WorldWideScience

Sample records for weldable ductile molybdenum

  1. Comparative study of TIG and SMAW root welding passes on ductile iron cast weldability

    Directory of Open Access Journals (Sweden)

    J. Cárcel-Carrasco

    2017-01-01

    Full Text Available This work compares the weldability of ductile iron when: (I a root weld is applied with a tungsten inert gas (TIG process using an Inconel 625 source rod and filler welds are subsequently applied using coated electrodes with 97,6%Ni; and (II welds on ductile iron exclusively made using the manual shielded metal arc welding technique (SMAW. Both types of welds are performed on ductile iron specimen test plates that are subjected to preheat and post-weld annealing treatments. Samples with TIG root-welding pass shown higher hardness but slightly lower ductility and strength. Both types of welding achieved better ductile and strength properties than ones found in literature.

  2. Weldability of spheroidal graphite ductile cast iron using Ni / Ni-Fe electrodes

    Directory of Open Access Journals (Sweden)

    Pascual, M.

    2009-10-01

    Full Text Available Weldability of spheroidal graphite ductile cast iron was established using a cheap Ni-Fe and a high purity Ni electrode. A preheating treatment at 350 °C and an annealing treatment at 850 °C were carried out to improve mechanical properties of welded pieces. The pure Ni electrode showed graphite diffusion in the bead with a uniform distribution of phases, improving weldability and decreasing fragility. Preheating and annealing treatments increased ductility and improved weldability.

    Se establece la soldabilidad de funciones dúctiles de grafito según las características mecánicas alcanzadas, utilizando un electrodo puro de Ni mientras se compara con uno más económico de Ni-Fe. Diferentes tratamientos t��rmicos son propuestos y analizados. El electrodo de Ni puro mostró difusión de grafito desde el material original al cordón de soldadura, dando como resultado una fase homogénea que mejoró la soldabilidad y redujo la fragilidad. Un pre tratamiento a 350 °C y un recocido a 850 °C incrementaron la ductilidad y mejoró la soldabilidad.

  3. An Analysis of the Weldability of Ductile Cast Iron Using Inconel 625 for the Root Weld and Electrodes Coated in 97.6% Nickel for the Filler Welds

    Directory of Open Access Journals (Sweden)

    Francisco-Javier Cárcel-Carrasco

    2016-11-01

    Full Text Available This article examines the weldability of ductile cast iron when the root weld is applied with a tungsten inert gas (TIG welding process employing an Inconel 625 source rod, and when the filler welds are applied with electrodes coated with 97.6% Ni. The welds were performed on ductile cast iron specimen test plates sized 300 mm × 90 mm × 10 mm with edges tapered at angles of 60°. The plates were subjected to two heat treatments. This article analyzes the influence on weldability of the various types of electrodes and the effect of preheat treatments. Finally, a microstructure analysis is made of the material next to the weld in the metal-weld interface and in the weld itself. The microstructure produced is correlated with the strength of the welds. We treat an alloy with 97.6% Ni, which prevents the formation of carbides. With a heat treatment at 900 °C and 97.6% Ni, there is a dissolution of all carbides, forming nodules in ferritic matrix graphite.

  4. A ductile fracture criterion with Zener-Hollomon parameter of pure molybdenum sheet in thermal forming

    Directory of Open Access Journals (Sweden)

    Wang Chu

    2015-01-01

    Full Text Available Formability of pure molybdenum in thermal forming process has been greatly improved, but it is still hard to avoid the generation of rupture and other quality defects. In this paper, a ductile fracture criterion of pure molybdenum sheet in thermal forming was established by considering the plastic deformation capacity of material and stress states, which can be used to describe fracture behaviour and critical rupture prediction of pure molybdenum sheet during hot forming process. Based on the isothermal uniaxial tensile tests which performed at 993 to 1143 K with strain rate range from 0.0005 to 0.2 s−1, the material parameters are calculated by the combination method of experiment with FEsimulation. Based on the observation, new fracture criteria can be expressed as a function of Zener-Hollomon parameter. The critical fracture value that calculated by Oyane-Sato criterion increases with increasing temperature and decreasing strain rate. The ductile fracture criterion with Zener-Hollomon parameter of pure molybdenum in thermal forming is proposed.

  5. New weldable high strength aluminum alloy developed for cryogenic service

    Science.gov (United States)

    1966-01-01

    Wrought aluminum alloy has improved low temperature notch toughness and weldability. This alloy can be mill-fabricated to plate and sheet without difficulty. Post-weld aging improves weld ductility and strength properties. A typical treatment is 8 hours at 225 deg F plus 16 hours at 300 deg F.

  6. Weldability, mechanical and corrosion properties of microalloyed reinforcing bars

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L. [Univ. Autonoma de Campeche (Mexico). Programa de Corrosion del Golfo de Mexico]|[UNAM, Cuernavaca (Mexico). Inst. de Fisica; Hernandez, G.; Carpio, J.J. [Univ. Autonoma de Campeche (Mexico). Programa de Corrosion del Golfo de Mexico; Arganis, C. [Inst. Nacional de Investigaciones Nucleares, Salazar (Mexico)

    1994-12-31

    The first Mexican specification of low alloy reinforcing bars of weldable grade and optimal mechanical response during plastic deformation caused by earthquakes was issued in 1987. The modifications of the Construction Code of Mexico City after the 1985 earthquakes included the recommendation of using low alloy rebars as a first option for the reinforced concrete building main structural components. The low alloy rebars are fabricated employing low carbon steels microalloyed with niobium or vanadium in order to combine the weldability and high ductility of the low carbon steels with the high strength provided by the, microalloying elements. The present paper reports the results of a comparative study of standard (medium carbon) and microalloyed rebars considering features of microstructure, mechanical behavior, weldability and the electrochemical properties of these two materials embedded in plain and chloride contaminated concrete. The main differences were observed in microstructural features, mechanical behavior and weldability. The corrosion rate measurements of standard and microalloyed rebars are similar. The weldability of the rebars is discussed in terms of the better electrical connectivity of the reinforcement and cathodic protection.

  7. Nickel aluminide alloys with improved weldability

    Science.gov (United States)

    Santella, M.L.; Goodwin, G.M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys. 5 figs.

  8. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Kim, Ji Sung [Korea Maritime and Ocean Univ., Busan (Korea, Republic of)

    2016-12-15

    Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of 0.5 mmt pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output.

  9. A review of chromium, molybdenum, and tungsten alloys

    Science.gov (United States)

    Klopp, W. D.

    1975-01-01

    The mechanical properties of chromium, molybdenum, and tungsten alloys are reviewed with particular emphasis on high-temperature strength and low-temperature ductility. Precipitate strengthening is highly effective at 0.4 to 0.8 times the melting temperature in these metals, with HfC being most effective in tungsten and molybdenum, and Ta(B,C) most effective in chromium. Low-temperature ductility can be improved by alloying to promote rhenium ductilizing or solution softening. The low-temperature mechanical properties of these alloys appear related to electronic interactions rather than to the usual metallurgical considerations.

  10. Development of weldable, corrosion-resistant iron-aluminide (FeAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, P.J.; Goodwin, G.M.; Wang, X.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    A boron-microalloyed FeAl alloy (Fe-36Al-0.2Mo-0.05Zr-0.13C, at.%, with 100-400 appm B) with improved weldability and mechanical properties was developed in FY 1994. A new scale-up and industry technology development phase for this work began in FY 1995, pursuing two parallel paths. One path was developing monolithic FeAl component and application technology, and the other was developing coating/cladding technology for alloy steels, stainless steels and other Fe-Cr-Ni alloys. In FY 1995, it was found that cast FeAl alloys had good strength at 700-750{degrees}C, and some (2.5%) ductility in air at room-temperature. Hot-extruded FeAl with refined grain size was found to have ductility and to also have good impact-toughness at room-temperature. Further, it was discovered that powder-metallurgy (P/M) FeAl, consolidated by direct hot-extrusion at 950-1000{degrees}C to have an ultra fine-grained microstructure, had the highest ductility, strength and impact-toughness ever seen in such intermetallic alloys.

  11. Weldability of Additive Manufactured Stainless Steel

    Science.gov (United States)

    Matilainen, Ville-Pekka; Pekkarinen, Joonas; Salminen, Antti

    Part size in additive manufacturing is limited by the size of building area of AM equipment. Occasionally, larger constructions that AM machines are able to produce, are needed, and this creates demand for welding AM parts together. However there is very little information on welding of additive manufactured stainless steels. The aim of this study was to investigate the weldability aspects of AM material. In this study, comparison of the bead on plate welds between AM parts and sheet metal parts is done. Used material was 316L stainless steel, AM and sheet metal, and parts were welded with laser welding. Weld quality was evaluated visually from macroscopic images. Results show that there are certain differences in the welds in AM parts compared to the welds in sheet metal parts. Differences were found in penetration depths and in type of welding defects. Nevertheless, this study presents that laser welding is suitable process for welding AM parts.

  12. Development of Weldable Superplastic Forming Aluminum Alloy Sheet Final Report CRADA No. TC-1086-95

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, T. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-11-01

    Numerous applications could exist for superplastic formable, weldable aluminum alloys in the automotive, aerospace, architectural, and construction industries. In this project, LLNL and Kaiser worked with the Institute for Metals Superplasticity Problems to develop and evaluate weldable superplastic alloys.

  13. Weldability and joining techniques for advanced fossil energy system alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M. [Univ. of Tennessee, Knoxville, TN (United States)

    1998-05-01

    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  14. Ductility of Nanostructured Bainite

    Directory of Open Access Journals (Sweden)

    Lucia Morales-Rivas

    2016-12-01

    Full Text Available Nanostructured bainite is a novel ultra-high-strength steel-concept under intensive current research, in which the optimization of its mechanical properties can only come from a clear understanding of the parameters that control its ductility. This work reviews first the nature of this composite-like material as a product of heat treatment conditions. Subsequently, the premises of ductility behavior are presented, taking as a reference related microstructures: conventional bainitic steels, and TRIP-aided steels. The ductility of nanostructured bainite is then discussed in terms of work-hardening and fracture mechanisms, leading to an analysis of the three-fold correlation between ductility, mechanically-induced martensitic transformation, and mechanical partitioning between the phases. Results suggest that a highly stable/hard retained austenite, with mechanical properties close to the matrix of bainitic ferrite, is advantageous in order to enhance ductility.

  15. Weldability characteristics of torr and corrosion-resistant TMT bars using SMAW process

    Science.gov (United States)

    Datta, Ramen; Veeraraghavan, R.; Rohira, K. L.

    2002-08-01

    Torr steel rebars, also known as cold twisted deformed (CTD) rebars, are used extensively for the construction of reinforced cement concrete (RCC) structures. These steels, which are characterized by a high carbon content and are subjected to a cold twisting operation to attain the desired strength level and bond strength, suffer from low ductility and poor bendability properties. Furthermore, these rebars are not suitable for coastal, humid, and industrial conditions where corrosion rates are very high. To combat these problems, recent efforts at the Steel Authority of India Limited (SAIL) have led to the successful development of corrosion-resistant thermomechanically treated (TMT) rebars with a minimum yield strength of 500 MPa. These rebars are characterized by a low carbon content, exhibit excellent strength-ductility-corrosion properties, and are rapidly replacing traditional torr rebars in corrosion-prone areas for a wide range of applications, namely, concrete reinforcement structures, bridges, flyovers on dams, etc. A comprehensive evaluation of the weldability properties of corrosion-resistant Cu-TMT rebars was carried out, and they were compared with those made of torr steel in order to assess their suitability for various structural applications. Implant and restraint cracking (RC) tests were carried out to assess the cold-cracking resistance of the weld joint under different welding conditions. The static fatigue limit (SFL) values were found to be similar, namely, 640 MPa (torr steel) and 625 MPa (Cu-TMT steel) under condition of no preheating and no rebaking using a heat input of 7.5 KJ/cm, indicating adequate cold-cracking resistance for both the steels. Restraint cracking tests yielded critical restraint intensities (Kcr) in excess of 16,800 MPa for both of the steels. Based on the weldability tests, the optimized conditions for welding were formulated and extensive tests were carried out on the welded joints. Both of the steels exhibited adequate

  16. Influence of tungsten, carbon and nitrogen on toughness and weldability of low activation austenitic high manganese stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hosoi, H.; Abraham, M.; Kutsuna, M.; Miyahara, K. (Nagoya Univ., Dept. of Materials Science and Engineering, Chikusa (Japan)); Shimoide, Y. (Daido Inst. of Technology, Dept. of Mechanical Engineering, Nagoya (Japan))

    1992-09-01

    The effect of alloying elements of tungsten, carbon and nitrogen on high temperature strength, toughness and weldability of Fe-12Cr-15Mn alloy has been investigated. The high temperature strength of Fe-12Cr-15Mn-0.2C-0.1N at 873 K increases with the addition of 2-300W without affecting ductility. The toughness as estimated by Charpy tests, is also not influenced by the addition of 2-3%W, while the increase of carbon content decreases the absorbed energy. The transition temperature shifts to higher temperature by aging at 873 K for 3600 ks, but it is still lower than room temperature. The degradation of toughness after aging is considered to be related to the precipitation of M[sub 23]C[sub 6] on grain boundaries. The weldability evaluated by hot cracking susceptibility is not affected by alloying of tungsten and carbon in this alloy system. It is noted that the alloys studied show less hot cracking susceptibility than commercial AISI 316L stainless steel. (orig.).

  17. A study of the weldability and weld related microstructure of cabot alloy 214

    Science.gov (United States)

    Cieslak, M. J.; Stephens, J. J.; Carr, M. J.

    1988-03-01

    The weldability and weld metal microstructure of Cabot Alloy 214 have been investigated with a variety of experimental and analytical techniques. These include Varestraint hot crack testing, hot ductility testing, pulsed Nd:YAG laser welding, scanning and analytical electron microscopy, electron microprobe analysis, and X-ray diffraction. A heat of Alloy 214 containing intentionally alloyed B (0.003 wt pct) and Zr (0.07 wt pct) was much more sensitive to both fusion zone hot cracking as quantified by the Varestraint test and to simulated heat-affected-zone (HAZ) cracking as quantified by hot ductility testing than a heat of Alloy 214 containing no intentionally added B (0.0002 wt pct) or Zr (0.02 wt pct). Scanning electron microscopy of the high B and Zr alloy showed the presence of dendritically-shaped, Zr-rich constituents in interdendritic regions in the gas-tungsten-arc (GTA) welds. Electron microprobe analysis of these welds revealed a segregation pattern of Cr, Al, Mn, and Zr enrichment in interdendritic regions and Ni and Fe enrichment in dendrite core regions. Analytical electron microscopy revealed the presence of ZrX (X = B, C, N, O), M23C6, and γ' in the fusion zone of GTA weld specimens, γ' was also found in the as-received base metal and in the GTA weld HAZ. X-ray diffraction analysis of extractions from the high B and Zr GTA weld metal also indicated the presence of a ZrX-type constituent. The results of this study are in qualitative agreement with earlier work performed on alloys such as NIMONIC 90 and INCONEL 718∗ relative to the detrimental effect of B and Zr additions on fusion zone and HAZ hot cracking susceptibility.

  18. Influence of design factors on weldability of the AZ91E alloy

    Directory of Open Access Journals (Sweden)

    J. Adamiec

    2010-01-01

    Full Text Available Basic design factors which influence weldability include casting shape, its stiffness and type of welded joint. The influence of casting stiffness on weldability, understood as susceptibility to hot cracking, in conditions of constant joint stiffness has been determined on the basis of the Fisco test results, and in conditions of varying stiffness on the basis of the Houldcroft test

  19. Weldability prequalification of steels for deep water service

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Michael D. [Acute Technological Services, Inc., Houston, TX (United States); Ibarra, S. Jim [BP America (United States); Fazackerley, W.J. [EWI Microalloying, Houston, TX (United States)

    2004-07-01

    The weldability of steels for deep water applications must be determined long before welding procedures are qualified. The weldments of deep water equipment such as steel Catenary risers (SCRs) are subjected to currents which result in high cyclic stresses. It is imperative that steels selected for such service have high CTOD fracture toughness values after welding to ensure good defect tolerance. Through fracture mechanics analyses, these CTOD values are used to determine the defect acceptance criteria that is used for inspection of such weldments. The base metal and weld metal are more easily obtained, but because the weld joint design changes the position of the HAZs, the CTOD value for the HAZ is usually a combination of the base, weld consumable, and HAZ. The value obtained from such a test is suspect, and may give an optimistic value if the weld metal or base metal have high CTOD values. This paper discusses the various strategies for determining the true weldability long before construction commences, using API RP 2Z (1) Type tests for prequalification of base materials. (author)

  20. Ductile failure modeling

    DEFF Research Database (Denmark)

    Benzerga, Ahmed Amine; Leblond, Jean Baptiste; Needleman, Alan

    2016-01-01

    much attention recently. At ductile fracture, localization of plastic flow is often important, leading to failure by a void-sheet mechanism. Various applications are presented to illustrate the models, including welded specimens, shear tests on butterfly specimens, and analyses of crack growth....... growth models to account for non-spherical initial void shapes and for shape changes during growth. This includes cases of very low stress triaxiality, where the voids can close up to micro-cracks during the failure process. The void growth models have also been extended to consider the effect of plastic...

  1. Microstructural and weldability evaluation of 310TaN

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, C.D.; Qiao, C.Y.P. [Univ. of Tennessee, Knoxville, TN (United States); Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    Excellent weldability and good microstructural stability of 310TaN, in terms of the formation and growth of secondary phases at elevated temperature, was revealed in this investigation. The interganular stress corrosion resistance of 310TaN is superior to modified 800H and 310HCbN evaluated previously due to the fact that TaC, TaN and Ta(C,N) particles are more stable compared to Nb-rich or Ti-rich carbides, nitrides and carbonitrides presented in the other advanced alloys. Using resistance spot welding technique for which extremely fast cooling is a characteristic, it was found that a very minor amount of gain boundary liquation takes place during welding thermal cycling. The limited grain boundary liquation is of the eutectic type i.e., a low tendency to weld HAZ hot cracking.

  2. Ductile failure modeling

    DEFF Research Database (Denmark)

    Benzerga, Ahmed Amine; Leblond, Jean Baptiste; Needleman, Alan

    2016-01-01

    growth models to account for non-spherical initial void shapes and for shape changes during growth. This includes cases of very low stress triaxiality, where the voids can close up to micro-cracks during the failure process. The void growth models have also been extended to consider the effect of plastic...... anisotropy, or the influence of nonlocal effects that bring a material size scale into the models. Often the voids are not present in the material from the beginning, and realistic nucleation models are important. The final failure process by coalescence of neighboring voids is an issue that has been given...... much attention recently. At ductile fracture, localization of plastic flow is often important, leading to failure by a void-sheet mechanism. Various applications are presented to illustrate the models, including welded specimens, shear tests on butterfly specimens, and analyses of crack growth....

  3. Organometallic Chemistry of Molybdenum.

    Science.gov (United States)

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  4. Comparing the Structure and Mechanical Properties of Welds on Ductile Cast Iron (700 MPa under Different Heat Treatment Conditions

    Directory of Open Access Journals (Sweden)

    Ronny M. Gouveia

    2018-01-01

    Full Text Available The weldability of ductile iron, as widely known, is relatively poor, essentially due to its typical carbon equivalent value. The present study was developed surrounding the heat treatability of welded joints made with a high strength ductile cast iron detaining an ultimate tensile strength of 700 MPa, and aims to determine which heat treatment procedures promote the best results, in terms of microstructure and mechanical properties. These types of alloys are suitable for the automotive industry, as they allow engineers to reduce the thickness of parts while maintaining mechanical strength, decreasing the global weight of vehicles and providing a path for more sustainable development. The results allow us to conclude that heat treatment methodology has a large impact on the mechanical properties of welded joints created from the study material. However, the thermal cycles suffered during welding promote the formation of ledeburite areas near the weld joint. This situation could possibly be dealt through the implementation of post-welding heat treatments (PWHT with specific parameters. In contrast to a ductile cast iron tested in a previous work, the bull-eye ductile cast iron with 700 MPa ultimate tensile strength presented better results during the post-welding heat treatment than during preheating.

  5. Micromechanics modelling of ductile fracture

    CERN Document Server

    Chen, Zengtao

    2013-01-01

    This book summarizes research advances in micromechanics modelling of ductile fractures made in the past two decades. The ultimate goal of this book is to reach manufacturing frontline designers and materials engineers by providing a user-oriented, theoretical background of micromechanics modeling. Accordingly, the book is organized in a unique way and presents a vigorous damage percolation model developed by the authors over the last ten years. This model overcomes almost all difficulties of the existing models and can be used to completely accommodate ductile damage development within a single, measured microstructure frame. Related void damage criteria including nucleation, growth and coalescence are then discussed in detail: how they are improved, when and where they are used in the model, and how the model performs in comparison with the existing models. Sample forming simulations are provided to illustrate the model’s performance.

  6. Casting of weldable graphite/magnesium metal matrix composites with built-in metallic inserts

    Science.gov (United States)

    Lee, Jonathan A.; Kashalikar, Uday; Majkowski, Patricia

    1994-01-01

    Technology innovations directed at the advanced development of a potentially low cost and weldable graphite/magnesium metal matrix composites (MMC) through near net shape pressure casting are described. These MMC components uniquely have built-in metallic inserts to provide an innovative approach for joining or connecting other MMC components through conventional joining techniques such as welding, brazing, mechanical fasteners, etc. Moreover, the metallic inserts trapped within the MMC components can be made to transfer the imposed load efficiently to the continuous graphite fiber reinforcement thus producing stronger, stiffer, and more reliable MMC components. The use of low pressure near net shape casting is economical compared to other MMC fabrication processes. These castable and potentially weldable MMC components can provide great payoffs in terms of high strength, high stiffness, low thermal expansion, lightweight, and easily joinable MMC components for several future NASA space structural, industrial, and commercial applications.

  7. Systematic Microstructural and Corrosion Performance Evaluation of CK-3MCuN and CN-3MN High Molybdenum Stainless Steel Castings

    Energy Technology Data Exchange (ETDEWEB)

    C.D. Lundin; S. Wen; W. Liu; G. Zhou

    2001-10-01

    High molybdenum austenitic stainless steel castings are widely accepted for their high strength, excellent weldability, and good corrosion resistance over a wide range of temperatures in highly oxidizing aqueous and gaseous media in chemical processing and other environments. With their desirable performance, high molybdenum austenitic stainless steel castings are increasingly applied in industry in a similar manner as wrought materials. In general, cast and wrought stainless and high alloy steels are anticipated to possess equivalent resistance to corrosive media, and they are frequently used in conjunction with each other. However, alloying element segregation usually is more evident in castings than in wrought counterparts. Segregation of alloying elements can lead to the formation of secondary phases, such as sigma. Mechanical properties and especially the corrosion resistance of castings may be affected by the secondary phases. In addition, improper heat treatment procedures c an also lead to the formation of carbides and secondary phases in high alloy and austenitic stainless steels.

  8. Ductile failure X-prize.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Wellman, Gerald William; Emery, John M.; Ostien, Jakob T.; Foster, John T.; Cordova, Theresa Elena; Crenshaw, Thomas B.; Mota, Alejandro; Bishop, Joseph E.; Silling, Stewart Andrew; Littlewood, David John; Foulk, James W., III; Dowding, Kevin J.; Dion, Kristin; Boyce, Brad Lee; Robbins, Joshua H.; Spencer, Benjamin Whiting

    2011-09-01

    Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictions had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.

  9. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  10. The effect of grain refinement on the room-temperature ductility of as-cast Fe{sub 3}Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, S.; Andleigh, V.K.; McKamey, C.G. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    Fe{sub 3}Al-based alloys exhibit poor room-temperature ductility in the as-cast condition. In this study, the effect of grain refinement of the as-cast alloy on room-temperature ductility was investigated. Small melts of Fe-28 at. % Al-5 at. % Cr were inoculated with various alloying additions and cast into a 50- x 30- x 30-mm graphite mold. The resulting ingots were examined metallographically for evidence of grain refinement, and three-point bend tests were conducted on samples to assess the effect on room-temperature ductility. Ductility was assumed to correlate with the strain corresponding to the maximum stress obtained in the bend test. The results showed that titanium was extremely effective in grain refinement, although it severely embrittled the alloy in contents exceeding 1%. Boron additions strengthened the alloy significantly, while carbon additions reduced both the strength and ductility. The best ductility was found in an alloy containing titanium, boron, and carbon. In order to verify the results of the grain refinement study, vacuum-induction melts of selected compositions were prepared and cast into a larger 25- x 150- x 100-mm graphite mold. Tensile specimens were machined from the ingots, and specimens were tested at room temperature. The results of the tensile tests agreed with the results of the grain refinement study; in addition, the addition of molybdenum was found to significantly increase room-temperature tensile ductility over that of the base alloy.

  11. Extraordinary plasticity of ductile bulk metallic glasses.

    Science.gov (United States)

    Chen, Mingwei; Inoue, Akihisa; Zhang, Wei; Sakurai, Toshio

    2006-06-23

    Shear bands generally initiate strain softening and result in low ductility of metallic glasses. In this Letter, we report high-resolution electron microscope observations of shear bands in a ductile metallic glass. Strain softening caused by localized shearing was found to be effectively prevented by nanocrystallization that is in situ produced by plastic flow within the shear bands, leading to large plasticity and strain hardening. These atomic-scale observations not only well explain the extraordinary plasticity that was recently observed in some bulk metallic glasses, but also reveal a novel deformation mechanism that can effectively improve the ductility of monolithic metallic glasses.

  12. "Work-Hardenable" ductile bulk metallic glass.

    Science.gov (United States)

    Das, Jayanta; Tang, Mei Bo; Kim, Ki Buem; Theissmann, Ralf; Baier, Falko; Wang, Wei Hua; Eckert, Jürgen

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (glass, which exhibits high strength of up to 2265 MPa together with extensive "work hardening" and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The "work-hardening" capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  13. Effect of solute grain boundary segregation and hardness on the ductile-to-brittle transition for a Cr-Mo low-alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Shen, D.-D. [School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Song, S.-H. [Division of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen University Town, Xili, Shenzhen 518055 (China)]. E-mail: shsonguk@yahoo.co.uk; Yuan, Z.-X. [School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Weng, L.-Q. [Division of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen University Town, Xili, Shenzhen 518055 (China)

    2005-03-15

    Combined solute grain boundary segregation and hardness effect on the ductile-to-brittle transition is examined for a P-doped 2.25Cr-1Mo steel by means of Auger electron spectroscopy (AES) in conjunction with hardness measurements, Charpy impact tests and scanning electron microscopy (SEM). During ageing at 540 deg. C after water quenching from 980 deg. C, the segregation of phosphorus, molybdenum and chromium increases and the hardness decreases with increasing ageing time. The ductile-to-brittle transition temperature (DBTT) increases with increasing phosphorus segregation and decreases with decreasing hardness. The phosphorus segregation effect is dominant until 100 h ageing and after that the hardness effect becomes dominant, making the DBTT decrease with further increasing ageing time although the segregation of phosphorus still increases strongly. The segregation of molybdenum has some effect on the DBTT decrease.

  14. Austenitization of FerriticDuctile Iron

    Directory of Open Access Journals (Sweden)

    Krzyńska A.

    2014-12-01

    Full Text Available Austenitization is the first step of heat treatment preceding the isothermal quenching of ductile iron in austempered ductile iron (ADI manufacturing. Usually, the starting material for the ADI production is ductile iron with more convenient pearlitic matrix. In this paper we present the results of research concerning the austenitizing of ductile iron with ferritic matrix, where all carbon dissolved in austenite must come from graphite nodules. The scope of research includedcarrying out the process of austenitization at 900° Cusing a variable times ranging from 5 to 240minutes,and then observations of the microstructure of the samples after different austenitizing times. These were supplemented with micro-hardness testing. The research showed that the process of saturating austenite with carbon is limited by the rate of dissolution of carbon from nodular graphite precipitates

  15. 46 CFR 56.60-15 - Ductile iron.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ductile iron. 56.60-15 Section 56.60-15 Shipping COAST... Materials § 56.60-15 Ductile iron. (a) Ductile cast iron components made of material conforming to ASTM A... (incorporated by reference; see 46 CFR 56.01-2). (b) Ductile iron castings conforming to ASTM A 395...

  16. Nitrogen reduction: Molybdenum does it again

    Science.gov (United States)

    Schrock, Richard R.

    2011-02-01

    Nature reduces dinitrogen under mild conditions using nitrogenases, the most active of which contains molybdenum and iron. The only abiological dinitrogen reduction catalyst that avoids the harsh conditions of the Haber-Bosch process contains just molybdenum.

  17. Properties, weldability and corrosion behavior of supermartensitic stainless steels for on- and offshore applications

    Energy Technology Data Exchange (ETDEWEB)

    Taban, Emel; Kaluc, Erdinc; Ojo, Olatunji Oladimeji [Kocaeli Univ. (Turkey). Welding Research, Education and Training Center

    2016-08-01

    Stimulated material-environment interactions inside and around flowlines of deep or ultra deep wells during oil and gas exploration, and fabrication economy of pipelines have been the major challenges facing the oil and gas industries. Presumably, an extensive focus on high integrity, performance and material economy of flowlines have realistically made supermartensitic stainless steels (SMSS) efficient and effective material choices for fabricating onshore and offshore pipelines. Supermartensitic stainless steels exhibit high strength, good low temperature toughness, sufficient corrosion resistance in sweet and mildly sour environments, and good quality weldability with both conventional welding processes and modern welding methods such as laser beam welding, electron beam welding and hybrid welding approaches. In terms of economy, supermartensitic stainless steels are cheaper and they are major replacements for more expensive duplex stainless steels required for tubing applications in the oil and gas industry. However, weld areas of SMSS pipes are exposed to sulphide stress cracking (SSC), so intergranular stress corrosion cracking (IGSCC) or stress corrosion cracking can occur. In order to circumvent this risk of cracking, a post-weld heat treatment (PWHT) for 5 minutes at about 650 C is recommended. This paper provides detailed literature perusal on supermartensitic stainless steels, their weldability and corrosion behaviors. It also highlights a major research area that has not been thoroughly expounded in literature; fatigue loading behaviors of welded SMSS under different corrosive environments have not been thoroughly detailed in literature.

  18. Weldability examination of ASTM A 240 S41500 martensitic stainless steel by thermal cycles simulation testings

    Directory of Open Access Journals (Sweden)

    Alberto Velázquez-del Rosario

    2015-07-01

    Full Text Available The weldability assets of ASTM A 240 S41500 (ASTM A 240/A 240M martensitic stainless steel are presented through the study of the effects of single and double thermal weld cycles on mechanical properties and microstructure of base metal (BM and the artificial heat affected zone (HAZ created by thermal weld simulations. For single cycles, separate peak temperatures of 1000 ºC/12 s and 1350 ºC/12 s (cooling times: 12 s in both cases were evaluated, whilst two combinations of peak temperatures: (1350 ºC/5 s + 1000 ºC/5 s ºC and (1350 ºC/12 s + 1000 ºC/12 s ºC (cooling times: 5 s and 12 s, were applied for double cycles. Post weld heat treatment (PWHT with short and long holding times were applied and Vickers hardness, impact toughness and metallographic examinations were used in order to assess mechanical and metallographic properties in the as-simulated (no heat treated and postweld heat treated conditions. Best properties of the welded joint for double thermal weld cycles with long holding times were reached, which reveals the good weldability and applicability of the tested material in post weld heat treated conditions.

  19. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate - dilution map, show a crack - no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl{sub 3} + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate - composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on

  20. Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (I) - Effect of Type and Flow Rate of Shielding Gases on Weldability -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Kim, Ji Sung [Korea Maritime and Ocean Univ., Busan (Korea, Republic of)

    2016-12-15

    In this study, welding of pure titanium was carried out by using a continuous wave fiber laser with a maximum output of 6.3 kW. Because brittle regions form easily in titanium as a result of oxidation or nitriding, the weld must be protected from the atmosphere by using an appropriate shielding gas. Experiments were performed by changing the type and the flow rate of shielding gases to obtain the optimal shielding condition, and the weldability was then evaluated. The degree of oxidation and nitriding was distinguished by observing the color of beads, and weld microstructure was observed by using an optical microscope and a scanning electron microscope. The mechanical properties of the weld were examined by measuring hardness. When the weld was oxidized or nitrified, the bead color was gray or yellow, and the oxygen or nitrogen content in the bead surface and overall weld tended to be high, as a result of which the hardness of the weld was thrice that of the base metal. A sound silvery white bead was obtained by using Ar as the shielding gas.

  1. HYDROGEN VACANCY INTERACTION IN MOLYBDENUM

    NARCIS (Netherlands)

    Abd El Keriem, M.S.; van der Werf, D.P.; Pleiter, F

    1993-01-01

    Vacancy-hydrogen interaction in molybdenum was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. The complex InV2 turned out to trap up to two hydrogen atoms: trapping of a single hydrogen atom gives rise to a decrease of the quadrupole

  2. Gel Fabrication of Molybdenum “Beads”

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cooley, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-11-01

    Spherical molybdenum particles or “beads” of various diameters are of interest as feedstock materials for the additive manufacture of targets and assemblies used in the production of 99Mo medical isotopes using accelerator technology. Small metallic beads or ball bearings are typically fabricated from wire; however, small molybdenum spheres cannot readily be produced in this manner. Sol-gel processes are often employed to produce small dense microspheres of metal oxides across a broad diameter range that in the case of molybdenum could be reduced and sintered to produce metallic spheres. These Sol-gel type processes were examined for forming molybdenum oxide beads; however, the molybdenum trioxide was chemically incompatible with commonly used gelation materials. As an alternative, an aqueous alginate process being assessed for the fabrication of oxide spheres for catalyst applications was employed to form molybdenum trioxide beads that were successfully reduced and sintered to produce small molybdenum spheres.

  3. Low temperature enhanced ductility of friction stir processed 5083 ...

    Indian Academy of Sciences (India)

    Administrator

    has excellent corrosion resistance and weldability com- bined with good strength and formability. ..... of absolute temperature. dislocation climb (m = 0⋅18) with increasing grain size from 0⋅95 to 1⋅6–2⋅6 μm, ... power law, dislocation core diffusion and grain boundary sliding mechanisms. 4. Conclusions. (I) Dynamically ...

  4. Modelling of damage development and ductile failure in welded joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    conducted ([P1], [P2], [P7]-[P9]). The focus in the thesis is on FS-welded 2xxx and 6xxx series of aluminum alloys, which are attractive, for example, to the aerospace industry, since the 2024 aluminum in particular, is typically classified as un-weldable by conventional fusion welding techniques. Secondly...

  5. Modelling of ductile failure in metal forming

    NARCIS (Netherlands)

    Wisselink, H.H.; Huetink, Han

    2009-01-01

    Damage and fracture are important criteria in the design of products and processes. Damage models can be used to predict ductile failure in metal forming processes. Nonlocal models avoid the mesh dependency problems of local damage models. A nonlocal damage model has been implemented in LSDYNA using

  6. Analysis of nucleation modelling in ductile cast iron

    DEFF Research Database (Denmark)

    Moumeni, Elham; Tutum, Cem Celal; Tiedje, Niels Skat

    2012-01-01

    Heterogeneous nucleation of nodular graphite at inclusions in ductile iron during eutectic solidification has been investigated. The experimental part of this work deals with casting of ductile iron samples with two different inoculants in four different thicknesses. Chemical analysis...

  7. Neutron scattering and models : molybdenum.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.

    1999-05-26

    A comprehensive interpretation of the fast-neutron interaction with elemental and isotopic molybdenum at energies of {le} 30 MeV is given. New experimental elemental-scattering information over the incident energy range 4.5 {r_arrow} 10 MeV is presented. Spherical, vibrational and dispersive models are deduced and discussed, including isospin, energy-dependent and mass effects. The vibrational models are consistent with the ''Lane potential''. The importance of dispersion effects is noted. Dichotomies that exist in the literature are removed. The models are vehicles for fundamental physical investigations and for the provision of data for applied purposes. A ''regional'' molybdenum model is proposed. Finally, recommendations for future work are made.

  8. Zirconia-molybdenum disilicide composites

    Science.gov (United States)

    Petrovic, John J.; Honnell, Richard E.

    1991-01-01

    Compositions of matter comprised of molybdenum disilicide and zirconium oxide in one of three forms: pure, partially stabilized, or fully stabilized and methods of making the compositions. The stabilized zirconia is crystallographically stabilized by mixing it with yttrium oxide, calcium oxide, cerium oxide, or magnesium oxide and it may be partially stabilized or fully stabilized depending on the amount of stabilizing agent in the mixture.

  9. Effect of Melting Techniques on Ductile Iron castings Properties

    OpenAIRE

    Bockus, S.; Dobrovolskis, A.

    2005-01-01

    The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-...

  10. Accelerated ageing of molybdenum oxide

    Science.gov (United States)

    Jorge, Marina; Cooil, Simon; Edmonds, Mark T.; Thomsen, Lars; Nematollahi, Mohammadreza; Mazzola, Federico; Wells, Justin W.

    2017-11-01

    The stability and lifetime of materials proposed for photovoltaic applications are important parameters, because such devices should offer long-term reliable performance whilst operating in a harsh environment. In this work, we present a powerful approach to accelerate and study the degradation mechanisms of molybdenum oxide, a material which has shown promise for next generation photovoltaics, and for enhanced hole extraction in organic photovoltaics. We use UV and soft x-rays to drive accelerated ageing, boosting the ageing time by a factor of up to 1000. Using this method, we find that molybdenum oxide does not offer reliable performance in environments in which heating or ionising radiation are present, because of its propensity to reduce, thus strongly modifying its electronic properties. We estimate that  ≈100 d of unfiltered sunlight exposure would be sufficient to reduce this material into metallic MoO2. We also show that a very similar degradation can be driven by thermally, and that in both cases, the creation of oxygen vacancies is responsible. A lack of robustness to harsh operating conditions (i.e. UV and/or heat) brings the suitability of unprotected molybdenum oxide in photovoltaic applications into question.

  11. Influence of the phase morphology on the weldability of PLA/PBAT-blends by using butt-welding

    Science.gov (United States)

    Goebel, L.; Bonten, C.

    2014-05-01

    The material development in the field of bioplastics is steadily increasing. It is important to examine the processability but the Investigation of further process steps is also very important. In this paper the weldability of bioplastics is discussed. Compounds of Polylactide (PLA) and Polybutyleneadipate-terephthalate (PBAT) are produced by a twin screw extruder with different mixing ratios. Tensile specimens are produced by injection moulding and the tensile tests are carried out. In order to verify the weldability, some tensile specimens are cut in halfes and butt welded. Afterwards a tensile test is performed with the welded samples and the results are compared with the values of the unwelded samples. For understanding the results, the morphology of the welds were examined and correlated. It has been found that blends with a mixing ratio of 50:50 have the lowest welding factor, because of the immiscibility of PLA and PBAT. Weld images show segregated areas that reduce the force transmission.

  12. A review of macroscopic ductile failure criteria.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo; Reedlunn, Benjamin

    2013-09-01

    The objective of this work was to describe several of the ductile failure criteria com- monly used to solve practical problems. The following failure models were considered: equivalent plastic strain, equivalent plastic strain in tension, maximum shear, Mohr- Coulomb, Wellman's tearing parameter, Johnson-Cook and BCJ MEM. The document presents the main characteristics of each failure model as well as sample failure predic- tions for simple proportional loading stress histories in three dimensions and in plane stress. Plasticity calculations prior to failure were conducted with a simple, linear hardening, J2 plasticity model. The resulting failure envelopes were plotted in prin- cipal stress space and plastic strain space, where the dependence on stress triaxiality and Lode angle are clearly visible. This information may help analysts select a ductile fracture model for a practical problem and help interpret analysis results.

  13. Ductility of stabilized ferritic stainless steel welds

    Science.gov (United States)

    Hunter, G. B.; Eagar, T. W.

    1980-02-01

    An investigation was made into the mechanism of ductility loss in low interstitial 18 Cr-2Mo ferritic stainless steel welds stabilized with Ti and Nb. It was found that stabilizing TiN or Nb(C,N) precipitates are dissolved during the welding process, resulting in a finer distribution of precipitates in the weld metal than in the base metal. Furthermore, the FATT was found to increase by more than 200°C, leading to decreased room temperature ductility. Such an increase in FATT may not be explained solely in terms of grain growth. Internal friction measurements indicate that no free nitrogen is present in the weld metal, yet wet chemical analysis reveals that the nitrogen is present in a soluble form. Kinetic arguments suggest that the stabilized nitrogen dissolved during welding tends to reprecipitate during solidification in the form of a chromium rich nitride phase.

  14. Weldability of the superalloys Haynes 188 and Hastelloy X by Nd:YAG

    Directory of Open Access Journals (Sweden)

    Graneix Jérémie

    2014-01-01

    Full Text Available The requirements for welded aircraft parts have become increasingly severe, especially in terms of the reproducibility of the geometry and metallurgical grade of the weld bead. Laser welding is a viable method of assembly to meet these new demands, because of automation, to replace the manual TIG welding process. The purpose of this study is to determine the weldability of Hastelloy X and Haynes 188 alloys by the butt welding process with a Nd:YAG laser. To identify the influential parameters of the welding process (laser power, feed rate, focal diameter and flow of gas while streamlining testing, an experimental design was established with the CORICO software using the graphic correlation method. The position of the focal point was fixed at 1/3 of the thickness of the sheet. The gas flow rate and the power of the beam have a major effect on the mechanical properties and geometry of the weld. The strength of the weld is comparable to that of the base metal. However, there is a significant decrease in the elongation at break of approximately 30%. The first observations of the cross section of the weld by scanning electron microscopy coupled with EBSD analysis show a molten zone presenting dendritic large grains compared to the equiaxed grains of the base metals without a heat affected zone.

  15. The effect of pearlite on the hydrogen-induced ductility loss in ductile cast irons

    Science.gov (United States)

    Matsuo, T.

    2017-05-01

    Hydrogen energy systems, such as a hydrogen fuel cell vehicle and a hydrogen station, are rapidly developing to solve global environmental problems and resource problems. The available structural materials used for hydrogen equipments have been limited to only a few relatively expensive metallic materials that are tolerant for hydrogen embrittlement. Therefore, for the realization of a hydrogen society, it is important to expand the range of materials available for hydrogen equipment and thereby to enable the use of inexpensive common materials. Therefore, ductile cast iron was, in this study, focused as a structural material that could contribute to cost reduction of hydrogen equipment, because it is a low-cost material having good mechanical property comparable to carbon steels in addition to good castability and machinability. The strength and ductility of common ductile cast irons with a ferritic-pearlitic matrix can be controlled by the volume fraction of pearlitic phase. In the case of carbon steels, the susceptibility to hydrogen embrittlement increases with increase in the pearlite fraction. Toward the development of ferritic-pearlitic ductile cast iron with reasonable strength for hydrogen equipment, it is necessary to figure out the effect of pearlite on the hydrogen embrittlement of this cast iron. In this study, the tensile tests were conducted using hydrogen-precharged specimens of three kinds of ferritic-pearlitic ductile cast irons, JIS-FCD400, JIS-FCD450 and JIS-FCD700. Based on the results, the role of pearlite in characterizing the hydrogen embrittlement of ductile cast iron was discussed.

  16. Ductile alloys for sealing modular component interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John J.; Wessell, Brian J.; James, Allister W.; Marsh, Jan H.; Gear, Paul J.

    2017-08-08

    A vane assembly (10) having: an airfoil (12) and a shroud (14) held together without metallurgical bonding there between; a channel (22) disposed circumferentially about the airfoil (12), between the airfoil (12) and the shroud (14); and a seal (20) disposed in the channel (22), wherein during operation of a turbine engine having the vane assembly (10) the seal (20) has a sufficient ductility such that a force generated on the seal (20) resulting from relative movement of the airfoil (12) and the shroud (14) is sufficient to plastically deform the seal (20).

  17. Analyses of cavitation instabilities in ductile metals

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    Cavitation instabilities have been predicted for a single void in a ductile metal stressed under high triaxiality conditions. In experiments for a ceramic reinforced by metal particles a single dominant void has been observed on the fracture surface of some of the metal particles bridging a crack...... for the influence of such size-effects on cavitation instabilities are presented. When a metal contains a distribution of micro voids, and the void spacing compared to void size is not extremely large, the surrounding voids may affect the occurrence of a cavitation instability at one of the voids. This has been...

  18. Prediction of Ductile Fracture Surface Roughness Scaling

    DEFF Research Database (Denmark)

    Needleman, Alan; Tvergaard, Viggo; Bouchaud, Elisabeth

    2012-01-01

    Experimental observations have shown that the roughness of fracture surfaces exhibit certain characteristic scaling properties. Here, calculations are carried out to explore the extent to which a ductile damage/fracture constitutive relation can be used to model fracture surface roughness scaling...... three dimensional stress and deformation states that develop in the fracture process region. An elastic-viscoplastic constitutive relation for a progressively cavitating plastic solid is used to model the material. Two populations of second phase particles are represented: large inclusions with low....... The scaling properties of the predicted thickness average fracture surfaces are calculated and the results are discussed in light of experimental observations....

  19. Effect of Melting Techniques on Ductile Iron castings Properties

    Directory of Open Access Journals (Sweden)

    Bockus, S.

    2006-01-01

    Full Text Available The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-cast only when large amount of pig iron in the charge and in addition some-steps inoculating treatment are used.

  20. Preliminary Results on FeCrAl Alloys in the As-received and Welded State Designed to Have Enhanced Weldability and Radiation Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Xunxiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-30

    The present report summarizes and discusses the recent results on developing a modern, nuclear grade FeCrAl alloy designed to have enhanced radiation tolerance and weldability. The alloys used for these investigations are modern FeCrAl alloys based on a Fe-13Cr-5Al-2Mo-0.2Si-0.05Y alloy (in wt.%, designated C35M). Development efforts have focused on assessing the influence of chemistry and microstructure on the fabricability and performance of these newly developed alloys. Specific focus was made to assess the weldability, thermal stability, and radiation tolerance.

  1. Large-Batch Reduction of Molybdenum Trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Kiggans, Jr, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menchhofer, Paul A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nunn, Stephen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryan, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Unconverted, isotopically-enriched molybdenum metal must be recovered from the spent radiopharmaceutical solution used in NorthStar’s Technetium-99m generator and reused. The recycle process begins by recovering the metal from the aqueous potassium molybdate (K2MoO4) solutions as molybdenum trioxide (MoO3) employing a process developed at Argonne National Laboratory. The MoO3 powder is subsequently reduced to molybdenum metal powder which can be blended with new powder and further processed into a flowable form to be used to produce target disks for irradiation. The molybdenum oxide reduction process has been examined and scaled to produce kilogram quantities of metal powder suitable for processing into a useable form employing spray drying or similar technique and ultimately used for target fabrication.

  2. Weldability characteristics of shielded metal arc welded high strength quenched and tempered plates

    Science.gov (United States)

    Datta, R.; Mukerjee, D.; Jha, S.; Narasimhan, K.; Veeraraghavan, R.

    2002-02-01

    High strength, quench and tempered (Q&T) plates having yield strength of a minimum of 670 MPa and conforming to SA 517 Gr. F specification were successfully developed at Rourkela Steel Plant in plates up to 40 mm thickness. The plates are used extensively for the fabrication of impellers, penstocks, excavators, dumpers, and raw material handling devices, where welding is an important processing step. SA 517 Gr. F plates, characterized by a relatively high carbon equivalent (CE: ˜0.6) and alloyed with Ni, Cr, Mo, Cu, and V, are susceptible to a crack-sensitive microstructure and cold cracking during welding. In view of the above, the present study investigated the weldability properties of 20 mm thick plates using the shielded metal arc welding (SMAW) process. Implant and elastic restraint cracking (ERC) tests were carried out to assess the cold cracking resistance of the weld joint under different welding conditions. Preheat of 100 °C, partial or full rebake, and a heat input of 14.9 to 15.4 KJ/cm resulted in static fatigue limit (SFL) values well in excess of the minimum specified yield strength (MSYS) of 670 MPa and a critical restraint intensity (K cr) value of 34,650 MPa, indicating adequate cold cracking resistance. Lamellar tear tests conducted using full thickness plates at heat input levels ranging from 9.7 to 14.4 KJ/cm and weld restraint loads (WRL) of 510 to 685 MPa showed no incidence of lamellar tear upon visual, ultrasonic, and four-section macroexamination. The weld joint, based on optimized welding parameters, exhibited adequate tensile strength (812.4 MPa) and low temperature impact toughness 88.3 and 63.4 J (9.2 and 6.6 kg-m) at -40 °C for weld metal (WM), and heat-affected zone (HAZ) properties, respectively. The crack tip opening displacement (CTOD) values of WM and HAZ (0.40 and 0.36 mm, respectively) were superior to that of the parent metal (0.29 mm), indicating adequate resistance of weld joint to brittle fracture. It was concluded that

  3. A study on laser weldability improvement of newly developed Haynes 282 superalloy

    Science.gov (United States)

    Osoba, Lawrence Opeyemi

    Haynes alloy 282 is a new gamma prime (gamma') precipitation strengthened nickel-base superalloy developed for high temperature applications in land-based and aero turbine engines. Joining is a crucial process both during the manufacturing of new components and repair of service-damaged turbine parts. Unfortunately, the new superalloy cracks during laser beam welding (LBW), which is an attractive technique for joining superalloys components due to its low heat input characteristic that preclude the geometrical distortion of welded components. This research is therefore initiated with the goal of studying and developing an effective approach for preventing or minimizing cracking during LBW of the new superalloy Haynes 282. Careful and detailed electron microscopy and spectroscopy study reveal, for the first time, the formation of sub-micron grain boundary M5B3 particles, in the material. Microstructural study of welded specimens coupled with Gleeble thermo-mechanical physical simulations shows that the primary cause of weld heat affected zone (HAZ) cracking in the alloy is the sub-solidus liquation reaction of intergranular M5B3 borides in the material. Further weldability study showed that the HAZ liquation cracking problem worsens with reduction in welding heat input, which is normally necessary to produce the desired weld geometry with minimum distortion. In order to minimize the HAZ cracking during low heat input laser welding, microstructural modification of the alloy by heat treatment at 1080--1100°C has been developed. The pre-weld heat treatment minimizes cracking in the alloy by reducing the volume fraction of the newly identified M5B3 borides, while also minimizing non-equilibrium grain boundary segregation of boron liberated during dissociation of the boride particles. Further improvement in resistance to cracking was produced by subjecting the material to thermo-mechanically induced grain refinement coupled with a pre-weld heat treatment at 1080

  4. Molybdenum Metallopharmaceuticals Candidate Compounds - The "Renaissance" of Molybdenum Metallodrugs?

    Science.gov (United States)

    Jurowska, Anna; Jurowski, Kamil; Szklarzewicz, Janusz; Buszewski, Boguslaw; Kalenik, Tatiana; Piekoszewski, Wojciech

    2016-01-01

    Metal-based drugs, also called "metallopharmaceuticals" or "metallodrugs", are examples of sophisticated compounds that have been used in inorganic medicinal chemistry as therapeutic agents for a long time. Few of them have shown substantially promising results and many of them have been used in different phases of clinical trials. The Mo-based metallodrugs were successfully applied in the past for treating conditions such as anemia or Wilson's disease. Moreover, Mo complexes are supposed to exert their effect by intercalation/ cleavage of DNA/RNA, arrest of the cell cycle, and alteration of cell membrane functions. However, in the current literature, there are no reliable and in-depth reviews about the hypothetical therapeutic applications of all of the known molybdenum complexes as metallopharmaceuticals/ metallodrugs. The main emphasis was on the in-depth review of the potential applications of Mo-based complexes in medicinal chemistry as metallopharmaceuticals in treating diseases such as cancer and tumors, Wilson's disease, diabetes mellitus, Huntington's disease, atherosclerosis, and anemia. It must be emphasized that today the development of innovative and new Mo-based metalo-pharmaceuticals is not rapid, and hence the aim of this paper was also to inspire colleagues working in the field of Mo compounds who are trying to find "signpost" for research. The authors hope that this article will increase interest and initiate the Renaissance of Mo-compounds among medicinal inorganic chemists. This paper is the first review article in the literature that refers to and emphasizes many different and complex aspects of possible applications and capabilities of Mo-based metallodrugs.

  5. Hot Ductility Behavior of a Peritectic Steel during Continuous Casting

    Directory of Open Access Journals (Sweden)

    Mustafa Merih Arıkan

    2015-06-01

    Full Text Available Hot ductility properties of a peritectic steel for welded gas cylinders during continuous casting were studied by performing hot tensile tests at certain temperatures ranging from 1200 to 700 °C for some cooling rates by using Gleeble-3500 thermo-mechanical test and simulation machine in this study. The effects of cooling rate and strain rate on hot ductility were investigated and continuous casting process map (time-temperature-ductility were plotted for this material. Reduction of area (RA decreases and cracking susceptibility increases during cooling from solidification between certain temperatures depending on the cooling rate. Although the temperatures which fracture behavior change upon cooling during continuous casting may vary for different materials, it was found that the type of fracture was ductile at 1100 and 1050 °C; semi-ductile at 1000 °C, and brittle at 800 °C for the steel P245NB. There is a ductility trough between 1000 and 725 °C. The ductility trough gets slightly narrower as the cooling rate decreases.

  6. Weldability of superalloys alloy 718 and ATI {sup registered} 718Plus trademark. A study performed by Varestraint testing

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsson, Jonny [The Production Technology Centre Univ. West, Trollhaettan (Sweden). GKN Aerospace Sweden; Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Industrial and Material Science; Andersson, Joel [The Production Technology Centre Univ. West, Trollhaettan (Sweden). Dept. of Engineering Science; Brederholm, Anssi; Haenninen, Hannu [Aalto Univ., Helsinki (Finland). Dept. of Engineering Design and Production

    2017-11-01

    In this study, the old and well-known alloy 718 is compared with the newly developed ATI {sup registered} 718Plus trademark from the weldability point of view. This is done in order to gain new information that have not been documented and established yet among the high-temperature materials with high strength, oxidation resistance, thermal stability and sufficient weldability, yet. ATI {sup registered} 718Plus trademark shows a lower sensitivity to hot cracking than alloy 718 with approximately 10 mm total crack length (TCL) difference in Varestraint testing. In the solution-annealed condition at 982 C for 4.5 h followed by air cooling, the crack sensitivity is decreased as compared to the mill-annealed condition. Along the crack path and also ahead of the crack tip, γ-Laves eutectic is present in both alloys. The microhardness measurements showed similar hardness level of 250 HV in the weld metal of both alloys and even in the parent material of alloy 718. ATI {sup registered} 718Plus trademark parent metal had hardness of 380 HV and a small increase of less than 50 HV was observed for both studied alloys in the heat affected zone (HAZ). For the same grain size of ATI {sup registered} 718Plus trademark (8.3 μm) and alloy 718 (15.6 μm), the susceptibility to liquation cracking may increase with increasing grain size. With a small grain size, there is a possibility to accommodate more trace elements (B, S, P) due to the larger grain boundary area. The impurity elements were found in relatively small precipitates, typically borides (0.2 μm), phosphides (0.1 to 0.5 μm) and carbo-sulphides. The solidification sequence of alloy 718 and ATI {sup registered} 718Plus trademark is relatively similar, where the liquid starts to solidify as γ-phase followed by γ/MC reaction at about 1260 C and then final γ/Laves eutectic reaction at around 1150 C. Detailed knowledge about weldability of alloy 718 and ATI {sup registered} 718Plus trademark can be used for material

  7. System Reliability of Timber Structures with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Čizmar, Dean

    2011-01-01

    The present paper considers the evaluation of timber structures with the focus on robustness due to connection ductility. The robustness analysis is based on the structural reliability framework applied to a simplified mechanical system. The structural timber system is depicted as a parallel system....... An evaluation method of the ductile behaviour is introduced. For different ductile behaviours, the system reliability is estimated based on Monte Carlo simulation. A correlation between the strength of the structural elements is introduced. The results indicate that the reliability of a structural timber system...

  8. Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings.

    Science.gov (United States)

    Kovács, Béla; Puskás-Preszner, Anita; Huzsvai, László; Lévai, László; Bódi, Éva

    2015-11-01

    Since 1940 molybdenum has been known as an essential trace element in plant nutrition and physiology. It has a central role in nitrogen metabolism, and its deficiency leads to nitrate accumulation in plants. In this study, we cultivated maize seedlings (Zea mays L. cv. Norma SC) in nutrient solution and soil (rhizoboxes) to investigate the effect of molybdenum treatment on the absorption of molybdenum, sulfur and iron. These elements have been previously shown to play important roles in nitrate reduction, because they are necessary for the function of the nitrate reductase enzyme. We also investigated the relationship between molybdenum treatments and different nitrogen forms in maize. Molybdenum treatments were 0, 0.96, 9.6 and 96 μg kg(-1) in the nutrition solution experiments, and 0, 30, 90, 270 mg kg(-1) in the rhizobox experiments. On the basis of our results, the increased Mo level produced higher plant available Mo concentration in nutrient solution and in soil, which resulted increased concentration of Mo in shoots and roots of maize seedlings. In addition it was observed that maize seedlings accumulated more molybdenum in their roots than in their shoots at all treatments. In contrast, molybdenum treatments did not affect significantly either iron or sulfur concentrations in the plant, even if these elements (Mo, S and Fe) play alike important roles in nitrogen metabolism. Furthermore, the physiological molybdenum level (1× Mo = 0.01 μM) reduced NO3-N and enhanced the NH4-N concentrations in seedlings, suggesting that nitrate reduction was more intense under a well-balanced molybdenum supply. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Prenatal brain disruption in molybdenum cofactor deficiency.

    Science.gov (United States)

    Carmi-Nawi, Nirit; Malinger, Gustavo; Mandel, Hanna; Ichida, Kimiyoshi; Lerman-Sagie, Tally; Lev, Dorit

    2011-04-01

    Molybdenum cofactor deficiency is a rare autosomal recessive disorder that may present during the neonatal period with intractable seizures and be mistaken for ischemic encephalopathy. We describe a patient whose prenatal sonography at 35 weeks' gestation revealed diffuse brain damage with multiple subcortical cavities, ventriculomegaly, dysgenesis of the corpus callosum, and a hypoplastic cerebellum with an enlarged cisterna magna. Magnetic resonance imaging (MRI) later revealed brain atrophy, and multicystic encephalomalacia with hypoplastic vermis and cerebellum. Neurological examination at 10 months showed microcephaly, profound mental retardation, and spasticity. Uric acid was low, and taurine and xanthine were increased in the urine. A sulfite test was positive. The diagnosis of molybdenum cofactor deficiency was made. Sulfite oxidase activity in fibroblasts was undetectable. The patient was found to be homozygous for the 251-418del in the MOCS1 gene. This is the first description of the prenatal development of severe brain disruption in molybdenum cofactor deficiency.

  10. Fracture Behavior and Delamination Toughening of Molybdenum in Charpy Impact Tests

    Science.gov (United States)

    Babinsky, K.; Primig, S.; Knabl, W.; Lorich, A.; Stickler, R.; Clemens, H.

    2016-11-01

    This study combines advanced characterization techniques with conventional Charpy impact tests to relate the mechanical properties to the microstructure of technically pure molybdenum, especially regarding its toughness. V-notched samples with different orientations were prepared from a rolled molybdenum plate in stress-relieved and recrystallized condition. The ductile-to-brittle transition-temperature was analyzed in terms of the delamination behavior influenced by the microstructure. A pronounced increase of toughness was found for specific oriented samples, which can be explained by macroscopic delamination. Elongated grains led to enhanced delamination in Charpy impact tests with variations for different orientations. In general, delamination occurs as a result of brittle fracture; however, an increase in toughness in the Charpy impact test can be provoked. This mechanism is called thin sheet toughening or delamination toughening. Electron backscatter diffraction measurements were performed to get a deeper knowledge about crack propagation and delamination behavior in the rolled plate. Recrystallization shifts the transition region to significantly higher temperatures, which is explained by the globular grain shape as well as grain boundary segregation. The occurrence of delamination is discussed, taking texture, grain shape and segregation effects into account.

  11. Manufacture of molybdenum ingot and its utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Kang In; Yu, Hyo Shin; Youn, In Ju; Choi, Good Sun; Lee, Churl Kyoung; Seo, Chang Youl; Yang, Dong Hyo [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    The pure molybdenum metal ingot was obtained from sintered molybdenum and/or molybdenum wire scrap through operating optimum conditions of electron beam melting. And a sputtering target through precise cutting, abrading and lapping was fabricated and compared to the commercial target made by a conventional PM process. For the utilization of molybdenum ingot, vacuum forging process was tested to modify the cast structure. Molybdenum ingot of 50 and 100 mm in diameter were obtained from sintered Mo bars and molybdenum wire scrap by EB drip melting technique. Macroscopic observation of EB remelted ingot indicates that coarse and columnar grains grow in the direction parallel to ingot pulling direction. This can be explained by slow solidification (3 mm/min), large temperature gradient and heat flow to this direction. The orientation of columnar structure was found to be <110>, <200> and <211> by the analysis of x-ray diffraction patterns. The contents of typical metallic impurities in Mo sintered bar are 1.2 ppm Cr, 3 ppm Fe, 44 ppm Zr, 150 ppm W. Most of metallic impurities were reduced below the order of ppm except zirconium and tungsten by the selective evaporation. In the removal of nonmetallic impurities, oxygen and carbon impurities were lowered from 120 to 6 ppm and from 157 to 106 ppm, respectively, after first melting. Although the purification effect was not significant with the number of remelting, Vickers hardness was reduced from 217 to 195 and 184 in sequence with increasing the number of remelting. Grain refinement and high temperature workability was also tested at the temperature of 800-1300 degree using an induction heating and optical pyrometer and the deformation was measured. The sputtering target from 100 mm ingot made by EB melting was highly pure compared to the PM product. (author). 24 figs., 7 tabs.

  12. Weldability, machinability and surfacing of commercial duplex stainless steel AISI2205 for marine applications – A recent review

    Directory of Open Access Journals (Sweden)

    A. Vinoth Jebaraj

    2017-05-01

    Full Text Available In the present review, attempts have been made to analyze the metallurgical, mechanical, and corrosion properties of commercial marine alloy duplex stainless steel AISI 2205 with special reference to its weldability, machinability, and surfacing. In the first part, effects of various fusion and solid-state welding processes on joining DSS 2205 with similar and dissimilar metals are addressed. Microstructural changes during the weld cooling cycle such as austenite reformation, partitioning of alloying elements, HAZ transformations, and the intermetallic precipitations are analyzed and compared with the different welding techniques. In the second part, machinability of DSS 2205 is compared with the commercial ASS grades in order to justify the quality of machining. In the third part, the importance of surface quality in a marine exposure is emphasized and the enhancement of surface properties through peening techniques is highlighted. The research gaps and inferences highlighted in this review will be more useful for the fabrications involved in the marine applications.

  13. Robustness Evaluation of Timber Structures with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Cizmar, D.

    2009-01-01

    The present paper considers robustness evaluation of timber structures where the ductile behavior of joints of timber material is taken into account. The robustness analysis is based on the structural reliability framework used on a simplified mechanical system modelling a structural timber system...... as a parallel system. A measure of ductile behaviour is introduced. For different values of this measure the system reliability is estimated based on Monte Carlo simulation where correlation between the strength of structural elements and load models for permanent and live load are introduced. The results...... indicate the reliability of a structural timber ystem can be increased apprximately 20 % awarding the ductile behaviour. At last the paper discusses possible structural timber systems which have potential for providing ductility and redundancy....

  14. Ductile-Brittle Transition Behavior in Tempered Martensitic SA508 Gr. 4N Ni-Mo-Cr Low Alloy Steels for Reactor Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Hyoung; Wee, Dang Moon [KAIST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Reactor pressure vessels (RPVs) operate under severe conditions of elevated temperature, high pressure, and irradiation. Therefore, a combination of sufficient strength, toughness, good weldability, and high irradiation resistance are required for RPV materials. SA508 Gr.4N low alloy steel, which has higher Ni and Cr contents than those of commercial RPV steel, Gr.3 steel, is considered as a candidate material due to its excellent mechanical properties from tempered martensitic microstructure. The ferritic steels such as Gr.3 and Gr.4N low alloy steels reveal a ductile-brittle transition and large scatters in the fracture toughness within a small temperature range. Recently, there are some observations of the steeper transition behavior in the tempered martensitic steels, such as Eurofer97 than the transition behavior of commercial RPV steels. It was also reported that the fracture toughness increased discontinuously when the phase fraction of the tempered martensite was over a critical fraction in the heat affected zones of SA508 Gr.3. Therefore, it may be necessary to evaluate the changes of transition behavior with a microstructure for the tempered martensitic SA508 Gr.4N low alloy steel. In this study, the fracture toughness for SA508 Gr.4N low alloy steels was evaluated from a view point of the temperature dependency with phase fraction of tempered martensite controlled by cooling rate. Additionally, a possible modification of the fracture toughness master curve was proposed and discussed

  15. 49 CFR 192.373 - Service lines: Cast iron and ductile iron.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Cast iron and ductile iron. 192.373... Regulators, and Service Lines § 192.373 Service lines: Cast iron and ductile iron. (a) Cast or ductile iron... cast iron pipe or ductile iron pipe is installed for use as a service line, the part of the service...

  16. Orthotropic ductile fracture criterion based on linear transformation

    Science.gov (United States)

    Yoon, J. W.; Zhang, S.; Stoughton, T. B.

    2017-09-01

    Accurate modelling of orthotropic ductile fracture is key to carry out reliable numerical prediction of rupture in plastic deformation of lightweight metals, such as ultra high strength steel, aluminum alloys, titanium alloys and magnesium alloys. Experiments are conducted for an aluminum alloy in shear, uniaxial tension, plane strain tension along the rolling direction, the diagonal direction and the transverse direction. Loading processes are recorded and fracture strain is measured by analysis of deformation with digital image correlation. First, isotropic fracture behavior is modeled by both linear model (Maximum Shear Stress (MSS) plus mean stress) and nonlinear model (Hosford yield function plus mean stress) considering different triaxiality conditions. It is observed that the mean stress model shows significant difference in the compression area compared to Mohr Coulomb-based normal stress model and a new isotropic model with the mean stress term shows a good correlation for AA 6k21. This approach is extended to an anisotropic ductile fracture criterion based on linear transformation. The anisotropic ductile fracture criterion is applied to model orthotropic fracture strain in shear, uniaxial tension and plane strain tension. The predicted anisotropy in ductile fracture is compared with experimental results for the verification of its accuracy. The comparison indicates that the proposed anisotropic ductile fracture criterion accurately models orthotropic ductile fracture in various loading conditions in shear, uniaxial tension and plane strain tension.

  17. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds

    Energy Technology Data Exchange (ETDEWEB)

    Kadoi, Kota, E-mail: kadoi@hiroshima-u.ac.jp [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Uegaki, Takanori; Shinozaki, Kenji; Yamamoto, Motomichi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan)

    2016-08-30

    The coupling of a hot tensile test with a novel in situ observation technique using a high-speed camera was investigated as a high-accuracy quantitative evaluation method for ductility-dip cracking (DDC) susceptibility. Several types of Alloy 690 filler wire were tested in this study owing to its susceptibility to DDC. The developed test method was used to directly measure the critical strain for DDC and high temperature ductility curves with a gauge length of 0.5 mm. Minimum critical strains of 1.3%, 4.0%, and 3.9% were obtained for ERNiCrFe-7, ERNiCrFe-13, and ERNiCrFe-15, respectively. The DDC susceptibilities of ERNiCrFe-13 and ERNiCrFe-15 were nearly the same and quite low compared with that of ERNiCrFe-7. This was likely caused by the tortuosity of the grain boundaries arising from the niobium content of around 2.5% in the former samples. Besides, ERNiCrFe-13 and ERNiCrFe-15 indicated higher minimum critical strains even though these specimens include higher content of sulfur and phosphorus than ERNiCrFe-7. Thus, containing niobium must be more effective to improve the susceptibility compared to sulfur and phosphorous in the alloy system.

  18. Effect of Phenomena Accompanying Wear in Dry Corundum Abrasive on the Properties and Microstructure of Austempered Ductile Iron with Different Chemical Composition

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2015-04-01

    Full Text Available The research described in this article is a fragment in the series of published works trying to determine the applicability of new materials for parts of the mining machinery. Tests were performed on two groups of austempered ductile iron - one of which contained 1.5% Ni and 0.5% Mo, while the other contained 1.9% Ni and 0.9% Cu. Each group has been heat treated according to the three different heat treatment variants and then the material was subjected to detailed testing of mechanical properties and abrasion wear resistance, measuring also hardness and magnetic properties, and conducting microstructural examinations. The results indicated that each of the tested materials was senstive to the surface hardening effect, which resulted in high wear resistance. It has been found that high temperature of austempering, i.e. 370°C, favours high wear resistance of ductile iron containing nickel and molybdenum. Low temperature of austempering, i.e. 270°C, develops high wear resistance in ductile iron containing nickel and copper. Both these materials offer completely different mechanical properties and as such can be used for different and specific applications.

  19. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  20. Molybdenum Valence in Basaltic Silicate Melts

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-03-01

    XANES analyses of molybdenum were performed on basaltic glass run products experiments conducted at varying P, T, and fO2. The transition from Mo6+ to Mo4+ occurs around IW, only Mo4+ remains at IW-1 and below, conditions relevant to core formation.

  1. Molybdenum-catalyzed deoxydehydration of vicinal diols

    DEFF Research Database (Denmark)

    Dethlefsen, Johannes Rytter; Lupp, Daniel; Oh, Byung Chang

    2014-01-01

    The commercially available (NH4)6Mo7O24 and other molybdenum compounds are shown to be viable substitutes for the typically employed rhenium compounds in the catalytic deoxydehydration of aliphatic diols into the corresponding alkenes. The transformation, which represents a model system for the v...

  2. Manufacturing of Ferritic Low-Silicon and Molybdenum Ductile Cast Iron with the Innovative 2PE- 9 Technique

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2014-06-01

    Full Text Available W pracy przedstawiono analizę wyników badań otrzymanych podczas produkcji żeliwa sferoidalnego typu SiMo, z zastosowaniem nowej metody sferoidyzacji metalu w kadzi bębnowej (technika 2PE- 9. Zaprezentowano wyniki badań w zakresie optymalizacji parametrów procesu, takich jak: długości przewodu sferoidyzującego. krytycznej zawartość magnezu, temperatur' zabiegu i temperatury zalewania. Pokazano wpływ temperatur i zabiegu, prędkości przemieszczania przewodu sferoidyzującego (czasu zabiegu sferoidyzowania i masy ciekłego stopu na uzysk magnezu ze sferoidyzatora. Przedstawiono mikrostrukturę, właściwości mechaniczne i koszt wytwarzania terrytycznego żeliwa sferoidalnego SiMo: gatunku EN-GJS-SiMo40-6. zgodnie z najnowszą EN 16124:2011 (E. Wprowadzenie dwóch przewodów elastycznych o średnicy Ø 9 mm; jeden wypełniony mieszaniną FeSi + Mg, a drugi moyfikatorem grafityzującym do zabiegowej kadzi bębnowej, jest nową metodą obróbki pozapiecowej produkcji terrytycznego żeliwa typu SiMo. która może być wykorzystana do produkcji żeliwa sferoidalnego wytapianego w indukcyjnym piecu.

  3. Oxidation behavior of multiphase molybdenum-molybdenum silicide-molybdenum silicide boride intermetallics

    Science.gov (United States)

    Dheeradhada, Voramon Supatarawanich

    coefficients for Mo, Si, B, and O in various phases were also determined. The motion of the (metal/Mo+glass) and (Mo+glass/glass) interfaces was examined. An average effective interdiffusion coefficient of silicon in molybdenum at 1300°C was estimated as 10 -17 m2/s. Moreover, interdiffusion coefficients for each component in the Mo+glass layer were evaluated on the basis of Mishin's analysis.

  4. Energetic approach for ductile tearing; Approche energetique de la dechirure ductile

    Energy Technology Data Exchange (ETDEWEB)

    Marie, St

    1999-07-01

    This study focuses on ductile crack initiation and propagation. It aims to propose an approach for the engineer allowing the prediction of the evolution of cracks in large scale components, from parameters determined on laboratory specimens. A crack initiation criterion, defining a J{sub i} tenacity related to crack tip blunting proposed in the literature is validated in the study. This criterion is shown to be transferable from laboratory specimens to structures. The literature review shows that an approach based on the dissipated energy in the fracture process during propagation offers an economical and simple solution to simulate large crack growth. A numerical method is proposed to estimate this fracture energy. The existence of an energy parameter G{sub fr} is shown, by simulating the propagation by the simultaneous release of several elements and by the use of the Rice integral with an original integration path. This parameter represents the needed energy for a unit crack extension and appears to be intrinsic to the material. A global energy statement allows to relate this parameter to a variation of the plastic part of J integral. It offers a second numerical method to simulate the propagation just from stationary numerical calculations, as well as the elaboration of a simplified method. This approach, using two parameters J{sub i} and G{sub fr}, intrinsic to the material and experimentally measurable on specimens, is validated on many tests such as crack pipes subjected to four points bending and cracked rings in compression. For example, this approach allows to model up to 90 mm ductile tearing in a pipe with a circumferential through-wall crack in ferritic steel, or to anticipate the evolution of a semi-elliptical crack in an aged austenitic ferritic steel plate subjected to bending. (author)

  5. Impact of ductility on hydraulic fracturing in shales

    Science.gov (United States)

    MacMinn, Chris; Auton, Lucy

    2016-04-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.

  6. Investigation of the weldability of iron-aluminum-chromium overlay coatings for corrosion protection in oxidizing/sulfidizing environments

    Science.gov (United States)

    Regina, Jonathan R.

    The current study investigated the effect of chromium additions on the hydrogen cracking susceptibility of Fe-Al weld overlay claddings containing chromium additions. It was found that the weldability of FeAlCr claddings was a function of both the aluminum and chromium concentrations of the weld coatings. Weld overlay compositions that were not susceptible to hydrogen cracking were identified and the underlying mechanism behind the hydrogen cracking phenomenon was investigated further. It was concluded that the cracking behavior of the FeAlCr welds depended strongly on the microstructure of the weld fusion zone. Although it was found that the cracking susceptibility was influenced by the presence of Fe-Al intermetallic phases (namely Fe3 Al and FeAl), the cracking behavior of FeAlCr weld overlay claddings also depended on the size and distribution of carbide and oxide particles present within the weld structure. These particles acted as hydrogen trapping sites, which are areas where free hydrogen segregates and can no longer contribute to the hydrogen embrittlement of the metal. It was determined that in practical applications of these FeAlCr weld overlay coatings, carbon should be present within these welds to reduce the amount of hydrogen available for hydrogen cracking. Based on the weldability results of the FeAlCr weld claddings, coating compositions that were able to be deposited crack-free were used for long-term corrosion testing in a simulated low NOx environment. These alloys were compared to a Ni-based superalloy (622), which is commonly utilized as boiler tube coatings in power plant furnaces for corrosion protection. It was found that the FeAlCr alloys demonstrated superior corrosion resistance when compared to the Ni-based superalloy. Due to the excellent long-term corrosion behavior of FeAlCr weld overlays that were immune to hydrogen cracking, it was concluded that select FeAlCr weld overlay compositions would make excellent corrosion resistant

  7. A Study on Ductility of Prestressed Concrete Pier Based on Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    H. Wang

    2016-12-01

    Full Text Available The ductility of prestressed concrete pier is studied based on response surface methodology. Referring to the pervious prestressed concrete pier, based on Box-Behnken design, the ductility of 25 prestressed concrete piers is calculated by numerical method. The relationship between longitudinal reinforcement ratio, shear reinforcement ratio, prestressed tendon quantity, concrete compressive strength and ductility factor is gotten. The influence of the longitudinal reinforcement ratio, the shear reinforcement ratio, the prestressed tendon quantity and concrete compressive strength to curvature ductility is discussed. Then the ductility regression equation is deduced. The result showed that the influence of the prestressed tendon quantity to the ductility of prestressed concrete pier is significant. With the increasing of the prestressed tendon quantity, the curvature ductility curved reduces. With the increasing of shear reinforcement ratio and compressive strength of concrete, the curvature ductility increases linearly. And the influence of the longitudinal reinforcement ratio to ductility of the prestressed concrete pier is insignificant.

  8. Additively manufactured hierarchical stainless steels with high strength and ductility

    Science.gov (United States)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  9. Brittle and ductile friction and the physics of tectonic tremor

    Science.gov (United States)

    Daub, Eric G.; Shelly, David R.; Guyer, Robert A.; Johnson, P.A.

    2011-01-01

    Observations of nonvolcanic tremor provide a unique window into the mechanisms of deformation and failure in the lower crust. At increasing depths, rock deformation gradually transitions from brittle, where earthquakes occur, to ductile, with tremor occurring in the transitional region. The physics of deformation in the transition region remain poorly constrained, limiting our basic understanding of tremor and its relation to earthquakes. We combine field and laboratory observations with a physical friction model comprised of brittle and ductile components, and use the model to provide constraints on the friction and stress state in the lower crust. A phase diagram is constructed that characterizes under what conditions all faulting behaviors occur, including earthquakes, tremor, silent transient slip, and steady sliding. Our results show that tremor occurs over a range of ductile and brittle frictional strengths, and advances our understanding of the physical conditions at which tremor and earthquakes take place.

  10. Preparation of single phase molybdenum boride

    Energy Technology Data Exchange (ETDEWEB)

    Camurlu, Hasan Erdem, E-mail: erdemcamurlu@gmail.com [Akdeniz University, Mechanical Engineering Department, 07058, Antalya (Turkey)

    2011-04-28

    Highlights: > Formation of Mo and a mixture of molybdenum boride phases take place in preparation of molybdenum borides. > It is intricate to prepare single phase molybdenum borides. > Formation of single phase MoB from MoO{sub 3} + B{sub 2}O{sub 3} + Mg mixtures has not been reported previously. > Single phase MoB was successfully prepared through a combination of mechanochemical synthesis and annealing process. - Abstract: The formation of MoB through volume combustion synthesis (VCS), and through mechanochemical synthesis (MCS) followed by annealing has been investigated. MoO{sub 3}, B{sub 2}O{sub 3} and Mg were used as reactants while MgO and NaCl were introduced as diluents. Products were leached in dilute HCl solution and were subjected to X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) examinations. Mo was the major phase component in the VCS products under all the experimental conditions. Mo{sub 2}B, MoB, MoB{sub 2} and Mo{sub 2}B{sub 5} were found as minor phases. Products of MCS contained a mixture of Mo{sub 2}B, MoB, MoB{sub 2} and Mo. After annealing the MCS product at 1400 deg. C for 3 h, single phase {alpha}-MoB was obtained.

  11. Mapping the ductile-brittle transition of magma

    Science.gov (United States)

    Kendrick, J. E.; Lavallee, Y.; Dingwell, D. B.

    2010-12-01

    During volcanic unrest, eruptive activity can switch rapidly from effusive to explosive. Explosive eruptions require the fragmentation of magma, in which, if deformation rate is too fast to be relaxed, magma undergoes a transition in deformation mechanism from viscous and/or ductile to brittle. Our knowledge of the deformation mechanisms of magma ascent and eruption remains, to date, poor. Many studies have constrained the glass transition (Tg) of the interstitial melt phase; yet the effect of crystals and bubbles are unresolved. During ascent, magma undergoes P-T changes which induce crystallization, thereby inducing a transition from viscous to ductile and, in some cases, to brittle deformation. Here, we explore the deformation mechanisms of magma involved in the dome-building eruptions and explosions that occurred at Volcán de Colima (Mexico) since 1998. For this purpose, we investigated the rheology of dome lavas, containing 10-45 vol.% rhyolitic interstitial melt, 55-90 vol.% crystals and 5-20 vol.% bubbles. The interstitial glass is characterized by electron microprobe and Tg is characterized using a differential scanning calorimeter and a dilatometer. The population of crystals (fraction, shape and size distribution) is described optically and quantified using ImageJ and AMOCADO. The rheological effects of crystals on the deformation of magmas are constrained via acoustic emission (AE) and uniaxial deformation experiments at temperature above Tg (900-980 °C) and at varied applied stresses (and strain rates: 10-6 to 10-2 s-1). The ratio of ductile to brittle deformation across the ductile-brittle transition is quantified using the output AE energy and optical and SEM analysis. We find that individual dome lava sample types have different mechanical responses, yielding a significant range of measured strain rates under a given temperature and applied stress. Optical analysis suggests that at low strain rates, ductile deformation is mainly controlled by the

  12. Deformation localization and cyclic strength in polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, O.T.; Rakshin, A.F.; Fenyuk, M.I.

    1983-06-01

    Conditions of deformation localization and its interrelation with cyclic strength in polycrystalline molybdenum were investigated. A fatigue failure of polycrystalline molybdenum after rolling and in an embrittled state reached by recrystallization annealing under cyclic bending at room temperature takes place under nonuniform distribution of microplastic strain resulting in a temperature rise in separate sections of more than 314 K. More intensive structural changes take place in molybdenum after rolling than in recrystallized state.

  13. Study on Welding Mechanism Based on Modification of Polypropylene for Improving the Laser Transmission Weldability to PA66

    Science.gov (United States)

    Liu, Huixia; Jiang, Hairong; Guo, Dehui; Chen, Guochun; Yan, Zhang; Li, Pin; Zhu, Hejun; Chen, Jun; Wang, Xiao

    2015-01-01

    Polypropylene and PA66 are widely used in our daily life, but they cannot be welded by laser transmission welding (LTW) because of polar differences and poor compatibility. In this paper, grafting modification technology is used to improve the welding performance between polypropylene and PA66. Firstly, the strong reactive and polar maleic-anhydride (MAH) is grafted to polypropylene and infrared spectrometer is used to prove that MAH has been grafted to polypropylene. At the same time, the mechanical and thermal properties of the graft modified polypropylene (TGMPP) are tested. The results prove that the grafting modification has little influence on them. Also, the optical properties of TGMPP are measured. Then, the high welding strength between TGMPP and PA66 is found and the mechanism of the weldability is researched, which shows that there are two reasons for the high welding strength. By observing the micro morphology of the welding zone, one reason found is that the modification of polypropylene can improve the compatibility between polypropylene and PA66 and make them easy to diffuse mutually, which causes many locking structures formed in the welding region. The other reason is that there are chemical reactions between TGMPP and PA66 proved by the X-ray photoelectron spectrometer. PMID:28793484

  14. Study on Welding Mechanism Based on Modification of Polypropylene for Improving the Laser Transmission Weldability to PA66

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2015-08-01

    Full Text Available Polypropylene and PA66 are widely used in our daily life, but they cannot be welded by laser transmission welding (LTW because of polar differences and poor compatibility. In this paper, grafting modification technology is used to improve the welding performance between polypropylene and PA66. Firstly, the strong reactive and polar maleic-anhydride (MAH is grafted to polypropylene and infrared spectrometer is used to prove that MAH has been grafted to polypropylene. At the same time, the mechanical and thermal properties of the graft modified polypropylene (TGMPP are tested. The results prove that the grafting modification has little influence on them. Also, the optical properties of TGMPP are measured. Then, the high welding strength between TGMPP and PA66 is found and the mechanism of the weldability is researched, which shows that there are two reasons for the high welding strength. By observing the micro morphology of the welding zone, one reason found is that the modification of polypropylene can improve the compatibility between polypropylene and PA66 and make them easy to diffuse mutually, which causes many locking structures formed in the welding region. The other reason is that there are chemical reactions between TGMPP and PA66 proved by the X-ray photoelectron spectrometer.

  15. Development of a High Chromium Ni-Base Filler Metal Resistant to Ductility Dip Cracking and Solidification Cracking

    Science.gov (United States)

    Hope, Adam T.

    Many nuclear reactor components previously constructed with Ni-based alloys containing 20 wt% Cr have been found to be susceptible to stress corrosion cracking. The nuclear power industry now uses high chromium (˜30wt%) Ni-based filler metals to mitigate stress corrosion cracking. Current alloys are plagued with weldability issues, either solidification cracking or ductility dip cracking (DDC). Solidification cracking is related to solidification temperature range and the DDC is related to the fraction eutectic present in the microstructure. It was determined that an optimal alloy should have a solidification temperature range less than 150°C and at least 2% volume fraction eutectic. Due to the nature of the Nb rich eutectic that forms, it is difficult to avoid both cracking types simultaneously. Through computational modeling, alternative eutectic forming elements, Hf and Ta, have been identified as replacements for Nb in such alloys. Compositions have been optimized through a combination of computational and experimental techniques combined with a design of experiment methodology. Small buttons were melted using commercially pure materials in a copper hearth to obtain the desired compositions. These buttons were then subjected to a gas tungsten arc spot weld. A type C thermocouple was used to acquire the cooling history during the solidification process. The cooling curves were processed using Single Sensor Differential Thermal Analysis to determine the solidification temperature range, and indicator of solidification cracking susceptibility. Metallography was performed to determine the fraction eutectic present, an indicator of DDC resistance. The optimal level of Hf to resist cracking was found to be 0.25 wt%. The optimal level of Ta was found to be 4 wt%. gamma/MC type eutectics were found to form first in all Nb, Ta, and Hf-bearing compositions. Depending on Fe and Cr content, gamma/Laves eutectic was sometimes found in Nb and Ta-bearing compositions, while

  16. strength and ductility of forged 1200 aluminum alloy reinforced

    African Journals Online (AJOL)

    eobe

    Strength and ductility responses of forged AA1200 aluminum alloy reinforced with steel particles have been studied. Steel particles of sizes 106, ... duced cylindrical shape samples, which were homogenized at 420 which were homogenized at 4200C ..... Microstructural analysis shows that matrix of. AA1200 aluminum-steel ...

  17. The Numba ductile deformation zone (northwest Cameroon): A ...

    Indian Academy of Sciences (India)

    Abstract. The Numba ductile deformation zone (NDDZ) is characterised by folds recorded during the three deformation phases that affected the banded amphibole gneiss. Fold-shape analyses using the program Fold Profiler with the aim to show the importance of folding events in the structural analysis of the NDDZ and its ...

  18. Numerical determination of parameterised failure curves for ductile structural materials

    NARCIS (Netherlands)

    Weber, Ulrich; Mohanta, Ashok; Schmauder, Siegfried

    2007-01-01

    Inhomogeneities such as voids or inclusions can lead to stress and strain concentrations under external loading conditions due to the different elastic-plastic and thermal properties of the phases. To describe the damage behavior of ductile materials, a damage parameter was introduced by Rice and

  19. Solidification and microstructure of thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin

    2006-01-01

    In the recent years there has been an increasing interest in light constructions in order to save weight in e.g. cars. Ductile cast iron has good mechanical properties but it is necessary to re­duce the wall thicknesses of the castings in order to reduce the weight. Reducing the wall thicknesses...

  20. Effect of void cluster on ductile failure evolution

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    The behavior of a non-uniform void distribution in a ductile material is investigated by using a cell model analysis to study a material with a periodic pattern of void clusters. The special clusters considered consist of a number of uniformly spaced voids located along a plane perpendicular...

  1. Ductile fracture surface morphology of amorphous metallic alloys

    NARCIS (Netherlands)

    Miskuf, J; Csach, Kornel; Ocelik, [No Value; Bengus, VZ; Tabachnikova, ED; Duhaj, P; Ocelik, Vaclav

    2002-01-01

    Ductile shear failure of hulk amorphous metallic alloys was studied using a fractographic is analysis. Although the mechanisms of shear deformation and fracture are appeared the same as in conventional amorphous ribbons, some new fractographic features are observed in bulk alloys. Geometric

  2. Strength and Ductility of Forged 1200 Aluminum Alloy Reinforced ...

    African Journals Online (AJOL)

    Strength and ductility responses of forged AA1200 aluminum alloy reinforced with steel particles have been studied. Steel particles of sizes 106, 181, 256, 362 and 512μm were separately added to the aluminum alloy to produced cylindrical shape samples, which were homogenized at 4200C for 10 hours, further processed ...

  3. Alloy design of ductile phosphoric iron: Ideas from archaeometallurgy

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Alloy design criteria to produce ductile phosphoric irons have been proposed based on a detailed microstructural study of ancient Indian irons. The alloy design aims at avoiding phosphorus segregation to the grain boundaries by (a) soaking the phosphoric iron at high temperatures within the ferrite + austenite.

  4. Effect of inclusion density on ductile fracture toughness and roughness

    DEFF Research Database (Denmark)

    Srivastava, Akhilesh Kumar; Ponson, L.; Osovski, S.

    2014-01-01

    Three dimensional calculations of ductile fracture under mode I plane strain, small scale yielding conditions are carried out using an elastic-viscoplastic constitutive relation for a progressively cavitating solid with two populations of void nucleating second phase particles. Larger inclusions ...

  5. Construction-friendly ductile shear joints for precast concrete panels

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild; Hoang, Linh Cao; Fischer, Gregor

    2015-01-01

    for the mounting of a vertical locking bar. Where limited space is available bending and subsequent straightening of the U-bars are required to assemble the adjacent panels, a procedure which imposes substantial ductility requirements on the reinforcement as well as some manual workload. This paper introduces...

  6. Solidification of Hypereutectic Thin Wall Ductile Cast Iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2006-01-01

    Hypereutectic ductile iron was cast in green sand moulds with four plates with thickness of 1.5, 2, 3 and 4 mm in each mould. Temperatures were measured in the 3 and 4 mm plate. The temperature curves showed that eutectic solidification was divided into two stages: primary and secondary eutectic...

  7. Structural stability and electronic structure of YCu ductile ...

    African Journals Online (AJOL)

    Structural stability and electronic structure of YCu ductile intermetallic compound by first-principal calculation. ... the ground states properties such as lattice parameter, bulk modulus and its pressure derivative, elastic constants and the structural phase stability with respect to the B1, B3, and L10structures of this compound.

  8. Solidification, processing and properties of ductile cast iron

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat

    2010-01-01

    Ductile cast iron has been an important engineering material in the past 50 years. In that time, it has evolved from a complicated material that required the foundry metallurgist's highest skill and strict process control to being a commonly used material that can easily be produced with modern p...

  9. Ductile fracture behaviour of primary heat transport piping material ...

    Indian Academy of Sciences (India)

    Design of primary heat transport (PHT) piping of pressurised heavy water reactors (PHWR) has to ensure implementation of leak-before-break concepts. In order to be able to do so, the ductile fracture characteristics of PHT piping material have to be quantified. In this paper, the fracture resistance of SA333, Grade 6 steel ...

  10. The Effect of Molybdenum Fertilization on Arachis Glabrata Biomass ...

    African Journals Online (AJOL)

    The effect of molybdenum fertilization on biomass and the number of nodules of Arachis glabrata was assessed at the Teaching and Research Farm of the University of Dschang in 2011 at different periods of mowing. A factorial design comparing four doses of molybdenum as ammonium molybdate (0, 0.75, 1.5 and 2.25 ...

  11. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils

    Science.gov (United States)

    Barron, Alexander R.; Wurzburger, Nina; Bellenger, Jean Phillipe; Wright, S. Joseph; Kraepiel, Anne M. L.; Hedin, Lars O.

    2009-01-01

    Nitrogen fixation, the biological conversion of di-nitrogen to plant-available ammonium, is the primary natural input of nitrogen to ecosystems, and influences plant growth and carbon exchange at local to global scales. The role of this process in tropical forests is of particular concern, as these ecosystems harbour abundant nitrogen-fixing organisms and represent one third of terrestrial primary production. Here we show that the micronutrient molybdenum, a cofactor in the nitrogen-fixing enzyme nitrogenase, limits nitrogen fixation by free-living heterotrophic bacteria in soils of lowland Panamanian forests. We measured the fixation response to long-term nutrient manipulations in intact forests, and to short-term manipulations in soil microcosms. Nitrogen fixation increased sharply in treatments of molybdenum alone, in micronutrient treatments that included molybdenum by design and in treatments with commercial phosphorus fertilizer, in which molybdenum was a `hidden' contaminant. Fixation did not respond to additions of phosphorus that were not contaminated by molybdenum. Our findings show that molybdenum alone can limit asymbiotic nitrogen fixation in tropical forests and raise new questions about the role of molybdenum and phosphorus in the tropical nitrogen cycle. We suggest that molybdenum limitation may be common in highly weathered acidic soils, and may constrain the ability of some forests to acquire new nitrogen in response to CO2 fertilization.

  12. the influence of molybdenum and sulphur on sheep receiving high ...

    African Journals Online (AJOL)

    THE INFLUENCE OF MOLYBDENUM AND SULPHUR ON SHEEP RECEIVING HIGH LEVELS. OF COPPER AND BROILER LITTER IN THEIR RATIONS. Receipr of MS 06-09-1978. J.B.J. van RYSSEN. Department of Animol Science, University of Natal, Pietermoritzburg, 3200. (Key words: Molybdenum, sulphur, copper ...

  13. Dioxobridged complexes of molybdenum (IV) and tungsten (IV) with ...

    Indian Academy of Sciences (India)

    Abstract. Six new dioxobridged complexes of molybdenum (IV) and tungsten (IV) with N-alkylphenothiazines having the general formula M2O4(L)2(H2O)2 [where M = molybdenum or tungsten and L = N-alkylphenothiazines] have been synthesised. The complexes have been characterised on the basis of analytical, molar ...

  14. Study of molybdenum precipitation in steels using thermoelectric power measurement

    Energy Technology Data Exchange (ETDEWEB)

    Houze, Marc [INSA LYON, GEMPPM, UMR CNRS 5510, Bat Blaise Pascal, 20 Avenue A. Einstein, 69621 Villeurbanne Cedex (France); Kleber, Xavier [INSA LYON, GEMPPM, UMR CNRS 5510, Bat Blaise Pascal, 20 Avenue A. Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: xavier.kleber@insa-lyon.fr; Fouquet, Francis [INSA LYON, GEMPPM, UMR CNRS 5510, Bat Blaise Pascal, 20 Avenue A. Einstein, 69621 Villeurbanne Cedex (France); Delnondedieu, Marc [EDF R and D, MMC, Ecuelles BP 1, 77818 Moret-sur-Loing Cedex (France)

    2004-12-15

    The precipitation of molybdenum in iron has been investigated using thermoelectric power measurement. We found an increase of the thermoelectric power of iron with the molybdenum content and a coefficient of its influence has been determined. A correlation between secondary hardening due to the precipitation of Mo{sub 2}C carbides and thermoelectric power variations has been established.

  15. Behaviour of helium after implantation in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Viaud, C. [Commissariat a l' Energie Atomique (CEA), Cadarache (France)], E-mail: viaud@dircad.cea.fr; Maillard, S.; Carlot, G.; Valot, C. [Commissariat a l' Energie Atomique (CEA), Cadarache (France); Gilabert, E. [Chimie Nucleaire Analytique and Bio-environnementale (CNAB), Gradignan (France); Sauvage, T. [CEMHTI-CNRS, Orleans (France); Peaucelle, C.; Moncoffre, N. [Institut de Physique Nucleaire de Lyon (IPNL), Lyon (France)

    2009-03-31

    This study deals with the behaviour of helium in a molybdenum liner dedicated to the retention of fission products. More precisely this work contributes to evaluate the release of implanted helium when the gas has precipitated into nanometric bubbles close to the free surface. A simple model dedicated to calculate the helium release in such a condition is presented. The specificity of this model lays on the assumption that the gas is in equilibrium with a simple distribution of growing bubbles. This effort is encouraging since the calculated helium release fits an experimental dataset with a set of parameters in good agreement with the literature.

  16. Electrochemical ammonia production on molybdenum nitride nanoclusters

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2013-01-01

    energy profile for electrochemical protonation of N2 and N adatoms on cuboctahedral Mo13 nanoparticles. Pathways for electrochemical ammonia production via direct protonation of N adatoms and N2 admolecules with an onset potential as low as -0.5 V and generally lower than -0.8 V on both a nitrogen......Theoretical investigations of electrochemical production of ammonia at ambient temperature and pressure on nitrogen covered molybdenum nanoparticles are presented. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free...

  17. Weldability and toughness evaluation of pressure vessel quality steel using the shielded metal arc welding (SMAW) process

    Science.gov (United States)

    Datta, R.; Mukerjee, D.; Mishra, S.

    1998-12-01

    The present study was carried out to assess the weldability properties of ASTM A 537 Cl. 1 pressure-vessel quality steel using the shielded metal arc welding (SMAW) process. Implant and elastic restraint cracking (ERC) tests were conducted under different welding conditions to determine the cold cracking susceptibility of the steel. The static fatigue limit values determined for the implant test indicate adequate resistance to cold cracking even with unbaked electrodes. The ERC test, however, established the necessity to rebake the electrodes before use. Lamellar tearing tests carried out using full-thickness plates under three welding conditions showed no incidence of lamellar tearing upon visual examination, ultrasonic inspection, and four-section macroexamination. Lamellar tearing tests were repeated using machined plates, such that the central segregated band located at the midthickness of the plate corresponded to the heat-affected zone (HAZ) of the weld. Only in one (no rebake, heat input: 14.2 kj cm-1, weld restraint load: 42 kg mm-2) of the eight samples tested was lamellar tearing observed. This was probably accentuated due to the combined effects of the presence of localized pockets of a hard phase (bainite) and a high hydrogen level (unbaked electrodes) in the weld joint. Optimal welding conditions were formulated based on the above tests. The weld joint was subjected to extensive tests and found to exhibit excellent strength (tensile strength: 56.8 kg mm-2, or 557 MPa), and low temperature impact toughness (7.4 and 4.5 kg-m at-20 °C for weld metal, WM, and HAZ) properties. Crack tip opening displacement tests carried out for the WM and HAZ resulted in δm values 0.36 and 0.27 mm, respectively, which indicates adequate resistance to brittle fracture.

  18. Analysis Strategy for Fracture Assessment of Defects in Ductile Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, Peter; Andersson, Magnus; Sattari-Far, Iradj; Weilin Zang (Inspecta Technology AB, Stockholm (Sweden))

    2009-06-15

    The main purpose of this work is to investigate the significance of the residual stresses for defects (cracks) in ductile materials with nuclear applications, when the applied primary (mechanical) loads are high. The treatment of weld-induced stresses as expressed in the SACC/ProSACC handbook and other fracture assessment procedures such as the ASME XI code and the R6-method is believed to be conservative for ductile materials. This is because of the general approach not to account for the improved fracture resistance caused by ductile tearing. Furthermore, there is experimental evidence that the contribution of residual stresses to fracture diminishes as the degree of yielding increases to a high level. However, neglecting weld-induced stresses in general, though, is doubtful for loads that are mostly secondary (e.g. thermal shocks) and for materials which are not ductile enough to be limit load controlled. Both thin-walled and thick-walled pipes containing surface cracks are studied here. This is done by calculating the relative contribution from the weld residual stresses to CTOD and the J-integral. Both circumferential and axial cracks are analysed. Three different crack geometries are studied here by using the finite element method (FEM). (i) 2D axisymmetric modelling of a V-joint weld in a thin-walled pipe. (ii) 2D axisymmetric modelling of a V-joint weld in a thick-walled pipe. (iii) 3D modelling of a X-joint weld in a thick-walled pipe. t. Each crack configuration is analysed for two load cases; (1) Only primary (mechanical) loading is applied to the model, (2) Both secondary stresses and primary loading are applied to the model. Also presented in this report are some published experimental investigations conducted on cracked components of ductile materials subjected to both primary and secondary stresses. Based on the outcome of this study, an analysis strategy for fracture assessment of defects in ductile materials of nuclear components is proposed. A new

  19. Simulations of ductile flow in brittle material processing

    Energy Technology Data Exchange (ETDEWEB)

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  20. Ductile mode electrochemical oxidation assisted micromachining for glassy carbon

    Science.gov (United States)

    Nam, Eunseok; Lee, Chan-Young; Jun, Martin B. G.; Min, Byung-Kwon

    2015-04-01

    Recently, a new mechanical machining process using electrochemical oxidation was reported. Electrochemical oxidation assisted micromachining was applied to the machining of glassy carbon. The material removal process of the electrochemical oxidation assisted micromachining consists of repeated cycles of oxidation followed by removal of the oxide layer. In this paper, we experimentally investigate and compare the critical chip thickness for ductile mode cutting in mechanical machining and electrochemical oxidation assisted micromachining of glassy carbon. The theoretical critical chip thickness is calculated for mechanical machining of glassy carbon and experimentally verified. The effect of electrochemical oxidation on the critical chip thickness for ductile mode micromachining is also studied for glassy carbon. It is found that the critical chip thickness is increased for the electrochemical oxidation assisted micromachining.

  1. Mechanism of silicon influence on chills in ductile iron

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-01-01

    Full Text Available In the present work an analytical expression that combines the susceptibility of liquid cast iron to solidify according to the Fe-C-X metastable system (also known as the chilling tendency of cast iron, CT is proposed. A relationship between CT and several factors has been developed. In particular the CT is related to the critical wall thickness (scr, below which the chill is formed. Theoretical calculations of scr were made and then compared with experimental outcome for ductile iron melts. The predictions of the theoretical analysis are in rather good agreement with the experimental data.The results can be used as a guide for a better understanding of the effect of technological variables such as the melt chemistry, the holding time and temperature, the spheroidizing and inoculation practice, the resulting nodule count and the type of mold material and pouring temperature, on the resultant chill of the ductile iron.

  2. A variational void coalescence model for ductile metals

    KAUST Repository

    Siddiq, Amir

    2011-08-17

    We present a variational void coalescence model that includes all the essential ingredients of failure in ductile porous metals. The model is an extension of the variational void growth model by Weinberg et al. (Comput Mech 37:142-152, 2006). The extended model contains all the deformation phases in ductile porous materials, i.e. elastic deformation, plastic deformation including deviatoric and volumetric (void growth) plasticity followed by damage initiation and evolution due to void coalescence. Parametric studies have been performed to assess the model\\'s dependence on the different input parameters. The model is then validated against uniaxial loading experiments for different materials. We finally show the model\\'s ability to predict the damage mechanisms and fracture surface profile of a notched round bar under tension as observed in experiments. © Springer-Verlag 2011.

  3. Microstructure influence on fatigue behaviour of austenitic stainless steels with high molybdenum content; Influencia de la microestructura en el comportamiento a fatiga de aceros inoxidables austeniticos con alto contenido en molibdeno

    Energy Technology Data Exchange (ETDEWEB)

    Onoro, J.; Gamboa, R.; Ranninger, C.

    2006-07-01

    Austenitic stainless steels with molybdenum present high mechanical properties and corrosion resistance to aggressive environments. These steels have been used to tank and vessel components for high liquids as phosphoric, nitric and sulphuric acids. These materials with low carbon and nitrogen addition have been proposed candidates as structural materials for the international thermonuclear experimental reactor (ITER) in-vessel components. Molybdenum addition in austenitic stainless steel improves mechanical and corrosion properties, but with it can produce the presence of nitrogen microstructure modifications by presence or precipitation of second phases. This paper summarises the fatigue and corrosion fatigue behaviour of two 317LN stainless steels with different microstructure. Fully austenitic steel microstructure show better fatigue, corrosion fatigue resistance and better ductility than austenitic steel with delta ferrite microstructure, mainly at low stresses. (Author)

  4. Ductile crack growth simulation and effects of crack growth on single-edge notched bend specimens

    Science.gov (United States)

    Shimada, Keito; Komiya, Shinji; Iwashita, Tsutomu

    2017-10-01

    This paper describes the testing of single-edge notched bend (SENB) specimens, which are used for fracture toughness tests, and the ductile crack initiation from the notch tip of the specimens. All of the specimens exhibited brittle fracture with relatively large ductile crack growth (from 1.0 to 4.8 mm). The paper also shows the ductile crack growth simulation using a damage model (Bonora model) for finite element analysis (FEA). FEA reproduced ductile crack growth observed in the SENB tests and the analysis results showed the effects of the ductile crack growth rate on stress distribution around the crack tips. In addition, the value of the Weibull stress was calculated in the paper, and the Weibull stress slightly decreased if the model had a higher ductile crack growth rate as compared with the model that had a lower ductile crack growth rate.

  5. Ductility of reinforced lightweight concrete beams and columns

    OpenAIRE

    Charif, Abdelhamid; Shannag, M. Jamal; Dghaither,Saleh

    2014-01-01

    This paper presents analytical and experimental results on ductility of reinforced lightweight concrete beams and columns in the form of moment curvature relationships, and compares the response with that of normal reinforced concrete members. The experimental part is limited to flexural tests on beams made of lightweight concrete. The latter is obtained with natural lightweight aggregates. Concrete and steel stress-strain models in compression and tension are integrated analytically through ...

  6. Ductile damage prediction in different cold forming processes

    OpenAIRE

    Cao, Trong-Son; Bouchard, Pierre-Olivier; Montmitonnet, Pierre

    2015-01-01

    International audience; The purpose of the present paper is to show how and to what extent the introduction of refined, shear sensitive models improves on previous ones, based on triaxiality only, for the phenomenological description of ductile damage in bulk cold metal forming processes. Wire-drawing and wire rolling are taken as examples. A set of mechanical tests has been conducted: round bar, notched bar and plane strain tensions as well as torsion for pure shear deformation. Both constit...

  7. Constrained molecular dynamics for quantifying intrinsic ductility versus brittleness

    Science.gov (United States)

    Tanguy, D.

    2007-10-01

    Evaluating the critical load levels for intrinsic ductility and brittle propagation is a first, but necessary, step for modeling semibrittle crack propagation. In the most general case, the calculations have to be fully atomistic because the details of the crack tip structure cannot be captured by continuum mechanics. In this paper, we present a method to explore ductile and brittle configurations, within the same force field, giving a quantitative estimate of the proximity of a transition from intrinsic ductility to brittleness. The shear localization is characterized by a centrosymmetry criterion evaluated on each atom in the vicinity of the crack tip. This provides an efficient order parameter to track the nucleation and propagation of dislocations. We show that it can be used as a holonomic constraint within molecular dynamics simulations, giving a precise control over plasticity during crack propagation. The equations of motion are derived and applied to crack propagation in the [112¯] direction of an fcc crystal loaded in mode I along [111]. The critical loads for dislocation emission and for brittle propagation are computed. The key point is that the generalized forces of constraint are not dissipative. Therefore, they do not spoil the critical elastic energy release rates (the Griffith criterion is preserved). As an example of the possibilities of the method, the response of blunted tips is investigated for three configurations: a slab of vacancies, an elliptical hole, and a circular hole. Brittle propagation by an alternative mechanism to cleavage, called “vacancy injection,” is reported.

  8. Nano-modification to improve the ductility of cementitious composites

    Energy Technology Data Exchange (ETDEWEB)

    Yeşilmen, Seda [Department of Civil Engineering, Çankaya University, Ankara (Turkey); Al-Najjar, Yazin [Department of Civil Engineering, Gaziantep University, Gaziantep (Turkey); Balav, Mohammad Hatam [Department of Civil Engineering, Gazi University, Ankara (Turkey); Şahmaran, Mustafa, E-mail: sahmaran@gazi.edu.tr [Department of Civil Engineering, Gazi University, Ankara (Turkey); Yıldırım, Gürkan [Department of Civil Engineering, Gazi University, Ankara (Turkey); Lachemi, Mohamed [Department of Civil Engineering, Ryerson University, Toronto, ON (Canada)

    2015-10-15

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexural strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO{sub 3} was more effective compared to nano-silica. However, the crystal structure of CaCO{sub 3} played a very important role in the range of expected improvements.

  9. Development of stiffer and ductile glulam portal frame

    Science.gov (United States)

    Komatsu, Kohei

    2017-11-01

    Portal frame structures, which are constituted of straight glulam beams and columns connected semi-rigidly by steel insert gusset plate with a lot of drift pins, were the first successful glulam structures widely used in Japan. In addition to this connection system, the author invented also a new type of jointing devise for glulam structures named as "Lagscrewbolt" which had a full threaded portion at inner part to grip wooden member as well as another thread part at the end of shank to connect with other member. The initial type of "Lagscrewbolt" was successfully applied to a various types of glulam buildings which could be rapidly built-up on construction site. Its strength performance, however, was rather brittle therefore the improvement of the ductility was a crucial research subject. In order to give a sufficient ductility on the "Lagscrewbolted joint system", so-called "Slotted Bolted Connection" concept was adopted for making use of large energy dissipation characteristics due to high-tension bolted steel connection with slotted bolt holes. Static & dynamic performance of glulam portal frame specimens was evaluated by static cyclic loading test as well as shaking table test. Current latest form of the jointing system can show very high ductility as well as stable hysteretic cyclic loops by inserting brass-shim between steel-to-steel friction interfaces

  10. Potentially exploitable supercritical geothermal resources in the ductile crust

    Science.gov (United States)

    Watanabe, Noriaki; Numakura, Tatsuya; Sakaguchi, Kiyotoshi; Saishu, Hanae; Okamoto, Atsushi; Ingebritsen, Steven E.; Tsuchiya, Noriyoshi

    2017-01-01

    The hypothesis that the brittle–ductile transition (BDT) drastically reduces permeability implies that potentially exploitable geothermal resources (permeability >10−16 m2) consisting of supercritical water could occur only in rocks with unusually high transition temperatures such as basalt. However, tensile fracturing is possible even in ductile rocks, and some permeability–depth relations proposed for the continental crust show no drastic permeability reduction at the BDT. Here we present experimental results suggesting that the BDT is not the first-order control on rock permeability, and that potentially exploitable resources may occur in rocks with much lower BDT temperatures, such as the granitic rocks that comprise the bulk of the continental crust. We find that permeability behaviour for fractured granite samples at 350–500 °C under effective confining stress is characterized by a transition from a weakly stress-dependent and reversible behaviour to a strongly stress-dependent and irreversible behaviour at a specific, temperature-dependent effective confining stress level. This transition is induced by onset of plastic normal deformation of the fracture surface (elastic–plastic transition) and, importantly, causes no ‘jump’ in the permeability. Empirical equations for this permeability behaviour suggest that potentially exploitable resources exceeding 450 °C may form at depths of 2–6 km even in the nominally ductile crust.

  11. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  12. Chill block melt spinning of nickel-molybdenum alloys

    Science.gov (United States)

    Hemker, Kevin J.; Glasgow, Thomas K.

    1987-01-01

    Samples of Ni-Mo alloys ranging in composition from pure nickel to Ni-40 at. pct molybdenum were cast by the chill block melt-spinning rapid solidification technique and examined by optical metallography, X-ray diffraction, and microhardness testing. Casting difficulties were encountered with lean alloys, but richer alloys spread more readily on the casting wheel. Alloy microstructures for 5 to 37.5 at. pct molybdenum ribbons were primarily cellular/dendritic; microstructure feature size decreased with increasing molybdenum content. Extended solubility of molybdenum in gamma-nickel, with fcc lattice parameter increasing with composition to the 1.05 power, was observed up to 37/5 at. pct molybdenum. Substoichiometric Ni-Mo (delta) nucleated on the wheel side of the ribbons of compositions 35, 37.5, and 40 at. pct molybdenum. The amount of partitionless delta-phase thus formed increased with increasing molybdenum content and quench rate. This substoichiometric delta transformed readily to a fine structure gamma-delta mixture.

  13. Atomic layer deposition of molybdenum oxide using bis(tert-butylimido)bis(dimethylamido) molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Bertuch, Adam, E-mail: abertuch@ultratech.com; Sundaram, Ganesh [Ultratech/Cambridge NanoTech, 130 Turner Street, Waltham, Massachusetts 02453 (United States); Saly, Mark; Moser, Daniel; Kanjolia, Ravi [SAFC Hitech, 1429 Hilldale Avenue, Haverhill, Massachusetts 01832 (United States)

    2014-01-15

    Molybdenum trioxide films have been deposited using thermal atomic layer deposition techniques with bis(tert-butylimido)bis(dimethylamido)molybdenum. Films were deposited at temperatures from 100 to 300 °C using ozone as the oxidant for the process. The Mo precursor was evaluated for thermal stability and volatility using thermogravimetric analysis and static vapor pressure measurements. Film properties were evaluated with ellipsometry, x-ray photoelectron spectroscopy, secondary ion mass spectroscopy, and secondary electron microscopy. The growth rate per cycle was determined to extend from 0.3 to 2.4 Å/cycle with <4% nonuniformity (1-sigma) with-in-wafer across a 150 mm wafer for the investigated temperature range.

  14. The extended family of hexagonal molybdenum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hartl, Monika [Los Alamos National Laboratory; Daemen, Luke [Los Alamos National Laboratory; Lunk, J H [NON LANL; Hartl, H [NON LANL; Frisk, A T [NON LANL; Shendervich, I [NON LANL; Mauder, D [NON LANL; Feist, M [NON LANL; Eckelt, R [NON LANL

    2009-01-01

    Over the last 40 years, a large number of isostructural compounds in the system MoO{sub 3}-NH{sub 3}-H{sub 2}O have been published. The reported molecular formulae of 'hexagonal molybdenum oxide' (HEMO) varied from MoO{sub 3}, MoO{sub 3} {center_dot} 0.33NH{sub 3}, MoO{sub 3} {center_dot} nH{sub 2}O (0.09 {le} n {le} 0.69) to MoO{sub 3} {center_dot} mNH{sub 3} {center_dot} nH{sub 2}O (0.09 {le} m {le} 0.20; 0.18 {le} n {le} 0.60). Samples, prepared by the acidification route, were investigated using thermal analysis coupled on-line to a mass spectrometer for evolved gas analysis; X-ray powder diffraction; Fourier Transform Infrared, Raman and Magic-Angle-Spinning {sup 1}H-NMR spectroscopy; Incoherent Inelastic Neutron Scattering. The X-ray study of a selected monocrystal confirmed the presence of the well-known framework of edge-sharing MoO{sub 6} octahedra: Space group P6{sub 3}/m, a = 10.527(1), c =3.7245(7) {angstrom}, {gamma} = 120{sup o}. The structure of the synthesized samples can best be described by the structural formula (NH{sub 4})[Mo{sub x}{open_square}{sub 1/2+p/2}(O{sub 3x + 1/2-p/2})(OH){sub p}] {center_dot} yH{sub 2}O (x 5.9-7.1; p {approx} 0.1; y = 1.2-2.6), which is consistent with the existence of one vacancy for 12-15 molybdenum sites. The 'chimie douce' reaction of MoO{sub 3} {center_dot} 0.155NH{sub 3} {center_dot} 0.440H{sub 2}O with a 1:1 mixture of NO/NO{sub 2} at 100 C resulted in the synthesis of MoO{sub 3} {center_dot} 0.539H{sub 2}O. Tailored nano-sized molybdenum powders can be produced using HEMO as precursor.

  15. Molybdenum disulfide and water interaction parameters

    Science.gov (United States)

    Heiranian, Mohammad; Wu, Yanbin; Aluru, Narayana R.

    2017-09-01

    Understanding the interaction between water and molybdenum disulfide (MoS2) is of crucial importance to investigate the physics of various applications involving MoS2 and water interfaces. An accurate force field is required to describe water and MoS2 interactions. In this work, water-MoS2 force field parameters are derived using the high-accuracy random phase approximation (RPA) method and validated by comparing to experiments. The parameters obtained from the RPA method result in water-MoS2 interface properties (solid-liquid work of adhesion) in good comparison to the experimental measurements. An accurate description of MoS2-water interaction will facilitate the study of MoS2 in applications such as DNA sequencing, sea water desalination, and power generation.

  16. Microplastic relaxations of single and polycrystalline molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Pichl, W.; Weiss, B. [Wien Univ. (Austria). Inst. fuer Materialphysik; Chen, D.L.

    1998-05-01

    The microplasticity of high-purity molybdenum single crystals and of Mo polycrystals of technical purity has been investigated by relaxation step tests in uniaxial compression. A new model for the evaluation of relaxation tests in the microplastic range of b.c.c metals is presented which takes into account the decrease of the mobile dislocation density due to exhaustion of non-screw dislocations. The model allows an independent determination of the activation volume and of the microstructure parameters controlling dislocation exhaustion. The results indicate that in the high-purity single crystals the deformation rate is controlled by interactions of non-screw dislocations with the grown-in network. In the polycrystals additional interactions with impurity atoms seem to occur. In the single crystals the activity and subsequent exhaustion of two different glide systems was observed, followed by a gradual onset of screw dislocation motion. (orig.) 26 refs.

  17. Simulations of intergranular fracture in nanocrystalline molybdenum

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2004-01-01

    with density-functional calculations. The simulations show the plastic deformation to involve both grain boundary processes and dislocation migration which in some cases lead to twin boundary formation. A large component of the strain is accommodated through the formation of cracks in the grain boundaries......Using molecular dynamics simulations we investigate the plastic deformation of nanocrystalline molybdenum with a grain size of 12 nm at high strain rates. The simulations are performed with an interatomic potential which is obtained through matching of atomic forces to a database generated....... This behavior is very different from what has been seen earlier in simulations of fee metals where grain boundary sliding is the dominant mechanism for very small grain sizes. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved....

  18. Linear transformation based orthotropic shear ductile fracture criterion for lightweight metals

    Science.gov (United States)

    Lou, Yanshan; Yoon, Jeong Whan

    2017-10-01

    Accurate modelling of orthotropic ductile fracture is key to carry out reliable numerical prediction of rupture in plastic deformation of lightweight metals, such as ultra high strength steel, aluminum alloys, titanium alloys and magnesium alloys. Experiments are conducted for an aluminum alloy in shear, uniaxial tension, plane strain tension along rolling direction, diagonal direction and transverse direction as well as the balanced biaxial tension of the Nakajima test. Loading processes are recorded and fracture strain is measured by analysis of deformation with digital image correlation. Fracture behavior is modelled by a shear ductile fracture criterion of DF2016 along different loading directions. It is observed that anisotropy in ductile fracture cannot be correctly described by an isotropic ductile fracture criterion. Thus, an anisotropic ductile fracture criterion is proposed from a shear ductile fracture criterion of DF2014 based on linear transformation of the plastic strain vector into an isotropic equivalent damage strain vector. The anisotropic ductile fracture criterion is applied to model orthotropic fracture strain in shear, uniaxial tension and plane strain tension. The predicted anisotropy in ductile fracture is compared with experimental results for the verification of its accuracy. The comparison indicates that the proposed anisotropic ductile fracture criterion accurately models orthotropic ductile fracture in various loading conditions in shear, uniaxial tension and plane strain tension.

  19. GEMAS: Molybdenum Spatial Distribution Patterns in European Soil

    Science.gov (United States)

    Cicchella, Domenico; Zuzolo, Daniela; Demetriades, Alecos; De Vivo, Benedetto; Eklund, Mikael; Ladenberger, Anna; Negrel, Philippe; O'Connor, Patrick

    2017-04-01

    Molybdenum is an essential trace element for both plants and animals as well as for human being. It is one such trace element for which potential health concerns have been raised but for which few data exist and little investigation or interpretation of distributions in soils has been made. The main goal of this study was to fill this gap. Molybdenum (Mo) concentrations are reported for the interesting anomalous patterns occur also in Italy in correspondence with alkaline volcanics, in Spain and Greece associated with sulfides mineralizations and in Slovenia and Croatia where are probably related to the long weathering history of karstic residual soils. Anomalous concentrations in some areas of Ireland represent a clear example of how an excess of molybdenum has produced potentially toxic pastures. In fact, these give rise to problems particularly in young cattle when excess molybdenum in the herbage acts as an antagonist, which militates against efficient copper absorption by the animal.

  20. Innovative Molybdenum Alloy for Extreme Operating Conditions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Molybdenum has been identified as a promising material for many high temperature NASA applications due to its high melting temperature, resistance to liquid metals,...

  1. Recovering and recycling uranium used for production of molybdenum-99

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas; May, Iain; Copping, Roy; Dale, Gregory Edward

    2017-12-12

    A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated target suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.

  2. CONTROLLABLE PREPARATION OF NANO MOLYBDENUM DISULFIDE BY HYDROTHERMAL METHOD

    Directory of Open Access Journals (Sweden)

    Suo Xia Hou

    2017-03-01

    Full Text Available Nano molybdenum disulfide possesses unique chemical and physical properties. In this paper molybdenum disulfide nanoparticles with spherical and flower-like structure are prepared via a hydrothermal method. Sodium molybdate and thioacetamide are taken as precursors, polyethylene glycol (PEG-20000, hexadecyl trimethyl ammonium chloride (CTAC and anhydrous ethanol are used as additives. The properties of the product are characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. The results showed that under acidic conditions, molybdenum disulfide nanoparticles with spherical shape are obtained when PEG-20000 and CTAC are added. The nanoparticles are uniform in size with a diameter of about 100 nm. Molybdenum disulfide nanoparticles with a flower-like structure are obtained when anhydrous ethanol is added. Their diameters under sulfuric acid and hydrochloric acid conditions are 190 nm and 70 nm, respectively. Yield analysis reveals that the highest yield (which can be up to 79 % occurs by adding polyethylene glycol in a sulfuric acid environment.

  3. Binary and Ternary Explorations of the Molybdenum Boride System

    OpenAIRE

    Dismukes, Avalon Hope

    2015-01-01

    Refractory metal borides have recently generated intense interest in materials chemistry. These compounds have been shown to possess many advantageous properties, such as exceptionally high hardness, electrical conductivity, and even superconductivity. Higher molybdenum borides are discussed as compounds of interest in this category of materials. However, the complex phase relationships in the molybdenum-boron system complicate the preparation of phase-pure samples. MoB2 and Mo2B4 have both b...

  4. Numerical simulations of material mismatch and ductile crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Oestby, Erling

    2002-07-01

    Both the global geometry and inhomogeneities in material properties will influence the fracture behaviour of structures in presence of cracks. In this thesis numerical simulations have been used to investigate how some aspects of both these issues affect the conditions at the crack-tip. The thesis is organised in an introduction chapter, summarising the major findings and conclusions, a review chapter, presenting the main aspects of the developments in the field of fracture mechanics, and three research papers. Paper I considers the effect of mismatch in hardening exponent on the local near-tip stress field for stationary interface cracks in bi-materials under small scale yielding conditions. It is demonstrated that the stress level in the weaker material increases compared to what is found in the homogeneous material for the same globally applied load level, with the effect being of increasing importance as the crack-tip is approached. Although a coupling between the radial and angular dependence of the stress fields exists, the evolving stress field can still be normalised with the applied J. The effect on the increase in stress level can closely be characterised by the difference in hardening exponent, {delta}n, termed the hardening mismatch, and is more or less independent of the absolute level of hardening in the two materials. Paper II and Ill deal with the effects of geometry, specimen size, hardening level and yield stress mismatch in relation to ductile crack growth. The ductile crack growth is simulated through use of the Gurson model. In Paper H the effect of specimen size on the crack growth resistance is investigated for deep cracked bend and shallow cracked tensile specimens. At small amounts of crack growth the effect of specimen size on the crack growth resistance is small, but a more significant effect is found for larger amounts of crack growth. The crack growth resistance decreases in smaller specimens loaded in tension, whereas the opposite is

  5. Evaluation of Floor Response Spectrum considering Ductility of Structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junhee; Choi, In-Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The FRS (floor response spectrum) is directly influenced by the behavior of structure under the seismic load. If the structure is nonlinear range, the energy dissipation will be occurred by the damage of structure and the maximum force will be reduced. In Zion method, the inelastic energy abortion factor has been used to consider the nonlinearity of structure. This factor was used for the seismic fragility of structure. For the seismic fragility of equipment, the uncertainty of this factor was used differently according to the story level. But this method is not warranted under the strong earthquake leads to the structural damage. Therefore it is needed to evaluate the FRS considering the nonlinear behavior of structure and to assessment the conservatism related to nonlinear behavior of structure in FRS. In this study, the nonlinear analysis was performed for the conservatism of FRS under the damage of structure. The conservatism of FRS by the nonlinear analysis was compared by that proposed by the Zion method. The conservatism of floor acceleration response for the equipment was evaluated by performing the nonlinear analysis. From the nonlinear analysis results, it was showed that the median and β{sub c} of FRSR was increased with the ductility of structure and the response of equipment had the resonance effect between the frequency of equipment and structure. The seismic capacity of equipment by the Zion method can be different from the real seismic capacity of equipment because the inelastic structure response factor has nothing to do with the ductility of structure. Therefore the median and COV for FRSR should be defined considering the ductility of structure and the frequency of equipment for more exactly evaluating the seismic capacity of equipment.

  6. Critical factors in displacement ductility assessment of high-strength concrete columns

    Science.gov (United States)

    Taheri, Ali; Moghadam, Abdolreza S.; Tasnimi, Abass Ali

    2017-12-01

    Ductility of high-strength concrete (HSC) columns with rectangular sections was assessed in this study by reviewing experimental data from the available literature. Up to 112 normal weights concrete columns with strength in the range of 50-130 MPa were considered and presented as a database. The data included the results of column testes under axial and reversed lateral loading. Displacement ductility of HSC columns was evaluated in terms of their concrete and reinforcement strengths, bar arrangement, volumetric ratio of transverse reinforcement, and axial loading. The results indicated that the confinement requirements and displacement ductility in HSC columns are more sensitive than those in normal strength concrete columns. Moreover, ductility is descended by increasing concrete strength. However, it was possible to obtain ductile behavior in HSC columns through proper confinement. Furthermore, this study casts doubt about capability of P/ A g f c' ratio that being inversely proportional to displacement ductility of HSC columns.

  7. Critical factors in displacement ductility assessment of high-strength concrete columns

    Science.gov (United States)

    Taheri, Ali; Moghadam, Abdolreza S.; Tasnimi, Abass Ali

    2017-09-01

    Ductility of high-strength concrete (HSC) columns with rectangular sections was assessed in this study by reviewing experimental data from the available literature. Up to 112 normal weights concrete columns with strength in the range of 50-130 MPa were considered and presented as a database. The data included the results of column testes under axial and reversed lateral loading. Displacement ductility of HSC columns was evaluated in terms of their concrete and reinforcement strengths, bar arrangement, volumetric ratio of transverse reinforcement, and axial loading. The results indicated that the confinement requirements and displacement ductility in HSC columns are more sensitive than those in normal strength concrete columns. Moreover, ductility is descended by increasing concrete strength. However, it was possible to obtain ductile behavior in HSC columns through proper confinement. Furthermore, this study casts doubt about capability of P/A g f c' ratio that being inversely proportional to displacement ductility of HSC columns.

  8. Strain and vorticity patterns in ideally ductile transpression zones

    Science.gov (United States)

    Robin, Pierre-Yves F.; Cruden, Alexander R.

    1994-04-01

    The prevalent model for ductile shear zones assumes that they develop by progressive simple shearing, resulting in a monoclinic fabric in which the vorticity vector is parallel to the shear zone and perpendicular to the lineation. But some ductile shear zones exhibit an amount of coaxial flattening, or a fabric pattern which appear to be incompatible with the assumptions of plane strain and progressive simple shear. In certain sections of the Archean Larder Lake—Cadillac deformation zone (LCDZ), for example, vorticity indicators (asymmetric pressure wings, Z-folds, SC fabrics), best seen on horizontal surfaces, indicate dextral transcurrent motion, whereas stretching lineations have variable but steep plunges. In the Proterozoic Mylonite Zone (MZ) of south-west Sweden, vorticity indicators combined with foliation and lineation data suggest a continuous change from reverse dip-slip motion close to the footwall to sinistral transcurrent motion adjacent to the hangingwall of the zone. Such departures from the ideal progressive simple shear zone pattern may in fact be common. Rather than invoke two stages of deformation, we explore the possibility that these patterns could be the result of ductile transpression. Ductile transpression between relatively rigid walls implies an extrusion of material out of the shear zone. When the material cannot slip freely along the boundaries of the zone, the extrusion strain is by necessity heterogeneous. In order to explore these heterogeneous strain distributions, we have developed a continuum mechanics model in which the 'transpressed' rock is a linear viscous material squeezed upward between two parallel, rigid, vertical walls. Transpression is further generalized by modelling oblique (i.e. with a dip-slip component) relative displacements of the walls. Models, which can vary in their obliquity and their 'press'/'trans' ratio, are examined for their distributions of K-values, strain rate intensity, 'lineation' (direction of

  9. Manufacture of Toothed Elements in Nanoausferritic Ductile Iron

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2014-10-01

    Full Text Available The technology currently used for the fabrication of toothed wheels, gear couplings and chain drums involves the induction hardening process or hardening and tempering after carburising. All these processes take a long time and cause adverse changes in the dimensions and surface quality of products, requiring post-treatment machining to remove the resulting cavities. The paper proposes the implementation of gear elements made of ductile iron with nanoausferritic matrix obtained by a new appropriate heat treatment process. The new material offers good performance characteristics and nearly no need for the application of other technological processes commonly used in the manufacture of gears.

  10. Statistics of ductile fracture surfaces: the effect of material parameters

    DEFF Research Database (Denmark)

    Ponson, Laurent; Cao, Yuanyuan; Bouchaud, Elisabeth

    2013-01-01

    The effect of material parameters on the statistics of fracture surfaces is analyzed under small scale yielding conditions. Three dimensional calculations of ductile crack growth under mode I plane strain, small scale yielding conditions are carried out using an elastic-viscoplastic constitutive...... microscopic fracture properties: height fluctuations are shown to crossover from a Student’s distribution with power law tails at small scales to a Gaussian behavior at large scales, but this transition occurs at a material dependent length scale. Using the family of Student’s distributions, this transition...

  11. Failure Mechanism of Hot Dip Aluminized Ductile Iron

    OpenAIRE

    Yong, Wei; HUANG Xing-min; ZHANG Lei; Cheng, Qian; DAI Guang-ze

    2016-01-01

    Using laser scanning confocal microscope, failure process of aluminized ductile iron samples were in-situ observed during three-point bending test, while crack initiation and propagation mechanism were analyzed in the area of coating and matrix. The results show that for hot-dipped samples in Al, cracks mainly initiate in the Fe-Al alloy coating under tensile stress, then induce the tearing of ferrite and the peeling of graphite in the adjacent matrix. Thereby cracks spread to the inner matri...

  12. Work-Hardening Induced Tensile Ductility of Bulk Metallic Glasses via High-Pressure Torsion

    OpenAIRE

    Soo-Hyun Joo; Dong-Hai Pi; Albertus Deny Heri Setyawan; Hidemi Kato; Milos Janecek; Yong Chan Kim; Sunghak Lee; Hyoung Seop Kim

    2015-01-01

    The mechanical properties of engineering materials are key for ensuring safety and reliability. However, the plastic deformation of BMGs is confined to narrow regions in shear bands, which usually result in limited ductilities and catastrophic failures at low homologous temperatures. The quasi-brittle failure and lack of tensile ductility undercut the potential applications of BMGs. In this report, we present clear tensile ductility in a Zr-based BMG via a high-pressure torsion (HPT) process....

  13. Robustness Analysis of a Wide-Span Timber Structure with Ductile Behaviour

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Cizmar, D.

    2010-01-01

    This paper considers robustness evaluation of a wide span timber truss structure where the ductile behavior is taken into account. The robustness analysis is based on a structural reliability framework used on a simplified mechanical system modelling a timber truss system. A measure of ductile be...... behaviour is introduced and for different values of this measure the robustness indices are estimated. The results indicate that the robustness of a timber truss system can be increased by taking the ductile behavior into....

  14. Weldability of polycrystalline aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Fasching, A.A.; Edwards, G.R.; Burt, R.P. [Colorado School of Mines, Golden, CO (United States); David, S.A. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    Slow strain rate tensile tests were conducted in varying water vapor atmospheres on weldments refined by magnetic arc oscillation with average fusion zone grain sizes ranging between 115 and 530{mu}m. Fracture strength and percent strain to fracture were measured for each fusion zone microstructure. The fracture strength data followed Hall-Petch behavior, and water vapor significantly reduced fracture strength. The finer grain size fusion zones were found to be less susceptible to hydrogen cracking and more tolerant of high hydrogen concentrations than coarse fusion zone grain structures. Microstructural refinement via arc oscillation was also found to be suitable only for well-controlled fabrication environments.

  15. Continuum damage modeling in ductile materials using level sets

    Science.gov (United States)

    de Brauer, Alexia; Udaykumar, H. S.

    2017-06-01

    Ductile materials under high-velocity impact undergo large deformation and eventually damage. Damage alters the mechanical behavior of the materials and can lead to fracture and fragmentation. This work proposes a general Eulerian framework to model fracture and interfacial debonding in ductile materials. The current effort focuses on a plate impact problem, where a crack forms due to damage accumulation causing a discontinuity in the material. Damage accumulation is described by the continuum damage models. The level set approach is adopted for both tracking the sharp material interfaces and creating the crack. Results are found to be in good agreement with experimental data and two other commercial codes, CTH and EPIC. Also, damage is considered at the interfaces between two bonded materials, such as particles embedded in a matrix in a composite material. The progressive decohesion of the interfaces due to dynamic loading is simulated via a cohesive zone model. The result shows the ability of the code to handle the separation of the interfaces and create voids. This work has been funded from the AFRL-RW, Computational Mechanics Branch, Eglin AFB, Program Manager: Dr. Angela Diggs.

  16. Cracks in Ductile Polymers Using Cohesive Zone Modeling

    Science.gov (United States)

    Reding, Derek

    2010-03-01

    Ductile polymer fracture is studied by using a relatively new technique in which cohesive elements are placed between elastic solid elements, along the mesh boundaries. Polymer chain elongation is described using cohesive model parameters that are calibrated to simulate the conical crack observed in a single fiber fragmentation experiment that uses a ductile polyester matrix. This approach limits the crack trajectory to align with the mesh, thus severely limiting the accuracy. We propose a new crack trajectory method to describe polymer chain elongation by incorporating both normal and shear traction contributions in a strictly cohesive zone model approach. Our formulation shows that local polymer chain orientation depends on the ratio of mode I and mode II stiffness penalty parameters and tractions. The corresponding stress state reaches a critical value that is represented by a material parameter. The new crack tip extends to a location where the critical stress is reached at a maximum distance from the existing crack tip. Implementation is performed by adding the proposed crack trajectory method to an extended finite element code (X-FEM) with cohesive element modeling.

  17. Mechanisms and mechanics of porosity formation in ductile iron castings

    Directory of Open Access Journals (Sweden)

    M. Perzyk

    2007-12-01

    Full Text Available Shrinkage defects in ductile iron castings can be of two basic types: shrinkage cavities associated with the liquid contraction prior to the expansion period of the iron as well as the porosity, which may appear even if the liquid shrinkage is fully compensated. In the present paper two possible mechanisms of the porosity are presented and analyzed. The first one is the Karsay’s mechanism based on the secondary shrinkage concept. The second one is the mechanism acting during the expansion period of the iron, first suggested by Ohnaka and co-authors and essentially modified by the present authors. The mechanical interactions between casting and mould are determined for the both mechanisms. Their analysis leads to the conclusion, that porosity forms during expansion period of the melt. The direct cause is the negative pressure which appears in the central part of the casting due to the differences in expansion coefficients of the fast cooling surface layer and slow cooling inner region. Observations concerning feeding behavior of ductile iron castings, based on this mechanism, agree well with industrial practice. The secondary shrinkage is not only needless to induce the porosity, but the corresponding mechanism of its occurrence, proposed by Karsay, does not seem to be valid.

  18. Finite element assisted prediction of ductile fracture in sheet bulging

    Science.gov (United States)

    Donald, Bryan J. Mac; Lorza, Ruben Lostado; Yoshihara, Shoichiro

    2017-10-01

    With growing demand for energy efficiency, there is much focus on reducing oil consumption rates and utilising alternative fuels. A contributor to the solution in this area is to produce lighter vehicles that are more fuel efficient and/or allow for the use of alternative fuel sources (e.g. electric powered automobiles). Near-net-shape manufacturing processes such as hydroforming have great potential to reduce structural weight while still maintaining structural strength and performance. Finite element analysis techniques have proved invaluable in optimizing such hydroforming processes, however, the majority of such studies have used simple predictors of failure which are usually yield criteria such as von Mises stress. There is clearly potential to obtain more optimal solutions using more advanced predictors of failure. This paper compared the Von Mises stress failure criteria and the Oyane's ductile fracture criteria in the sheet hydroforming of magnesium alloys. It was found that the results obtained from the models which used Oyane's ductile fracture criteria were more realistic than those obtained from those that used Von Mises stress as a failure criteria.

  19. The effects of steel fibre reinforced concrete on system ductility

    Directory of Open Access Journals (Sweden)

    Yilmaz, U. S.

    2007-03-01

    Full Text Available Steel fibre-reinforced concrete is being used extensively today in both field applications and experimental studies on concrete strength and ductility. The state of passive confinement generated by the fibre delays cracking and enhances ductility. The present paper reports on both experimental and analytical studies. In the former, a series of 16 steel-fibre reinforced concrete prismatic specimens were subjected to axial loads and the respective axial load-unit strain diagrams were subsequently plotted to determine the effect of steel fibres on reinforced concrete column ductility. Secondly, an analytical study was run to determine the additional ductility accruing to a frame system when steel fibres are included in the concrete. Analytical models were generated for 16 two-storey, single-span reinforced concrete frames. The columns in these frames were designed to the same characteristics as the specimens used in the experimental tests. Non-linear static (pushover analyses were performed for each frame to obtain load-displacement curves and determine the effect of steel fibres on reinforced concrete column ductility.El hormigón reforzado con fibra de acero se emplea actualmente tanto en obra como en los trabajos experimentales para estudiar la resistencia mecánica y ductilidad del hormigón. El estado de confinamiento pasivo producido por la fibra retrasa la fisuración y aumenta la ductilidad. El presente trabajo es de índole tanto experimental como analítica. En primer lugar, en la parte experimental se aplica una fuerza axial a 16 probetas prismáticas (160 x 160 x 840 mm de hormigón reforzado con fibra de acero para determinar su comportamiento, obteniéndose las curvas de fuerza axial-deformación unitaria correspondientes a partir de los resultados observados. A partir de una evaluación de dichos resultados experimentales, se determina el efecto que ejercen las fibras de acero sobre la ductilidad de las probetas de hormigón armado

  20. A molybdenum-isotope perspective on Phanerozoic deoxygenation events

    Science.gov (United States)

    Dickson, Alexander J.

    2017-10-01

    The expansion and contraction of sulfidic depositional conditions in the oceans can be tracked with the isotopic composition of molybdenum in marine sediments. However, molybdenum-isotope data are often subject to multiple conflicting interpretations. Here I present a compilation of molybdenum-isotope data from three time intervals: the Toarcian Oceanic Anoxic Event about 183 million years ago, Oceanic Anoxic Event 2 about 94 million years ago, and two early Eocene hyperthermal events from 56 to 54 million years ago. A comparison of data from sites located in different hydrographic settings tightly constrains the molybdenum cycle for these intervals, allowing a direct comparison of the expanse of sulfidic conditions in each interval compared to today. Nonetheless, tracing rates of redox change over such rapid climatic events using molybdenum isotopes remains challenging. Future efforts to achieve this goal might be accomplished by analysing specific mineral phases, using complementary redox-sensitive geochemical techniques and by linking isotopic observations with Earth system modelling. Such improvements will make it possible to more fully assess the links between ocean deoxygenation, climatic and oceanographic changes, and biotic turnover.

  1. Ductile-Phase-Toughened Tungsten for Plasma-Facing Materials

    Science.gov (United States)

    Cunningham, Kevin Hawkins

    A variety of processing approaches were employed to fabricate ductile-phase-toughened (DPT) tungsten (W) composites. Mechanical testing and analytical modeling were used to guide composite development. This work provides a basis for further development of W composites to be used in structural divertor components of future fusion reactors. W wire was tested in tension, showing significant ductility and strength. Coatings of copper (Cu) or tungsten carbide (WC) were applied to the W wire via electrodeposition and carburization, respectively. Composites were fabricated using spark plasma sintering (SPS) to consolidate W powders together with each type of coated W wire. DPT behavior, e.g. crack arrest and crack bridging, was not observed in three-point bend testing of the sintered composites. A laminate was fabricated by hot pressing W and Cu foils together with W wires, and subsequently tested in tension. This laminate was bonded via hot pressing to thick W plate as a reinforcing layer, and the composite was tested in three-point bending. Crack arrest was observed along with some fiber pullout, but significant transverse cracking in the W plate confounded further fracture toughness analysis. The fracture toughness of thin W plate was measured in three-point bending. W plates were brazed with Cu foils to form a laminate. Crack arrest and crack bridging were observed in three-point bend tests of the laminate, and fracture resistance curves were successfully calculated for this DPT composite. An analytical model of crack bridging was developed using the basis described by Chao in previous work by the group. The model uses the specimen geometry, matrix properties, and the stress-displacement function of a ductile reinforcement ("bridging law") to calculate the fracture resistance curve (R-curve) and load-displacement curve (P-D curve) for any test specimen geometry. The code was also implemented to estimate the bridging law of an arbitrary composite using R-curve data

  2. Page 1 330 C Suryanarayana Metals are usually soft, ductile and ...

    Indian Academy of Sciences (India)

    Metals are usually soft, ductile and tough while ceramics are strong, hard and brittle. However, through nanostructure processing, it appears to be possible to make metals hard and strong like ceramics and ceramics can be made ductile like metals. 6.4 Electrical properties. Because of the increased volume fraction of atoms ...

  3. Experimental analysis of flow of ductile cast iron in stream lined gating systems

    DEFF Research Database (Denmark)

    Skov-Hansen, Søren; Green, Nick; Tiedje, Niels Skat

    2008-01-01

    Streamlined gating systems have been developed for production of high integrity ductile cast iron parts. Flow of ductile cast iron in streamlined gating systems was studied in glass fronted sand moulds where flow in the gating system and casting was recorded by a digital video camera. These results...

  4. Ductile Binder Phase For Use With Almgb14 And Other Hard Ceramic Materials

    Science.gov (United States)

    Cook, Bruce A.; Russell, Alan; Harringa, Joel

    2005-07-26

    This invention relates to a ductile binder phase for use with AlMgB14 and other hard materials. The ductile binder phase, a cobalt-manganese alloy, is used in appropriate quantities to tailor good hardness and reasonable fracture toughness for hard materials so they can be used suitably in industrial machining and grinding applications.

  5. Molybdenum Cycling During Crust Formation and Destruction

    Science.gov (United States)

    Greaney, A. T.; Rudnick, R. L.

    2016-12-01

    Molybdenum geochemistry has become an important tool for tracking the redox state of the early atmosphere and oceans as well as the emergence and sustainability of Mo-cofactored enzymes. However, in order for Mo to be enriched in the oceans, it must first be weathered out of the crust. Sulfides that weather in the presence of atmospheric O2have historically been deemed the predominant crustal source of Mo. Here, we test this assumption by determining the mineralogical hosts of Mo in Archean, Proterozoic, and Phanerozoic upper crustal rocks, using LA-ICP-MS. We also investigate Mo behavior during igneous differentiation and continental crust formation. We find that molybdenite, MoS2, is a weatherable sulfide source of Mo, but common igneous sulfides are not because their Mo concentrations are too low. However, molybdenite is uncommon in the upper continental crust. By contrast, volcanic glass is much more abundant and is a significant weatherable source of Mo that readily breaks down to release oxidized, soluble Mo whether or not atmospheric O2is present. Other common crustal mineral hosts of Mo are Ti-bearing phases like titanite, ilmenite, magnetite, and rutile that are resistant to weathering. Significant Mo depletion (relative to Ce and Pr) is observed in nearly every granitic rock analyzed in our study, but is not observed in OIB or MORB (Jenner and O'Neill, 2012). There are two possible reasons for this: 1) Mo is removed from cooling plutons during fluid expulsion, or 2) Mo is fractionated during igneous differentiation. The first scenario is a likely explanation given the solubility of oxidized Mo. However, correlations between Mo/Ce and Nb/La in several plutonic suites suggest a fractionating phase like rutile may sequester Mo in the lower crust. Additionally, a correlation between Mo/Ce and inferred tectonic setting (enrichments observed in rift-related plutons) suggest an overall tectonic influence on the availability of Mo in the upper crust.

  6. High heat load test of molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, T. (Faculty of Engineering, Osaka Univ., Suita (Japan)); Fujine, M.; Noguchi, H. (Daido Steel Co. Ltd., Nagoya (Japan)); Yagi, Y.; Hirano, Y.; Shimizu, H. (Electrotechnical Lab., Umezono, Tsukuba (Japan)); Akiba, M.; Araki, M. (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)); Kubota, Y.; Miyahara, A. (National Inst. for Fusion Science, Nagoya (Japan))

    1993-03-01

    Three different types of molybdenum, powder metallurgical polycrystalline (PM-Mo), and as-forged polycrystalline and single crystalline of highly purified electron-beam-melted Mo (AFEB-Mo and SCEB-Mo), have been subjected to high heat load test with neutral beam injection (NBI) stands at Japan Atomic Energy Research Institute (JAERI) and National Institute for Fusion Science (NIFS). These materials have also been tested as a movable limiter in a reversed field pinch machine (RFP:TPE-1RM15) in Electrotechnical Laboratory (ETL). The results are summarized as follows. The SCEB-Mo shows the least damage with slight local melting after a very high heat load of 260 MW/m[sup 2] for 250 ms with NBI, while for the PM-Mo the whole irradiated area melt with many craters due to impurity gas evaporation under less heat load (200 ms). All movable limiter heads of the RFP are severely damaged with partial melting. The appearance of the SCEB-Mo limiter after melting is not good and shows the crystalline cleavage. However, SEM observation of the microstructure opposes the surface appearance. In the SCEB-Mo, appreciable recrystallization is not observed and hence no crack is seen to go into the bulk except the crystalline cleavage. In the PM-Mo, on the other hand, the resolidification to columnar grains as well as the recrystallization is apparent, and the cracks not only go along the columnar grains but also separate the recrystallized region from the matrix. In the AFEB-Mo, a slight grain growth occurs and several cracks enter deep along the grain boundaries. Thus the SCEB-Mo is a very nice plasma-facing material if used under the critical heat load for melting. (orig.).

  7. Numerical method for shear bands in ductile metal with inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Plohr, Jee Yeon N [Los Alamos National Laboratory; Plohr, Bradley J [Los Alamos National Laboratory

    2010-01-01

    A numerical method for mesoscale simulation of high strain-rate loading of ductile metal containing inclusions is described. Because of small-scale inhomogeneities, such a composite material is prone to localized shear deformation (adiabatic shear bands). The modeling framework is the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. /27-139, 1992], which ensures that the micromechanical response of the material is reflected in the behavior of the composite at the mesoscale. To calculate the effective plastic strain rate when shear bands are present, the analytic and numerical analysis of shear bands by Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31-41, 1996] is adapted and extended.

  8. Behaviour of ductile low porous materials with strain hardening in Taylor experiment

    Directory of Open Access Journals (Sweden)

    Edward Włodarczyk

    2015-06-01

    Full Text Available The paper deals with an analytical solution of a one-dimensional boundary value problem, describing behaviour of a ductile porous cylindrical rod, both during and after Taylor direct impact experiment (Taylor DIDIE. The solution provides a simple theoretical basis for dynamical investigations of ductile porous material. The solution was based on a plastic-rigid rate-independent material with strain hardening. For ductile low porous materials with strain hardening, all parameters are presented by means of the closed analytical formulae. The paper presents also a new experimental method of determining distributions of density and longitudinal engineering compressive strain (LECS in a porous ductile rod, plastically deformed by Taylor DIDIE.[b]Keywords[/b]: Dynamic plasticity, porous ductile material, strain hardening, Taylor impact experiment, deformed rod dynamic parameters

  9. A multi-surface plasticity model for ductile fracture simulations

    Science.gov (United States)

    Keralavarma, Shyam M.

    2017-06-01

    The growth and coalescence of micro-voids in a material undergoing ductile fracture depends strongly on the loading path. Void growth occurs by diffuse plasticity in the material and is sensitive to the hydrostatic stress, while void coalescence occurs by the localization of plastic deformation in the inter-void ligaments under a combination of normal and shear stresses on the localization plane. In this paper, a micromechanics-based plasticity model is developed for an isotropic porous material, accounting for both diffuse and localized modes of plasticity at the micro-scale. A multi-surface approach is adopted, and two existing plasticity models that separately account for the two modes of yielding, above, are synthesized to propose an effective isotropic yield criterion and associated state evolution equations. The yield criterion is validated by comparison with quasi-exact numerical yield loci computed using a finite elements based limit analysis procedure. It is shown that the new criterion is in better agreement with the numerical loci than the Gurson model, particularly for large values of the porosity for which the loading path dependence of the yield stress is well predicted by the new model. Even at small porosities, it is shown that the new model predicts marginally lower yield stresses under low triaxiality shear dominated loadings compared to the Gurson model, in agreement with the numerical limit analysis data. Predictions for the strains to the onset of coalescence under proportional loading, obtained by numerically integrating the model, indicate that void coalescence tends to occur at relatively small plastic strain and porosity levels under shear dominated loadings. Implications on the prediction of ductility using the new model in fracture simulations are discussed.

  10. Methodology of Fault Diagnosis in Ductile Iron Melting Process

    Directory of Open Access Journals (Sweden)

    Perzyk M.

    2016-12-01

    Full Text Available Statistical Process Control (SPC based on the Shewhart’s type control charts, is widely used in contemporary manufacturing industry, including many foundries. The main steps include process monitoring, detection the out-of-control signals, identification and removal of their causes. Finding the root causes of the process faults is often a difficult task and can be supported by various tools, including data-driven mathematical models. In the present paper a novel approach to statistical control of ductile iron melting process is proposed. It is aimed at development of methodologies suitable for effective finding the causes of the out-of-control signals in the process outputs, defined as ultimate tensile strength (Rm and elongation (A5, based mainly on chemical composition of the alloy. The methodologies are tested and presented using several real foundry data sets. First, correlations between standard abnormal output patterns (i.e. out-of-control signals and corresponding inputs patterns are found, basing on the detection of similar patterns and similar shapes of the run charts of the chemical elements contents. It was found that in a significant number of cases there was no clear indication of the correlation, which can be attributed either to the complex, simultaneous action of several chemical elements or to the causes related to other process variables, including melting, inoculation, spheroidization and pouring parameters as well as the human errors. A conception of the methodology based on simulation of the process using advanced input - output regression modelling is presented. The preliminary tests have showed that it can be a useful tool in the process control and is worth further development. The results obtained in the present study may not only be applied to the ductile iron process but they can be also utilized in statistical quality control of a wide range of different discrete processes.

  11. The Silumin Coat Structure on Alloy Ductile Iron

    Directory of Open Access Journals (Sweden)

    Szymczak T.

    2013-03-01

    Full Text Available The work presents the research results of the silumin coat structure applied on the carbidic alloy ductile iron with the metal matrix: pearlitic, bainitic and martensitic. The coats were made in the AlSi5 silumin bath at the temperature tk = 750±5°C. The holding time of cast iron element in the bath was τ = 180s. Irrespective of the kind of tested ductile iron the obtained coat consisted of three layers with a different phase composition. The first layer from the cast iron ground “g1`” is built from Fe4CSi carbide which contains selected alloy additives of the cast iron. On it the second layer “g1``” crystallizes. It consists of the AlFeSi inter-metallic phase which can appear in its pure form or contain a small quantity of the alloy additives of the cast iron. The last external part of the layer “g2” mainly consists of the hypo-eutectic phases of silumin. The AlFeSi inter-metallic phases in the form of free precipitations with a lamellar or faceted morphology can also appear there. These phases also can contain a small quantity of the alloy additives of the cast iron. More than that, in all the layers of the coat there are graphite precipitations. The phenomenon of graphite movement to the coat is caused by intensive dissolving of the cast iron element surface by the aluminum of the silumin bath.

  12. Molybdenum chloride catalysts for Z-selective olefin metathesis reactions

    Science.gov (United States)

    Koh, Ming Joo; Nguyen, Thach T.; Lam, Jonathan K.; Torker, Sebastian; Hyvl, Jakub; Schrock, Richard R.; Hoveyda, Amir H.

    2017-01-01

    The development of catalyst-controlled stereoselective olefin metathesis processes has been a pivotal recent advance in chemistry. The incorporation of appropriate ligands within complexes based on molybdenum, tungsten and ruthenium has led to reactivity and selectivity levels that were previously inaccessible. Here we show that molybdenum monoaryloxide chloride complexes furnish higher-energy (Z) isomers of trifluoromethyl-substituted alkenes through cross-metathesis reactions with the commercially available, inexpensive and typically inert Z-1,1,1,4,4,4-hexafluoro-2-butene. Furthermore, otherwise inefficient and non-stereoselective transformations with Z-1,2-dichloroethene and 1,2-dibromoethene can be effected with substantially improved efficiency and Z selectivity. The use of such molybdenum monoaryloxide chloride complexes enables the synthesis of representative biologically active molecules and trifluoromethyl analogues of medicinally relevant compounds. The origins of the activity and selectivity levels observed, which contradict previously proposed principles, are elucidated with the aid of density functional theory calculations.

  13. The behaviour of molybdenum dialkyldithiocarbamate friction modifier additives

    CERN Document Server

    Graham, J C H

    2001-01-01

    In recent years there has been growing concern to produce energy-efficient lubricated components and modem engine oil specifications require lubricants to demonstrate fuel efficiency in standardised engine tests. One important method of producing low friction and thus fuel-efficient lubricants is to use oil-soluble, molybdenum-containing, friction modifier additives. In optimal conditions these additives are able to produce very low friction coefficients, in the range 0.045 to 0.075 in boundary lubrication conditions. Very little is known about the chemical and physical mechanisms by which oil soluble molybdenum additives form low friction films in tribological contacts. Information about their activity could lead to optimal use of these additives in lubricants and, therefore, more efficient engine running. The work outlined in this thesis investigated the behaviour of oil-soluble molybdenum additives and showed that these additives were able to effectively reduce friction in the absence of other additives su...

  14. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca

    2013-01-01

    carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide......Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over...... supported molybdenum carbide are significantly higher compared to the bulk carbide. The CO conversion reaches a maximum, when about 20wt% Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active carbon and reaches a maximum over bulk molybdenum...

  15. Molybdenum cofactor deficiency mimics cerebral palsy: differentiating factors for diagnosis.

    Science.gov (United States)

    Kikuchi, Kenjiro; Hamano, Shin-ichiro; Mochizuki, Hiroshi; Ichida, Kimiyoshi; Ida, Hiroyuki

    2012-08-01

    We describe an infant with molybdenum cofactor deficiency, initially diagnosed as cerebral palsy. Clinical features of molybdenum cofactor deficiency, e.g., neonatal seizures, hypertonus/hypotonus, and feeding and respiratory difficulties, resemble those of neonatal hypoxic-ischemic encephalopathy. Our patient, a 2-year-old boy, presented with spastic quadriplegia and mental retardation. He manifested intractable neonatal seizures and diffuse cerebral atrophy. When admitted with bronchitis at age 18 months, his uric acid levels in blood and urine were undetectable. A urinary sulfite test revealed positive results. Further tests revealed elevated urinary levels of xanthine, hypoxanthine, and S-sulfocystein. Sequencing of the MOCS2A gene revealed heterozygosity for c.[265T>C] + [266A>G], diagnosed as molybdenum cofactor deficiency type B. Neonatal seizures, progressive cerebral atrophy, and low serum levels of uric acid may provide diagnostic clues in patients with cerebral palsy of undetermined cause. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Neoarchean ductile deformation in the Northeastern North China Craton: The Shuangshanzi ductile shear zone in Qinglong area, eastern Heibei, China

    Science.gov (United States)

    Liu, Boran; Neubauer, Franz; Liu, Junlai; Jin, Wei; Li, Weimin; Liang, Chenyue

    2017-04-01

    Archean granitic gneiss domes and greenstone belts are well-preserved in eastern NCC, one of the oldest Archean terrains in the world. The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei Province is located between an Archean granitic gneiss dome and a greenstone belt within an uplift in eastern NCC. Supracrustal rocks from the Neoarchean Shuangshanzi and Zhuzhangzi Groups were sheared, but some Archean granitic gneisses were also involved in the shearing along the eastern margin. In the southern part, the narrow NE-trending shear zone dips NW with dip angles of 40-60° and, in the northern part, the shear zone dips NWN with dip angles of 70-85°. Microstructural and EBSD fabric analyses suggest that the shear zone was developed at upper greenschist facies to lower amphibolite facies conditions with deformation temperatures of 400 to 550°C.LA-ICP-MS zircon U-Pb ages of mylonitized granitic rocks and undeformed quartz diorite cutting the shear zone suggest that the Shuangshanzi ductile shear zone was formed between 2550 Ma and 2452 Ma. Detailed kinematic studies of the shear zone show a clear sinistral shear sense with a slightly oblique-slip component in the northern part and a sinistral transtensional slip component in the southern part. It is therefore suggested that the shear zone was formed during the Anziling doming with respect to the down-slipping Neoarchean Shuangshanzi and Zhuzhangzi Groups. The difference in kinematics along the southern and the northern sections is interpreted to be caused by the doming with an uneven clockwise spiral rotation. The BIF-rich supracrustal rocks have higher density than their neighboring granitic gneisses, and therefore can easily sink to form synclines by sagduction processes. The sagduction is mainly triggered by gravitational inversion of high density supracrustal rocks with respect to relatively light granitic gneisses within the dome. As a result, the gneisses synchronously moved upward. A shear zone was

  17. 10 CFR 35.2204 - Records of molybdenum-99, strontium-82, and strontium-85 concentrations.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of molybdenum-99, strontium-82, and strontium-85... Records § 35.2204 Records of molybdenum-99, strontium-82, and strontium-85 concentrations. A licensee shall maintain a record of the molybdenum-99 concentration or strontium-82 and strontium-85...

  18. Absorbed Energy Distribution of Ductile Ni-resist Alloyed Iron Under Instrumented Impact Load at Low Temperatures

    National Research Council Canada - National Science Library

    Ke, Jiang; Yingdong, Qu; Junhua, You; Rongde, Li

    2016-01-01

    In this study, in order to investigate the absorbed energy distribution on the low-temperature impact fracture process of ductile Ni-resist alloyed iron, the low-temperature impact tests of ductile Ni...

  19. Al6061 Hybrid Metal Matrix Composite Reinforced with Alumina and Molybdenum Disulphide

    Directory of Open Access Journals (Sweden)

    G. Pitchayyapillai

    2016-01-01

    Full Text Available Aluminum Hybrid Reinforcement Technology is a response to the dynamic ever-increasing service requirement of industries such as transportation, aerospace, automobile, and marine, due to its attractive properties like high ductility, highly conductivity, light weight, and high strength to weight ratio. In this evolution, an attempt has been made to investigate the wear rate of Al6061 hybrid metal matrix composite reinforced with the hard ceramic alumina (4, 8, and 12 wt.% of Al2O3 and soft solid lubricant of molybdenum disulphide (2, 4, and 6 wt.% of MoS2 is fabricated by using stir casting method. The unlubricated pins on disc wear tests were conducted to examine the wear behaviour of Al6061/12 wt.% of Al2O3/MoS2 composites. The sliding wear tests were carried out at various loads of 15, 30, and 45 N, sliding velocity (1.25, 2.50, and 3.25 m/sec, and different MoS2 wt.% (2, 4, and 6 wt.%. In addition, the CNC turning experiments were conducted on Al6061/12 wt.% Al2O3/6 wt.% MoS2 using CNMG 120408 uncoated carbide cutting tool under cutting of 100, 150, and 200 m/min, feed of 0.1, 0.2, and 0.3 mm/rev, and depth of cut of 1, 1.5, and 2 mm.

  20. Molybdenum--substrate interactions in nitrogenase: an EXAFS study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.P.

    1978-07-01

    The sensitivity of x-ray absorption edge spectra and extended x-ray absorption fine structure (EXAFS) to the environment of metal atoms make x-ray absorption spectroscopy a useful probe of the environment of the molybdenum in nitrogenase. It is of particular interest to investigate any perturbations of the environment of the molybdenum due to the presence of nitrogenase substrates. The results of measurements of the x-ray absorption spectra of nitrogenase samples by the absorption and fluorescence detection techniques are compared. The procedures used for the growth of Azotobacter vinelandii for the production of nitrogenase and the procedures used for the purification of nitrogenase are described in detail.

  1. [Xanthine oxidase deficiency (hereditary xanthinuria), molybdenum cofactor deficiency].

    Science.gov (United States)

    Sumi, S; Wada, Y

    1996-12-01

    Hereditary xanthinuria is a rare autosomal recessive disorder, with xanthine oxidase deficiency. Patients often display renal symptoms because they excrete a large amounts of xanthine in urine. An high-fluid-intake, alow-purine-food, and alkalinization of urine are effective in the patients. Molybdenum cofactor is essential for xanthine oxidase, sulfite oxidase and aldehyde oxidase. Patients with molybdenum cofactor deficiency display severe neurological symptoms, such as severe convulsions. The patients increase urinary excretions of xanthine and sulfite. Treatments are ineffective for neurological symptoms.

  2. Tungsten-molybdenum fractionation in estuarine environments

    Science.gov (United States)

    Mohajerin, T. Jade; Helz, George R.; Johannesson, Karen H.

    2016-03-01

    Dissolved tungsten (W) and molybdenum (Mo) concentrations were measured in surface waters and sediment pore waters of Terrebonne Bay, a shallow estuary in the Mississippi River delta, to investigate the biogeochemical processes that fractionate these Group 6 elements relative to one another during transit from weathering to sedimentary environments. Although many of the chemical properties of W and Mo are similar, the two elements behave autonomously, and the fractionation mechanisms are only partly understood. In sulfidic pore waters, dissolved Mo is depleted relative to river water-seawater mixtures, whereas dissolved W is >10-fold enriched. Reductive dissolution of poorly crystalline phases like ferrihydrite, which is a preferential host of W relative to Mo in grain coatings on river-borne particles, can explain the dissolved W enrichment. Dissolved W becomes increasingly enriched as H2S(aq) rises above about 60 μM due to transformation of WO42- to thiotungstates as well as to additional reductive dissolution of phases that host W. In contrast, as rising sulfide transforms MoO42- to thiomolybdates in pore waters, dissolved Mo is suppressed, probably owing to equilibration with an Fe-Mo-S phase. This putative phase appears to control the aqueous ion product, Q = [Fe2+][MoS42-]0.6 [H2S0]0.4/[H+]0.8, at a value of 10-7.78. Concentrations of dissolved W and Mo in pore waters bear no relation to concentrations in surface waters of the same salinity. In surface waters, dissolved Mo is nearly conserved in the estuarine mixing zone. Dissolved W appears also to be conserved except for several cases where W may have been enhanced by exchange with underlying, W-rich pore waters. With increasing salinity, the molar Mo/W ratio rises from about 10 to about 1000 in surface waters whereas it is mostly sequestration on river-borne particles and its subsequent release to sulfidic pore waters after the particles are deposited in the delta and become subject to reductive

  3. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    Energy Technology Data Exchange (ETDEWEB)

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to

  4. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    Science.gov (United States)

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Ductility demands on buckling-restrained braced frames under earthquake loading

    Science.gov (United States)

    Fahnestock, Larry A.; Sause, Richard; Ricles, James M.; Lu, Le-Wu

    2003-12-01

    Accurate estimates of ductility demands on buckling-restrained braced frames (BRBFs) are crucial to performance-based design of BRBFs. An analytical study on the seismic behavior of BRBFs has been conducted at the ATLSS Center, Lehigh University to prepare for an upcoming experimental program. The analysis program DRAIN-2DX was used to model a one-bay, four-story prototype BRBF including material and geometric nonlinearities. The buckling-restrained brace (BRB) model incorporates both isotropic and kinematic hardening. Nonlinear static pushover and time-history analyses were performed on the prototype BRBF. Performance objectives for the BRBs were defined and used to evaluate the time-history analysis results. Particular emphasis was placed on global ductility demands and ductility demands on the BRBs. These demands were compared with anticipated ductility capacities. The analysis results, along with results from similar previous studies, are used to evaluate the BRBF design provisions that have been recommended for codification in the United States. The results show that BRB maximum ductility demands can be as high as 20 to 25. These demands significantly exceed those anticipated by the BRBF recommended provisions. Results from the static pushover and time-history analyses are used to demonstrate why the ductility demands exceed those anticipated by the recommended provisions. The BRB qualification testing protocol contained in the BRBF recommended provisions is shown to be inadequate because it requires only a maximum ductility demand of at most 7.5. Modifications to the testing protocol are recommended.

  6. Characteristics of the Transformation of Retained Austenite in Tempered Austempered Ductile Iron

    Science.gov (United States)

    Wang, Bingxu; Barber, Gary; Sun, Xichen; Shaw, Michael; Seaton, Phil

    2017-05-01

    Controlling the amount of retained austenite is a concern in austempered ductile iron formation. Retained austenite has a strong influence on austempered ductile iron properties, such as hardness and wear resistance. In this research, the characteristics of the transformation of retained austenite were investigated as a function of the number of tempering cycles. The hardness of the austempered ductile iron samples was measured, and the specific amount of retained austenite was analyzed by x-ray diffraction (XRD). Wear tests were conducted on a ball-on-flat sliding fixture. The tempering process was found to have no effect on the hardness of the austempered ductile iron samples. This may be due to retained austenite being partially converted into brittle quenched martensite during the tempering process. However, tougher tempered martensite was also formed from existing martensite. The two effects seemed to offset each other, and no significant differences occurred in overall hardness. XRD analysis showed that under the same austempering temperature and holding time, the amount of retained austenite decreased with additional tempering cycles. Also, with the same holding time and tempering cycles, less retained austenite was contained in the matrix at higher austempering temperatures. This was due to more high carbon content austenite and needle-like ferrite being present in the austempered ductile iron matrix. In addition, tempered austempered ductile iron exhibited significantly higher wear resistance as compared to traditionally treated ductile iron.

  7. Japan Beyond-Brittle Project (JBBP) for Development of EGS Reservoirs in Ductile Zones

    Science.gov (United States)

    Asanuma, H.; Muraoka, H.; Tsuchiya, N.; Ito, H.

    2012-12-01

    EGS (Enhanced Geothermal System) geothermal has been identified as a most promising method of geothermal development because of its potential applicability to a much wider range of sites, many of which have previously been considered to be unsuitable for geothermal development. Meanwhile, some critical problems with EGS technologies have been experimentally identified, such as low recovery of injected water, difficulties in establishing universal design/development methodologies, and the occurrence of induced seismicity, suggesting that there may be limitations in realizing EGS in earthquake-prone compression tectonic zones. We propose a new concept of engineered geothermal development where reservoirs are created in ductile basement. This potentially has a number of advantages including: (a) simpler design and control of the reservoir, (b) nearly full recovery of injected water, (c) sustainable production, (d) lower cost when developed in relatively shallower ductile zones in compression tectonic settings, (e) large potential quantities of energy extraction from widely distributed ductile zones, (f) the establishment of a universal design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. To further assess the potential of EGS reservoir development in ductile zones we have initiated the "Japan Beyond-Brittle Project (JBBP)". It is intended that the first few years of the JBBP will be spent in basic scientific investigation and necessary technology development, including studies on rock mechanics in the brittle/ductile regime, characterization of ductile rock masses, development of modeling methodologies/technologies, and investigations of induced/triggered earthquakes. We expect to drill a deep experimental borehole that will penetrate the ductile zone in northeast Japan after basic studies are completed. The feasibility of EGS reservoir development in the ductile zone will then be assessed through observations and

  8. Storage and Bioavailability of Molybdenum in Soils Increased by Organic Matter Complexation

    Energy Technology Data Exchange (ETDEWEB)

    Wichard, T.; Mishra, B; Myneni, S; Bellenger, J; Kraepiel, A

    2009-01-01

    The micronutrient molybdenum is a necessary component of the nitrogen-fixing enzyme nitrogenase1, 2. Molybdenum is very rare in soils, and is usually present in a highly soluble form, making it susceptible to leaching3, 4. However, it is generally thought that molybdenum attaches to mineral surfaces in acidic soils; this would prevent its escape into the groundwater, but would also impede uptake by microbes3. Here we use X-ray spectroscopy to examine the chemical speciation of molybdenum in soil samples from forests in Arizona and New Jersey. We show that in the leaf litter layer, most of the molybdenum forms strong complexes with plant-derived tannins and tannin-like compounds; molybdenum binds to these organic ligands across a wide pH range. In deeper soils, molybdenum binds to both iron oxides and natural organic matter. We suggest that the molybdenum bound to organic matter can be captured by small complexing agents that are released by nitrogen-fixing bacteria; the molybdenum can then be incorporated into nitrogenase. We conclude that the binding of molybdenum to natural organic matter helps prevent leaching of molybdenum, and is thus a critical step in securing new nitrogen in terrestrial ecosystems.

  9. The oxidation product of molybdenum cofactor from milk xanthine oxidase

    NARCIS (Netherlands)

    van Spanning, R J; Wansell-Bettenhaussen, C W; Oltmann, L F; Stouthamer, A.H.

    In extracts of acid treated molybdenum cofactor containing xanthine oxidase, fluorescence is maximally developed upon a three hours incubation. Analysis by means of reversed phase HPLC revealed the presence of several fluorescent compounds, the main one being a blue fluorescent compound with an

  10. Research on the effect of phosphorus and molybdenum applications ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-02

    May 2, 2008 ... Research on the effect of phosphorus and molybdenum applications on the yield and yield parameters in lentil. (Lens culinaris Medic.) .... 0.020. 0.021. Organic matter (%)F. 1.81 ... fertilizer was applied in bands 3 cm below lentil rows. The lentil ..... A Critical Examination of a Rapid Method for. Determining ...

  11. Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.

    Science.gov (United States)

    Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini

    2016-07-18

    Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.

  12. Recovery of Tungsten and Molybdenum from Low-Grade Scheelite

    Science.gov (United States)

    Li, Yongli; Yang, Jinhong; Zhao, Zhongwei

    2017-10-01

    With most high-quality tungsten ores being exhausted, the enhancement of low-grade scheelite concentrates processing has attracted a great deal of attention. The objective of this study is to develop a method to maximize the recovery tungsten and molybdenum from a low-grade scheelite via a new acid leaching process followed by solvent extraction. Under optimal conditions (350 g/L H2SO4, 95°C, and 2 h), approximately 99.8% of tungsten and 98% of molybdenum were leached out. In the subsequent solvent extraction process, more than 99% of the tungsten and molybdenum were extracted with a co-extraction system (50% TBP, 30% HDEHP, and 10% 2-octanol in kerosene) using a three-stage cross-flow extraction. The raffinate can be recycled for the next leaching process after replenishing the H2SO4 to the initial value (approximately 350 g/L). Based on these results, a conceptual flowsheet is presented to recover tungsten and molybdenum from the low-grade scheelite.

  13. Growth of molybdenum disulphide using iodine as transport material

    Indian Academy of Sciences (India)

    In the present paper an attempt has been made to describe the chemical vapor transport (CVT) technique used for the growth of molybdenum disulphide (MoS2) single crystals. Iodine (I2) is used as transporting material for this purpose. The energy dispersive analysis by X-ray (EDAX) confirmed the stoichiometry of the ...

  14. Growth of molybdenum disulphide using iodine as transport material

    Indian Academy of Sciences (India)

    Abstract. In the present paper an attempt has been made to describe the chemical vapor transport (CVT) technique used for the growth of molybdenum disulphide (MoS2) single crystals. Iodine (I2) is used as transporting material for this purpose. The energy dispersive analysis by X-ray (EDAX) confirmed the stoichiometry ...

  15. Extraction and purification of molybdenum cofactor from milk xanthine oxidase

    NARCIS (Netherlands)

    van Spanning, R J; Wansell-Bettenhaussen, C W; Oltmann, L F; Stouthamer, A.H.

    1987-01-01

    Molybdenum cofactor (mocofactor) is extracted efficiently, free of impurities and in high concentrations, by acid treatment of xanthine oxidase and subsequent incubation of the precipitate with phosphate buffer containing EDTA, molybdate and oxygen. It is suggested that cofactor is bound to the

  16. Directional uv photoemission from (100) and (110) molybdenum surfaces

    DEFF Research Database (Denmark)

    Cinti, R. C.; Khoury, E. Al; Chakraverty, B. K.

    1976-01-01

    A study of the (100) and (110) molybdenum surfaces by directional photoemission spectroscopy is presented. Energy distribution spectra formed by photoelectrons emitted normal to the surfaces have been measured for photon energies between 10.2 and 21.2 eV. The results are discussed in terms of cal...

  17. Femtosecond laser surface structuring of molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research (CSIR), Biophotonics Lab: National Laser Centre Pretoria, 0001 (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Itala (Italy); Sechoghela, P.; Mongwaketsi, N. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)–CNR, Piazza Leanardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-10-30

    Highlights: • Color change of the molybdenum thin film from shinny to violet–yellowish color after laser irradiation at various laser powers. • Formation of the molybdenum dioxide coating after laser exposure, as confirmed by the X-ray diffraction spectrometry. • Selective solar absorbing nature of the laser exposed films. • Study of the binding energies is presented in this contribution using the XPS spectrometry. - Abstract: This contribution reports on the femtosecond surface structuring of molybdenum thin coatings deposited by electron beam evaporation onto Corning glass substrates. The 1-D type periodic grating lines created by such an ablation showed that the widths of the shallow grooves followed a logarithmic dependence with the laser energy incident on the molybdenum film. The electronic valence “x” of the created oxide surface layer MoO{sub x} was found to be incident laser power dependent via Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction investigations. Such a photo-induced MoO{sub x}–Mo nanocomposite exhibited effective selective solar absorption in the UV–vis–IR spectral range.

  18. Visible light photocatalytic properties of novel molybdenum treated ...

    Indian Academy of Sciences (India)

    It was found that the photocatalytic degradation of a methylene blue solution could be attributed to the combined effects caused by the photo-degradation of titania, the electron assistance of carbon nanotube network, and the enhancement of molybdenum. The proposed redox mechanism of the photodegradation of ...

  19. Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus

    NARCIS (Netherlands)

    Sevcenco, A.M.; Bevers, L.E.; Pinkse, M.W.H.; Krijger, G.C.; Wolterbeek, H.T.; Verhaert, P.D.E.M.; Hagen, W.R.; Hagedoorn, P.L.

    2010-01-01

    The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is

  20. Research on the effect of phosphorus and molybdenum applications ...

    African Journals Online (AJOL)

    Lentil is one of the oldest domesticated crops grown and used mostly in human diets in Turkey. The trial was laid out in a factorial randomized complete block design with three replications. Sazak-91 lentil variety was applied at three different phosphorus levels (0, 30 and 60 kg ha-1) and four different molybdenum levels (0, ...

  1. Visible light photocatalytic properties of novel molybdenum treated ...

    Indian Academy of Sciences (India)

    Visible light photocatalytic properties of novel molybdenum treated carbon nanotube/titania composites. FENG-JUN ZHANG† and WON-CHUN OH. ∗. School of Materials and Chemical Engineering, Anhui University of Architecture, Anhui Hefei 230022,. P. R. China. †Department of Advanced Materials & Engineering, ...

  2. Influence of Boron on Crystallization and Microstructure of Ductile Cast Iron

    OpenAIRE

    Dojka R.; Studnicki A.

    2017-01-01

    The objective of the research was to determine the influence of boron on the crystallization process and microstructure of ductile cast iron. In the case of ductile cast iron it is a vital issue because even as little as trace presence of boron changes the properties of ductile cast iron in a significant way. With the use of a new ATD-4 (TDA) tester and CRYSTALDIGRPAH converter it was possible to measure the crystallization process parameters of the same alloy with four different contents of ...

  3. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Tvergaard, Viggo

    2010-01-01

    For resistance spot welded shear-lab specimens, interfacial failure under ductile shearing or ductile plug failure are analyzed numerically, using a shear modified Gurson model. The interfacial shear failure occurs under very low stress triaxiality, where the original Gurson model would predict...... and tensile response curves for an interfacial shear failure or a ductile plug failure, are here compared when using either the original Gurson model, the shear modified model, or the extension to the shear modified model. The suggested extension makes it possible to use the shear modified model as a simple...

  4. Strain-Induced Martensitic Transformation Kinetic in Austempered Ductile Iron (ADI)

    Science.gov (United States)

    Li, X. H.; Saal, P.; Gan, W. M.; Hoelzel, M.; Volk, W.; Petry, W.; Hofmann, M.

    2018-01-01

    A model for the strain-induced martensitic transformation in austempered ductile iron (ADI) has been developed based on neutron diffraction studies. Quantitative phase analysis was carried out using the Rietveld method including texture analysis. The key parameters applied in this model that influence the strain-induced martensitic transformation are temperature, strain state, and loading type. An empirical relation was derived for the martensite start temperature M s in austempered ductile iron, which takes into account the Ni and carbon content. The M s temperature was used as a scaling parameter for the stability of austenite in the model to describe the strain-induced phase transformation in austempered ductile iron.

  5. Influence of austempering heat treatment on mechanical and corrosion properties of ductile iron samples

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2016-07-01

    Full Text Available Mechanical properties and corrosion resistance of metals are closely related to the microstructure characteristics of the material. The paper compares the results of these two sets of properties after investigating samples of base ductile iron and heat-treated samples of the base austempered ductile iron (ADI. The basic material is perlite ferritic iron alloyed with copper and nickel. To test the corrosion rate of the base material (ductile iron and the heattreated samples (ADI, electrochemical techniques of potentiostatic polarization were used (the technique of Tafel curves extrapolation and the potentiodynamic polarization technique.

  6. Evaluation of producing technique factors affecting the matrix microstructure of as-cast ductile iron castings

    Directory of Open Access Journals (Sweden)

    S. Bockus

    2011-01-01

    Full Text Available The objective of this paper was to investigate some important parameters related to ductile iron matrix microstructure. Ductile iron round bars of various diameters in order to achieve various cooling rates were obtained in different conditions. None heat treatment was used to obtain different pearlite contents in the microstructures. The correlation between kind of inoculants, specimens size, carbon equivalent, and matrix microstructure was investigated. The results demonstrated that the slow cooling rate, inoculants with rare earth elements, and relatively little residual magnesium content decreased the pearlite content. This study is of great importance for the development of new economical methods for production of ductile iron castings.

  7. Quantification of damage evolution for a micromechanical model of ductile fracture in spallation of tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, A.K.; Thissell, W.R.; Tonks, D.L.; Hixon, R.; Addessio, F.

    1997-05-01

    The authors present quantification of micromechanical features such as voids that comprise the ductile fracture obtained under uniaxial strain condition in a spall test of commercial purity tantalum. Two evolutionary parameters of ductile fracture void formation are quantified: (i) the void volume fraction (porosity) and its distribution with respect to the distance from the main spall fracture plane, and (ii) void diameter distribution. The results complement the discussion of the implications of void clustering and linking for micromechanical modeling of ductile fracture as presented in a paper by D. L. Tonks et al. in this volume.

  8. First-principles study on influence of molybdenum on acicular ferrite formation on TiC particles in microallyed steels

    Science.gov (United States)

    Hua, Guomin; Li, Changsheng; Cheng, Xiaonong; Zhao, Xinluo; Feng, Quan; Li, Zhijie; Li, Dongyang; Szpunar, Jerzy A.

    2018-01-01

    In this study, influences of molybdenum on acicular ferrite formation on precipitated TiC particles are investigated from thermodynamic and kinetic respects. In thermodynamics, Segregation of Mo towards austenite/TiC interface releases the interfacial energy and induces phase transformation from austenite to acicular ferrite on the precipitated TiC particles. The Phase transformation can be achieved by displacive deformation along uniaxial Bain path. In addition, the segregation of Mo atom will also lead to the enhanced stability of ferrite in comparison with austenite no matter at low temperature or at high temperature. In kinetics, the Mo solute in acicular ferrite can effectively suppress the diffusion of carbon atoms, which ensures that orientation relationship between acicular ferrite and austenitized matrix can be satisfied during the diffusionless phase transformation. In contrast to ineffectiveness of TiC particles, the alloying Mo element can facilitate the formation of acicular ferrite on precipitated TiC particles, which is attributed to the above thermodynamic and kinetic reasons. Furthermore, Interfacial toughness and ductility of as-formed acicular ferrite/TiC interface can be improved simultaneously by segregation of Mo atom.

  9. Review on symmetric structures in ductile shear zones

    Science.gov (United States)

    Mukherjee, Soumyajit

    2017-07-01

    Symmetric structures in ductile shear zones range widely in shapes and geneses. Matrix rheology, its flow pattern, its competency contrast with the clast, degree of slip of the clast, shear intensity and its variation across shear zone and deformation temperature, and degree of confinement of clast in shear zones affects (independently) the degree of symmetry of objects. Kinematic vorticity number is one of the parameters that govern tail geometry across clasts. For example, symmetric and nearly straight tails develop if the clast-matrix system underwent dominantly a pure shear/compression. Prolonged deformation and concomitant recrystallization can significantly change the degree of symmetry of clasts. Angular relation between two shear zones or between a shear zone and anisotropy determines fundamentally the degree of symmetry of lozenges. Symmetry of boudinaged clasts too depends on competency contrast between the matrix and clast in some cases, and on the degrees of slip of inter-boudin surfaces and pure shear. Parasitic folds and post-tectonic veins are usually symmetric.

  10. Quantifying Damage Accumulation During Ductile Plastic Deformation Using Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suter, Robert M. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Rollett, Anthony D. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2015-08-15

    Under this grant, we have developed and demonstrated the ability of near-field High Energy Diffraction Microscopy (nf-HEDM) to map crystal orientation fields over three dimensions in deformed polycrystalline materials. Experimental work was performed at the Advanced Photon Source (APS) at beamline 1-ID. Applications of this new capability to ductile deformation of copper and zirconium samples were demonstrated as was the comparison of the experimental observations to computational plasticity models using a fast Fourier transform based algorithm that is able to handle the large experimental data sets. No such spatially resolved, direct comparison between measured and computed microstructure evolutions had previously been possible. The impact of this work is reflected in numerous publications and presentations as well as in the investments by DOE and DOD laboratories of millions of dollars in applying the technique, developing sophisticated new hardware that allows the technique to be applied to a wide variety of materials and materials problems, and in the use of the technique by other researchers. In essence, the grant facilitated the development of a new form of three dimensional microscopy and its application to technologically critical states of polycrystalline materials that are used throughout the U.S. and world economies. On-going collaborative work is further optimizing experimental and computational facilities at the APS and is pursuing expanded facilities.

  11. Performance of heavy ductile iron castings for windmills

    Directory of Open Access Journals (Sweden)

    Iulian Riposan

    2010-05-01

    Full Text Available The main objective of the present paper is to review the specific characteristics and performance obtaining conditions of heavy ductile iron (DI castings, typically applied in windmills industry, such as hubs and rotor housings. The requirements for high impact properties in DI at low temperatures are part of the EN-GJS-400-18U-LT (SRN 1563 commonly referred to as GGG 40.3 (DIN 1693. Pearlitic influence factor (Px and antinodularising action factor (K1 were found to have an important influence on the structure and mechanical properties, as did Mn and P content, rare earth (RE addition and inoculation power. The presence of high purity pig iron in the charge is extremely beneficial, not only to control the complex factors Px and K1, but also to improve the ‘metallurgical quality’ of the iron melt. A correlation of C and Si limits with section modulus is very important to limit graphite nodule flotation. Chunky and surface-degenerated graphite are the most controlled graphite morphologies in windmills castings. The paper concluded on the optimum iron chemistry and melting procedure, Mg-alloys and inoculants peculiar systems, as well as on the practical solutions to limit graphite degeneration and to ensure castings of the highest integrity, typically for this field.

  12. Mechanisms for Ductile Rupture - FY16 ESC Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, Brad L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carroll, Jay D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Noell, Phillip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bufford, Daniel Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Clark, Blythe G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hattar, Khalid Mikhiel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    Ductile rupture in metals is generally a multi-step process of void nucleation, growth, and coalescence. Particle decohesion and particle fracture are generally invoked as the primary microstructural mechanisms for room-temperature void nucleation. However, because high-purity materials also fail by void nucleation and coalescence, other microstructural features must also act as sites for void nucleation. Early studies of void initiation in high-purity materials, which included post-mortem fracture surface characterization using scanning electron microscopy (SEM) and high-voltage electron microscopy (HVEM) and in-situ HVEM observations of fracture, established the presence of dislocation cell walls as void initiation sites in high-purity materials. Direct experimental evidence for this contention was obtained during in-situ HVEM tensile tests of Be single crystals. Voids between 0.2 and 1 μm long appeared suddenly along dislocation cell walls during tensile straining. However, subsequent attempts to replicate these results in other materials, particularly α -Fe single crystals, were unsuccessful because of the small size of the dislocation cells, and these remain the only published in-situ HVEM observations of void nucleation at dislocation cell walls in the absence of a growing macrocrack. Despite this challenge, other approaches to studying void nucleation in high-purity metals also indicate that dislocation cell walls are nucleation sites for voids.

  13. Quantitative evaluation of plasticity of a ductile nano-component

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yoshimasa [Department of Mechanical Engineering and Science, Kyoto University, Kyoto 606-8501 (Japan)], E-mail: yoshim-t@t04.mbox.media.kyoto-u.ac.jp; Hirakata, Hiroyuki; Kitamura, Takayuki [Department of Mechanical Engineering and Science, Kyoto University, Kyoto 606-8501 (Japan)

    2008-02-29

    The plasticity of a copper nano-component is experimentally evaluated by a cantilever beam specimen in which the component is sandwiched between hard layers: silicon and silicon nitride. The cantilever is monotonically loaded with a diamond indenter so that a bending moment is applied to the Cu component, and the deflection at the free-end of the cantilever is precisely monitored by transmission electron microscope observation. The load-deflection relationship shows a clear non-linearity, which is due to the plastic deformation of the Cu component. Using the experimental results, the plastic property of the ductile Cu component is inversely analyzed by finite element method assuming that the component obeys the Ramberg-Osgood constitutive law. The plastic parameters, {sigma}{sub 0} (yield stress), n (hardening exponent) and {alpha} (yield offset) are optimally fitted to reproduce the experimentally evaluated load-deflection curve. The resultant parameter set is derived as ({sigma}{sub 0}, n, {alpha}) = (345 MPa, 3.2, 1.25). The Cu nano-component has a much higher yield stress and hardening rate compared to bulk Cu.

  14. Thermomechanical Fatigue of Ductile Cast Iron and Its Life Prediction

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Liu, Xiaoyang; Sloss, Clayton

    2015-06-01

    Thermomechanical fatigue (TMF) behaviors of ductile cast iron (DCI) were investigated under out-of-phase (OP), in-phase (IP), and constrained strain-control conditions with temperature hold in various temperature ranges: 573 K to 1073 K, 723 K to 1073 K, and 433 K to 873 K (300 °C to 800 °C, 450 °C to 800 °C, and 160 °C to 600 °C). The integrated creep-fatigue theory (ICFT) model was incorporated into the finite element method to simulate the hysteresis behavior and predict the TMF life of DCI under those test conditions. With the consideration of four deformation/damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement, (iii) creep, and (iv) oxidation, as revealed from the previous study on low cycle fatigue of the material, the model delineates the contributions of these physical mechanisms in the asymmetrical hysteresis behavior and the damage accumulation process leading to final TMF failure. This study shows that the ICFT model can simulate the stress-strain response and life of DCI under complex TMF loading profiles (OP and IP, and constrained with temperature hold).

  15. Pearlitic ductile cast iron: damaging micromechanisms at crack tip

    Directory of Open Access Journals (Sweden)

    F. Iacoviello

    2013-07-01

    Full Text Available Ductile cast irons (DCIs are characterized by a wide range of mechanical properties, mainly depending on microstructural factors, as matrix microstructure (characterized by phases volume fraction, grains size and grain distribution, graphite nodules (characterized by size, shape, density and distribution and defects presence (e.g., porosity, inclusions, etc.. Versatility and higher performances at lower cost if compared to steels with analogous performances are the main DCIs advantages. In the last years, the role played by graphite nodules was deeply investigated by means of tensile and fatigue tests, performing scanning electron microscope (SEM observations of specimens lateral surfaces during the tests (“in situ” tests and identifying different damaging micromechanisms.In this work, a pearlitic DCIs fatigue resistance is investigated considering both fatigue crack propagation (by means of Compact Type specimens and according to ASTM E399 standard and overload effects, focusing the interaction between the crack and the investigated DCI microstructure (pearlitic matrix and graphite nodules. On the basis of experimental results, and considering loading conditions and damaging micromechanisms, the applicability of ASTM E399 standard on the characterization of fatigue crack propagation resistance in ferritic DCIs is critically analyzed, mainly focusing the stress intensity factor amplitude role.

  16. Failure Mechanism of Hot Dip Aluminized Ductile Iron

    Directory of Open Access Journals (Sweden)

    YONG Wei

    2016-08-01

    Full Text Available Using laser scanning confocal microscope, failure process of aluminized ductile iron samples were in-situ observed during three-point bending test, while crack initiation and propagation mechanism were analyzed in the area of coating and matrix. The results show that for hot-dipped samples in Al, cracks mainly initiate in the Fe-Al alloy coating under tensile stress, then induce the tearing of ferrite and the peeling of graphite in the adjacent matrix. Thereby cracks spread to the inner matrix in shortest route between graphite and ferrite, in the direction nearly vertical to tensile stress. In case of compression stress, aluminized alloy layer is crushed and aluminum layer is peeled off,which having little influence on the failure of matrix. For hot-dipped samples in Al-3.7Si-1.0RE, failure mechanism under tensile stress is similar to that of hot-dipped samples in Al; under compression stress, aluminum and Fe-Al alloy coatings are disengaged from matrix, exhibits failure occurring in the ferrite matrix.

  17. Neoarchean ductile deformation of the Northeastern North China Craton: The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei, North China

    Science.gov (United States)

    Liu, Boran; Neubauer, Franz; Liu, Junlai; Jin, Wei; Li, Weimin; Liang, Chenyue

    2017-05-01

    Archean granitic gneiss domes and greenstone belts are well-preserved in eastern North China Craton (NCC), one of the oldest Archean terrains in the world. The Shuangshanzi ductile shear zone in Qinglong, eastern Hebei Province is located between an Archean granitic gneiss dome and a greenstone belt within an uplift in eastern NCC. Supracrustal rocks from the Neoarchean Shuangshanzi and Zhuzhangzi Groups, and some Archean granitic gneisses were involved in the shearing along the eastern margin. In the southern part, the narrow NE-trending shear zone dips NW with dip angles of 40-60° and, in the northern part, the shear zone dips NWN with dip angles of 70-85°. Microstructural and EBSD fabric analyses suggest that the shear zone was developed at upper greenschist facies to lower amphibolite facies conditions with deformation temperatures of 400-550 °C. LA-ICP-MS zircon U-Pb dating of mylonitized granitic rocks and undeformed quartz diorite cutting the shear zone suggest that the Shuangshanzi ductile shear zone was formed between 2550 Ma and 2452 Ma. Detailed kinematic studies of the shear zone show a clear sinistral shear sense with a slightly oblique-slip component in the northern part and a sinistral transtensional slip component in the southern part. It is therefore suggested that the shear zone was formed during the Anziling doming with respect to the down-slipping Neoarchean Shuangshanzi and Zhuzhangzi Groups. The difference in kinematics along the southern and the northern sections is interpreted to be caused by the doming with an uneven clockwise spiral rotation. The BIF-rich supracrustal rocks have higher density than their neighboring granitic gneisses, and therefore can easily sink to form synclines by sagduction processes. The sagduction is mainly triggered by gravitational inversion of high density supracrustal rocks with respect to relatively light granitic gneisses within the dome. As a result, the gneisses synchronously moved upward. A shear zone

  18. Work-hardening induced tensile ductility of bulk metallic glasses via high-pressure torsion

    National Research Council Canada - National Science Library

    Joo, Soo-Hyun; Pi, Dong-Hai; Setyawan, Albertus Deny Heri; Kato, Hidemi; Janecek, Milos; Kim, Yong Chan; Lee, Sunghak; Kim, Hyoung Seop

    2015-01-01

    .... Enhanced tensile ductility and work-hardening behavior after the HPT process were investigated, focusing on the microstructure, particularly the changed free volume, which affects deformation mechanisms (i.e...

  19. Work-hardening induced tensile ductility of bulk metallic glasses via high-pressure torsion.

    Science.gov (United States)

    Joo, Soo-Hyun; Pi, Dong-Hai; Setyawan, Albertus Deny Heri; Kato, Hidemi; Janecek, Milos; Kim, Yong Chan; Lee, Sunghak; Kim, Hyoung Seop

    2015-04-23

    The mechanical properties of engineering materials are key for ensuring safety and reliability. However, the plastic deformation of BMGs is confined to narrow regions in shear bands, which usually result in limited ductilities and catastrophic failures at low homologous temperatures. The quasi-brittle failure and lack of tensile ductility undercut the potential applications of BMGs. In this report, we present clear tensile ductility in a Zr-based BMG via a high-pressure torsion (HPT) process. Enhanced tensile ductility and work-hardening behavior after the HPT process were investigated, focusing on the microstructure, particularly the changed free volume, which affects deformation mechanisms (i.e., initiation, propagation, and obstruction of shear bands). Our results provide insights into the basic functions of hydrostatic pressure and shear strain in the microstructure and mechanical properties of HPT-processed BMGs.

  20. Alternating brittle and ductile response of coherent twin boundaries in nanotwinned metals

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Tanushree; Kulkarni, Yashashree, E-mail: ykulkarni@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States)

    2014-11-14

    Nanotwinned metals have opened exciting avenues for the design of high strength and high ductility materials. In this work, we investigate crack propagation along coherent twin boundaries in nanotwinned metals using molecular dynamics. Our simulations reveal that alternating twin boundaries exhibit intrinsic brittleness and ductility owing to the opposite crystallographic orientations of the adjoining twins. This is a startling consequence of the directional anisotropy of an atomically sharp crack along a twin boundary that favors cleavage in one direction and dislocation emission from the crack tip in the opposite direction. We further find that a blunt crack exhibits ductility in all cases albeit with very distinct deformation mechanisms and yield strength associated with intrinsically brittle and ductile coherent twin boundaries.

  1. High dislocation density–induced large ductility in deformed and partitioned steels

    Science.gov (United States)

    He, B. B.; Hu, B.; Yen, H. W.; Cheng, G. J.; Wang, Z. K.; Luo, H. W.; Huang, M. X.

    2017-09-01

    A wide variety of industrial applications require materials with high strength and ductility. Unfortunately, the strategies for increasing material strength, such as processing to create line defects (dislocations), tend to decrease ductility. We developed a strategy to circumvent this in inexpensive, medium manganese steel. Cold rolling followed by low-temperature tempering developed steel with metastable austenite grains embedded in a highly dislocated martensite matrix. This deformed and partitioned (D and P) process produced dislocation hardening but retained high ductility, both through the glide of intensive mobile dislocations and by allowing us to control martensitic transformation. The D and P strategy should apply to any other alloy with deformation-induced martensitic transformation and provides a pathway for the development of high-strength, high-ductility materials.

  2. Graphite nodules and local residual stresses in ductile iron: Thermo-mechanical modelingand experimental validation

    DEFF Research Database (Denmark)

    Andriollo, Tito

    Ductile iron is nowadays widely used in key industrial sectors like off-shore, transport and energy production, accounting for as much as 25 % of the total casting production in the world. It is well known that ductile iron parts, depending on their size, may contain residual stresses developing...... stages of the manufacturing process are simulated numerically, accounting for the different thermal expansion of the nodules and of the matrix during both the eutectoid transformation and the subsequent cooling to room temperature. The results show the formation of significant residual stresses...... the theoretical predictions that local stresses up to approximately half the macroscopic yield strength may remain in the ductile iron microstructure after manufacturing. Needless to say, this new type of residual stresses is expected to play an important role in determining the properties of ductile iron...

  3. Tensile Ductility of Nanostructured Bainitic Steels: Influence of Retained Austenite Stability

    Directory of Open Access Journals (Sweden)

    Thomas Sourmail

    2017-01-01

    Full Text Available High silicon (>1.5% steels with different compositions were isothermally transformed to bainite at 220 and 250 °C to produce what is often referred to as nanostructured bainite. Interrupted tensile tests were carried out and the retained austenite was measured as a function of strain. Results were correlated with tensile ductility. The role of retained austenite stability is remarkably underlined as strongly affecting the propensity to brittle failure, but also the tensile ductility. A simple quantitative relationship is proposed that clearly delimitates the different behaviours (brittle/ductile and correlates well with the measured ductility. Conclusions are proposed as to the role of retained austenite fraction and the existence of a threshold value associated with tensile rupture.

  4. Weldability Characteristics of Sintered Hot-Forged AISI 4135 Steel Produced through P/M Route by Using Pulsed Current Gas Tungsten Arc Welding

    Science.gov (United States)

    Joseph, Joby; Muthukumaran, S.; Pandey, K. S.

    2016-01-01

    Present investigation is an attempt to study the weldability characteristics of sintered hot-forged plates of AISI 4135 steel produced through powder metallurgy (P/M) route using matching filler materials of ER80S B2. Compacts of homogeneously blended elemental powders corresponding to the above steel were prepared on a universal testing machine (UTM) by taking pre-weighed powder blend with a suitable die, punch and bottom insert assembly. Indigenously developed ceramic coating was applied on the entire surface of the compacts in order to protect them from oxidation during sintering. Sintered preforms were hot forged to flat, approximately rectangular plates, welded by pulsed current gas tungsten arc welding (PCGTAW) processes with aforementioned filler materials. Microstructural, tensile and hardness evaluations revealed that PCGTAW process with low heat input could produce weldments of good quality with almost nil defects. It was established that PCGTAW joints possess improved tensile properties compared to the base metal and it was mainly attributed to lower heat input, resulting in finer fusion zone grains and higher fusion zone hardness. Thus, the present investigation opens a new and demanding field in research.

  5. Sample Size Induced Brittle-to-Ductile Transition of Single-Crystal Aluminum Nitride

    Science.gov (United States)

    2015-08-01

    Interestingly, the dislocation plasticity of the single- crystal AlN strongly depends on specimen sizes. As shown in Fig. 5a and b, the large plastic...ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to-Ductile Transition of Single- Crystal Aluminum...originator. ARL-RP-0528 ● AUG 2015 US Army Research Laboratory Sample Size Induced Brittle-to-Ductile Transition of Single- Crystal

  6. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-01-01

    Full Text Available The possibility of manufacturing of ductile cast iron castings by Inmold method with use of LOST FOAM process was presented in this work. The spheroidization was carried out by magnesium master alloy in amounts of 1% casting mass. Nodulizer was located in the reactive chamber in the gating system made of foamed polystyrene. Pretests showed, that there are technical possibilities of manufacturing of casts from ductile cast iron in the LOST FOAM process with use of spheroidization in mould.

  7. In-situ molybdenum nano-attached particle synthesis from spent Mo scrap.

    Science.gov (United States)

    Han, Chulwoong; Kim, Byungmoon; Choi, Hanshin

    2014-10-01

    Radio frequency thermal plasma is a versatile process for engineering powder preparation owing to its high energy density and reactivity. Molybdenum powders were prepared from molybdenum sheet scrap by RF thermal plasma in association with powder comminution process. Molybdenum scrap which was used in high temperature environment was friable enough to be broken into micropowders by hammer milling. Spherical molybdenum micro-powder was obtained from the hammer milled powders were treated via thermal plasma. On the other hand, vaporization and condensation pathway for nanoparticle synthesis is largely dependent on both thermo-physical properties and thermal plasma properties. In this regard, molybdenum trioxide was chosen for the feedstock of nanoparticle synthesis. Additional reactivity of argon-hydrogen thermal plasma, oxide feedstock was fully reduced to bcc molybdenum. Considering different reaction pathway of each feedstock, molybdenum nanoparticle attached molybdenum spherical micro-powder could be effectively synthesized by feeding a blended feedstock of molybdenum micro-powder and molybdenum trioxide micro-powder into argon-hydrogen thermal plasma.

  8. Creep strength and rupture ductility of creep strength enhanced ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kushima, Hideaki; Sawada, Kota; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength and rupture ductility of Creep Strength Enhanced Ferritic (CSEF) steels were investigated from a viewpoint of stress dependence in comparison with conventional low alloy ferritic creep resistant steels. Inflection of stress vs. time to rupture curve was observed at 50% of 0.2% offset yield stress for both CSEF and conventional ferritic steels. Creep rupture ductility tends to decrease with increase in creep exposure time, however, those of conventional low alloy steels indicate increase in the long-term. Creep rupture ductility of the ASME Grades 92 and 122 steels indicates drastic decrease with decrease in stress at 50% of 0.2% offset yield stress. Stress dependence of creep rupture ductility of the ASME Grades 92 and 122 steels is well described by stress ratio to 0.2% offset yield stress, regardless of temperature. Drop of creep rupture ductility is caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, and remarkable drop of creep rupture ductility of CSEF steels should be derived from those stabilized microstructure. (orig.)

  9. Modeling Shear Instabilities With Block Sliders: Brittle and Ductile

    Science.gov (United States)

    Riedel, M. R.

    2003-12-01

    Block slider-type models have been succesfully used for almost 35 years to describe the spatio-temporal development of shear instabilities in the brittle crust (Burridge & Knopoff, 1967; Olami et al., 1992). More recently, increasing attention is paid on the extension of the classical Burridge-Knopoff model (based on a pure Mohr-Coulomb rheology) with a viscous component, either to include depth-dependent properties into the model or aiming at a more accurate description of fore- and aftershock sequences of a main earthquake event (e.g. Hainzl et al., 1999). On the other hand, viscous feedback mechanisms of various types have become an increasingly attractive mechanism for the generation of intermediate-depth and deep-focus earthquakes in the ductile mantle lithosphere (e.g. Wiens & Snider, 2001). Heat generated during viscous deformation provides a positive feedback to creep and eventually faulting under high pressure (Karato et al., 2001, Bercovici & Karato, 2003). The present paper discusses the specific properties of block slider-type models that are extended with a viscous component and compare their behaviour with the pure brittle ("classical") case. Block slider-type models for ductile instabilities are numerically much less demanding than solutions based on the corresponding, thermal-mechanically coupled, continuum equations. They allow for the inclusion of possible non-equilibrium effects associated with mineral phase transformations in a subducting slab (kinetic overshoot, grainsize reduction, latent heat release) in a straightforward manner. They may therefore serve as an effective tool to study the coupling of viscous heating, temperature-dependent viscosity and brittle stress transfer that are thought to cause the specific spatial-temporal clustering of intermediate-depth and deep-focus eartquakes. References D. Bercovici and S. Karato "Theoretical Analysis of Shear Localization in the Lithosphere", in: Reviews in Mineralogy and Geochemistry 51, eds. S

  10. Ductile Fracture Behaviour of Hot Isostatically Pressed Inconel 690 Superalloy

    Science.gov (United States)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-01-01

    Herein we assess the differences in Charpy impact behavior between Hot Isostatically Pressed and forged Inconel 690 alloy over the temperature range of 300 °C to - 196 °C. The impact toughness of forged 690 exhibited a relatively small temperature dependence, with a maximum difference of ca. 40 J measured between 300 °C and - 196 °C, whereas the HIP'd alloy exhibited a difference of approximately double that of the forged alloy over the same temperature range. We have conducted Charpy impact testing, tensile testing, and metallographic analyses on the as-received materials as well as fractography of the failed Charpy specimens in order to understand the mechanisms that cause the observed differences in material fracture properties. The work supports a recent series of studies which assess differences in fundamental fracture behavior between Hot Isostatically Pressed and forged austenitic stainless steel materials of equivalent grades, and the results obtained in this study are compared to those of the previous stainless steel investigations to paint a more general picture of the comparisons between HIP vs forged material fracture behavior. Inconel 690 was selected in this study since previous studies were unable to completely omit the effects of strain-induced martensitic transformation at the tip of the Chary V-notch from the fracture mechanism; Inconel 690 is unable to undergo strain-induced martensitic transformation due to the alloy's high nickel content, thereby providing a sister study with the omission of any martensitic transformation effects on ductile fracture behavior.

  11. A mechanism-based approach to modeling ductile fracture.

    Energy Technology Data Exchange (ETDEWEB)

    Bammann, Douglas J.; Hammi, Youssef; Antoun, Bonnie R.; Klein, Patrick A.; Foulk, James W., III; McFadden, Sam X.

    2004-01-01

    Ductile fracture in metals has been observed to result from the nucleation, growth, and coalescence of voids. The evolution of this damage is inherently history dependent, affected by how time-varying stresses drive the formation of defect structures in the material. At some critically damaged state, the softening response of the material leads to strain localization across a surface that, under continued loading, becomes the faces of a crack in the material. Modeling localization of strain requires introduction of a length scale to make the energy dissipated in the localized zone well-defined. In this work, a cohesive zone approach is used to describe the post-bifurcation evolution of material within the localized zone. The relations are developed within a thermodynamically consistent framework that incorporates temperature and rate-dependent evolution relationships motivated by dislocation mechanics. As such, we do not prescribe the evolution of tractions with opening displacements across the localized zone a priori. The evolution of tractions is itself an outcome of the solution of particular, initial boundary value problems. The stress and internal state of the material at the point of bifurcation provides the initial conditions for the subsequent evolution of the cohesive zone. The models we develop are motivated by in-situ scanning electron microscopy of three-point bending experiments using 6061-T6 aluminum and 304L stainless steel, The in situ observations of the initiation and evolution of fracture zones reveal the scale over which the failure mechanisms act. In addition, these observations are essential for motivating the micromechanically-based models of the decohesion process that incorporate the effects of loading mode mixity, temperature, and loading rate. The response of these new cohesive zone relations is demonstrated by modeling the three-point bending configuration used for the experiments. In addition, we survey other methods with the potential

  12. Molybdenum isotope fractionation in the mantle

    Science.gov (United States)

    Liang, Yu-Hsuan; Halliday, Alex N.; Siebert, Chris; Fitton, J. Godfrey; Burton, Kevin W.; Wang, Kuo-Lung; Harvey, Jason

    2017-02-01

    We report double-spike molybdenum (Mo) isotope data for forty-two mafic and fifteen ultramafic rocks from diverse locations and compare these with results for five chondrites. The δ98/95Mo values (normalized to NIST SRM 3134) range from -0.59 ± 0.04 to +0.10 ± 0.08‰. The compositions of one carbonaceous (CI) and four ordinary chondrites are relatively uniform (-0.14 ± 0.01‰, 95% ci (confidence interval)) in excellent agreement with previous data. These values are just resolvable from the mean of 10 mid-ocean ridge basalts (MORBs) (0.00 ± 0.02‰, 95% ci). The compositions of 13 mantle-derived ultramafic xenoliths from Kilbourne Hole, Tariat and Vitim are more diverse (-0.39 to -0.07‰) with a mean of -0.22 ± 0.06‰ (95% ci). On this basis, the isotopic composition of the bulk silicate Earth (BSE or Primitive Mantle) is within error identical to chondrites. The mean Mo concentration of the ultramafic xenoliths (0.19 ± 0.07 ppm, 95% ci) is similar in magnitude to that of MORB (0.48 ± 0.13 ppm, 95% ci), providing evidence, either for a more compatible behaviour than previously thought or for selective Mo enrichment of the subcontinental lithospheric mantle. Intraplate and ocean island basalts (OIBs) display significant isotopic variability within a single locality from MORB-like to strongly negative (-0.59 ± 0.04‰). The most extreme values measured are for nephelinites from the Cameroon Line and Trinidade, which also have anomalously high Ce/Pb and low Mo/Ce relative to normal oceanic basalts. δ98/95Mo correlates negatively with Ce/Pb and U/Pb, and positively with Mo/Ce, explicable if a phase such as an oxide or a sulphide liquid selectively retains isotopically heavy Mo in the mantle and fractionates its isotopic composition in low degree partial melts. If residual phases retain Mo during partial melting, it is possible that the [Mo] for the BSE may be misrepresented by values estimated from basalts. This would be consistent with the high Mo

  13. Production of Molybdenum-99 using Neutron Capture Methods

    Energy Technology Data Exchange (ETDEWEB)

    Toth, James J; Greenwood, Lawrence R; Soderquist, Chuck Z; Wittman, Richard S; Pierson, Bruce D; Burns, Kimberly A; Lavender, Curt A; Painter, Chad L; Love, Edward F; Wall, Donald E

    2011-01-01

    Pacific Northwest National Laboratory (PNNL), operated by Battelle, has identified a reference process for the production of molybdenum-99 (99Mo) for use in a chromatographic generator to separate the daughter product, technetium-99m (99mTc). The reference process uses the neutron capture reaction of natural or enriched molybdenum oxide via the reaction 98Mo(n,γ)99Mo. The irradiated molybdenum is dissolved in an alkaline solution, whereby the molybdenum, dissolved as the molybdate anion, is loaded on a proprietary ion exchange material in the chromatographic generator. The approach of this investigation is to provide a systematic collection of technologies to make the neutron capture method for Mo-99 production economically viable. This approach would result in the development of a technetium Tc99m generator and a new type of target. The target is comprised of molybdenum, either natural or enriched, and is tailored to the design of currently operating U.S. research reactors. The systematic collection of technologies requires evaluation of new metallurgical methods to produce the target, evaluation of target geometries tailored to research reactors, and chemical methods to dissolve the irradiated target materials for use in a chromatographic generator. A Technical specification for testing the target and neutron capture method in a research reactor is also required. This report includes identification of research and demonstration activities needed to enable deployment of neutron capture production method, including irradiations of prototypic targets, chemical processing of irradiated targets, and loading and extraction tests of Mo99 and Tc99m on the sorbent material in a prototypic generator design. The prototypical generator design is based on the proprietary method and systems for isotope product generation. The proprietary methods and systems described in this report are clearly delineated with footnotes. Ultimately, the Tc-99m generator solution provided by

  14. Predicting molybdenum toxicity to higher plants: Influence of soil properties

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, S.P., E-mail: steve.mcgrath@bbsrc.ac.u [Soil Science Department, Centre for Soils and Ecosystems Functions, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Mico, C. [Soil Science Department, Centre for Soils and Ecosystems Functions, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Curdy, R. [Laboratory for Environmental Biotechnology (LBE), Swiss Federal Institute of Technology Lausanne (EPFL) Station 6 CH, 1015 Lausanne (Switzerland); Zhao, F.J. [Soil Science Department, Centre for Soils and Ecosystems Functions, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom)

    2010-10-15

    The effect of soil properties on the toxicity of molybdenum (Mo) to four plant species was investigated. Soil organic carbon or ammonium-oxalate extractable Fe oxides were found to be the best predictors of the 50% effective dose (ED{sub 50}) of Mo in different soils, explaining > 65% of the variance in ED{sub 50} for four species except for ryegrass (26-38%). Molybdenum concentrations in soil solution and consequently plant uptake were increased when soil pH was artificially raised because sorption of Mo to amorphous oxides is greatly reduced at high pH. The addition of sulphate significantly decreased Mo uptake by oilseed rape. For risk assessment, we suggest that Mo toxicity values for plants should be normalised using soil amorphous iron oxide concentrations. - Amorphous iron oxides or organic carbon were found to be the best predictors of the toxicity threshold values of Mo to higher plants on different soils.

  15. In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors

    KAUST Repository

    Shakir, Imran

    2014-01-01

    In situ hydrogenation of orthorhombic molybdenum trioxide (α-MoO 3) nanowires has been achieved on a large scale by introducing alcohol during the hydrothermal synthesis for electrochemical energy storage supercapacitor devices. The hydrogenated molybdenum trioxide (H xMoO3) nanowires yield a specific capacitance of 168 F g-1 at 0.5 A g-1 and maintain 108 F g-1 at 10 A g-1, which is 36-fold higher than the capacitance obtained from pristine MoO3 nanowires at the same conditions. The electrochemical devices made with HxMoO3 nanowires exhibit excellent cycling stability by retaining 97% of their capacitance after 3000 cycles due to an enhanced electronic conductivity and increased density of hydroxyl groups on the surface of the MoO3 nanowires. This journal is © The Royal Society of Chemistry.

  16. Effects of molybdenum on fertility of male rats.

    Science.gov (United States)

    Pandey, Ratna; Singh, S P

    2002-03-01

    Sodium molybdate was administered orally to adult male rat at dose level of 10, 30, and 50 mg kg body weight (5 days per week) for 60 days. At higher dose levels significant decrease in absolute and organ-to-body weight ratios of testes, epididymides, seminal vesicles and ventral prostate was observed. The sperm abnormality, associated with decrease in sperm motility and sperm count was also observed. Significant alterations in the activities of marker testicular enzymes, viz. sorbitol dehydrogenase (decreases), lactate dehydrogenase (increases) and gamma-glutamyl transpeptidase (increases) associated with histopathological changes in testes was also observed. Accumulation of molybdenum in testes, epididymides and seminal vesicles was also observed. The study reveals that the oral ingestion of molybdenum may affect the histoarchitecture of testes and sperm morphology. The testicular and spermatotoxic changes may be responsible for observed male mediated developmental toxic effects.

  17. Ternary cobalt-molybdenum-zirconium coatings for alternative energies

    Science.gov (United States)

    Yar-Mukhamedova, Gulmira; Ved', Maryna; Sakhnenko, Nikolay; Koziar, Maryna

    2017-11-01

    Consistent patterns for electrodeposition of Co-Mo-Zr coatings from polyligand citrate-pyrophosphate bath were investigated. The effect of both current density amplitude and pulse on/off time on the quality, composition and surface morphology of the galvanic alloys were determined. It was established the coating Co-Mo-Zr enrichment by molybdenum with current density increasing up to 8 A dm-2 as well as the rising of pulse time and pause duration promotes the content of molybdenum because of subsequent chemical reduction of its intermediate oxides by hydrogen ad-atoms. It was found that the content of the alloying metals in the coating Co-Mo-Zr depends on the current density and on/off times extremely and maximum Mo and Zr content corresponds to the current density interval 4-6 A dm-2, on-/off-time 2-10 ms. Chemical resistance of binary and ternary coatings based on cobalt is caused by the increased tendency to passivity and high resistance to pitting corrosion in the presence of molybdenum and zirconium, as well as the acid nature of their oxides. Binary coating with molybdenum content not less than 20 at.% and ternary ones with zirconium content in terms of corrosion deep index are in a group ;very proof;. It was shown that Co-Mo-Zr alloys exhibits the greatest level of catalytic properties as cathode material for hydrogen electrolytic production from acidic media which is not inferior a platinum electrode. The deposits Co-Mo-Zr with zirconium content 2-4 at.% demonstrate high catalytic properties in the carbon(II) oxide conversion. This confirms the efficiency of materials as catalysts for the gaseous wastes purification and gives the reason to recommend them as catalysts for red-ox processes activating by oxygen as well as electrode materials for red-ox batteries.

  18. Characterization of molybdenum-doped indium oxide thin films by ...

    Indian Academy of Sciences (India)

    index, extension coefficient and bandgap of these films also were investigated. Keywords. Molybdenum-doped indium oxide; spray pyrolysis; thin films. 1. Introduction. Transparent conducting oxide (TCOs) films such as In2O3,. ZnO, SnO2 and In2O3:Sn (ITO), In2O3:Mo (IMO), etc due to their high optical transparency in the ...

  19. Fabrication of organic light emitting diode using Molybdenum ...

    Indian Academy of Sciences (India)

    65

    as PEDOT: PSS and sulfonated polyaniline can be used to reduce the potential barrier for FTO based OLED [31, 32]. But till now no any report was found to be published on the effect of molybdenum trioxide (MoO3) over non-conventional FTO surface. MoO3 is a transition metal oxide which forms a better ohmic contact w.r.t. ...

  20. Molybdenum species on alumina and silica supports for soot combustion

    OpenAIRE

    Braun, Silvana; Appel, Lúcia Gorenstin; Schmal,Martin

    2010-01-01

    Mo/A1203 and Mo/Si02 catalysts with different molybdenum species were tested in diesel soot combustion. These catalysts have shown different performances due to the presence of different species, being the most active those dispersed onto silica surface. which are similar to M020~- ion. The thermal stability was evaluated by differential thermal analyses and the results have shown that Mo species formed on silica-supported catalysts are thermally stable under the reaction conditions....

  1. Subcellular distribution of molybdenum, ultrastructural and antioxidative responses in soybean seedlings under excess molybdenum stress.

    Science.gov (United States)

    Xu, Shoujun; Hu, Chengxiao; Tan, Qiling; Qin, Shiyu; Sun, Xuecheng

    2017-12-05

    Some studies have shown that excess molybdenum (Mo) could produce toxic effects on plants. However, little is known about the subcellular distribution of Mo and cell ultrastructure within plants under excess Mo stress. Here, we comprehensively analyzed the changes of Mo distribution in subcellular fractions, cell ultrastructure and antioxidant enzymes in leaves and roots of soybean seedlings in response to excess Mo stress. The results showed that roots exhibited higher Mo accumulation than leaves at the 100 mg L-1 Mo level, about 38.58-, 171.48- and 52.99-fold higher in cell walls, cell organelles and soluble fractions, respectively. Subcellular fractionations of Mo-containing tissues indicated that approximately 90% of Mo was accumulated in the soluble fractions and cell walls of the roots and leaves, and soluble fractions (accumulated 66.3-72.2% Mo) might serve as an effective storage site for excess Mo. Furthermore, excess Mo caused ultrastructural alterations in roots and leaves of soybean seedlings, leading to structural abnormality of chloroplast in leaf cells, plasmolysis, cellular deformity, vacuole enlargement and the swelling of cell wall and cytoplasm in root cells. Meanwhile, under excess Mo stress, the activity of POD, CAT and APX enzymes in roots was 1.43, 2.35 and 1.23 times that under standard Mo condition, while that of SOD and CAT enzymes in leaves was 1.23 and 1.94 times, respectively. This study provided novel insights into the mechanisms of excess Mo toxicity in soybean seedlings. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium

    Directory of Open Access Journals (Sweden)

    S. A. Ahmad

    2013-01-01

    Full Text Available A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo6+ to molybdenum blue (Mo-blue. Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries.

  3. Chemical vapour deposition of diamond coatings onto molybdenum dental tools

    Science.gov (United States)

    Amar, M.; Ahmed, W.; Sein, H.; Jones, A. N.; Rego, C. A.

    2003-10-01

    The growth of polycrystalline diamond films onto molybdenum rods and dental burrs by using a new hot filament chemical vapour deposition (CVD) system has been investigated. Negative dc bias voltage relative to the filament was applied to the molybdenum substrate prior to deposition. This led to much improved film adhesion and increased nucleation density. There was a factor of four improvement in the adhesive force from 20 to 80 N when a bias voltage of -300 V was employed to the substrate. The CVD coated molybdenum dental burr was found to give much improved performance and lifetime compared to the conventional sintered diamond burr. The CVD diamond burr showed no signs of deterioration even after 1000 operations whereas the conventional sintered diamond burrs were ineffective after between 30 and 60 operations. This represents a 30-fold improvement when CVD is applied. CVD diamond growth onto dental burrs has the potential for replacing exciting technology by achieving better performance and lifetime in a cost-effective manner.

  4. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  5. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  6. Swift tuning from spherical molybdenum microspheres to hierarchical molybdenum disulfide nanostructures by switching from solvothermal to hydrothermal synthesis route

    Science.gov (United States)

    Qureshi, Nilam; Arbuj, Sudhir; Shinde, Manish; Rane, Sunit; Kulkarni, Milind; Amalnerkar, Dinesh; Lee, Haiwon

    2017-09-01

    Herein, we report the synthesis of metallic molybdenum microspheres and hierarchical MoS2 nanostructures by facile template-free solvothermal and hydrothermal approach, respectively. The morphological transition of the Mo microspheres to hierarchical MoS2 nanoflower architectures is observed to be accomplished with change in solvent from ethylenediamine to water. The resultant marigold flower-like MoS2 nanostructures are few layers thick with poor crystallinity while spherical ball-like molybdenum microspheres exhibit better crystalline nature. This is the first report pertaining to the synthesis of Mo microspheres and MoS2 nanoflowers without using any surfactant, template or substrate in hydro/solvothermal regime. It is opined that such nanoarchitectures of MoS2 are useful candidates for energy related applications such as hydrogen evolution reaction, Li ion battery and pseudocapacitors. Inquisitively, metallic Mo can potentially act as catalyst as well as fairly economical Surface Enhanced Raman Spectroscopy (SERS) substrate in biosensor applications.

  7. Practical Usage of Effect of Cold Weldability of Metals in Joint of Plastically Deformable Gasket and Flanges of Detachable Joint of Fuel Pipe-Line

    Science.gov (United States)

    Danchenko, V. G.

    2002-01-01

    The performed investigations of the character of changing the leakage of control gas through flange connections in the process of drawing- up the bolts in to calculation moment and subsequent lowering of bolt loading to zero have shown the following. Gradual reduction of leakage through a gasket occurs in the process of increasing the tightening torque up to its complete absence. But there is no leakage through the unloaded gasket after untwisting all nuts and removal of fastening bolts from flanges. The performed analysis has shown that this effect is caused by cold weldability of the gasket with flanges; this is a result of flowing of its material into microrough holes of contact surfaces of flanges at plastic deformation with formation of strong and dense contact. Some technological methods of formation of undetachable joint have been developed for practical application of this effect. According to one of those methods, drawing- up the gasket is performed with the help of flanges preliminarily. Those bolts are substituted by less strong standard bolts for drawing- up by less moment after achievement of stress needed. Method of pressurization of the joint is more effective when technological detachable flanges and bolts are used for reduction of the gasket up to its plastic state. Those flanges and bolts are removed after drawing- up; after that standard flanges are loaded by the moment used for reception of effort only from pressure of operational medium in the pipe- line (Qoper.m.) because drawing- up of the gasket by effort (Qeff.) that provides its plastic state, is already achieved. Then we exclude the first component (Qeff.) in dependence which is known from technical literature: Qdraw. = Qeff . + Qoper .m. = qFgas. + PFpip. (1), and the final formula for calculation of the effort of drawing- up the joint (in which drawing- up the gasket with provision of cold weldability is carried out preliminarily before drawing- up the standard bolts) is expressed in

  8. Effects of forced cooling on mechanical properties and fracture behavior of heavy section ductile iron

    Directory of Open Access Journals (Sweden)

    Er-jun Guo

    2015-11-01

    Full Text Available To develop materials suitable for spent-nuclear-fuel containers, the effect of forced cooling on mechanical properties and fracture toughness of heavy section ductile iron was investigated. Two cubic castings with different cooling processes were prepared: casting A was prepared in a totally sand mold, and casting B was prepared in a sand mold with two chilling blocks placed on the left and right sides of the mold. Three positions in each casting with different solidification cooling rates were chosen. In-situ SEM tensile experiment was used to observe the dynamic tensile process. Fracture analysis was conducted to study the influence of vermicular and slightly irregular spheroidal graphite on the fracture behavior of heavy section ductile iron. Results show that the tensile strength, elongation, impact toughness and fracture toughness at different positions of the two castings all decrease with decreasing cooling rate. With the increase of solidification time, the fracture mechanism of conventional casting A changes from ductile fracture to brittle fracture, and that of casting B with forced cooling changes from ductile fracture to a mixture of ductile-brittle fracture.

  9. Brittle to ductile transition of metallic glasses induced by embedding spherical nanovoids

    Science.gov (United States)

    Zhu, Bida; Huang, Minsheng; Li, Zhenhuan

    2017-12-01

    The lack of global plasticity at low temperature seriously limits the application of metallic glasses (MGs) as structural materials. An approach to enhance the MG-ductility by dispersed spherical nanovoids is suggested and validated by molecular dynamics in the present paper. By introducing these nanovoids, a deformation mode transition from localized shear banding to homogeneous flow occurs. The ratio of void-surface area to MG volume λ is revealed to be the dominant factor controlling this brittle-to-ductile transition. Generally, for a given void volume fraction, smaller nanovoids with larger λ have better toughening effects. It is also discovered that the ductile responses of porous MGs with embedded nanovoids remain unchanged, even after several cycles of tensile-compressive loads. The intrinsic mechanism may be the transition of energetic void-surface atoms into internal atoms with lower potential energy. This process induces many uniformly distributed potential nucleation sites for shear transformation zones or embryonic shear bands (SBs), and thus provides another homogenous way to release the stored strain energy in MGs rather than by the formation of a single dominant SB. As a consequence, the highly localized deformation mode of classical MGs can be avoided. In addition, the effect of free and periodical boundary conditions and random distribution of nanovoids on the brittle-to-ductile transition are also discussed. The results may shed a light on the fabrication of better ductile MG materials.

  10. Ductile fracture simulation of SA508 Gr. 1a under LCF loading condition

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Suk; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Kim, Jin Won [Chosun University, Gwangju (Korea, Republic of)

    2016-05-15

    In order to design and maintain piping system such as seismic accident, fracture mechanics analysis under seismic loading is important. For this reason, ductile fracture simulation under cyclic loading condition is very important in structural integrity analysis of pipeline and nuclear piping. The author have recently proposed a numerical method to simulate ductile tearing under quasi-static, dynamic loading conditions, based on the ductility exhaustion concept using the multi-axial fracture strain energy model. In this paper, the numerical method to simulate ductile tearing is extended to cyclic loading conditions. The presented method is applied to fracture toughness test under cyclic loading condition. This paper present a numerical method to simulate ductile tearing fracture toughness test under cyclic loading condition performed by Prof Kim. The proposed method is based on the stress-modified fracture strain energy model. To validate the method, simulated results of smooth bar and fracture toughness test under quasi-static loading condition are compared with experimental data. Using calibrated damage parameters, fracture toughness test under cyclic loading condition are simulated. The results shows that the proposed method predicts experimental data well.

  11. Structure, activity and kinetics of supported molybdenum oxide and mixed molybdenum-vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHD

    DEFF Research Database (Denmark)

    Høj, Martin; Kessler, Thomas; Beato, Pablo

    2013-01-01

    . The catalytic experiments showed that the most selective molybdenum oxide catalysts for the ODH reaction were those with high Mo loadings of 7 to 15 wt% Mo, while the most selective mixed molybdenum-vanadium oxide catalyst were at 4 wt% Mo, where separate surface species of molybdenum and vanadium oxide were...... observed by Raman spectroscopy. A simple kinetic model based on the propane ODH reaction, parallel combustion of propane and sequential combustion of propene described the experimental results well and could be used to determine the optimal reaction conditions. © 2013 Elsevier B.V....

  12. Alloy-dependent deformation behavior of highly ductile nanocrystalline AuCu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lohmiller, Jochen [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany); Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich (Switzerland); Gruber, Patric A., E-mail: patric.gruber@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2014-02-10

    Nanocrystalline thin films on compliant substrates become increasingly important for the development of flexible electronic devices. In this study, nanocrystalline AuCu thin films on polyimide substrate were tested in tension while using a synchrotron-based in situ testing technique. Analysis of X-ray diffraction profiles allowed identifying the underlying deformation mechanisms. Initially, elastic and microplastic deformation is observed, followed by dislocation-mediated shear band formation, and eventually macroscopic crack formation. Particularly the influence of alloy composition, heat-treatment, and test temperature were investigated. Generally, a highly ductile behavior is observed. However, high Cu concentrations, annealing, and/or large plastic strains lead to localized deformation and hence reduced ductility. On the other hand, enhanced test temperature allows for a delocalized deformation and extended ductility.

  13. Thin wall ductile iron casting as a substitute for aluminum alloy casting in automotive industry

    Directory of Open Access Journals (Sweden)

    M. Górny

    2009-01-01

    Full Text Available In paper it is presented thin wall ductile iron casting (TWDI as a substitute of aluminium alloy casting. Upper control arm made of ductile iron with wall thickness ranging from 2 – 3.7 mm was produced by inmold process. Structure, mechanical properties and computer simulations were investigated. Structural analysis of TWDI shows pearlitic-ferritic matrix free from chills and porosity. Mechanical testing disclose superior ultimate tensile strength (Rm, yield strength (Rp0,2 and slightly lower elongation (E of TWDI in comparison with forged control arm made of aluminium alloy (6061-T6. Moreover results of computer simulation of static loading for tested control arms are presented. Analysis show that the light-weight ductile iron casting can be loaded to similar working conditions as the forged Al alloy without any potential failures.

  14. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers.

    Science.gov (United States)

    Luo, Junhang; Wang, Jiangwei; Bitzek, Erik; Huang, Jian Yu; Zheng, He; Tong, Limin; Yang, Qing; Li, Ju; Mao, Scott X

    2016-01-13

    Silica (SiO2) glass, an essential material in human civilization, possesses excellent formability near its glass-transition temperature (Tg > 1100 °C). However, bulk SiO2 glass is very brittle at room temperature. Here we show a surprising brittle-to-ductile transition of SiO2 glass nanofibers at room temperature as its diameter reduces below 18 nm, accompanied by ultrahigh fracture strength. Large tensile plastic elongation up to 18% can be achieved at low strain rate. The unexpected ductility is due to a free surface affected zone in the nanofibers, with enhanced ionic mobility compared to the bulk that improves ductility by producing more bond-switching events per irreversible bond loss under tensile stress. Our discovery is fundamentally important for understanding the damage tolerance of small-scale amorphous structures.

  15. Cohesive traction–separation laws for tearing of ductile metal plates

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Hutchinson, John W.

    2012-01-01

    The failure process ahead of a mode I crack advancing in a ductile thin metal plate or sheet produces plastic dissipation through a sequence of deformation steps that include necking well ahead of the crack tip and shear localization followed by a slant fracture in the necked region somewhat closer...... the Gurson constitutive law based on the micromechanics of the ductile fracture process, including a recent extension that accounts for damage growth in shear. The fracture process in front of an advancing crack, subject to overall mode I loading, is approximated by a 2D plane strain finite element model....... For ductile structural materials, the dissipation generated during necking prior to the onset of shear localization is the dominant contribution; it scales with the plate thickness and is mesh-independent in the present numerical model. The energy associated with the shear localization and fracture...

  16. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility.

    Science.gov (United States)

    Wu, Xiaolei; Yang, Muxin; Yuan, Fuping; Wu, Guilin; Wei, Yujie; Huang, Xiaoxu; Zhu, Yuntian

    2015-11-24

    Grain refinement can make conventional metals several times stronger, but this comes at dramatic loss of ductility. Here we report a heterogeneous lamella structure in Ti produced by asymmetric rolling and partial recrystallization that can produce an unprecedented property combination: as strong as ultrafine-grained metal and at the same time as ductile as conventional coarse-grained metal. It also has higher strain hardening than coarse-grained Ti, which was hitherto believed impossible. The heterogeneous lamella structure is characterized with soft micrograined lamellae embedded in hard ultrafine-grained lamella matrix. The unusual high strength is obtained with the assistance of high back stress developed from heterogeneous yielding, whereas the high ductility is attributed to back-stress hardening and dislocation hardening. The process discovered here is amenable to large-scale industrial production at low cost, and might be applicable to other metal systems.

  17. Automatic quantitative analysis of microstructure of ductile cast iron using digital image processing

    Directory of Open Access Journals (Sweden)

    Abhijit Malage

    2015-09-01

    Full Text Available Ductile cast iron is preferred as nodular iron or spheroidal graphite iron. Ductile cast iron contains graphite in form of discrete nodules and matrix of ferrite and perlite. In order to determine the mechanical properties, one needs to determine volume of phases in matrix and nodularity in the microstructure of metal sample. Manual methods available for this, are time consuming and accuracy depends on expertize. The paper proposes a novel method for automatic quantitative analysis of microstructure of Ferritic Pearlitic Ductile Iron which calculates volume of phases and nodularity of that sample. This gives results within a very short time (approximately 5 sec with 98% accuracy for volume phases of matrices and 90% of accuracy for nodule detection and analysis which are in the range of standard specified for SG 500/7 and validated by metallurgist.

  18. Effect of Si doping on ductility of RuAl intermetallics: A first principle study

    Science.gov (United States)

    Fatima, Bushra; Acharya, Nikita; Chouhan, Sunil Singh; Sanyal, Sankar P.

    2013-02-01

    Based on density functional full potential linearized augmented plane wave (FP-LAPW) method, we have investigated the structural, electronic and elastic properties of RuAlxSi1-x with Si concentration varying between 0.0 and 1.0. The exchange and correlation potential is treated by the generalized gradient approximation. The values of elastic moduli at ambient pressure are also reported. The ductility of these compounds has been analyzed using Pugh rule and Cauchy's pressure. From this study we found that RuAl is brittle while all its Si doped alloys are ductile and RuAl0.75Si0.25 is found to be the most ductile. The band structure of RuAl and its alloys are also reported.

  19. Influence of Boron on Crystallization and Microstructure of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Dojka R.

    2017-06-01

    Full Text Available The objective of the research was to determine the influence of boron on the crystallization process and microstructure of ductile cast iron. In the case of ductile cast iron it is a vital issue because even as little as trace presence of boron changes the properties of ductile cast iron in a significant way. With the use of a new ATD-4 (TDA tester and CRYSTALDIGRPAH converter it was possible to measure the crystallization process parameters of the same alloy with four different contents of boron in one mould. Four samples with different boron contents were extracted, their microhardness was measured and quantitative analysis of microstructure was conducted. Obtained results allowed to state that with increasing content of boron the amount of graphite precipitates decreases, the amount of pearlite precipitates increases, the shape of graphite precipitates deteriorates and hardness increases. It is also planned to perform additional testings with boron contents between previously tested values.

  20. Thermal distortion of disc-shaped ductile iron castings in vertically parted moulds

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Rasmussen, Jakob; Tiedje, Niels Skat

    2015-01-01

    A disc-shaped casting with an inner boss and an outer rim, separated by a thin walled section, was examined. This measurable deformation varied with the feeding modulus. The influence of alloy composition, particularly Si content, was examined with a pearlitic ductile iron (EN-GJS-500-7) and a fu......A disc-shaped casting with an inner boss and an outer rim, separated by a thin walled section, was examined. This measurable deformation varied with the feeding modulus. The influence of alloy composition, particularly Si content, was examined with a pearlitic ductile iron (EN-GJS-500......-7) and a fully ferritic ductile iron (EN-GJS-450-10). The experiment showed that both the alloy composition and choice of feeder influenced the degreeof deformation measured in the finished casting. It was found that the deformation of the pearlitic alloy was influenced controllably by changing the feeder...

  1. Investigation of the hot ductility of a high-strength boron steel

    Energy Technology Data Exchange (ETDEWEB)

    Güler, Hande, E-mail: handeguler@uludag.edu.tr; Ertan, Rukiye; Özcan, Reşat

    2014-07-01

    In this study, the high-temperature ductility behaviour of an Al–Si-coated 22MnB5 sheet was investigated. The mechanical properties of Al–Si-coated 22MnB5 boron steel were examined via hot tensile tests performed at temperatures ranging from 400 to 900 °C at a strain rate of 0.083 s{sup −1}. The deformation and fracture mechanisms under hot tensile testing were considered in relation to the testing data and to the fracture-surface observations performed via SEM. The hot ductility of the tested boron steel was observed as a function of increasing temperature and the Al–Si-coated 22MnB5 boron steel exhibited a ductility loss at 700 °C.

  2. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2013-01-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found thatthe traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  3. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2013-03-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found that the traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  4. Examination and Elimination of Defects in Cone Casting Made of Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2013-12-01

    Full Text Available In the scope of existing cooperation with the Foundry of Cast Iron ZM “WSK Rzeszów” Ltd. there was carried out research work of microstructure and mechanical properties in the walls of a cone casting made of ductile cast iron. The particular attention was being put to the search of the potential brittle phases which have deleterious effect on ductility and dynamic properties of highly strained use of the casting prone to the potential risk of cracks during the highly strained use.

  5. Application of a second-gradient model of ductile fracture on a Dissimilar Metal Weld

    Directory of Open Access Journals (Sweden)

    Yang Jun

    2016-01-01

    Full Text Available A “micromorphic”, second-gradient model applicable to ductile porous materials has been proposed, as an improvement from the fundamental work of Gurson that take into account the physical mechanisms responsible for ductile damage. The model has been applied to the study of fracture of the decarburized layer of a Dissimilar Metal Weld. The model successfully reproduces the crack path experimentally observed in a notched tensile sample extracted from this weld, different from the one predicted by the first gradient model.

  6. Influence of the section size and holding time on the graphite parameters of ductile iron production

    Directory of Open Access Journals (Sweden)

    S. Bockus

    2009-01-01

    Full Text Available This work was conducted to establish the conditions required to produce a desirable structure of the castings of various section sizes. This investigation was focused on the study of the influence of cooling rate or section size and holding time on graphite parameters of the ductile iron. Plates having thickness between 3 and 50mm were cast in sand molds using the same melt. The present investigation has shown that the section size of ductile iron castings and holding time had strong effect on the graphite parameters of the castings.

  7. Influece of the austempering temperature on the tensile strength of the austempered ductile iron (ADI samples

    Directory of Open Access Journals (Sweden)

    S. Savićević

    2017-01-01

    Full Text Available Austempered Ductile Iron (ADI is a class of ductile iron subjected to a two-step heat treatment process – austenitization and austempering. The heat treatment gives to ADI a high value of tensile strength and an especially good strength-to-weight ratio. However, designers in most cases are unfamiliar with this material that can compete favorably with steel and aluminum castings, weldments and forgings. The high tensile strength of ADI is the result of its unique ausferrite microstructure. In this paper, an investigation of the influence of the austempering temperature on the tensile strength of the ADI samples is presented.

  8. Effects of ductile matrix failure in three dimensional analysis of metal matrix composites

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Full three dimensional numerical cell model analyses are carried out for a metal reinforced by short fibers, to study the development of ductile matrix failure. A porous ductile material model is used to describe the effect of the nucleation and growth of voids to coalescence. In each case studied...... the computations are continued through the mechanically unstable regime, where an open crack forms near the ends of the fibers by the coalescence of voids in the matrix. Comparison of predictions for an isotropic hardening model and a kinematic hardening model are used to evaluate the effect of a metal that forms...

  9. Microstructural aspects of long-term creep ductility of AISI 316 LN steel

    Science.gov (United States)

    Liška, M.; Sobotková, M.; Sobotka, J.

    1985-03-01

    Microstructural aspects of the creep plasticity and impact strength of non-stabilized austenitic CrNiMo steels with two different nitrogen contents have been evaluated. During creep exposure an intergranular precipitation of the sigma phase, M23C6 or/and Cr2N particles produce favourable conditions for transition from typically intergranular fracture to ductile shear fractures or to intergranular ductile fractures with characteristic dimple morphology. A given type of fractures is accompanied with high values of the relative creep rupture elongation (up to 100%) dependent on temperature and time to rupture.

  10. Studies of void growth in a thin ductile layer between ceramics

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1997-01-01

    The growth of voids in a thin ductile layer between ceramics is analysed numerically, using an axisymmetric cell model to represent an array of uniformly distributed spherical voids at the central plane of the layer. The purpose is to determine the full traction-separation law relevant to crack...... growth by a ductile mechanism along the thin layer. Plastic flow in the layer is highly constrained by the ceramics, so that a high. level of triaxial tension develops, leading in some cases to cavitation instabilities. The computations are continued to a state near the occurrence of void coalescence....

  11. Effect of initial void shape on ductile failure in a shear field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    For voids in a shear field unit cell model analyses have been used to show that ductile failure is predicted even though the stress triaxiality is low or perhaps negative, so that the void volume fraction does not grow during deformation. Here, the effect of the void shape is studied by analyzing...... with circular cross-section, i.e. the voids in shear flatten out to micro-cracks, which rotate and elongate until interaction with neighboring micro-cracks gives coalescence. Even though the mechanism of ductile failure is the same, the load carrying capacity predicted, for the same initial void volume fraction...

  12. Discrete modelling of ductile crack growth by void growth to coalescence

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2007-01-01

    Ductile crack growth is analyzed by discrete representation of the voids growing near a blunting crack-tip. Coalescence of the nearest void with the crack-tip is modeled, followed by the subsequent coalescence of other discretely represented voids with the newly formed crack-tip. Necking of the l......Ductile crack growth is analyzed by discrete representation of the voids growing near a blunting crack-tip. Coalescence of the nearest void with the crack-tip is modeled, followed by the subsequent coalescence of other discretely represented voids with the newly formed crack-tip. Necking...

  13. Investigation on local ductility of 6xxx-aluminium sheet alloys

    Science.gov (United States)

    Henn, P.; Liewald, M.; Sindel, M.

    2017-09-01

    Within the scope of this paper influence of localization of loading conditions on the ductility of two different 6xxx-aluminium sheet alloys is investigated. In order to improve the prediction of sheet material crash performance, material parameters based on uniaxial tensile and notched tensile tests are determined with varying consolidation areas. Especially evaluation methods based on the localized necking behaviour in tensile tests are investigated. The potential of local ductility characterisation is validated with results of Edge-Compression Tests (ECT) which applies load conditions that occur in actual crash events.

  14. A rate-dependent Hosford-Coulomb model for predicting ductile fracture at high strain rates

    Directory of Open Access Journals (Sweden)

    Marcadet Stephane J.

    2015-01-01

    Full Text Available The Hosford-Coulomb model incorporates the important effect of the Lode angle parameter in addition to the stress triaxiality to predict the initiation of ductile fracture. A strain-rate dependent extension of the Hosford-Coulomb model is presented to describe the results from low, intermediate and high strain rate fracture experiments on advanced high strength steels (DP590 and TRIP780. The model predictions agree well with the experimental observation of an increase in ductility as function of strain rate for stress states ranging from uniaxial to equi-biaxial tension.

  15. Investigation of solidification of thin walled ductile cast iron using temperature measurement

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron can be improved using temperature measurement. This article includes some background of the precautions that have to be taken when measuring temperatures in thin walled castings. The aim is to minimize influence of temperature...... measurement on castings and to get sufficient response time of thermocouples. Investigation of thin wall ductile iron has been performed with temperature measurement in plates with thickness between 2,8 and 8mm. The cooling curves achieved are combined with examination of the microstructure in order to reveal...

  16. Numerical Ductile Tearing Simulation of Circumferential Cracked Pipe Tests under Dynamic Loading Conditions

    Directory of Open Access Journals (Sweden)

    Hyun-Suk Nam

    2016-10-01

    Full Text Available This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.

  17. The effects of the metal temperature and wall thickness on flake graphite layer in ductile iron

    Directory of Open Access Journals (Sweden)

    M. Górny

    2015-01-01

    Full Text Available This article addresses the effect of mold filling and wall thickness on the flake graphite layer in ductile iron. The research was conducted for castings with different wall thickness (3-8 mm and using molding sand with furan resin. A thermal analysis has been performed along the length of the castings to determine the initial temperature of the metal in the mold cavity and the contact time of the liquid metal with the mold. Results demonstrated the strong influence of the temperature decrease of the metal in the mold cavity on the occurrence and the thickness of the flake graphite in the surface layer in ductile iron.

  18. Numerical ductile tearing simulation of circumferential cracked pipe tests under dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Suk; Kim, Ji Soo; Ryu, Ho Wan; Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Kim, Jin Weon [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2016-10-15

    This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.

  19. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weaver, Jamie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99mTc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)3. The precipitate of Gd(OH)3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99Mo and 99mTc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  20. Chemical vapor deposition growth of bilayer graphene in between molybdenum disulfide sheets

    NARCIS (Netherlands)

    Kwieciñski, Wojciech; Sotthewes, Kai; Poelsema, Bene; Zandvliet, Harold J.W.; Bampoulis, Pantelis

    2017-01-01

    Direct growth of flat micrometer-sized bilayer graphene islands in between molybdenum disulfide sheets is achieved by chemical vapor deposition of ethylene at about 800 °C. The temperature assisted decomposition of ethylene takes place mainly at molybdenum disulfide step edges. The carbon atoms

  1. Chemical Vapor Deposition of Atomically-Thin Molybdenum Disulfide (MoS2)

    Science.gov (United States)

    2015-03-01

    DISULFIDE ( MoS2 ) Daniel Kaplan Kendall Mills Venkataraman Swaminathan March 2015 Approved for public release...4. TITLE AND SUBTITLE CHEMICAL VAPOR DEPOSITION OF ATOMICALLY-THIN MOLYBDENUM DISULFIDE ( MoS2 ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER...distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT A method of synthesizing monolayers of molybdenum disulfide ( MoS2 ) via

  2. Structure and photoluminescence of molybdenum selenide nanomaterials grown by hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Plasma Nanoscience Laboratories, Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organization, P. O. Box 218, Lindfield, NSW 2070 (Australia); Zhu, M.K. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Ostrikov, K., E-mail: kostya.ostrikov@qut.edu.au [Plasma Nanoscience Laboratories, Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organization, P. O. Box 218, Lindfield, NSW 2070 (Australia); Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Plasma Nanoscience, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Shao, R.W.; Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2015-10-25

    Molybdenum selenide nanomaterials with different structures are synthesized on silicon substrates coated with gold films by hot filament chemical vapor deposition (HFCVD) in nitrogen environment, where molybdenum trioxide and selenium powders are used as source materials. The structure and composition of the synthesized molybdenum selenide nanomaterials are studied using field emission scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the structures of molybdenum selenide change from nanoflakes to nanoparticles with the increase of content of molybdenum trioxide precursor. The photoluminescence (PL) excitation using the 325 nm line of He–Cd laser as the excitation source generates green light with the wavelength of about 512–516 nm. The formation of molybdenum selenide nanomaterials is determined by the decomposition rates of molybdenum trioxide in HFCVD. The possible factors that affect the generation of green PL bands are analyzed. These outcomes of this work enrich our knowledge on the synthesis of transition metal dichalcogenides and contribute to the development of applications of these materials in optoelectronic devices. - Highlights: • Molybdenum selenide nanoflakes, nanoparticles and hybrids produced by HFCVD. • Uncommon MoO{sub 3} and Se precursor co-location and mixing and effective MoO{sub 3} decomposition. • Morphology change from nanoflakes to nanoparticles with higher ratio of MoO{sub 3} precursor. • Strong photoluminescence emission of green light with a wavelength of ∼512–516 nm.

  3. Effect of dietary molybdenum and sulphur on the copper status of ...

    African Journals Online (AJOL)

    DICK, A.T., 1956. Molybdenum and copper relationships in animal nutrition. In: Inorganic Nitrogen Metabolism. Eds. McElroy,. W.D. & Glass, B. John Hopkins Press, Baltimore. p.445. DICK, A.T., DEWEY, D.W. & GAWTHORNE, J.M., 1975. Thiomolybdates and the copper-molybdenum-sulphur interaction in ruminant nutrition.

  4. Effect of high levels of dietary molybdenum and sulphate on SA ...

    African Journals Online (AJOL)

    1988-10-29

    Oct 29, 1988 ... Effect of high levels of dietary molybdenum and sulphate on SA Mutton Merino sheep. I. Minerai status and ... reliable diagnostic index of copper deficiency in sheep in the presence of high concentrations of molybdenum and sulphate in ..... dates are poorly excreted by both the urinary and faecal routes in ...

  5. 10 CFR 35.204 - Permissible molybdenum-99, strontium-82, and strontium-85 concentrations.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Permissible molybdenum-99, strontium-82, and strontium-85... Unsealed Byproduct Material-Written Directive Not Required § 35.204 Permissible molybdenum-99, strontium-82, and strontium-85 concentrations. (a) A licensee may not administer to humans a radiopharmaceutical...

  6. Effect of liming on the molybdenum content in the root and leaf of ...

    African Journals Online (AJOL)

    Three liming treatments were employed (1, 3 and 4 t/ha CaCO3). The liming operation used on pseudogley induced a statistically significant increase in molybdenum ion absorption into the root system of tomato. Independently from the aforementioned, the values for the root and leaf molybdenum content of tomato in each ...

  7. Procedure for Uranium-Molybdenum Density Measurements and Porosity Determination

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-13

    The purpose of this document is to provide guidelines for preparing uranium-molybdenum (U-Mo) specimens, performing density measurements, and computing sample porosity. Typical specimens (solids) will be sheared to small rectangular foils, disks, or pieces of metal. A mass balance, solid density determination kit, and a liquid of known density will be used to determine the density of U-Mo specimens using the Archimedes principle. A standard test weight of known density would be used to verify proper operation of the system. By measuring the density of a U-Mo sample, it is possible to determine its porosity.

  8. Octahedral molybdenum cluster complexes with aromatic sulfonate ligands

    OpenAIRE

    Efremova, Olga A.; Vorotnikov, Yuri A.; Brylev, Konstantin A.; Vorotnikova, Natalya A.; Novozhilov, Igor N.; Kuratieva, Natalia V.; Edeleva, Mariya V.; Benoit, David M.; Kitamura, Noboru; Mironov, Yuri V.; Shestopalov, Michael A.; Sutherland, Andrew J.

    2016-01-01

    This article describes the synthesis, structures and systematic study of the spectroscopic and redox properties of a series of octahedral molybdenum metal cluster complexes with aromatic sulfonate ligands (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] (where X- is Cl-, Br- or I-; OTs- is p-toluenesulfonate and PhSO3 - is benzenesulfonate). All the complexes demonstrated photoluminescence in the red region and an ability to generate singlet oxygen. Notably, the highest quantum yields (>...

  9. Disposition of plutonium-239 via production of fission molybdenum-99.

    Science.gov (United States)

    Mushtaq, A

    2011-04-01

    A heritage of physical consequences of the U.S.-Soviet arms race has accumulated, the weapons-grade plutonium (WPu), which will become excess as a result of the dismantlement of the nuclear weapons under the arms reduction agreements. Disposition of Pu has been proposed by mixing WPu with high-level radioactive waste with subsequent vitrification into large, highly radioactive glass logs or fabrication into mixed oxide fuel with subsequent irradiation in existing light water reactors. A potential option may be the production of medical isotope molybdenum-99 by using Pu-239 targets. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Inclusion of a cobalt tetraazamacrocycle into layered molybdenum disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Bissessur, Rabin, E-mail: rabissessur@upei.ca [Department of Chemistry, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3 (Canada); Haines, Robert I.; Gallant, David [Department of Chemistry, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3 (Canada); Bruening, Ralf [Department of Physics, Mount Allison University, Sackville, New Brunswick, E4L 1E6 (Canada)

    2010-08-01

    We report on the intercalation of meso-5, 5, 7, 12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-1,8-diacetate complexed with Co (III) into layered molybdenum disulfide. This is achieved by using the exfoliation and re-stacking properties of LiMoS{sub 2}. The cobalt complex dissolves readily in a water/acetone solvent mixture. Addition of this solution to an aqueous suspension of single MoS{sub 2} layers results in the entrapment of the cobalt macrocycle between the sheets of MoS{sub 2}. The resulting intercalate was characterized by powder X-ray diffraction and thermogravimetric analysis.

  11. Disposition of plutonium-239 via production of fission molybdenum-99

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A., E-mail: muahtaq_a1953@hotmail.co [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2011-04-15

    A heritage of physical consequences of the U.S.-Soviet arms race has accumulated, the weapons-grade plutonium (WPu), which will become excess as a result of the dismantlement of the nuclear weapons under the arms reduction agreements. Disposition of Pu has been proposed by mixing WPu with high-level radioactive waste with subsequent vitrification into large, highly radioactive glass logs or fabrication into mixed oxide fuel with subsequent irradiation in existing light water reactors. A potential option may be the production of medical isotope molybdenum-99 by using Pu-239 targets.

  12. Physicochemical investigation of NiAl with small molybdenum additions

    Science.gov (United States)

    Troshkina, V. A.; Kucherenko, L. A.; Fadeeva, V. I.; Aristova, N. M.

    1982-01-01

    Specimens of four cast NiAl alloys, three of them containing 0.5, 1.0 and 1.5 at. % Mo., were homogenized for 10, 10, and 140 hr at 1373, 1523 and 1273 K, respectively, then kept at 1073, 1173 and 1323 K for 60, 120 and 3 hr, respectively, and quenched in icy water. The precipitation of a metastable Ni3Mo phase was observed at temperatures between 1073 and 1523 K. Molybdenum substituted for nickel was found to inhibit the lattice disordering in NiAl at 1073 and 1523 K.

  13. Leaching of molybdenum and arsenic from uranium ore and mill tailings

    Science.gov (United States)

    Landa, E.R.

    1984-01-01

    A sequential, selective extraction procedure was used to assess the effects of sulfuric acid milling on the geochemical associations of molybdenum and arsenic in a uranium ore blend, and the tailings derived therefrom. The milling process removed about 21% of the molybdenum and 53% of the arsenic initially present in the ore. While about one-half of the molybdenum in the ore was water soluble, only about 14% existed in this form in the tailings. The major portion of the extractable molybdenum in the tailings appears to be associated with hydrous oxides of iron, and with alkaline earth sulfate precipitates. In contrast with the pattern seen for molybdenum, the partitioning of arsenic into the various extractable fractions differs little between the ore and the tailings. ?? 1984.

  14. Influence of Chromium and Molybdenum on the Corrosion of Nickel Based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J R; Gray, J; Szmodis, A W; Orme, C A

    2005-08-02

    The addition of chromium and molybdenum to nickel creates alloys with exceptional corrosion resistance in a diverse range of environments. This study examines the complementary roles of Cr and Mo in Ni alloy passivation. Four nickel alloys with varying amounts of chromium and molybdenum were studied in 1 molar salt solutions over a broad pH range. The passive corrosion and breakdown behavior of the alloys suggests that chromium is the primary element influencing general corrosion resistance. The breakdown potential was nearly independent of molybdenum content, while the repassivation potential is strongly dependant on the molybdenum content. This indicates that chromium plays a strong role in maintaining the passivity of the alloy, while molybdenum acts to stabilize the passive film after a localized breakdown event.

  15. Development and Testing of a Linear Polarization Resistance Corrosion Rate Probe for Ductile Iron Pipe (Web Report 4361)

    Science.gov (United States)

    The North American water and wastewater community has hundreds of millions of feet of ductile iron pipe in service. Only a portion of the inventory has any form of external corrosion control. Ductile iron pipe, in certain environments, is subject to external corrosion.Linear Pola...

  16. Plant growth in amended molybdenum mine waste rock.

    Science.gov (United States)

    Burney, Owen T; Redente, Edward F; Lambert, Charles E

    2017-04-01

    This greenhouse study examined the use of organic and inorganic soil amendments in waste rock material from the former Questa Molybdenum Mine in northern New Mexico to promote beneficial soil properties. Waste rock material was amended with 11 soil amendment treatments that included municipal composted biosolids, Biosol®, inorganic fertilizer, and two controls (pure waste rock and sand). Elymus trachycaulus and Robinia neomexicana growth performance and plant chemistry were assessed across all treatments over a period of 99 and 141 days, respectively. Even though waste rock material had more than 200 times the molybdenum concentration of native soils, adverse effects were not observed for either species. The two main limiting factors in this study were soil nutritional status and soil water retention. The biosolid amendment was found to provide the greatest buffer against these limiting factors due to significant increases in both nutrition and soil water retention. As a result, both species responded with the highest levels of biomass production and the least amount of required water demands. Use of organic amendments such as biosolids, even though short lived in the soil, may provide plants the necessary growth stimulus to become more resilient to the harsh conditions found on many mine reclamation sites.

  17. Synthesis and characterization of several molybdenum chloride cluster compounds

    Energy Technology Data Exchange (ETDEWEB)

    Beers, W.W.

    1983-06-01

    Investigation into the direct synthesis of Mo/sub 4/Cl/sub 8/(P(C/sub 2/H/sub 5/)/sub 3/)/sub 4/ from Mo/sub 2/(OAc)/sub 4/ led to a synthetic procedure that produces yields greater than 80%. The single-crystal structure disclosed a planar rectangular cluster of molybdenum atoms. Metal-metal bond distances suggest that the long edges of the rectangular cluster should be considered to be single bonds and the short metal-metal bonds to be triple bonds. This view is reinforced by an extended Hueckel calculation. Attempts to add a metal atom to Mo/sub 4/Cl/sub 8/(PR/sub 3/)/sub 4/ to form Mo/sub 5/Cl/sub 10/(PR/sub 3/)/sub 3/ led instead to a compound with the composition Mo/sub 8/Cl/sub 16/(PR/sub 3/)/sub 4/. Solution and reflectance uv-visible spectra and x-ray photoelectron spectra suggest that tetranuclear molybdenum units are present. The facile reaction between Mo/sub 8/Cl/sub 16/(PR/sub 3/)/sub 4/ and PR/sub 3/ imply that the linkage between tetrameric units is weak.

  18. Sulphur shuttling across a chaperone during molybdenum cofactor maturation.

    Science.gov (United States)

    Arnoux, Pascal; Ruppelt, Christian; Oudouhou, Flore; Lavergne, Jérôme; Siponen, Marina I; Toci, René; Mendel, Ralf R; Bittner, Florian; Pignol, David; Magalon, Axel; Walburger, Anne

    2015-02-04

    Formate dehydrogenases (FDHs) are of interest as they are natural catalysts that sequester atmospheric CO2, generating reduced carbon compounds with possible uses as fuel. FDHs activity in Escherichia coli strictly requires the sulphurtransferase EcFdhD, which likely transfers sulphur from IscS to the molybdenum cofactor (Mo-bisPGD) of FDHs. Here we show that EcFdhD binds Mo-bisPGD in vivo and has submicromolar affinity for GDP-used as a surrogate of the molybdenum cofactor's nucleotide moieties. The crystal structure of EcFdhD in complex with GDP shows two symmetrical binding sites located on the same face of the dimer. These binding sites are connected via a tunnel-like cavity to the opposite face of the dimer where two dynamic loops, each harbouring two functionally important cysteine residues, are present. On the basis of structure-guided mutagenesis, we propose a model for the sulphuration mechanism of Mo-bisPGD where the sulphur atom shuttles across the chaperone dimer.

  19. Reprocessability of molybdenum and magnesia based inert matrix fuels

    Directory of Open Access Journals (Sweden)

    Ebert Elena L.

    2015-12-01

    Full Text Available This work focuses on the reprocessability of metallic 92Mo and ceramic MgO, which is under investigation for (Pu,MA-oxide (MA = minor actinide fuel within a metallic 92Mo matrix (CERMET and a ceramic MgO matrix (CERCER. Magnesium oxide and molybdenum reference samples have been fabricated by powder metallurgy. The dissolution of the matrices was studied as a function of HNO3 concentration (1-7 mol/L and temperature (25-90°C. The rate of dissolution of magnesium oxide and metallic molybdenum increased with temperature. While the MgO rate was independent of the acid concentration (1-7 mol/L, the rate of dissolution of Mo increased with acid concentration. However, the dissolution of Mo at high temperatures and nitric acid concentrations was accompanied by precipitation of MoO3. The extraction of uranium, americium, and europium in the presence of macro amounts of Mo and Mg was studied by three different extraction agents: tri-n-butylphosphate (TBP, N,Nʹ-dimethyl-N,Nʹ-dioctylhexylethoxymalonamide (DMDOHEMA, and N,N,N’,N’- -tetraoctyldiglycolamide (TODGA. With TBP no extraction of Mo and Mg occurred. Both matrix materials are partly extracted by DMDOHEMA. Magnesium is not extracted by TODGA (D < 0.1, but a weak extraction of Mo is observed at low Mo concentration.

  20. Molybdenum-containing nitrite reductases: Spectroscopic characterization and redox mechanism.

    Science.gov (United States)

    Wang, Jun; Keceli, Gizem; Cao, Rui; Su, Jiangtao; Mi, Zhiyuan

    2017-01-01

    This review summarizes the spectroscopic results, which will provide useful suggestions for future research. In addition, the fields that urgently need more information are also advised. Nitrite-NO-cGMP has been considered as an important signaling pathway of NO in human cells. To date, all the four known human molybdenum-containing enzymes, xanthine oxidase, aldehyde oxidase, sulfite oxidase, and mitochondrial amidoxime-reducing component, have been shown to function as nitrite reductases under hypoxia by biochemical, cellular, or animal studies. Various spectroscopic techniques have been applied to investigate the structure and catalytic mechanism of these enzymes for more than 20 years. We summarize the published data on the applications of UV-vis and EPR spectroscopies, and X-ray crystallography in studying nitrite reductase activity of the four human molybdenum-containing enzymes. UV-vis has provided useful information on the redox active centers of these enzymes. The utilization of EPR spectroscopy has been critical in determining the coordination and redox status of the Mo center during catalysis. Despite the lack of substrate-bound crystal structures of these nitrite reductases, valuable structural information has been obtained by X-ray crystallography. To fully understand the catalytic mechanisms of these physiologically/pathologically important nitrite reductases, structural studies on substrate-redox center interaction are needed.

  1. Materials and Breakdown Phenomena: Heterogeneous Molybdenum Metallic Films

    Directory of Open Access Journals (Sweden)

    Augusto Marcelli

    2017-05-01

    Full Text Available Technological activities to design, manufacture, and test new accelerating devices using different materials and methods is under way all over the world. The main goal of these studies is to increase the accelerating gradients and reduce the probability of radio-frequency (RF breakdown. Indeed, it is still not clear why, by increasing the intensity of the applied field, intense surface damage is observed in copper structures, limiting the lifetime and, therefore, the practical applications. A possible solution is represented by a coating of a relatively thick layer of molybdenum in order to improve the breakdown rate. molybdenum can be reliably grown on different substrates with a negligible strain and, for thicknesses up to 600 nm, with a resistivity < 100–150·μΩ cm. Moreover, Mo coatings with controlled composition, internal stress, and roughness may allow improving thermo-mechanical properties reaching values not attainable by uncoated copper. Although the Mo conductivity remains lower compared to Cu, a Mo coating represents a very interesting option for high gradient accelerator components manufactured in copper.

  2. Ductile damage development in friction stir welded aluminum (AA2024) joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2008-01-01

    Ductile damage development in a friction stir welded aluminum joint subjected to tension is analyzed numerically by FE-analysis, based on a total Lagrangian formulation. An elastic-viscoplastic constitutive relation that accounts for nucleation and growth of microvoids is applied. Main focus in t...

  3. Delamination of a strong film from a ductile substrate during indentation unloading

    NARCIS (Netherlands)

    Abdul-Baqi, A.; van der Giessen, E.

    2001-01-01

    In this work, a finite element method was performed to simulate the spherical indentation of a ductile substrate coated by a strong thin film. Our objective was to study indentation-induced delamination of the film from the substrate. The film was assumed to be linear elastic, the substrate was

  4. Industrial vegetable oil by-products increase the ductility of polylactide

    Directory of Open Access Journals (Sweden)

    A. Ruellan

    2015-12-01

    Full Text Available The use of industrial by-products of the vegetable oil industry as ductility increasing additives of polylactide (PLA was investigated. Vegetable oil deodorization condensates were melt-blended by twin-screw extrusion up to a maximum inclusion quantity of 20 wt% without preliminary purification. Sample films were obtained by single screw cast extrusion. Compounded PLA films featured largely improved ductility in tensile testing with an elongation at break up to 180%. The glass transition temperature remained higher than room temperature. The native mixture of molecules, which composed the deodorization condensates, had superior performance compared to a synthetic mixture of main compounds. The investigation of the correlation between composition of the additives and the ductility of the PLA blends by Principal Component Analysis showed synergy in property improvement between fatty acids having a melting point below and beyond the room temperature. Furthermore, a compatibilizing effect of molecules present in the native mixture was evidenced. Oil deodorization condensates, which are a price competitive by-product of the vegetable oil industry, are therefore a very promising biobased and biodegradable additive for improving the ductility of PLA.

  5. Microstructure vs. Near-threshold Fatigue Crack Growth Behavior of an Heat-treated Ductile Iron

    Directory of Open Access Journals (Sweden)

    Radomila KONEČNÁ

    2012-03-01

    Full Text Available Perferritic isothermal ductile iron (IDI® is an intermediate grade between the low-strength grades of austempered ductile iron (ADI and pearlitic ductile iron (DI recently developed by Zanardi Fonderie Italy. IDI is produced by heat-treating an unalloyed nodular cast iron. The specific matrix microstructure is called “Perferritic” and consists predominantly of ferrite and pearlite. Compared to the pearlitic grades of nodular ductile iron, IDI combines similar strength with higher toughness as a result of the isothermal heat treatment. In this contribution the fatigue crack growth resistance and Kath of IDI are investigated and correlated to mechanical properties and microstructural features. The threshold Ka was determined using the load shedding technique as per ASTM Standard E-647 using CT specimens extracted from a cast block. Tensile specimens were extracted from the broken CT halves and used to determine the static mechanical properties. A metallographic investigation was carried out to correlate structural features and mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1336

  6. Undercooling, nodule count and carbides in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Ductile cast iron has been cast in plate thicknesses between 2 to 8 mm. The temperature has been measured during the solidification and the graphite nodule count and size distribution together with the type and amount of carbides have been analysed afterwards. Low nodule count gives higher...

  7. Cumulative Ductility and Hysteretic Behavior of Small Buckling-Restrained Braces

    Directory of Open Access Journals (Sweden)

    Hidajat Sugihardjo

    2017-01-01

    Full Text Available Cumulative ductility is defined as a ratio of total energy to elastic energy which is dissipated by an element of the structural system during cyclic loading. An element of the structural system is categorized hysteretic if the cumulative ductility factor fulfills certain criteria. This study investigated both analytically and experimentally Small Buckling-Restrained Braces (SBRBs. The core of bracings was modeled using Menegotto-Pinto and bilinear functions. The restrained bracing members were in the shape of square hollow steel section. They were made of the assembly of two L-shaped steel sections. From the experimental study on four SBRB specimens, it was proven that the proposed SBRBs have performed relatively stable hysteretic curves up to two percent of strain and the cumulative ductility factor of 199–450. This value is sufficient for the Buckling-Restrained Brace (BRB elements as elastoplastic structural components. The comparisons of the hysteretic behaviors resulted by SBRB specimens using the Menegotto-Pinto functions and experiments exhibited good agreements, while the amount of energy dissipated by the SBRB specimens using the bilinear model agreed well with the experimental results. Based on the behavior of the experimental hysteretic, implementing the proposed SBRBs as components in ductile truss system is recommended.

  8. Effect of Feeder Configuration on the Microstructure of Ductile Cast Iron

    DEFF Research Database (Denmark)

    Vedel-Smith, Nikolaj Kjelgaard; Tiedje, Niels Skat

    2014-01-01

    influence the soundness of different sections of the castings. Moreover, the microstructural changes due to variations in thermal gradients are classified, and the variations in the mushy zone described. The paper discusses how solidification and segregation influence porosity and microstructure of ductile...

  9. Robustness Analysis of a Timber Structure with Ductile Behaviour in Compression

    DEFF Research Database (Denmark)

    Čizmar, Dean; Sørensen, John Dalsgaard; Kirkegaard, Poul Henning

    2011-01-01

    This paper presents a probabilistic approach for structural robustness assessment for a timber structure built a few years ago. The robustness analysis is based on a structural reliability based framework for robustness assessment. The complex timber structure with a large number of failure modes...... material ductility of timber is taken into account. The robustness is expressed and evaluated by a robustness index....

  10. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2017-01-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed...

  11. Nucleation and solidification of thin walled ductile iron - Experiments and numerical simulation

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2005-01-01

    Investigation of solidification of thin walled ductile cast iron has been performed based on experiments and numerical simulation. The experiments were based on temperature and microstructure examination. Results of the experiments have been compared with a 1-D numerical solidification model...

  12. Ductile Cement-Based Composites with Wood Fibres - material design and experimental approach

    NARCIS (Netherlands)

    Sierra-Beltran, M.G.

    2011-01-01

    In order to turn a brittle cement matrix into a ductile composite different types of man-made fibres such as steel, glass and polyvinyl alcohol are currently used as reinforcement, as well as some natural fibres. Compared to synthetic fibres, natural fibres are more easily available worldwide and

  13. Influencing factors on as-cast and heat treated 400-18 ductile iron grade characteristics

    Directory of Open Access Journals (Sweden)

    I. Riposan

    2007-11-01

    Full Text Available As-cast and heat-treated 400-18 ductile iron (DI grade was obtained in different foundry conditions, as metallic charge, Mg-treatment alloy and inoculation. It was found that the Pearlitic Influence Factor (Px and Antinodulizing Complex Factor (K1 have an important influence on property of DI, depending on the Mn and P level, the metallurgical quality of iron melt, rare earth (RE and inoculation. It was also found that the influence of Mn is depended on the phosphorus and residual elements level in ductile iron. Less than 0.03%P and 0.2%Mn and Px2.0 determines presence of pearlite in as-cast structure, while ferrite structure is obtained after a short annealing heat treatment. Lower level of phosphorus (P1.2. Si has a significant influence on the mechanical properties of heat treated ductile irons: an important decreasing of elongation level and a moderate increasing of yield and tensile strength and their ratio in 150-170 HB typical hardness field. A typical final chemical composition for as-cast 400-18 ductile iron could include 3.5%-3.7%C, 2.4%-2.5%Si, max.0.18%Mn, max.0.025%P, max.0.01%S, 0.04%-0.05%Mgres. for Px<1.5 and K1<1.1. High purity pig iron, RE-bearing FeSiMg and powerful inoculant are also recommended.

  14. Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry

    African Journals Online (AJOL)

    Corrosion behavior of austempered ductile iron (ADI) in iron ore slurry was studied as a function of the microstructure developed by austempering at 380 and 300°C for different exposure time in the slurry. The corrosion rates of the ADI balls immersed in the iron ore slurry was determined using weight loss method.

  15. The effect of loading rate on ductile fracture toughness and fracture surface roughness

    DEFF Research Database (Denmark)

    Osovski, S.; Srivastava, Akhilesh Kumar; Ponson, L.

    2015-01-01

    The variation of ductile crack growth resistance and fracture surface roughness with loading rate is modeled under mode I plane strain, small scale yielding conditions. Three-dimensional calculations are carried out using an elastic-viscoplastic constitutive relation for a progressively cavitatin...

  16. Microstructural Evolution During Laser Surface Alloying of Ductile Cast Iron with Titanium

    Directory of Open Access Journals (Sweden)

    Janicki D.

    2017-12-01

    Full Text Available Diode laser surface alloying process was used to the in-situ synthesis of TiC-reinforced composite surface layers on the ductile cast iron substrate. The obtained composite surface layers were investigated using optical and scanning electron microscopy, and XRD diffraction.

  17. Modeling the elastic behavior of ductile cast iron including anisotropy in the graphite nodules

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2016-01-01

    This paper presents a micro-mechanical approach to model the intrinsic elastic anisotropy of the graphite particles in ductile iron. Contrary to most of the published works in the field, the constitutive behavior is directly derived on the basis of the nodule characteristic internal structure, co...

  18. Influence of rare earths on shrinkage porosity in thin walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2009-01-01

    Ductile cast iron has been cast in test bars with thickness from 2 to 10 mm. The rare earth elements La and Ce have been added to some of the castings to evaluate their influence on microstructure and shrinkage tendency. Both La and Ce increased the graphite nodule count, especially for thickness...

  19. Development of high-temperature strain instrumentation for in situ SEM evaluation of ductility dip cracking.

    Science.gov (United States)

    Torres, E A; Montoro, F; Righetto, R D; Ramirez, A J

    2014-06-01

    Nowadays, the implementation of sophisticated in situ electron microscopy tests is providing new insights in several areas. In this work, an in situ high-temperature strain test into a scanning electron microscope was developed. This setup was used to study the grain boundary sliding mechanism and its effect on the ductility dip cracking. This methodology was applied to study the mechanical behaviour of Ni-base filler metal alloys ERNiCrFe-7 and ERNiCr-3, which were evaluated between 700°C and 1000°C. The ductility dip cracking susceptibility (threshold strain; εmin) for both alloys was quantified. The εmin of ERNiCrFe-7 and ERNiCr-3 alloys were 7.5% and 16.5%, respectively, confirming a better resistance of ERNiCr-3 to ductility dip cracking. Furthermore, two separate components of grain boundary sliding, pure sliding (Sp) and deformation sliding (Sd), were identified and quantified. A direct and quantitative link between grain boundary tortuosity, grain boundary sliding and ductility dip cracking resistance has been established for the ERNiCrFe-7 and ERNiCr-3 alloys. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  20. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off

    Science.gov (United States)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  1. A kinematic measurement for ductile and brittle failure of materials using digital image correlation

    Directory of Open Access Journals (Sweden)

    M.M. Reza Mousavi

    2016-12-01

    Full Text Available This paper addresses some material level test which is done on quasi-brittle and ductile materials in the laboratory. The displacement control experimental program is composed of mortar cylinders under uniaxial compression shows quasi-brittle behavior and seemingly round-section aluminum specimens under uniaxial tension represents ductile behavior. Digital Image Correlation gives full field measurement of deformation in both aluminum and mortar specimens. Likewise, calculating the relative displacement of two points located on top and bottom of virtual LVDT, which is virtually placed on the surface of the specimen, gives us the classical measure of strain. However, the deformation distribution is not uniform all over the domain of specimens mainly due to imperfect nature of experiments and measurement devices. Displacement jumps in the fracture zone of mortar specimens and strain localization in the necking area for the aluminum specimen, which are reflecting different deformation values and deformation gradients, is compared to the other regions. Since the results are inherently scattered, it is usually non-trivial to smear out the stress of material as a function of a single strain value. To overcome this uncertainty, statistical analysis could bring a meaningful way to closely look at scattered results. A large number of virtual LVDTs are placed on the surface of specimens in order to collect statistical parameters of deformation and strain. Values of mean strain, standard deviation and coeffcient of variations for each material are calculated and correlated with the failure type of the corresponding material (either brittle or ductile. The main limiters for standard deviation and coeffcient of variations for brittle and ductile failure, in pre-peak and post-peak behavior are established and presented in this paper. These limiters help us determine whether failure is brittle or ductile without determining of stress level in the material.

  2. Highly dispersed molybdenum carbide as non-noble electrocatalyst for PEM fuel cells: Performance for CO electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Guil-Lopez, R.; Martinez-Huerta, M.V.; Pena, M.A.; Fierro, J.L.G. [Instituto de Catalisis y Petroleoquimica (CSIC), Marie Curie 2, Cantoblanco, E-28049 Madrid (Spain); Guillen-Villafuerte, O.; Pastor, E. [Departamento de Quimica Fisica, Universidad de La Laguna, Astrofisico Francisco Sanchez s/n, E-38071 La Laguna, Tenerife (Spain)

    2010-08-15

    CO electrooxidation on nanocrystalline molybdenum carbide has been studied through CO stripping measurements using cyclic voltammetry. The active molybdenum carbide was obtained from the carbothermic reduction of really very small molybdenum oxide particles supported on Vulcan XC-72 carbon black (CB). In order to obtain highly dispersed molybdenum carbide particles, low molybdenum loading and control of the carbothermic reduction conditions of CB-supported molybdenum oxide were employed to avoid Mo sintering during the carburization process. This work provides experimental evidence on the CO electrooxidation capability of the Mo carbide phase, which to the best of our knowledge is reported for the first time. The small particle size of carbide electrocatalyst exhibited better performance for CO electrooxidation than the commercial bulk molybdenum carbide sample. (author)

  3. Environmental Benign Process for Production of Molybdenum Metal from Sulphide Based Minerals

    Science.gov (United States)

    Rajput, Priyanka; Janakiram, Vangada; Jayasankar, Kalidoss; Angadi, Shivakumar; Bhoi, Bhagyadhar; Mukherjee, Partha Sarathi

    2017-10-01

    Molybdenum is a strategic and high temperature refractory metal which is not found in nature in free state, it is predominantly found in earth's crust in the form of MoO3/MoS2. The main disadvantage of the industrial treatment of Mo concentrate is that the process contains many stages and requires very high temperature. Almost in every step many gaseous, liquid, solid chemical substances are formed which require further treatment. To overcome the above drawback, a new alternative one step novel process is developed for the treatment of sulphide and trioxide molybdenum concentrates. This paper presents the results of the investigations on molybdenite dissociation (MoS2) using microwave assisted plasma unit as well as transferred arc thermal plasma torch. It is a single step process for the preparation of pure molybdenum metal from MoS2 by hydrogen reduction in thermal plasma. Process variable such as H2 gas, Ar gas, input current, voltage and time have been examined to prepare molybdenum metal. Molybdenum recovery of the order of 95% was achieved. The XRD results confirm the phases of molybdenum metal and the chemical analysis of the end product indicate the formation of metallic molybdenum (Mo 98%).

  4. Comparative Studies on Friction and Wear Performance between Glass-fiber Reinforced Polyamide 66 Composite and Ductile Irons on Ceramic Al2O3 Counterface in Sucker Rod Centralizer Application

    National Research Council Canada - National Science Library

    Xu, X; Su, Z. G; Liu, S. Y; Shen, Y. S; An, J

    2010-01-01

    The tribological behaviors of three materials for sucker rod centralizer application including glass-fiber reinforced polyamide 66 composite, ductile iron and quenched ductile iron were investigated...

  5. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief

    2017-12-12

    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology of thermoplastic composites. This paper focuses on the effect of matrix ductility on the out-of-plane properties of thermoplastic composites, which was studied through quasi-static indentation (QSI) test that may represent impact problem albeit the speed difference. We evaluated continuous glass-fiber reinforced polypropylene thermoplastic composites (GFPP), and selected homopolymer PP and copolymer PP that represent ductile and less ductile matrices, respectively. Several cross-ply laminates were selected to study the influence of ply thicknesses and relative orientation of interfaces on QSI properties of GFPP. It is expected that GFPP with ductile matrix improves energy absorption of GFPP. However, the damage mechanism is completely different between GFPP with ductile and GFPP with less ductile matrices. GFPP with ductile matrix exhibits smaller damage zone in comparison to the one with less ductile matrix. Higher matrix ductility inhibits the growth of ply cracking along the fiber, and this causes the limited size of delamination. The stacking sequence poses more influence on less ductile composites rather than the ductile one.

  6. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  7. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith

    Science.gov (United States)

    Hilsenbeck, S.J.; McCarley, R.E.; Schrader, G.L.; Xie, X.B.

    1999-02-16

    New amorphous molybdenum/tungsten sulfides with the general formula M{sup n+}{sub 2x/n}(L{sub 6}S{sub 8})S{sub x}, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M{sub 6}S{sub 8}){sup 0} cluster units are present. Vacuum thermolysis of the amorphous Na{sub 2x}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH first produces poorly crystalline NaMo{sub 6}S{sub 8} by disproportionation at 800 C and well-crystallized NaMo{sub 6}S{sub 8} at {>=} 900 C. Ion-exchange of the sodium material in methanol with soluble M{sup 2+} and M{sup 3+} salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M{sup n+}{sub 2x/n}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M{sup n+}{sub 2x/n}Mo{sub 6}S{sub 8+x}(MeOH){sub y}[MMOS] (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as ``Chevrel phase-like`` in that both contain Mo{sub 6}S{sub 8} cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst is shown to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS{sub 2} catalysts. 9 figs.

  8. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures....... The optimal loadings of both molybdenum carbide and the K2CO3 promoter on active carbon have been investigated. The catalysts were characterized using BET surface area measurements, transmission electron microscopy and X-ray diffraction. Additionally, in-situ X-ray diffraction and in-situ X-ray absorption...

  9. Acidic ammonothermal growth of gallium nitride in a liner-free molybdenum alloy autoclave

    Science.gov (United States)

    Malkowski, Thomas F.; Pimputkar, Siddha; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji

    2016-12-01

    This paper discusses promising materials for use as internal, non-load bearing components as well as molybdenum-based alloys for autoclave structural components for an ammonothermal autoclave. An autoclave was constructed from the commercial titanium-zirconium-molybdenum (TZM) alloy and was found to be chemically inert and mechanically stable under acidic ammonothermal conditions. Preliminary seeded growth of GaN was demonstrated with negligible incorporation of transition metals (including molybdenum) into the grown material (560 °C). The possibility of a 'universal', inexpensive, liner-free ammonothermal autoclave capable of exposure to basic and acidic chemistry is demonstrated.

  10. Neutronic and thermal hydraulic analysis for production of fission molybdenum-99 at Pakistan Research Reactor-1

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A. [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)], E-mail: mushtaqa@pinstech.org.pk; Iqbal, Massod; Bokhari, Ishtiaq Hussain; Mahmood, Tariq; Mahmood, Tayyab; Ahmad, Zahoor; Zaman, Qamar [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2008-02-15

    Neutronic and thermal hydraulic analysis for the fission molybdenum-99 production at PARR-1 has been performed. Low enriched uranium foil (<20% {sup 235}U) will be used as target material. Annular target designed by ANL (USA) will be irradiated in PARR-1 for the production of 100 Ci of molybdenum-99 at the end of irradiation, which will be sufficient to prepare required {sup 99}Mo/{sup 99m}Tc generators at PINSTECH and its supply in the country. Neutronic and thermal hydraulic analysis were performed using various codes. Data shows that annular targets can be safely irradiated in PARR-1 for production of required amount of fission molybdenum-99.

  11. Synthesis of molybdenum oxide microsheets via close-spaced vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Goiz, O., E-mail: ogoiza@gmail.com [Department of Electrical Engineering, CINVESTAV-IPN, 07360 Mexico, D.F. (Mexico); Chavez, F. [Department of Physical-Chemical Materials, ICUAP-BUAP, 72050 Puebla, Pue. (Mexico); Felipe, C. [Department of Biosciences and Engineering, CIIEMAD-IPN, 07340 Mexico, D.F. (Mexico); Morales, N. [Department of Physical-Chemical Materials, ICUAP-BUAP, 72050 Puebla, Pue. (Mexico); Pena-Sierra, R. [Department of Electrical Engineering, CINVESTAV-IPN, 07360 Mexico, D.F. (Mexico)

    2010-10-25

    Growth of molybdenum oxide microsheets on silicon (1 0 0) substrates using the close-spaced vapor transport (CSVT) technique is proposed. Molybdenum oxide powder is employed as source, the synthesis is carried out at atmospheric pressure with a nitrogen ambient by employing short times (a few minutes), water as reactant and moderate temperatures. The growth process is efficient, fast, and without the use of catalysts. Changes in morphology and structure of products when temperature varies are reported. The produced molybdenum oxide microsheets are analyzed with SEM, XRD and micro-Raman techniques.

  12. Influence of cooling rate and antimony addition content on graphite morphology and mechanical properties of a ductile iron

    Directory of Open Access Journals (Sweden)

    Liu Zhe

    2012-05-01

    Full Text Available Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons. In the present research, the effects of the cooling rate and antimony addition on the graphite morphology and mechanical properties of ductile irons have been studied. Three ductile iron castings were prepared through solidification under cooling conditions S (slow, M (medium and F (fast. The cooling rates around the equilibrium eutectic temperature (1,150 ℃ for these cooling conditions (S, M and F were set at 0.21 ℃·min-1, 0.32 ℃·min-1 and 0.37 ℃·min-1, respectively. In addition, four ductile iron castings were prepared by adding 0.01%, 0.02%, 0.03% and 0.04% (by weight antimony, respectively under the slow cooling condition. The results show that the nodularity index, tensile strength and hardness of the ductile iron castings without antimony addition are all improved with the increase of cooling rate, while the ductile iron casting solidified under the medium cooling rate possesses the largest number of graphite nodules. Furthermore, for the four antimony containing castings, the graphite morphology and tensile strength are also improved by the antimony additions, and the effect of antimony addition is intensified when the addition increases from 0.01% to 0.03%. Moreover, the rare earth elements (REE/antimony ratio of 2 appears to be the most effective for fine nodular graphite formation in ductile iron.

  13. Development of Solvent Extraction Approach to Recycle Enriched Molybdenum Material

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brown, M. Alex [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Sen, Sujat [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Bowers, Delbert L. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Wardle, Kent [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Copple, Jacqueline M. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Pupek, Krzysztof Z. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Dzwiniel, Trevor L. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Krumdick, Gregory K. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    Argonne National Laboratory, in cooperation with Oak Ridge National Laboratory and NorthStar Medical Technologies, LLC, is developing a recycling process for a solution containing valuable Mo-100 or Mo-98 enriched material. Previously, Argonne had developed a recycle process using a precipitation technique. However, this process is labor intensive and can lead to production of large volumes of highly corrosive waste. This report discusses an alternative process to recover enriched Mo in the form of ammonium heptamolybdate by using solvent extraction. Small-scale experiments determined the optimal conditions for effective extraction of high Mo concentrations. Methods were developed for removal of ammonium chloride from the molybdenum product of the solvent extraction process. In large-scale experiments, very good purification from potassium and other elements was observed with very high recovery yields (~98%).

  14. Mn-Promoted Growth and Photoluminescence of Molybdenum Disulphide Monolayer

    Directory of Open Access Journals (Sweden)

    Shengzhong Jin

    2017-06-01

    Full Text Available Molybdenum disulphide (MoS2 monolayer is a two-dimensional semiconductor material with potential applications in nano electronic devices. However, it is still a challenge to reproducibly synthesize single layer MoS2 in high quality. Herein, we report the growth of monolayer of MoS2 on the SiO2/Si substrate with manganese heterogeneous nucleation. It was shown that the Mn promotes the growth of monolayer MoS2 via heterogeneous nucleation. The growth temperature range expanded two-fold, the nucleation density increased as well. The monolayer prepared in the presence of Mn exhibits a unique red emission peak at 732 nm at room temperature compared to the sample in the absence of Mn.

  15. Simple Formation of Nanostructured Molybdenum Disulfide Thin Films by Electrodeposition

    Directory of Open Access Journals (Sweden)

    S. K. Ghosh

    2013-01-01

    Full Text Available Nanostructured molybdenum disulfide thin films were deposited on various substrates by direct current (DC electrolysis form aqueous electrolyte containing molybdate and sulfide ions. Post deposition annealing at higher temperatures in the range 450–700°C transformed the as-deposited amorphous films to nanocrystalline structure. High temperature X-ray diffraction studies clearly recorded the crystal structure transformations associated with grain growth with increase in annealing temperature. Surface morphology investigations revealed featureless structure in case of as-deposited surface; upon annealing it converts into a surface with protruding nanotubes, nanorods, or dumbbell shape nanofeatures. UV-visible and FTIR spectra confirmed about the presence of Mo-S bonding in the deposited films. Transmission electron microscopic examination showed that the annealed MoS2 films consist of nanoballs, nanoribbons, and multiple wall nanotubes.

  16. Raman investigation of molybdenum disulfide with different polytypes

    Science.gov (United States)

    Lee, Jae-Ung; Kim, Kangwon; Han, Songhee; Ryu, Gyeong Hee; Lee, Zonghoon; Cheong, Hyeonsik

    The Raman spectra of molybdenum disulfide (MoS2) with different polytypes are investigated. Although 2H-MoS2 is most common in nature, the 3R phase can exist due to a small difference in the formation energy. However, only a few studies are reported for the 3R phase, and most studies have focused on the 2H phase. We found the 2H, 3R and mixed phases of exfoliated few-layer MoS2 from natural molybdenite crystals. The crystal structures of 2H- and 3R-MoS2 are confirmed by the HR-TEM measurements. By using 3 different excitation energies, we compared the Raman spectra of different polytypes in detail. We show that the Raman spectroscopy can be used to identify not only the number of layers but also the polytypes of MoS2.

  17. Structural and electrical properties of DC sputtered molybdenum films

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, G.; Grizalez, M.; Hernandez, L.C. [Laboratorio de Celdas Solares, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    1998-02-27

    A method is described for the fabrication of low-resistivity molybdenum films on soda-lime glass substrates. Films have been deposited using a DC magnetron sputtering system with a S-gun configuration, and have been characterized through X-ray diffraction, electrical conductivity, and Hall mobility measurements. The influence of the deposition parameters on both the resistivity of the Mo and on the contact resistivity of the Mo/CuInSe{sub 2}/Mo structure has been studied. Values of resistivity ranging from 1.2x10{sup -5} to 36x10{sup -5} {Omega} cm and of contact resistivity ranging from 0.025 to 0.15 {Omega} cm{sup 2} were found

  18. Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction

    Science.gov (United States)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2017-10-01

    Graphite oxide and molybdenum disulfide (GO-MoS2) composite is prepared through a wet process by using hydrolysis of ammonium tetrathiomolybdate, and it exhibits excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of -0.47 V, which is almost two and three times lower than those of precursor MoS2 and GO. The high performance of HER of the composite attributes to the reduced GO supporting MoS2, providing a conducting network for fast electron transport from MoS2 to electrodes. The composite also shows high stability after 500 cycles, demonstrating a synergistic effect of MoS2 and GO for efficient HER.

  19. The history of development of molybdenum alloys for structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J. [Lawrence Livermore National Lab., CA (United States); Wittenauer, J.P. [Lockheed Missiles and Space Co., Inc., Palo Alto, CA (United States). Research and Development Div.

    1993-02-01

    Molybdenum was first isolated as an element in 1893 and found initial commercial application as a filament support for incandescent lamps in 1910. The advent of arc melting practice in the 1940s led to an increase in availability of Mo sheet, bar, and plate products. Alloy development programs were heavily supported starting in the 1950s and several key alloys emerged over the next twenty years that remain in use to the present time such as Mo-TZM, unalloyed Mo, and Mo-Re. In recent years, improved understanding of the role of oxygen and carbide distributions at grain boundaries have led to increased reliability and use of Mo in aerospace products. Current developmental programs in areas of propulsion and energy conversion will ensure the prominent position of Mo as a high-temperature structural material. This paper highlights some of these key developments in the evolution of Mo alloys.

  20. Piezoelectricity in two dimensions: Graphene vs. molybdenum disulfide

    Science.gov (United States)

    Song, Xiaoxue; Hui, Fei; Knobloch, Theresia; Wang, Bingru; Fan, Zhongchao; Grasser, Tibor; Jing, Xu; Shi, Yuanyuan; Lanza, Mario

    2017-08-01

    The synthesis of piezoelectric two-dimensional (2D) materials is very attractive for implementing advanced energy harvesters and transducers, as these materials provide enormously large areas for the exploitation of the piezoelectric effect. Among all 2D materials, molybdenum disulfide (MoS2) has shown the largest piezoelectric activity. However, all research papers in this field studied just a single material, and this may raise concerns because different setups could provide different values depending on experimental parameters (e.g., probes used and areas analyzed). By using conductive atomic force microscopy, here we in situ demonstrate that the piezoelectric currents generated in MoS2 are gigantic (65 mA/cm2), while the same experiments in graphene just showed noise currents. These results provide the most reliable comparison yet reported on the piezoelectric effect in graphene and MoS2.

  1. Active terahertz wave modulator based on molybdenum disulfide

    Science.gov (United States)

    Liu, Xin; Zhang, Bo; Wang, Guocui; Wang, Wei; Ji, Hongyu; Shen, Jingling

    2017-11-01

    A high-efficiency active terahertz wave modulator based on a molybdenum disulfide (MoS2)/germanium (Ge) structure was investigated. Spectrally broadband modulation of the THz transmission was obtained using optical control over the frequency range from 0.2 to 2.6 THz. The MoS2 monolayer structure on germanium demonstrated enhancement of the terahertz modulation depth when compared with those of bare Ge and the graphene/Ge structures. The results show that the MoS2-based modulator demonstrated even higher modulation efficiency than the graphene-based device. The modulation enhancement mechanism that originated from increased conductivity was analyzed. The optical modulation properties of the MoS2/Ge device show tremendous promise for applications in terahertz modulation and switching.

  2. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kiggans Jr., James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nunn, Stephen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Parten, Randy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and, at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage, and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.

  3. Novel alkyl substituted polyanilines/molybdenum disulfide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Bissessur, Rabin [Department of Chemistry, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3 (Canada)]. E-mail: rabissessur@upei.ca; White, Wade [Department of Chemistry, University of Prince Edward Island, Charlottetown, PEI, C1A 4P3 (Canada)

    2006-10-10

    Polyaniline (PANI), poly(N-methyl aniline) (PMA), poly(ethyl aniline) (PEA) and poly(propyl aniline) (PPA) were synthesized in their salt form, and then characterized by FT-IR spectroscopy and charge transport measurements. The solubility of the polymers was tested in a variety of solvents and N-methylformamide (NMF) was found to be the best solvent. While polyaniline gave a colloidal suspension in NMF, the solubility of the polymer increased with increasing length of the alkyl group, resulting in a concomitant decrease in electrical conductivity. The solubility of the polymers was exploited and their intercalation was performed in molybdenum disulfide by using the exfoliating/restacking property of LiMoS{sub 2}. Powder X-ray diffraction showed that genuine intercalation compounds were formed. The resulting nanocomposites were also characterized by thermogravimetric analysis (TGA)

  4. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation

    Science.gov (United States)

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.

    2016-01-01

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030

  5. Predicting the stability of surface phases of molybdenum selenides

    Energy Technology Data Exchange (ETDEWEB)

    Roma, Guido [Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität, D-55128, Mainz (Germany); CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191, Gif sur Yvette (France); Ghorbani, Elaheh [Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität, D-55128, Mainz (Germany); IBM Mainz (Germany); Mirhosseini, Hossein; Kühne, Thomas D. [Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität, D-55128, Mainz (Germany); Kiss, Janos; Felser, Claudia [Institut für Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universität, D-55128, Mainz (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden (Germany)

    2014-02-10

    The selenization of molybdenum might become an important step in the production of nanostructures based on the layered compound MoSe{sub 2}. It is already technologically relevant for the production of thin film chalcopyrite solar cells. However, the control of the process is still very poor, due to the lack of basic knowledge of the surface thermodynamics of the system. Here, we present a theoretical study on the stability of surface adlayers of Se on the Mo(110) surface, predicting surface patterns and their stability range in terms of temperature and selenium partial pressure. Our results, based on density functional theory, show that the attainable Se coverages range from 1/4 to 3/4 of a monolayer for systems in equilibrium with a gas formed of Se molecules. We provide simulated scanning tunneling microscopy images to help the experimental characterization of adsorbed surface patterns.

  6. Wet chemical thinning of molybdenum disulfide down to its monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Amara, Kiran Kumar [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Chu, Leiqiang; Kumar, Rajeev [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Toh, Minglin [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Eda, Goki, E-mail: g.eda@nus.edu.sg [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Graphene Research Centre, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

    2014-09-01

    We report on the preparation of mono- and bi-layer molybdenum disulfide (MoS{sub 2}) from a bulk crystal by facile wet chemical etching. We show that concentrated nitric acid (HNO{sub 3}) effectively etches thin MoS{sub 2} crystals from their edges via formation of MoO{sub 3}. Interestingly, etching of thin crystals on a substrate leaves behind unreacted mono- and bilayer sheets. The flakes obtained by chemical etching exhibit electronic quality comparable to that of mechanically exfoliated counterparts. Our findings indicate that the self-limiting chemical etching is a promising top-down route to preparing atomically thin crystals from bulk layer compounds.

  7. Selective and efficient electrochemical biosensing of ultrathin molybdenum disulfide sheets.

    Science.gov (United States)

    Narayanan, Tharangattu N; Vusa, Chiranjeevi S R; Alwarappan, Subbiah

    2014-08-22

    Atomically thin molybdenum disulfide (MoS₂) sheets were synthesized and isolated via solvent-assisted chemical exfoliation. The charge-dependent electrochemical activities of these MoS₂ sheets were studied using positively charged hexamine ruthenium (III) chloride and negatively charged ferricyanide/ferrocyanide redox probes. Ultrathin MoS₂ sheet-based electrodes were employed for the electrochemical detection of an important neurotransmitter, namely dopamine (DA), in the presence of ascorbic acid (AA). MoS₂ electrodes were identified as being capable of distinguishing the coexistence of the DA and the AA with an excellent stability. Moreover, the enzymatic detection of the glucose was studied by immobilizing glucose oxidase on the MoS₂. This study opens enzymatic and non-enzymatic electrochemical biosensing applications of atomic MoS₂ sheets, which will supplement their established electronic applications.

  8. Molybdenum isotope fractionation during adsorption to organic matter

    Science.gov (United States)

    King, E. K.; Perakis, S. S.; Pett-Ridge, J. C.

    2018-02-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2-170 h) and pH (2-7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (±0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  9. Molybdenum isotope fractionation during adsorption to organic matter

    Science.gov (United States)

    King, Elizabeth K.; Perakis, Steven; Pett-Ridge, Julie C.

    2018-01-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2–170 h) and pH (2–7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (± 0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  10. A 3D ductile constitutive mixed-mode model of cohesive elements for the finite element analysis of adhesive joints

    DEFF Research Database (Denmark)

    Anyfantis, Konstantinos; Tsouvalis, Nicholas G.

    2013-01-01

    criterion and damage propagation with the linear energetic fracture criterion. For verification and validation purposes of the proposed laws and mixed-mode model, steel adherends have been adhesively bonded with a structural ductile adhesive material in order to fabricate a series of single and double strap......In this paper, a new traction-separation law is developed that represents the constitutive relation of ductile adhesive materials in Modes I, II, and III. The proposed traction-separation laws model the elastic, plastic, and failure material response of a ductile adhesive layer. Initially...

  11. Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study

    Science.gov (United States)

    Kotsedi, L.; Kaviyarasu, K.; Fuku, X. G.; Eaton, S. M.; Amara, E. H.; Bireche, F.; Ramponi, R.; Maaza, M.

    2017-11-01

    The two-temperature model was used to gain insight into the thermal evolution of the hot electrons and the crystal lattice of the molybdenum thin coating during femtosecond laser treatment. The heat from the laser raised the bulk temperature of the sample through heat transfer from the hot electron to the crystal lattice of the material, which then led to the melting of the top layer of the film. This process resulted in the hot melt reacting ambient oxygen, which in turn oxidized the surface of molybdenum coating. The topological study and morphology of the oxidized film was conducted using high-resolution scanning electron microscope, with micrographs taken in both the cross-sectional geometry and normal incidence to the electron beam. The molybdenum oxide nanorods were clearly observed and the x-ray diffraction patterns showed the diffraction peaks due to molybdenum oxide.

  12. FY16 Status Report for the Uranium-Molybdenum Fuel Concept

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Wendy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doherty, Ann L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Mark T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-22

    The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal year 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.

  13. Edge eigen-stress and eigen-displacement of armchair molybdenum disulfide nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Quan; Li, Xi [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Volinsky, Alex A., E-mail: volinsky@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 (United States); Su, Yanjing, E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China)

    2017-05-10

    Edge effects on mechanical properties of armchair molybdenum disulfide nanoribbons were investigated using first principles calculations. The edge eigen-stress model was applied to explain the relaxation process of forming molybdenum disulfide nanoribbon. Edge effects on surface atoms fluctuation degree were obtained from each fully relaxed nanoribbon with different width. Changes of the relaxed armchair molybdenum disulfide nanoribbons structure can be expressed using hexagonal perimeters pattern. Based on the thickness change, relaxed armchair molybdenum disulfide nanoribbons tensile/compression tests were simulated, providing intrinsic edge elastic parameters, such as eigen-stress, Young's modulus and Poisson's ratio. - Highlights: • Edge effects on mechanical properties of armchair MoS{sub 2} nanoribbons were investigated. • Structure changes of different width armchair MoS{sub 2} nanoribbons were obtained. • Tensile/compressive tests were conducted to determine elastic constants. • Mechanical properties are compared for two and three dimensional conditions.

  14. Formation of molybdenum boride cermet coating by the detonation spray process

    Science.gov (United States)

    Yang, Gao; Zu-Kun, Hei; Xiaolei, Xu; Gang, Xin

    2001-09-01

    The effects of the powder particle size and the acetylene/oxygen gas flow ratio during the detonation spray process on the amount of molybdenum phase, porosity, and hardness of the coatings using MoB powder were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The results show that the presence of metallic molybdenum in the coating results from decomposition of MoB powder during thermal spray. The compositions of the coatings are metallic Mo, MoB, and Mo2B, which are different from the phases of the original powder. The amount of molybdenum phase increases monotonously with the oxygen/acetylene ratio, but the increasing rate for the fine powder is faster than that for the coarse powder. The porosity and hardness of the coating are related to the amount of molybdenum phase. The phase constitution of the coating is discussed.

  15. Mapping the formation areas of giant molybdenum blue clusters: a spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Botar, Bogdan; Ellern, Arkady; Kogerler, Paul

    2012-05-18

    The self-assembly of soluble molybdenum blue species from simple molybdate solutions has primarily been associated with giant mixed-valent wheel-shaped cluster anions, derived from the {MoV/VI154/176} archetypes, and a {MoV/VI368} lemon-shaped cluster. The combined use of Raman spectroscopy and kinetic precipitation as self-assembly monitoring techniques and single-crystal X-ray diffraction is key to mapping the realm of molybdenum blue species by establishing spherical {MoV/VI102}-type Keplerates as an important giant molybdenum blue-type species. We additionally rationalize the empirical effect of reducing agent concentration on the formation of all three relevant skeletal types: wheel, lemon and spheres. Whereas both wheels and the lemon-shaped {MoV/VI368} cluster are obtained from weakly reduced molybdenum blue solutions, considerably higher reduced solutions lead to {MoV/VI102}-type Keplerates.

  16. Superior tensile ductility in bulk metallic glass with gradient amorphous structure.

    Science.gov (United States)

    Wang, Q; Yang, Y; Jiang, H; Liu, C T; Ruan, H H; Lu, J

    2014-04-23

    Over centuries, structural glasses have been deemed as a strong yet inherently 'brittle' material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2-4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses by the carefully controlled surface mechanical attrition treatment, leading to the formation of gradient amorphous microstructures across the sample thickness. As a result, the engineered amorphous microstructures effectively promote multiple shear banding while delay cavitation in the bulk metallic glass, thus resulting in superior tensile ductility. The outcome of our research uncovers an unusual work-hardening mechanism in monolithic bulk metallic glasses and demonstrates a promising yet low-cost strategy suitable for producing large-sized, ultra-strong and stretchable structural glasses.

  17. Effect of Reclamation on the Skin Layer of Ductile Iron Cast in Furan Molds

    Science.gov (United States)

    Dańko, R.; Holtzer, M.; Górny, M.; Żymankowska-Kumon, S.

    2013-11-01

    The paper presents the results of investigations of the influence of the quality of molding sand with furan resin hardened by paratoluenesulfonic acid, on the formation of microstructure and surface quality of ductile iron castings. Within the studies different molding sands were used: molding sand prepared with fresh sand and molding sands prepared with reclaimed sands of a different purification degree, determined by the ignition loss value. Various concentrations of sulfur and nitrogen in the sand molds as a function of the ignition loss were shown in the paper. A series of experimental melts of ductile iron in molds made of molding sand characterized by different levels of surface-active elements (e.g., sulfur) and different gas evolution rates were performed. It was shown that there exists a significant effect of the quality of the sand on the formation of the graphite degeneration layer.

  18. RECENT PROGRESS IN THE DEVELOPMENT OF DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H.; Kurtz, Richard J.; Roosendaal, Timothy J.; Borlaug, Brennan A.; Setyawan, Wahyu; Wagner, Karla B.; Odette, G Robert; Cunningham, Kevin; Fields, Kirk A.; Gragg, David; Zok, Frank W.

    2014-09-30

    A promising approach to increasing fracture toughness and decreasing the DBTT of a W-alloy is by ductile-phase toughening (DPT) [1-3]. In this method, a ductile phase is included in a brittle matrix to prevent fracture propagation by crack bridging. To examine the prospect of DPT, W-Cu three-point bend samples were deformed at several strain rates and temperatures. Data from these tests is used for the calibration of a dynamic crack-bridging model that can effectively predict elevated temperature crack growth in W-composites. The development and initial testing of a Cu-ligament bridging model based on a micromechanical flow stress model of Cu is discussed. Good agreement with the 3-point bend testing data is demonstrated along with future plans to improve the model.

  19. Estimation method for dynamic ductility index of steel structures by using of equivalent linearization method

    Science.gov (United States)

    Nakazawa, Shoji; Maeda, Haruki

    2017-10-01

    The purpose of this paper is to propose a simply evaluation method for a dynamic ductility index dF and a seismic performance index dIs by using the equivalent linearization method. These indices dF and dIs indicate the ductility and seismic performance of the structure corresponding to the critical deformation of members, and are evaluated based on the nonlinear seismic response analysis. Therefore, in this study, the estimation method of dF and dIs using the equivalent linearization method are proposed. By comparing between the value of dF calculated by the nonlinear analysis of a single degree of freedom system and the value of dFest obtained by the proposed estimation method, the validity of the proposed estimation method is discussed.

  20. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    Burbelko A.A.

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  1. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    M. Górny

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular AutomatonFinite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grainsgrowth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniformtemperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibriumnature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  2. Graphite nodule count and size distribution in thin-walled ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2008-01-01

    Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count as these ar......Graphite nodule count and size distribution have been analysed in thin walled ductile cast iron. The 2D nodule counts have been converted into 3D nodule count by using Finite Difference Method (FDM). Particles having a diameter smaller than 5 µm should be neglected in the nodule count...... as these are inclusions and micro porosities that do not influence the solidification morphology. If there are many small graphite nodules as in thin walled castings only 3D nodule count calculated by FDM will give reliable results. 2D nodule count and 3D nodule count calculated by simple equations will give too low...

  3. Influence of Microstructure on Strength and Ductility in Fully Pearlitic Steels

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2016-12-01

    Full Text Available This article deals with the relationship between the microstructure and both strength and ductility in eutectoid pearlitic steel. It is seen how standard mechanical properties and fracture micromechanisms are affected by heat treatment and the resulting microstructure in the material. The yield stress, the ultimate tensile strength and the ductility (measured by means of the reduction in area exhibit a rising trend with the increasing cooling rate (associated with smaller pearlite interlamellar spacing and a lower pearlitic colony size, while the strain for maximum load shows a decreasing tendency with the afore-said rising cooling rate. With regard to the fracture surface, its appearance becomes more brittle for lower cooling rates, so that the fracture process zone exhibits a larger area with observable pearlite lamellae and a lower percentage of microvoids.

  4. Thermal Stability of Austempered Ductile Iron Evaluated in a Temperature Range of 20-300K

    Directory of Open Access Journals (Sweden)

    Dawid MYSZKA

    2016-05-01

    Full Text Available The aim of this article was to determine through changes in magnetic properties the stability of the austempered ductile iron (ADI microstructure during temperature changes in a range of 20 – 300 K. The measurements were taken in a vibrating sample magnetometer (VSM using Fe27Ni2TiMoAlNb austenitic stainless steel and four types of austempered ductile iron obtained under various heat treatment conditions. The plotted curves showing changes in the magnetisation degree as a function of temperature had a number of characteristic points illustrating changes taking place in the microstructure. For each of the materials examined, the martensite start temperature Ms and the temperature range within which the martensitic transformation takes place were identified.

  5. Bifurcation and neck formation as a precursor to ductile fracture during high rate extension

    Energy Technology Data Exchange (ETDEWEB)

    Freund, L.B.; Soerensen, N.J. [Brown Univ., Providence, RI (United States)

    1997-12-31

    A block of ductile material, typically a segment of a plate or shell, being deformed homogeneously in simple plane strain extension commonly undergoes a bifurcation in deformation mode to nonuniform straining in the advanced stages of plastic flow. The focus here is on the influence of material inertia on the bifurcation process, particularly on the formation of diffuse necks as precursors to dynamic ductile fracture. The issue is considered from two points of view, first within the context of the theory of bifurcation of rate-independent, incrementally linear materials and then in terms of the complete numerical solution of a boundary value problem for an elastic-viscoplastic material. It is found that inertia favors the formation of relatively short wavelength necks as observed in shaped charge break-up and dynamic fragmentation.

  6. Factors influencing creep flow and ductility in ultrafine-grained metals

    Energy Technology Data Exchange (ETDEWEB)

    Sklenicka, V., E-mail: sklen@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, CZ-61662 Brno (Czech Republic); CEITEC-IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, CZ-616 62 Brno (Czech Republic); Dvorak, J., E-mail: dvorak@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, CZ-61662 Brno (Czech Republic); CEITEC-IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, CZ-616 62 Brno (Czech Republic); Kral, P., E-mail: pkral@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, CZ-61662 Brno (Czech Republic); Svoboda, M., E-mail: svobm@ipm.cz [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, CZ-61662 Brno (Czech Republic); CEITEC-IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, CZ-616 62 Brno (Czech Republic); Kvapilova, M. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zizkova 22, CZ-61662 Brno (Czech Republic); Langdon, T.G., E-mail: langdon@soton.ac.uk [Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2012-12-15

    The creep behaviour of high purity aluminium and copper and their Al-0.2 wt%Sc and Cu-0.2 wt%Zr alloys was examined after processing by equal-channel angular pressing (ECAP) with an emphasis on creep ductility and the ECAP microstructural homogeneity. It was found that, under the same loading conditions, the creep ductility of the ultrafine-grained materials processed by ECAP continually increases with increasing numbers of ECAP passes. A detailed quantitative microstructural study was conducted using the electron backscatter diffraction (EBSD) methods. This analysis revealed that, with increasing numbers of ECAP passes, the mutual misorientation of neighbouring subgrains grows and the subgrains continuously transform to grains having high-angle grain boundaries.

  7. Numerical modelling of solidification of thin walled hypereutectic ductile cast iron

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper; Tiedje, Niels

    2006-01-01

    Numerical simulation of solidification of ductile cast iron is normally based on a model where graphite nodules are surrounded by an austenite shell. The two phases are then growing as two concentric spheres governed by diffusion of carbon through the austenite shell. Experiments have however shown...... simulation of thin-walled ductile iron castings. Simulations have been performed with a 1-D numerical solidi¬fication model that includes the precipitation of non-eutectic austenite during the eutectic stage. Results from the simulations have been compared with experimental castings with wall thick...... solidification had only one main stage. The simulations reveal that the first stage of solidification can be explained by precipitation of off-eutectic austenite...

  8. Ductile damage in Taylor-anvil and rod-on-rod impact experiment

    Science.gov (United States)

    Iannitti, G.; Bonora, N.; Ruggiero, A.; Testa, G.

    2014-05-01

    At equivalent impact velocity, pressure in Taylor and ROR impact experiment is not the same and this reflects in the resulting condition for ductile damage development. In this work, finite element parametric simulation was performed to investigate pressure wave development as a function of material and target work hardening curve. Using the Bonora damage model, the impact velocity necessary for generating ductile damage in high purity copper was assessed. Taylor and ROR experiments were performed at different equivalent impact velocities and metallographic investigation were performed on impacted samples in order to validate damage model predictions. Results seems to indicate that ROR configuration is more appropriate for 2damage model validation while the Taylor anvil is more suitable for strength model assessment.

  9. Ductile-brittle transition behaviour of PLA/o-MMT films during the physical aging process

    Directory of Open Access Journals (Sweden)

    M. Ll. Maspoch

    2015-03-01

    Full Text Available The ductile-brittle transition behaviour of organo modified montmorillonite-based Poly(lactic acid films (PLA/o-MMT was analysed using the Essential Work of Fracture (EWF methodology, Small Punch Tests (SPT and Enthalpy relaxation analysis. While the EWF methodology could only be applied successfully to de-aged samples, small punch test (SPT was revealed as more effective for a mechanical characterization during the transient behaviour from ductile to brittle. According to differential scanning calorimetry (DSC results, physical aging at 30°C of PLA/o-MMT samples exhibited slower enthalpy relaxation kinetics as compared to the pristine polymer. Although all samples exhibited an equivalent thermodynamic state after being stored one week at 30°C, significant differences were observed in the mechanical performances. These changes could be attributed to the toughening mechanisms promoted by o-MMT.

  10. Production and Machining of Thin Wall Gray and Ductile Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Fleischman, E.H. (INEEL POC); Li, H.; Griffin, R.; Bates, C.E.; Eleftheriou, E.

    2000-11-03

    The University of Alabama at Birmingham, in cooperation with the American Foundry Society, companies across North America, with support from the U.S. Department of Energy, is conducting a project to develop an understanding of the factors that control the machinability of cast gray and ductile iron. Differences of as much as 500% have been found in machinability have been observed at the same strength. The most machinable irons were those with a high cell counts and few carbonitride inclusions. Additions of tin and copper can be added to both gray and ductile iron to stabilize the pearlite, but excessive additions (above those required to produce the desired pearlite content) degrade the machinability.

  11. Manufacturing of High-Strength and High-Ductility Pearlitic Steel Wires Using Noncircular Drawing Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hyun Moo; Joo, Ho Seon; Im, Yong-Taek [KAIST, Daejeon (Korea, Republic of); Hwang, Sun Kwang [KITECH, Cheonan (Korea, Republic of); Son, Il-Heon; Bae, Chul Min [POSCO, Pohang (Korea, Republic of)

    2014-07-15

    In this study, a noncircular drawing (NCD) sequence for manufacturing high-strength and high-ductility pearlitic steel wires was investigated. Multipass NCD was conducted up to the 12th pass at room temperature with two processing routes (defined as the NCDA and NCDB), and compared with the wire drawing (WD). During the torsion test, delamination fracture in the drawn wire was observed in the 10th pass of the WD whereas it was not observed until the 12th pass of the NCDB. From X-ray diffraction, the circular texture component that increases the likelihood of delamination fracture of the drawn wire was rarely observed in the NCDB. Thus, the improved ability of the multipass NCDB to manufacture high-strength pearlitic steel wires with high torsional ductility compared to the WD (by reducing the likelihood of delamination fracture) was demonstrated.

  12. Flow of mantle fluids through the ductile lower crust: Heliumisotope trends

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B. Mack; van Soest, Matthijs C.

    2007-10-07

    Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum 3He/4He ratios in surface fluids from the northern Basin and Range province, western North America increase systematically from low, crustal values in the east to high, mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The correspondence of helium isotope ratios and active trans-tensional deformation indicates a deformation enhanced permeability and that mantle fluids can penetrate the ductile lithosphere in regions even where there is no significant magmatism. Superimposed on the regional trend are local, high-{sup 3}He/{sup 4}He anomalies signifying hidden magmatic activity and/or deep fluid production with locally enhanced permeability, identifying zones with high resource potential, particularly for geothermal energy development.

  13. Application of percolation model on the brittle to ductile transition for polystyrene and polyolefin elastomer blends

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The percolation model was applied in the study of brittle to ductile transition (BDT of polystyrene (PS and polyolefin elastomer (POE blends. Based on the interparticle distance and percolation model, stress volume (Vs can be expressed by volume fraction (Vr and ratio of the diameter of stress volume and the diameter of the domain (S/d. The percolation threshold (Vsc varied from π/6 to 0.65. From the results of the Charpy impact strength of the blends, the percolation threshold for the brittle to ductile transition of PS/POE blend is 14 wt% POE, corresponding to Vsc~0.5, which is consistent with the calculated value of π/6. Morphology observations show that the percolation point is correlated with the phase inversion of the blend.

  14. In Situ Studies of Intercritically Austempered Ductile Iron Using Neutron Diffraction

    Science.gov (United States)

    Druschitz, Alan P.; Aristizabal, Ricardo E.; Druschitz, Edward; Hubbard, C. R.; Watkins, Thomas R.; Walker, L.; Ostrander, Mel

    2012-05-01

    Intercritically austempered ductile irons hold promise for applications requiring fatigue durability, excellent castability, low production energy requirements, reduced greenhouse gas emissions, and excellent machinability. In the present study, four different ductile iron alloys, containing manganese and nickel as the primary austenite-stabilizing elements, were heat treated to obtain different quantities of austenite in the final microstructure. This article reports the microstructures and phases present in these alloys. Furthermore, lattice strains and diffraction elastic constants in various crystallographic directions and the transformation characteristics of the austenite were determined as a function of applied stress using in situ loading during neutron diffraction at the second generation Neutron Residual Stress Facility at the High Flux Isotope Reactor at Oak Ridge National Laboratory.

  15. Damage initiation in brittle and ductile materials as revealed from a fractoluminescence study

    Directory of Open Access Journals (Sweden)

    Alexandre Chmel

    2014-10-01

    Full Text Available A set of heterogeneous and homogeneous materials differing in their brittle and ductile characteristics (granite, marble, silica ceramics, silicon carbide, organic glass were subjected to impact damaging by a falling weight. Multiple chemical bond ruptures produced by elastic waves propagating from a damaged zone were accompanied by the photon emission generated throughout the sample (tribo- or fractoluminescence, FL. The statistical analysis of the FL time series detected with high resolution (10 ns showed that the energy release distributions in brittle solids follow the power law typical for the correlated nucleation of primary defects. At the same time, the formation of damaged sites in ductile materials (marble and organic glass was found to be fully random.

  16. Ductile Glass of Polyrotaxane Toughened by Stretch-Induced Intramolecular Phase Separation.

    Science.gov (United States)

    Kato, Kazuaki; Nemoto, Kaito; Mayumi, Koichi; Yokoyama, Hideaki; Ito, Kohzo

    2017-09-27

    A new class of ductile glasses is created from a thermoplastic polyrotaxane. The hard glass, which has a Young's modulus of 1 GPa, shows crazing, necking, and strain hardening with a total elongation of 330%. Stress concentration is prevented through a unique stretch-induced intramolecular phase separation of the cyclic components and the exposed backbone. In situ synchrotron X-ray scattering studies indicate that the backbone polymer chains slip through the cyclic components in the regions where the stress is concentrated.

  17. Significance of grain bondary sliding for localization of ductile deformation in rocks

    Science.gov (United States)

    Dimanov, A.; Bourcier, M.; Gaye, A.; Héripré, E.; Bornert, M.; Raphanel, J. L.; Gharbi, H.; Ludwig, W.

    2016-12-01

    Ductile strain localizes in mylonites, with microstructural signatures of several concomitant deformation mechanisms. Crystal plasticity dominates in volume, but grain boundary sliding and diffusive/solution mass transport act along interfaces. Because the chronology and the interactions between these mechanisms are unclear, inference of the overall rheology seems illusory. In order to clarify these aspects we underwent a multi-scale investigation of the ductile deformation of synthetic rock salt. The mechanical tests were combined with in-situ optical microscopy, scanning electron microscopy and X ray tomography (MCT). Digital image correlation (DIC) techniques allowed for measurements and characterization of the multiscale organization of 2D and 3D full strain fields. Macroscopic and mesoscopic shear bands appear at the sample and microstructure scales, respectively. Discrete slip bands within individual grains allowed for identification of dominant crystal plasticity and of the activated slip systems. Conversely, we clearly evidenced grain boundary sliding (GBS). DIC allowed the precise quantification of the relative contribution of each mechanism. GBS is continuously operational along with crystal slip plasticity, which indicates that in spite of being a secondary mechanism (activity of secondary slip systems in the vicinity of interfaces and GBS are inferred to be necessary in order to accommodate for plastic strain incompatibilities between neighboring grains. More specifically, GBS accommodation mechanisms allow for relaxation of local stress enhancement and reduction of strain hardening. GBS appears to be directly involved in the formation of localized shear bands at the microstructural scale, but also to allow for the transmission of ductile strain throughout the whole specimen. Finite element (FE) modeling of the viscoplastic behavior of rock salt based on crystal plasticity alone is inadequate. If GBS is not considered the computed strain fields do not

  18. Contact mechanics at nanometric scale using nanoindentation technique for brittle and ductile materials.

    Science.gov (United States)

    Roa, J J; Rayon, E; Morales, M; Segarra, M

    2012-06-01

    In the last years, Nanoindentation or Instrumented Indentation Technique has become a powerful tool to study the mechanical properties at micro/nanometric scale (commonly known as hardness, elastic modulus and the stress-strain curve). In this review, the different contact mechanisms (elastic and elasto-plastic) are discussed, the recent patents for each mechanism (elastic and elasto-plastic) are summarized in detail, and the basic equations employed to know the mechanical behaviour for brittle and ductile materials are described.

  19. Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures

    Science.gov (United States)

    Zhang, Mei; Li, Haiyang; Gan, Bin; Zhao, Xue; Yao, Yi; Wang, Li

    2018-02-01

    The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s-1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s-1 to 10 s-1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.

  20. New features of the low temperature ductile shear failure observed in bulk amorphous alloys

    NARCIS (Netherlands)

    Bengus, VZ; Tabachnikova, ED; Miskuf, J; Csach, K; Johnson, WL; Molokanov, VV; Ocelik, Vaclav

    2000-01-01

    Fractographic studies of ductile shear failure under the uniaxial compression for rod-like samples of the Zr(41.2)Ti(13.8)Ni(10)Cu(12.5)Be(22.5) and Cu(50)Zr(35)Ti(8)Hf(5)Ni(2) bulk amorphous alloys at temperatures 300 and 77 K are presented. The mechanisms of shear deformation and failure appeared

  1. An investigation of the mineral in ductile and brittle cortical mouse bone

    OpenAIRE

    Rodriguez-Florez, N. (Naiara); Garcia-Tunon, E; Mukadam, Q.; Saiz, E.; Oldknow, K. J.; Farquharson, C.; Millán, J L; Boyde, A.; Shefelbine, S J

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse pheno...

  2. Modèles non locaux en rupture ductile des métaux

    OpenAIRE

    Enakoutsa, Koffi

    2007-01-01

    In the first part, we assess the practical efficacity of two proposals of modification of the Gurson model to circumvent the problem of unlimited strain and damage localization in this model. The assessment of the model is based on two criteria, absence of mesh size effect in finish elements computations and agreement of experimental and numerical results for some typical ductile fracture tests. The first proposal consisted of adopting some nonlocal evolution equation for the porosity involvi...

  3. Nitride precipitation during high temperature corrosion of ductile cast irons in synthetic exhaust gases

    Science.gov (United States)

    Tholence, F.; Norell, M.

    2005-02-01

    Internal nitrides form in two ductile cast irons (SiMo and Ni-Resist) intended for exhaust systems in vehicles. Samples oxidised at 650 1050 °C for 50 h in modified synthetic exhaust gases were analysed by using AES and FEG-SEM. No nitrides formed in absence of NOx. In dry petrol gas coarse nitrides (Ni-Resist in both dry and normal petrol whereas no nitrides were observed in Ni-Resist exposed to diesel gases.

  4. Introducing ductility in hybrid carbon fibre/self-reinforced composites through control of the damage mechanisms

    OpenAIRE

    Swolfs, Yentl; Meerten, Yannick; Hine, Peter; Ward, Ian; Verpoest, Ignace; Gorbatikh, Larissa

    2015-01-01

    Carbon fibre composites possess excellent mechanical properties, but suffer from brittleness. Hybridisation with self-reinforced polypropylene (SRPP) is a promising strategy to introduce ductility into carbon fibre-reinforced polypropylene (CFRPP). The present work demonstrates how different damage mechanisms in these hybrid composites change as a function of the carbon fibre volume fraction, the directionality of CFRPP and SRPP and their relative layer thickness. Multiple fractures of the CF...

  5. 3-D Analysis of Graphite Nodules in Ductile Cast Iron Using FIB-SEM

    DEFF Research Database (Denmark)

    D'Angelo, Luca; Jespersen, Freja N.; MacDonald, A. Nicole

    Ductile cast iron samples were analysed in a Focused Ion Beam Scanning Electron Microscope, FIB-SEM. The focussed ion beam was used to carefully remove layers of the graphite nodules to reveal internal structures in the nodules. The sample preparation and milling procedure for sectioning graphite...... inside the nodules, their orientation in relation to the graphite and the chemistry of the inclusions is analysed and described. Formation of the structures during solidification and subsequent cooling to room temperature is discussed....

  6. Molybdenum-copper and tungsten-copper alloys and method of making

    Science.gov (United States)

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.

  7. Synthesis of high active catalytic systems based on double molybdenum carbides

    OpenAIRE

    Dolmatov Vladimir; Kuznetsov Sergey; Rebrov Evgeny; Schouten Jacob Cornelis

    2015-01-01

    A new two-stage synthesis of double molybdenum and nickel carbides and high active and stable catalytic coatings of nickelpromoter molybdenum carbide in molten salts is developed. The first stage includes the formation of molybdenum–nickel alloys by an electrolytic method and currentless transfer in chloride melts. The second stage consists in the carbonization of the alloys in chloride-carbonate melt under various synthesis conditions. The stabilities of the nickel-promoter catalyti...

  8. Molybdenum-containing acidic catalysts to convert cellulosic biomass to glycolic acid

    KAUST Repository

    Han, Yu

    2014-09-30

    Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids and salts as the molybdenum-containing multi-functional catalysts for biomass conversion. In embodiments of the invention, the reactions employ successive hydrolysis, retro-aldol fragmentation, and selective oxidation in a noble metal-free system.

  9. Material and Energy Flows Associated with Select Metals in GREET 2. Molybdenum, Platinum, Zinc, Nickel, Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, John L. [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this work, we analyzed the material and energy consumption from mining to production of molybdenum, platinum, zinc, and nickel. We also analyzed the production of solar- and semiconductor-grade silicon. We described new additions to and expansions of the data in GREET 2. In some cases, we used operating permits and sustainability reports to estimate the material and energy flows for molybdenum, platinum, and nickel, while for zinc and silicon we relied on information provided in the literature.

  10. Specimen preparation by ion beam slope cutting for characterization of ductile damage by scanning electron microscopy.

    Science.gov (United States)

    Besserer, Hans-Bernward; Gerstein, Gregory; Maier, Hans Jürgen; Nürnberger, Florian

    2016-04-01

    To investigate ductile damage in parts made by cold sheet-bulk metal forming a suited specimen preparation is required to observe the microstructure and defects such as voids by electron microscopy. By means of ion beam slope cutting both a targeted material removal can be applied and mechanical or thermal influences during preparation avoided. In combination with scanning electron microscopy this method allows to examine voids in the submicron range and thus to analyze early stages of ductile damage. In addition, a relief structure is formed by the selectivity of the ion bombardment, which depends on grain orientation and microstructural defects. The formation of these relief structures is studied using scanning electron microscopy and electron backscatter diffraction and the use of this side effect to interpret the microstructural mechanisms of voids formation by plastic deformation is discussed. A comprehensive investigation of the suitability of ion beam milling to analyze ductile damage is given at the examples of a ferritic deep drawing steel and a dual phase steel. © 2016 Wiley Periodicals, Inc.

  11. Cost and Ductility Effectiveness of Concrete Columns Strengthened with CFRP and SFRP Sheets

    Directory of Open Access Journals (Sweden)

    Khaled Abdelrahman

    2014-05-01

    Full Text Available Recently, steel fibre reinforced polymers (SFRP sheets have been introduced for the repair and rehabilitation of concrete structures. Few researchers studied the behaviour of the concrete columns wrapped with SFRP sheets; however, several critical parameters such as the cost and ductility effectiveness of the SFRP wrapped concrete columns have been lightly addressed. Thus, the main objective of this paper is to study the cost and ductility effectiveness of SFRP wrapped concrete columns and compare the results with the conventionally used carbon FRP (CFRP wrapped concrete columns. In addition, an analytical procedure to predict the cost effectiveness of SFRP wrapped concrete columns is also suggested, from which, a parametric study was conducted. The parametric study investigated the effect of the concrete strength, the number of SFRP layers, and the size and slenderness effects on the cost effectiveness of the concrete columns wrapped with SFRP sheets. The results from the cost and ductility effectiveness study indicated that the SFRP wrapped concrete columns showed enhanced performance over the CFRP wrapped concrete columns. The suggested analytical procedure proved to be a reliable and accurate method to predict the cost effectiveness parameter of SFRP wrapped concrete columns. The parametric study showed the significant impact of the investigated parameters on the cost effectiveness of concrete columns wrapped with SFRP sheets.

  12. Transformation-mediated ductility in CuZr-based bulk metallic glasses.

    Science.gov (United States)

    Pauly, S; Gorantla, S; Wang, G; Kühn, U; Eckert, J

    2010-06-01

    Bulk metallic glasses (BMGs) generally fail in a brittle manner under uniaxial, quasistatic loading at room temperature. The lack of plastic strain is a consequence of shear softening, a phenomenon that originates from shear-induced dilation that causes plastic strain to be highly localized in shear bands. So far, significant tensile ductility has been reported only for microscopic samples of around 100 nm (ref. 4) as well as for high strain rates, and so far no mechanisms are known, which could lead to work hardening and ductility in quasistatic tension in macroscopic BMG samples. In the present work we developed CuZr-based BMGs, which polymorphically precipitate nanocrystals during tensile deformation and subsequently these nanocrystals undergo twinning. The formation of such structural heterogeneities hampers shear band generation and results in macroscopically detectable plastic strain and work hardening. The precipitation of nanocrystals and their subsequent twinning can be understood in terms of a deformation-induced softening of the instantaneous shear modulus. This unique deformation mechanism is believed to be not just limited to CuZr-based BMGs but also to promote ductility in other BMGs.

  13. High ductility of bainite-based microstructure of middle carbon steel 42SiMn

    Science.gov (United States)

    Kučerová, L.; Bystrianský, M.; Jeníček, Š.

    2017-02-01

    Heat and thermo-mechanical treatments with various processing parameters were applied to middle carbon low alloyed 42SiMn steel. The aim of the treatment was to obtain multiphase microstructure typical for TRIP (Transformation induced plasticity) steel and to achieve the best combination of ultimate tensile strength and ductility. TRIP steels typically possess about 5-15% of metastable retained austenite, which can transform to martensite during plastic deformation. The gradual phase transformation during loading postpones the onset of necking, thus increasing ultimate tensile strength and ductility at the same time. Manganese and silicon, used as the main alloying elements of the experimental steel, are employed to increase austenite stability and to hinder cementite precipitation during the treatment. All proposed methods of heat and thermo-mechanical treatment contain bainitic hold at 400 °C or 425 °C. The final microstructures were very complex, consisting of bainite, ferrite, very small areas of extremely fine perlite lamellas, about 10% of retained austenite and M-A constituent (austenitic islands partially transformed to martensite). Even though pearlite and martensite are undesirable microstructure in TRIP steel, the tensile strength ranged from 850 to 1065 MPa and ductility A5mm from 26 to 47 %.

  14. Effect of Heat Treatment Parameters on the Toughness of Unalloyed Ausferritic Ductile Iron

    Directory of Open Access Journals (Sweden)

    Guzik E.

    2016-06-01

    Full Text Available Studies were carried out to determine the effect of heat treatment parameters on the plastic properties of unalloyed ausferritic ductile iron, such as the elongation and toughness at ambient temperature and at – 60 °C. The effect of austenitizing temperature (850, 900 and 950°C and ausferritizing time (5 - 180 min. at a temperature of 360°C was also discussed. The next step covered investigations of a relationship that is believed to exist between the temperature (270, 300, 330, 360 and 390 °C and time (5, 10, 30, 60, 90, 120, 150, 180, 240 min. of the austempering treatment and the mechanical properties of unalloyed ausferritic ductile iron, when the austenitizing temperature is 950°C. The “process window” was calculated for the ADI characterized by high toughness corresponding to the EN-GJS-800-10-RT and EN-GJS-900-8 grades according to EN-PN 1564 and to other high-strength grades included in this standard. Low-alloyed cast iron with the nodular graphite is an excellent starting material for the technological design of all the ausferritic ductile iron grades included in the PN-EN-1624 standard. The examined cast iron is characterized by high mechanical properties stable within the entire range of heat treatment parameters.

  15. Ductility of a 60-Story Shearwall Frame-Belt Truss (Virtual Outrigger Building

    Directory of Open Access Journals (Sweden)

    Pudjisuryadi P.

    2012-01-01

    Full Text Available Researches have been conducted to study Shearwall-frame combined with belt truss as structural system (SFBT, in which the post-elastic behavior and ductility of this structural system are explored. A 60-story SFBT building, with a ductility set equal to 3.75 (value for fully ductile cantilever wall is considered. The Elastic Response Spectrum used for design is taken from Zone 2 of Indonesian Seismic Map. Capacity design method according to Indonesian Concrete Code is employed. The seismic performance is analyzed using static non-linear push-over analysis and dynamic non-linear time-history analysis. Spectrum consistent ground motions of the May 18, 1940 El-Centro earthquake N-S components scaled to maximum accelerations of various return periods (50, 200, and 500 years are used for analysis. The results of this study show that plastic hinges mainly developed in beams above the truss, columns below the truss, and bottom levels of the wall. The building shows no indication of structural instability.

  16. Ductility Enhancement of Post-Northridge Connections by Multilongitudinal Voids in the Beam Web

    Science.gov (United States)

    Celikag, Murude; Hedayat, Amir A.

    2013-01-01

    Since the earthquakes in Northridge and Kobe in 1994 and 1995, respectively, many investigations have been carried out towards improving the strength and ductility of steel beam to column pre- and post-Northridge connections. In order to achieve these objectives, recent researches are mainly focused on three principles: reducing the beam section to improve the beam ductility, adding different kinds of slit damper to beam and column flanges to absorb and dissipate the input earthquake energy in the connection and strengthening the connection area using additional elements such as rib plates, cover plates, and flange plates to keep the plastic hinges away from the column face. This paper presents a reduced beam section approach via the introduction of multilongitudinal voids (MLV) in the beam web for various beam depths varying from 450 mm to 912 mm. ANSYS finite element program was used to simulate the three different sizes of SAC sections: SAC3, SAC5, and SAC7. Results showed an improvement in the connection ductility since the input energy was dissipated uniformly along the beam length and the total rotation of the connection was over four percent radian. PMID:24311977

  17. Ductility Enhancement of Post-Northridge Connections by Multilongitudinal Voids in the Beam Web

    Directory of Open Access Journals (Sweden)

    Sepanta Naimi

    2013-01-01

    Full Text Available Since the earthquakes in Northridge and Kobe in 1994 and 1995, respectively, many investigations have been carried out towards improving the strength and ductility of steel beam to column pre- and post-Northridge connections. In order to achieve these objectives, recent researches are mainly focused on three principles: reducing the beam section to improve the beam ductility, adding different kinds of slit damper to beam and column flanges to absorb and dissipate the input earthquake energy in the connection and strengthening the connection area using additional elements such as rib plates, cover plates, and flange plates to keep the plastic hinges away from the column face. This paper presents a reduced beam section approach via the introduction of multilongitudinal voids (MLV in the beam web for various beam depths varying from 450 mm to 912 mm. ANSYS finite element program was used to simulate the three different sizes of SAC sections: SAC3, SAC5, and SAC7. Results showed an improvement in the connection ductility since the input energy was dissipated uniformly along the beam length and the total rotation of the connection was over four percent radian.

  18. Towards an analysis of leak-before-break assessments in the ductile tearing regime

    Energy Technology Data Exchange (ETDEWEB)

    Parfitt, V.R.

    1991-12-31

    This paper presents the elastic-plastic fracture analysis of a typical semi-elliptical axial surface flaw growing to a thru-thickness flaw and assessing the leak-before break situation in a pressure vessel subject to pressure. The paper first discusses the semi-elliptical flaw J-integral solution and the thru-thickness flaw solution as modified herein. Then a review is presented of the three ductile tearing stability fracture analysis methods based on the fully plastic J-integral solution; (1) the crack driving force diagram, (2) the tearing modulus diagram, and (3) the failure assessment diagram. These methods are then used to determine the factors of safety to initiation of ductile tearing as the crack grows. Factors of safety based on either pressure alone or crack size alone are illustrated. An illustration is given of a leak-before-break solution discussing the semi-elliptical flaw growing to a thru-thickness flaw in the vessel. The paper concludes with a discussion of additional effort needed to better characterize leak-before-break solutions in the ductile tearing regime.

  19. Strain Rate Dependent Ductile-to-Brittle Transition of Graphite Platelet Reinforced Vinyl Ester Nanocomposites

    Directory of Open Access Journals (Sweden)

    Brahmananda Pramanik

    2014-01-01

    Full Text Available In previous research, the fractal dimensions of fractured surfaces of vinyl ester based nanocomposites were estimated applying classical method on 3D digital microscopic images. The fracture energy and fracture toughness were obtained from fractal dimensions. A noteworthy observation, the strain rate dependent ductile-to-brittle transition of vinyl ester based nanocomposites, is reinvestigated in the current study. The candidate materials of xGnP (exfoliated graphite nanoplatelets reinforced and with additional CTBN (Carboxyl Terminated Butadiene Nitrile toughened vinyl ester based nanocomposites that are subjected to both quasi-static and high strain rate indirect tensile load using the traditional Brazilian test method. High-strain rate indirect tensile testing is performed with a modified Split-Hopkinson Pressure Bar (SHPB. Pristine vinyl ester shows ductile deformation under quasi-static loading and brittle failure when subjected to high-strain rate loading. This observation reconfirms the previous research findings on strain rate dependent ductile-to-brittle transition of this material system. Investigation of both quasi-static and dynamic indirect tensile test responses show the strain rate effect on the tensile strength and energy absorbing capacity of the candidate materials. Contribution of nanoreinforcement to the tensile properties is reported in this paper.

  20. Fatigue limit prediction of ferritic-pearlitic ductile cast iron considering stress ratio and notch size

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.

    2017-05-01

    The mechanical behavior of ductile cast iron is governed by graphite particles and casting defects in the microstructures, which can significantly decrease the fatigue strength. In our previous study, the fatigue limit of ferritic-pearlitic ductile cast iron specimens with small defects ((\\sqrt{{area}}=80˜ 1500{{μ }}{{m}})) could successfully be predicted based on the \\sqrt{{area}} parameter model by using \\sqrt{{area}} as a geometrical parameter of defect as well as the tensile strength as a material parameter. In addition, the fatigue limit for larger defects could be predicted based on the conventional fracture mechanics approach. In this study, rotating bending and tension-compression fatigue tests with ferritic-pearlitic ductile cast iron containing circumferential sharp notches as well as smooth specimens were performed to investigate quantitatively the effects of defect. The notch depths ranged 10 ˜ 2500 μm and the notch root radii were 5 and 50 μm. The stress ratios were R = -1 and 0.1. The microscopic observation of crack propagation near fatigue limit revealed that the fatigue limit was determined by the threshold condition for propagation of a small crack emanating from graphite particles. The fatigue limit could be successfully predicted as a function of R using a method proposed in this study.

  1. The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Link, T.M.; Motta, A.T.; Koss, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1998-03-01

    The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} to 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.

  2. Shear Capacity and Failure Behavior of Steel-Reinforced High Ductile Concrete Beams

    Directory of Open Access Journals (Sweden)

    Mingke Deng

    2015-01-01

    Full Text Available The shear behavior of six high ductile fiber reinforced concrete (HDC beams is studied to investigate the influence of shear-span ratio and HDC mechanical property on the improvement of the shear failure mode and shear capacity of short beams. Four steel-reinforced high ductile concrete beams (SHDC beams with different shear span ratios are tested under concentrated load at midspan. To study the effect of stirrups and steel on the shear capacity of short beams, two additional specimens without steel but one including stirrups are investigated. The main aspects of SHDC beams are discussed in detail, such as failure mode, deformability, and shear capacity. Test results show that the SHDC short beams keep high residual bearing capacity and great integrity when suffering from large deformation. It is revealed that HDC increased the shear ductility and improved the shear failure mode of short beams. A comparison with the shear equations of Chinese YB9082-2006 shows that the Chinese Code equation provides conservative estimation for HDC beams. This study proposes modifications to the equation for predicting the shear capacity of HDC beams.

  3. Size effect on brittle and ductile fracture of two-dimensional interlinked carbon nanotube network

    Science.gov (United States)

    Jing, Yuhang; Aluru, N. R.

    2017-09-01

    The mechanical properties of two-dimensional (2D) interlinked carbon nanotube (CNT) network are investigated using ab initio calculation and molecular dynamics simulations (MD) with Reaxff force field. The simulation results show that bulk 2D interlinked CNT network has good mechanical properties along the axial direction which can be comparable to that of single-walled CNT and graphene, but has better ductility along the radial direction than single-walled CNT and graphene. In addition, the mechanical properties of 2D interlinked CNT network ribbon along the radial direction depend strongly on the size of the ribbon. The Young's modulus and Poisson's ratio decrease as the size increases while the fracture strain increases with the size increasing. By analyzing the atomic structural (both bond length and atomic von Mises stress) evolution of the ribbons, the mechanism of a brittle-to-ductile transition is revealed. The exploration of the mechanical properties of the 2D interlinked CNT network paves the way for application of the relevant devices that can benefit from the high Young's modulus, high tensile strength, and good ductility.

  4. Effect of Bi on graphite morphology and mechanical properties of heavy section ductile cast iron

    Directory of Open Access Journals (Sweden)

    Song Liang

    2014-03-01

    Full Text Available To improve the mechanical properties of heavy section ductile cast iron, bismuth (Bi was introduced into the iron. Five castings with different Bi content from 0 to 0.014 wt.% were prepared; and four positions in the casting from the edge to the center, with different solidification cooling rates, were chosen for microstructure observation and mechanical properties test. The effect of the Bi content on the graphite morphology and mechanical properties of heavy section ductile cast iron were investigated. Results show that the tensile strength, elongation and impact toughness at different positions in the five castings decrease with a decrease in cooling rate. With an increase in Bi content, the graphite morphology and the mechanical properties at the same position are improved, and the improvement of mechanical properties is obvious when the Bi content is no higher than 0.011wt.%. But when the Bi content is further increased to 0.014wt.%, the improvement of mechanical properties is not obvious due to the increase of chunky graphite number and the aggregation of chunky graphite. With an increase in Bi content, the tensile fracture mechanism is changed from brittle to mixture ductile-brittle fracture.

  5. The “ductility exhaustion” method for static strength assessment of fusion structures

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Vaughan, E-mail: vaughan.thompson@ccfe.ac.uk; Vizvary, Zsolt

    2015-10-15

    Graphical abstract: - Highlights: • Reduced conservatism and more complex geometry. • Assessment process simplified. • Gives insight into real material behaviour – virtual proof test. • Leads onto structural failure modelling. • Ductility exhaustion and global plastic collapse structural assessment. - Abstract: The traditional method for static strength assessment of structures uses elastic stresses computed along critical ligaments and then divided into categories depending on their nature e.g. bending/membrane and primary/secondary. More recently, highly realistic plastic simulations are possible using FE (finite elements) which offer useful advantages over the traditional approach including (a) more accurate modelling of complex geometries, (b) a more straightforward assessment process and (c) a less conservative approach. The plastic analysis must consider both global and local effects, and the paper looks in detail at the “ductility exhaustion” method for the latter. Simple test cases show how the method can be applied in both the Abaqus and ANSYS FE Codes and for the case of a JET beryllium tile, the method has improved reserve factors for disruption loads considerably to the point where the lower operating temperature can be safely lowered from 200 °C to 100 °C where the low ductility of beryllium is an issue.

  6. Identification of Relevant Work Parameters of Ladle Furnace While Melting the High Ductility Steel and High-Carbon Steel

    Directory of Open Access Journals (Sweden)

    Warzecha M.

    2016-03-01

    Full Text Available In the present paper, secondary metallurgical treatment in ladle furnace during smelting the high carbon steel and steel with improved ductility for cold-deforming, under industrial conditions were analyzed.

  7. Identification of Relevant Work Parameters of Ladle Furnace While Melting the High Ductility Steel and High-Carbon Steel

    National Research Council Canada - National Science Library

    M. Warzecha; S. Garncarek; T. Merder; Z. Skuza

    2016-01-01

    In the present paper, secondary metallurgical treatment in ladle furnace during smelting the high carbon steel and steel with improved ductility for cold-deforming, under industrial conditions were analyzed...

  8. On the isotropic elastic constants of graphite nodules in ductile cast iron: Analytical and numerical micromechanical investigations

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hattel, Jesper

    2016-01-01

    A comprehensive description of the mechanical behavior of nodules in ductile iron is still missing in the published literature. Nevertheless, experimental evidence exists for the importance of such graphite particles during macroscopic material deformation, especially under compressive loading. I...

  9. Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars

    National Research Council Canada - National Science Library

    Chun-jie Xu; Pan Dai; Zheng-yang Zhang

    2015-01-01

    .... austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC...

  10. Environmental exposure to metals and male reproductive hormones: circulating testosterone is inversely associated with blood molybdenum.

    Science.gov (United States)

    Meeker, John D; Rossano, Mary G; Protas, Bridget; Padmanahban, Vasantha; Diamond, Michael P; Puscheck, Elizabeth; Daly, Douglas; Paneth, Nigel; Wirth, Julia J

    2010-01-01

    To explore associations between exposure to metals and male reproductive hormone levels. Cross-sectional epidemiology study with adjustment for potential confounders. University Medical Center. Men recruited through two infertility clinics in Michigan. Metal concentrations and reproductive hormone levels were measured in blood samples collected from 219 men. Serum FSH, LH, inhibin B, T, and sex hormone-binding globulin levels. Cadmium, copper, and lead were all significantly or suggestively positively associated with T when modeled individually, findings that are consistent with limited previous human and animal studies. Conversely, molybdenum was associated with reduced T. A significant inverse trend between molybdenum and T remained when additionally considering other metals in the model, and a positive association between T and zinc was also found. Finally, in exploratory analysis there was evidence for an interaction between molybdenum and zinc, whereby high molybdenum was associated with a 37% reduction in T (relative to the population median level) among men with low zinc. Although reductions in T and reproductive toxicity after molybdenum exposure have been previously demonstrated in animal studies, more research is needed to determine whether molybdenum poses a risk to human reproductive health. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum

    Science.gov (United States)

    Meeker, John D.; Rossano, Mary G.; Protas, Bridget; Padmanabhan, Vasantha; Diamond, Michael P.; Puscheck, Elizabeth; Daly, Douglas; Paneth, Nigel; Wirth, Julia J.

    2010-01-01

    Study Objective To explore associations between exposure to metals and male reproductive hormone levels. Design Cross-sectional epidemiology study with adjustment for potential confounders. Setting Metal concentrations and reproductive hormone levels were measured in blood samples collected from 219 men. Patients: Men recruited through two Michigan, USA infertility clinics. Interventions None Main Outcome Measures Serum FSH, LH, inhibin B, testosterone, and SHBG. Results Cadmium, copper and lead were all significantly or suggestively positively associated with testosterone when modeled individually (p-values = 0.1, 0.03, and 0.07, respectively), findings that are consistent with limited previous human and animal studies. Conversely, molybdenum was associated with reduced testosterone (p-value for trend = 0.001). A significant inverse trend between molybdenum and testosterone remained when additionally considering other metals in the model, where a positive association between testosterone and zinc was also found. Finally, in exploratory analysis there was evidence for an interaction between molybdenum and zinc, where high molybdenum was associated with a 37% reduction in testosterone (relative to the population median level) among men with low zinc. Conclusions While reductions in testosterone and reproductive toxicity following molybdenum exposure have been previously demonstrated in animal studies, more research is needed to determine whether molybdenum poses a risk to human reproductive health. PMID:18990371

  12. Magnetic composites based on metallic nickel and molybdenum carbide: A potential material for pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Mambrini, Raquel V.; Fonseca, Thales L. [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Dias, Anderson [Departamento de Quimica, Universidade Federal de Ouro Preto, Ouro Preto, MG 35400-000 (Brazil); Oliveira, Luiz C.A.; Araujo, Maria Helena [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil); Moura, Flavia C.C., E-mail: flaviamoura@ufmg.br [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 (Brazil)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer New magnetic molybdenum carbide composites can be prepared by CVD from ethanol. Black-Right-Pointing-Pointer Magnetic molybdenum carbide shows promising results for pollutants removal. Black-Right-Pointing-Pointer The carbide composites can be easily recovered magnetically and reused. - Abstract: New magnetic composites based on metallic nickel and molybdenum carbide, Ni/Mo{sub 2}C, have been produced via catalytic chemical vapor deposition from ethanol. Scanning electron microscopy, thermal analysis, Raman spectroscopy and X-ray diffraction studies suggest that the CVD process occurs in a single step. This process involves the reduction of NiMo oxides at different temperatures (700, 800 and 900 Degree-Sign C) with catalytic deposition of carbon from ethanol producing molybdenum carbide on Ni surface. In the absence of molybdenum the formation of Ni/C was observed. The magnetic molybdenum carbide was successfully used as pollutants removal by adsorption of sulfur and nitrogen compounds from liquid fuels and model dyes such as methylene blue and indigo carmine. The dibenzothiofene adsorption process over Ni/Mo{sub 2}C reached approximately 20 mg g{sup -1}, notably higher than other materials described in the literature and also removed almost all methylene blue dye. The great advantage of these carbide composites is that they may be easily recovered magnetically and reused.

  13. Cellulose acetate-based composites with antimicrobial properties from embedded molybdenum trioxide particles.

    Science.gov (United States)

    Shafaei, S; Dörrstein, J; Guggenbichler, J P; Zollfrank, C

    2017-01-01

    The objective of this research was to develop novel cellulose acetate (biopolymer) composite materials with an excellent antimicrobial activity by embedding molybdenum trioxide particles with unique high specific surface area. High surface area molybdenum trioxide particles were prepared from freshly precipitated molybdenum trioxide dihydrate (MoO3 ·2H2 O) and subsequent calcination at 340°C under H2 /N2 gas. Microbiological evaluation against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were performed applying a roll-on test and excellent antimicrobial activities were determined for composites with embedded anhydrous molybdenum trioxide with a high specific surface area. Cellulose acetate composites comprising MoO3 particles can eliminate three harmful bacteria as a result of the release of protons from the material and surface enlargement of the molybdenum trioxide particles. The findings support a proposed antimicrobial mechanism based on local acidity increase due to large specific surface areas. In this study, development of a novel thermoplastic bio-based composite with excellent antimicrobial surface properties is investigated. To the best of our knowledge, this is the first report to evaluate the antimicrobial properties of molybdenum trioxide embedded into a cellulose acetate as biopolymer matrix. The developed composites might step up to innovative applications used in modern medical and public environments. © 2016 The Society for Applied Microbiology.

  14. Development of acceptance criteria and damage tolerance analyzes of the ductile iron insert; Framtagning av acceptanskriterier samt skadetaalighetsanalyser av segjaernsinsatsen

    Energy Technology Data Exchange (ETDEWEB)

    Dillstroem, Peter; Alverlind, Lars; Andersson, Magnus (Inspecta Technology AB (Sweden))

    2010-01-15

    SKB intends to qualify a test system for detection and sizing of defects deemed to be relevant to the ductile iron insert. In support of this qualification, a damage tolerance analysis indicating the current qualification targets, given assumed damage and failure modes. This report describes the damage tolerance analyzes of different types of defects that are considered relevant of the ductile iron insert. The results are reported separately for each test area (zone) and type of insert (BWRs and PWRs)

  15. Synthesis, characterization, and reactivity of sulfided hexanuclear molybdenum cluster compounds

    Energy Technology Data Exchange (ETDEWEB)

    Spink, D.

    1990-09-21

    Hexanuclear molybdenum clusters with mixed chloride and sulfide bridging ligands were prepared by reacting {alpha}-MoCl{sub 2} with sodium hydrosulfide in the presence of sodium butoxide. The resulting species, Mo{sub 6}Cl{sub (8-x)}S{sub x}{center dot}npy(x {congruent} 3.6, n {congruent} 4, py = pyridine), was pyrophoric and insoluble. The mixed sulfide chloride cluster species Mo{sub 6}S{sub 4}Cl{sub 4}{center dot}6OPEt{sub 3} and Mo{sub 6}S{sub {approximately}5}Cl{sub {approximately}3}{center dot}6PEt{sub 3} and Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} were isolated and characterized. Phosphorus-31 nuclear magnetic resonance, electron paramagnetic resonance, and UV/visible spectra were obtained for each fraction. The completely sulfided cluster, Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3}, was prepared similarly and used in various experiments as a possible precursor to Chevrel phase materials of the type Mo{sub 6}S{sub 8}or M{sub n}Mo{sub 6}S{sub 8}. With the goal of removing all of the triethylphosphine ligands, Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} was reacted with the transition metal carbonyls molybdenum hexacarbonyl and dicobalt octacarbonyl. Reaction on the molecular sulfide cluster with copper(I) chloride in toluene gave a completely insoluble product. The reaction of Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} with propylene sulfide gave a product whose infrared spectra showed only very weak peaks associated with coordinated triethylphosphine. The elemental analysis of this product fit the formula Mo{sub 6}S{sub 8}{center dot}5SPEt{sub 3}. Reactivity of the outer ligands of the Mo{sub 6}S{sub 8}{center dot}npy and Mo{sub 6}S{sub 8}{center dot}(6{minus}x)PrNH{sub x} clusters were investigated. Crystalline Mo{sub 6}S{sub 8}{center dot}6THT was recovered from the reaction of the n-propylamine derivative with THT. A crystal structure determination was done. 87 refs., 12 fig., 15 tabs.

  16. The investigation of molybdenum migration in aqueous media landscape of the Khibiny massif to develop environmental activities

    Directory of Open Access Journals (Sweden)

    Sulimenko L.P.

    2015-06-01

    Full Text Available Relations of natural and technogenic factors at forming of molybdenum making streams in superficial and underground waters in the Khibiny massif have been studied. The priority sources of receipt of molybdenum in water objects have been considered. Taking into account hydrogeochemistrical properties of molybdenum the terms of strategy of decline of its negative influence on superficial currents in the conditions of productive mining complex activity have been defined

  17. A Method for the Calculation of Lattice Energies of Complex Crystals with Application to the Oxides of Molybdenum

    Science.gov (United States)

    Chaney, William S.

    1961-01-01

    A theoretical study has been made of molybdenum dioxide and molybdenum trioxide in order to extend the knowledge of factors Involved in the oxidation of molybdenum. New methods were developed for calculating the lattice energies based on electrostatic valence theory, and the coulombic, polarization, Van der Waals, and repulsion energie's were calculated. The crystal structure was examined and structure details were correlated with lattice energy.

  18. Determination of molybdenum in various materials by normal-phase liquid chromatography using N-benzoyl-N-phenylhydroxylamine

    Energy Technology Data Exchange (ETDEWEB)

    Bagur, Gracia; Sanchez-Vinas, Mercedes; Gazquez, Domingo [Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada (Spain)

    1995-06-20

    A normal-phase liquid chromatographic method for the selective determination of molybdenum with N-benzoyl-N-phenylhydroxylamine is described. The molybdenum(VI) complex was preconcentrated by extraction into chloroform and injected onto a nitrile column for chromatography. The mobile phase was a 0.075 M solution of reagent in chloroform (stabilized with amylene). The detection limit for molybdenum by the proposed method was 0.88 ng for a phase volume ratio of 20:1 (aqueous to organic). Molybdenum has been determined in several samples with satisfactory accuracy and precision.

  19. Molybdenum isotope behaviour in groundwaters and terrestrial hydrothermal systems, Iceland

    Science.gov (United States)

    Neely, Rebecca A.; Gislason, Sigurdur R.; Ólafsson, Magnus; McCoy-West, Alex J.; Pearce, Christopher R.; Burton, Kevin W.

    2018-03-01

    Molybdenum (Mo) isotopes have proved useful in the reconstruction of paleoredox conditions. Their application generally relies upon a simplified model of ocean inputs in which rivers dominate Mo fluxes to the oceans and hydrothermal fluids are considered to be a minor contribution. To date, however, little attention has been paid to the extent of Mo isotope variation of hydrothermal waters, or to the potential effect of direct groundwater discharge to the oceans. Here we present Mo isotope data for two Icelandic groundwater systems (Mývatn and Þeistareykir) that are both influenced by hydrothermal processes. Relative to NIST 3134 = +0.25‰, the cold (Icelandic rivers. In contrast, waters that are hydrothermally influenced (>10 °C) possess isotopically heavy δ98/95MoHYDROTHERMAL values of +0.25‰ to +2.06‰ (n = 18) with the possibility that the high temperature endmembers are even heavier. Although the mechanisms driving this fractionation remain unresolved, the incongruent dissolution of the host basalt and both the dissolution and precipitation of sulfides are considered. Regardless of the processes driving these variations, the δ98Mo data presented in this study indicate that groundwater and hydrothermal waters have the potential to modify ocean budget calculations.

  20. SAXS study of molybdenum irradiated with helium ions

    Science.gov (United States)

    Osamura, Kozo; Suzuki, Hideo

    1983-01-01

    Defects produced by helium ion irradiation have been investigated by means of small-angle X-ray scattering (SAXS) measurements, transmission electron microscope (TEM) and scanning electron microscope (SEM) observations. He + ions with projectile energy of 2 MeV were implanted in thin high-purity molybdenum foils with dose rates of 7-56 μA cm -2 up to total doses of 0.43-3.46 × 10 18 ions cm -2. The critical fluence producing blisters and the blister skin thickness were measured to be about 0.5 × 10 18 ions cm t-2 and 2.8 ± 0.4 μm, respectively, from SEM observations. Two types of bubbles were observed by TEM. The angular dependence of SAXS intensity was explained by the superposition of three Gaussian-shaped scattering curves, suggesting three different types of irradiation defects. Type II, which had a dimension of 4-7 nm, was identified with polygonal bubbles observed by TEM. This type appeared beyond the critical dose of 0.6 × 10 18 ions cm -2. Type III, which had a dimension of 0.6-2.7 nm, was identified with finer bubbles observed by TEM and distinguishable from type II. The SAXS results have been applied to evaluate quantitatively the kinetics of formation of these bubbles.

  1. Assessing the standard Molybdenum projector augmented wave VASP potentials

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Ann E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Multi-Scale Science

    2014-07-01

    Density Functional Theory (DFT) based Equation of State (EOS) construction is a prominent part of Sandia’s capabilities to support engineering sciences. This capability is based on augmenting experimental data with information gained from computational investigations, especially in those parts of the phase space where experimental data is hard, dangerous, or expensive to obtain. A key part of the success of the Sandia approach is the fundamental science work supporting the computational capability. Not only does this work enhance the capability to perform highly accurate calculations but it also provides crucial insight into the limitations of the computational tools, providing high confidence in the results even where results cannot be, or have not yet been, validated by experimental data. This report concerns the key ingredient of projector augmented-wave (PAW) potentials for use in pseudo-potential computational codes. Using the tools discussed in SAND2012-7389 we assess the standard Vienna Ab-initio Simulation Package (VASP) PAWs for Molybdenum.

  2. Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur

    2017-12-24

    Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  3. Aqueous Medium Synthesis Route for Randomly Stacked Molybdenum Disulfide

    Directory of Open Access Journals (Sweden)

    Pravas Kumar Panigrahi

    2013-01-01

    Full Text Available Synthesis of poorly crystalline, randomly oriented rag-like structures of molybdenum disulfide has been reported starting from aqueous solutions of ammonium molybdate, and thioacetamide in presence of sodium dodecyl sulfate via calcination of the amorphous precipitates, obtained through acidification of the in situ generated intermediate of ammonium tetrathiomolybdate. X-ray photoelectron spectroscopy, UV-visible spectroscopy, and X-ray diffraction of the calcined samples reveal the formation of single-phase MoS2, while the amorphous precipitates have been found to be a mixture of Mo2S5, MoS3, and a trace amount of H2MoS4. Highly folded and disordered layers of rag-like MoS2 have been confirmed through high-resolution transmission electron microscopy. The electrical conductivity for the cold pressed pellet of the MoS2 sample is found to be significantly higher than that of 2H-MoS2 and increases further on annealing.

  4. Iron binary and ternary coatings with molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Yar-Mukhamedova, Gulmira, E-mail: gulmira-alma-ata@mail.ru [Institute Experimental and Theoretical Physics Al-Farabi Kazakh National University, 050038, Al-Farabi av., 71, Almaty (Kazakhstan); Ved, Maryna; Sakhnenko, Nikolay; Karakurkchi, Anna; Yermolenko, Iryna [National Technical University “Kharkov Polytechnic Institute”, Kharkov (Ukraine)

    2016-10-15

    Highlights: • High quality coatings of double Fe-Mo and ternary Fe-Mo-W electrolytic alloys can be produced both in a dc and a pulsed mode. • Application of unipolar pulsed current allows receiving an increased content of the alloying components and their more uniform distribution over the surface. • It is established that Fe-Mo and Fe-Mo-W coatings have an amorphous structure and exhibit improved corrosion resistance and microhardness as compared with the steel substrate due to the inclusion molybdenum and tungsten. - Abstract: Electrodeposition of Fe-Mo-W and Fe-Mo layers from a citrate solution containing iron(III) on steel and iron substrates is compared. The utilization of iron(III) compounds significantly improved the electrolyte stability eliminating side anodic redox reactions. The influence of concentration ratios and electrodeposition mode on quality, chemical composition, and functional properties of the alloys is determined. It has been found that alloys deposited in pulse mode have more uniform surface morphology and chemical composition and contain less impurities. Improvement in physical and mechanical properties as well as corrosion resistance of Fe-Mo and Fe-Mo-W deposits when compared with main alloy forming metals is driven by alloying components chemical passivity as well as by alloys amorphous structure. Indicated deposits can be considered promising materials in surface hardening technologies and repair of worn out items.

  5. Hydrogen reduction of molybdenum oxide at room temperature

    Science.gov (United States)

    Borgschulte, Andreas; Sambalova, Olga; Delmelle, Renaud; Jenatsch, Sandra; Hany, Roland; Nüesch, Frank

    2017-01-01

    The color changes in chemo- and photochromic MoO3 used in sensors and in organic photovoltaic (OPV) cells can be traced back to intercalated hydrogen atoms stemming either from gaseous hydrogen dissociated at catalytic surfaces or from photocatalytically split water. In applications, the reversibility of the process is of utmost importance, and deterioration of the layer functionality due to side reactions is a critical challenge. Using the membrane approach for high-pressure XPS, we are able to follow the hydrogen reduction of MoO3 thin films using atomic hydrogen in a water free environment. Hydrogen intercalates into MoO3 forming HxMoO3, which slowly decomposes into MoO2 +1/2 H2O as evidenced by the fast reduction of Mo6+ into Mo5+ states and slow but simultaneous formation of Mo4+ states. We measure the decrease in oxygen/metal ratio in the thin film explaining the limited reversibility of hydrogen sensors based on transition metal oxides. The results also enlighten the recent debate on the mechanism of the high temperature hydrogen reduction of bulk molybdenum oxide. The specific mechanism is a result of the balance between the reduction by hydrogen and water formation, desorption of water as well as nucleation and growth of new phases.

  6. DNA origami deposition on native and passivated molybdenum disulfide substrates

    Directory of Open Access Journals (Sweden)

    Xiaoning Zhang

    2014-04-01

    Full Text Available Maintaining the structural fidelity of DNA origami structures on substrates is a prerequisite for the successful fabrication of hybrid DNA origami/semiconductor-based biomedical sensor devices. Molybdenum disulfide (MoS2 is an ideal substrate for such future sensors due to its exceptional electrical, mechanical and structural properties. In this work, we performed the first investigations into the interaction of DNA origami with the MoS2 surface. In contrast to the structure-preserving interaction of DNA origami with mica, another atomically flat surface, it was observed that DNA origami structures rapidly lose their structural integrity upon interaction with MoS2. In a further series of studies, pyrene and 1-pyrenemethylamine, were evaluated as surface modifications which might mitigate this effect. While both species were found to form adsorption layers on MoS2 via physisorption, 1-pyrenemethylamine serves as a better protective agent and preserves the structures for significantly longer times. These findings will be beneficial for the fabrication of future DNA origami/MoS2 hybrid electronic structures.

  7. Photodecomposition of Molybdenum andTungsten Carbonyl Complexes

    Directory of Open Access Journals (Sweden)

    Thamer A. Alwani

    2009-01-01

    Full Text Available The photodecomposition of four different colored organometallic molybdenum and tungsten carbonyl complexes, i.e. [Mo(CO52LA] (complex I, [(Mo(CO3(bipy2LB] (complex II, [(W(CO3(tmen2LB] (complex III and [Mo(CO2LC]2 (complex I V where LA 2-phenyl-1,3-indandionebis(2-methyl anilines, LB 2-phenyl-1,3-indandione bis (4-hydroxy anilines and LCbis (2-hydroxo-benzalydine benzidine ion have been performed at 365 nm in chloroform at 25 °C under oxygen atmosphere. The absorbance spectrum of these complexes has been recorded with the time of irradiation in order to examine the kinetics of photodecomposition. The rate of the photodecomposition process was investigated and the relative values of the rate constants of dissociation (Kd for the first-order reaction are tabulated. The apparent rate constant of photodecomposition was found to be (8.33-11.50 × 10-5 s-1.

  8. Metallic molybdenum disulfide nanosheet-based electrochemical actuators

    Science.gov (United States)

    Acerce, Muharrem; Akdoğan, E. Koray; Chhowalla, Manish

    2017-09-01

    Actuators that convert electrical energy to mechanical energy are useful in a wide variety of electromechanical systems and in robotics, with applications such as steerable catheters, adaptive wings for aircraft and drag-reducing wind turbines. Actuation systems can be based on various stimuli, such as heat, solvent adsorption/desorption, or electrochemical action (in systems such as carbon nanotube electrodes, graphite electrodes, polymer electrodes and metals). Here we demonstrate that the dynamic expansion and contraction of electrode films formed by restacking chemically exfoliated nanosheets of two-dimensional metallic molybdenum disulfide (MoS2) on thin plastic substrates can generate substantial mechanical forces. These films are capable of lifting masses that are more than 150 times that of the electrode over several millimetres and for hundreds of cycles. Specifically, the MoS2 films are able to generate mechanical stresses of about 17 megapascals—higher than mammalian muscle (about 0.3 megapascals) and comparable to ceramic piezoelectric actuators (about 40 megapascals)—and strains of about 0.6 per cent, operating at frequencies up to 1 hertz. The actuation performance is attributed to the high electrical conductivity of the metallic 1T phase of MoS2 nanosheets, the elastic modulus of restacked MoS2 layers (2 to 4 gigapascals) and fast proton diffusion between the nanosheets. These results could lead to new electrochemical actuators for high-strain and high-frequency applications.

  9. Toward barrier free contact to molybdenum disulfide using graphene electrodes.

    Science.gov (United States)

    Liu, Yuan; Wu, Hao; Cheng, Hung-Chieh; Yang, Sen; Zhu, Enbo; He, Qiyuan; Ding, Mengning; Li, Dehui; Guo, Jian; Weiss, Nathan O; Huang, Yu; Duan, Xiangfeng

    2015-05-13

    Two-dimensional layered semiconductors such as molybdenum disulfide (MoS2) have attracted tremendous interest as a new class of electronic materials. However, there are considerable challenges in making reliable contacts to these atomically thin materials. Here we present a new strategy by using graphene as the back electrodes to achieve ohmic contact to MoS2. With a finite density of states, the Fermi level of graphene can be readily tuned by a gate potential to enable a nearly perfect band alignment with MoS2. We demonstrate for the first time a transparent contact to MoS2 with zero contact barrier and linear output behavior at cryogenic temperatures (down to 1.9 K) for both monolayer and multilayer MoS2. Benefiting from the barrier-free transparent contacts, we show that a metal-insulator transition can be observed in a two-terminal MoS2 device, a phenomenon that could be easily masked by Schottky barriers found in conventional metal-contacted MoS2 devices. With further passivation by boron nitride (BN) encapsulation, we demonstrate a record-high extrinsic (two-terminal) field effect mobility up to 1300 cm(2)/(V s) in MoS2 at low temperature.

  10. Effect of molybdenum disulfide nanoribbon on quantum transport of graphene

    Science.gov (United States)

    Gao, Guanyi; Li, Zhongyao; Chen, Mingyan; Xie, Yiqun; Wang, Yin

    2017-11-01

    Based on the density functional theory method in combination with the nonequilibrium green’s function formalism, the quantum transport properties in graphene–MoS2 vertical heterojunction were investigated in this work. The leads are boron doped graphene and seamlessly connect to the graphene nanoribbon in central scattering region. Although there is a weak graphene–MoS2 interaction, molybdenum disulfide can smooth the electrostatic potential and enlarge the transport properties of the whole device. However, another competitive factor is that of the edge states of the MoS2 nanoribbon. When the transport is along the zigzag direction of graphene, the armchair MoS2 nanoribbon simply enlarges the transmission coefficient. Nevertheless, in the armchair transport system, there is an asymmetric electrostatic potential induced by the different atomic potentials of S and Mo atoms at both edges in the zigzag MoS2 nanoribbon, whose potential can lead to obvious scattering from graphene to MoS2 and suppress the transmission probability. Therefore, it also suppresses the influence of zigzag MoS2 nanoribbon on the transmission coefficient. Our first principles simulations provide useful predictions for the application of graphene based emerging electronics, which may stimulate further experimental exploration.

  11. Exciton-plasmon coupling in monolayer molybdenum disulfide

    Science.gov (United States)

    Ziegler, Jed; Newaz, A. K. M.; Bolotin, Kirill; Haglund, Richard

    2013-03-01

    Two-dimensional materials such as monolayer molybdenum disulfide (MoS2) represent a unique platform for investigating the dynamics of exciton-plasmon coupling. We report on the generation and modulation of coherent and incoherent coupled states between excitons in monolayer MoS2 and plasmons in an array of gold nanoparticle deposited onto the surface of MoS2. We study the behavior of these coherent states, termed plexcitons using a combination of photoluminescence, extinction and ultrafast spectroscopies. The close proximity of the two characteristic exciton bands of MoS2 presents multiple coherent coupling configurations, including A-or-B exciton-plasmon, and A-and-B exciton-plasmon interactions. These configurations of plexciton formation that are shown to modulate both the extinction and photoluminescence spectra of the hybrid system. This includes broadband photoluminescence and Fano-type resonances. This behavior is distinct from the spectral response of the MoS2 and plasmonic components of the system. Incoherent exciton-plasmon coupling, achieved by detuning from the plasmon extinction peaks, enhances the interaction of MoS2 with light by focusing the plasmon energy. Depending on which coupling configuration is chosen, our results show that the MoS2/plasmon hybrid systems can act as high efficiency light harvesters, broadband emitters and as tunable visible and NIR photodetectors. Support by Defense Threat Reduction Agency (HDTRA1-1-10-1-0047) and NSF DMR-1056859

  12. Preparation and characterization of DC sputtered molybdenum thin films

    Directory of Open Access Journals (Sweden)

    Abd El-Hady B. Kashyout

    2011-03-01

    Full Text Available Molybdenum (Mo thin films have been deposited on soda-lime glass substrates using a DC magnetron sputtering system. Their electrical resistivity, and their morphological, structural and adhesive properties have been examined with respect to the deposition power, deposition time and substrate temperature. The electrical resistivity of the Mo films could be reduced by increasing any of the above parameters. Within the range of the investigated deposition parameters, the films showed a mono-crystalline nature with a preferred orientation along the (1 1 0 plane. The Mo films adhesion to the soda-lime glass could be improved by increasing the substrate temperature. At a deposition power of 200 W, deposition time of 20 min and substrate temperature of 450 °C, Mo thin film exhibiting mono-crystalline structure with thickness equal to 450 nm and electrical resistivity equal to 1.85 × 10−4 Ω cm was obtained.

  13. EUV nanosecond laser ablation of silicon carbide, tungsten and molybdenum

    Science.gov (United States)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Choukourov, Andrei; Kasuya, Koichi

    2015-09-01

    In this paper we present results of study interaction of nanosecond EUV laser pulses at wavelength of 46.9 nm with silicon carbide (SiC), tungsten (W) and molybdenum (Mo). As a source of laser radiation was used discharge-plasma driver CAPEX (CAPillary EXperiment) based on high current capillary discharge in argon. The laser beam is focused with a spherical Si/Sc multilayer-coated mirror on samples. Experimental study has been performed with 1, 5, 10, 20 and 50 laser pulses ablation of SiC, W and Mo at various fluence values. Firstly, sample surface modification in the nanosecond time scale have been registered by optical microscope. And the secondly, laser beam footprints on the samples have been analyzed by atomic-force microscope (AFM). This work supported by the Czech Science Foundation under Contract GA14-29772S and by the Grant Agency of the Ministry of Education, Youth and Sports of the Czech Republic under Contract LG13029.

  14. Speciation of aluminium, arsenic and molybdenum in excessively limed lakes

    Energy Technology Data Exchange (ETDEWEB)

    Sjoestedt, Carin, E-mail: carinsj@kth.se [Department of Land and Water Resources Engineering, KTH (Royal Institute of Technology), Teknikringen 76, SE-100 44 Stockholm (Sweden); Waellstedt, Teresia [Department of Aquatic Sciences and Assessment, SLU (Swedish University of Agricultural Sciences), P.O. Box 7050, SE-750 07 Uppsala (Sweden); Gustafsson, Jon Petter [Department of Land and Water Resources Engineering, KTH (Royal Institute of Technology), Teknikringen 76, SE-100 44 Stockholm (Sweden); Borg, Hans [Department of Applied Environmental Science, SU (Stockholm University), SE-106 91 Stockholm (Sweden)

    2009-09-01

    The possible existence of the potentially toxic oxyanions of Al (Al(OH){sub 4}{sup -}), As (HAsO{sub 4}{sup 2-}), and Mo (MoO{sub 4}{sup 2-}) was examined in excessively limed lakes. In-situ dialysis (MWCO 1 kDa) was performed in the surface and bottom waters of two excessively limed lakes (pH 7.1-7.7) and one acidic lake (pH {approx} 5.4). The dialysable metal concentrations were compared to the equilibrium distribution of species as calculated with the geochemical code Visual MINTEQ incorporating the CD-MUSIC and Stockholm Humic models for complexation onto colloidal ferrihydrite and dissolved organic matter. Arsenic and molybdenum in the excessively limed lakes were to a large extent present in the dialysable fraction (> 79% and > 92% respectively). They were calculated to exist as free or adsorbed oxyanions. Most of the Al was observed to reside in the colloidal fraction (51-82%). In agreement with this, model predictions indicated aluminium to be present mostly as colloids or bound to dissolved organic matter. Only a small fraction was modelled as Al(OH){sub 4}{sup -} ions. In most cases, modelled values were in agreement with the dialysis results. The free concentrations of the three oxyanions were mostly low compared to toxic levels.

  15. Microstructures and oxidation behavior of some Molybdenum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Pratik Kumar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  16. Carbon nanotube synthesis via the catalytic chemical vapor deposition of methane in the presence of iron, molybdenum, and iron-molybdenum alloy thin layer catalysts

    Science.gov (United States)

    Yahyazadeh, Arash; Khoshandam, Behnam

    In this study, we documented the catalytic chemical vapor deposition synthesis of carbon nanotubes (CNTs) using ferrocene and molybdenum hexacarbonyl as catalyst nanoparticle precursors and methane as a nontoxic and economical carbon source for the first time. Field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, wavelength dispersive X-ray spectrometry and transmission electron microscopy of the thin layer catalyst as a simple and cost effective catalyst preparation after methane decomposition reaction, along with Fourier transform infrared spectroscopy and Raman spectroscopy confirmed the growth of CNTs, from bimetallic nanoparticles, which are converted into iron-molybdenum alloy nanoparticles at 700 °C for pretreatment by hydrogen after chemical vapor deposition of thin layers. An investigation of the weight percentages of the chemical elements present in the CNTs synthesized from iron-molybdenum catalyst using quartz sheet substrate at 750 °C, confirmed a significant carbon yield of 75.4% which represents high catalyst activity. Additionally, multi-walled carbon nanotubes (∼16-55 nm in diameter and 1.2 μm in length) were observed in the iron-molybdenum alloy sample after methane decomposition reaction at 750 °C for 35 min. To show the role of iron and molybdenum coated on silicon substrate as two thin layer catalysts, samples were considered for CNTs growth (diameter ∼47-69 nm) at 800 °C and 830 °C, respectively. Moreover, the effect of hydrogen pretreatment was evaluated in terms of active metal coating properly. The best graphitic structure due to Raman spectroscopy outcomes (ID/IG ratio) was obtained for iron coated on a quartz sheet, which was estimated at 0.8505. Thermogravimetric analysis proved the thermal stability of the synthesized CNTs using iron thin-layer catalyst up to 350 °C.

  17. Transport-related mylonitic ductile deformation and shape change of alluvial gold, southern New Zealand

    Science.gov (United States)

    Kerr, Gemma; Falconer, Donna; Reith, Frank; Craw, Dave

    2017-11-01

    Gold is a malleable metal, and detrital gold particles deform via internal distortion. The shapes of gold particles are commonly used to estimate transport distances from sources, but the mechanisms of internal gold deformation leading to shape changes are poorly understood because of subsequent recrystallisation of the gold in situ in placer deposits, which creates a rim zone around the particles, with undeformed > 10 μm grains. This paper describes samples from southern New Zealand in which grain size reduction (to submicrometer scale) and mylonitic textures have resulted from internal ductile deformation. These textures have been preserved without subsequent recrystallisation after deposition in late Pleistocene-Holocene alluvial fan placers. These mylonitic textures were imposed by transport-related deformation on recrystallised rims that were derived from previous stages of fluvial transportation and deposition. This latest stage of fluvial transport and deformation has produced numerous elongated gold smears that are typically 100 μm long and 10-20 μm wide. These smears are the principal agents for transport-induced changes in particle shape in the studied placers. Focused ion beam (FIB) sectioning through these deformed zones combined with scanning electron microscopic (SEM) imaging show that the interior of the gold particles has undergone grain size reduction (to 500 nm) and extensive folding with development of a ductile deformation fabric that resembles textures typical of mylonites in silicate rocks. Relict pods of the pre-existing recrystallised rim zone are floating in this ductile deformation zone and these pods are irregular in shape and discontinuous in three dimensions. Micrometer scale biologically-mediated deposition from groundwater of overgrowth gold on particle surfaces occurs at all stages of placer formation, and some of this overgrowth gold has been incorporated into deformation zones. These examples provide a rare view into the nature

  18. An investigation of the mineral in ductile and brittle cortical mouse bone.

    Science.gov (United States)

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size

  19. Strain localization in carbonate rocks experimentally deformed in the ductile field

    Science.gov (United States)

    Rybacki, E.; Morales, L. F. G.; Dresen, G.

    2012-04-01

    The deformation of rocks in the Earth's crust is often localized, varying from brittle fault gauges in shallow environments to mylonites in ductile shear zones at greater depth. A number of theoretical, experimental, and field studies focused on the evolution and extend of brittle fault zones, but little is known so far about initiation of ductile shear zones. Strain localization in rocks deforming at high temperature and pressure may be induced by several physical, chemical, or structurally-related mechanisms. We performed simple and pure shear deformation experiments on carbonate rocks containing structural inhomogenities in the ductile deformation regime. The results may help to gain insight into the evolution of high temperature shear zones. As starting material we used cylindrical samples of coarse-grained Carrara marble containing one or two 1 mm thin artificially prepared sheets of fine-grained Solnhofen limestone, which act as soft inclusions under the applied experimental conditions. Length and diameter of the investigated solid and hollow cylinders were 10-20 mm and 10-15 mm, respectively. Samples were deformed in a Paterson-type gas deformation apparatus at 900° C temperature and confining pressures of 300 and 400 MPa. Three samples were deformed in axial compression at a bulk strain rate of 8x10-5 s-1to axial strains between 0.02 and 0.21 and 15 samples were twisted in torsion at a bulk shear strain rate of 2x10-4 s-1 to shear strains between 0.01 and 3.74. At low strain, specimens deformed axially and in torsion show minor strain hardening that is replaced by strain weakening at shear strains in excess of about 0.2. Peak shear stress at the imposed condition is about 20 MPa. Strain localized strongly within the weak inclusions as indicated by inhomogeneous bending of initially straight strain markers on sample jackets. Maximum strain concentration within inclusions with respect to the adjacent matrix was between 4 and 40, depending on total strain and

  20. Experimental validation of error in temperature measurements in thin walled ductile iron castings

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Tiedje, Niels Skat

    2007-01-01

    An experimental analysis has been performed to validate the measurement error of cooling curves measured in thin walled ductile cast iron. Specially designed thermocouples with Ø0.2 mm thermocouple wire in Ø1.6 mm ceramic tube was used for the experiments. Temperatures were measured in plates...... to a level about 20C lower than the actual temperature in the casting. Factors affecting the measurement error (oxide layer on the thermocouple wire, penetration into the ceramic tube and variation in placement of thermocouple) are discussed. Finally, it is shown how useful cooling curve may be obtained...

  1. Effect of infill wall on the ductility and behavior of high strength reinforced concrete frames

    Directory of Open Access Journals (Sweden)

    Ahmed Sayed Ahmed Tawfik Essa

    2014-12-01

    From the representation and the analysis of the obtained results, the main conclusions are pointed out; the lateral load resistance for infilled frames F2, F3 and F4 with infill wall (red bricks thickness 12, 6 cm and cement bricks 12 cm, respectively was greater than the bare frame (F1 by about 184%, 61% and 99%, respectively. The ductility factor for infilled frames F2, F3 and F4 was less than the bare frame (F1 by about 57%, 51% and 46%, respectively.

  2. Influence of Trace Elements on Hot Ductility of an Ultra High Purity Invar Alloy

    OpenAIRE

    Perrot-Simonetta, M.; Kobylanski, A.

    1995-01-01

    Like steels, austenitic INVAR alloys Fe-Ni 36 % show a large ductility trough between 500°C and 1100°C. To understand hot brittleness mechanisms and especially trace element effects, synthetic alloys were prepared using ultra-high purity iron and nickel doped with selected amounts of carbon, sulphur, boron, aluminium, and nitrogen. Four kinds of synthetic alloys were studied to establish the intrinsic influence of sulphur, the combined effects of sulphur and precipitates such AlN or BN, and t...

  3. Modelling the solidification of ductile cast iron parts with varying wall thicknesses

    DEFF Research Database (Denmark)

    Bjerre, Mathias Karsten; Tiedje, Niels Skat; Thorborg, Jesper

    2015-01-01

    ] with a 2D FE solution of the heat conduction equation is developed in an in-house code and model parameters are calibrated using experimental data from representative castings made of ductile cast iron. The main focus is on the influence of casting thickness and resulting local cooling conditions......In the present paper modelling the solidification of cast iron parts is considered. Common for previous efforts in this field is that they have mainly considered thin walled to medium thickness castings. Hence, a numerical model combining the solidification model presented by Lesoultet al. [1...

  4. Experimental and Computational Study of Ductile Fracture in Small Punch Tests

    Directory of Open Access Journals (Sweden)

    Betül Gülçimen Çakan

    2017-10-01

    Full Text Available A unified experimental-computational study on ductile fracture initiation and propagation during small punch testing is presented. Tests are carried out at room temperature with unnotched disks of different thicknesses where large-scale yielding prevails. In thinner specimens, the fracture occurs with severe necking under membrane tension, whereas for thicker ones a through thickness shearing mode prevails changing the crack orientation relative to the loading direction. Computational studies involve finite element simulations using a shear modified Gurson-Tvergaard-Needleman porous plasticity model with an integral-type nonlocal formulation. The predicted punch load-displacement curves and deformed profiles are in good agreement with the experimental results.

  5. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burtseva, T. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  6. Assessment of Ductile, Brittle, and Fatigue Fractures of Metals Using Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Gheorghe Hutiu

    2018-02-01

    Full Text Available Some forensic in situ investigations, such as those needed in transportation (for aviation, maritime, road, or rail accidents or for parts working under harsh conditions (e.g., pipes or turbines would benefit from a method/technique that distinguishes ductile from brittle fractures of metals—as material defects are one of the potential causes of incidents. Nowadays, the gold standard in material studies is represented by scanning electron microscopy (SEM. However, SEM instruments are large, expensive, time-consuming, and lab-based; hence, in situ measurements are impossible. To tackle these issues, we propose as an alternative, lower-cost, sufficiently high-resolution technique, Optical Coherence Tomography (OCT to perform fracture analysis by obtaining the topography of metallic surfaces. Several metals have been considered in this study: low soft carbon steels, lamellar graphite cast iron, an antifriction alloy, high-quality rolled steel, stainless steel, and ductile cast iron. An in-house developed Swept Source (SS OCT system, Master-Slave (MS enhanced is used, and height profiles of the samples’ surfaces were generated. Two configurations were used: one where the dimension of the voxel was 1000 μm3 and a second one of 160 μm3—with a 10 μm and a 4 μm transversal resolution, respectively. These height profiles allowed for concluding that the carbon steel samples were subject to ductile fracture, while the cast iron and antifriction alloy samples were subjected to brittle fracture. The validation of OCT images has been made with SEM images obtained with a 4 nm resolution. Although the OCT images are of a much lower resolution than the SEM ones, we demonstrate that they are sufficiently good to obtain clear images of the grains of the metallic materials and thus to distinguish between ductile and brittle fractures—especially with the higher resolution MS/SS-OCT system. The investigation is finally extended to the most useful case of

  7. Characterising ductility of 6xxx-series aluminium sheet alloys at combined loading conditions

    Science.gov (United States)

    Henn, Philipp; Liewald, Mathias; Sindel, Manfred

    2017-10-01

    This paper presents a new approach to characterise material ductility when combined, three dimensional loading conditions occurring during vehicle crash are applied. So called "axial crush test" of closed hat sections is simplified by reducing it down to a two-dimensional testing procedure. This newly developed edge-compression test (ECT) provides the opportunity to investigate a defined characteristic axial folding behaviour of a profile edge. The potential to quantify and to differentiate crashworthiness of material by use of new edge-compression test is investigated by carrying out experimental studies with two different 6xxx-aluminium sheet alloys.

  8. Three-dimensional local residual stress and orientation gradients near graphite nodules in ductile cast iron

    DEFF Research Database (Denmark)

    Zhang, Yubin; Andriollo, Tito; Fæster, Søren

    2016-01-01

    A synchrotron technique, differential aperture X-ray microscopy (DAXM), has been applied to characterize the microstructure and analyze the local mesoscale residual elastic strain fields around graphite nodules embedded in ferrite matrix grains in ductile cast iron. Compressive residual elastic...... strains are measured with a maximum strain of ∼6.5–8 × 10−4 near the graphite nodules extending into the matrix about 20 μm, where the elastic strain is near zero. The experimental data are compared with a strain gradient calculated by a finite element model, and good accord has been found...

  9. Comportamiento del hierro nodular austemperizado en condiciones de corrosión y desgaste // Behavior of austempered ductile iron under wear and corrosion conditions

    Directory of Open Access Journals (Sweden)

    L. Goyos Pérez

    1999-07-01

    Full Text Available Los hierros nodulares en general y los austemperizados en particular han sido usados con cada vez mayor frecuencia debido asus relevantes propiedades mecánicas en comparación con su costo.En el presente trabajo se valora el comportamiento del hierro nodular ante el trabajo en condiciones de desgaste y corrosión,luego de ser sometido a diferentes tratamientos de austemperizado.Fueron usados un hierro nodular aleado con níquel y molibdeno y otro no aleado. Ambos hierros fueron sometidos a diferentestratamientos de austemperización con mantenimientos isotérmicos a temperaturas entre 250°C y 425°C por tiempos entre 15 y180 minutos.Las muestras tratadas fueron sometidas a ensayos de desgaste por fricción en condiciones no lubricadas determinando laspendientes de desgaste uniforme para cada caso. La resistencia a la corrosión fue determinada mediante el métodopotenciométrico usando como medio el jugo de caña sintético.A partir de los resultados obtenidos se valora la influencia de los diferentes tratamientos sobre las propiedades estudiadas y sedeterminan los más efectivos desde el punto de vista técnico económico.Palabras claves: Hierro nodular, corrosión, desgaste, austemperizado.____________________________________________________________________________AbstractNodular irons and particularly austempered ductile iron has been used more and more due to their excellent mechanicalproperties in comparison with their cost.Presently work deals on behavior of nodular iron working under wear and corrosion conditions, after being submitted todifferent austempered treatments.A nodular iron alloyed with nickel and molybdenum were used as well as a not alloyed one. Both irons were treated underdifferent austempered treatment combinations using isothermal maintenance to temperatures between 250°C and 425°C andspending times between 15 and 180 minutes.Samples were submitted to non-lubricated wear using a “pin on disk” method evaluating the

  10. The metal content of molybdenum-mineralizing fluids

    Science.gov (United States)

    Lerchbaumer, L.; Audétat, A.

    2012-04-01

    Molybdenum can be found in porphyry-type systems as well as in hydrothermal veins and breccias associated with granite systems. Up to now our knowledge on the metal content of fluids forming molybdenum ore deposits has been very limited. The only data available so far are from the porphyry Mo deposit at Questa, New Mexico, and from the Cave Peak porphyry Mo-Nb deposit in Texas. We have studied early, intermediate-density fluid inclusions in quartz crystals from miarolitic cavities in the Drammen and Glitrevann granites (Norway) and the Treasure Mountain Dome (Colorado/USA) to obtain more information about the bulk composition of magmatic-hydrothermal fluids exsolved from these plutons. The Treasure Mountain Dome contains weak Mo mineralization and is an apophysis of the Alma Batholith that produced also the famous Climax and Henderson porphyry Mo deposits; the Glitrevann granite hosts a sub-economic Mo stockwork, and the Drammen Granite contains numerous vein-type Mo mineralizations. As a preliminary result, based on analyses of fluid inclusions using optical microscopy, microthermometry, Raman spectroscopy, and LA-ICP-MS we conclude that the primordial fluid of the Drammen granite was of high acidity and carried certain amounts of metals at conditions of 650°C and 1.3-1.5 kbar. The total elemental budget is: 3 wt% Na, 1.8 wt% K, 0.5 wt% S, 0.4 wt% Fe, 0.3 wt% Cu, 0.2 wt% Mn, 40 ppm Mo, 800 ppm Zn, 600 ppm Rb, 300 ppm Cs, 180 ppm Pb, 150 ppm As, 40 ppm W, 15 ppm Bi, and minor amounts of Ag, Sn, and Ce. Striking is the fact, that all the metal concentrations show little variability except the one of Cu. In view of recent studies (Lerchbaumer & Audétat, 2011) showing that the Cu-values in quartz-hosted fluid inclusions are not always representative of the primary fluid and in fact can be too high, we want to check if this could be the case for the Cu-values measured in the samples from Norway and Colorado. The alteration of the original Cu-concentrations stems from

  11. Effects of Alloying Elements (Mo, Ni, and Cu on the Austemperability of GGG-60 Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Erkan Konca

    2017-08-01

    Full Text Available The interest in austempered ductile irons (ADI is continuously increasing due to their various advantageous properties over conventional ductile irons and some steels. This study aimed to determine the roles of alloying elements Ni, Cu, and Mo, on the austemperability of GGG-60 ductile cast iron. Two different sets of GGG-60 (EN-GJS-600-3 samples, one set alloyed with Ni and Cu and the other set alloyed with Mo, Ni, and Cu, were subjected to austempering treatments at 290 °C, 320 °C, and 350 °C. A custom design heat treatment setup, consisting of two units with the top unit (furnace serving for austenitizing and the 200 L capacity bottom unit (stirred NaNO2-KNO3 salt bath serving for isothermal treatment, was used for the experiments. It was found that austempering treatment at 290 °C increased the hardness of the Ni-Cu alloyed GGG-60 sample by about 44% without causing a loss in its ductility. In the case of the Mo-Ni-Cu alloyed sample, the increase in hardness due to austempering reached to almost 80% at the same temperature while some ductility was lost. Here, the microstructural investigation and mechanical testing results of the austempered samples are presented and the role of alloying elements (Mo, Ni, and Cu on the austemperability of GGG-60 is discussed.

  12. Influence of mean stress on fatigue strength of ferritic-pearlite ductile cast iron with small defects

    Science.gov (United States)

    Deguchi, T.; Kim, H. J.; Ikeda, T.; Yanase, K.

    2017-05-01

    Because of their excellent mechanical properties, low cost and good workability, the application of ductile cast iron has been increased in various industries such as the automotive, construction and rail industries. For safety designing of the ductile cast iron component, it is necessary to understand the effect of stress ratio, R, on fatigue limit of ductile cast iron in the presence of small defects. Correspondingly in this study, rotating bending fatigue tests at R = -1 and tension-compression fatigue tests at R = -1 and 0.1 were performed by using a ferritic-pearlitic ductile cast iron. To study the effects of small defects, we introduced a small drilled hole at surface of a specimen. The diameter and depth of a drilled hole were 50, 200 and 500 μm, respectively. The non-propagating cracks emanating from graphite particles and holes edge were observed at fatigue limit, irrespective of the value of stress ratio. From the microscopic observation of crack propagation behavior, it can be concluded that the fatigue limit is determined by the threshold condition for propagation of a small crack. It was found that the effect of stress ratio on the fatigue limit of ductile cast iron with small defects can be successfully predicted based on \\sqrt {area} parameter model. Furthermore, a use of the tensile strength, σ B, instead of the Vickers hardness, HV, is effective for fatigue limit prediction.

  13. EVALUATION OF MACHINABILITY OF DUCTILE IRONS ALLOYED WITH Ni AND Cu IN TERMS OF CUTTING FORCES AND SURFACE QUALITY

    Directory of Open Access Journals (Sweden)

    Yücel AŞKUN

    2003-02-01

    Full Text Available Due to the enhanced strength, ductility and thoughness of Ductile Iron (DI when compared to the other types cast iron, its machinability is relatively poor. When a steel part is replaced with ductile iron, however, better machinability is considered to be the most important gain. This study presents the results of machining tests of ductile irons alloyed with Ni and Cu at various contents to determine the effect of their microstructure and mechanical properties on cutting forces and surface roughness. Six different specimen groups of ductile iron alloyed with various amounts of nickel and copper were subjected to machining tests and their machinabilities were investigated based on cutting forces and surface roughness criteria. The results were evaluated according to microstructure and mechanical properties of specimens determined before. In terms of both criterion, the best result obtained was specimen added 0.7 % Ni and 0.7 % Cu. When the specimens were evaluated according to their mechanical properties, the specimens alloyed 1 % Ni and 0.65 % Cu seemed promising.

  14. The Evaluation of Varying Ductile Fracture Criteria for 3Cr20Ni10W2 Austenitic Heat-Resistant Alloy

    Directory of Open Access Journals (Sweden)

    Yu-Feng Xia

    2013-01-01

    Full Text Available Most bulk metal forming processes may be limited by ductile fracture, such as an internal or surface fracture developing in the workpiece. Finding a way to evaluate the ductile fracture criteria (DFC and identify the relationships between damage evolution and strain-softening behavior of 3Cr20Ni10W2 heat-resistant alloy is very important, which, however, is a nontrivial issue that still needs to be addressed in greater depth. Based on cumulative damage theory, an innovative approach involving heat physical compression experiments, numerical simulations, and mathematical computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions. It is concluded that, as for strain-softening material, ductile damage starts at work hardening phase, and the damage cumulation is more sensitive in work hardening phase than in work softening phase. In addition, DFC of 3Cr20Ni10W2 heat-resistant alloy in a wide temperature range of 1203∼1403 K and the strain rate of 0.01∼10 s−1 are not constant but change in a range of 0.099∼0.197; thus they have been defined as varying ductile fracture criteria (VDFC and characterized by a function of strain rate and temperature. According to VDFC diagram, the exact fracture moment and position during various forming processes will be predicted conveniently.

  15. 40 CFR 440.100 - Applicability; description of the copper, lead, zinc, gold, silver, and molybdenum ores subcategory.

    Science.gov (United States)

    2010-07-01

    ... any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach... copper, lead, zinc, gold, silver, and molybdenum ores subcategory. 440.100 Section 440.100 Protection of... DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.100...

  16. Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water

    Science.gov (United States)

    Spadaro, Salvatore; Bonsignore, Martina; Fazio, Enza; Cimino, Francesco; Speciale, Antonio; Trombetta, Domenico; Barreca, Francesco; Saija, Antonina; Neri, Fortunato

    2018-01-01

    he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm) are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay

  17. Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water

    Directory of Open Access Journals (Sweden)

    Spadaro Salvatore

    2018-01-01

    Full Text Available he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay

  18. Silver and Molybdenum Codoped TiO2: Visible Light Active Photocatalyst for Photoelectrochemical Applications

    Science.gov (United States)

    Gul, Sahar Ramin; Khan, Matiullah; Yi, Zeng; Wu, Bo; Fawad, U.

    2017-11-01

    To improve the photoelectrochemical properties of TiO2, an approach of codoping is introduced to simultaneously tailor the band gap and control the life time of photoexcited electron-hole pairs. Molybdenum doping is used to extend the optical absorption of TiO2 while silver inclusion in the molybdenum-doped TiO2 network improves the separation between the photogenerated carriers leading to improved photodegradation response. X-ray photoelectron spectroscopy (XPS) confirmed the existence of dopant atoms in the bulk lattice and the codoped sample exhibits enhanced photodegradation performance compared to monodoped samples. With less structure modifications and stable structure, the silver molybdenum codoped TiO2 highly improve the wide functionalities of TiO2 in photoelectrochemical applications.

  19. DFT study of the molybdenum-catalyzed deoxydehydration of vicinal diols.

    Science.gov (United States)

    Lupp, Daniel; Christensen, Niels Johan; Dethlefsen, Johannes R; Fristrup, Peter

    2015-02-16

    The mechanism of the molybdenum-catalyzed deoxydehydration (DODH) of vicinal diols has been investigated using density functional theory. The proposed catalytic cycle involves condensation of the diol with an Mo(VI) oxo complex, oxidative cleavage of the diol resulting in an Mo(IV) complex, and extrusion of the alkene. We have compared the proposed pathway with several alternatives, and the results have been corroborated by comparison with the molybdenum-catalyzed sulfoxide reduction recently published by Sanz et al. and with experimental observations for the DODH itself. Improved understanding of the mechanism should expedite future optimization of molybdenum-catalyzed biomass transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. DFT Study of the Molybdenum-Catalyzed Deoxydehydration of Vicinal Diols

    DEFF Research Database (Denmark)

    Lupp, Daniel; Christensen, Niels Johan; Dethlefsen, Johannes Rytter

    2015-01-01

    The mechanism of the molybdenum-catalyzed deoxydehydration (DODH) of vicinal diols has been investigated using density functional theory. The proposed catalytic cycle involves condensation of the diol with an MoVI oxo complex, oxidative cleavage of the diol resulting in an MoIV complex, and extru......The mechanism of the molybdenum-catalyzed deoxydehydration (DODH) of vicinal diols has been investigated using density functional theory. The proposed catalytic cycle involves condensation of the diol with an MoVI oxo complex, oxidative cleavage of the diol resulting in an MoIV complex......, and extrusion of the alkene. We have compared the proposed pathway with several alternatives, and the results have been corroborated by comparison with the molybdenum- catalyzed sulfoxide reduction recently published by Sanz et al. and with experimental observations for the DODH itself. Improved understanding...

  1. Ductility of Advanced High-Strength Steel in the Presence of a Sheared Edge

    Science.gov (United States)

    Ruggles, Tim; Cluff, Stephen; Miles, Michael; Fullwood, David; Daniels, Craig; Avila, Alex; Chen, Ming

    2016-07-01

    The ductility of dual-phase (DP) 980 and transformation-induced plasticity (TRIP) assisted bainitic ferritic (TBF) 980 steels was studied in the presence of a sheared edge. Specimens were tested in uniaxial tension in a standard test frame as well as in situ in the scanning electron microscope (SEM). Incremental tensile straining was done in the SEM with images taken at each strain increment. Then digital image correlation (DIC) was used to compute the effective strain at the level of the individual phases in the microstructure. Shear banding across multiple phases was seen in strained TBF specimens, while the DP specimens exhibited more of a patchwork strain pattern, with high strains concentrated in ferrite and low strains observed in the martensite. Two-point statistics were applied to the strain data from the DIC work and the corresponding microstructure images to evaluate the effect of phase hardness on localization and fracture. It was observed that the DP 980 material had a greater tendency for localization around hard phases compared to the TBF 980. This at least partially explains the greater ductility of the TBF material, especially in specimens where a sheared edge was present.

  2. A Preliminary Investigation of Ductility-Enhancement Mechanism through In Situ Nanofibrillation in Thermoplastic Matrix Composites

    Directory of Open Access Journals (Sweden)

    Bhaskar Patham

    2013-01-01

    Full Text Available A preliminary investigation of interrelationships between tensile stress-strain characteristics and morphology evolution during deformation is conducted on a commercially available thermoplastic composite with a low-surface-energy nanofibrillating poly(tetrafluoroethylene (PTFE additive. In this class of composites, the deformation-associated nanofibrillation of the low-surface-energy additive has been hypothesized to provide an additional dissipation mechanism, thereby enhancing the ductility of the composite. This class of composites offers potential for automotive light weighting in exterior and interior body and fascia applications; it is therefore of interest to investigate processing-structure-property interrelationships in these materials. This study specifically probes the interrelationships between the plastic deformation within the matrix and the fibrillation of the low-surface-energy additive; tensile tests are carried out at two different temperatures which are chosen so as to facilitate and suppress plastic deformation within the matrix polymer. Based on these preliminary investigations, it is noted that PTFE fibrillation acts synergistically with the ductile deformation of the matrix resin resulting in higher strains to failure of the composite; the results also suggest that the mechanism of fibrillation-assisted enhancement of strains to failure may not operate in the absence of matrix plasticity.

  3. Modelling of liquid sodium induced crack propagation in T91 martensitic steel: Competition with ductile fracture

    Energy Technology Data Exchange (ETDEWEB)

    Hemery, Samuel [Institut PPRIME, CNRS, Université de Poitiers, ISAE ENSMA, UPR 3346, Téléport 2, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Berdin, Clotilde, E-mail: clotilde.berdin@u-psud.fr [Univ Paris-Sud, SP2M-ICMMO, CNRS UMR 8182, F-91405 Orsay Cedex (France); Auger, Thierry; Bourhi, Mariem [Ecole Centrale-Supelec, MSSMat CNRS UMR 8579, F-92295 Chatenay Malabry Cedex (France)

    2016-12-01

    Liquid metal embrittlement (LME) of T91 steel is numerically modeled by the finite element method to analyse experimental results in an axisymmetric notched geometry. The behavior of the material is identified from tensile tests then a crack with a constant crack velocity is introduced using the node release technique in order to simulate the brittle crack induced by LME. A good agreement between the simulated and the experimental macroscopic behavior is found: this suggests that the assumption of a constant crack velocity is correct. Mechanical fields during the embrittlement process are then extracted from the results of the finite element model. An analysis of the crack initiation and propagation stages: the ductile fracture probably breaks off the LME induced brittle fracture. - Highlights: • T91 martensitic steel is embrittled by liquid sodium depending on the loading rate at 573 K. • The mechanical behavior is modeled by a von Mises elastic-plastic law. • The LME induced crack propagates at a constant velocity. • The mechanical state at the crack tip does not explain a brittle crack arrest. • The occurrence of the ductile fracture breaks off the brittle fracture.

  4. An investigation of the loss of ductility in hydrogen charged beta-Ti alloys

    Science.gov (United States)

    Robertson, Ian M.

    1995-01-01

    The high strength, low density, and good corrosion resistance of Ti-based alloys make them candidate materials for a number of applications in the aerospace industry. A major limitation in the use of these alloys in the advanced hypersonic flight vehicle program is their susceptibility to hydrogen embrittlement. This study focuses on the hydrogen sensitivity of TIMETAL 21S beta-Ti alloy. The material received was in the form of grip-ends of failed tensile test samples which had been exposed to different charging conditions (combinations of hydrogen pressure and temperature). The samples received, the charging conditions, and their fracture mode are discussed. It can be seen that the fracture behavior changes from ductile to brittle with increasing hydrogen content, but the transition in behavior occurs for a small increase in hydrogen concentration. The aim of this program was to assess the microstructural differences between the ductile and brittle alloys to ascertain the embrittlement mechanism. A range of tools which included x-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used.

  5. Modeling of evolution of shape of ductile metal disk for isotropic bombardment

    Science.gov (United States)

    Osipov, Dulustaan R.; Yakovlev, Boris V.; Matveev, Andrei I.; Osipov, Dulustan A.

    2017-11-01

    This work is devoted to a calculation of formation time of a toroidal shape of a flat piece of ductile metal in enrichment of minerals. Gold grains occurring in nature, in most cases, originally have a form of a flat plate (the scaly form). Continuous bombardment of the surface of a piece of gold with surrounding grains of sand during the enrichment of ores in various jigging, separation, and crusher devices results in the piece assuming a toroidal shape. When separating, the shape of the grains in the form of a torus is considered to be the most effective. Therefore, the problem of calculation of the formation time of the toroidal shape of the piece of gold is urgent. In this paper, we propose a physical model for the formation of the toroidal shape of the piece of ductile metal, in which an isotropic, homogeneous flow of particles deforming a plane body (disk) is introduced. Based on the proposed physical model, a mathematical model of evolution of the surface under deformation of a body was developed. A first-order differential equation is obtained with respect to the deformable surface, which is solved by the Runge-Kutta method. As a result of the study, the dependence of the deformed surface on the time was determined.

  6. Effects of boron addition and austempering time on microstructure, hardness and tensile properties of ductile irons

    Energy Technology Data Exchange (ETDEWEB)

    Guerra L, F.V. [Instituto de Inv. En Metalurgia y Materiales UMSNH, México (Mexico); Bedolla-Jacuinde, A., E-mail: abedollj@icloud.com [Instituto de Inv. En Metalurgia y Materiales UMSNH, México (Mexico); Mejía, I. [Instituto de Inv. En Metalurgia y Materiales UMSNH, México (Mexico); Facultad de Ingeniería Mecánica UAEH, México (Mexico); Zuno, J. [Facultad de Ingeniería Mecánica UAEH, México (Mexico); Maldonado, C. [Instituto de Inv. En Metalurgia y Materiales UMSNH, México (Mexico)

    2015-11-11

    The present work analyzes the effect of boron addition to an Austempered Ductile Iron, in amounts from zero to 120 ppm. It has been found that boron has a strong effect on the equivalent carbon content, resulting in an increase on the precipitated graphite volume and a decrease in the dissolved carbon content in the matrix. This in turn, increases the ferrite volume fraction in the as-cast conditions from 0.24 in the base alloy to 0.78 for the iron with 120 ppm of boron. Furthermore, a decrease in the nodularity from 100% in the base alloy to 83% with 120 ppm of boron has been observed. During austempering, the transformation to ausferrite was faster and lower volumes of martensite and unstable austenite were detected when boron increased; this promoted lower hardness values, 239 HV for the base iron and 189 HV for the 120 ppm boron alloy. The increase in hardness and strength, typical for the start of bainite formation, were not observed in the boron added irons, but just in the base alloy. Under this basis, it is assumed that at least the addition of 60 ppm of boron extended the optimal processing window. The higher values of strength and ductility were obtained for the alloy with 60 ppm of boron; these results are discussed in terms of the graphitizing effect of boron in these irons and the reduced amount of carbon dissolved in austenite.

  7. Influence of the surface roughness on the fatigue properties in ausferritic ductile irons (ADI

    Directory of Open Access Journals (Sweden)

    Svenningsson Roger

    2014-06-01

    Full Text Available Heat treatment of cast ductile iron (DI to ausferritic ductile iron (ADI is known to increase fatigue properties. However, the surface roughness of the cast material is also of significant importance. In this investigation, test rods with seven different surface qualities were cast from the same melt i.e. with same chemical composition. The surfaces of the test rods were varied by a number of parameters; grain size of the moulding sand, coated or non-coated mould surfaces, as-cast or machined and polished, shot peened or not. In addition, a reference material in conventional DI was cast and tested. All eight series were subjected to high-cycle fatigue bending tests. The results show that surface defects, such as micro porosity and minor inclusions drastically decrease the fatigue properties. For some ADI materials the stress amplitude limit was actually lower compared to the non-heat treated DI. The machined, polished and shot-peened material demonstrated the best fatigue properties, which is as expected.

  8. Gradient twinned 304 stainless steels for high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiying [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai (China); Liu, Jiabin; Wang, Hongtao [Institute of Applied Mechanics, Zhejiang University, Hangzhou (China); Lu, Jian, E-mail: jianlu@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Y. Morris, E-mail: ymwang@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2016-06-14

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility, leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.

  9. Ductility and performance assessment of high strength self compacting concrete (HSSCC) deep beams: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadhassani, Mohammad, E-mail: mmh356@yahoo.com [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia); Jumaat, Mohd Zamin; Jameel, Mohammed [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia); Badiee, Hamid [Department of Civil Engineering, University of Kerman (Iran, Islamic Republic of); Arumugam, Arul M.S. [Department of Civil Engineering, University of Malaya, Kuala Lumpur (Malaysia)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Ductility decreased with increase in tensile reinforcement ratio. Black-Right-Pointing-Pointer The width of the load point and the support point influences premature failure. Black-Right-Pointing-Pointer Load-deflection relationship is linear till 85% of the ultimate load. Black-Right-Pointing-Pointer The absorbed energy increases with the increase of tensile reinforcement ratios. - Abstract: The behavior of deep beams is significantly different from that of normal beams. Because of their proportions, deep beams are likely to have strength controlled by shear. This paper discusses the results of eight simply supported high strength self compacting concrete (HSSCC) deep beams having variation in ratio of web reinforcement and tensile reinforcement. The deflection at two points along the beam length, web strains, tensile bars strains and the strain at concrete surface are recorded. The results show that the strain distribution at the section height of mid span is nonlinear. Ductility decreased with increase in tensile reinforcement ratio. The effect of width of load point and the support point is more important than the effect of tensile reinforcement ratio in preventing premature failure. Load-deflection graphs confirm linear relationship up to 85% of the ultimate load for HSSCC over-reinforcement web sections. The absorbed energy index increases with the increase in tensile reinforcement ratios.

  10. Creep ductility of iron at very low strain rates: The effects of sulfur

    Energy Technology Data Exchange (ETDEWEB)

    George, E.P. [Oak Ridge National Lab., TN (United States); Sklenicka, V. [Ceskoslovenska Akademie Ved, Brno (Czech Republic). Ustav Fyzikalni Metalurgie; Pope, D.P. [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering

    1992-12-31

    Creep ductility of iron containing sulfur (200, 20 and 1 wt ppm) was measured as a function of stress and temperature in constant-stress creep tests at 673, 773, 873, and 973 K in H{sub 2}. Failure times ranged from one minute to one year. Creep strengths of the 20 and 1 ppm S material were similar, but the 200 ppm S material was stronger than the other two, especially at very low strain rates. Also, at a given strain rate, a ductility minimum is seen at 873 K, the depth of which increases with sulfur content and is result of increased intergranular failure. The strain rate (or reciprocal of failure time) at which the failure mode changes from transgranular to intergranular fracture decreases with decreasing sulfur content. Intergranular creep cavities were found to nucleate on sulfides in the high-sulfur material, and on unidentified small particles{emdash}presumably oxides{emdash}in the other two. It is concluded that creep cavities nucleate easily on FeS particles but that nucleation on oxide particles is more difficult, especially when the interfacial sulfur content is low. However, it is not possible to totally prevent cavity nucleation even after reducing the sulfur level to 1 ppm. 17 refs, 7 figs, 2 tabs.

  11. The Ductile Design Concept for Seismic Actions in Miscellaneous Design Codes

    Directory of Open Access Journals (Sweden)

    M. Budescu

    2009-01-01

    Full Text Available The concept of ductility estimates the capacity of the structural system and its components to deform prior to collapse, without a substantial loss of strength, but with an important energy amount dissipated. Consistent with the „Applied Technology Council” (ATC-34, from 1995, it was agreed that the reduction seismic response factor to decrease the design force. The purpose of this factor is to transpose the nonlinear behaviour of the structure and the energy dissipation capacity in a simplified form that can be used in the design stage. Depending on the particular structural model and the design standard the used values are different. The paper presents the characteristics of the ductility concept for the structural system. Along with this the general way of computing the reserve factor with the necessary explanations for the parameters that determine the behaviour factor are described. The purpose of this paper is to make a comparison between different international norms for the values and the distribution of the behaviour factor. The norms from the following countries are taken into consideration: the United States of America, New Zealand, Japan, Romania and the European general seismic code.

  12. Creep and rupture of an ODS alloy with high stress rupture ductility. [Oxide Dispersion Strengthened

    Science.gov (United States)

    Mcalarney, M. E.; Arsons, R. M.; Howson, T. E.; Tien, J. K.; Baranow, S.

    1982-01-01

    The creep and stress rupture properties of an oxide (Y2O3) dispersion strengthened nickel-base alloy, which also is strengthened by gamma-prime precipitates, was studied at 760 and 1093 C. At both temperatures, the alloy YDNiCrAl exhibits unusually high stress rupture ductility as measured by both elongation and reduction in area. Failure was transgranular, and different modes of failure were observed including crystallographic fracture at intermediate temperatures and tearing or necking almost to a chisel point at higher temperatures. While the rupture ductility was high, the creep strength of the alloy was low relative to conventional gamma prime strengthened superalloys in the intermediate temperature range and to ODS alloys in the higher temperature range. These findings are discussed with respect to the alloy composition; the strengthening oxide phases, which are inhomogeneously dispersed; the grain morphology, which is coarse and elongated and exhibits many included grains; and the second phase inclusion particles occurring at grain boundaries and in the matrix. The creep properties, in particular the high stress dependencies and high creep activation energies measured, are discussed with respect to the resisting stress model of creep in particle strengthened alloys.

  13. Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces.

    Science.gov (United States)

    Shimizu, Michiko; Saito, Tsuguyuki; Fukuzumi, Hayaka; Isogai, Akira

    2014-11-10

    Hydrophobic, ductile, and transparent nanocellulose films were prepared by casting and drying aqueous dispersions of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibrils (TOCNs) with quaternary alkylammoniums (QAs) as counterions for the surface carboxylate groups. TOCN films with tetramethylammonium and tetraethylammonium carboxylates showed high optical transparencies, strain-to-failure values (14-22%), and work-of-fracture values (20-27 MJ m(-3)). The ductility of these films was likely caused by the alkyl chains of the QA groups densely covering the TOCN surfaces and being present at the interfaces between the TOCN elements in the films. The water contact angle of the TOCN-QA films increased to ∼100° by introducing tetra(n-butyl)ammonium groups as counterions. Thus, TOCN film properties can be controlled by changing the chemical structure of the counterions from Na to QAs. The hydrophilic TOCN surfaces can be changed to hydrophobic simply and efficiently by the conversion from TOCN-Na to TOCN-QA, when TOCNs are used as nanofillers in hydrophobic polymer matrices.

  14. PREDICTION OF CHARACTERISTIC LENGTH AND FRACTURE TOUGHNESS IN DUCTILE-BRITTLE TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P

    2008-04-15

    Finite element method was used to analyze the three-point bend experimental data of A533B-1 pressure vessel steel obtained by Sherry, Lidbury, and Beardsmore [1] from -160 to -45 C within the ductile-brittle transition regime. As many researchers have shown, the failure stress ({sigma}{sub f}) of the material could be approximated as a constant. The characteristic length, or the critical distance (r{sub c}) from the crack tip, at which {sigma}{sub f} is reached, is shown to be temperature dependent based on the crack tip stress field calculated by the finite element method. With the J-A{sub 2} two-parameter constraint theory in fracture mechanics, the fracture toughness (J{sub C} or K{sub JC}) can be expressed as a function of the constraint level (A{sub 2}) and the critical distance r{sub c}. This relationship is used to predict the fracture toughness of A533B-1 in the ductile-brittle transition regime with a constant {sigma}{sub f} and a set of temperature-dependent r{sub c}. It can be shown that the prediction agrees well with the test data for wide range of constraint levels from shallow cracks (a/W= 0.075) to deep cracks (a/W= 0.5), where a is the crack length and W is the specimen width.

  15. Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2016-08-15

    In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

  16. Evaluating the ductility characteristics of self-centering buckling-restrained shape memory alloy braces

    Science.gov (United States)

    Abou-Elfath, Hamdy

    2017-05-01

    Recently, self-centering earthquake resistant systems have attracted attention because of their promising potential in controlling the residual drifts and reducing repair costs after earthquake events. Considerable portion of self-centering research is based on using short-segment superelastic shape memory alloy (SMA) braces as strengthening technique because of the lower modulus of elasticity of SMA in comparison with that of steel. The goal of this study is to investigate the ductility characteristics of these newly proposed short-segment SMA braces to evaluate their safety levels against fracture failures under earthquake loading. This goal has been achieved by selecting an appropriate seismic performance criterion for steel frames equipped with SMA braces, defining the level of strain capacity of SMA and calculating the strain demands in the SMA braces by conducting a series of pushover and earthquake time history analyzes on typical frame structure. The results obtained in this study indicated the inability of short-segment SMA designs to provide adequate ductility to the lateral resistant systems. An alternative approach is introduced by using hybrid steel-SMA braces that are capable of controlling the residual drifts and providing the structure with adequate lateral stiffness.

  17. DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS IN FUSION REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H.; Setyawan, Wahyu; Roosendaal, Timothy J.; Overman, Nicole R.; Borlaug, Brennan A.; Stevens, Erica L.; Wagner, Karla B.; Kurtz, Richard J.; Odette, G Robert; Nguyen, Ba Nghiep; Cunningham, Kevin

    2017-05-01

    Tungsten (W) and W-alloys are the leading candidates for plasma-facing components in nuclear fusion reactor designs because of their high melting point, strength retention at high temperatures, high thermal conductivity, and low sputtering yield. However, tungsten is brittle and does not exhibit the required fracture toughness for licensing in nuclear applications. A promising approach to increasing fracture toughness of W-alloys is by ductile-phase toughening (DPT). In this method, a ductile phase is included in a brittle matrix to prevent on inhibit crack propagation by crack blunting, crack bridging, crack deflection, and crack branching. Model examples of DPT tungsten are explored in this study, including W-Cu and W-Ni-Fe powder product composites. Three-point and four-point notched and/or pre-cracked bend samples were tested at several strain rates and temperatures to help understand deformation, cracking, and toughening in these materials. Data from these tests are used for developing and calibrating crack-bridging models. Finite element damage mechanics models are introduced as a modeling method that appears to capture the complexity of crack growth in these materials.

  18. 3D Quantitative Analysis of Graphite Morphology in Ductile Cast Iron by X-ray Microtomography

    Science.gov (United States)

    Yin, Yajun; Tu, Zhixin; Zhou, Jianxin; Zhang, Dongqiao; Wang, Min; Guo, Zhao; Liu, Changchang; Chen, Xiang

    2017-08-01

    In this article, X-ray microtomography and color metallographic techniques have been used to perform three-dimensional quantitative characterization of graphite nodule morphology in a step-shaped ductile cast iron casting. Statistical analyses of the graphite nodule count, diameter, sphericity, and spatial distribution have been processed for three samples in detail. The results reveal that graphite nodules in ductile cast iron can be categorized into two categories. The first types are nodules located in eutectic cells (NIECs), and the other one refers to nodules located between the eutectic cells (NBECs). The NIECs possess a larger average diameter but smaller sphericity compared with the NBECs, and the sphericity decreases along with the increasing of diameter. The increasing casting thickness results in an increasing count and percentage of NBECs. In addition, most nodules are NIECs in thin walls instead of NBECs in thick walls. Nonuniform spatial distributions of graphite nodules caused by the existence of NBECs have been found to become more obvious along with the increase of cast thickness.

  19. REACTION PRODUCTS AND CORROSION OF MOLYBDENUM ELECTRODE IN GLASS MELT CONTAINING ANTIMONY OXIDES AND SODIUM SULFATE

    Directory of Open Access Journals (Sweden)

    JIŘÍ MATĚJ

    2012-09-01

    Full Text Available The products on the interface of a molybdenum electrode and glass melt were investigated primarily at 1400°C in three model glass melts without ingredients, with 1 % Sb2O3 and with 1 % Sb2O3 and 0.5 % SO3 (wt. %, both under and without load by alternating current. Corrosion of the molybdenum electrode in glass melt without AC load is higher by one order of magnitude if antimony oxides are present. The corrosion continues to increase if sulfate is present in addition to antimony oxides. Isolated antimony droplets largely occur on the electrode-glass melt interface, and numerous droplets are also dissipated in the surrounding glass if only antimony oxides are present in the glass melt. A comparatively continuous layer of antimony occurs on the interface if SO3 is also present, antimony being always in contact with molybdenum sulfide. Almost no antimony droplets are dissipated in the glass melt. The total amount of precipitated antimony also increases. The presence of sulfide on the interface likely facilitates antimony precipitation. The reaction of molybdenum with antimony oxides is inhibited in sites covered by an antimony layer. The composition of sulfide layers formed at 1400°C approximates that of Mo2S3. At 1100°C, the sulfide composition approximates that of MoS4. Corrosion multiplies in the glass melt without additions through the effect of AC current, most molybdenum being separated in the form of metallic particles. Corrosion also increases in the glass melt containing antimony oxides. This is due to increased corrosion in the neighborhood of the separated antimony droplets. This mechanism also results in the loosening of molybdenum particles. The amount of precipitated antimony also increases through the effect of the AC current. AC exerts no appreciable effect on either corrosion, the character of the electrode-glass interface, or antimony precipitation in the glass melt containing SO3.

  20. Catalytic determination of molybdenum by means of the sodium perborate/bromide/ascorbic acid Landolt reaction using potentiometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shraydeh, B.F. (An-Najah National Univ., Nablus (Israel)) Svehla, G. (University College, Cork (Ireland))

    1992-06-01

    Molybdenum is considered to be an important element in agriculture for its presence in soil is essential for the fixation of nitrogen by certain plants. If the Molybdenum concentration exceeds a certain limit then it can be detrimental and harmful to grazing animals. A new catalytic method for the determination of 0.1-10 ppm molybdenum is described. Molybdenum catalyzes the perborate - bromide ascorbic acid Landolt reaction at pH 3.64. The rate is monitored by potentiometry. A calibration graph is based on the ratio of the reaction times for the blank and the sample, (t(o)/t(c)), plotted against the concentration of molybdenum. Optimal conditions for the determination are discussed. Also the effect of various ions and interferences are described.

  1. An Improved Approach to Fracture Toughness Assessment of Brittle Coating on Ductile Substrate Systems under Indentation

    Science.gov (United States)

    Demidova, Natalia V.

    Fracture toughness is an important material property that determines the structural integrity of a component with pre-existing or service-generated flaws. In the present research, an indentation-based method and the associated fracture mechanics model are proposed for fracture toughness assessment of brittle coating/ductile substrate systems. The proposed models consider well-developed radial/median cracks generated under sharp indentation, despite that the crack formation process may have gone through crack initiation and propagation phases. For generality, the geometry of a well-developed crack is assumed to be semi-elliptical in shape. The driving force of the crack is considered to stem from the residual plastic zone expansion under the indenter, as well as the far-field Boussinesq (elastic) stress. Three well-defined configurations are studied. For the first configuration, a crack with a depth of less than 7% of the coating thickness is considered. In this case, the problem is treated as the one for the monolithic material with the coating material properties. For the second configuration, a crack that runs deeper than 7% of the coating thickness but is still within the coating layer is analyzed. In this case, the composite hardness is introduced into the analysis to account for the influence of the substrate material properties; and furthermore, an interface correction factor is proposed to take into account the presence of the coating/substrate interface and its influence on the stress intensity factor of the well-developed elliptical cracks. For the third configuration, a crack penetrating into the substrate is considered. In this case, based on the condition of deformation compatibility across the coating/substrate interface, the bulk modulus for the coating/substrate system is introduced into the analysis. A series of indentation tests are conducted on a WC/10Co/4Cr coating/1080 low carbon steel substrate specimen, which is a brittle coating on a ductile

  2. Well-Defined Silica Grafted Molybdenum Bis(imido) Catalysts for Imine Metathesis Reactions

    KAUST Repository

    Barman, Samir

    2017-04-06

    Novel site-isolated tetracoordinated molybdenum complexes possessing bis(imido) ligands, [(≡Si–O)2Mo(═NR)2] (R = t-Bu, 2,6-C6H3-i-Pr2), were immobilized on partially dehydroxylated silica (SiO2-200) by a rigorous surface organometallic chemistry protocol. The newly developed materials adorned with bis(imido) functional units, which were previously exploited mainly as spectator ligands on silica-supported olefin metathesis molybdenum catalysts, are found to be efficient heterogeneous catalytic systems for imine cross metathesis under mild conditions.

  3. Spectrographic analysis of uranium-molybdenum alloys; Analisis espectrografico de aleaciones uranio-molibdeno

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M.

    1967-07-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO{sub 3}. Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO{sub 3}. (Author) 5 refs.

  4. Nanostructures obtained from a mechanically alloyed and heat treated molybdenum carbide

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga Arceo, L. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico) and ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Orozco, E. [Instituto de Fisica UNAM, Apdo Postal 20-364, C.P. 01000 D.F. Mexico (Mexico)]. E-mail: eorozco@fisica.unam.mx; Mendoza-Leon, H. [ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Palacios Gonzalez, E. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: epalacio@imp.mx; Leyte Guerrero, F. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: fleyte@imp.mx; Garibay Febles, V. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: vgaribay@imp.mx

    2007-05-31

    Mechanical alloying was used to prepare molybdenum carbide. Microstructural characterization of samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Molybdenum carbide was heated at 800 {sup o}C for 15 min in order to produce carbon nanotubes. Nanoparticles of about 50-140 nm in diameter and nanotubes with diameters of about 70-260 nm and 0.18-0.3 {mu}m in length were obtained after heating at 800 {sup o}C, by means of this process.

  5. Mixing of electronic states in molybdenum complexes involved in nitrogen activation

    Energy Technology Data Exchange (ETDEWEB)

    Stranger, Robert [Department of Chemistry, Australian National University, Canberra ACT 0200 (Australia); School of Chemistry, University of Tasmania, Private Bag 75, Hobart TAS 7001 (Australia); Yates, Brian F. [Department of Chemistry, Australian National University, Canberra ACT 0200 (Australia); School of Chemistry, University of Tasmania, Private Bag 75, Hobart TAS 7001 (Australia)], E-mail: Brian.Yates@utas.edu.au

    2006-05-09

    The mechanism for nitrogen activation by molybdenum complexes is a complicated one, involving as it does the coupling of a quartet molybdenum reactant with a singlet nitrogen molecule, passing via a series of quartet and doublet encounter complexes to a triplet intermediate, with the subsequent spin crossing to the singlet surface which then leads via a singlet transition state to the final pair of singlet products. We have investigated in detail a variety of levels of theory to describe the crossing of these electronic surfaces and have calculated both lower-bound and actual minimum energy crossing points for the key spin inversion processes.

  6. Supported Molybdenum Catalysts for the Deoxydehydration of 1,4-Anhydroerythritol into 2,5-Dihydrofuran.

    Science.gov (United States)

    Sandbrink, Lennart; Beckerle, Klaus; Meiners, Isabell; Liffmann, Rebecca; Rahimi, Khosrow; Okuda, Jun; Palkovits, Regina

    2017-04-10

    Efficient deoxygenation strategies are crucial for the valorization of renewable feedstocks. Deoxydehydration (DODH) enables the direct transformation of two adjacent hydroxyl groups into a double bond. Supported molybdenum-based catalysts were utilized for the first time in DODH. MoOx /TiO2 showed superior catalytic activity compared to common molybdenum salts. The catalyst efficiently converted 1,4-anhydroerythritol into 2,5-dihydrofuran in the presence of 3-octanol as reducing agent, showing high reproducibility and stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite noduless

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat

    2015-01-01

    In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under...... the assumption of infinitesimal strains and plane-stress conditions. Despite the latter being a limitation with respect to full 3D models, it allows a direct comparison with experimental investigations of damage evolution on the surface of ductile cast iron components, where the stress state is biaxial in nature...

  8. Removing Molybdenum with the Microalgae Extracted from the Wastewater in Semiconductor Plants

    Science.gov (United States)

    Chiu, Yi-Chuan

    2017-04-01

    It has been well recognized that algae biomass can treat highly contaminated water in an effective way. Algae can grows in the natural environment without any care and can be efficiently cultivated. Both of living algae and dry algae biomass have been tested to absorb many kinds of toxic pollutants, because there are multiple functional groups on the algae surface capable of binding molybdenum. Therefore, algae become a good choice for the treatment of molybdenum in contaminated waters. In addition, in Taiwan, semiconductor industry is highly developed in the recent three decades. Subsequently, it is believed that some pollutants, such as molybdenum in this study, have become a threat to the surface water, groundwater and even the whole environment. In the previous studies, molybdenum is a well-known essential nutrient for the algae; therefore, the potential to remove molybdenum with algae from the wastewater is worth to be evaluated. The algae species, Chloroidium saccharophilum, was extracted from the wastewater in semiconductor plants for the study of removing molybdenum. A few sorption experiments have been conducted for evaluating the efficiency of removing molybdenum under different values of pH and molybdenum concentration. The absorption of Chloroidium saccharophilum can reach equilibrium in short times, which are 60 and 120 mins for molybdenum concentrations of 600 and 1200 ppb, respectively. The sorption experiments would accept the duration of 120 mins as the contact time and were performed at pH values of 6, 4 and 2 with different concentrations of molybdenum diluted by deionized water. The experiment data confirms that the isotherm has an excellent agreement on Langmuir adsorption model with the correlation coefficients (r2) of > 0.97. It demonstrates that the adsorption capacity (qmax) has an inverse relationship with pH value, which are 826, 2564 and 4761 mgkg-1 for pH 6, 4 and 2, respectively, while those of net enthalpy of adsorption (KL) are 3

  9. The Role of Oxygen in the Evolution of Molybdenum Nitrogenase

    Science.gov (United States)

    Peters, J.; Boyd, E. S.; Hamilton, T. L.

    2012-12-01

    Since early in Earth's history, the supply of nitrogen (N) into the biosphere has been controlled by the activity of nitrogenase, an oxygen sensitive enzyme that catalyzes the reduction of dinitrogen gas (N2) to bioavailable ammonia. The most common form of nitrogenase harbors a complex molybdenum (Mo) cofactor at its active site [Mo-nitrogenase (Nif)], although other phylogenetically related (alternative) forms of nitrogenase that differ in their active-site metal composition also likely contribute NH3 in environments that are limiting in Mo. The solubility of Mo is significantly influenced by redox and this fact has been used to argue that that the iron (Fe)-dependent nitrogenase (Anf) was predominant prior to ~ 2.5 Ga because oceans were depleted in Mo and rich in Fe. This hypothesis, however, is inconsistent with recent phylogenetic data which strongly suggest that Anf is derived from Nif. Here, we examine the evolutionary history of the Nif enzyme complex in reference to the physiological, biochemical, and morphological strategies for reducing damage by molecular oxygen. A total of 189 nif operons were characterized and quantitatively mapped on a NifHDK concatenated phylogenetic tree. An overlay of the primary mode of metabolism, as defined as either anaerobic (AN) or aerobic/facultative aerobic (AFA), on the NifHDK tree indicates that Nif originated in an anoxic environment and was first acquired in an AFA lineage within the actinobacteria. The complexity of nif operons increased during the evolutionary history of Nif, with a pronounced increase observed during the transition from AN to AFA modes of metabolism. This increase in operon complexity is accompanied by a number of gene loss (nifI1 and nifI2) and gene acquisition (nifW, nifT, nifZ, nifQ) events, with variation in the overall composition of nif operons attributable to adaptations that mediated the toxicity of O2. Collectively, these results underscore the role of O2 in shaping the evolutionary

  10. Optimization of the dissolution of molybdenum disks. FY-16 results

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey D. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James L. [Argonne National Lab. (ANL), Argonne, IL (United States); Krebs, John F. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    Argonne National Laboratory is providing technical development assistance to NorthStar Medical Technologies LLC in its pursuit of two pathways for production of molybdenum-99: the 98Mo(n,γ) 99Mo reaction and the photonuclear reaction, 100Mo(γ,n)99Mo. Processing of irradiated targets, from either production mode, requires dissolution of the target material in H2O2 followed by a concentration step, addition of ferric ion to precipitate impurities, and conversion of the final solution to 5M potassium hydroxide solution of potassium molybdate. Currently, NorthStar is using pressed and sintered Mo disks as targets. Several options are being considered for the design of Mo targets for the production of 99Mo using the (γ,n) reaction. In the current design, the target holder contains a series of sintered Mo disks lined up perpendicular to two incident electron beams, one entering from each side of the target stack. In this configuration, the front-most disks absorb most of the heat from the electron beam and need to be thinner to allow for better cooling, while the middle of the target can be thicker. Distribution of the total mass of Mo allows for larger masses of Mo material and thus larger production batches of 99Mo. A limitation of the sintering approach is the production of very thin disks. Recent advances in 3D printing allow for much thinner target components can be achieved than when the traditional press-and-sinter approach is used. We have demonstrated that several factors can play important roles in dissolution behavior: particle size of Mo metal used for production of targets, sintering conditions, degree of open porosity, and thickness of the sintered Mo targets. Here we report experimental results from studies of small-scale dissolution of sintered Mo disks fabricated from various recycled and commercial Mo materials, and dissolution of 3D-printed Mo disks that were

  11. Mechanical behavior of limestone undergoing brittle-ductile transition: experiments and model

    Science.gov (United States)

    Nicolas, Aurélien; Fortin, Jérôme; Verberne, Berend; Regnet, Jean-Baptiste; Plümper, Oliver; Dimanov, Alexandre; Spiers, Christopher; Guéguen, Yves

    2017-04-01

    With increasing confining pressure, carbonate rocks can undergo the brittle-ductile transition at room temperature. In order to examine the brittle-ductile transition, we performed constant strain rate triaxial deformation and stress-stepping creep experiments on Tavel limestone (porosity 14.7%) under various conditions. The evolution of elastic wave velocities were recorded during each experiment and inverted to crack densities. The constant strain rate triaxial experiments were performed for varying confining pressure from 5 to 90 MPa. For Pc≤55 MPa our results show that the behavior is brittle. The latter is characterized by dilatancy due to crack propagation, leading to a stress drop at failure. For Pc≥70 MPa, the behavior is semi-brittle with elastic compaction followed by inelastic compaction, then leading to dilatancy and eventual failure. The semi-brittle behavior is characterized by diffuse deformation. Inelastic compaction is due to intra-crystalline plasticity (dislocation motions and twinning) and micro-cracking. Constant strain rates experiments were modelled taking into account (1) crack propagation from pre-existing flaws, (2) plastic pore collapse and (3) crack nucleation from dislocation pile-ups. The obtained model predictions are in good agreement with our experimental data. Stress stepping (creep) experiments were performed in a range of confining pressures crossing the brittle-ductile transition (from 20 to 85 MPa). In the brittle regime, the time-dependent axial deformation is coupled with dilatancy and a decrease of elastic wave velocities, which is characteristic of crack nucleation and/or propagation. In the semi-brittle regime, the first steps are inelastic compactant due to plastic pore collapse. All following stress steps are dilatant as a result of crack nucleation and/or propagation. In general, our results show that the axial strain rate is always controlled by plastic phenomena, until the last step, during which the axial strain

  12. Structural dynamics of gas-phase molybdenum nanoclusters : A transmission electron microscopy study

    NARCIS (Netherlands)

    Vystavel, T; Koch, SA; Palasantzas, G; De Hosson, JTM

    2005-01-01

    In this paper we study structural aspects of molybdenum clusters by transmission electron microscopy. The deposited clusters with sizes 4 nm or larger show a body-centered crystal (bcc) structure. The clusters are self-assembled from smaller structural units and form cuboids with a typical size of 4

  13. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2014-01-01

    . In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density...

  14. Effect of molybdenum addition on microstructure and mechanical properties of plain carbon steel weld

    Directory of Open Access Journals (Sweden)

    Jyoti Menghani

    2016-12-01

    Full Text Available The present investigation has two main objectives; first is optimization of welding process parameters of submerged arc welding (SAW using Taguchi philosophy and second is to improve the mechanical properties such as strength and microhardness of weld joint by alloying with varying amounts of molybdenum. For optimization of welding process, parameters Taguchi philosophy have been applied on a mild steel plate (AISI C- 1020 of 10 mm thickness with 60o groove angle with arc voltage and welding speed as variables and bead width as output variables. A mathematical relationship between bead width, arc voltage and welding speed has also been found using multiple regression analysis for the present base metal plate geometry. After optimizing welding parameters, molybdenum has been added individually to the welding area in varying percentages. The properties of alloyed and unalloyed weld metal bead are compared. The mechanical characterization of weld has been done in terms of microhardness, tensile strength, whereas microstructural characterization has been performed using optical microscopy, XRD and EDS. The presence of molybdenum resulted in bainite structure in weld bead having a refined grain structure, enhancement in tensile strength and microhardness. The XRD results showed the formation of molybdenum carbides justifying the increase in microhardness value.

  15. High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution

    KAUST Repository

    Lu, Ang-Yu

    2016-08-31

    The remote hydrogen plasma is able to create abundant S-vacancies on amorphous molybdenum sulfide (a-MoSx) as active sites for hydrogen evolution. The results demonstrate that the plasma-treated a-MoSx exhibits superior performance and higher stability than Pt in a proton exchange membrane based electrolyzers measurement as a proof-of-concept of industrial application.

  16. Extended structure design with simple molybdenum oxide building blocks and urea as a directing agent

    NARCIS (Netherlands)

    Veen, S.J.; Roy, S.; Filinchuk, Y.; Chernyshov, D.; Petukhov, A.V.; Versluijs-Helder, M.; Broersma, A.; Soulimani, F.; Visser, T.; Kegel, W.K.

    2008-01-01

    We report here a simple one-pot directed synthesis of an oxomolybdate urea composite in which elementary molybdenum oxide building blocks are linked together with the aid of urea. This type of directed material design resulted in large rod-like crystals of an inorganic-organic hybrid extended

  17. Investigation of the interaction of benzene with vanadium-molybdenum oxide catalysts by programmed thermal desorption

    Energy Technology Data Exchange (ETDEWEB)

    Belokopytov, Yu.V.; Pyatnitskii, Yu.I.; Grebennikov, Yu.N.

    1985-09-01

    Programmed thermal desorption was used to investigate the interaction of benzene with vanadium-molybdenum oxide catalysts. It was established that the amount of maleic anhydride desorbed from the catalyst surface depends on the catalyst composition and that it varies with its activity and selectivity.

  18. The potential roles of lime and molybdenum on the growth, nitrogen ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-04-26

    Apr 26, 2010 ... 5.5 (Smith et al., 1997). Research evidence ... organic matter decomposition, release of inorganic nutrients for plant growth, N2 ...... line: 15/09/2009. Togay Y, Togay N, Dogan Y (2008). Research on the effect of phosphorus and molybdenum applications on the yield and yield parameters in lentil (Lens ...

  19. High thermoelectric performance of reduced lanthanide molybdenum oxides densified by spark plasma sintering

    DEFF Research Database (Denmark)

    Xu, Jianxiao Jackie; Sonne, Monica; Yanangiya, Shun-ichi

    2010-01-01

    Four highly reduced molybdenum oxides LnMo8O14 (Ln = La, Ce, Nd and Sm) containing bicapped Mo8 clusters were synthesized via solid state reaction followed by spark plasma sintering. The thermoelectric properties were investigated, and NdMo8O14 exhibits the best performance with the maximum power...

  20. Process for reducing the oxygen content of biomass using molybdenum-based catalysts

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention concerns a process for converting biomass into useful organic building blocks for the chemical industry. The process involves the reduction of a polyol wherein at least two of the hydroxyl groups are located on adjacent carbon atoms in the presence of a molybdenum...