear plant components relies on accurate prediction of welding-induced residual stresses. In this study, the distribution of residual stress through the thickness of austenitic stainless steel welds has been measured using neutron diffraction and the contour method. The measured data are used to validate residual stress profiles predicted by an artificial neural network approach (ANN) as a function of welding heat input and geometry. Maximum tensile stresses with magnitude close to the yield strength of the material were observed near the weld cap in both axial and hoop direction of the welds. Significant scatter of more than 200 MPa was found within the residual stress measurements at the weld center line and are associated with the geometry and welding conditions of individual weld passes. The ANN prediction is developed in an attempt to effectively quantify this phenomenon of `innate scatter' and to learn the non-linear patterns in the weld residual stress profiles. Furthermore, the efficacy of the ANN method for defining through-thickness residual stress profiles in welds for application in structural integrity assessments is evaluated.

  8. Effect of Heat Input on Mechanical and Metallurgical Properties of Gas Tungsten Arc Welded Lean Super Martensitic Stainless Steel

    OpenAIRE

    Muthusamy,Chellappan; Karuppiah, Lingadurai; Paulraj,Sathiya; Kandasami,Devakumaran; Kandhasamy,Raja

    2016-01-01

    Welding of 6mm thick AISI: 410S lean super martensitic stainless steel (LSMSS) under different heat input of 7.97, 8.75 and 10.9 kJ/cm was carried out by gas tungsten arc welding process. The influence of heat input on metallurgical and mechanical properties in weld and HAZ region was studied. The tensile tests were carried out at different temperatures, namely at room temperature, at 600ºC, 7000C and 8000C. It is observed that rise in the heat input and temperature decreased the tensile stre...

  9. Influence of the Heterogeneous Nucleation Sites on the Kinetics of Intermetallic Phase Formation in Aged Duplex Stainless Steel

    Science.gov (United States)

    Melo, Elis Almeida; Magnabosco, Rodrigo

    2017-11-01

    The aim of this work is to study the influence of the heterogeneous nucleation site quantity, observed in different ferrite and austenite grain size samples, on the phase transformations that result in intermetallic phases in a UNS S31803 duplex stainless steel (DSS). Solution treatment was conducted for 1, 24, 96, or 192 hours at 1373 K (1100 °C) to obtain different ferrite and austenite grain sizes. After solution treatment, isothermal aging treatments for 5, 8, 10, 20, 30, or 60 minutes at 1123 K (850 °C) were performed to verify the influence of different amounts of heterogeneous nucleation sites in the kinetics of intermetallic phase formation. The sample solution treated for 1 hour, with the highest surface area between matrix phases, was the one that presented, after 60 minutes at 1123 K (850 °C), the smaller volume fraction of ferrite (indicative of greater intermetallic phase formation), higher volume of sigma (that was present in coral-like and compact morphologies), and chi phase. It was not possible to identify which was the first nucleated phase, sigma or chi. It was also observed that the phase formation kinetics is higher for the sample solution treated for 1 hour. It was evidenced that, from a certain moment on, the chi phase begins to be consumed due to the sigma phase formation, and the austenite/ferrite interface presents higher S V for all solution treatment times. It was also observed that intermetallic phases form preferably in austenite-ferrite interfaces, although the higher occupation rate occurs at triple junction ferrite-ferrite-ferrite. It was verified that there was no saturation of nucleation sites in any interface type nor triple junction, and the equilibrium after 1 hour of aging at 1123 K (850 °C) was not achieved. It was then concluded that sigma phase formation is possibly controlled by diffusional processes, without saturation of nucleation sites.

  10. Methodology for calculating the thickness free of sigma phase in duplex stainless steels large section parts during hiperquenching; Metodologia para el calculo de espesores limite libres de fase sigma durante el hipertemple en piezas de aceros duplex de gran seccion

    Energy Technology Data Exchange (ETDEWEB)

    Jimbert, P.; Guraya, T.; Torregary, A.; Bravo, P.

    2013-06-01

    To achieve the mechanical properties and corrosion resistance desired by duplex stainless steels used by the petrochemical and nuclear industry, parts are subjected to a hiperquenching heat treatment from about 1050 degree centigrade. This avoids the risk of intermetallic precipitation which drastically reduces the properties of these materials. However with increasing depth to which the deposits are present, the thicknesses for such pipes have been increased, resulting in higher levels of demand on all its manufacturing process, including the heat treatment. To avoid the precipitation of intermetallic phases such as sigma phase it is necessary to know the cooling profile in the center of the work piece and for this purpose to know the value of the Surface Heat Transfer Coefficient (h) is essential. This coefficient changes during the hiperquenching and its value is determined experimentally as it depends on several process parameters. Studies reveal that its value is stabilized within a few seconds. We can then assume that to know the cooling profile in the center of large sections it is only necessary to know the stabilized value of h. However, all the studies found in the literature are referred to diameters smaller than 100 mm. This paper has developed a methodology to predict the precipitation of intermetallic phases in duplex stainless steel parts with large thicknesses in industrial facilities from the calculation of h. This methodology allows us to calculate the cooling profiles without wasting any work piece using one or more sensorized patterns with thermocouples and a subsequent simulation with ANSYS. (Author)

  11. Finite element modeling of the effect of welding parameters on solidification cracking of Austenitic Stainless Steel 310

    Directory of Open Access Journals (Sweden)

    Eslam Ranjbarnodeh

    2016-12-01

    Full Text Available A transient thermo-mechanical model is employed to study the effects of welding parameters on the occurrence of solidification cracking. A finite element program, ANSYS, is employed to solve the thermal and mechanical equations while the different variables such as welding current, speed and sequence are considered in the simulation. The studied geometry was butt joint of two stainless steel plates with the thickness of 2 mm. Then, the samples were welded by TIG method without filler. To verify the numerical results, the model outputs were checked with the experimental observations and good agreement was observed. It was found that the increasing of welding current from 70 A to 100 A resulted in the increase in transverse tensile strain from 1.2 to 2.1 which can facilitate the occurrence of solidification cracking. Furthermore, the application of symmetric welding layout is an effective method to prevent solidification cracking.

  12. Assessment of The Cracking Properties of Stainless Steel Alloys and their Usability for Laser Welding in Production

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther

    2001-01-01

    Methods to assess stainless steel alloys’ cracking properties and usability for laser welding has been studied. Also tests to assess alloys’ susceptibility to hot cracking has been conducted. Among these is the so-called Weeter test which assesses the alloy by executing a number of spot welds...... to provoke cracking in the alloy. In this work the Weeter test has been modified and changed in order to develop a faster and easier test also applicable to small specimens. The new test, called a Groove test differs from the Weeter test by its procedure in which linear seam welds are conducted instead...... of spot welds. The Groove test has the advantage of an easier microscopy and analysis in the welds. Results from crack tests was partly confirmed by predictions made on the basis of the alloy’s constituents and solidification growth rate....

  13. Microstructural, Micro-hardness and Sensitization Evaluation in HAZ of Type 316L Stainless Steel Joint with Narrow Gap Welds

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Faisal Shafiqul; Jang, Changheui [KAIST, Daejeon (Korea, Republic of); Kang, Shi Chull [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    From Micro-hardness measurement HAZ zone was found approximately 1-1.5 mm in NGW and DL-EPR test confirmed that 316L NGW HAZ was not susceptible to sensitization as DOS <1% according to sensitization criteria based on reference. In nuclear power plants 316L stainless steels are commonly used material for their metallurgical stability, high corrosion resistance, and good creep and ductility properties at elevated temperatures. Welding zone considered as the weakest and failure initiation source of the components. For safety and economy of nuclear power plants accurate and dependable structural integrity assessment of main components like pressure vessels and piping are need as it joined by different welding process. In similar and dissimilar metal weld it has been observed that weld microstructure cause the variation of mechanical properties through the thickness direction. In the Heat Affected Zone (HAZ) relative to the fusion line face a unique thermal experience during welding.

  14. Eddy-Current Testing of Welded Stainless Steel Storage Containers to Verify Integrity and Identity

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Keith M.; Stoker, Gerald C.

    1999-07-20

    An eddy-current scanning system is being developed to allow the International Atomic Energy Agency (IAEA) to verify the integrity of nuclear material storage containers. Such a system is necessary to detect attempts to remove material from the containers in facilities where continuous surveillance of the containers is not practical. Initial tests have shown that the eddy-current system is also capable of verifying the identity of each container using the electromagnetic signature of its welds. The DOE-3013 containers proposed for use in some US facilities are made of an austenitic stainless steel alloy, which is nonmagnetic in its normal condition. When the material is cold worked by forming or by local stresses experienced in welding, it loses its austenitic grain structure and its magnetic permeability increases. This change in magnetic permeability can be measured using an eddy-current probe specifically designed for this purpose. Initial tests have shown that variations of magnetic permeability and material conductivity in and around welds can be detected, and form a pattern unique to the container. The changes in conductivity that are present around a mechanically inserted plug can also be detected. Further development of the system is currently underway to adapt the system to verifying the integrity and identity of sealable, tamper-indicating enclosures designed to prevent unauthorized access to measurement equipment used to verify international agreements.

  15. Tensile properties of a titanium modified austenitic stainless steel and the weld joints after neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, K.; Ioka, I.; Jitsukawa, S.; Hamada, A.; Hishinuma, A. [and others

    1996-10-01

    Tensile specimens of a titanium modified austenitic stainless steel and its weldments fabricated with Tungsten Inert Gas (TIG) and Electron Beam (EB) welding techniques were irradiated to a peak dose of 19 dpa and a peak helium level of 250 appm in the temperature range between 200 and 400{degrees}C in spectrally tailored capsules in the Oak Ridge Research Reactor (ORR) and the High Flux Isotope Reactor (HFIR). The He/dpa ratio of about 13 appm/dpa is similar to the typical helium/dpa ratio of a fusion reactor environment. The tensile tests were carried out at the irradiation temperature in vacuum. The irradiation caused an increase in yield stress to levels between 670 and 800 MPa depending on the irradiation temperature. Total elongation was reduced to less than 10%, however the specimens failed in a ductile manner. The results were compared with those of the specimens irradiated using irradiation capsules producing larger amount of He. Although the He/dpa ratio affected the microstructural change, the impact on the post irradiation tensile behavior was rather small for not only base metal specimens but also for the weld joint and the weld metal specimens.

  16. Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding.

    Science.gov (United States)

    Deng, Dewei; Chen, Rui; Sun, Qi; Li, Xiaona

    2015-01-29

    The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW) process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ) and base metal were characterized by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr₇C₃ phase with a width of about one hundred nanometres and a length of hundreds of nanometres) grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr₇C₃ after PTAW. The above means that welding can obviously improve the surface qualities.

  17. Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding

    Directory of Open Access Journals (Sweden)

    Dewei Deng

    2015-01-01

    Full Text Available The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ and base metal were characterized by optical microscope (OM, scanning electron microscope (SEM and transmission electron microscope (TEM. The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr7C3 phase with a width of about one hundred nanometres and a length of hundreds of nanometres grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr7C3 after PTAW. The above means that welding can obviously improve the surface qualities.

  18. 77 FR 42697 - Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the Philippines: Continuation...

    Science.gov (United States)

    2012-07-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Stainless Steel Butt-Weld Pipe Fittings From Italy, Malaysia, and the... Administration, Department of Commerce. SUMMARY: As a result of the determinations by the Department of Commerce...

  19. 76 FR 67473 - Stainless Steel Butt-Weld Pipe Fittings from Italy, Malaysia, and The Philippines; Institution of...

    Science.gov (United States)

    2011-11-01

    ... Commerce. (2) The Subject Countries in these reviews are Italy, Malaysia, and the Philippines. (3) The... COMMISSION Stainless Steel Butt-Weld Pipe Fittings from Italy, Malaysia, and The Philippines; Institution of... From Italy, Malaysia, and the Philippines AGENCY: United States International Trade Commission. ACTION...

  20. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    Science.gov (United States)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility

  1. Laser-Beam Welding Impact on the Deformation Properties of Stainless Steels When Used for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Evin Emil

    2016-09-01

    Full Text Available Materials other than standard and advanced high strength steels are remarkable for the thin-walled structures of the car-body in recent years in order to safety enhancement, weight and emission reduction, corrosion resistance improvement. Thus, there are presented in the paper the deformation properties of laser welded austenitic AISI 304 and ferritic AISI 430 stainless steels compared to these one measured for the high strength low alloyed steel H220PD. The properties were researched by tensile test and 3-point bending test with fixed ends on specimens made of basic material and laser welded one. The specimens were welded by solid state fiber laser YLS-5000 in longitudinal direction (the load direction. The deformation properties such as strength, stiffness and deformation work were evaluated and compared. The strength and stiffness were calculated from tensile test results and the deformation work was calculated from both, tensile test and 3-point bending test results. There has been found only minor effect of laser welding to the deformation properties for high strength low alloyed steel H220PD and austenitic stainless steel AISI 304. Otherwise, the laser welding strongly influenced the deformation work of the ferritic stainless steel AISI 430 as well as the elongation at tensile test.

  2. The possibility of tribopair lifetime extending by welding of quenched and tempered stainless steel with quenched and tempered carbon steel

    Directory of Open Access Journals (Sweden)

    V. Marušić

    2015-04-01

    Full Text Available In the conditions of tribocorrosion wear, extending of parts lifetime could be achieved by using stainless steel,which is hardened to sufficiently high hardness. In the tribosystem bolt/ bushing shell/link plate of the bucket elevator transporter conveyor machine, the previously quenched and tempered martensitic stainless steel for bolts is hardened at ≈47 HRC and welded with the quenched and tempered high yield carbon steel for bolts. Additional material, based on Cr-Ni-Mo (18/8/6 is used. The microstructure and hardness of welded samples are tested. On the tensile tester, resistance of the welded joint is tested with a simulated experiment. Dimensional control of worn tribosystem elements was performed after six months of service.

  3. Methodology for Estimating Thermal and Neutron Embrittlement of Austenitic Stainless Steel Welds During Service in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Rao, A. S.

    2016-04-28

    The effect of thermal aging on the degradation of fracture toughness and Charpy-impact properties of austenitic stainless steel (SS) welds has been characterized at reactor temperatures. The solidification behavior and the distribution and morphology of the ferrite phase in SS welds are described. Thermal aging of the welds results in moderate decreases in Charpy-impact strength and fracture toughness. The upper-shelf Charpy-impact energy of aged welds decreases by 50–80 J/cm2. The decrease in fracture toughness J-R curve, or JIc is relatively small. Thermal aging has minimal effect on the tensile strength. The fracture properties of SS welds are insensitive to filler metal; the welding process has a significant effect. The large variability in the data makes it difficult to establish the effect of the welding process on fracture properties of SS welds. Consequently, the approach used for evaluating thermal and neutron embrittlement of austenitic SS welds relies on establishing a lower-bound fracture toughness J-R curve for unaged and aged, and non-irradiated and irradiated, SS welds. The existing fracture toughness J-R curve data for SS welds have been reviewed and evaluated to define lower-bound J-R curve for submerged arc (SA)/shielded metal arc (SMA)/manual metal arc (MMA) welds and gas tungsten arc (GTA)/tungsten inert gas (TIG) welds in the unaged and aged conditions. At reactor temperatures, the fracture toughness of GTA/TIG welds is a factor of about 2.3 higher than that of SA/SMA/MMA welds. Thermal aging decreases the fracture toughness by about 20%. The potential combined effects of thermal and neutron embrittlement of austenitic SS welds are also described. Lower-bound curves are presented that define the change in coefficient C and exponent n of the power-law J-R curve and the JIc value for SS welds as a function of neutron dose. The potential effects of reactor coolant environment on the fracture toughness of austenitic SS welds are also discussed.

  4. Assessment of biological chromium among stainless steel and mild steel welders in relation to welding processes.

    Science.gov (United States)

    Edmé, J L; Shirali, P; Mereau, M; Sobaszek, A; Boulenguez, C; Diebold, F; Haguenoer, J M

    1997-01-01

    Air and biological monitoring were used for assessing external and internal chromium exposure among 116 stainless steel welders (SS welders) using manual metal arc (MMA), metal inert gas (MIG) and tungsten inert gas (TIG) welding processes (MMA: n = 57; MIG: n = 37; TIG: n = 22) and 30 mild steel welders (MS welders) using MMA and MIG welding processes (MMA: n = 14; MIG: n = 16). The levels of atmospheric total chromium were evaluated after personal air monitoring. The mean values for the different groups of SS welders were 201 micrograms/m3 (MMA) and 185 micrograms/m3 (MIG), 52 micrograms/m3 (TIG) and for MS welders 8.1 micrograms/m3 (MMA) and 7.3 micrograms/m3 (MIG). The curve of cumulative frequency distribution from biological monitoring among SS welders showed chromium geometric mean concentrations in whole blood of 3.6 micrograms/l (95th percentile = 19.9), in plasma of 3.3 micrograms/l (95th percentile = 21.0) and in urine samples of 6.2 micrograms/l (95th percentile = 58.0). Among MS welders, mean values in whole blood and plasma were rather more scattered (1.8 micrograms/l, 95th percentile = 9.3 and 1.3 micrograms/l, 95th percentile = 8.4, respectively) and in urine the value was 2.4 micrograms/l (95th percentile = 13.3). The analysis of variance of chromium concentrations in plasma previously showed a metal effect (F = 29.7, P welding process. MMA-SS is definitely different from other processes because the biological values are clearly higher. These higher levels are due to the very significant concentrations of total soluble chromium, mainly hexavalent chromium, in welding fumes.

  5. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: Microstructural and mechanical behavior characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Karimzadeh, F.; Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Ngan, A.H.W. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Jabbari, H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of)

    2015-11-15

    In the present study, an ultrafine grained (UFG) AISI 304L stainless steel with the average grain size of 650 nm was successfully welded by both gas tungsten arc welding (GTAW) and friction stir welding (FSW). GTAW was applied without any filler metal. FSW was also performed at a constant rotational speed of 630 rpm and different welding speeds from 20 to 80 mm/min. Microstructural characterization was carried out by High Resolution Scanning Electron Microscopy (HRSEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Nanoindentation, microhardness measurements and tensile tests were also performed to study the mechanical properties of the base metal and weldments. The results showed that the solidification mode in the GTAW welded sample is FA (ferrite–austenite) type with the microstructure consisting of an austenite matrix embedded with lath type and skeletal type ferrite. The nugget zone microstructure in the FSW welded samples consisted of equiaxed dynamically recrystallized austenite grains with some amount of elongated delta ferrite. Sigma phase precipitates were formed in the region ahead the rotating tool during the heating cycle of FSW, which were finally fragmented into nanometric particles and distributed in the weld nugget. Also there is a high possibility that the existing delta ferrite in the microstructure rapidly transforms into sigma phase particles during the short thermal cycle of FSW. These suggest that high strain and deformation during FSW can promote sigma phase formation. The final austenite grain size in the nugget zone was found to decrease with increasing Zener–Hollomon parameter, which was obtained quantitatively by measuring the peak temperature, calculating the strain rate during FSW and exact examination of hot deformation activation energy by considering the actual grain size before the occurrence of dynamic recrystallization. Mechanical properties observations showed that the welding

  6. The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater

    Science.gov (United States)

    Bai, Qiang; Zou, Yan; Kong, Xiangfeng; Gao, Yang; Dong, Sheng; Zhang, Wei

    2017-02-01

    The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The micro-structural and electrochemical corrosion study of base metal (BM), weld zone (WZ) and heat affected zone (HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen.

  7. Effects of active flux on plasma behavior and weld shape in laser welding of X5CrNi189 stainless steel

    Science.gov (United States)

    Dai, Hongbin; Peng, Jun

    2016-11-01

    In this paper, stainless steel was welded by active flux-aided laser welding method. The effects of single active flux (Cr2O3, SiO2 and TiO2) and composite active flux on laser welding were studied. In the welding process, laser plasma behavior was recorded by a high-speed imaging system. The results show that, with the addition of active flux, the absorption of laser energy and melting efficiency increase. In the laser power of 750 W, effects of active flux on weld depth to width ratio are given by the order: composite active flux > SiO2 > Cr2O3 > TiO2. The effect of composite active flux is the most significant and it can increase the weld depth to width ratio to 85%. Active flux can restrict the laser plasma. With the addition of composite active flux, the projected area of laser plasma obtained obviously reduced, and it can be reduced by 41.39%. Active flux cannot obviously change the main components in weld zone, but can change the grains of austenite and ferrite.

  8. [Assessment of occupational exposure of welders based on determination of fumes and their components produced during stainless steel welding].

    Science.gov (United States)

    Stanisławska, Magdalena; Janasik, Beata; Trzcinka-Ochocka, Małgorzata

    2011-01-01

    Occupational exposure to welding fumes is a known health hazard. The aim of this study was to determine concentrations of welding fumes components such as: iron, manganese, nickel and chromium (including chromium speciation) to assess exposure of stainless steel welders. The survey covered 14 workers of two metallurgic plants engaged in welding stainless steel (18% Cr and 8% Ni) by different techniques: manual metal arc (MMA), metal inert gas (MIG) and tungsten inert gas (TIG). Personal air samples were collected in the welders' breathing zone over a period of about 6-7 h (dust was collected on a membrane and glass filter) to determine time weighted average (TWA) concentration of welding fumes and its components. The concentrations of welding fumes (total particulate) were determined with use of the gravimetric method. Concentrations and welding fume components, such as: iron, manganese, nickel and chromium were determined by ICP-MS technique. The total hexavalent chromium was analyzed by applying the spectrophotometry method according to NIOSH. The water-soluble chromium species were analyzed by HPLC-ICP-MS. Time weighted average concentrations of the welding fumes and its components at the worker's breathing zone were (mg/m3): dust, 0.14-10.7; iron, 0.004-2.9; manganese, 0.001-1.12; nickel, < 0.001-0.2; and chromium <0.002-0.85 (mainly Cr(III) and insoluble Cr(VI)). The maximum admissible limits for workplace pollutants (TLV-TWA) were exceeded for manganese and for insoluble chromium Cr (VI). For Cr (III) the limit was exceeded in individual cases. The assessment of the workers' occupational exposure, based on the determined time weighted average (TWA) of fumes and their components, shows that the stainless steel welders worked in conditions harmful to their health owing to the significantly exceeded maximum admissible limits for manganese and the exceeded TLV value for insoluble chromium (VI).

  9. Laser-induced fluorescence applied to laser welding of austenitic stainless steel for dilute alloying element detection

    Science.gov (United States)

    Simonds, Brian J.; Sowards, Jeffrey W.; Williams, Paul A.

    2017-08-01

    Optical spectral analysis of the laser weld plume is a common technique for non-contact, in situ weld plume analysis. However, the low sensitivity of optical emission spectroscopy limits the available information during 1070 nm wavelength laser welding, which is becoming the standard in many industrial operations. Here we demonstrate an improved sensitivity of optical spectroscopy by applying laser-induced fluorescence (LIF) for probing the hot gas plume induced during fiber laser welding of 304L austenitic stainless steel. As a proof-of-principle, we show that LIF is capable of resolving a spectral signal from silicon being emitted during welding. Optical detection of such a low concentration alloying element has not previously been reported and shows the capability of LIF for increased sensitivity. Silicon atoms in the weld plume were excited in the ultraviolet at 221.09 nm and detected at 221.64 nm. We demonstrate the detection of silicon LIF down to laser welding powers of 600 W (210 kW cm-2) making this technique applicable even in low-power laser welding or additive manufacturing scenarios.

  10. AN ULTRASONIC PHASED ARRAY EVALUATION OF CAST AUSTENITIC STAINLESS STEEL PRESSURIZER SURGE LINE PIPING WELDS

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Moran, Traci L.; Anderson, Michael T.

    2010-07-22

    A set of circumferentially oriented thermal fatigue cracks (TFCs) were implanted into three cast austenitic stainless steel (CASS) pressurizer (PZR) surge-line specimens (pipe-to-elbow welds) that were fabricated using vintage CASS materials formed in the 1970s, and flaw responses from these cracks were used to evaluate detection and sizing performance of the phased-array (PA) ultrasonic testing (UT) methods applied. Four different custom-made PA probes were employed in this study, operating nominally at 800 kHz, 1.0 MHz, 1.5 MHz, and 2.0 MHz center frequencies. The CASS PZR surge-line specimens were polished and chemically etched to bring out the microstructures of both pipe and elbow segments. Additional studies were conducted and documented to address baseline CASS material noise and observe possible ultrasonic beam redirection phenomena.

  11. Effects of Thermocapillary Forces during Welding of 316L-Type Wrought, Cast and Powder Metallurgy Austenitic Stainless Steels

    CERN Document Server

    Sgobba, Stefano

    2003-01-01

    The Large Hadron Collider (LHC) is now under construction at the European Organization for Nuclear Research (CERN). This 27 km long accelerator requires 1248 superconducting dipole magnets operating at 1.9 K. The cold mass of the dipole magnets is closed by a shrinking cylinder with two longitudinal welds and two end covers at both extremities of the cylinder. The end covers, for which fabrication by welding, casting or Powder Metallurgy (PM) was considered, are dished-heads equipped with a number of protruding nozzles for the passage of the different cryogenic lines. Structural materials and welds must retain high strength and toughness at cryogenic temperature. AISI 316L-type austenitic stainless steel grades have been selected because of their mechanical properties, ductility, weldability and stability of the austenitic phase against low-temperature spontaneous martensitic transformation. 316LN is chosen for the fabrication of the end covers, while the interconnection components to be welded on the protrud...

  12. Cavity microstructure and kinetics during gas tungsten arc welding of helium-containing stainless steel

    Science.gov (United States)

    Lin, H. T.; Grossbeck, M. L.; Chin, B. A.

    1990-09-01

    Helium was implanted in type 316 stainless steel, through tritium decay, to levels of 0. 18, 2. 5, 27, 105, and 256 atomic parts per million (appm). Bead-on-sheet welds were then made using the gas tungsten arc (GTA) process. Intergranular cracking occurred in the heat-affected zones (HAZs) of specimens with helium concentrations equal to or greater than 2.5 appm. No such cracking was observed in helium-free control specimens or in specimens containing the lowest helium concentration. In addition to the HAZ cracking, brittle, centerline cracking occurred in the fusion zone of specimens containing 105 and 256 appm helium. Transmission and scanning electron microscopy results indicated that both the HAZ cracking and centerline cracking in the fusion zone resulted from the stress-induced growth and coalescence of cavities initiated at helium bubbles on interfaces. For the HAZ case, the cavity growth rate is modeled and shown to predict the experimentally measured 1-second time lag between peak weld temperature and the onset of cracking.

  13. Round Robin Analyses on Stress Intensity Factors of Inner Surface Cracks in Welded Stainless Steel Pipes

    Directory of Open Access Journals (Sweden)

    Chang-Gi Han

    2016-12-01

    Full Text Available Austenitic stainless steels (ASSs are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.

  14. Round robin analysis on stress intensity factor of inner surface cracks in welded stainless steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chang Gi; Chang, Yoon Suk [Dept. of Nuclear Engineering, College of Engineering, Kyung Hee University, Yongin (Korea, Republic of); Kim, Jong Sung [Dept. of Mechanical Engineering, Sunchon National University, Sunchon (Korea, Republic of); Kim, Maan Won [Central Research Institute, Korea Hydro and Nuclear Power Company, Daejeon (Korea, Republic of)

    2016-12-15

    Austenitic stainless steels (ASSs) are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs) were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.

  15. Characterization of Friction Welded Titanium Alloy and Stainless Steel with a Novel Interlayer Geometry

    Science.gov (United States)

    Kumar, R.; Balasubramanian, M.

    The main purpose of the current research work is to identify and investigate a novel method of holding an intermediate metal and to evaluate its metallurgical and mechanical properties. Copper was used as an interlayer material for the welding of this dissimilar Ti-6Al-4V (Ti alloy) and 304L stainless steel (SS). The study shows that the input parameters and surface geometry played a very significant role in producing a good quality joints with minimum heat affected zone and metal loss. A sound weld was achieved between Ti-6Al-4V and SS304L, on the basis of the earlier experiments conducted by the authors in their laboratory, by using copper rod as intermediate metal. Box-Behnken method was used for performing a minimum number of experiments for the study. In the present study, Ti-6Al-4V alloy and SS304L were joined by a novel method of holding the interlayer and new surface geometry for the interlayer. Initially, the drop test was used for determining the quality of the fabricated joint and, subsequently, non-destructive techniques like radiography and C-scan were used. Further optical micrograph, SEM-EDS, hardness and tensile test were done for understanding the performance of the joint.

  16. Mitigating Localized Corrosion Using Thermally Sprayed Aluminum (TSA) Coatings on Welded 25% Cr Superduplex Stainless Steel

    Science.gov (United States)

    Paul, S.; Lu, Q.; Harvey, M. D. F.

    2015-04-01

    Thermally sprayed aluminum (TSA) coating has been increasingly used for the protection of carbon steel offshore structures, topside equipment, and flowlines/pipelines exposed to both marine atmospheres and seawater immersion conditions. In this paper, the effectiveness of TSA coatings in preventing localized corrosion, such as pitting and crevice corrosion of 25% Cr superduplex stainless steel (SDSS) in subsea applications, has been investigated. Welded 25% Cr SDSS (coated and uncoated) with and without defects, and surfaces coated with epoxy paint were also examined. Pitting and crevice corrosion tests, on welded 25% Cr SDSS specimens with and without TSA/epoxy coatings, were conducted in recirculated, aerated, and synthetic seawater at 90 °C for 90 days. The tests were carried out at both the free corrosion potentials and an applied cathodic potential of -1100 mV saturated calomel electrode. The acidity (pH) of the test solution was monitored daily and adjusted to between pH 7.5 and 8.1, using dilute HCl solution or dilute NaOH, depending on the pH of the solution measured during the test. The test results demonstrated that TSA prevented pitting and crevice corrosion of 25% Cr SDSS in artificial seawater at 90 °C, even when 10-mm-diameter coating defect exposing the underlying steel was present.

  17. The Effect of Shielding N{sub 2} gas on The Pitting Corrosion of Seal-welded Super Austenitic Stainless Steel by Autogenous Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Kim, Young Sik [Andong National University, Andong (Korea, Republic of); Chang, Hyun Young [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2017-04-15

    Many research efforts on the effect of nitrogen on the corrosion resistance of stainless steels have been reported, but little research has been conducted on the effect of nitrogen for the weldment of stainless steels by the seal-weld method. Therefore, this work focused on the determining the corrosion resistance of tube/tube sheet mock-up specimen for sea water condensers, and elucidating the effect of shielding nitrogen gas on its resistance. The pitting corrosion of autogenously welded specimen propagated preferentially along the dendritic structure. Regardless of the percent of shielding nitrogen gas, the analyzed nitrogen contents were very much lower than that of the bulk specimen. This can be arisen because the nitrogen in shielding gas may partly dissolve into the weldment, but simultaneously during the welding process, nitrogen in the alloy may escape into the atmosphere. However, the pitting resistance equivalent number (PREN) of the interdendrite area was higher than that of the dendrite arm, regardless of the shielding gas percent; and the PREN of the interdendrite area was higher than that of the base metal; the PREN of the dendrite arm was lower than that of the base metal because of the formation of (Cr, Mo) rich phases by welding.

  18. Microstructure and Mechanical Properties of Dissimilar Friction Stir Spot Welding Between St37 Steel and 304 Stainless Steel

    Science.gov (United States)

    Khodadadi, Ali; Shamanian, Morteza; Karimzadeh, Fathallah

    2017-05-01

    In the present study, St37 low-carbon steel and 304 stainless steel were welded successfully, with the thickness of 2 mm, by a friction stir spot welding process carried out at the tool dwell time of 6 s and two different tool rotational speeds of 630 and 1250 rpm. Metallographic examinations revealed four different zones including SZ and HAZ areas of St37 steel and SZ and TMAZ regions of 304 stainless steel in the weld nugget, except the base metals. X-ray diffraction and energy-dispersive x-ray spectroscopy experiments were used to investigate the possible formation of such phases as chromium carbide. Based on these experiments, no chromium carbide precipitation was found. The recrystallization of the weld nugget in the 304 steel and the phase transformations of the weld regions in the St37 steel enhanced the hardness of the weld joint. Hardness changes of joint were acceptable and approximately uniform, as compared to the resistance spot weld. In this research, it was also observed that the tensile/shear strength, as a crucial factor, was increased with the rise in the tool rotational speed. The bond length along the interface between metals, as an effective parameter to increase the tensile/shear strength, was also determined. At higher tool rotational speeds, the bond length was found to be improved, resulting in the tensile/shear strength of 6682 N. Finally, two fracture modes were specified through the fracture mode analysis of samples obtained from the tensile/shear test consisting of the shear fracture mode and the mixed shear/tensile fracture mode.

  19. Heat input effect on the microstructural transformation and mechanical properties in GTAW welds of a 409L ferritic stainless steel

    Directory of Open Access Journals (Sweden)

    Delgado, Jorge A.

    2016-06-01

    Full Text Available Welds without filler metal and welds using a conventional austenitic stainless steel filler metal (ER308L were performed to join a ferritic stainless steel with Gas Tungsten Arc Welding process (GTAW. Welding parameters were adjusted to obtain three different heat input values. Microstructure reveals the presence of coarse ferritic matrix and martensite laths in the Heat Affected Zone (HAZ. Dilution between filler and base metal was correlated with the presence of austenite, martensite and ferrite in the weld metal. Weld thermal cycles were measured to correlate the microstructural transformation in the HAZ. Microhardness measurements (maps and profiles allow to identify the different zones of the welded joints (weld metal, HAZ, and base metal. Comparing the base metal with the weld metal and the HAZ, a hardness increment (~172 HV0.5 to ~350 HV0.5 and ~310 HV0.5, respectively was observed, which has been attributed to the martensite formation. Tensile strength of the welded joints without filler metal increased moderately with respect to base metal. In contrast, ductility was approximately 25% higher than base metal, which provided a toughness improvement of the welded joints.Se llevaron a cabo soldaduras sin material de aporte y empleando un electrodo convencional (ER308L para unir un acero inoxidable ferrítico, empleando el proceso de soldadura de arco con electrodo de tungsteno (GTAW. Los parámetros de soldadura fueron ajustados para obtener tres valores diferentes de calor de aporte. La microestructura revela la presencia de una matriz ferrítica gruesa y placas de martensita en la Zona Afectada por el Calor (ZAC. La dilución entre el metal base y de aporte fue correlacionada con la presencia de austenita, martensita y ferrita en el metal de soldadura. Los ciclos térmicos de la soldadura fueron medidos para correlacionar la transformación microestrutural en la ZAC. Mediciones de microdureza (mapas y perfiles, permitieron identificar las

  20. Effect of Sintering Atmosphere and Solution Treatment on Density, Microstructure and Tensile Properties of Duplex Stainless Steels Developed from Pre-alloyed Powders

    Science.gov (United States)

    Murali, Arun Prasad; Mahendran, Sudhahar; Ramajayam, Mariappan; Ganesan, Dharmalingam; Chinnaraj, Raj Kumar

    2017-10-01

    In this research, Powder Metallurgy (P/M) of Duplex Stainless Steels (DSS) of different compositions were prepared through pre-alloyed powders and elemental powders with and without addition of copper. The powder mix was developed by pot mill for 12 h to obtain the homogeneous mixture of pre-alloyed powder with elemental compositions. Cylindrical green compacts with the dimensions of 30 mm diameter and 12 mm height were compacted through universal testing machine at a pressure level of 560 ± 10 MPa. These green compacts were sintered at 1350 °C for 2 h in hydrogen and argon atmospheres. Some of the sintered stainless steel preforms were solution treated at 1050 °C followed by water quenching. The sintered as well as solution treated samples were analysed by metallography examination, Scanning Electron Microscopy and evaluation of mechanical properties. Ferrite content of sintered and solution treated DSS were measured by Fischer Ferritoscope. It is inferred that the hydrogen sintered DSS depicted better density (94% theoretical density) and tensile strength (695 MPa) than the argon sintered steels. Similarly the microstructure of solution treated DSS revealed existence of more volume of ferrite grains than its sintered condition. Solution treated hydrogen sintered DSS A (50 wt% 316L + 50 wt% 430L) exhibited higher tensile strength of 716 MPa and elongation of 17%, which are 10-13% increment than the sintered stainless steels.

  1. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sathiya, P. [National Institute of Technology Tiruchirappalli (India); Ajith, P. M. [Department of Mechanical Engineering Rajiv Gandhi Institute of Technology, Kottayam (India); Soundararajan, R. [Sri Krishna College of Engineering and Technology, Coimbatore (India)

    2013-08-15

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  2. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration

    OpenAIRE

    R Mendes; Ribeiro, J. B.; Loureiro, A.

    2013-01-01

    The aim of this research is to study the influence of explosive characteristics on the weld interfaces of stainless steel AISI 304L to low alloy steel 51CrV4 in a cylindrical configuration. The effect of ammonium nitrate-based emulsion, sensitized with different quantities and types of sensitizing agents (hollow glass microballoons or expanded polystyrene spheres) and Ammonium Nitrate Fuel Oil (ANFO) explosives on the interface characteristics is analyzed. Research showed that the type of exp...

  3. Feasibility of surface-coated friction stir welding tools to join AISI 304 grade austenitic stainless steel

    OpenAIRE

    A.K. Lakshminarayanan; C.S. Ramachandran; V. Balasubramanian

    2014-01-01

    An attempt is made to develop the tools that are capable enough to withstand the shear, impact and thermal forces that occur during friction stir welding of stainless steels. The atmospheric plasma spray and plasma transferred arc hardfacing processes are employed to deposit refractory ceramic based composite coatings on the Inconel 738 alloy. Five different combinations of self-fluxing alloy powder and 60% ceramic reinforcement particulate mixtures are used for coating. The best friction sti...

  4. Influence of M-TIG and A-TIG Welding Process on Microstructure and Mechanical Behavior of 409 Ferritic Stainless Steel

    Science.gov (United States)

    Vidyarthy, R. S.; Dwivedi, D. K.; Vasudevan, M.

    2017-03-01

    The current study investigates the effects of activating flux tungsten inert gas welding (A-TIG) and multipass tungsten inert gas welding (M-TIG) on the weld morphology, angular distortion, microstructures and mechanical properties when welding 8-mm-thick 409 ferritic stainless steel (FSS). SiO2 was used as activating flux for A-TIG welding, while SUPERTIG ER309L was used as filler for M-TIG welding. Bead-on-plate weld trials were carried out to obtain the full penetration by using different combinations of flux coating density, welding speed and welding current. An optical microscope, field emission scanning microscope (FESEM), and x-ray diffractometer were used for the metallurgical characterizations. Vickers hardness, tensile test, Charpy toughness test, and creep behavior test were carried out to evaluate the mechanical properties of the base and weld metals. Experimental results indicate that the A-TIG process can increase the joint penetration and tends to reduce the angular distortion of the 409 FSS weldment. The A-TIG welded joint also exhibited greater mechanical strength. However, a critically low Charpy toughness was measured for the A-TIG weld fusion zone, which was later sufficiently improved after post weld heat treatment (PWHT). It was concluded that PWHT is mandatory for A-TIG welded 409 FSS.

  5. Measurement of ultrasonic scattering attenuation in austenitic stainless steel welds: realistic input data for NDT numerical modeling.

    Science.gov (United States)

    Ploix, Marie-Aude; Guy, Philippe; Chassignole, Bertrand; Moysan, Joseph; Corneloup, Gilles; El Guerjouma, Rachid

    2014-09-01

    Multipass welds made of 316L stainless steel are specific welds of the primary circuit of pressurized water reactors in nuclear power plants. Because of their strong heterogeneous and anisotropic nature due to grain growth during solidification, ultrasonic waves may be greatly deviated, split and attenuated. Thus, ultrasonic assessment of the structural integrity of such welds is quite complicated. Numerical codes exist that simulate ultrasonic propagation through such structures, but they require precise and realistic input data, as attenuation coefficients. This paper presents rigorous measurements of attenuation in austenitic weld as a function of grain orientation. In fact attenuation is here mainly caused by grain scattering. Measurements are based on the decomposition of experimental beams into plane-wave angular spectra and on the modeling of the ultrasonic propagation through the material. For this, the transmission coefficients are calculated for any incident plane wave on an anisotropic plate. Two different hypotheses on the welded material are tested: first it is considered as monoclinic, and then as triclinic. Results are analyzed, and validated through comparison to theoretical predictions of related literature. They underline the great importance of well-describing the anisotropic structure of austenitic welds for UT modeling issues. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Nickel-based alloy/austenitic stainless steel dissimilar weld properties prediction on asymmetric distribution of laser energy

    Science.gov (United States)

    Zhou, Siyu; Ma, Guangyi; Chai, Dongsheng; Niu, Fangyong; Dong, Jinfei; Wu, Dongjiang; Zou, Helin

    2016-07-01

    A properties prediction method of Nickel-based alloy (C-276)/austenitic stainless steel (304) dissimilar weld was proposed and validated based on the asymmetric distribution of laser energy. Via the dilution level DC-276 (the ratio of the melted C-276 alloy), the relations between the weld properties and the energy offset ratio EC-276 (the ratio of the irradiated energy on the C-276 alloy) were built, and the effects of EC-276 on the microstructure, mechanical properties and corrosion resistance of dissimilar welds were analyzed. The element distribution Cweld and EC-276 accorded with the lever rule due to the strong convention of the molten pool. Based on the lever rule, it could be predicted that the microstructure mostly consists of γ phase in each weld, the δ-ferrite phase formation was inhibited and the intermetallic phase (P, μ) formation was promoted with the increase of EC-276. The ultimate tensile strength σb of the weld joint could be predicted by the monotonically increasing cubic polynomial model stemming from the strengthening of elements Mo and W. The corrosion potential U, corrosion current density I in the active region and EC-276 also met the cubic polynomial equations, and the corrosion resistance of the dissimilar weld was enhanced with the increasing EC-276, mainly because the element Mo could help form a steady passive film which will resist the Cl- ingress.

  7. Determination of Grain Size and Resistance to Corrosion of Stainless Steel Welded Pipes

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2017-01-01

    Full Text Available Discover problems of welds is not so easy from time to time. Specially, If welding was made in rough environmental conditions such as high temperature, humidity and dusty wind. It is necessary to provide good conditions to realize basic step of welding. For welding, have been used welding procedures specification and procedure qualification record. However, difficult conditions, documentations rightness or human errors are always here. Common weld defects like cracks, porosity, lack of penetration and distortion can compromise the strength of the base metal, as well as the integrity of the weld. According of site inspection, there were suspicion of intercrystalline corrosion, inclusions, leaker or segregation in root of weld, root weld stretches to the pipe inside, the welded pipes are not in axially level, the not proper surface treatment after welding and keep the intervals between single welds to not overheat the pipes.

  8. Determination of Elements and Carbon Content of Stainless Steel Welded Pipeline

    OpenAIRE

    Pavel Hudeček; Petr Dostál

    2016-01-01

    Find out defects or problems of welds are not so simple from time to time. Specially, if weld has been made in rough environmental conditions like high temperature, dusty wind and humidity. It is important to assure have good conditions to realize basic step of welding. For welding, have been used welding procedures specification and procedure qualification record. However, difficult conditions, documentations rightness or human errors are always here. Common weld defects like cracks, porosit...

  9. Determination of Grain Size and Resistance to Corrosion of Stainless Steel Welded Pipes

    OpenAIRE

    Pavel Hudeček; Petr Dostál

    2017-01-01

    Discover problems of welds is not so easy from time to time. Specially, If welding was made in rough environmental conditions such as high temperature, humidity and dusty wind. It is necessary to provide good conditions to realize basic step of welding. For welding, have been used welding procedures specification and procedure qualification record. However, difficult conditions, documentations rightness or human errors are always here. Common weld defects like cracks, porosity, lack of penetr...

  10. Experimental Determination of Temperature During Rotary Friction Welding of AA1050 Aluminum with AISI 304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Eder Paduan Alves

    2012-03-01

    Full Text Available The purpose of this study was the temperature monitoring at bonding interface during the rotary friction welding process of dissimilar materials: AA1050 aluminum with AISI 304 stainless steel. As it is directly related to the mechanical strenght of the junction, its experimental determination in real time is of fundamental importance for understanding and characterizing the main process steps, and the definition and optimization of parameters. The temperature gradients were obtained using a system called Thermocouple Data-Logger, which allowed monitoring and recording data in real-time operation. In the graph temperature versus time obtained, the heating rates, cooling were analyzed, and the maximum temperature was determined that occurred during welding, and characterized every phases of the process. The efficiency of this system demonstrated by experimental tests and the knowledge of the temperature at the bonding interface open new lines of research to understand the process of friction welding.

  11. Study of the corrosion behaviour of S32101 duplex and 410 martensitic stainless steel for application in oil refinery distillation systems

    Directory of Open Access Journals (Sweden)

    Roland T. Loto

    2017-07-01

    Full Text Available The corrosion behaviour of S32101 duplex and 410 martensitic stainless steel was studied through weight loss and potentiodynamic polarization in 1–6 M HCl solutions. Results show that S32101 steel has significantly lower corrosion rates than 410 steel from both tests at all concentrations with highest values of 0.04586 mm/y and 0.234 mm/y in comparison to martensitic steel with corrosion rates of 0.827 mm/y and 19.84 mm/y at 6 M HCl concentration. Micrographs from SEM and EDS analyses showed a less corroded morphology for S32101 steel with fewer pits and slight depletion in the percentage composition of chromium and other alloying elements.

  12. Effect of Hydrogen Charging on the Stress Corrosion Behavior of 2205 Duplex Stainless Steel Under 3.5 wt.% NaCl Thin Electrolyte Layer

    Science.gov (United States)

    Zhao, Tianliang; Liu, Zhiyong; Hu, Shanshan; Du, Cuiwei; Li, Xiaogang

    2017-05-01

    The effect of hydrogen charging on the stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel (DSS) under 3.5 wt.% NaCl thin electrolyte layer was investigated on precharged samples through hydrogen determination, electrochemical measurement, and slow strain rate tensile test. Results show that hydrogen charging weakens the passive film without inducing any obvious trace of localized anodic dissolution. Therefore, hydrogen charging increases the SCC susceptibility of 2205 DSS mainly through mechanism of hydrogen embrittlement rather than mechanism of localized anodic dissolution. 2205 DSS shows a more susceptibility to hydrogen under the TEL when hydrogen charging current density (HCCD) is between 20 and 50 mA cm-2. The increasing trend is remarkable when hydrogen charging current density increases from 20 to 50 mA cm-2 and fades after 50 mA cm-2.

  13. In situ colonization of marine biofilms on UNS S32760 duplex stainless steel coupons in areas with different water qualities: Implications for corrosion potential behavior

    Science.gov (United States)

    Messano, Luciana V. R. de; Ignacio, Barbara L.; Neves, Maria H. C. B.; Coutinho, Ricardo

    2014-09-01

    In the presence of biofilms, stainless steels (SS) exhibits an increase in corrosion potential, called ennoblement. In the present study, the corrosion potential ( E corr) behavior of the duplex SS UNS S32760 was recorded simultaneously with the in situ marine biofilm formation in two areas at Arraial do Cabo, Southeastern Brazil. The biofilm at Forno Harbor (an anthropogenically disturbed area) was characterized by higher relative abundances of Bacteria at day 2, followed by diatoms (especially Navicula sp.) on day 10 and dinoflagellates on day 18, whereas no clear trend was recorded at Cabo Frio Island (an undisturbed area). The ennoblement of E corr values was site-dependent. In a complementary laboratory assay, biofilms were removed and the E corr values registered in sterile conditions for the subsequent 10 days and corroborated in situ results. Understanding biofilms and SS interactions has important implications for materials science and engineering decisions as well as helping to fill in important gaps in this knowledge.

  14. Effects of Nitrogen and Tensile Direction on Stress Corrosion Cracking Susceptibility of Ni-Free FeCrMnC-Based Duplex Stainless Steels.

    Science.gov (United States)

    Ha, Heon-Young; Lee, Chang-Hoon; Lee, Tae-Ho; Kim, Sangshik

    2017-03-15

    Stress corrosion cracking (SCC) behavior of Ni-free duplex stainless steels containing N and C (Fe balance -19Cr-8Mn-0.25C-(0.03, 0.21)N, in wt %) was investigated by using a slow strain rate test (SSRT) in air and aqueous NaCl solution with different tensile directions, including parallel (longitudinal) and perpendicular (transverse) to the rolling direction. It was found that alloying N was effective in increasing the resistance to SCC, while it was higher along the longitudinal direction than the transverse direction. The SCC susceptibility of the two alloys was assessed based on the electrochemical resistance to pitting corrosion, the corrosion morphology, and the fractographic analysis.

  15. Effects of Nitrogen and Tensile Direction on Stress Corrosion Cracking Susceptibility of Ni-Free FeCrMnC-Based Duplex Stainless Steels

    Directory of Open Access Journals (Sweden)

    Heon-Young Ha

    2017-03-01

    Full Text Available Stress corrosion cracking (SCC behavior of Ni-free duplex stainless steels containing N and C (Febalance-19Cr-8Mn-0.25C-(0.03, 0.21N, in wt % was investigated by using a slow strain rate test (SSRT in air and aqueous NaCl solution with different tensile directions, including parallel (longitudinal and perpendicular (transverse to the rolling direction. It was found that alloying N was effective in increasing the resistance to SCC, while it was higher along the longitudinal direction than the transverse direction. The SCC susceptibility of the two alloys was assessed based on the electrochemical resistance to pitting corrosion, the corrosion morphology, and the fractographic analysis.

  16. Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Denslow, Kayte M.; Diaz, Aaron A.; Doctor, Steven R.

    2007-03-01

    Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping.

  17. Solidification Behavior and Weldability of Dissimilar Welds Between a Cr-Free, Ni-Cu Welding Consumable and Type 304L Austenitic Stainless Steel

    Science.gov (United States)

    Sowards, Jeffrey W.; Liang, Dong; Alexandrov, Boian T.; Frankel, Gerald S.; Lippold, John C.

    2012-04-01

    The solidification behavior of a Cr-free welding consumable based on the Ni-Cu system was evaluated in conjunction with Type 304L stainless steel. The weld metal microstructure evolution was evaluated with optical and secondary electron microscopy, energy dispersive spectroscopy, X-ray diffraction, button melting, and thermodynamic (CALPHAD-based) modeling. Solidification partitioning patterns showed that higher dilutions of the filler metal by Type 304L increased segregation of Ti, Cu, and Si to interdendritic regions. Button melting experiments showed a widening of the solidification temperature range with increasing dilution because of the expansion of the austenite solidification range and formation of Ti(C,N) via a eutectic reaction. The model predictions showed good correlation with button melting experiments and were used to evaluate the nature of the Ti(C,N) precipitation reaction. Solidification cracking susceptibility of the weld metal was shown to increase with dilution of 304L stainless steel based on testing conducted with the cast pin tear test. The increase in cracking susceptibility is associated with expansion of the solidification temperature range and the presence of eutectic liquid at the end of solidification that wets solidification grain boundaries.

  18. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    Energy Technology Data Exchange (ETDEWEB)

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G. [Battelle Memorial Institute, Columbus, OH (United States)

    1997-04-01

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  19. Determination of Elements and Carbon Content of Stainless Steel Welded Pipeline

    Directory of Open Access Journals (Sweden)

    Pavel Hudeček

    2016-01-01

    Full Text Available Find out defects or problems of welds are not so simple from time to time. Specially, if weld has been made in rough environmental conditions like high temperature, dusty wind and humidity. It is important to assure have good conditions to realize basic step of welding. For welding, have been used welding procedures specification and procedure qualification record. However, difficult conditions, documentations rightness or human errors are always here. Common weld defects like cracks, porosity, lack of penetration and distortion can compromise the strength of the base metal, as well as the integrity of the weld. According of site inspection, there were suspicion of inclusions, leaker or segregation in root of weld. Surface treatment after welding and keep the intervals between single welds to not overheat the pipes. To recognize those suspicions, mechanical testing around weld joint, determination of carbon content and inductively coupled plasma atomic emission spectroscopy will be done.

  20. Properties, weldability and corrosion behavior of supermartensitic stainless steels for on- and offshore applications

    Energy Technology Data Exchange (ETDEWEB)

    Taban, Emel; Kaluc, Erdinc; Ojo, Olatunji Oladimeji [Kocaeli Univ. (Turkey). Welding Research, Education and Training Center

    2016-08-01

    Stimulated material-environment interactions inside and around flowlines of deep or ultra deep wells during oil and gas exploration, and fabrication economy of pipelines have been the major challenges facing the oil and gas industries. Presumably, an extensive focus on high integrity, performance and material economy of flowlines have realistically made supermartensitic stainless steels (SMSS) efficient and effective material choices for fabricating onshore and offshore pipelines. Supermartensitic stainless steels exhibit high strength, good low temperature toughness, sufficient corrosion resistance in sweet and mildly sour environments, and good quality weldability with both conventional welding processes and modern welding methods such as laser beam welding, electron beam welding and hybrid welding approaches. In terms of economy, supermartensitic stainless steels are cheaper and they are major replacements for more expensive duplex stainless steels required for tubing applications in the oil and gas industry. However, weld areas of SMSS pipes are exposed to sulphide stress cracking (SSC), so intergranular stress corrosion cracking (IGSCC) or stress corrosion cracking can occur. In order to circumvent this risk of cracking, a post-weld heat treatment (PWHT) for 5 minutes at about 650 C is recommended. This paper provides detailed literature perusal on supermartensitic stainless steels, their weldability and corrosion behaviors. It also highlights a major research area that has not been thoroughly expounded in literature; fatigue loading behaviors of welded SMSS under different corrosive environments have not been thoroughly detailed in literature.

  1. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Akinlabi OYETUNJI

    2014-11-01

    Full Text Available The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS of the butt joint samples increases with increase in core diameter of the electrode. Also, the best electrode for welding 304L ASS is 308L stainless steel-core electrode of 3.2 mm core diameter. It is recommended that the findings of this work can be applied in the chemical, food and oil industries where 304L ASS are predominantly used.

  2. Heterogeneities in local plastic flow behavior in a dissimilar weld between low-alloy steel and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Fanny [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Martin, Guilhem, E-mail: guilhem.martin@simap.grenoble-inp.fr [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Lhuissier, Pierre; Bréchet, Yves; Tassin, Catherine [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Roch, François [Areva NP, Tour Areva, 92084 Paris La Défense (France); Todeschini, Patrick [EDF R& D, Avenue des Renardières, 77250 Moret-sur-Loing (France); Simar, Aude [Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2016-06-14

    In dissimilar welds between low-alloy steel and stainless steel, the post-weld heat-treatment results in a high variety of microstructures coexisting around the fusion line, due to carbon diffusion and carbides dissolution/precipitation. The local constitutive laws in the vicinity of the fusion zone were identified by micro tensile specimens for the sub-millimeter sized zones, equivalent bulk materials representing the decarburized layer using both wet H{sub 2} atmosphere and diffusion couple, and nano-indentation for the carburized regions (i.e. the martensitic band and the austenitic region). The decarburized zone presents only 50% of the yield strength of the low-alloy steel heat affected zone and a ductility doubled. The carburized zones have a yield strength 3–5 times higher than that of the low-alloy steel heat affected zone and have almost no strain hardening capacity. These properties result in heterogeneous plastic deformation happening over only millimeters when the weld is loaded perpendicularly to the weld line, affecting its overall behavior. The constitutive laws experimentally identified were introduced as inputs into a finite elements model of the transverse tensile test performed on the whole dissimilar weld. A good agreement between experiments and simulations was achieved on the global stress-strain curve. The model also well predicts the local strain field measured by microscale DIC. A large out-of-plane deformation due to the hard carburized regions has also been identified.

  3. Effect of long-term thermal aging on the fracture toughness of austenitic stainless steel base and weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.F.

    1995-09-27

    Compact tension specimens taken from FFTF primary piping materials (Type 316 stainless steel (SS) and 16-8-2 SS weld metal) and from reactor vessel materials (304 SS and 308 SS weld metal) were heated in laboratory furnaces from 100,000 hours. Fracture toughness testing was performed on these specimens, which are 7.62- and 25.4-mm thick, respectively at the aging temperature (482 and 427 degrees). Results were analyzed with the multiple-specimen method. Thermal aging continues to reduce the fracture toughness of FFTF component materials. Results show that thermal aging has a strong effect on the toughness degradation of weld metals, particularly for 16-8-2 SS weld whose aged/unaged Jc ratio is only 0.31 after 100,000-hour aging. The fracture toughness of the 308 and 16-8-2 SS weld metals fluctuated during 20,000 to 50,000-hour aging but deteriorated as the aging time increased to 100,000 hours; the toughness degradation is significant. Fracture control based on a fracture mechanics approach should be considered

  4. Effects of X-rays Radiation on AISI 304 Stainless Steel Weldings with AISI 316L Filler Material: A Study of Resistance and Pitting Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cárcel-Carrasco

    2016-04-01

    Full Text Available This article investigates the effect of low-level ionizing radiation, namely X-rays, on the micro structural characteristics, resistance, and corrosion resistance of TIG-welded joints of AISI 304 austenitic stainless steel made using AISI 316L filler rods. The welds were made in two different environments: natural atmospheric conditions and a closed chamber filled with inert argon gas. The influence of different doses of radiation on the resistance and corrosion characteristics of the welds is analyzed. Welded material from inert Ar gas chamber TIG showed better characteristics and lesser irradiation damage effects.

  5. An investigation of reheat cracking in the weld heat affected zone of type 347 stainless steel

    Science.gov (United States)

    Phung-On, Isaratat

    2007-12-01

    Reheat cracking has been a persistent problem for welding of many alloys such as the stabilized stainless steels: Types 321 and 347 as well as Cr-Mo-V steels. Similar problem occurs in Ni-base superalloys termed "strain-age cracking". Cracking occurs during the post weld heat treatment. The HAZ is the most susceptible area due to metallurgical reactions in solid state during both heating and cooling thermal cycle. Many investigations have been conducted to understand the RHC mechanism. There is still no comprehensive mechanism to explain its underlying mechanism. In this study, there were two proposed cracking mechanisms. The first is the formation of a PFZ resulting in local weakening and strain localization. The second is the creep-like grain boundary sliding that causes microvoid formation at the grain boundaries and the triple point junctions. Cracking occurs due to the coalescence of the microvoids that form. In this study, stabilized grade stainless steel, Type 347, was selected for investigation of reheat cracking mechanism due to the simplicity of its microstructure and understanding of its metallurgical behavior. The Gleeble(TM) 3800 system was employed due to its capability for precise control of both thermal and mechanical simulation. Cylindrical samples were subjected to thermal cycles for the HAZ simulation followed by PWHT as the reheat cracking test. "Susceptibility C-curves" were plotted as a function of PWHT temperatures and time to failure at applied stress levels of 70% and 80% yield strength. These C-curves show the possible relationship of the reheat cracking susceptibility and carbide precipitation behavior. To identify the mechanism, the sample shape was modified containing two flat surfaces at the center section. These flat surfaces were electro-polished and subjected to the HAZ simulation followed by the placement of the micro-indentation arrays. Then, the reheat cracking test was performed. The cracking mechanism was identified by tracing

  6. Characterization of Microstructure and Texture of 13Cr4Ni Martensitic Stainless Steel Weld Before and After Tempering =

    Science.gov (United States)

    Mokhtabad Amrei, Mohsen

    13Cr4Ni martensitic stainless steels are known for their outstanding performances in the hydroelectric industry, where they are mainly used in the construction of turbine components. Considering the size and geometry of turbine runners and blades, multi-pass welding procedures are commonly used in the fabrication and repair of such turbines. The final microstructure and mechanical properties of the weld are sensitive to the welding process parameters and thermal history. In the case of 13Cr4Ni steel, the thermal cycles imposed by the multi-pass welding operation have significant effects on the complex weld microstructure. Additionally, post-weld heat treatments are commonly used to reduce weld heterogeneity and improve the material's mechanical properties by tempering the microstructure and by forming a "room-temperature-stable austenite." In the first phase of this research, the microstructures and crystallographic textures of aswelded single-pass and double-pass welds were studied as a basis to studying the more complex multi-pass weld microstructure. This study found that the maximum hardness is obtained in high temperature heat affected zone inside the base metal. In particular, the results showed that the heat cycle exposed by the second pass increases the hardness of the previous pass because it produces a finer martensite microstructure. In areas of heat affected zone, a tempering effect is reported from 3 up to 6 millimeters far from the fusion line. Finding austenite phase in these areas are matter of interest and it can be indicative of the microstructure complexity of multi-pass welds. In the second phase of research, the microstructure of multi-pass welds was found to be more heterogeneous than that of single- and double-pass welds. Any individual pass in a multi-pass weld consists of several regions formed by adjacent weld passes heat cycle. Results showed that former austenite grains modification occurred in areas close to the subsequent weld passes

  7. Response of duplex Cr(N)/S and Cr(C)/S coatings on 316L stainless steel to tribocorrosion in 0.89% NaCl solution under plastic contact conditions.

    Science.gov (United States)

    Sun, Y; Dearnley, P A; Mallia, Bertram

    2017-08-01

    Two duplex coatings, Cr(N)/S and Cr(C)/S, were deposited on 316 L stainless steel by magnetron sputtering. The effectiveness of these duplex coatings in improving the tribocorrosion behavior of medical alloys under elastic contact conditions has been demonstrated in a recent publication. The present work focused on the response of these duplex coatings to tribocorrosion under plastic contact conditions. Tribocorrosion tests were conducted in 0.89% NaCl solution at 37°C at an initial contact pressure of 740 MPa and under unidirectional sliding conditions for sliding duration up to 24 h. The results showed that during sliding in the corrosive solution, the duplex coatings were plastically deformed into the substrate to a depth about 1 μm. The Cr(C)/S duplex coating had sufficient ductility to accommodate the deformation without cracking, such that it was worn through gradually, leading to the gradual increase in open circuit potential (OCP) and coefficient of friction (COF). On the other hand, the Cr(N)/S duplex coating suffered from cracking at all tested potentials, leading to coating blistering after prolonged sliding at OCP and stable pit formation in the substrate beneath the coating at applied anodic potentials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1503-1513, 2017. © 2016 Wiley Periodicals, Inc.

  8. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace.

    Science.gov (United States)

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this

  9. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    Science.gov (United States)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s‑1 to 60 mm.s‑1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  10. Introduction and Validation of Chromium-Free Consumables for Welding Stainless Steels. Version 2

    Science.gov (United States)

    2015-04-14

    significant health hazard for the welding personnel. In 2006, OSHA reduced the Permissible Exposure Limit (PEL) for Cr (VI) in welding fume from 52 to 5...steels results in the formation of Cr (VI) in the welding fume. The Cr (VI) is a carcinogen and is considered a significant health hazard for the... health hazard for the welding personnel. In 2006, the Occupational Safety and Health Administration (OSHA) reduced the permissible exposure limit (PEL

  11. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  12. Effect of flux powder SiO2 for the welding of 304-austenitic stainless ...

    African Journals Online (AJOL)

    . 1, 2017, pp. 34-45. 35. From the above literature, it can be conclude that most of the research was done for materials such as Steel, Nimonic 263 alloy,. Stainless Steel 308, Ferritic Stainless Steel and 202Stainless Steel with fluxes such as ...

  13. Effect of flux powder SiO 2 for the welding of 304-austenitic stainless ...

    African Journals Online (AJOL)

    Three input machine parameters namely current, welding speed and gas flow rate at three different levels have been considered in order to find out the influence of parameters on weld bead geometry, i.e. weld bead width, penetration and angular distortion. Taguchi method has been used in order to analyse the effect of ...

  14. Effect of plasma arc welding variables on fusion zone grain size and hardness of AISI 321 austenitic stainless steel

    Science.gov (United States)

    Kondapalli, S. P.

    2017-12-01

    In the present work, pulsed current microplasma arc welding is carried out on AISI 321 austenitic stainless steel of 0.3 mm thickness. Peak current, Base current, Pulse rate and Pulse width are chosen as the input variables, whereas grain size and hardness are considered as output responses. Response surface method is adopted by using Box-Behnken Design, and in total 27 experiments are performed. Empirical relation between input and output response is developed using statistical software and analysis of variance (ANOVA) at 95% confidence level to check the adequacy. The main effect and interaction effect of input variables on output response are also studied.

  15. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  16. Evolution of microstructures and mechanical properties during dissimilar electron beam welding of titanium alloy to stainless steel via copper interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Tomashchuk, I., E-mail: iryna.tomashchuk@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 12 rue de la Fonderie, F-71200 Le Creusot (France); Sallamand, P. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 12 rue de la Fonderie, F-71200 Le Creusot (France); Belyavina, N. [Department of Physics, Taras Shevchenko University, 2, Glushkov Avenue, 03022 Kiev (Ukraine); Pilloz, M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-Université de Bourgogne, 12 rue de la Fonderie, F-71200 Le Creusot (France)

    2013-11-15

    The influence of operational parameters on the local phase composition and mechanical stability of the electron beam welds between titanium alloy and AISI 316L austenitic stainless steel with a copper foil as an intermediate layer has been studied. It was shown that two types of weld morphologies could be obtained depending on beam offset from the center line. Beam shift toward the titanium alloy side results in formation of a large amount of the brittle TiFe{sub 2} phase, which is located at the steel/melted zone interface and leads to reducing the mechanical resistance of the weld. Beam shift toward the steel side inhibits the melting of titanium alloy and, so, the formation of brittle intermetallics at the titanium alloy/melted zone interface. Mechanical stability of the obtained junctions was shown to depend on the thickness of this intermetallic layer. The fracture zone of the weld was found to be a mixture of TiCu (3–42 wt%), TiCu{sub 1−x}Fe{sub x} (x=0.72–0.84) (22–68 wt%) and TiCu{sub 1−x}Fe{sub x} (x=0.09–0.034) (0–22 wt%). In order to achieve the maximal ultimate tensile strength (350 MPa), the diffusion path length of Ti in the melted zone should be equal to 40–80 µm.

  17. The application of neutron diffraction to a study of phases in type 316 stainless steel weld metals

    Science.gov (United States)

    Slattery, G. F.; Windsor, C. G.

    1983-10-01

    Neutron diffraction techniques have been utilised to study the phases in type 316 austenitic stainless steel weld metal, both in the as-welded condition and after stress-relieving and ageing heat-treatments. The amounts of the principal crystallographic phases present in bulk specimens have been measured. Two compositions of weld metal were selected to provide a "low" (6%) and "high" (16%) initial ferrite level and the subsequent volume fractions of transformation products were measured after heat-treatment. Some retained ferrite was observed in all the heat-treated specimens, ranging from 4% for specimens of both initial ferrite levels treated at 625°C for 1000 h, to around 1% for the specimens treated at 850°C for 6 h. The high initial ferrite specimen produced 0.9% of sigma phase after the 850°C treatment and 0.2% sigma after the 625°C treatment. The low initial ferrite specimen produced 1.5% M 23C 6 carbide after both heat-treatments. The results compare well with previous findings on similar samples of weld metal using optical and electron microscopy.

  18. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars; Evaluacion del comportamiento estructural y de resistencia a la corrosion de armaduras de acero inoxidable austenitico AISI 304 y duplex AISI 2304 embebidas en morteros de cemento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Medina, E.; Cobo, A.; Bastidas, D. M.

    2012-07-01

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  19. Effect of Heat Treatment on Low Temperature Toughness of Reduced Pressure Electron Beam Weld Metal of Type 316L Stainless Steel

    Science.gov (United States)

    Nakagawa, H.; Fujii, H.; Tamura, M.

    2006-03-01

    Austenitic stainless steels are considered to be the candidate materials for liquid hydrogen vessels and the related equipments, and those welding parts that require high toughness at cryogenic temperature. The authors have found that the weld metal of Type 316L stainless steel processed by reduced pressure electron beam (RPEB) welding has high toughness at cryogenic temperature, which is considered to be due to the single-pass welding process without reheating effect accompanied by multi-pass welding process. In this work, the effect of heat treatment on low temperature toughness of the RPEB weld metal of Type 316L was investigated by Charpy impact test at 77K. The absorbed energy decreased with higher temperature and longer holding time of heat treatment. The remarkable drop in the absorbed energy was found with heat treatment at 1073K for 2 hours, which is as low as that of conventional multi-pass weld metal such as tungsten inert gas welding. The observations of fracture surface and microstructure revealed that the decrease in the absorbed energy with heat treatment resulted from the precipitation of intermetallic compounds near delta-ferrite phase.

  20. Welding.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  1. The time-dependent health and biochemical effects in rats exposed to stainless steel welding dust and its soluble form.

    Science.gov (United States)

    Halatek, Tadeusz; Stanislawska, Magdalena; Kaminska, Irena; Cieslak, Malgorzata; Swiercz, Radoslaw; Wasowicz, Wojciech

    2017-02-23

    Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese (Mn), and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. The principal objective of this study was to determine the dynamics of toxic effects of inhalation exposure to morphologically rated welding dust from stainless steel welding and its soluble form in TSE System with a dynamic airflow. We assessed the pulmonary toxicity of welding dust in Wistar rats exposed to 60.0 mg/m 3 of respirable-size welding dust (mean diameter 1.17 µm) for 2 weeks (6 h/day, 5 days/week); the aerosols were generated in the nose-only exposure chambers (NOEC). An additional aim included the study of the effect of betaine supplementation on oxidative deterioration in rat lung during 2 weeks of exposure to welding dust or water-soluble dust form. The animals were divided into eight groups (n = 8 per group): control, dust, betaine, betaine + dust, soluble-form dust, soluble-form dust + betaine, saline and saline + betaine groups. Rats were euthanized 1 or 2 weeks after the last exposure for assessment of pulmonary toxicity. Differential cell counts, total protein concentrations and cellular enzyme (lactate dehydrogenase-LDH) activities were determined in bronchoalveolar lavage (BAL) fluid, and corticosterone and thiobarbituric acid reactive substances (TBARS) concentrations were assessed in serum. The increase in polymorphonuclear (PMN) leukocytes in BAL fluid (a cytological index of inflammatory responses of the lung) is believed to reflect pulmonary toxicity of heavy metals. Biomarkers of toxicity assessed in bronchoalveolar fluids indicate that the level of the toxic effect depends mainly on the solubility of studied metal compounds; biomarkers that showed treatment effects included: total cell, neutrophil and lymphocyte counts, total protein concentrations, and cellular enzyme (lactate dehydrogenase) activity

  2. Tensile properties of shielded metal arc welded dissimilar joints of nuclear grade ferritic steel and austenitic stainless steel

    Science.gov (United States)

    Karthick, K.; Malarvizhi, S.; Balasubramanian, V.; Krishnan, S. A.; Sasikala, G.; Albert, Shaju K.

    2016-12-01

    In nuclear power plants, modified 9Cr-1Mo ferritic steel (Grade 91 or P91) is used for constructing steam generators (SG's) whereas austenitic stainless steel (AISI 316LN) is a major structural member for intermediate heat exchanger (IHX). Therefore, a dissimilar joint between these materials is unavoidable. In this investigation, dissimilar joints were fabricated by Shielded Metal Arc Welding (SMAW) process with Inconel 82/182 filler metals. Transverse tensile properties and Charpy V-notch impact toughness for different regions of dissimilar joints of modified 9Cr-1Mo ferritic steel and AISI 316LN austenitic stainless steel were evaluated as per the standards. Microhardness distribution across the dissimilar joint was recorded. Microstructural features of different regions were characterized by optical and scanning electron microscopy. The transverse tensile properties of the joint is found to be inferior to base metals. Impact toughness values of different regions of dissimilar metal weld joint (DMWJ) is slightly higher than the prescribed value. Formation of a soft zone at the outer edge of the HAZ will reduce the tensile properties of DMWJ. The complex microstructure developed at the interfaces of DMWJ will reduce the impact toughness values.

  3. Atmospheric-Induced Stress Corrosion Cracking of Grade 2205 Duplex Stainless Steel—Effects of 475 °C Embrittlement and Process Orientation

    Directory of Open Access Journals (Sweden)

    Cem Örnek

    2016-07-01

    Full Text Available The effect of 475 °C embrittlement and microstructure process orientation on atmospheric-induced stress corrosion cracking (AISCC of grade 2205 duplex stainless steel has been investigated. AISCC tests were carried out under salt-laden, chloride-containing deposits, on U-bend samples manufactured in rolling (RD and transverse directions (TD. The occurrence of selective corrosion and stress corrosion cracking was observed, with samples in TD displaying higher propensity towards AISCC. Strains and tensile stresses were observed in both ferrite and austenite, with similar magnitudes in TD, whereas, larger strains and stresses in austenite in RD. The occurrence of 475 °C embrittlement was related to microstructural changes in the ferrite. Exposure to 475 °C heat treatment for 5 to 10 h resulted in better AISCC resistance, with spinodal decomposition believed to enhance the corrosion properties of the ferrite. The austenite was more susceptible to ageing treatments up to 50 h, with the ferrite becoming more susceptible with ageing in excess of 50 h. Increased susceptibility of the ferrite may be related to the formation of additional precipitates, such as R-phase. The implications of heat treatment at 475 °C and the effect of process orientation are discussed in light of microstructure development and propensity to AISCC.

  4. Passive Layer Stability of 2205 Duplex Stainless Steel in Oilfield-Produced Water: Potentiostatic Critical Pitting Temperature Test and Wavelet Analysis

    Science.gov (United States)

    Sabouri, M.; Hoseiny, H.

    2017-08-01

    In this article, the potentiostatic passivation behavior of 2205 duplex stainless steel was investigated in oilfield-produced water with a focus on the variation of the passive layer stability with temperature. The obtained current-time transients were analyzed using wavelet transform to evaluate the passive layer deterioration at different time domains corresponding to the temperatures of 303 K, 313 K, 323 K, and 333 K (30 °C, 40 °C, 50 °C, and 60 °C). The results showed that the critical pitting temperature (CPT) of the 2205 alloy in the studied produced water was 333.2 K (60.2 °C). In addition, the optimum passivation of the material surface was obtained between 303 K and 313 K (30 °C and 40 °C). The passive layer deteriorated at about 323 K (50 °C) by penetration of chloride and subsequently entered into the transpassive region. Moreover, at 333 K (60 °C), the metastable pits converted to permanent or overlapped pits. Corrosion morphology confirmed the results obtained by wavelet analyses. In addition, microscopical studies of the alloy microstructure showed that both phases, i.e., austenite and ferrite, were attacked by corrosion, although it was more severe in ferrite.

  5. Effect of cooling rate on the microstructure and hardness of austenitic stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, A. [ISEC - IPC, Quinta da Nora, Coimbra (Portugal); Loureiro, A. [DEM - FCTUC, Polo II, Coimbra (Portugal)

    2004-07-01

    The aim of this work is to study the effect of the cooling rate on the microstructure and hardness of the melted material of welds in steels AISI 304 and AISI 316L. The increase of weld heat input, consequently the decrease in the cooling rate, produces only a smooth increase of the ferrite content and a small decrease of hardness in the melted material of autogeneous TIG welds. (orig.)

  6. Experimental Investigation on Micro-Welding of Thin Stainless Steel Sheet by Fiber Laser

    OpenAIRE

    Mohd I.S. Ismail; Yasuhiro Okamoto; Akira Okada; Yoshiyuki Uno

    2011-01-01

    Problem statement: The miniaturization of components plays an important role for manufacturing in electrical and electronic industries. Therefore, the joining technology of thin metal sheets has been strongly required. Laser welding with micro-beam and high-speed scanning is a promising solution in micro-welding, because it has high-potential advantages in welding heat sensitive components with precise control of heat input and minimal thermal distortion. Approach: In this study, the characte...

  7. Microstructure, Mechanical and Corrosion Properties of Friction Stir Welding High Nitrogen Martensitic Stainless Steel 30Cr15Mo1N

    Directory of Open Access Journals (Sweden)

    Xin Geng

    2016-11-01

    Full Text Available High nitrogen martensitic stainless steel 30Cr15Mo1N plates were successfully welded by friction stir welding (FSW at a tool rotation speed of 300 rpm with a welding speed of 100 mm/min, using W-Re tool. The sound joint with no significant nitrogen loss was successfully produced. Microstructure, mechanical and corrosion properties of an FSW joint were investigated. The results suggest that the grain size of the stir zone (SZ is larger than the base metal (BM and is much larger the case in SZ-top. Some carbides and nitrides rich in chromium were found in BM while not observed in SZ. The martensitic phase in SZ could transform to austenite phase during the FSW process and the higher peak temperature, the greater degree of transformation. The hardness of SZ is significantly lower than that of the BM. An abrupt change of hardness defined as hard zone (HZ was found in the thermo-mechanically affected zone (TMAZ on the advancing side (AS, and the HZ is attributed to a combination result of temperature, deformation, and material flow behavior. The corrosion resistance of SZ is superior to that of BM, which can be attributed to less precipitation and lower angle boundaries (LABs. The corrosion resistance of SZ-bottom is slight higher than that of SZ-top because of the finer grained structure.

  8. Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds.

    Science.gov (United States)

    Chassignole, B; Duwig, V; Ploix, M-A; Guy, P; El Guerjouma, R

    2009-12-01

    Multipass welds made in austenitic stainless steel, in the primary circuit of nuclear power plants with pressurized water reactors, are characterized by an anisotropic and heterogeneous structure that disturbs the ultrasonic propagation and makes ultrasonic non-destructive testing difficult. The ATHENA 2D finite element simulation code was developed to help understand the various physical phenomena at play. In this paper, we shall describe the attenuation model implemented in this code to give an account of wave scattering phenomenon through polycrystalline materials. This model is in particular based on the optimization of two tensors that characterize this material on the basis of experimental values of ultrasonic velocities attenuation coefficients. Three experimental configurations, two of which are representative of the industrial welds assessment case, are studied in view of validating the model through comparison with the simulation results. We shall thus provide a quantitative proof that taking into account the attenuation in the ATHENA code dramatically improves the results in terms of the amplitude of the echoes. The association of the code and detailed characterization of a weld's structure constitutes a remarkable breakthrough in the interpretation of the ultrasonic testing on this type of component.

  9. Vibration analysis of resistance spot welding joint for dissimilar plate structure (mild steel 1010 and stainless steel 304)

    Science.gov (United States)

    Sani, M. S. M.; Nazri, N. A.; Alawi, D. A. J.

    2017-09-01

    Resistance spot welding (RSW) is a proficient joining method commonly used for sheet metal joining and become one of the oldest spot welding processes use in industry especially in the automotive. RSW involves the application of heat and pressure without neglecting time taken when joining two or more metal sheets at a localized area which is claimed as the most efficient welding process in metal fabrication. The purpose of this project is to perform model updating of RSW plate structure between mild steel 1010 and stainless steel 304. In order to do the updating, normal mode finite element analysis (FEA) and experimental modal analysis (EMA) have been carried out. Result shows that the discrepancies of natural frequency between FEA and EMA are below than 10 %. Sensitivity model updating is evaluated in order to make sure which parameters are influences in this structural dynamic modification. Young’s modulus and density both materials are indicate significant parameters to do model updating. As a conclusion, after perform model updating, total average error of dissimilar RSW plate is improved significantly.

  10. Reduction in welding fume and metal exposure of stainless steel welders: an example from the WELDOX study.

    Science.gov (United States)

    Lehnert, Martin; Weiss, Tobias; Pesch, Beate; Lotz, Anne; Zilch-Schöneweis, Sandra; Heinze, Evelyn; Van Gelder, Rainer; Hahn, Jens-Uwe; Brüning, Thomas

    2014-07-01

    In a plant where flux-cored arc welding was applied to stainless steel, we investigated changes in airborne and internal metal exposure following improvements of exhaust ventilation and respiratory protection. Twelve welders were examined at a time in 2008 and in 2011 after improving health protection. Seven welders were enrolled in both surveys. Exposure measurement was performed by personal sampling of respirable welding fume inside the welding helmets during one work shift. Urine and blood samples were taken after the shift. Chromium (Cr), nickel (Ni), and manganese (Mn) were determined in air and biological samples. The geometric mean of respirable particles could be reduced from 4.1 mg/m(3) in 2008-0.5 mg/m(3) in 2011. Exposure to airborne metal compounds was also strongly reduced (Mn: 399 vs. 6.8 μg/m(3); Cr: 187 vs. 6.3 μg/m(3); Ni: 76 vs. 2.8 μg/m(3)), with the most striking reduction inside helmets with purified air supply. Area sampling revealed several concentrations above established or proposed exposure limits. Urinary metal concentrations were also reduced, but to a lesser extent (Cr: 14.8 vs. 4.5 μg/L; Ni: 7.9 vs. 3.1 μg/L). Although biologically regulated, the mean Mn concentration in blood declined from 12.8 to 8.9 μg/L. This intervention study demonstrated a distinct reduction in the exposure of welders using improved exhaust ventilation and welding helmets with purified air supply in the daily routine. Data from area sampling and biomonitoring indicated that the area background level may add considerably to the internal exposure.

  11. Controlling Angular Distortion in Manual Metal Arc Welding of Austenitic Stainless Steels Using Back-step Technique

    Directory of Open Access Journals (Sweden)

    Abdul Sameea Jasim Abdul Zehra Jilabi

    2018-01-01

    Full Text Available Nowadays, austenitic stainless steels (A.S.S. have many industrial applications in the fields of chemical and petrochemical processing, marine, medicine, water treatment, petroleum refining, food and drinks processing, nuclear power generation etc. The secret behind this wide range of applications is the fact that A.S.S. have great corrosion resistance, high strength and scale resistance at elevated temperatures, good ductility at low temperatures approached to absolute zero in addition to notable weldability. On the other hand, manual metal arc (MMA is probably the most common process used for the welding of A.S.S. Unfortunately, MMA welding of A.S.S. could be associated with considerable distortion. Uncontrolled or excessive distortion usually increases the cost of the production process due to the high expense of rectification or replacing the weldment by a non-distorted one. MMA welding of A.S.S. was carried out using the back-step technique with various bead lengths, and without using this technique for comparison. Results have showed that the angular distortion was a function of the bead length in the back-step welding of A.S.S. The angular distortion decreased by (14.32% when the back-step technique was used with a (60 mm length for each bead, and by (41.08% when the bead length was (40 mm. On the other hand, it increased by (25% when the back-step technique was done with a (30 mm length for each bead.

  12. The size of the sensitization zone in 304 stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, N.S.; Eagar, T.W.

    1984-06-01

    Factors influencing the size and shape of the sensitization zone are studied through a statistically designed experiment. The width of the zone is in proportion to the magnitude of the heat input except when little fusion occurs. The minimum sensitization size can be obtained with a broadly distributed heat source traveling at high speed, and the maximum size can be obtained with low speed and a narrow heat distribution. Under certain welding conditions, one can obtain welds which are free of sensitization on the surface, hence this process may lead to a new method of preventing sensitization-induced intergranular corrosion. By depositing surface sensitization-free welds on either side of a previously sensitized weld, the chromium carbide precipitates dissolve and sensitization on the surface is eliminated.

  13. Effects of Nitrogen Segregation and Solubility on the Formation of Nitrogen Gas Pores in 21.5Cr-1.5Ni Duplex Stainless Steel

    Science.gov (United States)

    Zhu, Hong-Chun; Jiang, Zhou-Hua; Li, Hua-Bing; Feng, Hao; Zhang, Shu-Cai; Liu, Guo-Hai; Zhu, Jun-Hui; Wang, Peng-Bo; Zhang, Bin-Bin; Fan, Guang-Wei; Li, Guo-Ping

    2017-10-01

    The nitrogen gas pore-formation mechanism was discussed with regard to the solidification of 21.5Cr-1.5Ni duplex stainless steels (DSSs) by considering nitrogen segregation and solubility. The segregation behavior of nitrogen was investigated with phase transformation using experimental detection methods and Thermo-Calc software calculations. The process associated with the formation of gas pores was illustrated clearly. The factors that influenced the formation of gas pores, including shrinkage, nitrogen content, solidification pressure, and alloying elements (Mn and Cr), were discussed in detail. The formation of nitrogen-rich phases [austenite phase (FCC), AlN, and hexagonal close packed] is beneficial to eliminate nitrogen segregation and suppressing gas pore formation. The nitrogen-depleted phase (ferrite phase (BCC)) exhibits an opposite effect. Regular gas pores are initially formed in locations consisting of the austenite phase. As the gas pores lengthen, ferrite and austenite phases alternately form around the gas pores. Solidification shrinkage can promote the formation of irregular gas pores at the centerline of the ingots. Increasing the nitrogen content is favorable to the formation of gas pores. Increasing solidification pressure is effective with regard to suppressing the formation of gas pore defects in DSSs. Increasing the Mn content can reduce the likelihood of gas pore formation; this can be attributed to the increased nitrogen solubility in the residual liquid surrounding the dendrites and the formation tendency of the nitrogen-rich phase. Increasing the Cr content exhibits a dual effect on gas pore formation, which is caused by the increased nitrogen solubility and segregation in the residual liquid.

  14. The influence of the heat treatment on delta ferrite transformation in austenitic stainless steel welds

    Directory of Open Access Journals (Sweden)

    B. Mateša

    2012-04-01

    Full Text Available Shielded metal arc (SMAW welded specimens using austenitic consumable materials with different amount of delta-ferrite are annealed in range 650-750 °C through 2-10 hours. Factorial plan 33 with influenced factors regression analyze of measured delta-ferrite values is used. The transformation i.e. decomposition of delta ferrite during annealing was analyzed regarding on weld cracking resistance using metallographic examination and WRC-1992 diagram.

  15. Experimental analysis of dissimilar metal weld joint: Ferritic to austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Rathod, Dinesh W., E-mail: dineshvrathod@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016 (India); Pandey, Sunil [Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi 110016 (India); Singh, P.K. [Bhabha Atomic Research Centre, Mumbai 400085 (India); Prasad, Rajesh [Department of Applied Mechanics, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2015-07-15

    The dissimilar metal weld (DMW) joint between SA508Gr.3Cl.1 ferritic steel and SS304LN using Inconel 82/182 consumables was required in the nuclear power plants. The joint integrity assessment of these welds requires mechanical and metallurgical properties evaluation in weldment regions. The joint was subjected to 100% radiography test and bend test and transverse tensile test. Welding and testing were carried out as per the requirements of ASME Sec-IX and acceptance criteria as per ASME Sec-III. The transverse tensile test results indicated the failure from the weld metal although it satisfies the minimum strength requirement of the ASME requirements; therefore, the DMW joint was analyzed in detail. Straight bead deposition technique, fine slag inclusion, less reliable radiograph technique, plastic instability stress, yield strength ratio and metallurgical deteriorations have been contributed to failure of the DMW joint from the weld region. In the present work, the factors contributing to the fracture from weld metal have been discussed and analyzed.

  16. Effect of proof testing on the flaw growth characteristics of 304 stainless steel. [crack propagation in welded joints

    Science.gov (United States)

    Finger, R. W.

    1974-01-01

    The effects of proof overload frequency and magnitude on the cyclic crack growth rates of 304 stainless steel weldments were investigated. The welding procedure employed was typical of those used on over-the-road cryogenic vessels. Tests were conducted at room temperature with an overload ratio of 1.50 to determine the effect of overload frequency. Effect of overload magnitude was determined from tests where a room temperature overload was applied between blocks of 1000 cycles applied at 78 K (-320 F). The cyclic stress level used in all tests was typical of the nominal membrane stress generally encountered in full scale vessels. Test results indicate that judicious selection of proof overload frequency and magnitude can reduce crack growth rates for cyclic stress levels.

  17. Characterization by X ray diffraction of deleterious phases precipitated in a super duplex stainless steel; Caracterizacao por difracao de raios X de fases deleterias precipitadas em aco inoxidavel superduplex

    Energy Technology Data Exchange (ETDEWEB)

    Pardal, Juan M.; Tavares, Sergio S. Maior; Fonseca, Maria P. Cindra; Montenegro, Talles Ribeiro, E-mail: juanpardal@vm.uff.b [Universidade Federal Fluminense (PGEMEC/UFF), Niteroi, RJ (Brazil). Programa de Pos-graduacao em Engenharia Mecanica; Dias, Antonio Jose N.; Almeida, Sergio L. de [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Materiais Ceramicos e Metalicos. Lab. de Tecnologia de Materiais

    2010-07-01

    In this work the identification and quantification of deleterious phases in two super duplex stainless steels grade UNS S32750, with quite different grain sizes, was performed by X-ray diffraction. The materials were isothermally aged in the 800 . 950 deg C range. Direct comparison method was used to quantify the ferrite phase in each sample. The amount of deleterious phases ({sigma}, {chi} and {gamma}2) formed was calculated by the difference of the amount of ferrite phase measured in each specimen to the amount of ferrite initially measured in the un-aged steel. The results obtained give an useful contribution to the understanding of kinetics of deleterious phases precipitation in super duplex steels. (author)

  18. Solidification and transformation behavior of Cr-Ni stainless steel weld metals with ferritic single phase solidification mode. Report 4. Study on solidification and subsequent transformation of Cr-Ni stainless steel weld metals; Feraito tanso de gyokosuru Cr-Ni kei sutenresu ko yosetsu kinzoku no gyoko/hendo kyodo. 4. Cr-Ni kei sutenresu ko yosetsu kinzoku no gyoko/hentai ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, H.; Koseki, T.; Okita, S.; Fuji, M. [Nippon Steel Corp., Tokyo (Japan)

    1997-05-05

    The solidification modes of {gamma} stainless steel that solidifies at initial crystal {delta} are classified into FA mode where solidification at two phase of {delta}+{gamma} takes place after crystallization at {gamma} phase during solidification and F mode where solidification is completed at {delta} single phase, and solidification transformation behaviors of weld metal of FA mode are reported in the previous paper. Hereupon, in this report, solidification and transformation behaviors of stainless steel weld metal of F mode are studied. Cr-Ni stainless steel of F mode consists of two phase stainless steel with two phase base metal structure of {delta}+{gamma} besides {gamma} stainless steel. Further, two phase stainless steel with higher alloy compared to conventional one has been developed. In this report, not only the {gamma} stainless steel but also two phase stainless weld metals with varied amount of alloying metal are studied. The welding method and welding conditions are same as that of previous paper. Observation of structure was carried out by optical microscope, and crystal orientation and element distribution were measured by EBSP and CMA respectively. 11 refs., 18 figs., 1 tab.

  19. Effect of continuous and pulsed currents on microstructural evolution of stainless steel joined by TIG welding; Einfluss des Einsatzes von Dauerstrom und Impulsstrom auf die Mikrostrukturentwicklung bei durch das WIG-Schweissverfahren gefuegtem rostfreiem Stahl

    Energy Technology Data Exchange (ETDEWEB)

    Durgutlu, Ahmet; Findik, Tayfun; Guelenc, Behcet [Gazi Univ., Ankara (Turkey). Dept. of Metallurgy and Materials Engineering; Cevik, Bekir [Duezce Univ. (Turkey). Dept. of Welding Technology; Kaya, Yakup; Kahraman, Nizamettin [Karabuek Univ. (Turkey). Dept. of Manufacturing Engineering

    2015-07-01

    In this study, AISI 316L series austenitic stainless steel sheets were joined by tungsten inert gas welding method in continuous and pulsed currents. Regarding microstructural investigation and hardness values of weld metal, samples were welded to investigate the effect of current type on grain structures of weld metal. Results showed that samples welded by using pulsed current had considerable different properties compared to the samples welded by using continuous current. While the weld metals of joinings obtained by using continuous current displayed a coarse-grained and columnar structure, weld metals obtained by using pulsed current had a finer-grained structure. It was also found that hardness values of samples, which were welded with continuous and pulsed current, were quite different.

  20. Technical Letter Report Assessment of Ultrasonic Phased Array Testing for Cast Austenitic Stainless Steel Pressurizer Surge Line Piping Welds and Thick Section Primary System Cast Piping Welds JCN N6398, Task 2A

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A.; Denslow, Kayte M.; Cinson, Anthony D.; Morra, Marino; Crawford, Susan L.; Prowant, Matthew S.; Cumblidge, Stephen E.; Anderson, Michael T.

    2008-07-21

    Research is being conducted for the NRC at PNNL to assess the effectiveness and reliability of advanced NDE methods for the inspection of LWR components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS), dissimilar metal welds (DMWs), piping with corrosion-resistant cladding, weld overlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This interim technical letter report (TLR) provides a synopsis of recent investigations at PNNL aimed at evaluating the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of CASS welds in nuclear reactor piping. A description of progress, recent developments and interim results are provided.

  1. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    Science.gov (United States)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  2. Intermediate layer, microstructure and mechanical properties of aluminum alloy/stainless steel butt joint using laser-MIG hybrid welding-brazing method

    Science.gov (United States)

    Zhu, Zongtao; Wan, Zhandong; Li, Yuanxing; Xue, Junyu; Hui, Chen

    2017-07-01

    Butt joining of AA6061 aluminum (Al) alloy and 304 stainless steel of 2-mm thickness was conducted using laser-MIG hybrid welding-brazing method with ER4043 filler metal. To promote the mechanical properties of the welding-brazing joints, two kinds of intermediate layers (Al-Si-Mg alloy and Ag-based alloy) are used to adjust the microstructures of the joints. The brazing interface and the tensile strength of the joints were characterized. The results showed that the brazing interface between Al alloy and stainless steel consisted of double layers of Fe2Al5 (near stainless steel) and Fe4Al13 intermetallic compounds (IMCs) with a total thickness of 3.7 μm, when using Al-Si-Mg alloy as the intermediate layer. The brazing interface of the joints using Ag-based alloy as intermediate layer also consists of double IMC layers, but the first layer near stainless steel was FeAl2 and the total thickness of these two IMC layers decreased to 3.1 μm. The tensile strength of the joints using Al-Si-Mg alloy as the intermediate layer was promoted to 149 MPa, which was 63 MPa higher than that of the joints using Al-Si-Mg alloy as the intermediate layer. The fractures occurred in the brazing interface between Al alloy and stainless steel.

  3. Optimal design for laser beam butt welding process parameter using artificial neural networks and genetic algorithm for super austenitic stainless steel

    Science.gov (United States)

    Sathiya, P.; Panneerselvam, K.; Soundararajan, R.

    2012-09-01

    Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.

  4. Estimation of Fatigue Life of Laser Welded AISI304 Stainless Steel T-Joint Based on Experiments and Recommendations in Design Codes

    DEFF Research Database (Denmark)

    Lambertsen, Søren Heide; Damkilde, Lars; Kristensen, Anders Schmidt

    2013-01-01

    of specimens are used, two of these are non-welded and the third is welded with a transverse welding (T-Joint). The 13 laser welded specimens are cut out with a milling cutter. The non-welded specimens are divided in 13 specimens cut out with a milling cutter and 10 specimens cut out by a plasma cutter......In this paper the fatigue behavior of laser welded T-joints of stainless steel AISI304 is investigated experimentally. In the fatigue experiments 36 specimens with a sheet thickness of 1 mm are exposed to one-dimensional cyclic loading. Three different types of specimens are adopted. Three groups....... The non-welded specimens are used to study the influence of heat and surface effects on the fatigue life. The fatigue life from the experiments is compared to fatigue life calculated from the guidelines in the standards DNV-RP-C203 and EUROCODE 3 EN-1993-1-9. Insignificant differences in fatigue life...

  5. Towards a Map of Solidification Cracking Risk in Laser Welding of Austenitic Stainless Steels

    Science.gov (United States)

    Bermejo, María-Asunción Valiente; DebRoy, Tarasankar; Hurtig, Kjell; Karlsson, Leif; Svensson, Lars-Erik

    In this work, two series of specimens with Hammar and Svensson's Cr- and Ni-equivalents (Creq+Nieq) = 35 and 45 wt% were used to cover a wide range of austenitic grades. These were laser welded with different energy inputs achieving cooling rates in the range of 103 °C/s to 104 °C/s. As high cooling rates and rapid solidification conditions could favour fully austenitic solidification and therefore raise susceptibility to solidification cracking, the solidification modes of the laser welded specimens were compared to the ones experienced by the same alloys under arc welding conditions. It was found that high cooling rates experienced in laser welding promoted fully austenitic solidification for a wider range of compositions, for example specimens with (Creq+Nieq) = 35% under arc welding cooling conditions at 10 °C/s showed fully austenitic solidification up to Creq/Nieq = 1.30, whilst the same specimens laser cooled at 103 °C/s showed fully austenitic solidification up to Creq/Nieq = 1.50 and those cooled at 104 °C/s showed it up to Creq/Nieq = 1.68. Therefore, high cooling rates extended the solidification cracking risk to a wider range of Creq/Nieq values. This work also compares the cooling rates experimentally determined by thermocouples to the computed cooling rates calculated by a highly-advanced computational model. The distance between the thermocouple's wires and the thermal resistance of thermocouples together with the small size of the weld pools proved to be practical limitations in the experimental determination of cooling rates. However, an excellent agreement was found between computed and experimental solidus isotherms at high energy input settings. For low energy input settings cooling rate was in the order of magnitude of 104 °C/s, whilst for high energy input settings cooling rate was found to be in the order of magnitude of 103 °C/s.

  6. Microstructural origin of the skeletal ferrite morphology of austenitic stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, J A; Williams, J C; Thompson, A W

    1982-04-01

    Scanning transmission electron microscopy was conducted on welds exhibiting a variety of skeletal, or vermicular ferrite morphologies in addition to one lathy ferrite morphology. These ferrite morphologies result from primary ferrite solidification followed by a solid state transformation upon cooling. During cooling, a large fraction of the ferrite transforms to austenite leaving a variety of ferrite morphologies. Comparison of composition profiles and alloy partitioning showed both the skeletal and lathy ferrite structures result from a diffusion controlled solid state transformation. However, the overall measured composition profiles of the weld structure are a result of partitioning during both solidification and the subsequent solid state transformation.

  7. Electrochemical noise transient analysis for 316 and Duplex 2205 stainless steels in NaCl and FeCl; Analisis de los transitorios de ruido electroquimico para aceros inoxidables 316 Y - DUPLEX 2205 en NaCl Y FeCl

    Energy Technology Data Exchange (ETDEWEB)

    Almeraya-Calderaon, F.; Estupinan, F.; Zambrano, P.; Martinez-Villafane, A.; Borunda, A.; Colas, R.; Gaona-Tiburcio, C.

    2012-11-01

    This work shows the results obtained from electrochemical noise measurements for different materials exhibiting pitting corrosion. The transients presented in the potential and current time, correlates with the scanning electron microscopy (SEM) surface analysis. Electrochemical measurements were made at different exposure times to obtain the correlation. The materials used were stainless steel austenitic 316 and duplex 2205, immersed in ferric chloride (FeCl3) and sodium chloride (NaCl) electrolytes. SEM analysis shows that the transients observed in the time series, really correspond to the activity of pit nucleation developed over the surface of the electrodes. (Author) 31 refs.

  8. Rietveld and impedance analysis of cold and hot rolled duplex and lean duplex steels for application in paper and pulp industry

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, Luiza; Lins, Vanessa de Freitas Cunha, E-mail: luizaeq@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Quimica; Paiva, Paulo Renato Perdigao [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil); Viana, Adolfo Kalergis do Nascimento [APERAM South America, Timoteo, MG (Brazil)

    2017-01-15

    In this study, X-Ray Diffraction (XRD) and Rietveld Refinement were performed to identify and quantify the ferrite and austenite phase of cold and hot rolled duplex stainless steels (UNS S31803) and lean duplex stainless steels (UNS S32304). Electrochemical impedance spectroscopy (EIS) was applied to evaluate the chemical behavior of duplex and lean duplex stainless steels in white, green, and black liquors of paper and pulp industry. Rietveld analysis results showed a higher austenite content than the standard limit for duplex steels in the hot rolled condition. The hot rolling condition plays a major role in improving corrosion resistance in white liquor mainly for the lean duplex steel. (author)

  9. Alterations in cardiomyocyte function after pulmonary treatment with stainless steel welding fume in rats.

    Science.gov (United States)

    Popstojanov, Risto; Antonini, James M; Salmen, Rebecca; Ye, Morgan; Zheng, Wen; Castranova, Vincent; Fekedulegn, Desta B; Kan, Hong

    2014-01-01

    Welding fume is composed of a complex of different metal particulates. Pulmonary exposure to different welding fumes may exert a negative impact on cardiac function, although the underlying mechanisms remain unclear. To explore the effect of welding fumes on cardiac function, Sprague-Dawley rats were exposed by intratracheal instillation to 2 mg/rat of manual metal arc hard surfacing welding fume (MMA-HS) once per week for 7 wk. Control rats received saline. Cardiomyocytes were isolated enzymatically at d 1 and 7 postexposure. Intracellular calcium ([Ca(2+)]i) transients (fluorescence ratio) were measured on the stage of an inverted phase-contrast microscope using a myocyte calcium imaging/cell length system. Phosphorylation levels of cardiac troponin I (cTnI) were determined by Western blot. The levels of nonspecific inflammatory marker C-reactive protein (CRP) and proinflammatory cytokine interleukin-6 (IL-6) in serum were measured by enzyme-linked immunosorbent assay (ELISA). Contraction of isolated cardiomyocytes was significantly reduced at d 1 and d 7 postexposure. Intracellular calcium levels were decreased in response to extracellular calcium stimulation at d 7 postexposure. Changes of intracellular calcium levels after isoprenaline hydrochloride (ISO) stimulation were not markedly different between groups at either time point. Phosphorylation levels of cTnI in the left ventricle were significantly lower at d 1 postexposure. The serum levels of CRP were not markedly different between groups at either time point. Serum levels of IL-6 were not detectable in both groups. Cardiomyocyte alterations observed after welding fume treatment were mainly due to alterations in intracellular calcium handling and phosphorylation levels of cTnI.

  10. Comparative Analysis of Welded and Adhesive Joints Strength Made of Acid-Resistant Stainless Steel Sheets

    Directory of Open Access Journals (Sweden)

    Izabela Miturska

    2017-12-01

    Full Text Available The article presents the selected results of strength tests on the effectiveness of bonding high-alloy steel 1.4310. Sheet steel is one of the materials that are difficult to activate energy. Effective joining of it is difficult, requires selection of the appropriate bonding technology. The paper focuses on the comparative tests the shear strength of one-single lap welded and bonded joints. The welding process was performed 3 groups of samples TIG welding and argon, where the variable value of the welding process was current: 60A, 70A, 80A. The adhesion process was performed in 6 groups of samples which differed in the method of surface preparation and the type of the adhesive. Adhesive joints were made by using adhesive of epoxy resin and a hardener: Epidian 61/TFF at a mass ratio of 100:22 and Epidian 61/IDA at a mass ratio of 100:40. As a way of surface preparation applied 3 different, but simplified and environmentally friendly methods of surface preparation: degreasing with using cleaner Loctite 7061, abrasive machining with P320 and degreasing and grinding with abrasive T800 and degreasing were used. Make joints and curing the adhesive joints were carried out at ambient temperature. Analyzed the joints were tested destructive - which set out the shear strength, in accordance with DIN EN 1465 on the testing machine Zwick / Roell Z150. Based on the results of research it was found that better results were obtained for the maximum welded joints, but this result was similar to the maximum value of the strength of the adhesive bond.

  11. Ultrasonic Flaw Detection of Cracks and Machined Flaws as Observed Through Austenitic Stainless Steel Piping Welds

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.

    2009-07-01

    Piping welds in the pressure boundary of light water reactors (LWRs) are subject to a volumetric examination based on Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. Due to access limitations and high background radiation levels, the technique used is primarily ultrasonic rather than radiographic. Many of the austenitic welds in safety-related piping systems provide limited access to both sides of the weld, so a far-side examination is necessary. Historically, far-side inspections have performed poorly because of the coarse and elongated grains that make up the microstructures of austenitic weldments. The large grains cause the ultrasound to be scattered, attenuated, and redirected. Additionally, grain boundaries or weld geometry may reflect coherent ultrasonic echoes, making flaw detection and discrimination a more challenging endeavor. Previous studies conducted at the Pacific Northwest National Laboratory (PNNL) on ultrasonic far-side examinations in austenitic piping welds involved the application of conventional transducers, use of low-frequency Synthetic Aperture Focusing Techniques (SAFT), and ultrasonic phased-array (PA) methods on specimens containing implanted thermal fatigue cracks and machined reflectors [1-2]. From these studies, PA inspection provided the best results, detecting nearly all of the flaws from the far side. These results were presented at the Fifth International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components in 2006. This led to an invitation to examine field-removed specimens containing service-induced intergranular stress corrosion cracks (IGSCC) at the Electric Power Research Institute’s (EPRI) Nondestructive Evaluation (NDE) Center, in Charlotte, North Carolina. Results from this activity are presented.

  12. Welding hot cracking in an austenitic stainless steel; Fissuration a chaud en soudage d'un acier inoxydable austenitique

    Energy Technology Data Exchange (ETDEWEB)

    Kerrouault, N

    2001-07-01

    The occurrence of hot cracking is linked to several conditions, in particular, the composition of the material and the local strains due to clambering. The aim of this study is to better analyse the implied mechanisms and to lead to a local thermomechanical criterion for hot cracking. The example studied is an AISI 321-type stainless steel (X10CrNiTi18-12) strongly prone to cracking. Two weldability tests are studied: - the first one consists in carrying out a fusion line by the TIG process on a thin sheet. In the case of the defect occurrence, the crack is longitudinal and follows the back of the molten bath. The influence of the operating conditions welding (speed, welding heat input, width test sample) is studied. - the second one is the Varestraint test. It is widely used to evaluate the sensitivity of a material to hot cracking. It consists in loading the material by bending during a fusion line by the TIG process and in characterising the defects quantity (length, number). Various thermal and mechanical instrumentation methods were used. The possibilities of a local instrumentation instrumentation being limited because of the melting, the experimental results were complemented by a numerical modelling whose aim is to simulate the thermomechanical evolution of the loading thanks to the finite element analysis code ABAQUS. First, the heat input for thermal simulation is set by the use of an inverse method in order to optimise the energy deposit mode during welding in the calculation. Then, the mechanical simulation needs the input of a constitutive law that fits the mechanical behaviour over a wide temperature range from ambient to melting temperature. Thus, a mechanical characterization is performed by selecting strain values and strain rates representative of what the material undergoes during the tests. The results come from tensile and compressive tests and allow to settle an elasto-visco-plastic constitutive law over temperatures up to liquidus. Once

  13. Study of the fatigue behaviour and damage of a aged duplex stainless steel; Etude du comportement et de l'endommagement en fatigue d'un acier inoxydable austeno-ferritique moule vieilli

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, J.Ch

    2000-07-01

    Cast duplex stainless steels are commonly used in components of pressurized water reactors primary circuit. When submitted to in-service temperatures embrittlement occurs because of the nucleation and growth of a harder phase in the ferrite by spinodal composition. Macrostructure of this steel (ferritic primary grain size is about 4-5 mm) and embrittlement of ferrite due to aging lead to a very high scattering of mechanical properties for monotonous loadings. We showed that, in spite of this macrostructure, the cyclic behaviour of aged duplex stainless steels fits usual Manson-Coffin law while initial hardening is followed by softening, in part because of the demodulation of the composition. The fatigue crack propagation rate of material follows a Paris law. While crack initiation mainly appears next to the millimetric cast defects, fatigue crack propagation remains a continuous mechanism. Ferritic and austenitic elements break successively (ferrite first breaks by cleavage, then austenite breaks by ductile fatigue). In spite of the fact that the aged ferrite is embrittled, cleavage microcracks, for load levels examined, seldom appear in ferrite at the crack tip and on both sides of the main crack. Effects of cast defects and crystallographic ferrite orientation were also studied. Propagation fatigue crack behaviour was modeled assuming that the crack tip material behaves as if it was submitted to low cycle fatigue loadings. If we consider a homogeneous material, results are in good agreement with experiments. (authors)

  14. Influence of Mode of Metal Transfer on Microstructure and Mechanical Properties of Gas Metal Arc-Welded Modified Ferritic Stainless Steel

    Science.gov (United States)

    Mukherjee, Manidipto; Pal, Tapan Kumar

    2012-06-01

    This article describes in detail the effect of the modes of metal transfer on the microstructure and mechanical properties of gas metal arc-welded modified ferritic stainless steel (SSP 409M) sheets (as received) of 4 mm thickness. The welded joints were prepared under three modes of metal transfer, i.e., short-circuit (SC), spray (S), transfer, and mix (M) mode transfer using two different austenitic filler wires (308L and 316L) and shielding gas composition of Ar + 5 pct CO2. The welded joints were evaluated by means of microstructural, hardness, notched tensile strength, Charpy impact toughness, and high cycle fatigue. The dependence of weld metal microstructure on modes of metal transfer and filler wires has been determined by dilution calculation, WRC-1992 diagram, Creq/Nieq ratio, stacking fault energy (SFE), optical microscopy (OM), and transmission electron microscopy (TEM). It was observed that the microstructure as well as the tensile, Charpy impact, and high cycle fatigue of weld metal is significantly affected by the mode of metal transfer and filler wire used. However, the heat-affected zone (HAZ) is affected only by the modes of metal transfer. The results have been correlated with the microstructures of weld and HAZ developed under different modes of metal transfer.

  15. Laser offset welding of AZ31B magnesium alloy to 316 stainless steel

    OpenAIRE

    Casalino, G.; Guglielmi, P; LORUSSO, V.D.; MORTELLO, M; PEYRE, P; Sorgente, D.

    2016-01-01

    In this paper, the feasibility of using a fiber laser to perform a dissimilar metal joining was explored. AZ31B magnesium and 316 stainless steel were autogenously joined in butt configuration. The weldability between different materials is often compromised by a large difference in thermal properties and poor metallurgical compatibility. Thus, the beam was focused onto the top surface of the magnesium plate, at a certain distance from the interfaces (offset), and without using any interlayer...

  16. Microstructure and pitting corrosion of shielded metal arc welded high nitrogen stainless steel

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2015-09-01

    Full Text Available The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy (OM and field emission scanning electron microscopy (FESEM. Energy back scattered diffraction (EBSD method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr–Mn–N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite.

  17. An Analysis of Microstructure and Mechanical Properties on Friction Stir Welded Joint of Dissimilar 304 Stainless Steel and Commercially Pure Aluminium

    Directory of Open Access Journals (Sweden)

    Balamagendiravarman M.

    2017-09-01

    Full Text Available In this study, friction stir welding of dissimilar 304 stainless steel and commercially pure aluminium was performed under the following condition of tool rotational speed 1000 rpm, traverse speed 60 mm/min and tool tilt angle 2 degree. Microstructural characterisation was carried out by optical microscope, scanning electron microscope (SEM. Optical images shows that the microstructural change is very minimum in steel side when compared to aluminium side due to the difference in mechanical and thermal properties. The intermetallic compound Al3Fe was observed at the interfacial region and stir region of the welded joint. The maximum ultimate tensile strength is 78% of commercially pure aluminium base metal. Microhardness profile was measured across the weld interface and the maximum value reaches at the stir zone due to the formation of intermettalics.

  18. Evaluation of the Pulmonary Toxicity of a Fume Generated from a Nickel-, Copper-Based Electrode to be Used as a Substitute in Stainless Steel Welding

    Science.gov (United States)

    Antonini, James M; Badding, Melissa A; Meighan, Terence G; Keane, Michael; Leonard, Stephen S; Roberts, Jenny R

    2014-01-01

    Epidemiology has indicated a possible increase in lung cancer among stainless steel welders. Chromium (Cr) is a primary component of stainless steel welding fume. There is an initiative to develop alternative welding consumables [nickel (Ni)- and copper (Cu)-based alloys] that do not contain Cr. No study has been performed to evaluate the toxicity of fumes generated from Ni- and Cu-based consumables. Dose–response and time-course effects on lung toxicity of a Ni- and Cu-based welding fume (Ni–Cu WF) were examined using an in vivo and in vitro bioassay, and compared with two other well-characterized welding fumes. Even though only trace amounts of Cr were present, a persistent increase in lung injury and inflammation was observed for the Ni–Cu WF compared to the other fumes. The difference in response appears to be due to a direct cytotoxic effect by the Ni–Cu WF sample on lung macrophages as opposed to an elevated production of reactive oxygen species (ROS). PMID:25392698

  19. DE-NE0000724 - Research Performance Final Report - Investigation of Thermal Aging Effects on the Evolution of Microstructure and Mechanical Properties of Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Ankem, Sreeramamurthy [University of Maryland, College Park, MD (United States); Perea, Daniel E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kolli, R. Prakash [University of Maryland, College Park, MD (United States); Mburu, Sarah [University of Maryland, College Park, MD (United States); Schwarm, Samuel C. [University of Maryland, College Park, MD (United States)

    2017-12-11

    This report details the research activities carried out under DOE-NEUP award number DE-NE0000724 concerning the evolution of structural and mechanical properties during thermal aging of CF–3 and CF–8 cast duplex stainless steels (CDSS). The overall objective of this project was to use state-of-the-art characterization techniques to elucidate trends and phenomena in the mechanical and structural evolution of cast duplex stainless steels (CDSS) during thermal aging. These steels are commonly used as structural materials in commercial light water nuclear power plants, undergoing aging for decades in operation as cooling water pipes, pump casings, valve bodies, etc. During extended exposure to these conditions, CDSS are known to undergo a change in mechanical properties resulting in a loss of ductility, i.e. embrittlement. While it is generally accepted that structural changes within the ferrite phase, such as decomposition into iron (Fe)-rich and chromium (Cr)-rich domains, lead to the bulk embrittlement of the steels, many questions remain as to the mechanisms of embrittlement at multiple length scales. This work is intended to shed insight into the atomic level composition changes, associated kinetic mechanisms, and effects of changing phase structure on micro- and nano-scale deformation that lead to loss of impact toughness and tensile ductility in these steels. In general, this project provides a route to answer some of these major questions using techniques such as 3-dimensional (3-D) atom probe tomography (APT) and real-microstructure finite element method (FEM) modeling, which were not readily available when these steels were originally selected for service in light water reactors. Mechanical properties evaluated by Charpy V-notch impact testing (CVN), tensile testing, and microhardness and nanohardness measurements were obtained for each condition and compared with the initial baseline properties to view trends in deformation behavior during aging

  20. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals.

    Science.gov (United States)

    Cena, L G; Chisholm, W P; Keane, M J; Chen, B T

    2015-01-01

    A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8-199 μg/m3; Ni concentrations ranged 10-51 μg/m3; and Cr concentrations ranged 40-105 μg/m3. Cr(VI) concentrations ranged between 0.5-1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm.

  1. A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages.

    Science.gov (United States)

    Badding, Melissa A; Fix, Natalie R; Antonini, James M; Leonard, Stephen S

    2014-01-01

    Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI)), manganese (Mn), and nickel (Ni), have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. While federal regulations have reduced permissible worker exposure limits to Cr(VI), this is not always practical considering that welders may work in confined spaces and exhaust ventilation may be ineffective. Thus, there has been a recent initiative to minimize the potentially hazardous components in welding materials by developing new consumables containing much less Cr(VI) and Mn. A new nickel (Ni) and copper (Cu)-based material (Ni-Cu WF) is being suggested as a safer alternative to stainless steel consumables; however, its adverse cellular effects have not been studied. This study compared the cytotoxic effects of the newly developed Ni-Cu WF with two well-characterized welding fumes, collected from gas metal arc welding using mild steel (GMA-MS) or stainless steel (GMA-SS) electrodes. RAW 264.7 mouse macrophages were exposed to the three welding fumes at two doses (50 µg/ml and 250 µg/ml) for up to 24 hours. Cell viability, reactive oxygen species (ROS) production, phagocytic function, and cytokine production were examined. The GMA-MS and GMA-SS samples were found to be more reactive in terms of ROS production compared to the Ni-Cu WF. However, the fumes from this new material were more cytotoxic, inducing cell death and mitochondrial dysfunction at a lower dose. Additionally, pre-treatment with Ni-Cu WF particles impaired the ability of cells to phagocytize E. coli, suggesting macrophage dysfunction. Thus, the toxic cellular responses to welding fumes are largely due to the metal composition. The results also suggest that reducing Cr(VI) and Mn in the generated fume by increasing the concentration of other metals (e.g., Ni, Cu) may not necessarily improve welder safety.

  2. The effect of CO{sub 2} laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Köse, Ceyhun, E-mail: ceyhun.kose@gop.edu.tr [Faculty of Natural Sciences and Engineering, Department of Mechanical Engineering, Gaziosmanpaşa University, Tokat (Turkey); Kaçar, Ramazan, E-mail: rkacar@karabuk.edu.tr [Faculty of Technology Department of Manufacturing Engineering, Karabuk University, Karabuk 78050 (Turkey); Zorba, Aslı Pınar, E-mail: aslipinarzorba@gmail.com [Graduate School of Natural and Applied Sciences, Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Bağırova, Melahat, E-mail: mbagir@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey); Allahverdiyev, Adil M., E-mail: adil@yildiz.edu.tr [Department of Bioengineering Cell Culture and Tissue Engineering, Yıldız Technical University, Istanbul (Turkey)

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO{sub 2} laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and

  3. Cytogenetic studies of stainless steel welders using the tungsten inert gas and metal inert gas methods for welding.

    Science.gov (United States)

    Jelmert, O; Hansteen, I L; Langård, S

    1995-03-01

    Cytogenetic damage was studied in lymphocytes from 23 welders using the Tungsten Inert Gas (TIG), and 21 welders using the Metal Inert Gas (MIG) and/or Metal Active Gas (MAG) methods on stainless steel (SS). A matched reference group I, and a larger reference group II of 94 subjects studied during the same time period, was established for comparison. Whole blood conventional cultures (CC), cultures in which DNA synthesis and repair were inhibited (IC), and the sister chromatid exchange (SCE) assay were applied in the study. For the CC a statistically significant decrease in chromosome breaks and cells with aberrations was found for both TIG/SS and MIG/MAG/SS welders when compared with reference group II. A non-significant decrease was found for the corresponding parameters for the two groups of welders when compared with their matched referents. A statistically significant negative association was found between measurements of total chromium (Cr) in inhaled air and SCE, and a weaker negative correlation with hexavalent Cr (Cr(VI)) in air. In conclusion, no cytogenetic damage was found in welders exposed to the TIG/SS and MIG/MAG/SS welding fumes with low content of Cr and Ni. On the contrary, a decline in the prevalence of chromosomal aberrations was indicated in the TIG/SS and MIG/MAG/SS welders, possibly related to the suggested enhancement of DNA repair capacity at slightly elevated exposures.

  4. Effects of neutron irradiation on microstructures and hardness of stainless steel weld-overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Oarai Research and Development Center, Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan); Kakubo, Y.; Matsukawa, Y.; Nozawa, Y.; Toyama, T.; Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Katsuyama, J.; Yamaguchi, Y.; Onizawa, K. [Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2014-06-01

    The microstructures and the hardness of stainless steel weld overlay cladding of reactor pressure vessels subjected to neutron irradiation at a dose of 7.2 × 10{sup 19} n cm{sup −2} (E > 1 MeV) and a flux of 1.1 × 10{sup 13} n cm{sup −2} s{sup −1} at 290 °C were investigated by atom probe tomography and by a nanoindentation technique. To isolate the effects of the neutron irradiation, we compared the results of the measurements of the neutron-irradiated samples with those from a sample aged at 300 °C for a duration equivalent to that of the irradiation. The Cr concentration fluctuation was enhanced in the δ-ferrite phase of the irradiated sample. In addition, enhancement of the concentration fluctuation of Si, which was not observed in the aged sample, was observed. The hardening in the δ-ferrite phase occurred due to both irradiation and aging; however, the hardening of the irradiated sample was more than that expected from the Cr concentration fluctuation, which suggested that the Si concentration fluctuation and irradiation-induced defects were possible origins of the additional hardening.

  5. Effects of thermal aging on microstructure and hardness of stainless steel weld-overlay claddings of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan); Kakubo, Y.; Matsukawa, Y.; Nozawa, Y.; Toyama, T.; Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Katsuyama, J.; Yamaguchi, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Suzuki, M. [Japan Atomic Energy Agency, Oarai, Ibaraki 311-1393 (Japan)

    2014-09-15

    The effects of thermal aging of stainless steel weld-overlay claddings of nuclear reactor pressure vessels on the microstructure and hardness of the claddings were investigated using atom probe tomography and nanoindentation testing. The claddings were aged at 400 °C for periods of 100–10,000 h. The fluctuation in Cr concentration in the δ-ferrite phase, which was caused by spinodal decomposition, progressed rapidly after aging for 100 h, and gradually for aging durations greater than 1000 h. On the other hand, NiSiMn clusters, initially formed after aging for less than 1000 h, had the highest number density after aging for 2000 h, and coarsened after aging for 10,000 h. The hardness of the δ-ferrite phase also increased rapidly for short period of aging, and saturated after aging for longer than 1000 h. This trend was similar to the observed Cr fluctuation concentration, but different from the trend seen in the formation of the NiSiMn clusters. These results strongly suggest that the primary factor responsible for the hardening of the δ-ferrite phase owing to thermal aging is Cr spinodal decomposition.

  6. Duplex ultrasound

    Science.gov (United States)

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  7. Optimization of pulsed laser welding process parameters in order to attain minimum underfill and undercut defects in thin 316L stainless steel foils

    Science.gov (United States)

    Pakmanesh, M. R.; Shamanian, M.

    2018-02-01

    In this study, the optimization of pulsed Nd:YAG laser welding parameters was done on the lap-joint of a 316L stainless steel foil with the aim of reducing weld defects through response surface methodology. For this purpose, the effects of peak power, pulse-duration, and frequency were investigated. The most important weld defects seen in this method include underfill and undercut. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to balance the welding parameters. The results showed that underfill increased with the increased power and reduced frequency, it first increased and then decreased with the increased pulse-duration; and the most important parameter affecting it was the power, whose effect was 65%. The undercut increased with the increased power, pulse-duration, and frequency; and the most important parameter affecting it was the power, whose effect was 64%. Finally, by superimposing different responses, improved conditions were presented to attain a weld with no defects.

  8. Analysis of mechanisms of underfill in full penetration laser welding of thick stainless steel with a 10 kW fiber laser

    Science.gov (United States)

    Zhang, Mingjun; Zhang, Zheng; Tang, Kun; Mao, Cong; Hu, Yongle; Chen, Genyu

    2018-01-01

    With the aim to explore the formation mechanisms of surface underfill, full penetration laser welding of thick stainless steel was conducted, with the use of a 10 kW fiber laser. A modified ;sandwich; specimen was used, so as to directly observe the dynamic behaviors of the keyhole, vapor plume, and melt pool with the formation of underfills. On the basis of the experimental investigations, the formation mechanisms of the underfills at the top surface and bottom surface were analyzed. The results show that the downward flow of the molten metal caused by the recoil momentum is a crucial driver for formation of the underfill on the top surface. At full penetration of the melt, a deep underfill with a periodic wide-narrow-wide serrated pattern is formed on the top surface of the weld owing to the periodic fluctuation of the rear keyhole wall. At full penetration of the keyhole, the formation of a deep underfill on the top surface of the weld and undercut on the bottom surface of the weld is presented with massive direct melt loss from the weld pool.

  9. Cost and Performance Report: Introduction and Validation of Chromium-Free Consumables for Welding Stainless Steels. Version 2

    Science.gov (United States)

    2015-04-01

    results in the formation of Cr (VI) in the welding fume. The Cr (VI) is a carcinogen and is considered a significant health hazard for the welding ...18 6.1.3 Field Demonstration Health and Safety Monitoring ..................................23 iii 6.2 Weld ...results in the formation of Cr(VI) in the welding fume. The Cr(VI) is a carcinogen and is considered a significant health hazard for the welding

  10. T.I.G. Welding of stainless steel. Numerical modelling for temperatures calculation in the Haz; Soldadura T.I.G. de acero inoxidable. Modelo numerico para el calculo de temperaturas en la ZAT

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Conesa, E. J.; Estrems-Amestoy, M.; Miguel-Eguia, V.; Garrido-Hernandez, A.; Guillen-Martinez, J. A.

    2010-07-01

    In this work, a numerical method for calculating the temperature field into the heat affected zone for butt welded joints is presented. The method has been developed for sheet welding and takes into account a bidimensional heat flow. It has built a computer program by MS-Excel books and Visual Basic for Applications (VBA). The model has been applied to the TIG process of AISI 304 stainless steel 2mm thickness sheet. The welding process has been considered without input materials. The numerical method may be used to help the designers to predict the temperature distribution in welded joints. (Author) 12 refs.

  11. Hydrogen embrittlement in superaustenitic stainless steels welded unions in sulfuric acid; Fragilizacao por hidrogenio em juntas soldadas de acos inoxidaveis superausteniticos em acido sulfurico

    Energy Technology Data Exchange (ETDEWEB)

    Berthier, T. [Parana Univ., Curitiba, PR (Brazil). Lab. de Materiais e Tratamento de Superficies (LaMaTS)]. E-mail: thiana@demec.ufpr.br; Kuromoto, N.K. [Parana Univ., Curitiba, PR (Brazil). Lab. de Nanopropriedades Mecanicas; Paredes, R.S.C. [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)

    2003-07-01

    The embrittlement of the austenitic stainless steel by hydrogen has been known for more than four decades. Researches done into the behavior of the hydrogenated homogeneous structures, under cathodic charging at room temperature, have shown that the hydrogen induces phase transformations and nucleation of retarded superficial cracks during the outgassing which is followed by the end of the hydrogenation. The results obtained upon austenitic and superaustenitic stainless steels are few considering the changes produced in welded unions. The aim of this work is to evaluate mechanical properties of material and its relation to the nucleation of the cracks in the austenitic steels welds type AISI 904L submitted to hydrogenated solutions. The samples have been welded through the process MIG/MAG; the hydrogenation has been made catholically in a sulfuric acid solution of 1N, with variable time of 1 to 4 hours at the room temperature. An anode of platinum in and density of current 1000 A/m{sup 2} has been used. The outgassing has occurred at the room temperature. Many retarded superficial cracks with different morphologies have been observed. Regarding the hardness measure, major alterations in all the regions of the sample have not been noticed. (author)

  12. Characteristics of vacuum sintered stainless steels

    OpenAIRE

    Z. Brytan; L.A. Dobrzański; M. Actis Grande; M. Rosso

    2009-01-01

    Purpose: In the present study duplex stainless steels were sintered in vacuum. using rapid cooling form the mixture of prealloyed and alloying element powders The purpose of this paper was to describe the obtained microstructures after sintering as well as the main mechanical properties of sintered stainless steels.Design/methodology/approach: In presented work duplex stainless steels were obtained through powder metallurgy starting from austenitic 316L or ferritic 410L prealloyed stainless s...

  13. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    Science.gov (United States)

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded

  14. Structural stability and hardness of carburized surfaces of 316 stainless steel after welding and after neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, K. [Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, MS-6151, Oak Ridge, TN 37831 (United States)]. E-mail: p-k-f@comcast.net; Byun, T.S. [Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, MS-6151, Oak Ridge, TN 37831 (United States)

    2006-09-15

    Surface hardening treatments offer promise of mitigating the threat of liquid cavitation pitting erosion at the interior surfaces of the austenitic 316 stainless steel vessel that will hold the liquid mercury target of the Spallation Neutron Source. One treatment is a commercial carburization process in which carbon is impregnated at low temperature at concentrations up to 6 wt% in supersaturated solid solution to depths of about 33 {mu}m. The surface hardness of 316L steel is raised from 150 to 200HV{sub 0.05} (micro-Vickers hardness number at a 50 g load) to 1000-1200HV{sub 0.05}. It is shown that during subsequent electron beam welding the supersaturated carburized layer in the heat affected zone decomposes to a tiered microstructure of carbide phases in austenite. The hardness of this complex decomposition microstructure is in the range 530-1200HV{sub 0.05}, depending on the exposure temperature, the local carbon level, and the size of the carbide particles. To test whether the carburized solid solution layer would break down under atomic displacements from proton and neutron irradiation in service, specimens of annealed and 20% cold-rolled 316LN steel were neutron irradiated to 1 dpa at 60-100 deg. C. No softening of the layer was detected. Rather, the hardness of the layers was increased by 2-12%, compared to increases of 81% and 43% for the annealed and 20% cold rolled substrate materials, respectively. Optical microscopy examinations of the surfaces of the as-carburized-and-irradiated specimens revealed no sign of decomposition attributable to irradiation.

  15. Effects of thermal aging and neutron irradiation on the mechanical properties of three-wire stainless steel weld overlay cladding

    Energy Technology Data Exchange (ETDEWEB)

    Haggag, F.M.; Nanstad, R.K.

    1997-05-01

    Thermal aging of three-wire series-arc stainless steel weld overlay cladding at 288{degrees}C for 1605 h resulted in an appreciable decrease (16%) in the Charpy V-notch (CVN) upper-shelf energy (USE), but the effect on the 41-J transition temperature shift was very small (3{degrees}C). The combined effect of aging and neutron irradiation at 288{degrees}C to a fluence of 5 x 10{sup 19} neutrons/cm{sup 2} (> 1 MeV) was a 22% reduction in the USE and a 29{degrees}C shift in the 41-J transition temperature. The effect of thermal aging on tensile properties was very small. However, the combined effect of irradiation and aging was an increase in the yield strength (6 to 34% at test temperatures from 288 to {minus}125{degrees}C) but no apparent change in ultimate tensile strength or total elongation. Neutron irradiation reduced the initiation fracture toughness (J{sub Ic}) much more than did thermal aging alone. Irradiation slightly decreased the tearing modulus, but no reduction was caused by thermal aging alone. Other results from tensile, CVN, and fracture toughness specimens showed that the effects of thermal aging at 288 or 343{degrees}C for 20,000 h each were very small and similar to those at 288{degrees}C for 1605 h. The effects of long-term thermal exposure time (50,000 h and greater) at 288{degrees}C will be investigated as the specimens become available in 1996 and beyond.

  16. The effect of temperature on the SCC behavior of AISI301L stainless steel welded joints in 3.5% NaCl solution

    Science.gov (United States)

    Fu, Z. H.; Gou, G. Q.; Xiao, J.; Qiu, S. Y.; Wang, W. J.

    2017-07-01

    The stress corrosion cracking (SCC) behaviors at slow strain rate tensile (SSRT) test of AISI301L stainless steel laser-MIG welded joints in 3.5 wt.% NaCl solution at 20∘C, 40∘C and 60∘C were investigated. The results showed that the weld metal composed of as-cast with δ-Fe and austenite. The base metal (BM) and heat affected zone (HAZ) contained strain-induced M phase. The stress and strain decreased with the increasing temperature. The SCC cracks are initiated by anodic dissolution at 20∘C. Besides the anodic dissolution mechanism, hydrogen-induced SCC mechanism had appeared in 3.5 wt.% NaCl solution at 40∘C and 60∘C.

  17. Combination Effects of Nocolok Flux with Ni Powder on Properties and Microstructures of Aluminum-Stainless Steel TIG Welding-Brazing Joint

    Science.gov (United States)

    He, Huan; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Chen, Zhe

    2013-11-01

    A flux consisting of Nocolok and nickel powder was first applied for TIG welding-brazing of aluminum-stainless steel. Results of tensile and impact tests illustrated that a significant improvement in mechanical properties of the butt joint was obtained with the flux, tensile strength increased from 116 to 158 MPa, and impact energy increased from 3.2 to 6.7 J. Investigation results on microstructures of interfaces and seams suggested that Ni addition significantly decreased the thickness of intermetallic compound (IMC) layer on the interfaces, but did not change the phase structure of Al13Fe4. Furthermore, precipitate phase in the welded seams changed from Al6Fe to Al9FeNi, and the quantity of precipitate phases decreased from 12 to 9% approximately. Finally, effect of Ni powder's addition on the joint was analyzed and discussed. The reduction in the thickness of IMC and quantity of precipitate phases are beneficial to joint properties.

  18. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  19. Influence des traitements thermiques à haute température sur l'évolution de la texture et de la microstructure des soudures d'acier inoxydable duplex 2205

    OpenAIRE

    Badji, Riad

    2008-01-01

    This work deals with the study of the texture and microstructure evolution during welding and subsequent annealing treatment of 2205 duplex stainless steel. Microstructural examination showed the presence of higher ferrite amount in the heat affected zone (HAZ), while higher amount of austenite was recorded in the centre region of the weld metal. Annealing treatment at temperature range of 800-1000°C resulted in a precipitation of σ phase and M23C6 chromium carbides at the γ/δ interfaces that...

  20. Influence of different brazing and welding methods on tensile strength and microhardness of orthodontic stainless steel wire.

    Science.gov (United States)

    Bock, Jens Johannes; Fraenzel, Wolfgang; Bailly, Jacqueline; Gernhardt, Christian Ralf; Fuhrmann, Robert Andreas Werner

    2008-08-01

    The aim of this study was to compare the mechanical strength and microhardness of joints made by conventional brazing and tungsten inert gas (TIG) and laser welding. A standardized end-to-end joint configuration of the orthodontic wire material in spring hard quality was used. The joints were made using five different methods: brazing (soldering > 450 degrees C) with universal silver solder, two TIG, and two laser welders. Laser parameters and welding conditions were used according to the manufacturers' guidance. The tensile strengths were measured with a universal testing machine (Zwick 005). The microhardness measurements were carried out with a hardness tester (Zwick 3202). Data were analysed using one-way analysis of variance and Bonferroni's post hoc correction (P TIG or laser welding were found. The highest means were observed for TIG welding (699-754 MPa). Laser welding showed a significantly lower mean tensile strength (369-520 MPa) compared with TIG welding. Significant differences (P welded area. The mean microhardness differed significantly between brazing (1.99 GPa), TIG (2.22-2.39 GPa) and laser welding (2.21-2.68 GPa). For orthodontic purposes, laser and TIG welding are solder-free alternatives to joining metal. TIG welding with a lower investment cost is comparable with laser welding. However, while expensive, the laser technique is a sophisticated and simple method.

  1. Efecto de los ciclos térmicos sobre la ZAT de una soldadura multipasos de un acero inoxidable superdúplex SAF 2507 Effect of thermal cycles on the HAZ of a stainless steel multipass weld of superduplex SAF 2507

    Directory of Open Access Journals (Sweden)

    D. Villalobos

    2010-09-01

    Full Text Available Los ciclos térmicos de una soldadura multipasos que experimenta un acero inoxidable superdúplex SAF 2507, pueden promover la precipitación de fases secundarias reduciendo significativamente las propiedades mecánicas y la resistencia a la corrosión. Debido a su aplicación en la industria petroquímica, el estudio de las aleaciones superdúplex es de suma importancia para predecir su comportamiento en servicio cuando están involucrados procesos de soldadura por arco eléctrico. En este trabajo, se estudia el cambio microestructural de la zona afectada térmicamente correspondiente al primer cordón depositado de una unión multipasos de acero inoxidable superdúplex SAF 2507 mediante el proceso GTAW y bajo tres temperaturas de interpasos. Los resultados muestran que la temperatura de interpasos tiene una influencia sobre la precipitación de fase sigma en la zona afectada térmicamente del primer cordón depositado.Thermal cycles experienced by a superduplex stainless steel SAF 2507 when is welded, can promote the precipitation of secondary phases which decrease the mechanical properties as well as the corrosion resistance. Due to the application of the duplex alloys in the petrochemical industry, the study of these alloys has become very important in order to predict its service behavior. The aim of this work is to study the microstructural changes in the superduplex stainless steel weld joint after applying the GTAW process under three interpass temperatures after the deposition of every single pass. The results showed that slow cooling rates promoted by the deposition of the subsecuent passes and the higher interpass temperature, promote the precipitation of sigma phase in the HAZ while rapid cooling rates promoted by the lower interpass temperature do not promote the sigma phase precipitation.

  2. Study of Compatibility of Stainless Steel Weld Joints with Liquid Sodium-Potassium Coolants for Fission Surface Power Reactors for Lunar and Space Applications

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, Martin [Univ. of Tennessee, Knoxville, TN (United States); Qualls, Louis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-31

    To make a manned mission to the surface of the moon or to Mars with any significant residence time, the power requirements will make a nuclear reactor the most feasible source of energy. To prepare for such a mission, NASA has teamed with the DOE to develop Fission Surface Power technology with the goal of developing viable options. The Fission Surface Power System (FSPS) recommended as the initial baseline design includes a liquid metal reactor and primary coolant system that transfers heat to two intermediate liquid metal heat transfer loops. Each intermediate loop transfers heat to two Stirling heat exchangers that each power two Stirling converters. Both the primary and the intermediate loops will use sodium-potassium (NaK) as the liquid metal coolant, and the primary loop will operate at temperatures exceeding 600°C. The alloy selected for the heat exchangers and piping is AISI Type 316L stainless steel. The extensive experience with NaK in breeder reactor programs and with earlier space reactors for unmanned missions lends considerable confidence in using NaK as a coolant in contact with stainless steel alloys. However, the microstructure, chemical segregation, and stress state of a weld leads to the potential for corrosion and cracking. Such failures have been experienced in NaK systems that have operated for times less than the eight year goal for the FSPS. For this reason, it was necessary to evaluate candidate weld techniques and expose welds to high-temperature, flowing NaK in a closed, closely controlled system. The goal of this project was to determine the optimum weld configuration for a NaK system that will withstand service for eight years under FSPS conditions. Since the most difficult weld to make and to evaluate is the tube to tube sheet weld in the intermediate heat exchangers, it was the focus of this research. A pumped loop of flowing NaK was fabricated for exposure of candidate weld specimens at temperatures of 600°C, the expected

  3. Closed circuit TV system monitors welding operations

    Science.gov (United States)

    Gilman, M.

    1967-01-01

    TV camera system that has a special vidicon tube with a gradient density filter is used in remote monitoring of TIG welding of stainless steel. The welding operations involve complex assembly welding tools and skates in areas of limited accessibility.

  4. Effect of post-weld heat treatment and neutron irradiation on a dissimilar-metal joint between F82H steel and 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Haiying, E-mail: haigirl1983@gmail.com [SOKENDAI - The Graduated University for Advanced Studies, Toki (Japan); Nagasaka, Takuya [SOKENDAI - The Graduated University for Advanced Studies, Toki (Japan); National Institute for Fusion Science, Toki (Japan); Kometani, Nobuyuki [Nagoya University, Nagoya (Japan); Muroga, Takeo [SOKENDAI - The Graduated University for Advanced Studies, Toki (Japan); National Institute for Fusion Science, Toki (Japan); Guan, Wenhai; Nogami, Shuhei; Yabuuchi, Kiyohiro; Iwata, Takuya; Hasegawa, Akira [Tohoku University, Sendai (Japan); Yamazaki, Masanori [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University (Japan); Kano, Sho; Satoh, Yuhki; Abe, Hiroaki [Institute for Materials Research, Tohoku University, Sendai (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho (Japan)

    2015-10-15

    Highlights: • Significant hardening after neutron irradiation at 300 °C for 0.1 dpa was found in the fine-grain HAZ of F82H for the dissimilar-metal joint between F82H and 316L. • The possible hardening mechanism was explained from the viewpoint of carbon behavior. • However, the significant hardening did not degrade the impact property significantly. - Abstract: A dissimilar-metal joint between F82H steel and 316L stainless steel was fabricated by using electron beam welding (EBW). By microstructural analysis and hardness test, the heat-affected zone (HAZ) of F82H was classified into interlayer area, fine-grain area, and coarse-carbide area. Post-weld heat treatment (PWHT) was applied to control the hardness of HAZ. After PWHT at 680 °C for 1 h, neutron irradiation at 300 °C with a dose of 0.1 dpa was carried out for the joint in Belgian Reactor II (BR-II). Compared to the base metals (BMs) and weld metal (WM), significant irradiation hardening up to 450HV was found in the fine-grain HAZ of F82H. However, the impact property of F82H-HAZ specimens, which was machined with the root of the V-notch at HAZ of F82H, was not deteriorated obviously in spite of the significant irradiation hardening.

  5. Effect of ferrite transformation on the tensile and stress corrosion properties of type 316 L stainless steel weld metal thermally aged at 873 K

    Science.gov (United States)

    Shaikh, H.; Khatak, H. S.; Seshadri, S. K.; Gnanamoorthy, J. B.; Rodriguez, P.

    1995-07-01

    This article deals with the effect of the microstructural changes, due to transformation of delta ferrite, on the associated variations that take place in the tensile and stress corrosion properties of type 316 L stainless steel weld deposits when subjected to postweld heat treatment at 873 K for prolonged periods (up to 2000 hours). On aging for short durations (up to 20 hours), carbide/ carbonitride was the dominant transformation product, whereas sigma phase was dominant at longer aging times. The changes in the tensile and stress corrosion behavior of the aged weld metal have been attributed to the two competitive processes of matrix softening and hardening. Yield strength (YS) was found to depend predominantly on matrix softening only, while sig-nificant changes in the ultimate tensile strength (UTS) and the work-hardening exponent, n, occurred due to matrix hardening. Ductility and stress corrosion properties were considerably affected by both factors. Fractographic observations on the weld metal tested for stress-corrosion cracking (SCC) indicated a combination of transgranular cracking of the austenite and interface cracking.

  6. Improved tribological properties, electrochemical resistance and biocompatibility of AISI 316L stainless steel through duplex plasma nitriding and TiN coating treatment.

    Science.gov (United States)

    Kao, Wen-Hsien; Su, Yean-Liang; Horng, Jeng-Haur; Hsieh, Yun-Ting

    2017-07-01

    AISI 316L specimens were nitrided using a low temperature (390℃) plasma nitriding process and then coated with a thin layer of titanium nitride by closed field unbalanced magnetron sputtering. The microstructure, adhesion properties and hardness of the duplex-treated samples were examined using X-ray diffraction, scratch testing and nanoindentation, respectively. In addition, the tribological properties were investigated by means of reciprocating wear tests performed against 316L, Si3N4 and Ti6Al4V balls under a load of 10 N for 24 min in 0.9% NaCl solution. The electrochemical resistance of the samples was evaluated by potentiodynamic polarisation tests. Finally, the biocompatibility of the samples was investigated by seeding purified mouse leukemic monocyte macrophage cells (Raw 264.7) on the sample surface for one, three and five days, respectively. In general, the results showed that the duplex nitriding and titanium nitride coating process significantly improved the tribological properties, electrochemical resistance and biocompatibility of the AISI 316L samples.

  7. Effect of welding parameters on mechanical properties of GTAW of UNS S31803 and UNS S32750 weldments

    Directory of Open Access Journals (Sweden)

    Paulraj Prabhu

    2015-01-01

    Full Text Available Duplex Stainless Steel (DSS and Super Duplex Stainless Steel (SDSS pipes were welded by Gas Tungsten Arc Welding (GTAW process. The effect of welding parameters such as heat input, cooling rate, shielding/purging gas composition and interpass temperature on tensile strength, hardness and impact toughness were studied. The microstructure analysis revealed presence of intermetallic phases at root region of the weldments. All mechanical properties were improved at lower heat input and high cooling rate due to grain refinement and balanced microstructure [ferrite and austenite]. All weldments exhibited higher strength than base materials. Weld root region was harder than centre and cap region. SDSS is more susceptible to sigma phase formation due to higher alloying elements and weld thermal cycles, which lead to considerable loss of toughness. Higher nitrogen contents in shielding and purging gas resulted strengthening of austenite phase and restriction of dislocations, which ultimately improved mechanical properties. Higher interpass temperature caused reduction in strength and toughness because of grain coarsening and secondary phase precipitation.

  8. Pulsed current and dual pulse gas metal arc welding of grade AISI: 310S austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    A. Mathivanan

    2015-09-01

    Full Text Available The transverse shrinkage, mechanical and metallurgical properties of AISI: 310S ASS weld joints prepared by P-GMAW and DP-GMAW processes were investigated. It was observed that the use of the DP-GMAW process improves the aforementioned characteristics in comparison to that of the P-GMAW process. The enhanced quality of weld joints obtained with DP-GMAW process is primarily due to the combined effect of pulsed current and thermal pulsation (low frequency pulse. During the thermal pulsation period, there is a fluctuation of wire feed rate, which results in the further increase in welding current and the decrease in arc voltage. Because of this synchronization between welding current and arc voltage during the period of low frequency pulse, the DP-GMAW deposit introduces comparatively more thermal shock compared to the P-GMAW deposit, thereby reducing the heat input and improves the properties of weld joints.

  9. The particle size distribution, density, and specific surface area of welding fumes from SMAW and GMAW mild and stainless steel consumables.

    Science.gov (United States)

    Hewett, P

    1995-02-01

    Particle size distributions were measured for fumes from mild steel (MS) and stainless steel (SS); shielded metal arc welding (SMAW) and gas metal arc welding (GMAW) consumables. Up to six samples of each type of fume were collected in a test chamber using a micro-orifice uniform deposit (cascade) impactor. Bulk samples were collected for bulk fume density and specific surface area analysis. Additional impactor samples were collected using polycarbonate substrates and analyzed for elemental content. The parameters of the underlying mass distributions were estimated using a nonlinear least squares analysis method that fits a smooth curve to the mass fraction distribution histograms of all samples for each type of fume. The mass distributions for all four consumables were unimodal and well described by a lognormal distribution; with the exception of the GMAW-MS and GMAW-SS comparison, they were statistically different. The estimated mass distribution geometric means for the SMAW-MS and SMAW-SS consumables were 0.59 and 0.46 micron aerodynamic equivalent diameter (AED), respectively, and 0.25 micron AED for both the GMAW-MS and GMAW-SS consumables. The bulk fume densities and specific surface areas were similar for the SMAW-MS and SMAW-SS consumables and for the GMAW-MS and GMAW-SS consumables, but differed between SMAW and GMAW. The distribution of metals was similar to the mass distributions. Particle size distributions and physical properties of the fumes were considerably different when categorized by welding method. Within each welding method there was little difference between MS and SS fumes.

  10. Qualification of phased array ultrasonic examination on T-joint weld of austenitic stainless steel for ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.H. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Park, C.K., E-mail: love879@hanmail.net [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jin, S.W.; Kim, H.S.; Hong, K.H.; Lee, Y.J.; Ahn, H.J.; Chung, W. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jung, Y.H.; Roh, B.R. [Hyundai Heavy Industries Co. Ltd., Ulsan 682-792 (Korea, Republic of); Sa, J.W.; Choi, C.H. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • PAUT techniques has been developed by Hyundai Heavy Industries Co., LTD (HHI) and Korea Domestic Agency (KODA) to verify and settle down instrument calibration, test procedures, image processing, and so on. As the first step of development for PAUT technique, Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. Real UT qualification group-1 for T-joint weld was successfully conducted in front of ANB inspector. • In this paper, remarkable progresses of UT qualification are presented for ITER vacuum vessel. - Abstract: Full penetration welding and 100% volumetric examination are required for all welds of pressure retaining parts of the ITER Vacuum Vessel (VV) according to RCC-MR Code and French Order of Nuclear Pressure Equipment (ESPN). The NDE requirement is one of important technical issues because radiographic examination (RT) is not applicable to many welding joints. Therefore the ultrasonic examination (UT) has been selected as an alternative method. Generally the UT on the austenitic welds is regarded as a great challenge due to the high attenuation and dispersion of the ultrasonic signal. In this paper, Phased array ultrasonic examination (PAUT) has been introduced on double sided T-shape austenitic welds of the ITER VV as a major NDE method as well as RT. Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, embedded parallel vertical notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. PAUT techniques on the thick austenitic welds have been developed taking into account the acceptance criteria. Test procedure including calibration of equipment is derived and qualified through

  11. Calculation of the residual stress field created by quenching and grinding in a cast duplex stainless steel pipe; Calcul des contraintes residuelles crees par la trempe et l`usinage d`un tuyau austenoferritique moule

    Energy Technology Data Exchange (ETDEWEB)

    Dupas, P.; Le Delliou, P. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    We calculate with a finite element program the residual stresses generated by quenching and grinding a cast duplex stainless steel pipe. These calculations are performed with Code Aster (developed by EDF/R and D D). They are preliminary to a 3D study concerning an elbow made of the same material. Quenching is simulated by an axisymmetric thermomechanical calculation. Grinding are simulated either by lowering mechanical properties in ground parts of the pipe, either by the releasing the nodes. Stresses due to quenching are in high compression in the skin and tensile in the middle. After grinding (the first concerning both internal and external skins, the second concerning only the internal skin), stresses become tensile on the skin. These results are compared to those obtained in a similar study by CEA and also to the measurement. Some important differences appear in the thermal results between the two FE programs, due to a too coarse time step in the CASTEM 2000 calculation. However, the effect on the residual stress field is not very important. Two complementary studies have shown a negligible influence of mesh size, as well as an equivalence of the two numerical methods used for simulating grinding (lowering the Young modulus and releasing the nodes), according the values given at the notes of the skin by the first method are corrected. (authors). 5 refs.

  12. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm.

    Science.gov (United States)

    Xia, Jin; Yang, Chunguang; Xu, Dake; Sun, Da; Nan, Li; Sun, Ziqing; Li, Qi; Gu, Tingyue; Yang, Ke

    2015-01-01

    The microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel (2205 Cu-DSS) against an aerobic marine Pseudomonas aeruginosa biofilm was investigated. The electrochemical test results showed that Rp increased and icorr decreased sharply after long-term immersion in the inoculation medium, suggesting that 2205 Cu-DSS possessed excellent MIC resistance to the P. aeruginosa biofilm. Fluorescence microscope images showed that 2205 Cu-DSS possessed a strong antibacterial ability, and its antibacterial efficiency after one and seven days was 7.75% and 96.92%, respectively. The pit morphology comparison after 14 days between 2205 DSS and 2205 Cu-DSS demonstrated that the latter showed a considerably reduced maximum MIC pit depth compared with the former (1.44 μm vs 9.50 μm). The experimental results suggest that inhibition of the biofilm was caused by the copper ions released from the 2205 Cu-DSS, leading to its effective mitigation of MIC by P. aeruginosa.

  13. Decomposition of ferrite in commercial superduplex stainless steel weld metals; microstructural transformations above 700 °C

    Science.gov (United States)

    Gregori, A.; Nilsson, J.-O.

    2002-04-01

    The microstructural stability at temperatures above 700 °C of weld metal of type 29Cr-8Ni-2Mo-0.39N and weld metal of type 25Cr-10Ni-4Mo-0.28N has been compared. Multipass welding was employed using the gas tungsten arc welding technique with a shielding gas of Ar+2 pct N2. The quantitative assessment of the intermetallic phase was performed using automatic image analysis in the light optical microscope (LOM). Detailed microanalysis was also performed using scanning and transmission electron microscopy. A computer program developed by the authors was used to calculate a continuous cooling-temperature (CCT) diagram on the basis of the experimentally determined time-temperature-transformation (TTT) diagram. Thermodynamic calculations for estimating phase stabilities and for interpreting experimental observations were performed. It was found that weld metal of type 29Cr-8Ni-2Mo-0.39N was microstructurally more stable than weld metal of type 25Cr-10Ni-4Mo-0.28N. A lower molybdenum concentration and a higher nitrogen concentration in the former alloy could explain the higher stability with respect to the intermetallic phase. The higher nitrogen concentration also provides a rationale for the higher stability against the formation of secondary austenite in weld metal of type 29Cr-8Ni-2Mo-0.39N. This effect, which is associated with a lower thermodynamic driving force for precipitation of secondary austenite during multipass welding, can be explained by nitrogen-enhanced primary austenite formation.

  14. Butt Welding of 2205/X65 Bimetallic Sheet and Study on the Inhomogeneity of the Properties of the Welded Joint

    Science.gov (United States)

    Gou, Ning-Nian; Zhang, Jian-Xun; Wang, Jian-Long; Bi, Zong-Yue

    2017-04-01

    The explosively welded 2205 duplex stainless steel/X65 pipe steel bimetallic sheets were butt jointed by multilayer and multi-pass welding (gas tungsten arc welding for the flyer and gas metal arc welding for the transition and parent layers of the bimetallic sheets). The microstructure and mechanical properties of the welded joint were investigated. The results showed that in the thickness direction, microstructure and mechanical properties of the welded joint exhibited obvious inhomogeneity. The microstructures of parent filler layers consisted of acicular ferrite, widmanstatten ferrite, and a small amount of blocky ferrite. The microstructure of the transition layer and flyer layer consisted of both austenite and ferrite structures; however, the transition layer of weld had a higher volume fraction of austenite. The results of the microhardness test showed that in both weld metal (WM) and heat-affected zone (HAZ) of the parent filler layers, the average hardness decreased with the increasing (from parent filler layer 1 to parent filler layer 3) welding heat input. The results of hardness test also indicated that the hardness of the WM and the HAZ for the flyer and transition layers was equivalent. The tensile test combined with Digital Specklegram Processing Technology demonstrated that the fracturing of the welded joint started at the HAZ of the flyer, and then the fracture grew toward the base metal of the parent flyer near the parent HAZ. The stratified impact test at -5 °C showed that the WM and HAZ of the flyer exhibited lower impact toughness, and the fracture mode was ductile and brittle mixed fracture.

  15. Technical Letter Report Assessment of Ultrasonic Phased Array Inspection Method for Welds in Cast Austenitic Stainless Steel Pressurizer Surge Line Piping JCN N6398, Task 1B

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Mathews, Royce; Moran, Traci L.; Anderson, Michael T.

    2009-07-28

    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS); dissimilar metal welds; piping with corrosion-resistant cladding; weld overlays, inlays and onlays; and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. In this effort, PNNL supports cooperation with Commissariat à l’Energie Atomique (CEA) to assess reliable inspection of CASS materials. The NRC Project Manager has established a cooperative effort with the Institut de Radioprotection et de Surete Nucleaire (IRSN). CEA, under funding from IRSN, are supporting collaborative efforts with the NRC and PNNL. Regarding its work on the NDE of materials, CEA is providing its modeling software (CIVA) in exchange for PNNL offering expertise and data related to phased-array detection and sizing, acoustic attenuation, and back scattering on CASS materials. This collaboration benefits the NRC because CEA performs research and development on CASS for Électricité de France (EdF). This technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of welds in CASS pressurizer (PZR) surge line nuclear reactor piping. A set of thermal fatigue cracks (TFCs) was implanted into three CASS PZR surge-line specimens (pipe-to-elbow welds) that were fabricated using vintage CASS materials formed in the 1970s, and flaw responses from these cracks were used to evaluate detection and sizing

  16. Effects of heat treatment on the intermetallic compounds and mechanical properties of the stainless steel 321-aluminum 1230 explosive-welding interface

    Science.gov (United States)

    Shiran, Mohammadreza Khanzadeh Gharah; Khalaj, Gholamreza; Pouraliakbar, Hesam; Jandaghi, Mohammadreza; Bakhtiari, Hamid; Shirazi, Masoud

    2017-11-01

    The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Experimental investigations were performed by optical microscopy, scanning electron microscopy, and microhardness and shear tensile strength testing. Prior to heat treatment, increasing the stand-off distance between samples from 1 to 2.5 mm caused their interface to become wavy and the thickness of intermetallic layers to increase from 3.5 to 102.3 μm. The microhardness increased from HV 766 in the sample prepared at a stand-off distance of 1 mm to HV 927 in the sample prepared at a stand-off distance of 2.5 mm; in addition, the sample strength increased from 103.2 to 214.5 MPa. Heat treatment at 450°C for 6 h increased the thickness of intermetallic compound layers to 4.4 and 118.5 μm in the samples prepared at stand-off distances of 1 and 2.5 mm, respectively. These results indicated that increasing the duration and temperature of heat treatment decreased the microhardness and strength of the interface of explosively welded stainless steel 321-Al 1230 and increased the thickness of the intermetallic region.

  17. Precipitation examination of δ, σ, and γ phases using modified Cr/Ni equivalent ratios during the multipass welding of stainless steels

    Science.gov (United States)

    Lin, Dong-Yih; Hsieh, Chih-Chun

    2009-06-01

    The purpose of this study is to discuss the precipitation tendencies of δ, σ, and γ phases using a modified Cr/Ni equivalent ratio with 309L filler after welding dissimilar steels (SUS 304L and AISI 1017) while adding various Si contents of 0.25 wt.%, 0.45 wt.%, and 0.65 wt.% and hot rolling in AISI 309LSi stainless steels at 1200 °C for 2 h. The elemental compositions of δ, σ, and γ phases were performed by EDS in as-hot-rolled AISI 309LSi as well as dissimilar welded samples, and the Creq/Nieq ratios were calculated by Hammer & Svensson's equation. In this research, the Creq/Nieq of phase and matrix were presented as [Creq/Nieq]phase and [Creq/Nieq]matrix, respectively. The modified equation ([Creq/Nieq]modified) was equal to [Creq/Nieq]phase/[Creq/Nieq]matrix, and it was used to examine the effect of materials and processes in the δ, σ, and γ phases. The results indicated the Creq/Nieq ratios of the δ, σ, and γ phases were 2.557˜1.304, over 3.143, and 1.229, respectively.

  18. Effect of the Temperature in the Mechanical Properties of Austenite, Ferrite and Sigma Phases of Duplex Stainless Steels Using Hardness, Microhardness and Nanoindentation Techniques

    Directory of Open Access Journals (Sweden)

    Gorka Argandoña

    2017-06-01

    Full Text Available The aim of this work is to study the hardness of the ferrite, austenite and sigma phases of a UNS S32760 superduplex stainless steel submitted to different thermal treatments, thus leading to different percentages of the mentioned phases. A comparative study has been performed in order to evaluate the resulting mechanical properties of these phases by using hardness, microhardness and nanoindentation techniques. In addition, optical microscopy, scanning electron microscopy (SEM and X-ray diffraction (XRD have been also used to identify their presence and distribution. Finally, the experimental results have shown that the resulting hardness values were increased as a function of a longer heat treatment duration which it is associated to the formation of a higher percentage of the sigma phase. However, nanoindentation hardness measurements of this sigma phase showed lower values than expected, being a combination of two main factors, namely the complexity of the sigma phase structure as well as the surface finish (roughness.

  19. Texture evolution and phase transformation of 25Cr-6Mo-5Ni experimental duplex stainless steel during hot and cold rolling

    Directory of Open Access Journals (Sweden)

    Mohammad Masoumi

    2017-07-01

    Full Text Available An experimental as-cast 25Cr-6Mo-5Ni stainless steel has been solution annealed at 1250 °C and subjected to hot and then cold rolling. X-ray diffraction, optical microscopy and electron backscatter diffraction were used to investigate the effect of hot and cold deformation on the phase transformation and texture evolution. The results revealed that dominant {100}//ND and {110}//ND texture components of martensite is originated by shear strain generated between rolls and sheet surface. The Kernel average misorientation augmented significantly with increased strain and decreased deformation temperature. The internal grain structure becomes more heterogeneous with the dislocation piles up preventing dislocations movement. High localized stresses were developed at grain boundaries due to different deformation of individual grains, which enhanced martensitic transformation in these regions.

  20. Experimental investigation of Ti–6Al–4V titanium alloy and 304L stainless steel friction welded with copper interlayer

    Directory of Open Access Journals (Sweden)

    R. Kumar

    2015-03-01

    Full Text Available The basic principle of friction welding is intermetallic bonding at the stage of super plasticity attained with self-generating heat due to friction and finishing at upset pressure. Now the dissimilar metal joints are especially popular in defense, aerospace, automobile, bio-medical, refinery and nuclear engineerings. In friction welding, some special alloys with dual phase are not joined successfully due to poor bonding strength. The alloy surfaces after bonding also have metallurgical changes in the line of interfacing. The reported research work in this area is scanty. Although the sound weld zone of direct bonding between Ti–6Al–4V and SS304L was obtained though many trials, the joint was not successful. In this paper, the friction welding characteristics between Ti–6Al–4V and SS304L into which pure oxygen free copper (OFC was introduced as interlayer were investigated. Box–Behnken design was used to minimize the number of experiments to be performed. The weld joint was analyzed for its mechanical strength. The highest tensile strength between Ti–6Al–4V and SS304L between which pure copper was used as insert metal was acquired. Micro-structural analysis and elemental analysis were carried out by EDS, and the formation of intermetallic compound at the interface was identified by XRD analysis.

  1. Mechanical and Microstructural Properties of Friction Welded AISI 304 Stainless Steel to AISI 1060 Steel AISI 1060

    Directory of Open Access Journals (Sweden)

    Ates H.

    2014-10-01

    Full Text Available Rotary Friction welding is one of the most popular methods of joining similar and dissimilar materials. It is widely used with metals and thermoplastics in a wide variety of aviation, transport and aerospace industrial component designs. This study investigates the influence of friction and upsetting pressures on the hardness, tensile properties and microstructure of the welds. The experimental results showed that as the friction and upsetting pressures increased, the hardness and tensile strength values increased, as well. The tensile fracture of welded joint occurred in the AISI 1060 side. The friction processed joints were evaluated for their integrity and quality aspects by optical and scanning electron microscopy. For the perfect interfacial bonding, sufficient upsetting and friction pressures are necessary to reach the optimal temperature and severe plastic deformation to bring these materials within the attraction range.

  2. Weldability of Additive Manufactured Stainless Steel

    Science.gov (United States)

    Matilainen, Ville-Pekka; Pekkarinen, Joonas; Salminen, Antti

    Part size in additive manufacturing is limited by the size of building area of AM equipment. Occasionally, larger constructions that AM machines are able to produce, are needed, and this creates demand for welding AM parts together. However there is very little information on welding of additive manufactured stainless steels. The aim of this study was to investigate the weldability aspects of AM material. In this study, comparison of the bead on plate welds between AM parts and sheet metal parts is done. Used material was 316L stainless steel, AM and sheet metal, and parts were welded with laser welding. Weld quality was evaluated visually from macroscopic images. Results show that there are certain differences in the welds in AM parts compared to the welds in sheet metal parts. Differences were found in penetration depths and in type of welding defects. Nevertheless, this study presents that laser welding is suitable process for welding AM parts.

  3. Tensile properties of explosively formed 316L(N)-IG stainless steel with and without an electron beam weld

    NARCIS (Netherlands)

    Hegeman, J.B.J.; Luzginova, N.V.; Jong, M.; Groeneveld, H.D.; Borsboom, A.; Stuivinga, M.E.C.; Laan, J.G. van der

    2011-01-01

    The mechanical properties of two explosively formed saddle shaped 60 mm thick plates of 316L(N)-IG steel with and without an electron beam weld have been investigated. Two different conditions have been characterized: (1) Reference condition and (2) ITER relevant condition. The reference material

  4. Microstructural study of thermally aged duplex stainless steel deformation and fracture modes; Etude microstructurale des modes de deformation et de rupture d`un acier austenoferritique vieilli thermiquement

    Energy Technology Data Exchange (ETDEWEB)

    Verhaeghe, B. [Institut national polytechnique, 38 - Grenoble (France)

    1996-12-31

    The aim of this work is to study the micro mechanisms of deformation and rupture of an austeno ferritic stainless steel (Z 3 CND 22-10 M) with 33 % of ferrite. It is studied after ageing 1 000 h at 400 deg. C and 8 000 h at 350 deg. C and compared to the `as received` state. During ageing the ferritic phase undergoes microstructural evolutions which affects its properties. The two ageing treatments lead to roughly the same level of embrittlement. Microstructural characterisation shows that both phases percolate and exhibit orientation relationships close to Kurdjumov-Sachs ones. Mechanical properties of the steel were characterised for different ageing treatments at room temperature and at 320 deg. C. The interface is particularly strong and ensures the load transfer to ferrite even if this phase contains cleavage cracks. Moreover the interface does not oppose slip transmission which is instead controlled by localised glide in the ferritic phase. If activated slip systems of austenite are common with ferrite, slip transmission from austenite to ferrite indeed occurs through the=e interface. If they are not common, dislocations cross-slip back into the austenite. At 320 deg. C cross-slip occurs even far from the interface. Damage starts by nucleation in ferrite of cleavage cracks which propagate between austenite islands. Crack propagation is controlled by stretching of austenite ligaments. The material breaks by ductile tearing of austenite islands when the crack eventually percolates in the ferritic phase. The ductility of the material can be correctly describer using a simple model that takes into account the tearing-off the ductile-phase. (author). 153 refs.

  5. Modelling of microstructural creep damage in welded joints of 316L stainless steel; Modelisation de l'endommagement a haute temperature dans le metal d'apport des joints soudes d'acier inoxydable austenitique

    Energy Technology Data Exchange (ETDEWEB)

    Bouche, G

    2000-07-01

    Welded joints of 316L stainless steel under service conditions at elevated temperature are known to be preferential sites of creep damage, as compared to the base material. This damage results in the formation of cavities and the development of creep cracks which can lead to a premature failure of welded components. The complex two-phase microstructure of 316L welds was simulated by manually filling a mould with longitudinal deposited weld beads. The moulded material was then aged during 2000 hours at 600 deg. C. High resolution Scanning Electron Microscopy was largely used to examine the microstructure of the simulated material before and after ageing. Smooth and notched creep specimens were cut from the mould and tested at 600 deg. C under various stress levels. A comparison of the lifetime versus nominal stress curves for the base and welded materials shows a greater dependence of the welded material to creep phenomena. Observation and EBSD analysis show that damage is preferentially located along the austenite grain boundaries. The stress and strain fields in the notched specimens were calculated by finite element method. A correlation of this field to the observed damage was made in order to propose a predictive law relating the creep damage to the mechanical conditions applied locally. Further mechanical tests and simulation on CT specimens and mode II tubular specimens allowed validating the model under various multiaxial loading conditions. (author)

  6. Microstructure Characterization and Hardness Evaluation of Alloy 52 Welded Stainless Steel 316 Subjected to Ultrasonic Nanocyrtal Surface Modification Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. D.; Amanov, A.; Pyun, Y. S. [Sun Moon Univ., Asan (Korea, Republic of); Kim, Y. S.; Choi, Y. S. [Andong National Univ., Andong (Korea, Republic of)

    2015-10-15

    In this study, an ultrasonic nanocrystal surface modification (UNSM) technique was applied to dissimilar weld point between STS316L and Alloy 52. This UNSM technique is a patented technology, which can be described as a type of ultrasonic cold-forging technology. It has been demonstrated that the UNSM technique is a simple method to produce a nanocrystalline surface layer at the top surface of metallic materials. Microstructure and hardness of STS316L and Alloy 52 are investigated before and after UNSM treatment. It is expected according to the previous study that the UNSM technique is able to release the residual stress which delays PWSCC. In this study, microstructural characterization and hardness evaluation of STS316L and welded Alloy 52 subjected to UNSM technique were investigated.

  7. Effect of massive transformation on formation of acicular structure in austenitic stainless steel weld metal solidified as ferritic single phase. Report 5. Study on solidification and subsequent transformation of Cr-Ni stainless steel weld metals; Feraito tanso de gyokosuru osutenaito kei sutenresu ko yosetsu kinzoku ni okeru ashikyura jo soshiki no keisei ni oyobosu masshibu hentai no eikyo.5. Cr-Ni kei sutenresu ko yosetsu kinzoku no gyoko/hentai ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, H.; Koseki, T.; Okita, S.; Fuji, M. [Nippon Steel Corp., Tokyo (Japan)

    1997-05-05

    The authors clarified that massive transformation occurs at two phase region under To temperature and there is K-S relation between the massive formation phase and base phase using {gamma} stainless steel that solidifies at F mode and forms acicular structure at room temperature structure. There is a possibility of massive transformation in weld metals because the cooling rate below the high temperature To was high even for normal welding process. Thereupon, in this report, whether the massive transformation effects the formation of acicular structure or not was studied as for {gamma} stainless steel weld metal that solidifies at F mode and room temperature structure becomes acicular form of two {delta} and {gamma} phase. As a result, it was clarified that massive transformation occurs at two phase region with temperature below To, and the room temperature structure was acicular form structure irrespective to massive transformation in case of composition with small Cr/Ni ratio even in case of stainless steel that solidifies at F mode. 20 refs., 15 figs., 1 tab.

  8. Automatic inspection of electron beam weld for stainless steel using phased array method; Controle automatique par ultrasons multielements de soudures inox realisees par faisceau d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bleuze, A. [Metalscan - Groupe Tecnatom, 71100 Saint-Remy (France); Schwartz, C. [Commissariat a l' Energie Atomique, Centre de Valduc - 21120 Is-Sur-Tille - (France)

    2007-07-01

    The CEA laboratory of Non destructive testing of Valduc implements various techniques of controls (radiography, sealing by tracer gas helium, ultrasounds...) to check the quality of the welding and health matter of materials. To have a perfect command of the manufacture of the welding and to detect any anomaly during the manufacturing process (lacks of penetration, defects of joining, porosities...), it developed in partnership with company METALSCAN an ultrasonic technique of imagery phased array designed to the complete and automatic control of homogeneous stainless steel welding carried out by electron beam. To achieve this goal, an acoustic study by simulation with software CIVA was undertaken in order to determine the optimal characteristics of the phased array probes (their number and their site). Finally, the developed method allows, on the one hand, to locate lacks of fusion of welding equivalents to flat holes with bottom 0,5 mms in diameter, and on the other hand, to detect lacks of penetration of 0,1 mm. In order to ensure a perfect reproducibility of controls, a mechanical system ensuring the setting in rotation of the part, allows to inspect the whole of the welding. The results are then analyzed automatically using application software ensuring the traceability of controls. The method was first of all validated using parts spread out, then it was brought into service after confrontation of the results obtained on real defects with other techniques (metallographic radiography and characterizations). (authors) [French] Le laboratoire de Controles Non Destructifs du CEA de Valduc met en oeuvre differentes techniques de controles (radiographie, etancheite par gaz traceur helium, ultrasons...) pour verifier la qualite des soudures et la sante matiere des materiaux. Pour maitriser parfaitement la fabrication des soudures et detecter toute anomalie durant le processus de fabrication (manques de penetration, defauts de collage, porosites...), il a developpe

  9. Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhiming, Lu, E-mail: lzm@zjut.edu.cn; Laimin, Shi, E-mail: 810050107@qq.com; Shenjin, Zhu, E-mail: 523469865@qq.com; Zhidong, Tang, E-mail: 466054569@qq.com; Yazhou, Jiang, E-mail: 191268219@qq.com

    2015-06-18

    The weld joint of 304 stainless steel is treated using high energy shot peening(HESP) with various shot peening pressures. The grain size and metallographic microstructure of the specimen surface layer are analyzed using the X-ray diffraction method, and the surface hardness is measured. Slow strain rate tension tests are then performed to investigate the effect of shot peening pressure on the stress corrosion sensitivity. The results show that in the surface layer of the specimen, the grain refinement, hardness and the strain-induced plastic deformation all increase with the increasing shot peening pressure. Martensitic transformation is observed in the surface layer after being treated with HESP. The martensite phase ratio is found to increase with increasing shot peening pressure. The result also shows that the effects of the shot peening treatment on the stress corrosion sensitivity index depend on the shot peening pressure. When the shot peening pressure is less than 0.4 MPa, the grain refinement effect plays the main role, and the stress corrosion sensitivity index decreases with the increasing shot peening pressure. In contrast, when the shot peening pressure is higher than 0.4 MPa, the martensite transformation effect plays the main role, the stress corrosion sensitivity index increases with increasing shot peening pressure.

  10. Development and application of specially-focused ultrasonic transducers to location and sizing of defects in 75 mm- to 127 mm-thick austenitic stainless steel weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E.N.C.; Benson, S.; McKinley, B.J.; Carodiskey, T.

    1992-08-01

    Special UT transducer parts, capable of focusing incident signals within a 25 mm {times} 25 mm {times} 25 mm volume in an austenitic stainless weld metal at depths that varied from 25 mm to 127 mm, were developed and demonstrated to be capable of detecting a defect with cross section equivalent to that of a 4.76 mm-dia flat-bottom hole. Defect length sizing could be accomplished to {plus_minus}50% for 100% of the time and to {plus_minus}25% on selected defect types as follows: porosity groups, 100%; cracks, 67%; combined slag and porosity, 60%; and linear slag indications, 59%. Extensive linear elastic-fracture-mechanics analyses were performed to establish allowable defect sizes at functions of stress, based on a cyclic-life criterion of 10{sup 3} full power cycles of the MFTF-B magnet system. These defect sizes were used to determine which UT indicating were to be removed and repaired and which were to be retained and their recorded sizes and locations.

  11. The Stress Corrosion Resistance and the Cryogenic Temperature Mechanical Behavior of 18-3 Mn (Nitronic 33) Stainless Steel Parent and Welded Material

    Science.gov (United States)

    Montano, J. W.

    1976-01-01

    The ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion results of 18-3 Mn (Nitronic 33)stainless steel, longitudinal and transverse, as received and as welded (TIG) material specimens manufactured from 0.063 inch thick sheet material, were described. The tensile test results indicate an increase in ultimate tensile and yield strengths with decreasing temperature. The elongation remained fairly constant to -200 F, but below that temperature the elongation decreased to less than 6.0% at liquid hydrogen temperature. The notched tensile strength (NTS) for the parent metal increased with decreasing temperature to liquid nitrogen temperature. Below -320 F the NTS decreased rapidly. The notched/unnotched (N/U) tensile ratio of the parent material specimens remained above 0.9 from ambient to -200 F, and decreased to approximately 0.65 and 0.62, respectively, for the longitudinal and transverse directions at liquid hydrogen temperature. After 180 days of testing, only those specimens exposed to the salt spray indicated pitting and some degradation of mechanical properties.

  12. Characterization of welding of AISI 304l stainless steel similar to the core encircling of a BWR reactor; Caracterizacion de soldaduras de acero inoxidable AISI 304L similares a las de la envolvente del nucleo de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gachuz M, M.E.; Palacios P, F.; Robles P, E.F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    Plates of austenitic stainless steel AISI 304l of 0.0381 m thickness were welded by means of the SMAW process according to that recommended in the Section 9 of the ASME Code, so that it was reproduced the welding process used to assemble the encircling of the core of a BWR/5 reactor similar to that of the Laguna Verde Nucleo electric plant, there being generated the necessary documentation for the qualification of the one welding procedure and of the welder. They were characterized so much the one base metal, as the welding cord by means of metallographic techniques, scanning electron microscopy, X-ray diffraction, mechanical essays and fracture mechanics. From the obtained results it highlights the presence of an area affected by the heat of up to 1.5 mm of wide and a value of fracture tenacity (J{sub IC}) to ambient temperature for the base metal of 528 KJ/m{sup 2}, which is diminished by the presence of the welding and by the increment in the temperature of the one essay. Also it was carried out an fractographic analysis of the fracture zone generated by the tenacity essays, what evidence a ductile fracture. The experimental values of resistance and tenacity are important for the study of the structural integrity of the encircling one of the core. (Author)

  13. Fatigue life of AISI 316L stainless steel welded joints, obtained by GMAW; Vida a la fatiga de juntas soldadas del acero inoxidable AISI 316L obtenidas mediante el proceso GMAW

    Energy Technology Data Exchange (ETDEWEB)

    Puchi-Cabrera, E. S.; Saya-Gamboa, R. A.; Barbera-Sosa, J. G. la; Staia, M. H.; Ignoto-Cardinale, V.; Berrios-Ortiz, J. A.; Mesmacque, G.

    2007-07-01

    An investigation has been conducted in order to determine the effect of both the metallic transfer mode (pulsed arc or short circuit) and the O{sub 2} content in the Ar/O{sub 2} gas mixture, of the gas-metal arc welding process (GMAW), on the fatigue life under uniaxial conditions of welded joints of 316L stainless. it has been concluded that the mixture of the protective gases employed in the process could have an important influence on the fatigue life of the welded joints of such steel in two different ways. firstly, through the modification of the radius of curvature at the joint between the welding tow and the base metal and, secondly, through a more pronounced degree of oxidation of the alloying elements induced by a higher O{sub 2} content in the mixture. As far as the metallic transfer mode is concerned, it has been determined that the welded joints obtained under a pulsed arc mode show a greater fatigue life in comparison with the joints obtained under short circuit for both gas mixtures. (Author) 25 refs.

  14. Caracterização microestrutural de soldas dissimilares dos aços ASTM A-508 e AISI 316L Characterization of dissimilar metal weld between low alloy steel ASTM A-508 and 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Luciana Iglésias Lourenço Lima

    2010-06-01

    Full Text Available As soldas dissimilares (dissimilar metal welds - DMWs são utilizadas em diversos segmentos da indústria. No caso específico de usinas nucleares, tais soldas são necessárias para conectar tubulações de aço inoxidável com componentes fabricados em aços baixa liga. Os materiais de adição mais utilizados neste tipo de solda são as ligas de níquel 82 e 182. Este trabalho consistiu na soldagem de uma junta dissimilar de aço baixa liga ASTM A-508 G3 e aço inoxidável austenítico AISI 316L utilizando as ligas de níquel 82 e 182 como metais de adição. A soldagem foi realizada manualmente empregando os processos de soldagem ao arco SMAW (Shielded Metal Arc Welding e GTAW (Gas Tungsten Arc Welding. Os corpos de prova foram caracterizados microestruturalmente utilizando-se microscópio óptico e microscópio eletrônico de varredura com microanálise por dispersão de energia de raios X (EDS e ensaios de microdureza Vickers. Observou-se uma microestrutura constituída de dendritas de austenita com a presença de precipitados com formas e dimensões definidas pelo aporte térmico e pela direção de soldagem. Não houve variação significativa da dureza ao longo da junta soldada, demonstrando a adequação dos parâmetros de soldagem utilizados.The dissimilar metal welds (DMWs are used in several areas of the industries. In the nuclear power plant, this weld using nickel alloy welding wires is used to connect stainless steel pipes to low alloy steel components on the reactor pressured vessels. The filler materials commonly used in this type of weld are nickel alloys 82 and 182.. In this study, dissimilar metal welds composed of low alloy steel ASTM A-508 G3, nickel alloys 82 e 182 as weld metals, and austenitic stainless steel AISI 316L were prepared by manual shielded metal arc welding (SMAW and gas tungsten arc welding techniques (GTAW. Samples were microstructural characterized by optical microscopy and scanning electron microscopy

  15. Corrosion-free precast prestressed concrete piles made with stainless steel reinforcement : construction, test and evaluation.

    Science.gov (United States)

    2015-03-01

    The use of duplex high-strength stainless steel (HSSS) grade 2205 prestressing strand and : austenitic stainless steel (SS) grade 304 spiral wire reinforcement is proposed as a replacement of : conventional prestressing steel, in order to provide a 1...

  16. Mixing of multiple metal vapours into an arc plasma in gas tungsten arc welding of stainless steel

    Science.gov (United States)

    Park, Hunkwan; Trautmann, Marcus; Tanaka, Keigo; Tanaka, Manabu; Murphy, Anthony B.

    2017-11-01

    A computational model of the mixing of multiple metal vapours, formed by vaporization of the surface of an alloy workpiece, into the thermal arc plasma in gas tungsten arc welding (GTAW) is presented. The model incorporates the combined diffusion coefficient method extended to allow treatment of three gases, and is applied to treat the transport of both chromium and iron vapour in the helium arc plasma. In contrast to previous models of GTAW, which predict that metal vapours are swept away to the edge of the arc by the plasma flow, it is found that the metal vapours penetrate strongly into the arc plasma, reaching the cathode region. The predicted results are consistent with published measurements of the intensity of atomic line radiation from the metal vapours. The concentration of chromium vapour is predicted to be higher than that of iron vapour due to its larger vaporization rate. An accumulation of chromium vapour is predicted to occur on the cathode at about 1.5 mm from the cathode tip, in agreement with published measurements. The arc temperature is predicted to be strongly reduced due to the strong radiative emission from the metal vapours. The driving forces causing the diffusion of metal vapours into the helium arc are examined, and it is found that diffusion due to the applied electric field (cataphoresis) is dominant. This is explained in terms of large ionization energies and the small mass of helium compared to those of the metal vapours.

  17. Microstructural Characteristics and Mechanical Properties of 2205/AZ31B Laminates Fabricated by Explosive Welding

    Directory of Open Access Journals (Sweden)

    Yan Li

    2017-04-01

    Full Text Available A bimetal composite of 2205 duplex stainless steel and AZ31B magnesium alloy was cladded successfully through the method of explosive welding. The microstructural characteristics and mechanical properties of 2205/AZ31B bimetal composite are discussed. The interface of 2205/AZ31B bimetallic composite was a less regular wavy morphology with locally melted pockets. Adiabatic shear bands occurred only in the AZ31B side near explosive welding interface. The microstructure observed with EBSD showed a strong refinement near the interface zones. Line scan confirmed that the interface had a short element diffusion zone which would contribute to the metallurgical bonding between 2205 duplex stainless steel and AZ31B magnesium alloy. The value of micro-hardness near the bonding interface of composite plate increased because of work hardening and grain refinement. The tensile shear strength of bonding interface of 2205/AZ31B composite was 105.63 MPa. Tensile strength of 2205/AZ31B composite material was higher than the base AZ31B. There were two abrupt drops in stress in the stress–strain curves of the 2205/AZ31B composite materials.

  18. Spectral analysis of the process emission during laser welding of AISI 304 stainless steel with disk and Nd:YAG laser

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, R.G.K.M.; Huis in 't Veld, A.J.

    2009-01-01

    Optical emissions from the laser welding process can be obtained relatively easy in real-time. Such emissions come from the melt pool, keyhole, or plume during welding. Therefore it is very beneficial to establish a clear relation between characteristics of these emissions and the resulting weld

  19. Crack propagation during fatigue in cast duplex stainless steels: influence of the microstructure, of the aging and of the test temperature; Propagation de fissure par fatigue dans les aciers austeno-ferritiques moules: influence de la microstructure, du vieillissement et de la temperature d'essai

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, V

    2001-07-15

    Duplex stainless steels are used as cast components in nuclear power plants. At the service temperature of about 320 C, the ferrite phase is thermally aged and embrittled. This induces a significant decrease in fracture properties of these materials. The aim of this work consists in studying Fatigue Crack Growth Rates (FCGR) and Fatigue Crack Growth Mechanisms (FCGM) as a function of thermal ageing and test temperature (20 C/320 C). Two cast duplex stainless steels (30% ferrite) are tested. In order to better understand the influence of the crystallographic orientation of the phases on the FCGM, the solidification structure of the material is studied by Electron Back-Scatter Diffraction (EBSD) and by Unidirectional Solidification Quenching. Fatigue crack growth tests are also performed in equiaxed and basaltic structures. Microstructure, fatigue crack growth mechanical properties and mechanisms are thus studied in relation to each other. In the studied range of delta K, the crack propagates without any preferential path by successive ruptures of phase laths. The macroscopic crack propagation plane, as determined by EBSD, depends on the crystallographic orientation of the ferrite grain. So, according to the solidification structure, secondary cracks can appear, which in turn influences the FCGR. Fatigue crack closure, which has to be determined to estimate the intrinsic FCGR, decreases with increasing ageing. This can be explained by a decrease in the kinematic cyclic hardening. The Paris exponent as determined from intrinsic FCGR increases with ageing. Intrinsic FCGR can then be separated in two ranges: one with lower FCGR in aged materials than in un-aged and one with the reversed tendency. (author)

  20. Response of the mouse lung transcriptome to welding fume: effects of stainless and mild steel fumes on lung gene expression in A/J and C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Antonini James M

    2010-06-01

    Full Text Available Abstract Background Debate exists as to whether welding fume is carcinogenic, but epidemiological evidence suggests that welders are an at risk population for the development of lung cancer. Recently, we found that exposure to welding fume caused an acutely greater and prolonged lung inflammatory response in lung tumor susceptible A/J versus resistant C57BL/6J (B6 mice and a trend for increased tumor incidence after stainless steel (SS fume exposure. Here, our objective was to examine potential strain-dependent differences in the regulation and resolution of the lung inflammatory response induced by carcinogenic (Cr and Ni abundant or non-carcinogenic (iron abundant metal-containing welding fumes at the transcriptome level. Methods Mice were exposed four times by pharyngeal aspiration to 5 mg/kg iron abundant gas metal arc-mild steel (GMA-MS, Cr and Ni abundant GMA-SS fume or vehicle and were euthanized 4 and 16 weeks after the last exposure. Whole lung microarray using Illumina Mouse Ref-8 expression beadchips was done. Results Overall, we found that tumor susceptibility was associated with a more marked transcriptional response to both GMA-MS and -SS welding fumes. Also, Ingenuity Pathway Analysis revealed that gene regulation and expression in the top molecular networks differed between the strains at both time points post-exposure. Interestingly, a common finding between the strains was that GMA-MS fume exposure altered behavioral gene networks. In contrast, GMA-SS fume exposure chronically upregulated chemotactic and immunomodulatory genes such as CCL3, CCL4, CXCL2, and MMP12 in the A/J strain. In the GMA-SS-exposed B6 mouse, genes that initially downregulated cellular movement, hematological system development/function and immune response were involved at both time points post-exposure. However, at 16 weeks, a transcriptional switch to an upregulation for neutrophil chemotactic genes was found and included genes such as S100A8, S100A9 and

  1. Effects of Thermal Aging on Material Properties, Stress Corrosion Cracking, and Fracture Toughness of AISI 316L Weld Metal

    Science.gov (United States)

    Lucas, Timothy; Forsström, Antti; Saukkonen, Tapio; Ballinger, Ronald; Hänninen, Hannu

    2016-08-01

    Thermal aging and consequent embrittlement of materials are ongoing issues in cast stainless steels, as well as duplex, and high-Cr ferritic stainless steels. Spinodal decomposition is largely responsible for the well-known "748 K (475 °C) embrittlement" that results in drastic reductions in ductility and toughness in these materials. This process is also operative in welds of either cast or wrought stainless steels where δ-ferrite is present. While the embrittlement can occur after several hundred hours of aging at 748 K (475 °C), the process is also operative at lower temperatures, at the 561 K (288 °C) operating temperature of a boiling water reactor (BWR), for example, where ductility reductions have been observed after several tens of thousands of hours of exposure. An experimental program was carried out in order to understand how spinodal decomposition may affect changes in material properties in Type 316L BWR piping weld metals. The study included material characterization, nanoindentation hardness, double-loop electrochemical potentiokinetic reactivation (DL-EPR), Charpy-V, tensile, SCC crack growth, and in situ fracture toughness testing as a function of δ-ferrite content, aging time, and temperature. SCC crack growth rates of Type 316L stainless steel weld metal under simulated BWR conditions showed an approximate 2 times increase in crack growth rate over that of the unaged as-welded material. In situ fracture toughness measurements indicate that environmental exposure can result in a reduction of toughness by up to 40 pct over the corresponding at-temperature air-tested values. Material characterization results suggest that spinodal decomposition is responsible for the degradation of material properties measured in air, and that degradation of the in situ properties may be a result of hydrogen absorbed during exposure to the high-temperature water environment.

  2. effects of metal inert gas welding parameters on some mechanical ...

    African Journals Online (AJOL)

    HOD

    MIG) welding parameters on the mechanical properties (hardness, tensile and impact) of type 304 austenitic stainless steel (ASS) immersed in 0.5M hydrochloric acid at ambient temperature. The MIG welding was applied to 3mm thick ASS.

  3. EFFECTS OF METAL INERT GAS WELDING PARAMETERS ON ...

    African Journals Online (AJOL)

    MIG) welding parameters on the mechanical properties (hardness, tensile and impact) of type 304 austenitic stainless steel (ASS) immersed in 0.5M hydrochloric acid at ambient temperature. The MIG welding was applied to 3mm thick ASS.

  4. Estimation of embrittlement during aging of AISI 316 stainless steel ...

    Indian Academy of Sciences (India)

    Unknown

    Stainless steel; TIG welds; aging; Charpy impact; lower shelf energy; embrittlement. 1. Introduction. Austenitic stainless steels have high ductility, low yield streng