WorldWideScience

Sample records for weight bearing bones

  1. Effects of weight bearing and non-weight bearing exercises on bone properties using calcaneal quantitative ultrasound.

    Science.gov (United States)

    Yung, P S; Lai, Y M; Tung, P Y; Tsui, H T; Wong, C K; Hung, V W Y; Qin, L

    2005-08-01

    This study was designed to investigate bone properties using heel quantitative ultrasound (QUS) in young adults participating in various sports. A cross sectional study was performed on Chinese male students (n = 55), aged 18-22 years. Subjects with previous fractures or suffering from any diseases known to affect bone metabolism or taking any medication with such an effect, were not included. The subjects were categorised according to their main sporting activities, including soccer (n = 15) (a high impact, weight bearing exercise), dancing (n = 10) (a low impact, weight bearing exercise), and swimming (n = 15) (non-weight bearing exercise). A sedentary group acted as controls (n = 15). A reproducibility study of the velocity of sound (VOS) and the broadband ultrasound attenuation (BUA) measurement was performed and analysed using the intraclass correlation coefficient (ICC). There was good intra-investigator and inter-investigator agreement (ICC > or = 0.8; p 0.05) were found between the dominant and non-dominant heel. Soccer players (137 +/- 4.3 dB/MHz; 1575 +/- 56 m/s; 544.1 +/- 48.4) and dancers (134.6 +/- 3.7 dB/MHz; 1538 +/- 46 m/s; 503.0 +/- 37.0) had significantly higher BUA, VOS, and stiffness index (SI) scores (p impact exercise was revealed in all QUS parameters (p < 0.05). This cross sectional study indicated that regular participation in weight bearing exercise in young people might be beneficial for accruing peak bone mass and optimising bone structure.

  2. Bone compaction enhances fixation of weight-bearing hydroxyapatite-coated implants

    DEFF Research Database (Denmark)

    Kold, Søren; Rahbek, Ole; Vestermark, Marianne

    2006-01-01

    The effect of bone compaction vs conventional drilling on the fixation of hydroxyapatite-coated implants was examined in a weight-bearing canine model. In each dog, one knee joint had the implant cavity prepared with drilling, the other with compaction. Eight dogs were euthanized after 2 weeks...

  3. Effects of weight-bearing exercise on bone health in girls: a meta-analysis.

    Science.gov (United States)

    Ishikawa, Saori; Kim, Youngdeok; Kang, Minsoo; Morgan, Don W

    2013-09-01

    Because growing bone possesses a greater capacity to adapt to mechanical loading than does mature bone, it is important for girls to engage in weight-bearing activities, especially since the prevalence of osteoporosis among older women is considerably higher than that of older men. In recent years, the osteogenic potential of weight-bearing activities performed by children and adolescents has received increasing attention and accumulating evidence suggests that this type of activity may improve bone health prior to adulthood and help prevent osteoporosis later in life. Because previous interventions have varied with respect to the exercise parameters studied and sometimes produced conflicting findings, this meta-analysis was undertaken to evaluate the impact of weight-bearing exercise on the bone health of female children and adolescents and quantify the influence of key moderating variables (e.g. pubertal stage, exercise mode, intervention strategy, exercise duration, frequency of exercise, programme length and study design) on skeletal development in this cohort. A comprehensive literature search was conducted using databases such as PubMed, MEDLINE, CINAHL, Web of Science, Physical Education Index, Science Direct and ProQuest. Search terms included 'bone mass', 'bone mineral', 'bone health', 'exercise' and 'physical activity'. Randomized- and non-randomized controlled trials featuring healthy prepubertal, early-pubertal and pubertal girls and measurement of areal bone mineral density (aBMD) or bone mineral content (BMC) using dual energy x-ray absorptiometry were examined. Comprehensive Meta-Analysis software was used to determine weighted mean effect sizes (ES) and conduct moderator analyses for three different regions of interest [i.e. total body, lumbar spine (LS), and femoral neck]. From 17 included studies, 72 ES values were retrieved. Our findings revealed a small, but significant influence of weight-bearing exercise on BMC and aBMD of the LS (overall ES 0

  4. Morphological and Microstructural Alterations of the Articular Cartilage and Bones during Treadmill Exercises with Different Additional Weight-Bearing Levels

    Directory of Open Access Journals (Sweden)

    Jiazi Gao

    2017-01-01

    Full Text Available The aim of this study was to investigate the morphological and microstructural alterations of the articular cartilage and bones during treadmill exercises with different exercise intensities. Sixty 5-week-old female rats were randomly divided into 10 groups: five additional weight-bearing groups (WBx and five additional weight-bearing with treadmill exercise groups (EBx, which were subjected to additional weight bearing of x% (x = 0, 5, 12, 19, and 26 of the corresponding body weight of each rat for 15 min/day. After 8 weeks of experiment, the rats were humanely sacrificed and their bilateral intact knee joints were harvested. Morphological analysis of the cartilages and microcomputed tomography evaluation of bones were subsequently performed. Results showed that increased additional weight bearing may lead to cartilage damage. No significant difference was observed among the subchondral cortical thicknesses of the groups. The microstructure of subchondral trabecular bone of 12% and 19% additional weight-bearing groups was significantly improved; however, the WB26 and EB26 groups showed low bone mineral density and bone volume fraction as well as high structure model index. In conclusion, effects of treadmill exercise on joints may be associated with different additional weight-bearing levels, and exercise intensities during joint growth and maturation should be selected reasonably.

  5. The effects of weight bearing yoga training on the bone resorption markers of the postmenopausal women.

    Science.gov (United States)

    Phoosuwan, Manop; Kritpet, Thanomwong; Yuktanandana, Pongsak

    2009-09-01

    This study was a preliminary report to investigate the effects of the weight bearing yoga training on both bone resorption marker and the quality of life of the postmenopausal women. The samples were recruited by the purposive sampling from the female Chulalongkorn University staff aged between 50-60 years. The subjects were divided into two groups: experimental group and control group. The baseline demographic data, the bone resorption marker (beta-CrossLaps), the bone formation marker (P1NP) and quality of Life (SF-36) data were collected. The experimental group attended the 12-week weight-bearing yoga training 3 days a week, 50 minutes a day while the control group lived their normal lives. After 12th week, the data collections were repeated in both groups. The experimental group (19 subjects, the mean age 54.320 yrs) and the control group (14 subjects, the mean age 54.430 yrs) were recruited. The mean ultrasound BMD of both heels in both groups showed no osteopenia or osteoporosis. After the 12-week training, the mean bone resorption marker (beta-CrossLaps) of the experimental group reduced from 0.464 to 0.339 ng/ml (-26.939%) whereas the control group reduced from 0.389 to 0.386 ng/ml (-0.771%). There was a significant difference (p bone formation markers (PINP) in the experimental group reduced from 55.393 to 42.401 ng/ml (-23.454%) and the bone formation markers (PINP) in the control group reduced from 61.903 to 44.832 ng/ml (-27.577%). In the area of the life quality measurement of both groups, the data obtained from the medical outcomes study short-form survey (SF-36) showed that there were significant differences at 0.05 levels for the physical functioning, bodily pain, general health, and vitality. The variance of percentage change value of the experimental group increased to +25.299, +16.565, +15.309, and +21.056. The variance of percentage change value of the control group increased to +12.946, -1.221, -9.303 and +2.291. The weigh-bearing yoga training

  6. Computational modelling of bone fracture healing under partial weight-bearing exercise.

    Science.gov (United States)

    Zhang, Lihai; Miramini, Saeed; Richardson, Martin; Ebeling, Peter; Little, David; Yang, Yi; Huang, Zhiyong

    2017-04-01

    A great deal of evidence suggests that partial weight-bearing exercise plays an important role in bone fracture healing. However, current physiotherapy program tends to follow the "Let's try it and see" strategy due to the lack of a fundamental understanding of in vivo mechanical environment required for the better healing outcomes. The purpose of present study is to develop an innovative framework to predict the healing outcomes as a result of post-surgical physical therapy. The raw acceleration data corresponding to a series of walking tests is firstly captured by ActiGraph accelerometers, and then used as input to theoretically estimate the peak ground reaction force (PGRF) and peak loading rate (PLR). Finally, the healing outcomes as a result of different walking speeds are predicated based on the interfragmentary movement (IFM) measured by using mechanical testing. The results show that PGRF and PLR are important factors for the callus tissue differentiation at the early stage of healing. The developed model could potentially allow the design of effective patient specific post-surgical physical therapy. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Bone loss during partial weight bearing (1/6th gravity) is mitigated by resistance and aerobic exercise in mice

    Science.gov (United States)

    Boudreaux, R. D.; Metzger, C. E.; Macias, B. R.; Shirazi-Fard, Y.; Hogan, H. A.; Bloomfield, S. A.

    2014-06-01

    Astronauts on long duration missions continue to experience bone loss, as much as 1-2% each month, for up to 4.5 years after a mission. Mechanical loading of bone with exercise has been shown to increase bone formation, mass, and geometry. The aim of this study was to compare the efficacy of two exercise protocols during a period of reduced gravitational loading (1/6th body weight) in mice. Since muscle contractions via resistance exercise impart the largest physiological loads on the skeleton, we hypothesized that resistance training (via vertical tower climbing) would better protect against the deleterious musculoskeletal effects of reduced gravitational weight bearing when compared to endurance exercise (treadmill running). Young adult female BALB/cBYJ mice were randomly assigned to three groups: 1/6 g (G/6; n=6), 1/6 g with treadmill running (G/6+RUN; n=8), or 1/6 g with vertical tower climbing (G/6+CLB; n=9). Exercise was performed five times per week. Reduced weight bearing for 21 days was achieved through a novel harness suspension system. Treadmill velocity (12-20 m/min) and daily run time duration (32-51 min) increased incrementally throughout the study. Bone geometry and volumetric bone mineral density (vBMD) at proximal metaphysis and mid-diaphysis tibia were assessed by in vivo peripheral quantitative computed tomography (pQCT) on days 0 and 21 and standard dynamic histomorphometry was performed on undemineralized sections of the mid-diaphysis after tissue harvest. G/6 caused a significant decrease (Pbone formation can be increased even in the presence of reduced weight bearing. These data suggest that moderately vigorous endurance exercise and resistance training, through treadmill running or climb training mitigates decrements in vBMD during 21 days of reduced weight bearing. Consistent with our hypothesis, tower climb training, most pronounced in the tibia mid-diaphysis, provides a more potent osteogenic response compared to treadmill running.

  8. Slow Recovery of Weight Bearing After Stabilization of Long-Bone Fractures Using Elastic Stable Intramedullary Nails in Children.

    Science.gov (United States)

    Lardelli, Patrizia; Frech-Dörfler, Martina; Holland-Cunz, Stefan; Mayr, Johannes

    2016-03-01

    Stabilization of diaphyseal long-bone fractures using elastic stable intramedullary nails (ESIN) in children promises early mobilization and rapid resumption of full weight bearing. We evaluated the duration of postoperative functional rehabilitation after ESIN, measured by the time from stabilization until first partial weight bearing, full weight bearing, and resumption of school sports. Fifty children with unstable, displaced fractures of the femur or lower leg treated with ESIN between 2002 and 2012 were included in this retrospective analysis. We classified fractures according to the pediatric comprehensive classification of fractures (PCCF). Thirty-five children sustained a femur fracture, and 15 children had a fracture of the lower leg or tibia. The surgeons in charge applied an additional plaster cast in 7 of 15 children who suffered a lower leg fracture. The postoperative time interval until full weight bearing in the group of children who had suffered transverse or short oblique femur fractures was significantly shorter (median: 4.4 weeks; range: 0.1-9.1 weeks) than that in the group who had sustained more complex fracture patterns (median: 6.8 weeks; range: 2.9-13.9 weeks; P = 0.04). Similarly, transverse and short oblique lower leg and tibia fractures required less time until full weight bearing (median: 4.1 weeks; range 2.7-6.0 weeks) than complex lower leg fractures (median: 6.1 weeks; range: 1.3-12.9 weeks; P = 0.04). ESIN proved fairly effective in restoring full weight bearing in transverse or short oblique fractures of the lower extremities but was less effective in complex fractures.

  9. Resistance training versus weight-bearing aquatic exercise: a cross-sectional analysis of bone mineral density in postmenopausal women.

    Science.gov (United States)

    Balsamo, Sandor; Mota, Licia Maria Henrique da; Santana, Frederico Santos de; Nascimento, Dahan da Cunha; Bezerra, Lídia Mara Aguiar; Balsamo, Denise Osti Coscrato; Borges, João Lindolfo Cunha; Paula, Ana Patrícia de; Bottaro, Martim

    2013-04-01

    Many studies have shown that resistance training has a positive effect on bone mineral density (BMD). However, few studies have compared the BMD of individuals undergoing resistance training and those training aquatic weight-bearing exercises. To compare, in a cross-sectional study, the BMD of postmenopausal women undergoing resistance training and postmenopausal women training aquatic weight-bearing exercises. The sample comprised 63 women divided into the following three groups: resistance training (STRENGTH: n = 15; 51.4 ± 2.7 years); aquatic weight-bearing exercises (WA-TER: n = 22; 54.5 ± 3.3 years); and non-trained controls ( n = 26; 52.0 ± 3.3 years). All volunteers were on hormone replacement therapy for at least one year. The STRENGTH and WATER groups were training for at least one year prior to study beginning (mean years of training - STRENGTH: 4.5 ± 2.0; WATER: 4.2 ± 2.2). The STRENGTH group had higher BMD of total body, femoral neck, lumbar spine L2-L4 as compared with the CONTROL group (all P aquatic weight-bearing exercises might be a non-pharmacological strategy to prevent BMD loss in postmenopausal women. 2013 Elsevier Editora Ltda. All rights reserved.

  10. Balancing the rates of new bone formation and polymer degradation enhances healing of weight-bearing allograft/polyurethane composites in rabbit femoral defects.

    Science.gov (United States)

    Dumas, Jerald E; Prieto, Edna M; Zienkiewicz, Katarzyna J; Guda, Teja; Wenke, Joseph C; Bible, Jesse; Holt, Ginger E; Guelcher, Scott A

    2014-01-01

    There is a compelling clinical need for bone grafts with initial bone-like mechanical properties that actively remodel for repair of weight-bearing bone defects, such as fractures of the tibial plateau and vertebrae. However, there is a paucity of studies investigating remodeling of weight-bearing bone grafts in preclinical models, and consequently there is limited understanding of the mechanisms by which these grafts remodel in vivo. In this study, we investigated the effects of the rates of new bone formation, matrix resorption, and polymer degradation on healing of settable weight-bearing polyurethane/allograft composites in a rabbit femoral condyle defect model. The grafts induced progressive healing in vivo, as evidenced by an increase in new bone formation, as well as a decrease in residual allograft and polymer from 6 to 12 weeks. However, the mismatch between the rates of autocatalytic polymer degradation and zero-order (independent of time) new bone formation resulted in incomplete healing in the interior of the composite. Augmentation of the grafts with recombinant human bone morphogenetic protein-2 not only increased the rate of new bone formation, but also altered the degradation mechanism of the polymer to approximate a zero-order process. The consequent matching of the rates of new bone formation and polymer degradation resulted in more extensive healing at later time points in all regions of the graft. These observations underscore the importance of balancing the rates of new bone formation and degradation to promote healing of settable weight-bearing bone grafts that maintain bone-like strength, while actively remodeling.

  11. An unusual case of hypercortisolism with multiple weight-bearing bone fractures.

    Science.gov (United States)

    Papadakis, Georgios; Uebelhart, Brigitte; Goumaz, Michel; Zawadynski, Sophie; Rizzoli, Rene

    2013-09-01

    Glucocorticoid excess, either from exogenous exposure or through endogenous overproduction, is a common cause of secondary osteoporosis. We report a 52-year-old woman presenting with multiple stress fractures of the lower extremities, despite various osteoporosis therapeutic regimens. Investigations led to the diagnosis of hypercortisolism of pituitary origin. Pituitary surgery was unsuccessful, justifying a treatment of ketoconazole. In the absence of densitometric osteoporosis, assessment of bone microstructure using high resolution peripheral quantitative computed tomography revealed alterations of both the cortical and trabecular compartments. This case illustrates that hypercortisolism may cause bone fragility in the absence of marked changes in areal bone mineral density.

  12. Bone marrow lesions and joint effusion are strongly and independently associated with weight-bearing pain in knee osteoarthritis: data from the osteoarthritis initiative.

    Science.gov (United States)

    Lo, G H; McAlindon, T E; Niu, J; Zhang, Y; Beals, C; Dabrowski, C; Le Graverand, M P Hellio; Hunter, D J

    2009-12-01

    It is widely believed that there are multiple sources of pain at a tissue level in osteoarthritis (OA). Magnetic Resonance Images (MRIs) provide a wealth of anatomic information and may allow identification of specific features associated with pain. We hypothesized that in knees with OA, bone marrow lesions (BMLs), synovitis, and effusion would be associated with weight-bearing and (less so with) non-weight-bearing pain independently. In a cross-sectional study of persons with symptomatic knee OA using univariate and multivariate logistic regressions with maximal BML, effusion, and synovitis defined by Boston Leeds Osteoarthritis Knee Score as predictors, and knee pain using weight-bearing and non-weight-bearing Western Ontario and McMaster University OA Index pain questions as the outcome, we tested the association between MRI findings and knee symptoms. 160 participants, mean age 61 (+/-9.9), mean body mass index (BMI) 30.3 (+/-4.7) and 50% female, stronger associations were seen with weight-bearing compared with non-weight-bearing knee pain with adjusted risk ratios (RRs) of weight-bearing knee pain, for increasing maximal BML scores of 1.0 (referent) (maximal BML=0), 1.2, 1.9, and 2.0 (P for trend=0.006). For effusion scores, adjusted RRs of knee pain were 1.0, 1.7, 2.0, and 2.6 (P for trend=0.0004); and for synovitis scores, adjusted ORs were 1.0, 1.4, 1.5, and 1.9 (P for trend=0.22). Cross-sectionally, maximal BML and effusion scores are independently associated with weight-bearing and less so with non-weight-bearing knee pain, supporting the idea that pain in OA is multifactorial. These MRI features should be considered as possible new treatment targets in knee OA.

  13. Image resolution enhancement for healthy weight-bearing bones based on topology optimization.

    Science.gov (United States)

    Kim, Jung Jin; Jang, In Gwun

    2016-09-06

    Although high-resolution skeletal images are essential for accurate bone strength assessment, the current high-resolution imaging modalities have critical problems that remain to be solved such as high radiation doses, low signal-to-noise ratios, and long scan times. Resolution enhancement techniques, which have recently received much attention, have also been difficult to obtain acceptable image resolutions. Inspired by the self-optimizing capabilities of bone (i.e. reorienting the trabecula for maximum mechanical efficiency with minimum bone mass), this paper proposes a novel resolution enhancement method that can reconstruct a high-resolution skeletal image from a low-resolution image. In order to achieve this, the proposed method conducts mesh refinement for resolution upscaling and then performs topology optimization with a constraint for the bone mineral density deviation in order to preserve the subject-specific bone distribution data. The numerical results show that the proposed method successfully reconstructs the enhanced images of trabecular architecture in terms of structure similarity and apparent elastic modulus, thereby demonstrating the feasibility of the proposed method for skeletal image resolution enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The Effect of Weight-Bearing Exercise on the Strength of Femur Bone in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    GH Sharifi

    2011-08-01

    Full Text Available Introduction & Objective: Fractures due to osteoporosis after menopause in women is widespread. Osteoporosis may occur in case of inadequate lack of physical activity .The aim of this study was to determine the effect of running training on femur bone strength in ovariectomized rats. Materials & Methods Forty matured Sprague Dawley rats were chosen for this study. A group of 10 were killed randomly to measure their initial femur strength. The remaining rats had ovarian surgery. After three months, in order to reach menopause period, they were randomly divided into 3 groups, including pre test, running training and control groups. The running training program was carried out for one hour a day, five days a week, for eight weeks. Femur bone strength was measured by HOUNSFIELD system. Data was analyzed by using one-way analysis of variance and dependent T- tests by the SPSS software. Results: Results of this study showed that ovariectomy leads to significant decrease of femur bone strength. On the other hand the eight weeks running training lead to significant increase of femur bone strength. Conclusion: The results of this study suggest that life style is important factors in preventing of osteoporosis and running training program had an inhibitory or reversal effect on decrease of menopause-induced femur bone strength.

  15. Despite a high prevalence of menstrual disorders, bone health is improved at a weight-bearing bone site in world-class female rhythmic gymnasts.

    Science.gov (United States)

    Maïmoun, Laurent; Coste, Olivier; Georgopoulos, Neoklis A; Roupas, Nikolaos D; Mahadea, Krishna Kunal; Tsouka, Alexandra; Mura, Thibault; Philibert, Pascal; Gaspari, Laura; Mariano-Goulart, Denis; Leglise, Michel; Sultan, Charles

    2013-12-01

    Regular physical activity during puberty improves bone mass acquisition. However, it is unknown whether extreme intense training has the same favorable effect on the skeleton. We evaluated the bone mass acquisition in a unique cohort of world-class rhythmic gymnasts. A total of 133 adolescent girls and young women with a mean age of 18.7 ± 2.7 (14.4-26.7) years participated in this study: 82 elite rhythmic gymnasts (RGs) and 51 controls (CONs). Anthropometric variables and body composition were assessed, and all participants completed questionnaires on their general medical, menstrual, and training histories. Broadband ultrasound attenuation (BUA in decibels per megahertz) was determined by quantitative ultrasound at the heel. RGs presented lower weight (-8.5%, P rhythmic gymnastics appeared to have a beneficial effect on the bone health of a weight-bearing site. This effect was nevertheless modulated by the age of menarche. The high mechanical loading generated by this activity may counterbalance the negative effect of menstrual disorders.

  16. High Bone Mass is associated with bone-forming features of osteoarthritis in non-weight bearing joints independent of body mass index.

    Science.gov (United States)

    Gregson, C L; Hardcastle, S A; Murphy, A; Faber, B; Fraser, W D; Williams, M; Davey Smith, G; Tobias, J H

    2017-04-01

    High Bone Mass (HBM) is associated with (a) radiographic knee osteoarthritis (OA), partly mediated by increased BMI, and (b) pelvic enthesophytes and hip osteophytes, suggestive of a bone-forming phenotype. We aimed to establish whether HBM is associated with radiographic features of OA in non-weight-bearing (hand) joints, and whether such OA demonstrates a bone-forming phenotype. HBM cases (BMD Z-scores≥+3.2) were compared with family controls. A blinded assessor graded all PA hand radiographs for: osteophytes (0-3), joint space narrowing (JSN) (0-3), subchondral sclerosis (0-1), at the index Distal Interphalangeal Joint (DIPJ) and 1st Carpometacarpal Joint (CMCJ), using an established atlas. Analyses used a random effects logistic regression model, adjusting a priori for age and gender. Mediating roles of BMI and bone turnover markers (BTMs) were explored by further adjustment. 314 HBM cases (mean age 61.1years, 74% female) and 183 controls (54.3years, 46% female) were included. Osteophytes (grade≥1) were more common in HBM (DIPJ: 67% vs. 45%, CMCJ: 69% vs. 50%), with adjusted OR [95% CI] 1.82 [1.11, 2.97], p=0.017 and 1.89 [1.19, 3.01], p=0.007 respectively; no differences were seen in JSN. Further adjustment for BMI failed to attenuate ORs for osteophytes in HBM cases vs. controls; DIPJ 1.72 [1.05, 2.83], p=0.032, CMCJ 1.76 [1.00, 3.06], p=0.049. Adjustment for BTMs (concentrations lower amongst HBM cases) did not attenuate ORs. HBM is positively associated with OA in non-weight-bearing joints, independent of BMI. HBM-associated OA is characterised by osteophytes, consistent with a bone-forming phenotype, rather than JSN reflecting cartilage loss. Systemic factors (e.g. genetic architecture) which govern HBM may also increase bone-forming OA risk. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. In vivo evaluation of the bond strength of adhesive 4-META/MMA-TBB bone cement under weight-bearing conditions.

    Science.gov (United States)

    Sakai, T; Morita, S; Shinomiya, K i; Watanabe, A; Nakabayashi, N; Ishihara, K

    2000-10-01

    In order to minimize the problems associated with implant fixation using acrylic bone cement, we studied a new adhesive bone cement that consists of 4-methacryloyloxyethyl trimellitate anhydryde (4-META) and methylmethacrylate (MMA) as monomers, tri-n-butylborane (TBB) as an initiator, and PMMA powder (4-META/MMA-TBB cement). It shows remarkable adhesive properties to metal and bone in vitro. The purpose of this study was to evaluate the strength of the bond of the cement to both metal and bone in vivo under weight-bearing conditions. Metal prostheses were implanted in the right femora of 12 rabbits using either adhesive 4-META/MMA-TBB cement or the conventional PMMA cement, as the control, for fixation. After 4 and 12 weeks, both femora were excised and the same operations were performed in the left femora in vitro. Eighteen femora were sectioned for the mechanical assessment of the bone-cement and cement-implant interfaces. 4-META/MMA-TBB cement had a significantly higher interfacial shear strength than the conventional PMMA cement: 201 N and 90 N, on average, for the implant-cement interface (pMMA-TBB cement in providing greater fixation of implants to bone and promise a firmer intramedullary fixation than the control conventional PMMA cement. Copyright 2000 John Wiley & Sons, Inc.

  18. The Role of Body Weight on Bone in Anorexia Nervosa

    DEFF Research Database (Denmark)

    Frølich, Jacob; Hansen, Stinus; Winkler, Laura Al-Dakhiel

    2017-01-01

    Anorexia nervosa (AN) is associated with decreased bone mineral density and increased risk of fracture. The aim of this study was to assess bone geometry, volumetric bone mineral density (vBMD), trabecular microarchitecture and estimated failure load in weight-bearing vs. non-weight-bearing bones...

  19. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls.

    Science.gov (United States)

    Farr, Joshua N; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2010-04-01

    Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8-13 years from the "Jump-In: Building Better Bones" study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2-2.3%). In contrast, MCSA was strongly related (pbone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (prelationship is significantly attenuated after adjustment for MCSA. Nevertheless, girls with higher TBFM relative to body mass have markedly diminished vBMD, geometry, and bone strength

  20. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls

    Science.gov (United States)

    Farr, Joshua N.; Chen, Zhao; Lisse, Jeffrey R.; Lohman, Timothy G.; Going, Scott B.

    2010-01-01

    Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8–13 years from the “Jump-In: Building Better Bones” study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2–2.3%). In contrast, MCSA was strongly related (p bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p bone strength at metaphyseal and diaphyseal sites of the femur and tibia. PMID:20060079

  1. The inhibition of subchondral bone lesions significantly reversed the weight-bearing deficit and the overexpression of CGRP in DRG neurons, GFAP and Iba-1 in the spinal dorsal horn in the monosodium iodoacetate induced model of osteoarthritis pain.

    Directory of Open Access Journals (Sweden)

    Degang Yu

    Full Text Available BACKGROUND: Chronic pain is the most prominent and disabling symptom of osteoarthritis (OA. Clinical data suggest that subchondral bone lesions contribute to the occurrence of joint pain. The present study investigated the effect of the inhibition of subchondral bone lesions on joint pain. METHODS: Osteoarthritic pain was induced by an injection of monosodium iodoacetate (MIA into the rat knee joint. Zoledronic acid (ZOL, a third generation of bisphosphonate, was used to inhibit subchondral bone lesions. Joint histomorphology was evaluated using X-ray micro computed tomography scanning and hematoxylin-eosin staining. The activity of osteoclast in subchondral bone was evaluated using tartrate-resistant acid phosphatase staining. Joint pain was evaluated using weight-bearing asymmetry, the expression of calcitonin gene-related peptide (CGRP in the dorsal root ganglion (DRG, and spinal glial activation status using glial fibrillary acidic protein (GFAP and ionized calcium binding adaptor molecule-1 (Iba-1 immunofluorescence. Afferent neurons in the DRGs that innervated the joints were identified using retrograde fluorogold labeling. RESULTS: MIA injections induced significant histomorphological alterations and joint pain. The inhibition of subchondral bone lesions by ZOL significantly reduced the MIA-induced weight-bearing deficit and overexpression of CGRP in DRG neurons, GFAP and Iba-1 in the spinal dorsal horn at 3 and 6 weeks after MIA injection; however, joint swelling and synovial reaction were unaffected. CONCLUSIONS: The inhibition of subchondral bone lesions alleviated joint pain. Subchondral bone lesions should be a key target in the management of osteoarthritic joint pain.

  2. Association between bone stiffness and nutritional biomarkers combined with weight-bearing exercise, physical activity, and sedentary time in preadolescent children. A case-control study.

    Science.gov (United States)

    Herrmann, Diana; Pohlabeln, Hermann; Gianfagna, Francesco; Konstabel, Kenn; Lissner, Lauren; Mårild, Staffan; Molnar, Dénes; Moreno, Luis A; Siani, Alfonso; Sioen, Isabelle; Veidebaum, Toomas; Ahrens, Wolfgang

    2015-09-01

    Physical activity (PA) and micronutrients such as calcium (Ca), vitamin D (25OHD), and phosphate (PO) are important determinants of skeletal development. This case-control study examined the association of these nutritional biomarkers and different PA behaviours, such as habitual PA, weight-bearing exercise (WBE) and sedentary time (SED) with bone stiffness (SI) in 1819 2-9-year-old children from the IDEFICS study (2007-2008). SI was measured on the calcaneus using quantitative ultrasound. Serum and urine Ca and PO and serum 25OHD were determined. Children's sports activities were reported by parents using a standardised questionnaire. A subsample of 1089 children had accelerometer-based PA data (counts per minute, cpm). Moderate-to-vigorous PA (MVPA) and SED were estimated. Children with poor SI (below the 15th age-/sex-/height-specific percentile) were defined as cases (N=603). Randomly selected controls (N=1216) were matched by age, sex, and country. Odds ratios (OR) for poor SI were calculated by conditional logistic regression for all biomarkers and PA behaviour variables separately and combined (expressed as tertiles and dichotomised variables, respectively). ORs were adjusted for fat-free mass, dairy product consumption, and daylight duration. We observed increased ORs for no sports (OR=1.39, p<0.05), PA levels below 524 cpm (OR=1.85, p<0.05) and MVPA below 4.2% a day (OR=1.69, p<0.05) compared to WBE, high PA levels (<688 cpm) and high MVPA (6.7%), respectively. SED was not associated with SI. ORs were moderately elevated for low serum Ca and 25OHD. However, biomarkers were not statistically significantly associated with SI and did not modify the association between PA behaviours and SI. Although nutritional biomarkers appear to play a minor role compared to the osteogenic effect of PA and WBE, it is noteworthy that the highest risk for poor SI was observed for no sports or low MVPA combined with lower serum Ca (<2.5 mmol/l) or lower 25OHD (<43.0 nmol

  3. LIGHT-WEIGHT LOAD-BEARING STRUCTURE

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure (1) with optimized compression zone (2), where along one or more compression zones (2) in the structure (1) to be cast a core (3) of strong concrete is provided, which core (3) is surrounded by concrete of less strength (4) compared...... to the core (3) of strong concrete. The invention also relates to a method of casting of light-weight load-bearing structures (1) with optimized compression zone (2) where one or more channels, grooves, ducts, pipes and/or hoses (5) formed in the load-bearing structure (1) serves as moulds for moulding one...... or more cores (3) of strong concrete in the light-weight load-bearing structure (1)....

  4. Load Bearing Equipment for Bone and Muscle

    Science.gov (United States)

    Shackelford, Linda; Griffith, Bryan

    2015-01-01

    Resistance exercise on ISS has proven effective in maintaining bone mineral density and muscle mass. Exploration missions require exercise with similar high loads using equipment with less mass and volume and greater safety and reliability than resistance exercise equipment used on ISS (iRED, ARED, FWED). Load Bearing Equipment (LBE) uses each exercising person to create and control the load to the partner.

  5. The Effect of a Muscle Weight-Bearing and Aerobic Exercise Program on the Body Composition, Muscular Strength, Biochemical Markers, and Bone Mass of Obese Patients Who Have Undergone Gastric Bypass Surgery.

    Science.gov (United States)

    Campanha-Versiani, Luciana; Pereira, Danielle Aparecida Gomes; Ribeiro-Samora, Giane Amorim; Ramos, Adauto Versiani; de Sander Diniz, Maria Fatima H; De Marco, Luiz Armando; Soares, Maria Marta Sarquis

    2017-08-01

    The effect of an exercise program on the body composition, muscular strength (MS), biochemical markers, and bone mineral density (BMD) of individuals undergoing gastric bypass is unclear. We assessed lean mass (LM), MS, bone remodeling markers, and BMD before and after supervised weight-bearing and aerobic exercise training in obese patients who underwent Roux-en-Y gastric bypass (RYGB). This study included 37 obese patients (81.1% women, mean age 38.2 years, mean body mass index 42.4 ± 0.5 kg/m2). Whole body densitometry was used to evaluate pre- and postoperative BMD, total body fat, and LM. Serum calcium, parathyroid hormone, 25-hydroxyvitamin D, and bone remodeling markers were measured. MS was determined through the concentric 10 repetition maximum test. Postoperatively, participants were divided into two groups: the training group, who followed an exercise program (TG, n = 18), and the control group, who did not (CG, n = 19). After 1 year, the TG showed a lower decrease in total BMD and at the lumbar spine and right hip compared with the CG (p loss and improved LM in the arms and overall MS but did not affect bone remodeling.

  6. Balancing the Rates of New Bone Formation and Polymer Degradation Enhances Healing of Weight-Bearing Allograft/Polyurethane Composites in Rabbit Femoral Defects

    Science.gov (United States)

    2014-10-03

    Percutaneous vertebroplasty and kyphoplasty for the stand alone augmentation of osteoporosis induced ver tebral compression fractures: present status... induced progressive healing in vivo, as evidenced by an increase in new bone formation, as well as a decrease in residual allograft and polymer from 6...formation and induced approximately zero-order degradation of the polymer. The consequent bal- ance of new bone formation and polymer degradation re- sulted

  7. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.

    Science.gov (United States)

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-07-01

    Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. © 2015. Published by The Company of Biologists Ltd.

  8. Bone Metabolism in Obesity and Weight Loss

    Science.gov (United States)

    Shapses, Sue A.; Sukumar, Deeptha

    2014-01-01

    Excess body weight due to obesity has traditionally been considered to have a positive effect on bone; however, more recent findings suggest that bone quality is compromised. Both obesity and caloric restriction increase fracture risk and are regulated by endocrine factors and cytokines that have direct and indirect effects on bone and calcium absorption. Weight reduction will decrease bone mass and mineral density, but this varies by the individual’s age, gender, and adiposity. Dietary modifications, exercise, and medications have been shown to attenuate the bone loss associated with weight reduction. Future obesity and weight loss trials would benefit from assessment of key hormones, adipokine and gut peptides that regulate calcium absorption, and bone mineral density and quality by using sensitive techniques in high-risk populations. PMID:22809104

  9. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation)

    OpenAIRE

    McGee-Lawrence, Meghan E.; Wojda, Samantha J.; Barlow, Lindsay N.; Drummer, Thomas D.; Castillo, Alesha B.; Kennedy, Oran; Condon, Keith W.; Auger, Janene; Black, Hal L.; Nelson, O Lynne; Robbins, Charles T.; Donahue, Seth W.

    2009-01-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus a...

  10. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  11. The difference between weight-bearing and non-weight-bearing alignment in patient-specific instrumentation planning.

    Science.gov (United States)

    Paternostre, Frederic; Schwab, Pierre-Emmanuel; Thienpont, Emmanuel

    2014-03-01

    Retrospective study to analyse the difference between weight-bearing and non-weight-bearing alignment in osteoarthritic knees planned for patient-specific instrumented (PSI) total knee arthroplasty (TKA). The aim of the study is to observe whether a difference in alignment can be linked to arthritis staging or zone mechanical axis. Full-leg standing radiographs and non-weight-bearing MRI of the whole leg were compared for hip-knee-ankle (HKA) angle, measured according to Moreland criteria, in seventy osteoarthritic patients. Kellgren-Lawrence (KL) staging and classification according to zone mechanical axis with Kennedy zones was done. A mean preoperative HKA angle on standing radiographs of 176.4° ± 7.2° was measured compared to 176.4° ± 6.9° for the MRI whole-leg HKA angle. A difference of 0°-1° was observed in 54% of patients when comparing the weight-bearing with the non-weight-bearing HKA angle. Twenty-three per cent had a difference of 2° and another 23 % a difference of 3° or more. In female patients, the dynamic load pattern of weight-bearing increases the HKA angle due to convex side soft tissue laxity both in varus and valgus knees. More important differences were observed in the KL stage 3 and 4 patients (P bearing axis outside of the articular surface (P weight-bearing and non-weight-bearing alignment in patients with Kellgren-Lawrence 3 and 4 with a load-bearing axis outside of the articular surface (Kennedy 0 or 1 or 5). According to this study, these changes seem related to the amount of articular wear and the load-bearing axis. This is important for the preoperative planning process in PSI-assisted TKA. More concave side ligamentous release or more constraint can be necessary than imagined based on the PSI alignment result. Full-leg standing radiographs should be performed for PSI-assisted TKAs to analyse the position of the load-bearing axis. IV.

  12. Foot Loading Characteristics of Different Graduations of Partial Weight Bearing

    Science.gov (United States)

    Gusinde, Johannes; Pauser, Johannes; Swoboda, Bernd; Gelse, Kolja; Carl, Hans-Dieter

    2011-01-01

    Limited weight bearing of the lower extremity is a commonly applied procedure in orthopaedic rehabilitation after reconstructive forefoot surgery, trauma surgery and joint replacement. The most frequent limitations are given as percentage of body weight (BW) and represent 10 or 50% BW. The extent of foot loading under these graduations of partial…

  13. Serum markers of bone metabolism show bone loss in hibernating bears

    Science.gov (United States)

    Donahue, S.W.; Vaughan, M.R.; Demers, L.M.; Donahue, H.J.

    2003-01-01

    Disuse osteopenia was studied in hibernating black bears (Ursus americanus) using serum markers of bone metabolism. Blood samples were collected from male and female, wild black bears during winter denning and active summer periods. Radioimmunoassays were done to determine serum concentrations of cortisol, the carboxy-terminal cross-linked telopeptide, and the carboxy-terminal propeptide of Type I procollagen, which are markers of hone resorption and formation, respectively. The bone resorption marker was significantly higher during winter hibernation than it was in the active summer months, but the bone formation marker was unchanged, suggesting an imbalance in bone remodeling and a net bone loss during disuse. Serum cortisol was significantly correlated with the bone resorption marker, but not with the bone formation marker. The bone formation marker was four- to fivefold higher in an adolescent and a 17-year-old bear early in the remobilization period compared with the later summer months. These findings raise the possibility that hibernating black bears may minimize bone loss during disuse by maintaining osteoblastic function and have a more efficient compensatory mechanism for recovering immobilization-induced bone loss than that of humans or other animals.

  14. Static weight-bearing patterns of below-knee amputees using patellar-tendon-bearing prostheses.

    Science.gov (United States)

    Tibarewala, D N; Ganguli, S

    1982-01-01

    While the weight-bearing patterns under human feet during dynamic conditions (i.e. walking or running) have been investigated by many scientists, only a few studies have been reported on such patterns during erect standing posture. This paper describes an investigation where a system composed of strain gauge load cells has been employed to study the static weight-bearing patterns of a group fo below-knee amputees using patellar-tendon-bearing prostheses, and of a matching group of normal persons. Experimental data were analysed to recognize the static weight-bearing patterns; it has been found that specific patterns exist for normal person as well as for healthy and affected sides of the amputees. It has been indicated how these findings could be used to define a performance index proportional to stance disability.

  15. Measurement of lower limb alignment: there are within-person differences between weight-bearing and non-weight-bearing measurement modalities

    OpenAIRE

    Schoenmakers, Daphne A. L.; Feczko, Peter Z.; Boonen, Bert; Schotanus, Martijn G. M.; Kort, Nanne P.; Emans, Pieter J.

    2017-01-01

    Purpose Previous studies have compared weight-bearing mechanical leg axis (MLA) measurements to non-weight-bearing measurement modalities. Most of these studies compared mean or median values and did not analyse within-person differences between measurements. This study evaluates the within-person agreement of MLA measurements between weight-bearing full-length radiographs (FLR) and non-weight-bearing measurement modalities (computer-assisted surgery (CAS) navigation or MRI). Materials and me...

  16. Weights and hematology of wild black bears during hibernation

    Science.gov (United States)

    DelGiudice, Glenn D.; Rogers, Lynn L.; Allen, Arthur W.; Seal, U.S.

    1991-01-01

    We compared weights and hematological profiles of adult (greater than 3-yr-old) female black bears (Ursus americanus) during hibernation (after 8 January). We handled 28 bears one to four times (total of 47) over 4 yr of varying mast and berry production. Mean weight of lactating bears was greater (P less than 0.0001) than that of non-lactating females. White blood cells (P less than 0.05) and mean corpuscular volume (P = 0.005) also differed between lactating and non-lactating bears. Hemoglobin (P = 0.006) and mean corpuscular hemoglobin concentration (P = 0.02) varied among years; values were lowest during 1975, following decreased precipitation and the occurrence of a second year of mast and berry crop shortages in a three-year period. Significant (P less than 0.05) interaction between reproductive status (lactating versus non-lactating) and study year for hemoglobin, red blood cells, and packed cell volume, and increased mean corpuscular volume, suggested a greater nutritional challenge for lactating females compared to non-lactating females during the 1975 denning season. Our data suggest that hematological characteristics of denning bears may be more sensitive than weights as indicators of annual changes in nutritional status; however, other influential factors, in addition to mast and berry crop production, remain to be examined.

  17. Effect of partial weight bearing program on functional ability and ...

    African Journals Online (AJOL)

    Recurrent joint bleeding in persons with hemophilia is known to lead to joint damage associated with pain, loss of range of motion and function. The researcher was motivated by the essence of the importance of partial weight bearing program in rehabilitation of lower limb conditions and the lack of literatures regarding ...

  18. EARLY WEIGHT-BEARING AFTER ANKLE FRACTURE FIXATION ...

    African Journals Online (AJOL)

    Background: In early 2006 during AO-scholarship training at Hadassah Hospital in Jerusalem, I witnessed patients being walked on the same day after fixation of ankle fractures. This was contrary to my original teaching of protected non-weight bearing for six weeks. Literature review in this subject was inconclusive.

  19. Dynamic weight-bearing assessment of pain in knee osteoarthritis

    DEFF Research Database (Denmark)

    Klokker, Louise; Christensen, Robin; Osborne, Richard

    2015-01-01

    PURPOSE: To evaluate the reliability, agreement and smallest detectable change in a measurement instrument for pain and function in knee osteoarthritis; the Dynamic weight-bearing Assessment of Pain (DAP). METHODS: The sample size was set to 20 persons, recruited from the outpatient osteoarthritis...

  20. Effect of partial weight bearing program on functional ability and ...

    African Journals Online (AJOL)

    Lilian A. Zaky

    2013-03-17

    Mar 17, 2013 ... Hemophilic knee arthritis;. Partial weight bearing;. Functional walking;. Quadriceps muscle isometric strength;. Quadriceps training exercise program. Abstract Recurrent joint bleeding in persons with hemophilia is known to lead to joint damage associated with pain, loss of range of motion and function.

  1. The impact of adding weight-bearing exercise versus nonweight bearing programs to the medical treatment of elderly patients with osteoporosis

    Directory of Open Access Journals (Sweden)

    Alsayed A Shanb

    2014-01-01

    Full Text Available Background: Osteoporosis is a major public health problem affecting the elderly population, particularly women. The objective of the study was to evaluate the effects of adding weight-bearing exercise as opposed to nonweight-bearing programs to the medical treatment of bone mineral density (BMD and health-related quality of life (HRQoL of elderly patients with osteoporosis. Materials and Methods: Participating in the study were 40 elderly osteoporotic patients (27 females and 13 males, with ages ranging from 60 to 67 years, who were receiving medical treatment for osteoporosis. They were assigned randomly into two groups: Group-I: Twenty patients practiced weight-bearing exercises. Group-II: Twenty patients did nonweight-bearing exercises. All patients trained for 45-60 min/session, two sessions/week for 6 months. BMD of the lumbar spine, right neck of femur, and right distal radial head of all patients were measured by dual-energy X-ray absorptiometry before and after both treatment programs. In addition, the QoL was measured by means of the HRQoL "ECOS-16" questionnaire. Results: T-tests proved that mean values of BMD of the lumbar spine, right neck of femur and right distal radial head were significantly increased in both groups with greater improvement in the weight-bearing group. The QoL was significantly improved in both groups, but the difference between them was not significant. Conclusion: Addition of weight-bearing exercise program to medical treatment increases BMD more than nonweight-bearing exercise in elderly subjects with osteoporosis. Furthermore, both weight-bearing and nonweight-bearing exercise programs significantly improved the QoL of patients with osteoporosis.

  2. Weight-loss-associated changes in bone mineral density and bone turnover after partial weight regain with or without aerobic exercise in obese women.

    Science.gov (United States)

    Hinton, P S; Rector, R S; Linden, M A; Warner, S O; Dellsperger, K C; Chockalingam, A; Whaley-Connell, A T; Liu, Y; Thomas, T R

    2012-05-01

    Moderate, long-term weight loss results in the loss of bone mass in overweight or obese premenopausal women. However, whether these changes persist during weight maintenance or regain remains to be determined. Overweight or obese (body mass index: 25.8-42.5 kg/m(2)) women (n=40) with at least two risk factors for the metabolic syndrome participated in this 12-month study that examined the effects of prescribed weight loss and regain, with or without exercise, on bone turnover and on bone mineral density (BMD) in a subset of participants (n=24). During the first 6 month, participants lost ≈ 10% of their initial body weight via energy restriction and supervised aerobic exercise. Following weight loss, participants were randomly assigned to either an exercise or a no exercise treatment for the regain (+50% of weight lost) phase. A one-way (time) repeated measures one-factor analysis of variance (RMANOVA) tested the effects of weight loss on BMD and bone turnover, and a two-way RMANOVA (time, exercise) was used to examine the effects of exercise during weight regain. Hip (P=0.007) and lumbar spine (P=0.05) BMD decreased with weight loss, and remained reduced after weight regain with or without exercise. Likewise, the weight-loss-associated increases in osteocalcin (Pexercise. The results of the present study, which is the first to examine changes in bone mass and turnover during carefully controlled weight regain, suggest that weight-loss-induced perturbations in bone mass and turnover persist after partial weight regain, regardless of whether regular weight-bearing aerobic exercise was continued.

  3. Immediate Weight-Bearing after Ankle Fracture Fixation

    Directory of Open Access Journals (Sweden)

    Reza Firoozabadi

    2015-01-01

    Full Text Available We believe that a certain subset of surgical ankle fracture patients can be made weight-bearing as tolerated immediately following surgery. Immediate weight-bearing as tolerated (IWBAT allows patients to return to ambulation and activities of daily living faster and may facilitate rehabilitation. A prospectively gathered orthopaedic trauma database at a Level 1 trauma center was reviewed retrospectively to identify patients who had ORIF after unstable ankle injuries treated by the senior author. Patients were excluded if they were not IWBAT based on specific criteria or if they did meet followup requirement. Only 1/26 patients was noted to have loss of fixation. This was found at the 6-week followup and was attributed to a missed syndesmotic injury. At 2-week followup, 2 patients had peri-incisional erythema that resolved with a short course of oral antibiotics. At 6-week followup, 20 patients were wearing normal shoes and 6 patients continued to wear the CAM Boot for comfort. To conclude, IWBAT in a certain subset of patients with stable osteosynthesis following an ankle fracture could potentially be a safe alternative to a period of protected weight-bearing.

  4. Load Bearing Equipment for Bone and Muscle Project

    Science.gov (United States)

    Terrier, Douglas; Clayton, Ronald G.; Shackelford, Linda

    2015-01-01

    Axial skeletal loads coupled with muscle torque forces around joints maintain bone. Astronauts working in pairs to exercise can provide high eccentric loads for each other that are most effective. A prototype of load bearing equipment that will allow astronauts to perform exercises using each other for counter force generation in a controlled fashion and provide eccentric overload is proposed. A frame and attachments that can be rapidly assembled for use and easily stored will demonstrate feasibility of a design that can be adapted for ISS testing and Orion use.

  5. Dynamic weight-bearing assessment of pain in knee osteoarthritis

    DEFF Research Database (Denmark)

    Klokker, Louise; Christensen, Robin; Wæhrens, Eva E

    2016-01-01

    BACKGROUND: The Osteoarthritis Research Society International (OARSI) has suggested to asses pain after specific activities consistently in clinical trials on knee OA. The Dynamic weight-bearing Assessment of Pain (DAP) assesses pain during activity (30 s of performing repeated deep knee-bends from...... a standing position). The purpose of this study is to evaluate the construct validity, responsiveness, and interpretability of the DAP for knee osteoarthritis (OA). METHODS: One-hundred participants with knee OA were tested twice each with the DAP, the Knee injury and Osteoarthritis Outcome Score (KOOS), six...

  6. Bone formation is not impaired by hibernation (disuse) in black bears Ursus americanus.

    Science.gov (United States)

    Donahue, Seth W; Vaughan, Michael R; Demers, Laurence M; Donahue, Henry J

    2003-12-01

    Disuse by bed rest, limb immobilization or space flight causes rapid bone loss by arresting bone formation and accelerating bone resorption. This net bone loss increases the risk of fracture upon remobilization. Bone loss also occurs in hibernating ground squirrels, golden hamsters, and little brown bats by arresting bone formation and accelerating bone resorption. There is some histological evidence to suggest that black bears Ursus americanus do not lose bone mass during hibernation (i.e. disuse). There is also evidence suggesting that muscle mass and strength are preserved in black bears during hibernation. The question of whether bears can prevent bone loss during hibernation has not been conclusively answered. The goal of the current study was to further assess bone metabolism in hibernating black bears. Using the same serum markers of bone remodeling used to evaluate human patients with osteoporosis, we assayed serum from five black bears, collected every 10 days over a 196-day period, for bone resorption and formation markers. Here we show that bone resorption remains elevated over the entire hibernation period compared to the pre-hibernation period, but osteoblastic bone formation is not impaired by hibernation and is rapidly accelerated during remobilization following hibernation.

  7. Is bone mineral composition disrupted by organochlorines in east Greenland polar bears (Ursus maritimus)?

    DEFF Research Database (Denmark)

    Sonne, Christian; Dietz, Rune; Born, Erik W

    2004-01-01

    We analyzed bone mineral density (BMD) in skulls of polar bears (Ursus maritimus) (n = 139) from East Greenland sampled during 1892-2002. Our primary goal was to detect possible changes in bone mineral content (osteopenia) due to elevated exposure to organochlorine [polychlorinated biphenyls (PCBs.......04) and SigmaCHL (p polar...... bears may have been caused by organochlorine exposure. Udgivelsesdato: 2004-Dec...

  8. Measuring polyethylene wear in total knee arthroplasty by RSA: differences between weight-bearing and non-weight-bearing positioning.

    Science.gov (United States)

    van Ijsseldijk, Emiel A; Valstar, Edward R; Stoel, Berend C; de Ridder, Ruud; Nelissen, Rob G H H; Kaptein, Bart L

    2014-04-01

    Measuring the minimum-joint-space-width (mJSW) in total knee arthroplasty (TKA) in Roentgen stereophotogrammetric analysis (RSA) provides valuable information on polyethylene wear, a leading cause for TKA failure. Most existing studies use non-weight-bearing (NWB) patient positioning. The latter may compromise mJSW measurements due to knee laxity with subsequent non-contact between the TKA components. We investigated the difference in mJSW between weight-bearing (WB) and NWB images and the association with mediolateral (ML) knee stability. At one-year follow-up, 23 TKAs were included from an ongoing RSA study, and ML stability was evaluated. For each examination, the mJSW and femoral-tibial contact locations were measured. A linear regression model was used to analyze the association between the mJSW difference (NWB-WB) with the ML stability and contact locations. The mean mJSW difference was 0.28 mm medially and 0.20 mm laterally. Four TKAs had medium (5-9°) and 19 TKAs had high (RSA studies are influenced by knee laxity, but may still provide information on wear progression based on TKA with high ML stability. A direct comparison of mJSW measurements from WB and NWB data is not possible. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. [Management of weight-bearing area fracture of acetabulum].

    Science.gov (United States)

    Zhang, Yun-tong; Wang, Pan-feng; Zhang, Chun-cai

    2011-02-01

    Acetabulum, as the important factor for weight bearing of the upper body, has its unique anatomic features and complicated physiological function. The integrity and stability of the lunata articular surface in the dome region of acetabulum, is the important base to bear the physiological function of acetabulum. The fracture related to this part will cause relation change of contact area and stress between head of femur and acetabulum. Furthermore, the deep anatomical position of the dome region, the complicated surrounding anatomical relation, and the irregular bony structure will also increase the difficulty of surgical treatment. Especially for some complicated comminuted or compressed fracture, even with good explosions, it is hard to get satisfied anatomical reduction. Consequently,forward traumatic arthritis has greater probability of occurrence. Therefore, the clinical research on the fracture in the dome region of acetabulum was getting more and more attention worldly. This paper intended to review the relation of fracture classifications and anatomic features, physiological function,diagnostic criteria,and also its clinical treating countermeasure.

  10. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis)

    OpenAIRE

    McGee, Meghan E.; Maki, Aaron J.; Johnson, Steven E.; Lynne Nelson, O.; Robbins, Charles T.; Donahue, Seth W.

    2007-01-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. ...

  11. Associated among endocrine, inflammatory, and bone markers, body composition and weight loss induced bone loss

    Science.gov (United States)

    Weight loss reduces co-¬morbidities of obesity but decreases bone mass. Our aims were to determine whether adequate dairy intake could prevent weight loss related bone loss and to evaluate the contribution of energy-related hormones and inflammatory markers to bone metabolism. Overweight and obese w...

  12. Hip arthroscopy protocol: expert opinions on post-operative weight bearing and return to sports guidelines.

    Science.gov (United States)

    Rath, Ehud; Sharfman, Zachary T; Paret, Matan; Amar, Eyal; Drexler, Michael; Bonin, Nicolas

    2017-01-01

    The objectives of this study are to survey the weight-bearing limitation practices and delay for returning to running and impact sports of high volume hip arthroscopy orthopedic surgeons. The study was designed in the form of expert survey questionnaire. Evidence-based data are scares regarding hip arthroscopy post-operative weight-bearing protocols. An international cross-sectional anonymous Internet survey of 26 high-volume hip arthroscopy specialized surgeons was conducted to report their weight-bearing limitations and rehabilitation protocols after various arthroscopic hip procedures. The International Society of Hip Arthroscopy invited this study. The results were examined in the context of supporting literature to inform the studies suggestions. Four surgeons always allow immediate weight bearing and five never offer immediate weight bearing. Seventeen surgeons provide weight bearing depending on the procedures performed: 17 surgeons allowed immediate weight bearing after labral resection, 10 after labral repair and 8 after labral reconstruction. Sixteen surgeons allow immediate weight bearing after psoas tenotomy. Twenty-one respondents restrict weight bearing after microfracture procedures for 3-8 weeks post-operatively. Return to running and impact sports were shorter for labral procedures and bony procedures and longer for cartilaginous and capsular procedures. Marked variability exists in the post-operative weight-bearing practices of hip arthroscopy surgeons. This study suggests that most surgeons allow immediate weight bearing as tolerated after labral resection, acetabular osteoplasty, chondroplasty and psoas tenotomy. For cartilage defect procedures, 6 weeks or more non-weight bearing is suggested depending on the area of the defect and lateral central edge angle. Delayed return to sports activities is suggested after microfracture procedures. The level of evidence was Level V expert opinions.

  13. Interchangeable Bearings for Profile and Weight Trade Studies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Air-Lock, Incorporated is proposing to design fully sealed shoulder and arm bearings with interchangeable bearing housings. The interchangeable housings shall be...

  14. Measurement of lower limb alignment: there are within-person differences between weight-bearing and non-weight-bearing measurement modalities.

    Science.gov (United States)

    Schoenmakers, Daphne A L; Feczko, Peter Z; Boonen, Bert; Schotanus, Martijn G M; Kort, Nanne P; Emans, Pieter J

    2017-11-01

    Previous studies have compared weight-bearing mechanical leg axis (MLA) measurements to non-weight-bearing measurement modalities. Most of these studies compared mean or median values and did not analyse within-person differences between measurements. This study evaluates the within-person agreement of MLA measurements between weight-bearing full-length radiographs (FLR) and non-weight-bearing measurement modalities (computer-assisted surgery (CAS) navigation or MRI). Two independent observers measured the MLA on pre- and postoperative weight-bearing FLR in 168 patients. These measurements were compared to non-weight-bearing measurements obtained by CAS navigation or MRI. Absolute differences in individual subjects were calculated to determine the agreement between measurement modalities. Linear regression was used to evaluate the possibility that other independent variables impact the differences in measurements. A difference was found in preoperative measurements between FLR and CAS navigation (mean of 2.5° with limit of agreement (1.96 SD) of 6.4°), as well as between FLR and MRI measurements (mean of 2.4° with limit of agreement (1.96 SD) of 6.9°). Postoperatively, the mean difference between MLA measured on FLR compared to CAS navigation was 1.5° (limit of agreement (1.96 SD) of 4.6°). Linear regression analysis showed that weight-bearing MLA measurements vary significantly from non-weight-bearing MLA measurements. Differences were more severe in patients with mediolateral instability (p = 0.010), age (p = 0.049) and ≥3° varus or valgus alignment (p = 0.008). The clinical importance of this study lies in the finding that there are within-person differences between weight-bearing and non-weight-bearing measurement modalities. This has implications for preoperative planning, performing total knee arthroplasty (TKA), and clinical follow-up after TKA surgery using CAS navigation or patient-specific instrumentation. III.

  15. External pneumatic compression device prevents fainting in standing weight-bearing MRI

    DEFF Research Database (Denmark)

    Hansen, Bjarke Brandt; Bouert, Rasmus; Bliddal, Henning

    2013-01-01

    To investigate if a peristaltic external pneumatic compression device attached to the legs, while scanning, can reduce a substantial risk of fainting in standing weight-bearing magnetic resonance imaging (MRI).......To investigate if a peristaltic external pneumatic compression device attached to the legs, while scanning, can reduce a substantial risk of fainting in standing weight-bearing magnetic resonance imaging (MRI)....

  16. Immediate weight-bearing after osteosynthesis of proximal tibial fractures may be allowed

    DEFF Research Database (Denmark)

    Haak, Karl Tobias; Palm, Henrik; Holck, Kim

    2012-01-01

    Immediate weight-bearing following osteosynthesis of proximal tibial fractures is traditionally not allowed due to fear of articular fracture collapse. Anatomically shaped locking plates with sub-articular screws could improve stability and allow greater loading forces. The purpose of this study...... was to investigate if immediate weight-bearing can be allowed following locking plate osteosynthesis of proximal tibial fractures....

  17. Polar bears (Ursus maritimus), the most evolutionary advanced hibernators, avoid significant bone loss during hibernation.

    Science.gov (United States)

    Lennox, Alanda R; Goodship, Allen E

    2008-02-01

    Some hibernating animals are known to reduce muscle and bone loss associated with mechanical unloading during prolonged immobilisation,compared to humans. However, here we show that wild pregnant polar bears (Ursus maritimus) are the first known animals to avoid significant bone loss altogether, despite six months of continuous hibernation. Using serum biochemical markers of bone turnover, we showed that concentrations for bone resorption are not significantly increased as a consequence of hibernation in wild polar bears. This is in sharp contrast to previous studies on other hibernating species, where for example, black bears (Ursus americanus), show a 3-4 fold increase in serum bone resorption concentrations posthibernation,and must compensate for this loss through rapid bone recovery on remobilisation, to avoid the risk of fracture. In further contrast to black bears, serum concentrations of bone formation markers were highly significantly increased in pregnant female polar bears compared to non-pregnant,thus non-hibernating females both prior to and after hibernation. However, bone formation concentrations in new mothers were significantly reduced compared to pre-hibernation concentrations. The de-coupling of bone turnover in favour of bone formation prior to hibernation, suggests that wild polar bears may posses a unique physiological mechanism for building bone in protective preparation against expected osteopenia associated with disuse,starvation, and hormonal drives to mobilise calcium for reproduction, during hibernation. Understanding this physiological mechanism could have profound implications for a natural solution for the prevention of osteoporosis in animals subjected to captivity with inadequate space for exercise,humans subjected to prolonged bed rest while recovering from illness, or astronauts exposed to antigravity during spaceflight.© 2008 Elsevier Inc. All rights reserved.

  18. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  19. [Correlative analysis on metatarsalgia and the X-ray measurement indexes under weight-bearing and non-weight-bearing of hallux valgus].

    Science.gov (United States)

    Gong, Hao; Sang, Zhi-Cheng; Wen, Jian-Min; Sun, Wei-Dong; Hu, Hai-Wei; Zhang, Yong-Chao; Zuo, Jian-Gang; Wang, Hai-Xiong

    2014-04-01

    To study changes in the radiographic appearance during weight-bearing and non-weigh-bearing in hallux valgus, and to analyse the correlation between the elasticity of plantar soft tissue of hallux valgus and the pain under the metatarsal head. From May 2012 to October 2012, 240 feet of 120 patients with hallux valgus were enrolled in the study. The degrees of the pian under the metatarsal head of all the patients were observed. AP and lateral X-ray films of feet were taken on the condition of weight-bearing and non-weight-bearing. So the hallux valgus angle (HVA), the inter-metatarsal angle between the first and second metatarsals (IM1-2), the inter-metatarsal angle between the first and fifth metatarsals (IM1-5), top angle of the medial longitudinal arch (TAOTMLA),and anterior angle of the medial longitudinal arch (AAOTMLA) were measured on the X-ray films. The differences of HVA, IM1-2, IM1-5, TAOTMLA and AAOTMLA between two groups were compared, and the correlation between the changes of IM1-2, IM 1-5, TAOTMLA, AAOTMLA and the degree of the pain under the metatarsal head were analysed. One hundred and forty-eight feet had the pain under the metatarsal head. The IM1-2, IM1-5 and TAOTMLA increased on weight-bearing position compared with those on non-weight-bearing position, but the HVA and AAOTMLA decreased on weight-bearing position compared with those on non-weight-bearing position. There was a moderate relationship between the changes of IM 1-2,IM1-5 and the degree of the hallux valgus deformity, as well as the relationship between the different of IM1-5 and the degree of the pian under the metatarsal head. The degree of the collapse of the arch of foot with hallux valgus becomes serious with its deformity increasing. The pain under the metatarsal head of hallux valgus increases with the increased changes of IM 1-2,IM 1-5 and TAOTMLA. Analysis of the X-ray observation indexes of hallux valgus on weight-bearing position and non-weight-bearing position has

  20. Weight bearing or non-weight bearing after surgically fixed ankle fractures, the WOW! Study: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Briet, Jan Paul; Houwert, Roderick M; Smeeing, Diederik P J; Pawiroredjo, Janity S; Kelder, Johannes C; Lansink, Koen W; Leenen, Luke P H; van der Zwaal, Peer; van Zutphen, Stephan W A M; Hoogendoorn, Jochem M; van Heijl, Mark; Verleisdonk, Egbert J M M; van Lammeren, Guus W; Segers, Michiel J; Hietbrink, Falco

    2015-04-18

    The optimal post-operative care regimen after surgically fixed Lauge Hansen supination exorotation injuries remains to be established. This study compares whether unprotected weight bearing as tolerated is superior to protected weight bearing and unprotected non-weight bearing in terms of functional outcome and safety. The WOW! Study is a prospective multicenter clinical trial. Patients between 18 and 65 years of age with a Lauge Hansen supination exorotation type 2, 3 or 4 ankle fractures requiring surgical treatment are eligible for inclusion. An expert panel validates the classification and inclusion eligibility. After surgery, patients are randomized to either the 1) unprotected non-weight-bearing, 2) protected weight-bearing, or 3) unprotected weight-bearing group. The primary outcome measure is ankle-specific disability measured by the Olerud-Molander ankle score. Secondary outcomes are 1) quality of life (e.g., return to work and resumption of sport), 2) complications, 3) range of motion, 4) calf wasting, and 5) maximum pressure load after 3 months and 1 year. This trial is designed to compare the effectiveness and safety of unprotected weight bearing with two commonly used post-operative treatment regimens after internal fixation of specified, intrinsically stable but displaced ankle fractures. An expert panel has been established to evaluate every potential subject, which ensures that every patient is strictly screened according to the inclusion and exclusion criteria and that there is a clear indication for surgical fixation. The WOW! Study is registered in the Dutch Trial Register ( NTR3727 ). Date of registration: 28-11-2012.

  1. High Variability of Observed Weight Bearing During Standing Foot and Ankle Radiographs.

    Science.gov (United States)

    Miller, Christopher P; Ghorbanhoseini, Mohammad; Ehrlichman, Lauren K; Walley, Kempland C; Ghaheri, Azadeh; Kwon, John Y

    2017-06-01

    Weight-bearing radiographs are a critical component of evaluating foot and ankle pathology. An underlying assumption is that patients are placing 50% of their body weight on the affected foot during image acquisition. The accuracy of weight bearing during radiographs is unknown and, presumably, variable, which may result in uncertain ability of the resultant radiographs to appropriately portray the pathology of interest. Fifty subjects were tested. The percentage body weight through the foot of interest was measured at the moment of radiographic image acquisition. The subject was then instructed to bear "half [their] weight" prior to the next radiograph. The percentage body weight was calculated and compared to ideal 50% weight bearing. The mean percentage body weight in trial 1 and 2 was 45.7% ± 3.2% ( P = .012 compared to the 50% mark) and 49.2% ± 2.4%, respectively ( P = .428 compared to 50%). The mean absolute difference in percentage weight bearing compared to 50% in trials 1 and 2 was 9.3% ± 2.3% and 5.8% ± 1.8%, respectively ( P = .005). For trial 1, 18/50 subjects were within the "ideal" (45%-55%) range for weight bearing compared to 32/50 on trial 2 ( P = .005). In trial 1, 24/50 subjects had "appropriate" (>45%) weight bearing compared to 39/50 on trial 2 ( P = .002). There was substantial variability in the weight applied during radiograph acquisition. This study raises questions regarding the assumptions, reliability, and interpretation when evaluating weight-bearing radiographs. Level III, comparative study.

  2. Lower Profile, Lighter Weight Space Suit Bearings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Air-Lock will deliver a final report based on the follwoing: 1. Historical summary of bearing design evolution throughout the life of the EMU Program 2. Material...

  3. Weight-bearing MRI of the knee: a review of advantages and limits.

    Science.gov (United States)

    Bruno, Federico; Barile, Antonio; Arrigoni, Francesco; Laporta, Antonella; Russo, Anna; Carotti, Marina; Splendiani, Alessandra; Di Cesare, Ernesto; Masciocchi, Carlo

    2018-01-19

    Standard knee imaging with MRI is usually performed with patient in recumbent position under non-weight-bearing conditions. Recently, magnetic resonance imaging systems to scan the knee joint under weight bearing conditions has been proposed as an approach to improve the clinical utility of musculoskeletal MRI. Imaging under loading can be useful to understand the natural motion behavior of the knee joint and to identify conditions that are challenging to diagnose by using standard position. We reviewed the literature on weight-bearing MR imaging of the knee to describe the current state of use of such MRI technologies, evaluating the advantages and the potential limitations of these technologies.

  4. Cranial acetabular retroversion is common in developmental dysplasia of the hip as assessed by the weight bearing position

    DEFF Research Database (Denmark)

    Troelsen, Anders; Mikkelsen, Lone Rømer; Jacobsen, Steffen

    2010-01-01

    The appearance of acetabular version differs between the supine and weight bearing positions in developmental dysplasia of the hip. Weight bearing radiographic evaluation has been recommended to ensure the best coherence between symptoms, functional appearance, and hip deformities. Previous...

  5. Influence of weight and weight change on bone loss in perimenopausal and early postmenopausal Scottish women.

    Science.gov (United States)

    Macdonald, Helen M; New, Susan A; Campbell, Marion K; Reid, David M

    2005-02-01

    Weight is recognized as an important factor in determining an individual's risk of osteoporosis. However, little is known about whether weight or weight change influences bone loss around the time of the menopause, and the relationship with energy intake and physical activity level remains largely undefined. Healthy premenopausal women (1,064 selected from a random population of 5,119 women aged 45-54 years at baseline) each had bone mineral density (BMD), weight and height measurements, and completed a food frequency and physical activity questionnaire. Of the original participants, 907 women (85.2%) returned 6.3 +/- 0.6 years later for repeat BMD measurements, and 896 women completed the questionnaires. Bone loss at the hip (FN) and spine (LS) occurred before the menopause. Weight change rather than weight was associated with FN BMD loss (r=0.102, p=0.002), but weight at follow-up was associated with LS BMD change (r=0.105, p=0.002). Although an increase in physical activity level (PAL) appeared to be beneficial for FN BMD in women who were heavy weight gainers, PAL was associated with increased LS BMD loss in women who lost weight. For current HRT users, neither weight nor weight change was associated with change in BMD. Postmenopausal women not taking HRT should be made aware that low body weight or losing weight during this particularly vulnerable period may worsen bone loss.

  6. Parathyroid hormone may maintain bone formation in hibernating black bears (Ursus americanus) to prevent disuse osteoporosis.

    Science.gov (United States)

    Donahue, Seth W; Galley, Sarah A; Vaughan, Michael R; Patterson-Buckendahl, Patricia; Demers, Laurence M; Vance, Josef L; McGee, Meghan E

    2006-05-01

    Mechanical unloading of bone causes an imbalance in bone formation and resorption leading to bone loss and increased fracture risk. Black bears (Ursus americanus) are inactive for up to six months during hibernation, yet bone mineral content and strength do not decrease with disuse or aging. To test whether hibernating bears have biological mechanisms to prevent disuse osteoporosis, we measured the serum concentrations of hormones and growth factors involved in bone metabolism and correlated them with the serum concentration of a bone formation marker (osteocalcin). Serum was obtained from black bears over a 7-month duration that included periods of activity and inactivity. Both resorption and formation markers increased during hibernation, suggesting high bone turnover occurred during inactivity. However, bone formation appeared to be balanced with bone resorption. The serum concentration of parathyroid hormone (PTH) was higher in the hibernation (P=0.35) and post-hibernation (P=0.006) seasons relative to pre-hibernation levels. Serum leptin was lower (Phibernation relative to pre-hibernation and hibernation periods. Insulin-like growth factor I (IGF-I) decreased (Phibernation relative to pre-hibernation and reached its highest value during remobilization. There was no difference (P=0.64) in 25-OH vitamin D between the three seasons. Serum osteocalcin (bone formation marker) was significantly correlated with PTH, but not with leptin, IGF-I or 25-OH vitamin D. Osteocalcin and PTH were positively correlated when samples from all seasons were pooled and when only hibernation samples were considered, raising the possibility that the anabolic actions of PTH help maintain bone formation to prevent disuse osteoporosis. Prostaglandin E(2) (PGE(2)) release from MC3T3 osteoblastic cells was significantly affected by treatment with bear serum from different seasons (i.e. hibernation versus active periods). The seasonal changes in PGE(2) release showed trends similar to the

  7. Acetabular roof arc angles and anatomic biomechanical superior acetabular weight bearing area

    Directory of Open Access Journals (Sweden)

    Thossart Harnroongroj

    2014-01-01

    Full Text Available Background: Acetabular fracture involves whether superior articular weight bearing area and stability of the hip are assessed by acetabular roof arc angles comprising medial, anterior and posterior. Many previous studies, based on clinical, biomechanics and anatomic superior articular surface of acetabulum showed different degrees of the angles. Anatomic biomechanical superior acetabular weight bearing area (ABSAWBA of the femoral head can be identified as radiographic subchondral bone density at superior acetabular dome. The fracture passes through ABSAWBA creating traumatic hip arthritis. Therefore, acetabular roof arc angles of ABSAWBA were studied in order to find out that the most appropriate degrees of recommended acetabular roof arc angles in the previous studies had no ABSAWBA involvement. Materials and Methods: ABSAWBA of femoral head was identified 68 acetabular fractures and 13 isolated pelvic fractures without unstable pelvic ring injury were enrolled. Acetabular roof arc angle was measured on anteroposterior, obturator and iliac oblique view radiographs of normal contralateral acetabulum using programmatic automation controller digital system and measurement tools. Results: Average medial, anterior and posterior acetabular roof arc angles of the ABSAWBA of 94 normal acetabulum were 39.09 (7.41, 42.49 (8.15 and 55.26 (10.08 degrees, respectively. Conclusions: Less than 39°, 42° and 55° of medial, anterior and posterior acetabular roof arc angles involve ABSAWBA of the femoral head. Application of the study results showed that 45°, 45° and 62° from the previous studies are the most appropriate medial, anterior and posterior acetabular roof arc angles without involvement of the ABSAWBA respectively.

  8. Vitamin D status and bone and connective tissue turnover in brown bears (Ursus arctos) during hibernation and the active state

    National Research Council Canada - National Science Library

    Vestergaard, Peter; Støen, Ole-Gunnar; Swenson, Jon E; Mosekilde, Leif; Heickendorff, Lene; Fröbert, Ole

    2011-01-01

    ...]) and bone turnover parameters (osteocalcin, ICTP, CTX-I), PTH, serum calcium and PIIINP. We drew blood from seven immobilised wild brown bears during hibernation in February and in the same bears while active in June...

  9. Development of Composite Scaffolds for Load Bearing Segmental Bone Defects

    Science.gov (United States)

    2013-07-01

    REFERENCES [1] Xu HHK, Weir MD, Simon CG. Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dental ...scaffolds. Biomaterials 2010;31: 3429-3438. [60] Asefnejad A. Polyurethane/ fluor -hydroxyapatite nanocomposite scaffolds for bone tissue engineering

  10. Correlation of psychomotor findings and the ability to partially weight bear

    Science.gov (United States)

    2012-01-01

    Background Partial weight bearing is thought to avoid excessive loading that may interfere with the healing process after surgery of the pelvis or the lower extremity. The object of this study was to investigate the relationship between the ability to partially weight bear and the patient's psychomotor skills and an additional evaluation of the possibility to predict this ability with a standardized psychomotor test. Methods 50 patients with a prescribed partial weight bearing at a target load of 15 kg following surgery were verbally instructed by a physical therapist. After the instruction and sufficient training with the physical therapist vertical ground reaction forces using matrix insoles were measured while walking with forearm crutches. Additionally, psychomotor skills were tested with the Motorische Leistungsserie (MLS). To test for correlations Spearman's Rank correlation was used. For further comparison of the two groups a Mann-Withney test was performed using Bonferroni correction. Results The patient's age and body weight significantly correlated with the ability to partially weight bear at a 15 kg target load. There were significant correlations between several subtests of the MLS and ground reaction forces measured while walking with crutches. Patients that were able to correctly perform partial weight bearing showed significant better psychomotor skills especially for those subtests where both hands had to be coordinated simultaneously. Conclusions The ability to partially weight bear is associated with psychomotor skills. The MLS seems to be a tool that helps predicting the ability to keep within the prescribed load limits. PMID:22330655

  11. Correlation of psychomotor findings and the ability to partially weight bear

    Directory of Open Access Journals (Sweden)

    Ruckstuhl Thomas

    2012-02-01

    Full Text Available Abstract Background Partial weight bearing is thought to avoid excessive loading that may interfere with the healing process after surgery of the pelvis or the lower extremity. The object of this study was to investigate the relationship between the ability to partially weight bear and the patient's psychomotor skills and an additional evaluation of the possibility to predict this ability with a standardized psychomotor test. Methods 50 patients with a prescribed partial weight bearing at a target load of 15 kg following surgery were verbally instructed by a physical therapist. After the instruction and sufficient training with the physical therapist vertical ground reaction forces using matrix insoles were measured while walking with forearm crutches. Additionally, psychomotor skills were tested with the Motorische Leistungsserie (MLS. To test for correlations Spearman's Rank correlation was used. For further comparison of the two groups a Mann-Withney test was performed using Bonferroni correction. Results The patient's age and body weight significantly correlated with the ability to partially weight bear at a 15 kg target load. There were significant correlations between several subtests of the MLS and ground reaction forces measured while walking with crutches. Patients that were able to correctly perform partial weight bearing showed significant better psychomotor skills especially for those subtests where both hands had to be coordinated simultaneously. Conclusions The ability to partially weight bear is associated with psychomotor skills. The MLS seems to be a tool that helps predicting the ability to keep within the prescribed load limits.

  12. In Vivo Kinematics of the Knee during Weight Bearing in High Flexion

    OpenAIRE

    Qi, Wei; Hosseini, Ali; Tsai, Tsung-Yuan; Li, Jing-Sheng; Rubash, Harry E.; Li, Guoan

    2013-01-01

    Achieving high flexion is an objective of contemporary total knee arthoplasty, however little is known on the knee biomechanics at high flexion under weight-bearing conditions. This study is to investigate the 6DOF kinematics and tibiofemoral cartilage contact biomechanics of the knee during weight-bearing flexion from full extension to maximal flexion. Eight knees from seven healthy subjects with no history of injuries or chronic pain were recruited. The knees were MRI scanned to create 3D m...

  13. Exercise, lifestyle, and your bones

    Science.gov (United States)

    Osteoporosis - exercise; Low bone density - exercise; Osteopenia - exercise ... To build up bone density, the exercise must make your muscles pull on your bones. These are called weight-bearing exercises. Some of them are: Brisk ...

  14. Birth weight and adult bone metabolism are unrelated

    DEFF Research Database (Denmark)

    Frost, Morten; Petersen, Inge Lund; Andersen, Thomas Levin

    2013-01-01

    INTRODUCTION: Low birth weight (BW) has been associated with poor bone health in adulthood. The aim of this study was to investigate the association between BW and bone mass and metabolism in adult BW discordant monozygotic twins (MZ). METHODS: 153 BW extremely discordant MZ twin-pairs were...... individuals using regression analyses with or without adjustment for height, weight, age, sex, and intra-pair correlation. Within-pair differences were assessed using Student's T-test and fixed-regression models. RESULTS: BW was not associated with BTMs, LS-, TH-, FN- or WB-BMD, but BW was associated with WB...

  15. Investigation of spodumene-bearing rock as a flux for bone china production

    OpenAIRE

    Carús, Lauren Arrussul; Braganca, Saulo Roca

    2013-01-01

    The use of a waste from mineral processing, a spodumene-bearing rock, was investigated as a flux for bone china composition, partially replacing feldspar. The effect of lithium oxide in bone china body was favorable for reducing firing temperature. The presence of Li2O reacting with other oxides and silicates formed a liquid phase of lower viscosity, which was favorable for densification through viscous flow sintering, and to a higher mechanical strength. It was obtained a large plateau for f...

  16. Predictors of patellar alignment during weight bearing: an examination of patellar height and trochlear geometry.

    Science.gov (United States)

    Teng, Hsiang-Ling; Chen, Yu-Jen; Powers, Christopher M

    2014-01-01

    Patellar malalignment is thought to be an etiological factor with respect to the development of patellofemoral pain. Although previous studies have suggested that the geometry of the femoral trochlea and the height of the patella play an important role in determining patellar alignment, no investigation has systematically examined these relationships during weight bearing. The aim of this study was to determine whether patellar height and/or trochlear geometry predicts patellar alignment (lateral patellar displacement and lateral patellar tilt) during weight bearing. MR images of the patellofemoral joint were acquired from 36 participants during weight bearing (25% of body weight) at 4 knee flexion angles (0°, 20°, 40° and 60°). Using the axial images, patellar alignment (lateral displacement and tilt) and femoral trochlear geometry (sulcus angle and inclination of the lateral femoral trochlea) were measured. Patellar height (Insall-Salvati ratio) was measured on reconstructed sagittal plane images. Stepwise regression analysis revealed that at 0° of knee flexion, the height of the patella was the best predictor of lateral patellar tilt while the lateral trochlea inclination angle was the best predictor of lateral patellar displacement. Lateral trochlear inclination was the best predictor of patellar lateral displacement and tilt at 20°, 40° and 60° of knee flexion. Similar to a previous study performed under non-weight bearing condition, our findings suggest that lateral trochlear inclination is an important determinant of patellar alignment in weight bearing. Level III. © 2013. Published by Elsevier B.V. All rights reserved.

  17. The effects of a 12-week program of static upper extremity weight bearing exercises on weight bearing in children with hemiplegic type of cerebral palsy

    Directory of Open Access Journals (Sweden)

    P. Jayaraman

    2010-02-01

    Full Text Available The  major  objective  of  this  study  was  to  quantify  the  effects  of a  12-week  program  of  weight  bearing  exercises  on  weight  borne  through  the hand and grip pressures in children with hemiplegic cerebral palsy. This study also sought to monitor the change in spasticity immediately following weight-bearing  exercises.  A  quasi-experimental,  one  group  pre-test,  post-test  study  was used. Eleven children with hemiplegic type of cerebral palsy from a special school in KwaZulu Natal participated after fully informed written consent. The intervention consisted of a 12-week program of weight bearing. The Tekscan Grip system was used to quantify weight borne through the hand during extended arm prone and quadruped positions and whilst holding a pencil and a tumbler. The modified Ashworth grading of spasticity was used to monitor spasticity. The data was analysed using the random effects GLS model Wald Chi Square test. Significant increases in contact pressure in extended arms prone (p=0,012 and quadruped (p=0,002 and when holding a pencil (p=0,045 was noted post-test compared to pre-test. Significant increases in contact area of the hand was also noted in prone (p=0,000, quadruped (p=0, 03 at assessment 7 and when holding a pencil (p=0,035.  A significant decrease in spasticity during elbow extension (p=0,004, and wrist flexion (p=0,026 and extension (p=0,004 was noted. An overall significant effect of static weight bearing exercises on weight borne through the hands, grip strength and spasticity justifies the use of static weight-bearing in therapy.

  18. Two Patients with Osteochondral Injury of the Weight-Bearing Portion of the Lateral Femoral Condyle Associated with Lateral Dislocation of the Patella

    Directory of Open Access Journals (Sweden)

    Shuji Nakagawa

    2014-01-01

    Full Text Available Complications of patellar dislocation include osteochondral injury of the lateral femoral condyle and patella. Most cases of osteochondral injury occur in the anterior region, which is the non-weight-bearing portion of the lateral femoral condyle. We describe two patients with osteochondral injury of the weight-bearing surface of the lateral femoral condyle associated with lateral dislocation of the patella. The patients were 18- and 11-year-old females. Osteochondral injury occurred on the weight-bearing surface distal to the lateral femoral condyle. The presence of a free osteochondral fragment and osteochondral injury of the lateral femoral condyle was confirmed on MRI and reconstruction CT scan. Treatment consisted of osteochondral fragment fixation or microfracture, as well as patellar stabilization. Osteochondral injury was present in the weight-bearing portion of the lateral femoral condyle in both patients, suggesting that the injury was caused by friction between the patella and lateral femoral condyle when the patella was dislocated or reduced at about 90° flexion of the knee joint. These findings indicate that patellar dislocation may occur and osteochondral injury may extend to the weight-bearing portion of the femur even in deep flexion, when the patella is stabilized on the bones of the femoral groove.

  19. ‘Neanderthal bone flutes’: simply products of Ice Age spotted hyena scavenging activities on cave bear cubs in European cave bear dens

    Science.gov (United States)

    Diedrich, Cajus G.

    2015-01-01

    Punctured extinct cave bear femora were misidentified in southeastern Europe (Hungary/Slovenia) as ‘Palaeolithic bone flutes’ and the ‘oldest Neanderthal instruments’. These are not instruments, nor human made, but products of the most important cave bear scavengers of Europe, hyenas. Late Middle to Late Pleistocene (Mousterian to Gravettian) Ice Age spotted hyenas of Europe occupied mainly cave entrances as dens (communal/cub raising den types), but went deeper for scavenging into cave bear dens, or used in a few cases branches/diagonal shafts (i.e. prey storage den type). In most of those dens, about 20% of adult to 80% of bear cub remains have large carnivore damage. Hyenas left bones in repeating similar tooth mark and crush damage stages, demonstrating a butchering/bone cracking strategy. The femora of subadult cave bears are intermediate in damage patterns, compared to the adult ones, which were fully crushed to pieces. Hyenas produced round–oval puncture marks in cub femora only by the bone-crushing premolar teeth of both upper and lower jaw. The punctures/tooth impact marks are often present on both sides of the shaft of cave bear cub femora and are simply a result of non-breakage of the slightly calcified shaft compacta. All stages of femur puncturing to crushing are demonstrated herein, especially on a large cave bear population from a German cave bear den. PMID:26064624

  20. Charcot arthropathy and immobilization in a weight-bearing total contact cast.

    Science.gov (United States)

    de Souza, Leo J

    2008-04-01

    The standard management for Eichenholtz Stage-I Charcot arthropathy has been with non-weight-bearing total contact casts. The purpose of this study was to evaluate the results of the use of weight-bearing total contact casts for similar patients. Twenty-seven patients with Charcot arthropathy of the foot and ankle were studied prospectively over a period of eighteen years, from 1988 to 2006. The average duration of follow-up was 5.5 years. Of the twenty-seven patients, twenty-six had diabetes mellitus. Total contact casts were used to treat thirty-four feet with Eichenholtz Stage-I or early Stage-II Charcot arthropathy. These patients were allowed to bear weight as tolerated. Casts were changed at weekly intervals and were worn until resolution of the acute stage of the disease. No deleterious effect from weight-bearing, specifically with regard to skin ulceration or rapid deterioration of the osseous architecture, was observed in thirty-three of the thirty-four feet. Immobilization in a weight-bearing total contact cast appears to be a safe method of treatment of acute Eichenholtz Stage-I Charcot arthropathy of the foot and ankle.

  1. Drug loaded biodegradable load-bearing nanocomposites for damaged bone repair

    Science.gov (United States)

    Gutmanas, E. Y.; Gotman, I.; Sharipova, A.; Psakhie, S. G.; Swain, S. K.; Unger, R.

    2017-09-01

    In this paper we present a short review-scientific report on processing and properties, including in vitro degradation, of load bearing biodegradable nanocomposites as well as of macroporous 3D scaffolds for bone ingrowth. Biodegradable implantable devices should slowly degrade over time and disappear with ingrown of natural bone replacing the synthetic graft. Compared to low strength biodegradable polymers, and brittle CaP ceramics, biodegradable CaP-polymer and CaP-metal nanocomposites, mimicking structure of natural bone, as well as strong and ductile metal nanocomposites can provide to implantable devices both strengths and toughness. Nanostructuring of biodegradable β-TCP (tricalcium phosphate)-polymer (PCL and PLA), β-TCP-metal (FeMg and FeAg) and of Fe-Ag composites was achieved employing high energy attrition milling of powder blends. Nanocomposite powders were consolidated to densities close to theoretical by high pressure consolidation at ambient temperature—cold sintering, with retention of nanoscale structure. The strength of developed nanocomposites was significantly higher as compared with microscale composites of the same or similar composition. Heat treatment at moderate temperatures in hydrogen flow resulted in retention of nanoscale structure and higher ductility. Degradation of developed biodegradable β-TCP-polymer, β-TCP-metal and of Fe-Ag nanocomposites was studied in physiological solutions. Immersion tests in Ringer's and saline solution for 4 weeks resulted in 4 to 10% weight loss and less than 50% decrease in compression or bending strength, the remaining strength being significantly higher than the values reported for other biodegradable materials. Nanostructuring of Fe-Ag based materials resulted also in an increase of degradation rate because of creation on galvanic Fe-Ag nanocouples. In cell culture experiments, the developed nanocomposites supported the attachment the human osteoblast cells and exhibited no signs of cytotoxicity

  2. An intact fibula may contribute to allow early weight bearing in surgically treated tibial plateau fractures.

    Science.gov (United States)

    Carrera, Ion; Gelber, Pablo Eduardo; Chary, Gaetan; Gomez Masdeu, Mireia; González Ballester, Miguel A; Monllau, Juan Carlos; Noailly, Jerome

    2017-03-03

    The role of the proximal tibiofibular joint (PTFJ) in tibial plateau fractures is unknown. The purpose of this study was to assess, with finite-element (FE) calculations, differences in interfragmentary movement (IFM) in a split fracture of lateral tibial plateau, with and without intact fibula. It was hypothesized that an intact fibula could positively contribute to the mechanical stabilization of surgically reduced lateral tibial plateau fractures. A split fracture of the lateral tibial plateau was recreated in an FE model of a human tibia. A three-dimensional FE model geometry of a human femur-tibia system was obtained from the VAKHUM project database, and was built from CT images from a subject with normal bone morphologies and normal alignment. The mesh of the tibia was reconverted into a geometry of NURBS surfaces. The fracture was reproduced using geometrical data from patient radiographs, and two models were created: one with intact fibula and other without fibula. A locking screw plate and cannulated screw systems were modelled to virtually reduce the fracture, and 80 kg static body weight was simulated. Under mechanical loads, the maximum interfragmentary movement achieved with the fibula was about 30% lower than without fibula, with both the cannulated screws and the locking plate. When the locking plate model was loaded, intact fibula contributed to lateromedial forces on the fractured fragments, which would be clinically translated into increased normal compression forces in the fractured plane. The intact fibula also reduced the mediolateral forces with the cannulated screws, contributing to stability of the construct. This FE model showed that an intact fibula contributes to the mechanical stability of the lateral tibial plateau. In combination with a locking plate fixation, early weight bearing may be allowed without significant IFM, contributing to an early clinical and functional recovery of the patient.

  3. Myelopotentiating effect of curcumin in tumor-bearing host: Role of bone marrow resident macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Vishvakarma, Naveen Kumar; Kumar, Anjani; Kumar, Ajay; Kant, Shiva [School of Biotechnology, Banaras Hindu University, Varanasi-221 005, U.P. (India); Bharti, Alok Chandra [Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, Noida, UP (India); Singh, Sukh Mahendra, E-mail: sukhmahendrasingh@yahoo.com [School of Biotechnology, Banaras Hindu University, Varanasi-221 005, U.P. (India)

    2012-08-15

    The present investigation was undertaken to study if curcumin, which is recognized for its potential as an antineoplastic and immunopotentiating agent, can also influence the process of myelopoiesis in a tumor-bearing host. Administration of curcumin to tumor-bearing host augmented count of bone marrow cell (BMC) accompanied by an up-regulated BMC survival and a declined induction of apoptosis. Curcumin administration modulated expression of cell survival regulatory molecules: Bcl2, p53, caspase-activated DNase (CAD) and p53-upregulated modulator of apoptosis (PUMA) along with enhanced expression of genes of receptors for M-CSF and GM-CSF in BMC. The BMC harvested from curcumin-administered hosts showed an up-regulated colony forming ability with predominant differentiation into bone marrow-derived macrophages (BMDM), responsive for activation to tumoricidal state. The number of F4/80 positive bone marrow resident macrophages (BMM), showing an augmented expression of M-CSF, was also augmented in the bone marrow of curcumin-administered host. In vitro reconstitution experiments indicated that only BMM of curcumin-administered hosts, but not in vitro curcumin-exposed BMM, augmented BMC survival. It suggests that curcumin-dependent modulation of BMM is of indirect nature. Such prosurvival action of curcumin is associated with altered T{sub H1}/T{sub H2} cytokine balance in serum. Augmented level of serum-borne IFN-γ was found to mediate modulation of BMM to produce enhanced amount of monokines (IL-1, IL-6, TNF-α), which are suggested to augment the BMC survival. Taken together the present investigation indicates that curcumin can potentiate myelopoiesis in a tumor-bearing host, which may have implications in its therapeutic utility. Highlights: ► Curcumin augments myelopoiesis in tumor-bearing host. ► Bone marrow resident macrophages mediate curcumin-dependent augmented myelopoiesis. ► Serum borne cytokine are implicated in modulation of bone marrow resident

  4. Evaluation of medial meniscus tears and meniscal stability: weight-bearing MRI vs arthroscopy.

    Science.gov (United States)

    Barile, Antonio; Conti, Laura; Lanni, Giuseppe; Calvisi, Vittorio; Masciocchi, Carlo

    2013-04-01

    To assess the role of dedicated low-field standard and weight-bearing MRI in the evaluation of stable or unstable tears of medial meniscus in comparison with arthroscopy. Our series included 1750 knee MRI scans performed with a high-field MRI scanner from July 2010 to August 2011. We retrospectively reviewed and analyzed 20 MRI exams of normal knee and 57 MRI exams of knee with clinical evidence of tears of the medial meniscus. In the same session, after conventional 1.5T and "dedicated" 0.25T supine MRI exam, the patients underwent weight-bearing examination with the same dedicated MRI unit. In all cases sagittal and coronal PD-W were used. All patients underwent arthroscopy 18-25 days after the weight-bearing MRI. In the first group, no statistically significant anatomical modifications of shape, intensity and position of the medial meniscus between standard 1.5T, dedicated supine and upright MRI were observed. In group A, the images acquired in the supine position (dedicated and 1.5T MRI) documented in 21 cases a traumatic tear (group 2A) and in 36 cases a degenerative tear (group 2B). In group 2A, weight-bearing MRI showed presence of unstable tear a degenerative unstable meniscal tear only in 19 out of 36 cases. In group 2B, weight-bearing MRI showed only in 9 out 21 cases. Arthroscopy confirmed weight-bearing MRI diagnosis in all cases. This new approach to meniscus pathology gives an important contribution to a better management of a diagnostic-therapeutic approach in which standard MRI has not played a key role, so far. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Does taurine deficiency cause metabolic bone disease and rickets in polar bear cubs raised in captivity?

    Science.gov (United States)

    Chesney, Russell W; Hedberg, Gail E; Rogers, Quinton R; Dierenfeld, Ellen S; Hollis, Bruce E; Derocher, Andrew; Andersen, Magnus

    2009-01-01

    Rickets and fractures have been reported in captive polar bears. Taurine (TAU) is key for the conjugation of ursodeoxycholic acid (UDCA), a bile acid unique to bears. Since TAU-conjugated UDCA optimizes fat and fat-soluble vitamin absorption, we asked if TAU deficiency could cause vitamin D malabsorption and lead to metabolic bone disease in captive polar bears. We measured TAU levels in plasma (P) and whole blood (WB) from captive and free-ranging cubs and adults, and vitamin D3 and TAU concentrations in milk samples from lactating sows. Plasma and WB TAU levels were significantly higher in cubs vs captive and free-ranging adult bears. Vitamin D in polar bear milk was 649.2 +/- 569.2 IU/L, similar to that found in formula. The amount of TAU in polar bear milk is 3166.4 +/- 771 nmol/ml, 26-fold higher than in formula. Levels of vitamin D in bear milk and formula as well as in plasma do not indicate classical nutritional vitamin D deficiency. Higher dietary intake of TAU by free-ranging cubs may influence bile acid conjugation and improve vitamin D absorption.

  6. Automated assessment of pain in rats using a voluntarily accessed static weight-bearing test.

    Science.gov (United States)

    Kim, Hung Tae; Uchimoto, Kazuhiro; Duellman, Tyler; Yang, Jay

    2015-11-01

    The weight-bearing test is one method to assess pain in rodent animal models; however, the acceptance of this convenient method is limited by the low throughput data acquisition and necessity of confining the rodents to a small chamber. We developed novel data acquisition hardware and software, data analysis software, and a conditioning protocol for an automated high throughput static weight-bearing assessment of pain. With this device, the rats voluntarily enter the weighing chamber, precluding the necessity to restrain the animals and thereby removing the potential stress-induced confounds as well as operator selection bias during data collection. We name this device the Voluntarily Accessed Static Incapacitance Chamber (VASIC). Control rats subjected to the VASIC device provided hundreds of weight-bearing data points in a single behavioral assay. Chronic constriction injury (CCI) surgery and paw pad injection of complete Freund's adjuvant (CFA) or carrageenan in rats generated hundreds of weight-bearing data during a 30 minute recording session. Rats subjected to CCI, CFA, or carrageenan demonstrated the expected bias in weight distribution favoring the un-operated leg, and the analgesic effect of i.p. morphine was demonstrated. In comparison with existing methods, brief water restriction encouraged the rats to enter the weighing chamber to access water, and an infrared detector confirmed the rat position with feet properly positioned on the footplates, triggering data collection. This allowed hands-off measurement of weight distribution data reducing operator selection bias. The VASIC device should enhance the hands-free parallel collection of unbiased weight-bearing data in a high throughput manner, allowing further testing of this behavioral measure as an effective assessment of pain in rodents. Copyright © 2015. Published by Elsevier Inc.

  7. Immediate weight bearing of comminuted supracondylar femur fractures using locked plate fixation.

    Science.gov (United States)

    Granata, Jaymes D; Litsky, Alan S; Lustenberger, David P; Probe, Robert A; Ellis, Thomas J

    2012-08-01

    Comminuted supracondylar femur fractures (AO-OTA 33A3) are commonly treated with locked plates. Weight bearing is generally restricted for 6 to 12 weeks until radiologic evidence exists of sufficient callous to support weight bearing. Recent clinical studies have reported high nonunion rates with distal femur locked plates. In an attempt to induce beneficial motion across the fracture site, some studies have recommended earlier weight bearing. The purpose of the current study was to determine the biomechanical feasibility of an immediate weight-bearing rehabilitation protocol to encourage healing of distal femur fractures treated with lateral locked plate fixation.Sixteen fresh-frozen cadaveric femora were used for this study. A 2.5-cm supracondylar gap osteotomy was made. Ten-hole, 4.5-mm distal femur locking plates were used with a standardized screw configuration that maximized the working length. The specimens were placed in a servohydraulic testing machine and axially loaded (unidirectional) at 1 Hz for up to 200,000 cycles. Failure was defined as 1 cm of deformation of the construct. The staircase method was used to determine the fatigue limit of the construct. The fatigue limit was calculated to be 1329±106 N. No specimen failed through the non-locking diaphyseal screws. Plastic deformation, when present, occurred at the metaphyseal flare of the plate. The fatigue limit of the locked plate constructs equaled 1.9 times body weight for an average 70-kg patient over a simulated 10-week postoperative course. Given that distal femoral loads during gait have been estimated to be more than 2 times body weight, the data from this study do not support immediate full weight bearing. Copyright 2012, SLACK Incorporated.

  8. Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes.

    Science.gov (United States)

    Fedorov, Vadim B; Goropashnaya, Anna V; Tøien, Øivind; Stewart, Nathan C; Chang, Celia; Wang, Haifang; Yan, Jun; Showe, Louise C; Showe, Michael K; Donahue, Seth W; Barnes, Brian M

    2012-06-01

    Physical inactivity reduces mechanical load on the skeleton, which leads to losses of bone mass and strength in non-hibernating mammalian species. Although bears are largely inactive during hibernation, they show no loss in bone mass and strength. To obtain insight into molecular mechanisms preventing disuse bone loss, we conducted a large-scale screen of transcriptional changes in trabecular bone comparing winter hibernating and summer non-hibernating black bears using a custom 12,800 probe cDNA microarray. A total of 241 genes were differentially expressed (P 1.4) in the ilium bone of bears between winter and summer. The Gene Ontology and Gene Set Enrichment Analysis showed an elevated proportion in hibernating bears of overexpressed genes in six functional sets of genes involved in anabolic processes of tissue morphogenesis and development including skeletal development, cartilage development, and bone biosynthesis. Apoptosis genes demonstrated a tendency for downregulation during hibernation. No coordinated directional changes were detected for genes involved in bone resorption, although some genes responsible for osteoclast formation and differentiation (Ostf1, Rab9a, and c-Fos) were significantly underexpressed in bone of hibernating bears. Elevated expression of multiple anabolic genes without induction of bone resorption genes, and the down regulation of apoptosis-related genes, likely contribute to the adaptive mechanism that preserves bone mass and structure through prolonged periods of immobility during hibernation.

  9. The tensile strength of black bear (Ursus americanus) cortical bone is not compromised with aging despite annual periods of hibernation.

    Science.gov (United States)

    Harvey, Kristin B; Drummer, Thomas D; Donahue, Seth W

    2005-11-01

    Black bears (Ursus americanus) may not develop disuse osteoporosis during long periods of disuse (i.e. hibernation) because they may be able to maintain bone formation. Previously, we found that cortical bone bending strength was not compromised with age in black bears' tibias, despite annual periods of disuse. Here we showed that cortical bone tensile strength (166-198MPa) also does not decrease with age (2-14 years) in black bear tibias. There were also no significant age-related changes in cortical bone porosity in black bear tibias. It is likely that the ability of black bears to maintain bone formation during hibernation keeps bone porosity low (2.3-8.6%) with aging, notwithstanding annual periods of disuse. This low porosity likely preserves ultimate stress with aging. Female bears give birth and nurse during hibernation; however, we found no significant differences between male and female tensile material properties, mineral content, or porosity. Our findings support the idea that black bears, which hibernate 5-7 months annually, have evolved biological mechanisms to mitigate the adverse effects of disuse on bone porosity and strength.

  10. Evaluation of First-Ray Mobility in Patients with Hallux Valgus Using Weight-Bearing CT and a 3-D Analysis System: A Comparison with Normal Feet.

    Science.gov (United States)

    Kimura, Tadashi; Kubota, Makoto; Taguchi, Tetsuya; Suzuki, Naoki; Hattori, Asaki; Marumo, Keishi

    2017-02-01

    Some physicians report that patients with hallux valgus have hypermobility at the tarsometatarsal (TMT) joint of the first ray and 3-dimensional (3-D) deformity. With use of non-weight-bearing and weight-bearing computed tomography (CT), we evaluated the 3-D mobility of each joint of the first ray in feet with hallux valgus compared with normal feet. Ten feet of 10 patients with hallux valgus and 10 feet of 10 healthy volunteers with no foot disorders were examined. All participants were women. Weight-bearing (a load equivalent to body weight) and non-weight-bearing CT scans were made with use of a device that we developed. Orthogonal coordinate axes were set and a 3-D model was reconstructed. Each joint of the first ray was aligned with the respective proximal bone, and 3-D displacement of the distal bone relative to the proximal bone under loading was quantified. At the talonavicular joint, significantly greater dorsiflexion of the navicular relative to the talus was observed in the hallux valgus group compared with the control group. At the medial cuneonavicular joint, the hallux valgus group showed significantly greater eversion and abduction of the medial cuneiform relative to the navicular. At the first TMT joint, the hallux valgus group showed significantly greater dorsiflexion, inversion, and adduction of the first metatarsal relative to the medial cuneiform. At the first metatarsophalangeal joint, the hallux valgus group showed significantly greater eversion and abduction of the first proximal phalanx relative to the first metatarsal (all p hallux valgus.

  11. Mobile-bearing knee systems: ultra-high molecular weight polyethylene wear and design issues.

    Science.gov (United States)

    Greenwald, A Seth; Heim, Christine S

    2005-01-01

    In June 2004, the U.S. Food and Drug Administration Orthopaedic Advisory Panel recommended the reclassification of mobile-bearing knee systems for general use. This reflects the increasing use of mobile-bearing knee systems internationally, which is currently limited in the United States by regulatory requirement. Mobile-bearing knee systems are distinguished from conventional, fixed-plateau systems in that they allow dual-surface articulation between an ultra-high molecular weight polyethylene insert and metallic femoral and tibial tray components. Their in vivo success is dependent on patient selection, design, and material choice, as well as surgical precision during implantation. Laboratory and clinical experience extending over 25 years with individual systems suggests that mobile-bearing knee systems represent a viable treatment option for patients with knee arthrosis.

  12. Weighted Kernel Entropy Component Analysis for Fault Diagnosis of Rolling Bearings.

    Science.gov (United States)

    Zhou, Hongdi; Shi, Tielin; Liao, Guanglan; Xuan, Jianping; Duan, Jie; Su, Lei; He, Zhenzhi; Lai, Wuxing

    2017-03-18

    This paper presents a supervised feature extraction method called weighted kernel entropy component analysis (WKECA) for fault diagnosis of rolling bearings. The method is developed based on kernel entropy component analysis (KECA) which attempts to preserve the Renyi entropy of the data set after dimension reduction. It makes full use of the labeled information and introduces a weight strategy in the feature extraction. The class-related weights are introduced to denote differences among the samples from different patterns, and genetic algorithm (GA) is implemented to seek out appropriate weights for optimizing the classification results. The features based on wavelet packet decomposition are derived from the original signals. Then the intrinsic geometric features extracted by WKECA are fed into the support vector machine (SVM) classifier to recognize different operating conditions of bearings, and we obtain the overall accuracy (97%) for the experimental samples. The experimental results demonstrated the feasibility and effectiveness of the proposed method.

  13. Analysis of Impingement between Patella Bone and Bearing Post in Cruciate-Substituting High-Flexion Total Knee Arthroplasty.

    Science.gov (United States)

    Chon, Jegyun; Lee, Bongju; Shin, Sangyeop; Jang, Gunil; Jeon, Taehyeon

    2016-06-01

    We investigated the causes of impingement between the patella bone and the bearing post during high flexion in cruciate-substituting total knee arthroplasty and proposed a treatment strategy. This prospective cohort study included 218 cases that had undergone cruciate-substituting total knee arthroplasty from February 2014 to January 2015; a single surgeon performed the operation using the same method without patellar resurfacing in all patients. In these patients, the occurrence of impingement was determined by performing more than 120° high knee flexion after inserting a bearing perioperatively. The incidence of impingement was significantly associated with bearing design, femoral implant size, patella bone length, and patella inferior pole angle (p patella bone. In the cruciate-substituting high-flexion total knee arthroplasty, impingement between the patella bone and bearing post was more common in patients with mobile bearing, small-size femoral component, and a long patella or a large inferior pole angle. In cases of intraoperative impingement between the patella bone and the bearing post, resection in the lower portion of the patella prevented impingement of the bearing with soft tissue or the patella by widening the space between the patella and the bearing post, which in turn prevented postoperative reduction in range of motion.

  14. Bone mineral density (BMD) in obesity effect of weight loss.

    Science.gov (United States)

    Gossain, V V; Rao, D S; Carella, M J; Divine, G; Rovner, D R

    1999-01-01

    It is generally believed that bone mineral density (BMD) is increased in obese subjects, but the effect of weight loss on BMD has not been well studied. Therefore, we evaluated BMD among 11 obese women (mean age 45.5 +/- 14.2 years) before and after weight loss achieved by ingesting an 800 calorie diet for 12 weeks. BMD measurements were made at baseline, 6 months and 1 year intervals. Urinary hydroxyproline:creatinine (H:Cr), calcium:creatinine (Ca:Cr) ratios were measured as indices of bone turnover. Mean weight at baseline was 103.8 +/- 15.8 kg and decreased to 83.2 +/- 12.2 at six months and was 85.8 +/- 14.2 kg at one year. Total body, hip and lumbar spine BMD were 1.12 +/- 0.07, .87 +/- 0.11, and 1.02 +/- 0.12 gm/cm2, respectively. Total body BMD was significantly lower at 12 months compared to baseline. No significant change was observed in BMD of the lumbar spine. There was also a significant decrease in hip BMD at six months and 12 months compared to baseline. H:Cr and Ca:Cr ratios did not change over time. We conclude that weight loss achieved by VLCD is accompanied by a statistically significant change in BMD, but the BMD remained in the normal range.

  15. Six months of disuse during hibernation does not increase intracortical porosity or decrease cortical bone geometry, strength, or mineralization in black bear (Ursus americanus) femurs

    OpenAIRE

    McGee-Lawrence, Meghan E.; Wojda, Samantha J.; Barlow, Lindsay N.; Drummer, Thomas D.; Bunnell, Kevin; Auger, Janene; Black, Hal L.; Donahue, Seth W.

    2009-01-01

    Disuse typically uncouples bone formation from resorption, leading to bone loss which compromises bone mechanical properties and increases the risk of bone fracture. Previous studies suggest that bears can prevent bone loss during long periods of disuse (hibernation), but small sample sizes have limited the conclusions that can be drawn regarding the effects of hibernation on bone structure and strength in bears. Here we quantified the effects of hibernation on structural, mineral, and mechan...

  16. Partial Weight Bearing: Long-term monitoring of load in patients with a total hip arthroplasty during postoperative recovery

    NARCIS (Netherlands)

    H.L.P. Hurkmans (Henri)

    2005-01-01

    textabstractPartial weight bearing (PWB) is a central aspect within the postoperative physical therapy of orthopedic and trauma patients with pathologies of the lower extremity. Restriction in weight bearing of the operated leg during standing and walking is needed to avoid complications during

  17. Differences between X-ray and MRI-determined knee cartilage thickness in weight-bearing and non-weight-bearing conditions.

    Science.gov (United States)

    Marsh, M; Souza, R B; Wyman, B T; Hellio Le Graverand, M-P; Subburaj, K; Link, T M; Majumdar, S

    2013-12-01

    Determine the effect of loading upon MRI-based mean medial femorotibial cartilage thickness (mMFT_th) and radiograph-based minimum joint space width (mJSW), and determine loading's effect on the relationship between these measures. MRI and radiographs were analyzed of 25 knees in weight-bearing and non-weight-bearing conditions. Eight subjects had a Kellgren-Lawrence (KL) grade of 0, indicating no evidence of radiographic OA. The rest were KL = 2 or KL = 3, indicating mild to moderate OA. The change from unloaded to loaded conditions was calculated. Joint space measures decreased from unloaded to loaded conditions for both radiographs (mJSW = 3.29 mm unloaded to 3.16 mm loaded, P MRI (mMFT_th = 2.70 mm unloaded to 2.55 mm loaded P MRI joint space values from our study were no better correlated to one another than loaded X-ray and unloaded MRI. Knee loading does not add a very significant value to the study of joint space on healthy knees, but loading may play a role in the study of OA knees. Unloaded MRI assessments of cartilage thickness are as correlated to loaded JSW as to loaded MRI measurements. More study is necessary to determine whether loaded MRI adds significant value to the study of OA progression. Published by Elsevier Ltd.

  18. The influence of gastrocnemius stretching combined with joint mobilization on weight-bearing ankle dorsiflexion passive range of motion.

    Science.gov (United States)

    Kang, Min-Hyeok; Lee, Dong-Kyu; Kim, Soo-Yong; Kim, Jun-Seok; Oh, Jae-Seop

    2015-05-01

    [Purpose] The purpose of this study was to investigate the effect of gastrocnemius stretching combined with talocrural joint mobilization on weight-bearing ankle dorsiflexion passive range of motion. [Subjects] Eleven male subjects with bilateral limited ankle dorsiflexion passive range of motion with knee extended participated in this study. [Methods] All subjects received talocrural joint mobilization while performing gastrocnemius stretching. Ankle dorsiflexion passive range of motion was measured using an inclinometer under weight-bearing conditions before and immediately after intervention. A paired t-test was used to analyze the difference between weight-bearing ankle dorsiflexion passive range of motion pre- and post-intervention. [Results] A significant increase in weight-bearing ankle dorsiflexion passive range of motion was found post-intervention compared with pre-intervention. [Conclusion] These findings demonstrate that gastrocnemius stretching combined with joint mobilization is effective for increasing weight-bearing ankle dorsiflexion passive range of motion.

  19. Patellofemoral joint contact area increases with knee flexion and weight-bearing.

    Science.gov (United States)

    Besier, Thor F; Draper, Christine E; Gold, Garry E; Beaupré, Gary S; Delp, Scott L

    2005-03-01

    Patellofemoral pain is a common and debilitating disorder. Elevated cartilage stress of the patellofemoral joint is hypothesized to play a role in the onset of pain. Estimating cartilage stress requires accurate measurements of contact area. The purpose of this study was to estimate patellofemoral joint contact areas in a group of healthy, pain-free subjects during upright, weight-bearing conditions. Sixteen subjects (8 female, 8 male) were scanned in a GE Signa SP open configuration MRI scanner, which allowed subjects to stand or squat while reclining 25 degrees from vertical with the knee positioned at 0 degrees , 30 degrees , or 60 degrees of flexion. A custom-built backrest enabled subjects to be scanned without motion artifact in both weight-bearing (0.45 body weight per leg) and reduced loading conditions ('unloaded' at 0.15 body weight) at each knee flexion posture. Male subjects displayed mean unloaded patellofemoral joint contact areas of 210, 414, and 520 mm(2) at 0 degrees , 30 degrees and 60 degrees of knee flexion, respectively. Female subjects' unloaded contact areas were similar at full extension (0 degrees ), but significantly smaller at 30 degrees and 60 degrees (pweight-bearing conditions, contact areas increased by an average of 24% (pknee flexion postures, and physiologic loading conditions.

  20. Patient compliance with touchdown weight bearing after microfracture treatment of talar osteochondral lesions.

    Science.gov (United States)

    Polat, Gökhan; Karademir, Gökhan; Akalan, Ekin; Aşık, Mehmet; Erdil, Mehmet

    2017-03-20

    The aim of this study was to prospectively evaluate the compliance of our patients with a touchdown weight bearing (without supporting any weight on the affected side by only touching the plantar aspect of the foot to the ground to maintain balance to protect the affected side from mechanical loading) postoperative rehabilitation protocol after treatment of talar osteochondral lesion (TOL). Fourteen patients, who had been treated with arthroscopic debridement and microfracture, were followed prospectively. The patients were evaluated for weight bearing compliance with using a stationary gait analysis and feedback system at the postoperative first day, first week, third week, and sixth week. The mean visual analog scale (VAS) scores of the patients at the preoperative, postoperative first day, first week, third week, and sixth weeks were 5.5, 5.9, 3.6, 0.9, and 0.4, respectively. The decrease in VAS scores were statistically significant (p compliance, patients should be warned to obey the weight bearing restrictions, and patients should be called for a follow-up at the third postoperative week.

  1. Inadequate thickness of the weight-bearing surface of claws in ruminants : clinical review

    Directory of Open Access Journals (Sweden)

    A.S. Shakespeare

    2009-05-01

    Full Text Available The term 'thin soles' refers to the suboptimal thickness of the weight-bearing surface of claws in ruminants. These palmar / plantar surfaces of the claws support the weight of the animal and consist of the distal wall horn, the sole proper, the heel and the minute white line area. The sole should normally only bear weight on uneven or undulating surfaces. A decrease in the thickness of the weight-bearing claw surface will decrease the protective function of this structure and may alter the proportion of weight-bearing by each section with possible detrimental effects on hoof function. Horn tissue readily absorbs water and becomes softer which can lead to increased wear rates. Growth rates normally match wear rates but, unlike the latter, time is needed for the growth rate response to adapt to changes in wear rate. Concrete surfaces can be abrasive and dairy cows that spend their lactation cycle on these floors should be let out to pasture in the dry period so that their claws can recoup lost horn. Frictional coefficient is a measure of the 'slipperiness' of hooves on various surfaces. Newly laid or fresh concrete is not only abrasive but the thin surface suspension of calcium hydroxide that forms has a very alkaline pH which causes keratin degradation and is mostly responsible for the excessive claw wear that occurs. Four case studies are used to illustrate the importance of the distal wall horn, the dangers of over-trimming and the effects of disease and concrete on horn growth and wear rates.

  2. The energy expenditure of non-weight bearing crutch walking on the level and ascending stairs.

    Science.gov (United States)

    Moran, Jonathan; Murphy, Alexandra; Murphy, David; Austin, Andy; Moran, Danielle; Cronin, Caitriona; Guinan, Emer; Hussey, Juliette

    2015-06-01

    Crutches are commonly prescribed to patients with lower limb dysfunction during rehabilitation to assist with mobility. The aim of this study was to determine the energy expenditure for non-weight bearing crutch walking on level ground and ascending stairs at a self selected speed in a healthy adult population. Thirty-one healthy male and female adults (mean±SD: age 21.6±1.2 years; height 170.8±10.8 cm; weight 70.8±11.4 kg) mobilised non-weight bearing with elbow crutches along a 30 m corridor and (with one crutch) up a flight of 13 stairs. Energy expenditure for each activity was measured by indirect calorimetry using the COSMED K4b(2) portable ergospirometry system. The established VO2 values were 16.4ml/kg/min for crutch walking on level ground and 17.85 ml/kg/min for stair climbing. Non-weight bearing crutch walking at a self selected speed on the level ground and up a flight of stairs resulted in a MET value of 4.57 and 5.06 respectively. The mean heart rate (HR) for crutch walking along the flat was 117.06±20.54 beats per minute (bpm), while the mean HR for ambulating upstairs with crutches was 113.91±19.32 bpm. The increased energy demands of non-weight bearing crutch walking should be considered by physical therapists when instructing patients on crutch use. Further investigation to determine the implications of these results in populations with chronic disease is warranted. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Nanophase bone substitute for craniofacial load bearing application: Pilot study in the rodent.

    Science.gov (United States)

    Baskin, Jonathan Z; Soenjaya, Yohannes; McMasters, James; Ko, Alvin; Vasanji, Amit; Morris, Nathan; Eppell, Steven J

    2017-02-14

    An exploratory pilot study shows that a rodent mandibular defect model is useful in determining the biological response to a nanophase collagen/apatite composite designed as a biomimetic load-bearing bone substitute. Using a critical size defect, eight groups of rats (n = 3) were implanted with four renditions of the nanophase bone substitute (NBS) biomaterial. Each rendition was tested with and without recombinant human bone morphogenetic protein 2 (BMP2). NBS biomaterial renditions were: baseline, hyper-densified, d-ribose crosslinked, and d-ribose crosslinked and hyper-densified. Biological outcomes were assessed surgically, radiologically, and histologically. With the limited power available due to the small N's involved, some interesting hypotheses were generated that will be more fully investigated in future studies. BMP2 loaded NBS, when uncrosslinked, resulted in robust bone formation in the entire defect volume (regardless of porosity). Unloaded NBS were well tolerated but did not cause significant new bone formation in the defect volume. Densification alone had little effect on in vivo performance. Crosslinking thwarted implant uptake of BMP2 and resulted in fibrous encapsulation. It is concluded that the nanophase bone substitute is well tolerated in this bone defect model. When loaded with BMP2, implantation resulted in complete bony healing and defect closure with implant density (porosity) having little effect on bone healing or remodeling. Without BMP2 the biomaterial did not result in defect closure. Crosslinking, necessary to increase mechanical properties in an aqueous environment, disrupts osteointegration and BMP2 uptake. Alternate implant fabrication strategies will be necessary to achieve an improved balance between material strength and osteointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  4. Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il [Department of Materials Science and Engineering, Techion-Israel Institute of Technology, Haifa, 32000 Israel (Israel); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Zaretzky, Asaph [The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096 Israel (Israel); Psakhie, Sergey G. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength “trabecular Nitinol” scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were divided in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1–1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.

  5. Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration

    Science.gov (United States)

    Gotman, Irena; Zaretzky, Asaph; Psakhie, Sergey G.; Gutmanas, Elazar Y.

    2015-10-01

    The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength "trabecular Nitinol" scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were divided in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1-1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.

  6. Different femorotibial contact on the weight-bearing: midflexion between normal and varus aligned knees after total knee arthroplasty.

    Science.gov (United States)

    Fujimoto, Eisaku; Sasashige, Yoshiaki; Tomita, Tetsuya; Kashiwagi, Kenji; Inoue, Amiko; Sawa, Mikiya; Ota, Yuki

    2015-06-01

    The influence of residual malalignment on biomechanical analysis after total knee arthroplasty (TKA) is currently uncertain. The hypothesis is that postoperative alignment would influence the in vivo kinematics after TKA, under weight-bearing conditions but not under non-weight-bearing condition. The purpose of the present study was to compare weight-bearing and non-weight-bearing conditions and to evaluate the effect of the postoperative alignment on the in vivo kinematics after posterior cruciate ligament-retaining TKA during midflexion using 2-dimensional/3-dimensional registration. Thirty knees of 30 patients with pre-operative varus deformity were divided into 2 groups according to their postoperative alignment: the normal alignment group (N = 21) and the varus alignment group (N = 9). Under weight-bearing conditions, the varus alignment group showed a significant posterior displacement of the medial femoral condyle (flexion: 80°, 90° P difference in the medial and lateral femoral condyle positions under non-weight-bearing conditions was observed between the normal and varus alignment groups. The postoperative alignment influenced knee kinematics under weight-bearing conditions. The weight load influenced knee kinematics through posterior tibial slope and induced greater lateral femoral condyle mobility, which might explain the better clinical and functional outcome. These findings contribute to gaining a proper understanding of the in vivo kinematics of the postoperative varus alignment and might be useful for orthopaedic surgeons in the achievement of patient satisfaction. III.

  7. Relationship between pelvic alignment and weight-bearing asymmetry in community-dwelling chronic stroke survivors

    Directory of Open Access Journals (Sweden)

    Suruliraj Karthikbabu

    2016-01-01

    Full Text Available Background and Purpose: Altered pelvic alignment and asymmetrical weight bearing on lower extremities are the most common findings observed in standing and walking after stroke. The purpose of this study was to find the relationship between pelvic alignment and weight-bearing asymmetry (WBA in community-dwelling chronic stroke survivors. Materials and Methods: This cross-sectional study was conducted in tertiary care rehabilitation centers. In standing, the lateral and anterior pelvic tilt angle of chronic stroke survivors was assessed using palpation (PALM™ meter device. The percentage of WBA was measured with two standard weighing scales. Pearson correlation coefficient (r was used to study the correlation between pelvic tilt and WBA. Results: Of 112 study participants, the mean (standard deviation age was 54.7 (11.7 years and the poststroke duration was 14 (11 months. The lateral pelvic tilt on the most affected side and bilateral anterior pelvic tilt were 2.47 (1.8 and 4.4 (1.8 degree, respectively. The percentage of WBA was 23.2 (18.94. There was a high correlation of lateral pelvic tilt with WBA (r = 0.631; P< 0.001 than anterior pelvic tilt (r = 0.44; P< 0.001. Conclusion: Excessive lateral pelvic tilt toward the most affected side in standing may influence the weight-bearing ability of the ipsilateral lower extremity in community-dwelling chronic stroke survivors.

  8. Does bone loss begin after weight loss ends? Results 2 years after weight loss or regain in postmenopausal women.

    Science.gov (United States)

    Von Thun, Nancy L; Sukumar, Deeptha; Heymsfield, Steven B; Shapses, Sue A

    2014-05-01

    Short-term weight loss is accompanied by bone loss in postmenopausal women. The longer-term impact of weight loss on bone in reduced overweight/obese women compared with women who regained their weight was examined in this study using a case-control design. Postmenopausal women (N = 42; mean [SD] body mass index, 28.3 [2.8] kg/m; mean [SD] age, 60.7 [5.5] y) were recruited 2 years after the start of a 6-month weight loss trial; those who maintained their weight (weight loss maintainer [WL-M] group) were matched to a cohort of women who regained their weight (weight loss regainer [WL-R] group). Serum hormones and bone markers were measured in a subset. Bone mineral density (BMD) at the femoral neck, trochanter, spine, radius, and total body, and soft-tissue composition were taken at baseline, 0.5 years, and 2 years. During weight loss, both groups lost 9.3% (3.4%) of body weight, with no significant difference between the groups. After weight loss, weight change was -0.1% (2.7%) and 6.0% (3.3%) in the WL-M (n = 22) and WL-R (n = 20) groups, respectively. After 2 years, both groups lost BMD at the femoral neck and trochanter (P ≤ 0.01), whereas only the WL-M group reduced BMD at the 1/3 radius (P weight reduction-induced bone loss, irrespective of weight regain. These data suggest that the period after weight loss may be an important point in time to prevent bone loss for those who maintain weight and those who regain weight.

  9. Hybrid scaffold bearing polymer-siloxane Schiff base linkage for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Bindu P., E-mail: bindumelekkuttu@gmail.com; Gangadharan, Dhanya; Mohan, Neethu; Sumathi, Babitha; Nair, Prabha D., E-mail: pdnair49@gmail.com

    2015-07-01

    Scaffolds that can provide the requisite biological cues for the fast regeneration of bone are highly relevant to the advances in tissue engineering and regenerative medicine. In the present article, we report the fabrication of a chitosan–gelatin–siloxane scaffold bearing interpolymer-siloxane Schiff base linkage, through a single-step dialdehyde cross-linking and freeze-drying method using 3-aminopropyltriethoxysilane as the siloxane precursor. Swelling of the scaffolds in phosphate buffered saline indicates enhancement with increase in siloxane concentration, whereas compressive moduli of the wet scaffolds reveal inverse dependence, owing to the presence of siloxane, rich in silanol groups. It is suggested that through the strategy of dialdehyde cross-linking, a limiting siloxane loading of 20 wt.% into a chitosan-gelatin matrix should be considered ideal for bone tissue engineering, because the scaffold made with 30 wt.% siloxane loading degrades by 48 wt.%, in 21 days. The hybrid scaffolds bearing Schiff base linkage between the polymer and siloxane, unlike the stable linkages in earlier reports, are expected to give a faster release of siloxanes and enhancement in osteogenesis. This is verified by the in vitro evaluation of the hybrid scaffolds using rabbit adipose mesenchymal stem cells, which revealed osteogenic cell-clusters on a polymer-siloxane scaffold, enhanced alkaline phosphatase activity and the expression of bone-specific genes, whereas the control scaffold without siloxane supported more of cell-proliferation than differentiation. A siloxane concentration dependent enhancement in osteogenic differentiation is also observed. - Highlights: • A hybrid scaffold bearing interpolymer-siloxane Schiff base linkage • A limiting siloxane loading of 20 wt.% into chitosan–gelatin matrix • A siloxane concentration dependent enhancement in osteogenic differentiation.

  10. How Does Physical Activity Help Build Healthy Bones?

    Science.gov (United States)

    ... Share Facebook Twitter Pinterest Email Print How does physical activity help build healthy bones? Bones are living tissue. Weight-bearing physical activity causes new bone tissue to form, and this ...

  11. Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings.

    Science.gov (United States)

    Nikander, R; Kannus, P; Rantalainen, T; Uusi-Rasi, K; Heinonen, A; Sievänen, H

    2010-10-01

    The association of long-term sport-specific exercise loading with cross-sectional geometry of the weight-bearing tibia was evaluated among 204 female athletes representing five different exercise loadings and 50 referents. All exercises involving ground impacts (e.g., endurance running, ball games, jumping) were associated with thicker cortex at the distal and diaphyseal sites of the tibia and also with large diaphyseal cross-section, whereas the high-magnitude (powerlifting) and non-impact (swimming) exercises were not. Bones adapt to the specific loading to which they are habitually subjected. In this cross-sectional study, the association of long-term sport-specific exercise loading with the geometry of the weight-bearing tibia was evaluated among premenopausal female athletes representing 11 different sports. A total of 204 athletes were divided into five exercise loading groups, and the respective peripheral quantitative computed tomographic data were compared to data obtained from 50 physically active, non-athletic referents. Analysis of covariance was used to estimate the between-group differences. At the distal tibia, the high-impact, odd-impact, and repetitive low-impact exercise loading groups had approximately 30% to 50% (p < 0.05) greater cortical area (CoA) than the referents. At the tibial shaft, these three impact groups had approximately 15% to 20% (p < 0.05) greater total area (ToA) and approximately 15% to 30% (p < 0.05) greater CoA. By contrast, both the high-magnitude and repetitive non-impact groups had similar ToA and CoA values to the reference group at both tibial sites. High-impact, odd-impact, and repetitive low-impact exercise loadings were associated with thicker cortex at the distal tibia. At the tibial shaft, impact loading was not only associated with thicker cortex, but also a larger cross-sectional area. High-magnitude exercise loading did not show such associations at either site but was comparable to repetitive non-impact loading

  12. The influence of gastrocnemius stretching combined with joint mobilization on weight-bearing ankle dorsiflexion passive range of motion

    National Research Council Canada - National Science Library

    Kang, Min-Hyeok; Lee, Dong-Kyu; Kim, Soo-Yong; Kim, Jun-Seok; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effect of gastrocnemius stretching combined with talocrural joint mobilization on weight-bearing ankle dorsiflexion passive range of motion. [Subjects...

  13. Partial Weight Bearing: Long-term monitoring of load in patients with a total hip arthroplasty during postoperative recovery

    OpenAIRE

    Hurkmans, Henri

    2005-01-01

    textabstractPartial weight bearing (PWB) is a central aspect within the postoperative physical therapy of orthopedic and trauma patients with pathologies of the lower extremity. Restriction in weight bearing of the operated leg during standing and walking is needed to avoid complications during the postoperative recovery. The task of the physical therapist (PT) is to instruct the patient how to unload the lower extremity during recovery, so that the patient can safely and independently perfor...

  14. MANAGEMENT OF TONE AND HAND FUNCTIONS IN CEREBRAL PALSY: INHIBITIVE WEIGHT BEARING SPLINT AS AN ADJUNCT MODALITY

    OpenAIRE

    Atul Manoharrao; Sujit Kumar; Akshataa Atul

    2014-01-01

    A CP child who manifests spasticity in upper extremity, interferes with hand function and hand development. Weight Bearing promotes the development of mature arm and development of hand skills. The present study was intended to evaluate the efficacy of the inhibitive weight bearing splint for cerebral palsy patients in management of tone and hand functions. The performance of the splint was observed using EDPA scale, hand tracing and functional activity of ball play on the cer...

  15. In vivo kinematics of the knee during weight bearing high flexion.

    Science.gov (United States)

    Qi, Wei; Hosseini, Ali; Tsai, Tsung-Yuan; Li, Jing-Sheng; Rubash, Harry E; Li, Guoan

    2013-05-31

    Achieving high flexion is an objective of contemporary total knee arthoplasty; however little is known on the knee biomechanics at high flexion under weight-bearing conditions. This study investigates the 6DOF kinematics and tibiofemoral cartilage contact biomechanics of the knee during weight-bearing flexion from full extension to maximal flexion. Eight knees from seven healthy subjects with no history of injuries or chronic pain were recruited. The knees were MRI scanned to create 3D models of the tibia and femur, including their articular cartilage surfaces. The subjects were then imaged using a dual fluoroscopic image system while performing a weight-bearing quasi-static single-legged lunge from full extension to maximal flexion. The 6DOF kinematics and the articular cartilage contact locations were measured along the flexion path of the knee. The result indicated that the internal tibial rotation increased sharply at low flexion angles (full extension to 30°), maintained a small variation in the middle range of flexion (30-120°, and then sharply increased again at high flexion angles (120° to maximal flexion). The contact point moved similarly in the medial and lateral compartments before 120° of flexion, but less on the medial compartment at high flexion angles. The results indicated that the knee motion could not be described using one character in the entire range of flexion, especially in high flexion. The knee kinematic data in the entire range of flexion of the knee could be instrumental for designing new knee prostheses to achieve physical high flexion and improving rehabilitation protocols after knee injuries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Diet-induced weight loss: the effect of dietary protein on bone.

    Science.gov (United States)

    Tang, Minghua; O'Connor, Lauren E; Campbell, Wayne W

    2014-01-01

    High-protein (>30% of energy from protein or >1.2 g/kg/day) and moderately high-protein (22% to 29% of energy from protein or 1.0 to 1.2 g/kg/day) diets are popular for weight loss, but the effect of dietary protein on bone during weight loss is not well understood. Protein may help preserve bone mass during weight loss by stimulating insulin-like growth factor 1, a potent bone anabolism stimulator, and increasing intestinal calcium absorption. Protein-induced acidity is considered to have minimal effect on bone resorption in adults with normal kidney function. Both the quantity and predominant source of protein influence changes in bone with diet-induced weight loss. Higher-protein, high-dairy diets may help attenuate bone loss during weight loss. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  17. Weighted low-rank sparse model via nuclear norm minimization for bearing fault detection

    Science.gov (United States)

    Du, Zhaohui; Chen, Xuefeng; Zhang, Han; Yang, Boyuan; Zhai, Zhi; Yan, Ruqiang

    2017-07-01

    It is a fundamental task in the machine fault diagnosis community to detect impulsive signatures generated by the localized faults of bearings. The main goal of this paper is to exploit the low-rank physical structure of periodic impulsive features and further establish a weighted low-rank sparse model for bearing fault detection. The proposed model mainly consists of three basic components: an adaptive partition window, a nuclear norm regularization and a weighted sequence. Firstly, due to the periodic repetition mechanism of impulsive feature, an adaptive partition window could be designed to transform the impulsive feature into a data matrix. The highlight of partition window is to accumulate all local feature information and align them. Then, all columns of the data matrix share similar waveforms and a core physical phenomenon arises, i.e., these singular values of the data matrix demonstrates a sparse distribution pattern. Therefore, a nuclear norm regularization is enforced to capture that sparse prior. However, the nuclear norm regularization treats all singular values equally and thus ignores one basic fact that larger singular values have more information volume of impulsive features and should be preserved as much as possible. Therefore, a weighted sequence with adaptively tuning weights inversely proportional to singular amplitude is adopted to guarantee the distribution consistence of large singular values. On the other hand, the proposed model is difficult to solve due to its non-convexity and thus a new algorithm is developed to search one satisfying stationary solution through alternatively implementing one proximal operator operation and least-square fitting. Moreover, the sensitivity analysis and selection principles of algorithmic parameters are comprehensively investigated through a set of numerical experiments, which shows that the proposed method is robust and only has a few adjustable parameters. Lastly, the proposed model is applied to the

  18. Effects of Intermittent Weight-Bearing and Clenbuterol on Disuse Atrophy of Rat Hindlimb Muscles

    Science.gov (United States)

    2005-01-01

    The present study was undertaken to evaluate the effects of intermittent weight-bearing (IWB) combined with β2-agonist clenbuterol (Cb) medication for suppressing muscle atrophy during progressive disuse atrophy. Male Wistar rats (age: 8weeks, body weight: 232 ± 14 g) were divided into a control group (CON) and an experimental group. The experimental group was further subdivided into a Cb medication group under normal conditions and a hindlimb unweighting (HU) treatment group. The HU treatment group was composed of four groups: HU treatment-only, HU treatment + IWB, HU treatment + Cb medication and HU treatment + IWB + Cb medication. IWB was performed by temporarily removing the suspension device for one hour daily. On Day 14, bilateral soleus muscle (SOL) and extensor digitorum longus muscle (EDL) were extracted. Muscles from the right side were used for the measurement of contractile properties (physiological functional evaluations). Muscles from the left side were used for histochemical and biochemical analysis. During HU, IWB combined with Cb medication worked to preserve the wet weight and relative weight of SOL as compared to CON. Its contractile properties were affected by weight-bearing, while the cross-sectional area of type I fiber and protein concentration were affected by Cb. This combined therapy had marked effects on the morphology of EDL, particularly on the cross-sectional area of type II fiber. The protein concentration and contractile properties of EDL were unaffected by this combined therapy. The effect of a combination of IWB and Cb medication was specific to fiber-type and region. The data suggested that 1) IWB was effective on functional aspects such as contractile properties and useful for physical therapy, 2) Cb medication exerted the atrophy-suppressive effect in morphological parameters and manifested less effect on functional aspects. The results in this study indicated the possibility of elevating the efficacy of IWB by Cb medication

  19. Kurtosis based weighted sparse model with convex optimization technique for bearing fault diagnosis

    Science.gov (United States)

    Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Yan, Ruqiang

    2016-12-01

    The bearing failure, generating harmful vibrations, is one of the most frequent reasons for machine breakdowns. Thus, performing bearing fault diagnosis is an essential procedure to improve the reliability of the mechanical system and reduce its operating expenses. Most of the previous studies focused on rolling bearing fault diagnosis could be categorized into two main families, kurtosis-based filter method and wavelet-based shrinkage method. Although tremendous progresses have been made, their effectiveness suffers from three potential drawbacks: firstly, fault information is often decomposed into proximal frequency bands and results in impulsive feature frequency band splitting (IFFBS) phenomenon, which significantly degrades the performance of capturing the optimal information band; secondly, noise energy spreads throughout all frequency bins and contaminates fault information in the information band, especially under the heavy noisy circumstance; thirdly, wavelet coefficients are shrunk equally to satisfy the sparsity constraints and most of the feature information energy are thus eliminated unreasonably. Therefore, exploiting two pieces of prior information (i.e., one is that the coefficient sequences of fault information in the wavelet basis is sparse, and the other is that the kurtosis of the envelope spectrum could evaluate accurately the information capacity of rolling bearing faults), a novel weighted sparse model and its corresponding framework for bearing fault diagnosis is proposed in this paper, coined KurWSD. KurWSD formulates the prior information into weighted sparse regularization terms and then obtains a nonsmooth convex optimization problem. The alternating direction method of multipliers (ADMM) is sequentially employed to solve this problem and the fault information is extracted through the estimated wavelet coefficients. Compared with state-of-the-art methods, KurWSD overcomes the three drawbacks and utilizes the advantages of both family

  20. Functional weight-bearing mobilization after Achilles tendon rupture enhances early healing response: a single-blinded randomized controlled trial.

    Science.gov (United States)

    Valkering, Kars P; Aufwerber, Susanna; Ranuccio, Francesco; Lunini, Enricomaria; Edman, Gunnar; Ackermann, Paul W

    2017-06-01

    Functional weight-bearing mobilization may improve repair of Achilles tendon rupture (ATR), but the underlying mechanisms and outcome were unknown. We hypothesized that functional weight-bearing mobilization by means of increased metabolism could improve both early and long-term healing. In this prospective randomized controlled trial, patients with acute ATR were randomized to either direct post-operative functional weight-bearing mobilization (n = 27) in an orthosis or to non-weight-bearing (n = 29) plaster cast immobilization. During the first two post-operative weeks, 15°-30° of plantar flexion was allowed and encouraged in the functional weight-bearing mobilization group. At 2 weeks, patients in the non-weight-bearing cast immobilization group received a stiff orthosis, while the functional weight-bearing mobilization group continued with increased range of motion. At 6 weeks, all patients discontinued immobilization. At 2 weeks, healing metabolites and markers of procollagen type I (PINP) and III (PIIINP) were examined using microdialysis. At 6 and 12 months, functional outcome using heel-rise test was assessed. Healing tendons of both groups exhibited increased levels of metabolites glutamate, lactate, pyruvate, and of PIIINP (all p mobilization group demonstrated significantly higher concentrations of glutamate compared to the non-weight-bearing cast immobilization group (p = 0.045).The upregulated glutamate levels were significantly correlated with the concentrations of PINP (r = 0.5, p = 0.002) as well as with improved functional outcome at 6 months (r = 0.4; p = 0.014). Heel-rise tests at 6 and 12 months did not display any differences between the two groups. Functional weight-bearing mobilization enhanced the early healing response of ATR. In addition, early ankle range of motion was improved without the risk of Achilles tendon elongation and without altering long-term functional outcome. The relationship between functional

  1. Evaluation of a bisphosphonate enriched ultra-high molecular weight polyethylene for enhanced total joint replacement bearing surface functionality

    Science.gov (United States)

    Wright-Walker, Cassandra Jane

    Each year in the United States there is an increasing trend of patients receiving total joint replacement (TJR) procedures. Approximately a half million total knee replacements (TKRs) are performed annually in the United States with increasing prevalence attributed to baby-boomers, obesity, older, and younger patients. This trend is also seen for total hip replacements (THRs) as well. The use of ultra high molecular weight polyethylene (UHMWPE) inserts in TJRs results in wear particle-induced osteolysis, which is the predominant cause for prosthesis failure and revision surgery. Sub-micron size particle generation is inevitable despite the numerous efforts in improving this bearing material. Work by others has shown that the use of oral and intravenous systemic bisphosphonates (BP) can significantly minimize periprosthetic osteolysis. However, the systemic delivery and the high solubility of BPs results in a predominant portion of the drug being excreted via the kidney without reaching its target, bone. This doctoral research project is focused on the development and evaluation of a novel method to administer BPs locally using the inherent wear of UHMWPE for possible use as an anti-osteolysis treatment. For new materials to be considered, they must be mechanically and tribologically comparable to the current gold standard, UHMWPE. In order to evaluate this material, mechanical, drug elution and tribological experiments were performed to allow assessment of material properties. Tensile tests showed comparable yield stress and pin-on-disk testing showed comparable wear to standard virgin UHMWPE. Further, drug elution tests have shown that BP was released from the enriched material both in static and dynamic conditions. Additionally, an aggressive 2 million cycle total knee simulator experiment has shown statistically similar wear results for the two materials. Overall, this research has provided the groundwork for further characterization and development of a new

  2. Non-weight-bearing neural control of a powered transfemoral prosthesis.

    Science.gov (United States)

    Hargrove, Levi J; Simon, Ann M; Lipschutz, Robert; Finucane, Suzanne B; Kuiken, Todd A

    2013-06-19

    Lower limb prostheses have traditionally been mechanically passive devices without electronic control systems. Microprocessor-controlled passive and powered devices have recently received much interest from the clinical and research communities. The control systems for these devices typically use finite-state controllers to interpret data measured from mechanical sensors embedded within the prosthesis. In this paper we investigated a control system that relied on information extracted from myoelectric signals to control a lower limb prosthesis while amputee patients were seated. Sagittal plane motions of the knee and ankle can be accurately (>90%) recognized and controlled in both a virtual environment and on an actuated transfemoral prosthesis using only myoelectric signals measured from nine residual thigh muscles. Patients also demonstrated accurate (~90%) control of both the femoral and tibial rotation degrees of freedom within the virtual environment. A channel subset investigation was completed and the results showed that only five residual thigh muscles are required to achieve accurate control. This research is the first step in our long-term goal of implementing myoelectric control of lower limb prostheses during both weight-bearing and non-weight-bearing activities for individuals with transfemoral amputation.

  3. Appearance of the weight-bearing lateral radiograph in retrocalcaneal bursitis

    Science.gov (United States)

    Muller, Bart; Maas, Mario; Sierevelt, Inger N; van Dijk, C Niek

    2010-01-01

    Background and purpose A retrocalcaneal bursitis is caused by repetitive impingement of the bursa between the Achilles tendon and the posterosuperior calcaneus. The bursa is situated in the posteroinferior corner of Kager's triangle (retrocalcaneal recess), which is a radiolucency with sharp borders on the lateral radiograph of the ankle. If there is inflammation, the fluid-filled bursa is less radiolucent, making it difficult to delineate the retrocalcaneal recess. We assessed whether the radiographic appearance of the retrocalcaneal recess on plain digital (filmless) radiographs could be used in the diagnosis of a retrocalcaneal bursitis. Methods Whether or not there was obliteration of the retrocalcaneal recess (yes/no) on 74 digital weight-bearing lateral radiographs of the ankle was independently assessed by 2 observers. The radiographs were from 24 patients (25 heels) with retrocalcaneal bursitis (confirmed on endoscopic calcaneoplasty); the control group consisted of 50 patients (59 heels). Results The sensitivity of the test was 83% for observer 1 and 79% for observer 2. Specificity was 100% and 98%, respectively. The kappa value of the interobserver reliability test was 0.86. For observer 1, intraobserver reliability was 0.96 and for observer 2 it was 0.92. Interpretation On digital weight-bearing lateral radiographs of a retrocalcaneal bursitis, the retrocalcaneal recess has a typical appearance. PMID:20450438

  4. A Canine Non-Weight-Bearing Model with Radial Neurectomy for Rotator Cuff Repair.

    Directory of Open Access Journals (Sweden)

    Xiaoxi Ji

    Full Text Available The major concern of using a large animal model to study rotator cuff repair is the high rate of repair retears. The purpose of this study was to test a non-weight-bearing (NWB canine model for rotator cuff repair research.First, in the in vitro study, 18 shoulders were randomized to 3 groups. 1 Full-width transections repaired with modified Mason-Allen sutures using 3-0 polyglactin suture, 2 Group 1 repaired using number 2 (#2 polyester braid and long-chain polyethylene suture, and 3 Partial-width transections leaving the superior 2 mm infraspinatus tendon intact without repair. In the in vivo study of 6 dogs, the infraspinatus tendon was partially transected as the same as the in vitro group 3. A radial neurectomy was performed to prevent weight bearing. The operated limb was slung in a custom-made jacket for 6 weeks.In the in vitro study, mean ultimate tensile load and stiffness in Group 2 were significantly higher than Group 1 and 3 (p<0.05. In the in vivo study, gross inspection and histology showed that the preserved superior 2-mm portion of the infraspinatus tendon remained intact with normal structure.Based on the biomechanical and histological findings, this canine NWB model may be an appropriate and useful model for studies of rotator cuff repair.

  5. Recurrence of Hallux Valgus Can Be Predicted from Immediate Postoperative Non-Weight-Bearing Radiographs.

    Science.gov (United States)

    Park, Chul Hyun; Lee, Woo-Chun

    2017-07-19

    The aims of this study were to identify risk factors for the recurrence of hallux valgus deformity and to clarify whether recurrence after surgery to treat hallux valgus can be predicted using radiographic parameters assessed on immediate postoperative non-weight-bearing radiographs. A proximal chevron osteotomy combined with a distal soft-tissue procedure was performed by a single surgeon to treat moderate to severe hallux valgus deformity in 93 patients (117 feet). The feet were grouped according to nonrecurrence or recurrence. Changes in the hallux valgus angle, the intermetatarsal angle, and sesamoid position over time were analyzed by comparing values measured during each postoperative period. The relative risks of recurrence as indicated by preoperative and postoperative radiographic parameters were determined. Twenty (17.1%) of the 117 feet showed hallux valgus recurrence at the time of the last follow-up. The hallux valgus angle and the intermetatarsal angle stabilized at 6 months after surgery in the nonrecurrence group. An immediate postoperative hallux valgus angle of ≥8°, an immediate postoperative sesamoid position of grade 4 or greater, a preoperative metatarsus adductus angle of ≥23°, and a preoperative hallux valgus angle of ≥40° were significantly associated with recurrence. Recurrence of hallux valgus after a proximal chevron osteotomy can be reliably predicted from immediate postoperative non-weight-bearing radiographs. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.

  6. Comparison of Findings from Oblique Radiographs of the Raised Limb with Those of the Weight-bearing Limb for Selected Diseases of the Equine Digit

    Directory of Open Access Journals (Sweden)

    J. Šterc

    2007-01-01

    Full Text Available In the present study, the radiographic examination of the distal and proximal interphalangeal joints was performed in 43 randomly selected horses. A total of 86 forelimbs were examined. On the forelimbs, dorsolateral-palmaromedial, and dorsomedial-palmarolateral oblique views were performed. The oblique views were performed on raised limbs placed in a navicular block and on weight-bearing limbs placed on a pedestal made at the equine clinic. In total, 688 dorsolateral-palmaromedial and dorsomedial-palmarolateral views were taken. During the evaluation of the radiographs we focused on the detection of signs of degenerative joint disease of the distal and proximal iterphalangeal joints, and the detection of new bone formation in the phalanx regions, not associated with a disease of the distal or proximal interphalangeal joints. Based on the radiographic signs visible on these views, we diagnosed 9 cases of degenerative joint disease of the distal intraphalangeal joint, 13 cases of the degenerative joint disease of the proximal intraphalangeal joint and 21 cases of new bone formation in the phalanx regions. These signs were observed in 253 of 688 oblique views. Positive radiographic findings of the above-mentioned disorders were shown on 127 oblique views of the raised limb placed in the navicular block and 126 oblique views of the weight-bearing limb placed on the pedestal we made. When 128 oblique views of the weight-bearing limb (placed on the pedestal were compared with those of the raised limb (in the navicular block, there were different radiographic findings in three cases only. The differences in detection rates of radiographic signs between different type views showed no statistical significance (p ≥ 0.05. Therefore we assume that the pedestal we made can be routinely used for the radiographic examination of the distal and proximal interphalangeal joints on DL-PM and DM-PL oblique views, as part of pre-purchase examination or diagnosis

  7. Weight-Bearing Dorsiflexion Range of Motion and Landing Biomechanics in Individuals With Chronic Ankle Instability.

    Science.gov (United States)

    Hoch, Matthew C; Farwell, Kelley E; Gaven, Stacey L; Weinhandl, Joshua T

    2015-08-01

    People with chronic ankle instability (CAI) exhibit less weight-bearing dorsiflexion range of motion (ROM) and less knee flexion during landing than people with stable ankles. Examining the relationship between dorsiflexion ROM and landing biomechanics may identify a modifiable factor associated with altered kinematics and kinetics during landing tasks. To examine the relationship between weight-bearing dorsiflexion ROM and single-legged landing biomechanics in persons with CAI. Cross-sectional study. Laboratory. Fifteen physically active persons with CAI (5 men, 10 women; age = 21.9 ± 2.1 years, height = 168.7 ± 9.0 cm, mass = 69.4 ± 13.3 kg) participated. Participants performed dorsiflexion ROM and single-legged landings from a 40-cm height. Sagittal-plane kinematics of the lower extremity and ground reaction forces (GRFs) were captured during landing. Static dorsiflexion was measured using the weight-bearing-lunge test. Kinematics of the ankle, knee, and hip were observed at initial contact, maximum angle, and sagittal displacement. Sagittal displacements of the ankle, knee, and hip were summed to examine overall sagittal displacement. Kinetic variables were maximum posterior and vertical GRFs normalized to body weight. We used Pearson product moment correlations to evaluate the relationships between dorsiflexion ROM and landing biomechanics. Correlations (r) were interpreted as weak (0.00-0.40), moderate (0.41-0.69), or strong (0.70-1.00). The coefficient of determination (r(2)) was used to determine the amount of explained variance among variables. Static dorsiflexion ROM was moderately correlated with maximum dorsiflexion (r = 0.49, r(2) = 0.24), ankle displacement (r = 0.47, r(2) = 0.22), and total displacement (r = 0.67, r(2) = 0.45) during landing. Dorsiflexion ROM measured statically and during landing demonstrated moderate to strong correlations with maximum knee (r = 0.69-0.74, r(2) = 0.47-0.55) and hip (r = 0.50-0.64, r(2) = 0.25-0.40) flexion, hip

  8. Vitamin D status and bone and connective tissue turnover in brown bears (Ursus arctos) during hibernation and the active state.

    Science.gov (United States)

    Vestergaard, Peter; Støen, Ole-Gunnar; Swenson, Jon E; Mosekilde, Leif; Heickendorff, Lene; Fröbert, Ole

    2011-01-01

    Extended physical inactivity causes disuse osteoporosis in humans. In contrast, brown bears (Ursus arctos) are highly immobilised for half of the year during hibernation without signs of bone loss and therefore may serve as a model for prevention of osteoporosis. To study 25-hydroxy-vitamin D (25OHD) levels and bone turnover markers in brown bears during the hibernating state in winter and during the active state in summer. We measured vitamin D subtypes (D₂ and D₃), calcitropic hormones (parathyroid hormone [PTH], 1,25-dihydroxy-vitamin D [1,25(OH)₂D]) and bone turnover parameters (osteocalcin, ICTP, CTX-I), PTH, serum calcium and PIIINP. We drew blood from seven immobilised wild brown bears during hibernation in February and in the same bears while active in June. Serum 25-hydroxy-cholecalciferol (25OHD₃) was significantly higher in the summer than in the winter (22.8±4.6 vs. 8.8±2.1 nmol/l, two tailed p-2p = 0.02), whereas 25-hydroxy-ergocalciferol (25OHD₂) was higher in winter (54.2±8.3 vs. 18.7±1.7 nmol/l, 2pbears between hibernation and the active state. Because hibernating brown bears do not develop disuse osteoporosis, despite extensive physical inactivity we suggest that they may serve as a model for the prevention of this disease.

  9. GLP-1 receptor agonist treatment increases bone formation and prevents bone loss in weight-reduced obese women

    DEFF Research Database (Denmark)

    Iepsen, Eva Pers Winning; Lundgren, Julie Rehné; Hartmann, Bolette

    2015-01-01

    CONTEXT: Recent studies indicate that glucagon-like peptide 1 (GLP-1) regulates bone turnover, but the effects of GLP-1 receptor agonists (GLP-1 RAs) on bone in obese weight-reduced individuals are unknown. OBJECTIVE: To investigate the role of GLP-1 RAs on bone formation and weight loss induced...... bone mass reductions. DESIGN: Randomized control study. SETTING: Out-patient research hospital clinic. PARTICIPANTS: Thirty-seven healthy obese women. BMI 34±0.5 kg/m(2), age 46±2 years. INTERVENTION: After a low-calorie diet-induced 12% weight loss, participants were randomized to treatment...... with or without administration of the GLP-1 RA liraglutide (1.2mg/day) for 52 weeks. In case of weight gain, up to two meals per day could be substituted with a low-calorie diet product in order to maintain the weight loss. MAIN OUTCOME MEASURES: Total, pelvic and arm-leg bone mineral content (BMC) and bone...

  10. Six months of disuse during hibernation does not increase intracortical porosity or decrease cortical bone geometry, strength, or mineralization in black bear (Ursus americanus) femurs.

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Bunnell, Kevin; Auger, Janene; Black, Hal L; Donahue, Seth W

    2009-07-22

    Disuse typically uncouples bone formation from resorption, leading to bone loss which compromises bone mechanical properties and increases the risk of bone fracture. Previous studies suggest that bears can prevent bone loss during long periods of disuse (hibernation), but small sample sizes have limited the conclusions that can be drawn regarding the effects of hibernation on bone structure and strength in bears. Here we quantified the effects of hibernation on structural, mineral, and mechanical properties of black bear (Ursus americanus) cortical bone by studying femurs from large groups of male and female bears (with wide age ranges) killed during pre-hibernation (fall) and post-hibernation (spring) periods. Bone properties that are affected by body mass (e.g. bone geometrical properties) tended to be larger in male compared to female bears. There were no differences (p>0.226) in bone structure, mineral content, or mechanical properties between fall and spring bears. Bone geometrical properties differed by less than 5% and bone mechanical properties differed by less than 10% between fall and spring bears. Porosity (fall: 5.5+/-2.2%; spring: 4.8+/-1.6%) and ash fraction (fall: 0.694+/-0.011; spring: 0.696+/-0.010) also showed no change (p>0.304) between seasons. Statistical power was high (>72%) for these analyses. Furthermore, bone geometrical properties and ash fraction (a measure of mineral content) increased with age and porosity decreased with age. These results support the idea that bears possess a biological mechanism to prevent disuse and age-related osteoporoses.

  11. Development of Composite Scaffolds for Load-Bearing Segmental Bone Defects

    Directory of Open Access Journals (Sweden)

    Marcello Pilia

    2013-01-01

    Full Text Available The need for a suitable tissue-engineered scaffold that can be used to heal load-bearing segmental bone defects (SBDs is both immediate and increasing. During the past 30 years, various ceramic and polymer scaffolds have been investigated for this application. More recently, while composite scaffolds built using a combination of ceramics and polymeric materials are being investigated in a greater number, very few products have progressed from laboratory benchtop studies to preclinical testing in animals. This review is based on an exhaustive literature search of various composite scaffolds designed to serve as bone regenerative therapies. We analyzed the benefits and drawbacks of different composite scaffold manufacturing techniques, the properties of commonly used ceramics and polymers, and the properties of currently investigated synthetic composite grafts. To follow, a comprehensive review of in vivo models used to test composite scaffolds in SBDs is detailed to serve as a guide to design appropriate translational studies and to identify the challenges that need to be overcome in scaffold design for successful translation. This includes selecting the animal type, determining the anatomical location within the animals, choosing the correct study duration, and finally, an overview of scaffold performance assessment.

  12. A Frequency-Weighted Energy Operator and complementary ensemble empirical mode decomposition for bearing fault detection

    Science.gov (United States)

    Imaouchen, Yacine; Kedadouche, Mourad; Alkama, Rezak; Thomas, Marc

    2017-01-01

    Signal processing techniques for non-stationary and noisy signals have recently attracted considerable attentions. Among them, the empirical mode decomposition (EMD) which is an adaptive and efficient method for decomposing signals from high to low frequencies into intrinsic mode functions (IMFs). Ensemble EMD (EEMD) is proposed to overcome the mode mixing problem of the EMD. In the present paper, the Complementary EEMD (CEEMD) is used for bearing fault detection. As a noise-improved method, the CEEMD not only overcomes the mode mixing, but also eliminates the residual of added white noise persisting into the IMFs and enhance the calculation efficiency of the EEMD method. Afterward, a selection method is developed to choose relevant IMFs containing information about defects. Subsequently, a signal is reconstructed from the sum of relevant IMFs and a Frequency-Weighted Energy Operator is tailored to extract both the amplitude and frequency modulations from the selected IMFs. This operator outperforms the conventional energy operator and the enveloping methods, especially in the presence of strong noise and multiple vibration interferences. Furthermore, simulation and experimental results showed that the proposed method improves performances for detecting the bearing faults. The method has also high computational efficiency and is able to detect the fault at an early stage of degradation.

  13. In-vivo patellar tendon kinematics during weight-bearing deep knee flexion.

    Science.gov (United States)

    Kobayashi, Koichi; Sakamoto, Makoto; Hosseini, Ali; Rubash, Harry E; Li, Guoan

    2012-10-01

    This study quantified in-vivo 3D patellar tendon kinematics during weight-bearing deep knee bend beyond 150°. Each knee was MRI scanned to create 3D bony models of the patella, tibia, femur, and the attachment sites of the patellar tendon on the distal patella and the tibial tubercle. Each attachment site was divided into lateral, central, and medial thirds. The subjects were then imaged using a dual fluoroscopic image system while performing a deep knee bend. The knee positions were determined using the bony models and the fluoroscopic images. The patellar tendon kinematics was analyzed using the relative positions of its patellar and tibial attachment sites. The relative elongations of all three portions of the patellar tendon increased similarly up to 60°. Beyond 60°, the relative elongation of the medial portion of the patellar tendon decreased as the knee flexed from 60° to 150° while those of the lateral and central portions showed continuous increases from 120° to 150°. At 150°, the relative elongation of the medial portion was significantly lower than that of the central portion. In four of seven knees, the patellar tendon impinged on the tibial bony surface at 120° and 150° of knee flexion. These data may provide useful insight into the intrinsic patellar tendon biomechanics during a weight-bearing deep knee bend and could provide biomechanical guidelines for future development of total knee arthroplasties that are intended to restore normal knee function. Copyright © 2012 Orthopaedic Research Society.

  14. Early weight-bearing after periacetabular osteotomy leads to a high incidence of postoperative pelvic fractures.

    Science.gov (United States)

    Ito, Hiroshi; Tanino, Hiromasa; Sato, Tatsuya; Nishida, Yasuhiro; Matsuno, Takeo

    2014-07-11

    It has not been shown whether accelerated rehabilitation following periacetabular osteotomy (PAO) is effective for early recovery. The purpose of this retrospective study was to compare complication rates in patients with standard and accelerated rehabilitation protocols who underwent PAO. Between January 2002 and August 2011, patients with a lateral center-edge (CE) angle of rehabilitation protocol. In 65 patients (76 hips) with the accelerated rehabilitation protocol, postoperative strengthening of the hip, thigh and core musculature was begun on the day of surgery as tolerated. The exercise program included active hip range of motion, and gentle isometric hamstring and quadriceps muscle sets; these exercises were performed for 30 minutes in the morning and 30 minutes in the afternoon with a physical therapist every weekday for 6 weeks. Full weight-bearing with two axillary crutches started on the day of surgery as tolerated. Complications were evaluated for 2 years. The clinical results at the time of follow-up were similar in the two groups. The average periods between the osteotomy and full-weight-bearing walking without support were 4.2 months and 6.9 months in patients with the accelerated and standard rehabilitation protocols (P rehabilitation protocol could achieve earlier recovery of patients. However, postoperative fractures of the ischial ramus and posterior column of the pelvis were more frequently found in patients with the accelerated rehabilitation protocol (8/76) than in those with the standard rehabilitation protocol (1/80) (P = 0.013). The accelerated rehabilitation protocol seems to have advantages for early muscle recovery in patients undergoing PAO; however, postoperative pelvic fracture rates were unacceptably high in patients with this protocol.

  15. Determination of radial bone mineral content in low birth weight infants by photon absorptiometry

    Energy Technology Data Exchange (ETDEWEB)

    Greer, F.R.

    1988-07-01

    Studies at the University of Wisconsin have demonstrated that photon absorptiometry is a precise, accurate, and reproducible technique for measuring bone mineral content in premature infants and can be used to establish an intrauterine curve of bone mineralization in the fetus. Photon absorptiometry can also be used to measure bone width, thereby documenting appositional bone growth. The bone mineral content/bone width ratio may be helpful in identifying disorders of bone mineral metabolism in premature infants. The technique has been used to demonstrate that relatively poor bone mineralization (compared with the intrauterine curve) occurs in very low birth weight infants after birth, regardless of the type of feeding or the presence or absence of bronchopulmonary dysplasia. 31 references.

  16. The Effect of Increasing Weight Bearing on the Paretic Side on Pattern of Muscular Activity During Walking in Stroke Patients

    Directory of Open Access Journals (Sweden)

    Mania Sheikh

    2014-06-01

    Full Text Available Background: Gait disorder is a common motor complication after stroke. Studies have revealed that conventional physiotherapy cannot manage this disorder efficiently; therefore, more studies regarding efficient treatment protocols are crucial. The purpose of this study was to investigate the effect of compelled weight-bearing approach on muscle activation patterns during walking in individuals with stroke. Methods: 24 hemiparetic patients participated in this study. Patients were randomly divided into 2 groups: experimental and control. The experimental group received increased weight bearing on the paretic leg via a shoe lift in addition to physical therapy for 6 weeks. The control group received only physical therapy. Laboratory assessments included weight-bearing symmetry ratio and electromyographic parameters recored from the medial gastrocnemius, tibialis anterior, rectus femoris and biceps femoris. The amplitude and duration of electromyographic activity for each subject was then calculated during the stance and swing phases of their gait cycle. All measurements were compared within and between groups after the termination of treatment. Results: After treatment, weight-bearing symmetry ratio improved significantly in the experimental group. Additionally, the electromyographic activity of paretic medial gastrocnemius increased significantly during the stance phase while activity duration of paretic rectus femoris decreased significantly in swing phase. In the control group, the weight-bearing symmetry ratio didn’t change significantly. Only activity duration of non-paretic rectus femoris decreased significantly in swing phase. Conclusion: The results show that compelled weight bearing on the paretic side improve amplitude and the timing for activity of some muscles in the lower limbs during walking.

  17. Biomechanical Assessment of the Dorsal Spanning Bridge Plate in Distal Radius Fracture Fixation: Implications for Immediate Weight-Bearing.

    Science.gov (United States)

    Huang, Jerry I; Peterson, Bret; Bellevue, Kate; Lee, Nicolas; Smith, Sean; Herfat, Safa

    2017-04-01

    The goal of this study was to compare the biomechanical stability of a 2.4-mm dorsal spanning bridge plate with a volar locking plate (VLP) in a distal radius fracture model, during simulated crutch weight-bearing. Five paired cadaveric forearms were tested. A 1-cm dorsal wedge osteotomy was created to simulate an unstable distal radius fracture with dorsal comminution. Fractures were fixed with a VLP or a dorsal bridge plate (DBP). Specimens were mounted to a crutch handle, and optical motion-tracking sensors were attached to the proximal and distal segments. Specimens were loaded in compression at 1 mm/s on a servohydraulic test frame until failure, defined as 2 mm of gap site displacement. The VLP construct was significantly more stable to axial load in a crutch weight-bearing model compared with the DBP plate (VLP: 493 N vs DBP: 332 N). Stiffness was higher in the VLP constructs, but this was not statistically significant (VLP: 51.4 N/mm vs DBP: 32.4 N/mm). With the crutch weight-bearing model, DBP failed consistently with wrist flexion and plate bending, whereas VLP failed with axial compression at the fracture site and dorsal collapse. Dorsal spanning bridge plating is effective as an internal spanning fixator in treating highly comminuted intra-articular distal radius fracture and prevents axial collapse at the radiocarpal joint. However, bridge plating may not offer advantages in early weight-bearing or transfer in polytrauma patients, with less axial stability in our crutch weight-bearing model compared with volar plating. A stiffer 3.5-mm DBP or use of a DBP construct without the central holes may be considered for distal radius fractures if the goal is early crutch weight-bearing through the injured extremity.

  18. How does bone quality differ between healthy-weight and overweight adolescents and young adults?

    Science.gov (United States)

    Hoy, Christa L; Macdonald, Heather M; McKay, Heather A

    2013-04-01

    Overweight youth have greater bone mass than their healthy-weight peers but sustain more fractures. However, it is unclear whether and how excess body fat influences bone quality in youth. We determined whether overweight status correlated with three-dimensional aspects of bone quality influencing bone strength in adolescent and young adult females and males. We categorized males (n=103; mean age, 17 years) and females (n=85; mean age, 18 years) into healthy-weight and overweight groups. We measured lean mass (LM) and fat mass (FM) with dual-energy x-ray absorptiometry (DXA). We used high-resolution peripheral quantitative CT to assess the distal radius (7% site) and distal tibia (8% site). Bone quality measures included total bone mineral density (Tt.BMD), total area (Tt.Ar), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), separation (Tb.Sp), and thickness (Tb.Th). We used multiple regression to compare bone quality between healthy-weight and overweight adolescents adjusting for age, ethnicity, limb length, LM, and FM. Overweight males had higher (10%-21%) Tt.BMD, BV/TV, and Tb.N and lower Tb.Sp at the tibia and lower Tt.Ar at the radius than healthy-weight males. No differences were observed between overweight and healthy-weight females. LM attenuated the differences in bone quality between groups in males while FM negatively predicted Tt.BMD, BV/TV, Tb.N, and Tb.Th. Our data suggest overweight males have enhanced bone quality compared with healthy-weight males; however, when group differences are interpreted in the context of the mechanostat theory, it appears bone quality of overweight adolescents adapts to LM and not to greater FM.

  19. Do Knee Bracing and Delayed Weight Bearing Affect Mid-Term Functional Outcome after Anterior Cruciate Ligament Reconstruction?

    Science.gov (United States)

    Di Miceli, Riccardo; Marambio, Carlotta Bustos; Zati, Alessandro; Monesi, Roberta; Benedetti, Maria Grazia

    2017-12-01

    Purpose  The aim of this study was to assess the effect of knee bracing and timing of full weight bearing after anterior cruciate ligament reconstruction (ACLR) on functional outcomes at mid-term follow-up. Methods  We performed a retrospective study on 41 patients with ACLR. Patients were divided in two groups: ACLR group, who received isolated ACL reconstruction and ACLR-OI group who received ACL reconstruction and adjunctive surgery. Information about age at surgery, bracing, full or progressive weight bearing permission after surgery were collected for the two groups. Subjective IKDC score was obtained at follow-up. Statistical analysis was performed to compare the two groups for IKDC score. Subgroup analysis was performed to assess the effect of postoperative regimen (knee bracing and weight bearing) on functional outcomes. Results  The mean age of patients was 30.8 ± 10.6 years. Mean IKDC score was 87.4 ± 13.9. The mean follow-up was 3.5 ± 1.8 years. Twenty-two (53.7%) patients underwent ACLR only, while 19 (46.3%) also received other interventions, such as meniscal repair and/or collateral ligament suture. Analysis of overall data showed no differences between the groups for IKDC score. Patients in the ACLR group exhibited a significantly better IKDC score when no brace and full weight bearing after 4 weeks from surgery was prescribed in comparison with patients who worn a brace and had delayed full weight bearing. No differences were found with respect to the use of brace and postoperative weight bearing regimen in the ACLR-OI group. Conclusion  Brace and delayed weight bearing after ACLR have a negative influence on long-term functional outcomes. Further research is required to explore possible differences in the patients operated on ACLR and other intervention with respect to the use of a brace and the timing of full weight bearing to identify optimal recovery strategies. Level of Evidence  Level III, retrospective observational

  20. Effects of Patellofemoral Taping on Patellofemoral Joint Alignment and Contact Area During Weight Bearing.

    Science.gov (United States)

    Ho, Kai-Yu; Epstein, Ryan; Garcia, Ron; Riley, Nicole; Lee, Szu-Ping

    2017-02-01

    Study Design Controlled laboratory study. Background Although it has been theorized that patellofemoral joint (PFJ) taping can correct patellar malalignment, the effects of PFJ taping techniques on patellar alignment and contact area have not yet been studied during weight bearing. Objective To examine the effects of 2 taping approaches (Kinesio and McConnell) on PFJ alignment and contact area. Methods Fourteen female subjects with patellofemoral pain and PFJ malalignment participated. Each subject underwent a pretaping magnetic resonance imaging (MRI) scan session and 2 MRI scan sessions after the application of the 2 taping techniques, which aimed to correct lateral patellar displacement. Subjects were asked to report their pain level prior to each scan session. During MRI assessment, subjects were loaded with 25% of body weight on their involved/more symptomatic leg at 0°, 20°, and 40° of knee flexion. The outcome measures included patellar lateral displacement (bisect-offset [BSO] index), mediolateral patellar tilt angle, patellar height (Insall-Salvati ratio), contact area, and pain. Patellofemoral joint alignment and contact area were compared among the 3 conditions (no tape, Kinesio, and McConnell) at 3 knee angles using a 2-factor, repeated-measures analysis of variance. Pain was compared among the 3 conditions using the Friedman test and post hoc Wilcoxon signed-rank tests. Results Our data did not reveal any significant effects of either McConnell or Kinesio taping on the BSO index, patellar tilt angle, Insall-Salvati ratio, or contact area across the 3 knee angles, whereas knee angle had a significant effect on the BSO index and contact area. A reduction in pain was observed after the application of the Kinesio taping technique. Conclusion In a weight-bearing condition, this preliminary study did not support the use of PFJ taping as a medial correction technique to alter the PFJ contact area or alignment of the patella. J Orthop Sports Phys Ther 2017

  1. Assessment of Brown Bear\\'s (Ursus arctos syriacus Winter Habitat Using Geographically Weighted Regression and Generalized Linear Model in South of Iran

    Directory of Open Access Journals (Sweden)

    A. A. Zarei

    2016-03-01

    Full Text Available Winter dens are one of the important components of brown bear's (Ursus arctos syriacus habitat, affecting their reproduction and survival. Therefore identification of factors affecting the habitat selection and suitable denning areas in the conservation of our largest carnivore is necessary. We used Geographically Weighted Logistic Regression (GWLR and Generalized Linear Model (GLM for modeling suitability of denning habitat in Kouhkhom region in Fars province. In the present research, 20 dens (presence locations and 20 caves where signs of bear were not found (absence locations were used as dependent variables and six environmental factors were used for each location as independent variables. The results of GLM showed that variables of distance to settlements, altitude, and distance to water were the most important parameters affecting suitability of the brown bear's denning habitat. The results of GWLR showed the significant local variations in the relationship between occurrence of brown bear dens and the variable of distance to settlements. Based on the results of both models, suitable habitats for denning of the species are impassable areas in the mountains and inaccessible for humans.

  2. Weight-bearing recommendations after operative fracture treatment-fact or fiction? Gait results with and feasibility of a dynamic, continuous pedobarography insole.

    Science.gov (United States)

    Braun, Benedikt J; Veith, Nils T; Rollmann, Mika; Orth, Marcel; Fritz, Tobias; Herath, Steven C; Holstein, Jörg H; Pohlemann, Tim

    2017-08-01

    Rehabilitation after lower-extremity fractures is based on the physicians' recommendation for non-, partial-, or full weight-bearing. Clinical studies rely on this assumption, but continuous compliance or objective loading rates are unknown. The purpose of this study was to determine the compliance to weight-bearing recommendations by introducing a novel, pedobarography system continuously registering postoperative ground forces into ankle, tibial shaft and proximal femur fracture aftercare and test its feasibility for this purpose. In this prospective, observational study, a continuously measuring pedobarography insole was placed in the patients shoe during the immediate post-operative aftercare after ankle, tibial shaft and intertrochanteric femur fractures. Weight-bearing was ordered as per the institutional standard and controlled by physical therapy. The insole was retrieved after a maximum of six weeks (28 days [range 5-42 days]). Non-compliance was defined as a failure to maintain, or reach the ordered weight-bearing within 30%. Overall 30 patients were included in the study. Fourteen (47%) of the patients were compliant to the weight-bearing recommendations. Within two weeks after surgery patients deviated from the recommendation by over 50%. Sex, age and weight did not influence the performance (p > 0.05). Ankle fracture patients (partial weight-bearing) showed a significantly increased deviation from the recommendation (p = 0.01). Our study results show that, despite physical therapy training, weight-bearing compliance to recommended limits was low. Adherence to the partial weight-bearing task was further decreased over time. Uncontrolled weight-bearing recommendations should thus be viewed with caution and carefully considered as fiction. The presented insole is feasible to determine weight bearing continuously, could immediately help define real-time patient behaviour and establish realistic, individual weight-bearing recommendations.

  3. A new propeller flap based upon medial-plantar-artery perforator for reconstruction of the distal weight-bearing foot

    Directory of Open Access Journals (Sweden)

    M. Coriddi

    2015-06-01

    Full Text Available Reconstruction of the weight-bearing areas of the plantar foot is challenging with limited options. Here, we describe a medial-plantar-artery perforator-based propeller flap for the reconstruction of a distal plantar defect. Flap design and advantages of this flap are discussed.

  4. Effects of early weight bearing on the functional recovery of ambulatory children with cerebral palsy after bilateral proximal femoral osteotomy.

    Science.gov (United States)

    Schaefer, Megan K; McCarthy, James J; Josephic, Kyle

    2007-09-01

    This study evaluates the effects of early versus delayed weight bearing on the functional recovery of ambulatory children with cerebral palsy (CP) after they have undergone proximal femoral osteotomies (PFOs). We retrospectively reviewed the cases of 25 ambulatory children with CP who underwent PFO to correct excessive hip internal rotation and intoeing. Thirteen children were permitted to weight-bear as tolerated (WBAT) immediately after surgery, and 12 were placed on non-weight bearing restrictions for 3 to 7 weeks (mean +/- SD, 30 +/- 6.7 days). There were no major complications. The children in the WBAT group initiated standing 26 days sooner and returned to baseline walking almost 4 months sooner than those on non-weight bearing restrictions. Pain at 8 days postoperatively was significantly less for the WBAT group, but pain at the time of initial standing and walking was not significantly different between groups. In conclusion, early mobilization after PFOs in children with CP is safe, with reduced recovery time, and with decreased pain.

  5. Weight-bearing ankle dorsiflexion range of motion-can side-to-side symmetry be assumed?

    Science.gov (United States)

    Rabin, Alon; Kozol, Zvi; Spitzer, Elad; Finestone, Aharon S

    2015-01-01

    In clinical practice, the range of motion (ROM) of the non involved side often serves as the reference for comparison with the injured side. Previous investigations of non-weight-bearing (NWB) ankle dorsiflexion (DF) ROM measurements have indicated bilateral symmetry for the most part. Less is known about ankle DF measured under weight-bearing (WB) conditions. Because WB and NWB ankle DF are not strongly correlated, there is a need to determine whether WB ankle DF is also symmetrical in a healthy population. To determine whether WB ankle DF is bilaterally symmetrical. A secondary goal was to further explore the correlation between WB and NWB ankle DF ROM. Cross-sectional study. Training facility of the Israeli Defense Forces. A total of 64 healthy males (age = 19.6 ± 1.0 years, height = 175.0 ± 6.4 cm, and body mass = 71.4 ± 7.7 kg). Dorsiflexion ROM in WB was measured with an inclinometer and DF ROM in NWB was measured with a universal goniometer. All measurements were taken bilaterally by a single examiner. Weight-bearing ankle DF was greater on the nondominant side compared with the dominant side (P < .001). Non-weight-bearing ankle DF was not different between sides (P = .64). The correlation between WB and NWB DF was moderate, with the NWB DF measurement accounting for 30% to 37% of the variance of the WB measurement. Weight-bearing ankle DF ROM should not be assumed to be bilaterally symmetrical. These findings suggest that side-to-side differences in WB DF may need to be interpreted while considering which side is dominant. The difference in bilateral symmetry between the WB and NWB measurements, as well as the only moderate level of correlation between them, suggests that both measurements should be performed routinely.

  6. Weight-Bearing Ankle Dorsiflexion Range of Motion—Can Side-to-Side Symmetry Be Assumed?

    Science.gov (United States)

    Rabin, Alon; Kozol, Zvi; Spitzer, Elad; Finestone, Aharon S.

    2015-01-01

    Context: In clinical practice, the range of motion (ROM) of the noninvolved side often serves as the reference for comparison with the injured side. Previous investigations of non–weight-bearing (NWB) ankle dorsiflexion (DF) ROM measurements have indicated bilateral symmetry for the most part. Less is known about ankle DF measured under weight-bearing (WB) conditions. Because WB and NWB ankle DF are not strongly correlated, there is a need to determine whether WB ankle DF is also symmetrical in a healthy population. Objective: To determine whether WB ankle DF is bilaterally symmetrical. A secondary goal was to further explore the correlation between WB and NWB ankle DF ROM. Design: Cross-sectional study. Setting: Training facility of the Israeli Defense Forces. Patients or Other Participants: A total of 64 healthy males (age = 19.6 ± 1.0 years, height = 175.0 ± 6.4 cm, and body mass = 71.4 ± 7.7 kg). Main Outcome Measure(s): Dorsiflexion ROM in WB was measured with an inclinometer and DF ROM in NWB was measured with a universal goniometer. All measurements were taken bilaterally by a single examiner. Results: Weight-bearing ankle DF was greater on the nondominant side compared with the dominant side (P < .001). Non–weight-bearing ankle DF was not different between sides (P = .64). The correlation between WB and NWB DF was moderate, with the NWB DF measurement accounting for 30% to 37% of the variance of the WB measurement. Conclusions: Weight-bearing ankle DF ROM should not be assumed to be bilaterally symmetrical. These findings suggest that side-to-side differences in WB DF may need to be interpreted while considering which side is dominant. The difference in bilateral symmetry between the WB and NWB measurements, as well as the only moderate level of correlation between them, suggests that both measurements should be performed routinely. PMID:25329350

  7. Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level.

    Science.gov (United States)

    Katsamenis, Orestis L; Chong, Harold M H; Andriotis, Orestis G; Thurner, Philipp J

    2013-01-01

    An improved understanding of bone mechanics is vital in the development of evaluation strategies for patients at risk of bone fracture. The current evaluation approach based on bone mineral density (BMD) measurements lacks sensitivity, and it has become clear that as well as bone mass, bone quality should also be evaluated. The latter includes, among other parameters, the bone matrix material properties, which in turn depend on the hierarchical structural features that make up bone as well as their composition. Optimal load transfer, energy dissipation and toughening mechanisms have, to some extent, been uncovered in bone. Yet, the origin of these properties and their dependence upon the hierarchical structure and composition of bone are largely unknown. Here we investigate load transfer in the osteonal and sub-osteonal levels and the mechanical behaviour of osteonal lamellae and interlamellar areas during loading. Using cantilever-based nanoindentation, in situ microtensile testing during atomic force microscopy (AFM) and digital image correlation (DIC), we report evidence for a previously unknown mechanism. This mechanism transfers load and movement in a manner analogous to the engineered "elastomeric bearing pads" used in large engineering structures. μ-RAMAN microscopy investigations showed compositional differences between lamellae and interlamellar areas. The latter have lower collagen content but an increased concentration of noncollagenous proteins (NCPs). Hence, NC-enriched areas on the microscale might be similarly important for bone failure as ones on the nanoscale. Finally, we managed to capture stable crack propagation within the interlamellar areas in a time-lapsed fashion, proving their significant contribution towards fracture toughness. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effect of distal ulnar ostectomy on carpal joint stability during weight bearing in the dog.

    Science.gov (United States)

    Amsellem, Pierre M; Young, Aisha N; Muirhead, Tammy L; Pack, LeeAnn; Moak, Peter; Matthews, Andrea R; Marcellin-Little, Denis J

    2017-11-01

    To assess the influence of a 50% distal ulnectomy on mediolateral carpal stability in the dog. Canine cadaveric study. Seven canine thoracic limbs METHODS: Thoracic limbs were placed in a jig to mimic weight bearing with a load representing 30% of body weight. Carpal extension angle was standardized at 190° ± 5°. Frontal plane carpal angles were measured with the limb loaded on craniocaudal radiographs before and after ulnectomy. Valgus and varus stress radiographs with the limb loaded were acquired before and after ulnectomy. The limbs were palpated and were subjectively graded for valgus or varus instability by 2 investigators before and after ulnectomy. Mean (±SD) valgus angulation increased after ulnectomy (2.1° ± 1.7°; P = .017; CI95  = 0.5°-3.7°) when the limb was loaded without valgus or varus stress applied. Mean valgus angulation increased after ulnectomy (2.7° ± 2.8°; P = .032; CI95  = -0.2°-5.5°) when valgus stress was applied to the loaded limb. Varus angulation was unchanged after ulnectomy (0.6° ± 4.6°; P = .383; CI95  = -4.2°-5.3°) when varus stress was applied to the loaded limb. Palpation detected increased valgus score after ulnectomy. Distal ulnectomy with excision of the lateral styloid process induces a slight increase in valgus in canine cadaver carpi. The clinical consequences of that valgus on carpal function and health should be assessed in clinical patients. © 2017 The American College of Veterinary Surgeons.

  9. Vertical weight-bearing MRI provides an innovative method for standardizing Spurling test.

    Science.gov (United States)

    Yan, Jun; Wang, Yi; Liu, Xiaofeng; Li, Jian; Jin, Zhigao; Zheng, Zugen

    2010-12-01

    Although Spurling test, a foraminal compression test, is commonly used in clinical practice in patients with a suspected cervical radiculopathy, its protocol is still obscure. In undergoing this test, patients extend, laterally flex and slightly rotate neck to the symptomatic side, and then a pressure is applied on the top of patient's head by examiner. The test is scored as positive if it causes pain or tingling that starts in the shoulder and radiates distally to the elbow. But the range of neck motion and level of load are not clearly defined. Magnetic resonance imaging (MRI) has proved to be an excellent method of assessing the situation of cervical intervertebral foramen. Unfortunately the conventional MRI system is not able to fully achieve this goal because it can only examine patient in supine position while Spurling test needs to be performed in a sitting position. Here we hypothesize that vertical weight-bearing MRI provides an innovative method for researching and standardizing the protocols of Spurling test. The result will provide better knowledge of the mechanism of Spurling test. Standardization of the test will improve its sensitivity and rate of reproducibility. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Effect of single dose radiation therapy on weight-bearing lameness in dogs with elbow osteoarthritis.

    Science.gov (United States)

    Kapatkin, Amy S; Nordquist, Barbro; Garcia, Tanya C; Griffin, Maureen A; Theon, Alain; Kim, Sun; Hayashi, Kei

    2016-07-19

    To determine if a single low dose of radiation therapy in dogs with osteoarthritis of the elbow joint was associated with a detectable improvement in their lameness and pain as documented by force platform gait analysis. In this cohort longitudinal observational study, five Labrador Retrievers with lameness due to elbow osteoarthritis that was unresponsive to medical treatment were removed from all non-steroidal anti-inflammatory and analgesic medications. A single treatment of radiation therapy delivering 10 Gray was performed on the affected elbow joint(s). Force platform gait analysis was used to assess the ground reaction forces of a limb affected with elbow osteoarthritis both before and after radiation therapy. Significant differences occurred in the weight-bearing on an affected limb with elbow osteoarthritis after radiation therapy at weeks six and 14. Change due to treatment was particularly apparent in dogs with unilateral elbow osteoarthritis. Administering a single low dose of radiation therapy may have a short-term benefit in dogs with elbow osteoarthritis, which is similar to the evidence supporting the use of radiation therapy in horses with orthopaedic disease.

  11. The effect of upper extremity weight bearing on upper extremity function in children with hemiplegic type of cerebral palsy

    Directory of Open Access Journals (Sweden)

    P. Jayaraman

    2010-02-01

    Full Text Available The main objective of this study was to quantify the effects ofweight bearing on upper limb function in children with hemiplegic cerebralpalsy. This study also sought to monitor the change in spasticity immediatelyfollowing weight bearing exercises. A  quasi-experimental, one group pre-test,post-test design was used. Eleven children with hemiplegic type of cerebral palsyfrom a special school in KwaZulu Natal participated after fully informed consentof the caretaking guardian. The intervention consisted of a standardized programof weight bearing. The Melbourne A ssessment of Upper Extremity function wasused to quantify upper extremity function of reach, grasp and manipulation and the modified A shworth grading of spasticity was used to grade and monitor spasticity. The data was analysed using the Wilcoxon signed rank test.  A  significant decrease in spasticity during elbow extension (p= 0,004, wrist flexion (p=0,026 and extension (p=0,004was noted. Statistically significant improvement in function, reach (p=0, 00, grasp (p=0, 02 manipulation (p=0, 05and overall quality of function (p= 0,003 was also found. A n overall significant effect of weight bearing exercises onupper extremity function was noted providing evidence for practice.

  12. Diffusion-weighted imaging and dynamic contrast-enhanced MRI of experimental breast cancer bone metastases – A correlation study with histology

    Energy Technology Data Exchange (ETDEWEB)

    Merz, Maximilian [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg (Germany); Seyler, Lisa; Bretschi, Maren; Semmler, Wolfhard [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Bäuerle, Tobias, E-mail: tobias.baeuerle@uk-erlangen.de [Department of Medical Physics in Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Institute of Radiology, University Medical Center Erlangen, Palmsanlage 5, 90154 Erlangen (Germany)

    2015-04-15

    Purpose: To validate imaging parameters from diffusion-weighted imaging and dynamic contrast-enhanced MRI with immunohistology and to non-invasively assess microstructure of experimental breast cancer bone metastases. Materials and methods: Animals bearing breast cancer bone metastases were imaged in a clinical 1.5 T MRI scanner. HASTE sequences were performed to calculate apparent diffusion coefficients. Saturation recovery turbo FLASH sequences were conducted while infusing 0.1 mmol/l Gd–DTPA for dynamic contrast-enhanced MRI to quantify parameters amplitude A and exchange rate constant k{sub ep}. After imaging, bone metastases were analyzed immunohistologically. Results: We found correlations of the apparent diffusion coefficients from diffusion-weighted imaging with tumor cellularity as assessed with cell nuclei staining. Histological vessel maturity was correlated negatively with parameters A and k{sub ep} from dynamic contrast-enhanced MRI. Tumor size correlated inversely with cell density and vessel permeability as well as positively with mean vessel calibers. Parameters from the rim of bone metastases differed significantly from values of the center. Conclusion: In vivo diffusion-weighted imaging and dynamic contrast-enhanced MRI in experimental bone metastases provide information about tumor cellularity and vascularity and correlate well with immunohistology.

  13. High Birth Weight Increases the Risk for Bone Tumor: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Songfeng Chen

    2015-09-01

    Full Text Available There have been several epidemiologic studies on the relationship between high birth weight and the risk for bone tumor in the past decades. However, due to the rarity of bone tumors, the sample size of individual studies was generally too small for reliable conclusions. Therefore, we have performed a meta-analysis to pool all published data on electronic databases with the purpose to clarify the potential relationship. According to the inclusion and exclusion criteria, 18 independent studies with more than 2796 cases were included. As a result, high birth weight was found to increase the risk for bone tumor with an Odds Ratio (OR of 1.13, with the 95% confidence interval (95% CI ranging from 1.01 to 1.27. The OR of bone tumor for an increase of 500 gram of birth weight was 1.01 (95% CI 1.00–1.02; p = 0.048 for linear trend. Interestingly, individuals with high birth weight had a greater risk for osteosarcoma (OR = 1.22, 95% CI 1.06–1.40, p = 0.006 than those with normal birth weight. In addition, in the subgroup analysis by geographical region, elevated risk was detected among Europeans (OR = 1.14, 95% CI 1.00–1.29, p = 0.049. The present meta-analysis supported a positive association between high birth weight and bone tumor risk.

  14. Spaceflight-Relevant Challenges of Radiation and/or Reduced Weight Bearing Cause Arthritic Responses in Knee Articular Cartilage.

    Science.gov (United States)

    Willey, J S; Kwok, A T; Moore, J E; Payne, V; Lindburg, C A; Balk, S A; Olson, J; Black, P J; Walb, M C; Yammani, R R; Munley, M T

    2016-10-01

    There is little known about the effect of both reduced weight bearing and exposure to radiation during spaceflight on the mechanically-sensitive cartilage lining the knee joint. In this study, we characterized cartilage damage in rat knees after periods of reduced weight bearing with/without exposure to solar-flare-relevant radiation, then cartilage recovery after return to weight bearing. Male Sprague Dawley rats (n = 120) were either hindlimb unloaded (HLU) via tail suspension or remained weight bearing in cages (GROUND). On day 5, half of the HLU and GROUND rats were 1 Gy total-body X-ray irradiated during HLU, and half were sham irradiated (SHAM), yielding 4 groups: GROUND-SHAM; GROUND-IR; HLU-SHAM; and HLU-IR. Hindlimbs were collected from half of each group of rats on day 13. The remaining rats were then removed from HLU or remained weight bearing, and hindlimbs from these rats were collected on day 62. On day 13, glycosaminoglycan (GAG) content in cartilage lining the tibial plateau and femoral condyles of HLU rats was lower than that of the GROUND animals. Likewise, on day 13, immunoreactivity of the collagen type II-degrading matrix metalloproteinase-13 (MMP-13) and of a resultant metalloproteinase-generated neoepitope VDIPEN was increased in all groups versus GROUND-SHAM. Clustering of chondrocytes indicating cartilage damage was present in all HLU and IR groups versus GROUND-SHAM on day 13. On day 62, after 49 days of reloading, the loss of GAG content was attenuated in the HLU-SHAM and HLU-IR groups, and the increased VDIPEN staining in all treatment groups was attenuated. However, the increased chondrocyte clustering remained in all treatment groups on day 62. MMP-13 activity also remained elevated in the GROUND-IR and HLU-IR groups. Increased T2 relaxation times, measured on day 62 using 7T MRI, were greater in GROUND-IR and HLU-IR knees, indicating persistent cartilage damage in the irradiated groups. Both HLU and total-body irradiation resulted in

  15. Peak Bone Mass and Bone Microarchitecture in Adults Born With Low Birth Weight Preterm or at Term: A Cohort Study.

    Science.gov (United States)

    Balasuriya, Chandima N D; Evensen, Kari Anne I; Mosti, Mats P; Brubakk, Ann-Mari; Jacobsen, Geir W; Indredavik, Marit S; Schei, Berit; Stunes, Astrid Kamilla; Syversen, Unni

    2017-07-01

    Peak bone mass (PBM) is regarded as the most important determinant of osteoporosis. Growing evidence suggests a role of intrauterine programming in skeletal development. We examined PBM and trabecular bone score (TBS) in adults born preterm with very low birth weight (VLBW) or small for gestational age (SGA) at term compared with term-born controls. This follow-up cohort study included 186 men and women (25 to 28 years); 52 preterm VLBW (≤1500 g), 59 term-born SGA (10th percentile). Main outcome was bone mineral density (BMD) by dual x-ray absorptiometry. Secondary outcomes were bone mineral content (BMC), TBS, and serum bone markers. VLBW adults had lower BMC and BMD vs controls, also when adjusted for height, weight, and potential confounders, with the following BMD Z-score differences: femoral neck, 0.6 standard deviation (SD) (P = 0.003); total hip, 0.4 SD (P = 0.01); whole body, 0.5 SD (P = 0.007); and lumbar spine, 0.3 SD (P = 0.213). The SGA group displayed lower spine BMC and whole-body BMD Z-scores, but not after adjustment. Adjusted odds ratios for osteopenia/osteoporosis were 2.4 and 2.0 in VLBW and SGA adults, respectively. TBS did not differ between groups, but it was lower in men than in women. Serum Dickkopf-1 was higher in VLBW subjects vs controls; however, it was not significant after adjustment for multiple comparisons. Both low-birth-weight groups displayed lower PBM and higher frequency of osteopenia/osteoporosis, implying increased future fracture risk. The most pronounced bone deficit was seen in VLBW adults.

  16. Bone metabolism in obesity: changes related to severe overweight and dietary weight reduction

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Andersen, T; McNair, P

    1993-01-01

    A non-invasive evaluation of bone metabolism was performed in 44 morbidly obese patients before and after a mean weight loss of 22.4 kg (range 7.9-43.4 kg) after 2 months and a further weight loss of 7.3 kg after 8 months (0.8-20.0 kg). This weight reduction was obtained by a nutritionally adequa...

  17. Higher milk requirements for bone mineral accrual in adolescent girls bearing specific caucasian genotypes in the VDR promoter.

    Science.gov (United States)

    Esterle, Laure; Jehan, Frederic; Sabatier, Jean-Pierre; Garabedian, Michele

    2009-08-01

    Low milk intakes hamper bone mineral acquisition during adolescence, especially in European girls. We hypothesized that ethnic-specific polymorphisms of the vitamin D receptor gene promoter (VDRp) influence this milk/bone association. We evaluated lumbar spine BMC and BMD, milk/dairy products and calcium intakes, markers of P-Ca metabolism, and VDRp polymorphisms at the Cdx-2 binding (rs11568820) and -1012 (rs4516035) loci in 117 healthy European peri- and postmenarcheal girls (14.9 +/- 1.6 yr) during a 4-yr follow-up. Calcium intakes from milk, nonmilk dairy products, and nondairy products averaged 199, 243, and 443 mg/d at the initiation of the study. Results show no association between milk intakes and bone mass accrual in girls bearing an A/A genotype at the -1012 VDRp locus (30% of the cohort). In contrast, A/G or G/G girls had lower spine BMC (-13%, p = 0.031), BMD (-10%, p = 0.004), and BMD Z-score (-0.84 SD, p = 0.0003) when their milk intakes were milk intakes and with girls with an A/A genotype. The negative impact of low milk intake persisted up to 19.0 +/- 1.7 yr. These findings suggest that European girls bearing a -1012 A/G or G/G VDRp genotype should have higher milk/calcium intakes for optimal vertebral mass accrual during adolescence than girls bearing an A/A genotype, a genotype found in 30% of European and 98% of Asian and Sub-Saharan African populations. VDRp genotype diversity may contribute to the ethnic differences observed in milk requirements for bone health during adolescence.

  18. The Effects of Weight Loss on Relative Bone Mineral Density in Premenopausal Women

    Science.gov (United States)

    Hamilton, Kara C.; Fisher, Gordon; Roy, Jane L.; Gower, Barbara A.; Hunter, Gary R.

    2012-01-01

    Heavier individuals have higher bone mineral density (BMD) than individuals of lower body weight, but it is unclear whether BMD changes in proportion to body weight during weight loss. This study compared BMD relative to body weight following a ~6 months weight loss program and a one year weight maintenance phase in premenopausal women and determined whether African American (AA) and European-American (EA) women’s BMD respond similarly during weight loss. Premenopausal women (n=115, 34 ± 5 yrs.) were evaluated in an overweight state (BMI between 27–30 kg/m2), following an 800 kcal/day diet/exercise program designed to reduce BMI BMD relative to body weight (Z-scores) increased after weight loss, but decreased during the one year weight maintenance phase. All one year follow up BMD Z-scores were increased (except L1) compared to baseline measurements (P BMD at all sites (P<0.05) compared to EAs, but no time by race interactions were evident during weight loss (except in L3). These results may indicate that weight loss is safe with regard to bone health for overweight premenopausal women. PMID:23404937

  19. Biofeedback in Partial Weight Bearing: Usability of Two Different Devices from a Patient's and Physical Therapist's Perspective.

    Science.gov (United States)

    van Lieshout, Remko; Pisters, Martijn F; Vanwanseele, Benedicte; de Bie, Rob A; Wouters, Eveline J; Stukstette, Mirelle J

    2016-01-01

    Partial weight bearing is frequently instructed by physical therapists in patients after lower-limb trauma or surgery. The use of biofeedback devices seems promising to improve the patient's compliance with weight-bearing instructions. SmartStep and OpenGo-Science are biofeedback devices that provide real-time feedback. For a successful implementation, usability of the devices is a critical aspect and should be tested from a user's perspective. To describe the usability from the physical therapists' and a patients' perspective of Smartstep and OpenGo-Science to provide feedback on partial weight bearing during supervised rehabilitation of patients after lower-limb trauma or surgery. In a convergent mixed-methods design, qualitative and quantitative data were collected. Usability was subdivided into user performance, satisfaction and acceptability. Patients prescribed with partial weight bearing and their physical therapists were asked to use SmartStep and OpenGo-Science during supervised rehabilitation. Usability was qualitatively tested by a think-aloud method and a semi-structured interview and quantitatively tested by the System-Usability-Scale (SUS) and closed questions. For the qualitative data thematic content analyses were used. Nine pairs of physical therapists and their patients participated. The mean SUS scores for patients and physical therapists were for SmartStep 70 and 53, and for OpenGo-Science 79 and 81, respectively. Scores were interpreted with the Curved Grading Scale. The qualitative data showed that there were mixed views and perceptions from patients and physical therapists on satisfaction and acceptability. This study gives insight in the usability of two biofeedback devices from the patient's and physical therapist's perspective. The overall usability from both perspectives seemed to be acceptable for OpenGo-Science. For SmartStep, overall usability seemed only acceptable from the patient's perspective. The study findings could help

  20. Factors associated with an immediate weight-bearing and early ambulation program for older adults after hip fracture repair.

    Science.gov (United States)

    Barone, Antonella; Giusti, Andrea; Pizzonia, Monica; Razzano, Monica; Oliveri, Mauro; Palummeri, Ernesto; Pioli, Giulio

    2009-09-01

    To evaluate baseline characteristics and in-hospital factors associated with nonadherence with an immediate weight-bearing and early ambulation (IWB-EA) program after hip fracture (HF) surgery. Prospective inception cohort study. Ortho-geriatric unit in an acute care hospital. Older adults (N=469) admitted with an osteoporotic HF who underwent surgery. Immediate weight-bearing and assisted ambulation training on the first postoperative day (all patients). Proportion of subjects who adhered to the IWB-EA protocol within 48 hours of surgery. A total of 366 patients (78%) bore weight and ambulated within 48 hours (weight-bearing [WB] group) while the others did not adhere to the protocol (nonweight-bearing [NWB] group). Subjects in the NWB group were significantly older, were more cognitively and functionally impaired, and presented a higher comorbidity at baseline. A higher proportion of subjects in the NWB group (42.7%) than the WB group (23.5%; PIWB-EA protocol (odds ratio=2.5; 95% confidence interval=1.6-4.0; PIWB-EA is feasible in a high proportion of patients after surgical stabilization of HF. Neither cognitive impairment nor high comorbidity influenced significantly the adherence to the protocol, indicating that IWB-EA may be offered to an unselected population of the elderly with HF. The day of surgery (eg, preholiday or not) was the only variable influencing the participation to the IWB-EA protocol, suggesting the importance of maintaining the same standard of daytime care every day of the week.

  1. Effect of modified constraint induced movement therapy on weight bearing and protective extension in children with hemiplegic cerebral palsy

    Directory of Open Access Journals (Sweden)

    Masoud Gharib

    2012-01-01

    Full Text Available Background: Constraint induced movement therapy is one of the new therapeutic interventions that limits the performance of intact upper limb with increased use of the affected limb. Aim of this study was to investigate the effects of modified constraint induced movement therapy on weight bearing & protective extension in children with hemiplegic cerebral palsy.Methods: 21 hemiplegic children were selected and randomly divided into experimental and control groups. Common Practices of Occupational Therapy applied for 6 weeks in both groups equally and test group received constrain induced movement therapy for three hours every day. Weight-bearing and protective extension was measured based on quality of test skills of upper limbs (QUEST. Data analyzed using appropriated statistical methods. Results: 11 children in the experimental group (7 girls, 4 boys with mean age 47.2 ± 55.5 months and 10 children in the control group (5 girls, 5 boys with mean age 19.2 ± 10.5 months were studied. No significant difference observed before and after six weeks intervention between two groups (P>0.05. There was a significant change before and after six weeks intervention in both subscales (P<0.05.Conclusion: This study showed that modified constraint induced movement therapy may affect weight bearing, but has no effect on the protective extension.

  2. Effect of Different Bearing Ratios on the Friction between Ultrahigh Molecular Weight Polyethylene Ski Bases and Snow.

    Science.gov (United States)

    Rohm, Sebastian; Knoflach, Christoph; Nachbauer, Werner; Hasler, Michael; Kaserer, Lukas; van Putten, Joost; Unterberger, Seraphin H; Lackner, Roman

    2016-05-18

    The purpose of this study was to analyze the effect of surfaces with different bearing ratios, but similar roughness heights, on the friction between ultrahigh molecular weight polyethylene (UHMWPE) and snow. On a linear tribometer positioned inside a cold chamber, the different samples were tested over a wide range of velocities and snow temperatures. The surface roughness was measured with a focus variation microscope and analyzed using the bearing ratio curve and its parameters. The surface energy was investigated by measuring the contact angles of a polar (water) and nonpolar (diiodmethane) liquid. The friction tests showed that the bearing ratio had a major effect on the friction between UHMWPE and snow. For temperatures close to the melting point a surface with wide grooves and narrow plateaus (nonbearing surface) performed well. For cold conditions, the friction was less for a surface with narrow grooves and wide plateaus (bearing surface). Interpretations of the results are given on the basis of mixed friction, with lubricated friction being dominant at higher snow temperatures and solid-solid interaction at lower ones.

  3. Pitfalls in comparing modern hair and fossil bone collagen C and N isotopic data to reconstruct ancient diets: a case study with cave bears (Ursus spelaeus).

    Science.gov (United States)

    Bocherens, Hervé; Grandal-d'Anglade, Aurora; Hobson, Keith A

    2014-01-01

    Stable isotope analyses provide one of the few means to evaluate diet of extinct taxa. However, interpreting isotope data from bone collagen of extinct animals based on isotopic patterns in different tissues of modern animal proxies is precarious. For example, three corrections are needed before making comparisons of recent hair and ancient bone collagen: calibration of carbon-13 variations in atmospheric CO2, different isotopic discrimination between diet-hair keratin and diet-bone collagen, and time averaging of bone collagen versus short-term record in hair keratin. Recently, Robu et al. [Isotopic evidence for dietary flexibility among European Late Pleistocene cave bears (Ursus spelaeus). Can J Zool. 2013;91:227-234] published an article comparing extant carbon (δ(13)C) and nitrogen (δ(15)N) stable isotopic data of European cave bear bone collagen with those of Yellowstone Park grizzly bear hair in order to test the prevailing assumption of a largely vegetarian diet among cave bears. The authors concluded that cave bears were carnivores. This work is unfortunately unfounded as the authors failed to consider the necessary corrections listed above. When these corrections are applied to the Romanian cave bears, these individuals can be then interpreted without involving consumption of high trophic-level food, and environmental changes are probably the reason for the unusual isotopic composition of these cave bears in comparison with other European cave bears, rather than a change of diet. We caution researchers to pay careful attention to these factors when interpreting feeding ecology of extinct fauna using stable isotope techniques.

  4. Human Muscle Protein Synthetic Responses during Weight-Bearing and Non-Weight-Bearing Exercise: A Comparative Study of Exercise Modes and Recovery Nutrition.

    Science.gov (United States)

    Pasiakos, Stefan M; McClung, Holly L; Margolis, Lee M; Murphy, Nancy E; Lin, Gregory G; Hydren, Jay R; Young, Andrew J

    2015-01-01

    Effects of conventional endurance (CE) exercise and essential amino acid (EAA) supplementation on protein turnover are well described. Protein turnover responses to weighted endurance exercise (i.e., load carriage, LC) and EAA may differ from CE, because the mechanical forces and contractile properties of LC and CE likely differ. This study examined muscle protein synthesis (MPS) and whole-body protein turnover in response to LC and CE, with and without EAA supplementation, using stable isotope amino acid tracer infusions. Forty adults (mean ± SD, 22 ± 4 y, 80 ± 10 kg, VO 2peak 4.0 ± 0.5 L ∙ min(-1)) were randomly assigned to perform 90 min, absolute intensity-matched (2.2 ± 0.1 VO2 L ∙ m(-1)) LC (performed on a treadmill wearing a vest equal to 30% of individual body mass, mean ± SD load carried 24 ± 3 kg) or CE (cycle ergometry performed at the same absolute VO2 as LC) exercise, during which EAA (10 g EAA, 3.6 g leucine) or control (CON, non-nutritive) drinks were consumed. Mixed-muscle and myofibrillar MPS were higher during exercise for LC than CE (mode main effect, P drink main effect, P drink) were observed. However, EAA attenuated whole-body protein breakdown, increased amino acid oxidation, and enhanced net protein balance in recovery compared to CON, regardless of exercise mode (P protein turnover responses to absolute VO2-matched LC and CE are the same, LC elicited a greater muscle protein synthetic response than CE.

  5. Human Muscle Protein Synthetic Responses during Weight-Bearing and Non-Weight-Bearing Exercise: A Comparative Study of Exercise Modes and Recovery Nutrition.

    Directory of Open Access Journals (Sweden)

    Stefan M Pasiakos

    Full Text Available Effects of conventional endurance (CE exercise and essential amino acid (EAA supplementation on protein turnover are well described. Protein turnover responses to weighted endurance exercise (i.e., load carriage, LC and EAA may differ from CE, because the mechanical forces and contractile properties of LC and CE likely differ. This study examined muscle protein synthesis (MPS and whole-body protein turnover in response to LC and CE, with and without EAA supplementation, using stable isotope amino acid tracer infusions. Forty adults (mean ± SD, 22 ± 4 y, 80 ± 10 kg, VO 2peak 4.0 ± 0.5 L ∙ min(-1 were randomly assigned to perform 90 min, absolute intensity-matched (2.2 ± 0.1 VO2 L ∙ m(-1 LC (performed on a treadmill wearing a vest equal to 30% of individual body mass, mean ± SD load carried 24 ± 3 kg or CE (cycle ergometry performed at the same absolute VO2 as LC exercise, during which EAA (10 g EAA, 3.6 g leucine or control (CON, non-nutritive drinks were consumed. Mixed-muscle and myofibrillar MPS were higher during exercise for LC than CE (mode main effect, P < 0.05, independent of dietary treatment. EAA enhanced mixed-muscle and sarcoplasmic MPS during exercise, regardless of mode (drink main effect, P < 0.05. Mixed-muscle and sarcoplasmic MPS were higher in recovery for LC than CE (mode main effect, P < 0.05. No other differences or interactions (mode x drink were observed. However, EAA attenuated whole-body protein breakdown, increased amino acid oxidation, and enhanced net protein balance in recovery compared to CON, regardless of exercise mode (P < 0.05. These data show that, although whole-body protein turnover responses to absolute VO2-matched LC and CE are the same, LC elicited a greater muscle protein synthetic response than CE.

  6. Mammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength

    OpenAIRE

    McGee-Lawrence, Meghan E.; Carey, Hannah V.; Donahue, Seth W.

    2008-01-01

    Reduced skeletal loading typically leads to bone loss because bone formation and bone resorption become unbalanced. Hibernation is a natural model of musculoskeletal disuse because hibernating animals greatly reduce weight-bearing activity, and therefore, they would be expected to lose bone. Some evidence suggests that small mammals like ground squirrels, bats, and hamsters do lose bone during hibernation, but the mechanism of bone loss is unclear. In contrast, hibernating bears maintain bala...

  7. A knee brace alters patella position in patellofemoral osteoarthritis: a study using weight bearing magnetic resonance imaging.

    Science.gov (United States)

    Callaghan, M J; Guney, H; Reeves, N D; Bailey, D; Doslikova, K; Maganaris, C N; Hodgson, R; Felson, D T

    2016-12-01

    To assess using weight bearing magnetic resonance imaging (MRIs), whether a patellar brace altered patellar position and alignment in patellofemoral joint (PFJ) osteoarthritis (OA). Subjects age 40-70 years old with symptomatic and a radiographic Kellgren-Lawrence (K-L) evidence of PFJOA. Weight bearing knee MRIs with and without a patellar brace were obtained using an upright open 0.25 T scanner (G-Scan, Easote Biomedica, Italy). Five aspects of patellar position were measured: mediolateral alignment by the bisect offset index, angulation by patellar tilt, patellar height by patellar height ratio (patellar length/patellar tendon length), lateral patellofemoral (PF) contact area and finally a measurement of PF bony separation of the lateral patellar facet and the adjacent surface on the femoral trochlea (Fig. 1). Thirty participants were recruited (mean age 57 SD 27.8; body mass index (BMI) 27.8 SD 4.2); 17 were females. Four patients had non-usable data. Main analysis used paired t tests comparing within subject patellar position with and without brace. For bisect offset index, patellar tilt and patellar height ratio there were no significant differences between the brace and no brace conditions. However, the brace increased lateral facet contact area (P = .04) and decreased lateral PF separation (P = .03). A patellar brace alters patellar position and increases contact area between the patella and femoral trochlea. These changes would lower contact stress at the PFJ. Such changes in patella position in weight bearing provide a possible biomechanical explanation for the success of the PFJ brace in clinical trials on PFJOA. Copyright © 2016. Published by Elsevier Ltd.

  8. Dorsolateral subluxation of hip joints in dogs measured in a weight-bearing position with radiography and computed tomography.

    Science.gov (United States)

    Farese, J P; Todhunter, R J; Lust, G; Williams, A J; Dykes, N L

    1998-01-01

    develop a radiographic procedure to measure dorsolateral subluxation (DLS) of the femoral head in canine coxofemoral (hip) joints in a weight-bearing position. DLS measured on a radiographic projection was compared with DLS measured on computed tomography (CT) images of hip joints in a weight-bearing position. A total of 24 dogs of varying ages were examined including Labrador retrievers, greyhounds, and Labrador-greyhound crossbreeds. Anesthetized dogs were placed in sternal recumbency in a kneeling position in a foam rubber mold. The stifles were flexed and adducted with the femora perpendicular to, and in contact with, the table. To test for DLS, dogs were imaged in this weight-bearing position (DLS test) with routine radiography and CT. For each hip, the DLS score was determined by measuring the percentage of the femoral head medial to the lateralmost point of the cranial acetabular rim on the dorsoventral radiographic projection and the lateralmost point of the central, dorsal acetabular rim on the CT image. Higher DLS scores indicated better coverage of the femoral head by the acetabulum. DLS scores were compared with the distraction index (DI) by grouping joints according to their probability of developing osteoarthritis (OA) as predicted by the DI. The DLS score in the new position ranged from 29% to 71% for radiography and 15% to 59% for CT. Joints classified as OA unsusceptible had a mean score of 64% +/- 1.5% for radiography and 55% +/- 0.8% for CT (n = 10); hip joints having a high probability of developing OA had a score of 39% +/- 2.6% for radiography and 26% +/- 1.9% for CT (n = 8). When the DLS test was repeated on the same dogs at a different time, the intraclass correlation coefficient for the DLS score on the radiographs was 0.85 (left hip) and 0.89 (right hip). There was a strong correlation (r = .89 for both hips) between the DLS score measured on the weight-bearing radiograph and the CT image. A strong correlation also was observed between the

  9. Dynamic weight bearing is an efficient and predictable method for evaluation of arthritic nociception and its pathophysiological mechanisms in mice

    OpenAIRE

    Quadros, Andreza U.; Pinto, Larissa G.; Fonseca, Miriam M.; Ricardo Kusuda; Fernando Q Cunha; Cunha, Thiago M.

    2015-01-01

    The assessment of articular nociception in experimental animals is a challenge because available methods are limited and subject to investigator influence. In an attempt to solve this problem, the purpose of this study was to establish the use of dynamic weight bearing (DWB) as a new device for evaluating joint nociception in an experimental model of antigen-induced arthritis (AIA) in mice. AIA was induced in Balb/c and C57BL/6 mice, and joint nociception was evaluated by DWB. Western Blottin...

  10. Electromagnetic field versus circuit weight training on bone mineral density in elderly women

    Directory of Open Access Journals (Sweden)

    Elsisi HF

    2015-03-01

    Full Text Available Hany Farid Eid Morsy Elsisi,1 Gihan Samir Mohamed Mousa,1 Mohamed Taher Mahmoud ELdesoky2 1Department of Physical Therapy for Cardiovascular/Respiratory Disorder and Geriatrics, 2Department of Basic Science, Faculty of Physical Therapy, Cairo University, Cairo, Egypt Background and purpose: Osteoporosis is a common skeletal disorder with costly complications and a global health problem and one of the leading causes of morbidity and mortality worldwide. Magnetic field therapy and physical activity have been proven as beneficial interventions for prevention and treatment of osteoporosis. The purpose of this study was to compare the response of bone mineral content and bone mineral density (BMD in elderly women to either low-frequency low-intensity pulsed magnetic field (LFLIPMF or circuit weight training (CWT on short-run basis (after 12 weeks. Patients and methods: Thirty elderly women, aged 60–70 years, were randomly assigned into two groups (magnetic field and CWT (n=15 each group. The session was performed three times per week for magnetic field and CWT groups, for 12 weeks. BMD and bone mineral content of lumbar spine (L2–L4 and femoral neck, trochanter, and Ward’s triangle were evaluated before and after 12 weeks of treatment. Results: Both magnetic field and CWT for 12 weeks in elderly women seem to yield beneficial and statistically significant increasing effect on BMD and bone mineral content (P<0.05. But magnetic field seems to have more beneficially and statistically significant effect than does CWT. Conclusion: It is possible to conclude that LFLIPMF and CWT programs are effective modalities in increasing BMD but LFLIPMF is more effective in elderly women. Keywords: magnetic field, circuit weight training, bone mineral density, elderly women, bone mineral content, bone mass

  11. Impact of marked weight loss induced by bariatric surgery on bone mineral density and remodeling

    Directory of Open Access Journals (Sweden)

    F.A. Pereira

    2007-04-01

    Full Text Available Data about the impact of bariatric surgery (BS and subsequent weight loss on bone are limited. The objective of the present study was to determine bone mineral density (BMD, bone remodeling metabolites and hormones that influence bone trophism in premenopausal women submitted to BS 9.8 months, on average, before the study (OGg, N = 16. The data were compared to those obtained for women of normal weight (CG, N = 11 and for obese women (OG, N = 12. Eight patients in each group were monitored for one year, with the determination of BMD, of serum calcium, phosphorus, magnesium, parathyroid hormone, 25-hydroxyvitamin D, insulin-like growth factor-I (IGF-I and osteocalcin, and of urinary calcium and deoxypyridinoline. The biochemical determinations were repeated every three months in the longitudinal study and BMD was measured at the end of the study. Parathyroid hormone levels were similar in the three groups. IGF-I levels (CG = 332 ± 62 vs OG = 230 ± 37 vs OGg = 128 ± 19 ng/mL were significantly lower in the operated patients compared to the non-operated obese women. Only OGg patients presented a significant fall in BMD of 6.2% at L1-L4, of 10.2% in the femoral neck, and of 5.1% in the forearm. These results suggest that the weight loss induced by BS is associated with a significant loss of bone mass even at sites that are not influenced by weight overload, with hormonal factors such as IGF-I being associated with this process.

  12. A Multiple-Kernel Relevance Vector Machine with Nonlinear Decreasing Inertia Weight PSO for State Prediction of Bearing

    Directory of Open Access Journals (Sweden)

    Sheng-wei Fei

    2015-01-01

    Full Text Available The scientific and accurate prediction for state of bearing is the key to ensure its safe operation. A multiple-kernel relevance vector machine (MkRVM including RBF kernel and polynomial kernel is proposed for state prediction of bearing in this study; the proportions of RBF kernel and polynomial kernel are determined by a controlled parameter. As the selection of the parameters of the kernel functions and the controlled parameter has a certain influence on the prediction results of MkRVM, nonlinear decreasing inertia weight PSO (NDIWPSO is used to select its kernel parameters and controlled parameter. The RBF kernel RVM model with NDIWPSO (NDIWPSO-RBFRVM and the polynomial kernel RVM model with NDIWPSO (NDIWPSO-PolyRVM are used, respectively, to compare with the multiple-kernel RVM model with NDIWPSO (NDIWPSO-MkRVM. The experimental results indicate that NDIWPSO-MkRVM is more suitable for the state prediction of bearing than NDIWPSO-RBFRVM and NDIWPSO-PolyRVM.

  13. Investigations into Changes in Bone Turnover with Acute, Weight-Bearing Exercise in Healthy, Young Men

    Science.gov (United States)

    2009-10-01

    visit (P2), volunteers had their maximal rate of oxygen uptake ( VO2max ) measured to establish their physical fitness and allow the calculation of...specific exercise intensities relative to VO2max for use in the studies. Controlled diet and restricted training P1 P2 D4 D5 D6 D7 D8 Preliminary...responses to acute, exhaustive exercise 1 Intermittent, exhaustive running at 65% to 70% VO2max Recreationally-active men (RA) vs endurance-trained

  14. A hippotherapy simulator is effective to shift weight bearing toward the affected side during gait in patients with stroke.

    Science.gov (United States)

    Sung, Yun-Hee; Kim, Chang-Ju; Yu, Byong-Kyu; Kim, Kyeong-Mi

    2013-01-01

    We investigated whether a hippotherapy simulator has influence on symmetric body weight bearing during gait in patients with stroke. Stroke patients were divided into a control group (n = 10) that received conventional rehabilitation for 60 min/day, 5 times/week for 4 weeks and an experimental group (n = 10) that used a hippotherapy simulator for 15 min/day, 5 times/week for 4 weeks after conventional rehabilitation for 45 min/day. Temporospatial gait assessed using OptoGait and trunk muscles (abdominis and erector spinae on affected side) activity evaluated using surface electromyography during sit-to-stand and gait. Prior to starting the experiment, pre-testing was performed. At the end of the 4-week intervention, we performed post-testing. Activation of the erector spinae in the experimental group was significantly increased compared to that in the control group (p hippotherapy simulator compared to control group (p hippotherapy simulator to patients with stroke can improve asymmetric weight bearing by influencing trunk muscles.

  15. In vivo assessment of weight-bearing knee flexion reveals compartment-specific alterations in meniscal slope.

    Science.gov (United States)

    Lustig, Sebastien; Scholes, Corey J; Balestro, Jean-Christian; Parker, David A

    2013-10-01

    The purpose of this study was to determine the effects of flexion angle on meniscal slope during partial weight-bearing knee flexion. Forty-eight sagittal sequences were performed on 12 patients (6 male patients, 6 female patients; 25.7 ± 10.5 years) during partial weight bearing in an open magnetic resonance imaging (MRI) scanner at full extension, 60°, 90°, and maximum knee flexion. A previously published method was used to measure the meniscal slope for each compartment using manual digitalization. A general linear model was used to test for effects of compartment and flexion angle on meniscal slope. The mean maximum flexion angle achieved was 125° ± 10.5°. A significant main effect of compartment (P knee flexion (P = .031). The results showed that meniscal slope in healthy knees increased significantly with knee flexion for both menisci, with significantly greater changes in the lateral meniscus. Furthermore, a lack of correlation was observed between the meniscal slope in extension and the meniscal slope at increasing flexion angles, questioning the efficacy of measuring the meniscal slope only in extension as commonly described. Overall, this study has provided valuable insight into how meniscal slope changes with knee motion. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  16. Curcumin deteriorates trabecular and cortical bone in mice bearing metastatic Lewis lung carcinoma

    Science.gov (United States)

    Bone is a major target of metastasis for many malignancies; curcumin has been studied for its role in cancer prevention including early phase clinical trials for its efficacy and safe use with cancer patients. The present study investigated the effects of dietary supplementation with curcumin (2% a...

  17. Effects of upright weight bearing and the knee flexion angle on patellofemoral indices using magnetic resonance imaging in patients with patellofemoral instability.

    Science.gov (United States)

    Becher, Christoph; Fleischer, Benjamin; Rase, Marten; Schumacher, Thees; Ettinger, Max; Ostermeier, Sven; Smith, Tomas

    2017-08-01

    This study analysed the effects of upright weight bearing and the knee flexion angle on patellofemoral indices, determined using magnetic resonance imaging (MRI), in patients with patellofemoral instability (PI). Healthy volunteers (control group, n = 9) and PI patients (PI group, n = 16) were scanned in an open-configuration MRI scanner during upright weight bearing and supine non-weight bearing positions at full extension (0° flexion) and at 15°, 30°, and 45° flexion. Patellofemoral indices included the Insall-Salvati Index, Caton-Deschamp Index, and Patellotrochlear Index (PTI) to determine patellar height and the patellar tilt angle (PTA), bisect offset (BO), and the tibial tubercle-trochlear groove (TT-TG) distance to assess patellar rotation and translation with respect to the femur and alignment of the extensor mechanism. A significant interaction effect of weight bearing by flexion angle was observed for the PTI, PTA, and BO for subjects with PI. At full extension, post hoc pairwise comparisons revealed a significant effect of weight bearing on the indices, with increased patellar height and increased PTA and BO in the PI group. Except for the BO, no such changes were seen in the control group. Independent of weight bearing, flexing the knee caused the PTA, BO, and TT-TG distance to be significantly reduced. Upright weight bearing and the knee flexion angle affected patellofemoral MRI indices in PI patients, with significantly increased values at full extension. The observations of this study provide a caution to be considered by professionals when treating PI patients. These patients should be evaluated clinically and radiographically at full extension and various flexion angles in context with quadriceps engagement. Explorative case-control study, Level III.

  18. Image-based compensation for involuntary motion in weight-bearing C-arm cone-beam CT scanning of knees

    Science.gov (United States)

    Unberath, Mathias; Choi, Jang-Hwan; Berger, Martin; Maier, Andreas; Fahrig, Rebecca

    2015-03-01

    We previously introduced four fiducial marker-based strategies to compensate for involuntary knee-joint motion during weight-bearing C-arm CT scanning of the lower body. 2D methods showed significant reduction of motion- related artifacts, but 3D methods worked best. However, previous methods led to increased examination times and patient discomfort caused by the marker attachment process. Moreover, sub-optimal marker placement may lead to decreased marker detectability and therefore unstable motion estimates. In order to reduce overall patient discomfort, we developed a new image-based 2D projection shifting method. A C-arm cone-beam CT system was used to acquire projection images of five healthy volunteers at various flexion angles. Projection matrices for the horizontal scanning trajectory were calibrated using the Siemens standard PDS-2 phantom. The initial reconstruction was forward projected using maximum-intensity projections (MIP), yielding an estimate of a static scan. This estimate was then used to obtain the 2D projection shifts via registration. For the scan with the most motion, the proposed method reproduced the marker-based results with a mean error of 2.90 mm +/- 1.43 mm (compared to a mean error of 4.10 mm +/- 3.03 mm in the uncorrected case). Bone contour surrounding modeling clay layer was improved. The proposed method is a first step towards automatic image-based, marker-free motion-compensation.

  19. [Influence of high molecular weight polyethylene on viability of osteoblasts and new bone formation].

    Science.gov (United States)

    Ren, Gaohong; Lin, Angru; Pei, Guoxian; Hu, Basheng

    2006-02-01

    To investigate the influence of high molecular weight polyethylene (HMWP) on the viability of osteoblasts and new bone formation in the process of fracture healing, the osteoblasts derived from adult human bone marrow were cultured in HMWP maceration extract and normal culture medium. The viability of the osteoblasts was measured by MTT assay, and the function of the osteoblasts was detected by use of alkaline phosphatase test kit. The locked double-plating (steel plate and HMWP plate) was implanted and fixed at the artificial fracture of distal femur of dogs. Specimens were gained at 3, 6, 9 and 12 weeks postoperatively, examined with macroscopy, microscope and scanning electron microscope (SEM). The results showed that HMWP did no harm to osteoblasts. There is no significant difference in activities of proliferation and alkaline phosphatase between HMWP maceration extract and normal culture medium at each observation time of at 2,4,8, and 14 dyas (P>0. 05). Bone tissue under the implanted HMWP plate manifested no absorption; the new bones formed under the HMWP plate and gradually matured as time went on. It is demonstrated in this study that HMWP has no adverse influence on the viability of osteoblasts and new bone formation and it can be used as internal fixation implant in treating fractures.

  20. Orthostatic Tremor and Orthostatic Myoclonus: Weight-bearing Hyperkinetic Disorders: A Systematic Review, New Insights, and Unresolved Questions

    Directory of Open Access Journals (Sweden)

    Anhar Hassan

    2016-11-01

    Full Text Available Background: Orthostatic tremor (OT and orthostatic myoclonus (OM are weight-bearing hyperkinetic movement disorders most commonly affecting older people that induce “shaky legs” upon standing. OT is divided into “classical” and “slow” forms based on tremor frequency. In this paper, the first joint review of OT and OM, we review the literature and compare and contrast their demographic, clinical, electrophysiological, neuroimaging, pathophysiological, and treatment characteristics. Methods: A PubMed search up to July 2016 using the phrases “orthostatic tremor,” “orthostatic myoclonus,” “shaky legs,” and “shaky legs syndrome” was performed. Results: OT and OM should be suspected in older patients reporting unsteadiness with prolonged standing and/or who exhibit cautious, wide-based gaits. Surface electromyography (SEMG is necessary to verify the diagnoses. Functional neuroimaging and electrophysiology suggest the generator of classical OT lies within the cerebellothalamocortical network. For OM, and possibly slow OT, the frontal, subcortical cerebrum is the most likely origin. Clonazepam is the most useful medication for classical OT, and levetiracetam for OM, although results are often disappointing. Deep brain stimulation appears promising for classical OT. Rolling walkers reliably improve gait affected by these disorders, as both OT and OM attenuate when weight is transferred from the legs to the arms. Discussion: Orthostatic hyperkinesias are likely underdiagnosed, as SEMG is often unavailable in clinical practice, and thus may be more frequent than currently recognized. The shared weight-bearing induction of OT and OM may indicate a common pathophysiology. Further research, including use of animal models, is necessary to better define the prevalence and pathophysiology of OT and OM, in order to improve their treatment, and provide additional insights into basic balance and gait mechanisms.

  1. Weight-bearing asymmetries during Sit-To-Stand in patients with mild-to-moderate hip osteoarthritis

    DEFF Research Database (Denmark)

    Eitzen, Ingrid; Fernandes, Linda; Nordsletten, Lars

    2014-01-01

    and kinetic data were collected using an eight-camera motion analysis system synchronized with two force plates embedded in the floor. There were no distinctive biomechanical alterations in sagittal or frontal plane kinematics or kinetics, movement time, or time to reach peak ground reaction force (GRF...... of this study was to explore inter-limb weight-bearing asymmetries (WBA) and selected kinematic and kinetic variables during STS in patients with mild-to-moderate hip OA compared with healthy controls. Twenty-one hip OA patients and 23 controls were included in the study. Sagittal and frontal plane kinematic......) in hip OA patients compared with controls. However, the hip OA patients revealed a distinct pattern of WBA compared with the controls, in unloading their involved limb by 18.4% at peak GRF. These findings indicate that patients with early stage hip OA are not yet forced into a stereotypical movement...

  2. Weight-bearing computed tomography findings in varus ankle osteoarthritis: abnormal internal rotation of the talus in the axial plane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Beom; Yi, Young; Lee, Woo-Chun [Seoul Foot and Ankle Center, Dubalo Orthopaedic Clinic, Seochogu, Seoul (Korea, Republic of); Kim, Jae-Young; Kwon, Min-Soo; Choi, Seung-Hyuk [Inje University Seoul Paik Hospital, Department of Orthopaedic Surgery, Jung-gu, Seoul (Korea, Republic of); Cho, Jae-Ho [Hallym University, ChunCheon Sacred Heart Hospital, Department of Orthopaedic Surgery, Chuncheon, GangWon-do (Korea, Republic of)

    2017-08-15

    To assess the incidence of abnormal internal rotation of the talus in the axial plane in patients with varus ankle osteoarthritis, and to determine whether this incidence differs from the severity of varus ankle osteoarthritis (moderate versus severe). We retrospectively evaluated weight-bearing computed tomography (CT) and plain radiographs of 52 ankles with no abnormalities (control group) and 96 ankles with varus osteoarthritis (varus-OA group), which were further stratified into a moderate-OA subgroup (50 ankles) and a severe-OA subgroup (46 ankles). A new radiographic parameter on weight-bearing CT, the talus rotation ratio, was used to assess the rotation of the talus in the axial plane. The normal range of the talus rotation ratio was defined as the 95% prediction interval for talus rotation ratio values in the control group. Abnormal internal rotation of the talus was defined for talus rotation ratio values above the normal range. We determined the incidence of abnormal internal rotation of the talus in the varus-OA group, moderate-OA subgroup, and severe-OA subgroup. In the varus-OA group, the incidence of abnormal internal rotation of the talus was 45% (43 ankles), which corresponded to an incidence of 32% (16 ankles) in the moderate-OA subgroup and 59% (27 ankles) in the severe-OA subgroup (p = 0.013). Our study demonstrates that abnormal internal rotation of the talus occurs in patients with varus ankle osteoarthritis, and is more frequently noted in severe than in moderate varus ankle osteoarthritis. (orig.)

  3. Validity of clinical outcome measures to evaluate ankle range of motion during the weight-bearing lunge test.

    Science.gov (United States)

    Hall, Emily A; Docherty, Carrie L

    2017-07-01

    To determine the concurrent validity of standard clinical outcome measures compared to laboratory outcome measure while performing the weight-bearing lunge test (WBLT). Cross-sectional study. Fifty participants performed the WBLT to determine dorsiflexion ROM using four different measurement techniques: dorsiflexion angle with digital inclinometer at 15cm distal to the tibial tuberosity (°), dorsiflexion angle with inclinometer at tibial tuberosity (°), maximum lunge distance (cm), and dorsiflexion angle using a 2D motion capture system (°). Outcome measures were recorded concurrently during each trial. To establish concurrent validity, Pearson product-moment correlation coefficients (r) were conducted, comparing each dependent variable to the 2D motion capture analysis (identified as the reference standard). A higher correlation indicates strong concurrent validity. There was a high correlation between each measurement technique and the reference standard. Specifically the correlation between the inclinometer placement at 15cm below the tibial tuberosity (44.9°±5.5°) and the motion capture angle (27.0°±6.0°) was r=0.76 (p=0.001), between the inclinometer placement at the tibial tuberosity angle (39.0°±4.6°) and the motion capture angle was r=0.71 (p=0.001), and between the distance from the wall clinical measure (10.3±3.0cm) to the motion capture angle was r=0.74 (p=0.001). This study determined that the clinical measures used during the WBLT have a high correlation with the reference standard for assessing dorsiflexion range of motion. Therefore, obtaining maximum lunge distance and inclinometer angles are both valid assessments during the weight-bearing lunge test. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Exenatide treatment did not affect bone mineral density despite body weight reduction in patients with type 2 diabetes

    NARCIS (Netherlands)

    Bunck, M.C.M.; Eliasson, B.; Corner, A.; Heine, R.J.; Shaginian, R.M.; Taskinen, M.R.; Yki-Jarvinen, H.; Smith, U.; Diamant, M.

    2011-01-01

    Preclinical studies suggest that incretin-based therapies may be beneficial for the bone; however, clinical data are largely lacking. We assessed whether the differential effects of these therapies on body weight differed with respect to their effect on bone mineral density (BMD) and markers of

  5. Combined oral contraceptives' influence on weight, body composition, height, and bone mineral density in girls younger than 18 years

    DEFF Research Database (Denmark)

    Warholm, Lina; Petersen, Kresten R; Ravn, Pernille

    2012-01-01

    Combined oral contraceptives (COCs) are increasingly used by adolescents. The aim of this review is to investigate the evidence regarding COCs' influence on weight, height and bone mineral density (BMD) in girls younger than 18 years.......Combined oral contraceptives (COCs) are increasingly used by adolescents. The aim of this review is to investigate the evidence regarding COCs' influence on weight, height and bone mineral density (BMD) in girls younger than 18 years....

  6. The influence of weight status on radial bone mineral density in Lebanese women.

    Science.gov (United States)

    El Hage, Rawad; Bachour, Falah; Sebaaly, Amer; Issa, Majed; Zakhem, Eddy; Maalouf, Ghassan

    2014-04-01

    The aim of this study was to investigate the influence of the weight-status (obese, overweight and normal-weight) on bone mineral density of the forearm in Lebanese women. 3,989 Lebanese women (1,138 obese, 1,570 overweight and 1,281 normal weight) aged from 19 to 92 years old participated in this study. Weight and height were measured, and body mass index (BMI) was calculated. BMD of the ultra-distal (UD) radius, the 1/3 radius and the total radius was measured by DXA (GE Healthcare Lunar Prodigy). In the whole population, body weight was positively correlated to UD Radius BMD (r = 0.41; P BMD (r = 0.35; P BMD (r = 0.48; P BMD (r = -0.42; P BMD (r = -0.52; P BMD (r = -0.42; P BMD, 1/3 radius BMD and total radius BMD variances respectively. UD radius BMD, 1/3 radius BMD and total radius BMD values were significantly different among the three groups (P BMD, 1/3 radius BMD and total radius BMD values were higher in obese and overweight women compared to normal-weight women (P obese women compared to overweight women (P obesity is associated with higher UD radius, 1/3 radius and total radius BMD values in Lebanese women. Thus, obesity seems to be protective against forearm osteopenia in Lebanese women.

  7. Bone mineral density in anorexia nervosa: Only weight and menses recovery?

    Science.gov (United States)

    Jáuregui-Lobera, Ignacio; Bolaños-Ríos, Patricia; Sabaté, Juan

    2016-11-01

    The study objectives were to analyze the presence of reduced bone mass in a sample of patients with anorexia nervosa (AN) and amenorrhea, to assess Bone Mineral Density (BMD) recovery after having a normal weight is reached and regular menses are resumed, and to predict BMD after a treatment period considering different variables (baseline BMD, baseline and final body mass index (BMI), treatment duration). 35 patients with AN (mean age 20.57±5.77) were studied at treatment start (T0) and after they had recovered their normal weight and regular menses (T1) in order to measure their BMD using quantitative computed tomography (QCT) of the lumbar spine (L2-L4). At T0, 2.86% of patients had normal BMD, while a reduced bone mass consistent with osteopenia or with osteoporosis was found in 22.86% and 74.28% of patients respectively. At T1, the percentages were 20%, 20%, and 60% respectively. No significant differences were seen in L2-L3 and mean BMD (L2-L4). A significant difference was however found for L4 (p11 months, but not when the time period was ≤11 months. This follow-up study of changes not only in BMD but also in BMI and recovery of menses has clinical relevance from the viewpoint of the day-by-day treatment process. Use of QCT makes the study more relevant because this is a more advanced technique that allows for differentiating trabecular and cortical bone. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Maternal and pregnancy-related factors affecting human milk cytokines among Peruvian mothers bearing low-birth-weight neonates.

    Science.gov (United States)

    Zambruni, Mara; Villalobos, Alex; Somasunderam, Anoma; Westergaard, Sarah; Nigalye, Maitreyee; Turin, Christie G; Zegarra, Jaime; Bellomo, Sicilia; Mercado, Erik; Ochoa, Theresa J; Utay, Netanya S

    2017-04-01

    Several cytokines have been detected in human milk but their relative concentrations differ among women and vary over time in the same person. The drivers of such differences have been only partially identified, while the effect of luminal cytokines in the fine-regulation of the intestinal immune system is increasingly appreciated. The aim of this study was to investigate the associations between obstetrical complications and human milk cytokine profiles in a cohort of Peruvian women giving birth to Low Birth Weight (LBW) infants. Colostrum and mature human milk samples were collected from 301 Peruvian women bearing LBW infants. The concentration of twenty-three cytokines was measured using the Luminex platform. Ninety-nine percent of women had at least one identified obstetrical complication leading to intra-uterine growth restriction and/or preterm birth. Median weight at birth was 1,420g; median gestational age 31 weeks. A core of 12 cytokines, mainly involved in innate immunity and epithelial cell integrity, was detectable in most samples. Maternal age, maternal infection, hypertensive disorders, preterm labor, and premature rupture of membranes were associated with specific cytokine profiles both in colostrum and mature human milk. Mothers of Very LBW (VLBW) neonates had significantly higher concentrations of chemokines and growth factor cytokines both in their colostrum and mature milk compared with mothers of larger neonates. Thus, maternal conditions affecting pregnancy duration and in utero growth are also associated with specific human milk cytokine signatures. Copyright © 2017. Published by Elsevier B.V.

  9. Diet and exercise : a match made in bone

    NARCIS (Netherlands)

    Willems, H.M.E.; van den Heuvel, E.G.H.M.; Schoemaker, R.J.W.; Klein-Nulend, J.; Bakker, A.D.

    2017-01-01

    Purpose of Review: Multiple dietary components have the potential to positively affect bone mineral density in early life and reduce loss of bone mass with aging. In addition, regular weight-bearing physical activity has a strong positive effect on bone through activation of osteocyte signaling. We

  10. Bioresorbable β-TCP-FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility.

    Science.gov (United States)

    Swain, S K; Gotman, I; Unger, R; Gutmanas, E Y

    2017-09-01

    In this paper, the processing and properties of iron-toughened bioresorbable β-tricalcium phosphate (β-TCP) nanocomposites are reported. β-TCP is chemically similar to bone mineral and thus a good candidate material for bioresorbable bone healing devices; however intrinsic brittleness and low bending strength make it unsuitable for use in load-bearing sites. Near fully dense β-TCP-matrix nanocomposites containing 30vol% Fe, with and without addition of silver, were produced employing high energy attrition milling of powders followed by high pressure consolidation/cold sintering at 2.5GPa. In order to increase pure iron's corrosion rate, 10 to 30vol% silver were added to the metal phase. The degradation behavior of the developed composite materials was studied by immersion in Ringer's and saline solutions for up to 1month. The mechanical properties, before and after immersion, were tested in compression and bending. All the compositions exhibited high mechanical strength, the strength in bending being several fold higher than that of polymer toughened β-TCP-30PLA nanocomposites prepared by the similar procedure of attrition milling and cold sintering, and of pure high-temperature sintered β-TCP. Partial substitution of iron with silver led to an increase in both strength and ductility. Furthermore, the galvanic action of silver particles dispersed in the iron phase significantly accelerated in vitro degradation of β-TCP-30(Fe-Ag) nanocomposites. After 1month immersion, the composites retained about 50% of their initial bending strength. In cell culture experiments, β-TCP-27Fe3Ag nanocomposites exhibited no signs of cytotoxicity towards human osteoblasts suggesting that they can be used as an implant material. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. THE EFFECTS OF ALCOHOL EXPOSURE DURING INTRAUTERINE AND POSTNATAL PERIOD ON BONE MINERAL DENSITY AND BONE GROWTH AND BODY WEIGHT IN RATS' VIRGIN OFFSPRING

    OpenAIRE

    Ertem, Kadir; Kekilli, Ersoy; Elmali, Nurzat; Ceylan, Feti

    2015-01-01

    Aim: To investigate the effects of alcohol contained continuous modified liquid diet ingestion in rats\\' offspring on bone length, bone mineral density and body weights. Methods: In Alcoholic group (n= 19), Wistar rats\\' offspring were provided 7.2% ethanol during intrauterine and postnatal breast feeding period (4 weeks). These rats were fed by modified liquid diet without ethanol till 12 weeks of age after weaning. Control group (pair-fed control rats, n= 9) was fed an isocaloric ...

  12. [Turner syndrome: spontaneous growth of stature, weight increase and accelerated bone maturation].

    Science.gov (United States)

    Cabrol, S; Saab, C; Gourmelen, M; Raux-Demay, M C; Le Bouc, Y

    1996-04-01

    Since growth hormone is effective in increasing the height of girls with Turner's syndrome, it is important to dispose of growth and bone maturation curves in a large number of untreated patients. Data on growth and bone maturation were collected from 160 patients with Turner's syndrome (50 have reached final height), born 1965-1991, untreated with growth hormone or anabolic steroids. X monosomy was found in half of the patients, mosaicism or X abnormality was present in the other half. Spontaneous puberty occurred in 25% (n = 25) of patients older than 13 years, 38 patients received estrogen after 13 years. Final heights were compared to predicted height according to Lyon's method. Forty-five percent of patients were small for date. Height velocity decreased from 2 years of age and decreased faster during adolescence, when gonadal dysgenesis occurred. Bone maturation velocity decreased also during adolescence. Excessive weight appeared after the age of 5 years. Patients with partial deletion of the long arm of X (n = 6) were taller than the other girls (n = 44) (mean +/- DS) 152.5 +/- 3.1 cm, range 150-158 cm versus 142.5 +/- 4.9 cm, 130-150 cm (P syndrome.

  13. Bone Mineral Density after Weight Gain in 160 Patients with Anorexia Nervosa

    Directory of Open Access Journals (Sweden)

    Najate Achamrah

    2017-09-01

    Full Text Available Low bone mineral density (BMD is a frequent complication in anorexia nervosa (AN. There are controversial points of views regarding the restoration of bone mineralization after recovery in AN. We aimed to assess changes of BMD at 3 years in patients with AN and to explore the relationships between body composition, physical activity, and BMD. Patients with AN were included from 2009 to 2011 in a first visit (T0 with evaluation of weight, height, body mass index (BMI, body composition [fat mass (FM and fat-free mass], and BMD. Those who had low BMD, either osteoporosis or osteopenia, were admitted in a second visit (T1 to carry out a new bone densitometry examination and body composition; they were also asked for their physical activity. At T0, our study involved 160 patients. Low BMD was observed in 53.6% of them and significant factors associated with demineralization were lower BMIs (16.5 ± 2.1 vs 17.3 ± 2.3 kg/m2, p = 0.01 and higher duration of AN (11.4 ± 10.5 vs 6.4 ± 6.5 years, p = 0.001. At 3 years follow-up (T1, 42 patients were involved and no significant changes in BMD were observed despite body weight increase (3.8 ± 6.1 kg. Interestingly, FM gain was a significant factor associated with BMD improvement at follow-up (8.0 ± 9.1 vs 3.0 ± 3.5 kg, p = 0.02. Our findings suggest that the restoration of normal bone values is not related to the increase of body weight, at least after 3 years. FM seems to play an important role in the pathophysiological mechanism of osteoporosis and osteopenia in AN.

  14. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight.

    Directory of Open Access Journals (Sweden)

    Paul A Baldock

    Full Text Available Changes in whole body energy levels are closely linked to alterations in body weight and bone mass. Here, we show that hypothalamic signals contribute to the regulation of bone mass in a manner consistent with the central perception of energy status. Mice lacking neuropeptide Y (NPY, a well-known orexigenic factor whose hypothalamic expression is increased in fasting, have significantly increased bone mass in association with enhanced osteoblast activity and elevated expression of bone osteogenic transcription factors, Runx2 and Osterix. In contrast, wild type and NPY knockout (NPY (-/- mice in which NPY is specifically over expressed in the hypothalamus (AAV-NPY+ show a significant reduction in bone mass despite developing an obese phenotype. The AAV-NPY+ induced loss of bone mass is consistent with models known to mimic the central effects of fasting, which also show increased hypothalamic NPY levels. Thus these data indicate that, in addition to well characterized responses to body mass, skeletal tissue also responds to the perception of nutritional status by the hypothalamus independently of body weight. In addition, the reduction in bone mass by AAV NPY+ administration does not completely correct the high bone mass phenotype of NPY (-/- mice, indicating the possibility that peripheral NPY may also be an important regulator of bone mass. Indeed, we demonstrate the expression of NPY specifically in osteoblasts. In conclusion, these data identifies NPY as a critical integrator of bone homeostatic signals; increasing bone mass during times of obesity when hypothalamic NPY expression levels are low and reducing bone formation to conserve energy under 'starving' conditions, when hypothalamic NPY expression levels are high.

  15. Preparation of three-dimensional braided carbon fiber-reinforced PEEK composites for potential load-bearing bone fixations. Part I. Mechanical properties and cytocompatibility.

    Science.gov (United States)

    Luo, Honglin; Xiong, Guangyao; Yang, Zhiwei; Raman, Sudha R; Li, Qiuping; Ma, Chunying; Li, Deying; Wang, Zheren; Wan, Yizao

    2014-01-01

    In this study, we focused on fabrication and characterization of three-dimensional carbon fiber-reinforced polyetheretherketone (C3-D/PEEK) composites for orthopedic applications. We found that pre-heating of 3-D fabrics before hot-pressing could eliminate pores in the composites prepared by 3-D co-braiding and hot-pressing techniques. The manufacturing process and the processing variables were studied and optimum parameters were obtained. Moreover, the carbon fibers were surface treated by the anodic oxidization and its effect on mechanical properties of the composites was determined. Preliminary cell studies with mouse osteoblast cells were also performed to examine the cytocompatibility of the composites. Feasibility of the C3-D/PEEK composites as load-bearing bone fixation materials was evaluated. Results suggest that the C3-D/PEEK composites show good promising as load-bearing bone fixations. © 2013 Elsevier Ltd. All rights reserved.

  16. Lack of Association between Body Weight, Bone Mineral Density and Vitamin D Receptor Gene Polymorphism in Normal and Osteoporotic Women

    Directory of Open Access Journals (Sweden)

    Massimo Poggi

    1999-01-01

    Full Text Available In an ethnically homogeneous population of women living in Tuscany, Italy, the relationships between age, body weight, bone mineral density and the vitamin D receptor (VDR gene polymorphism were studied, with the objective of recognizing patients at risk for osteoporosis. In 275 women bone mineral density was measured by Dual Energy X-rays Absorptiometry (DEXA. In 50 of them the individual genetic pattern for VDR was evaluated by DNA extraction followed by PCR amplification of the VDR gene, and digestion with the restriction enzyme BsmI. Age and bone mineral density were inversely related (R2 = 0.298. Body weight was associated with bone mineral density (R2 = 0.059, but not with age. In osteoporotic women, mean (± SD body weight was 59.9 ± 6.5 Kg, lower than that recorded in non osteoporotic women (64.2 ± 9.4 Kg, even though not significantly different (p = 0.18. No association was found between VDR gene polymorphism, bone density or body weight. The performance of anthropometric and genetic components appear to be poor, and, at least for the time being, bone mineral density measurement by means of MOC-DEXA represents the optimal method to detect women at risk for postmenopausal osteoporosis.

  17. Short-time weight-bearing capacity assessment for non-ambulatory patients with subacute stroke: reliability and discriminative power.

    Science.gov (United States)

    Stoller, Oliver; Rosemeyer, Heike; Baur, Heiner; Schindelholz, Matthias; Hunt, Kenneth J; Radlinger, Lorenz; Schuster-Amft, Corina

    2015-11-26

    Weight-bearing capacity (WBC) on the hemiparetic leg is crucial for independent walking, and is thus an important outcome to monitor after a stroke. A specific and practical assessment in non-ambulatory patients is not available. This is of importance considering the increasing administration of high intensive gait training for the severely impaired stroke population. The aim was to develop a fast and easy-to-perform assessment for WBC on a foot pressure plate to be used in clinical routine. WBC was assessed in the frontal plane in 30 non-ambulatory patients with subacute stroke and 10 healthy controls under 3 conditions: static, dynamic, and rhythmic. Force-time curves for the hemiparetic leg (patients with stroke) and the non-dominant leg (healthy controls) were normalised as a percentage of body weight (%BW), and the means analysed over 60, 30, and 15 s (static) and the mean of the peak values for 15, 10, 5, 4, and 3 repetition trials (dynamic, rhythmic). The data were tested for discriminative power and reliability. Dynamic and rhythmic tests could discriminate between patients with stroke and healthy controls over all periods (15, 10, 5, 4, and 3 repetitions) (p 0.829] and inter-session reliability (ICC = 0.740) were found for 3 repetitions in the dynamic test with acceptable absolute reliability [standard error of measurement (SEM) <5 %BW, minimal detectable difference (MDD) <12.4 %BW] and no within- or between-test differences (trial 1, p = 0.792; trial 2, p = 0.067; between trials, p = 0.102). Three dynamic repetitions of loading the hemiparetic leg are sufficient to assess WBC in non-ambulatory patients with subacute stroke. This is an important finding regarding the implementation of a fast and easy-to-perform assessment for routine clinical usage in patients with limited standing ability.

  18. Multistimuli-responsive supramolecular organogels formed by low-molecular-weight peptides bearing side-chain azobenzene moieties.

    Science.gov (United States)

    Fatás, Paola; Bachl, Jürgen; Oehm, Stefan; Jiménez, Ana I; Cativiela, Carlos; Díaz Díaz, David

    2013-07-01

    This work demonstrates that the incorporation of azobenzene residues into the side chain of low-molecular-weight peptides can modulate their self-assembly process in organic solvents leading to the formation of stimuli responsive physical organogels. The major driving forces for the gelation process are hydrogen bonding and π-π interactions, which can be triggered either by thermal or ultrasound external stimuli, affording materials having virtually the same properties. In addition, a predictive model for gelation of polar protic solvent was developed by using Kamlet-Taft solvent parameters and experimental data. The obtained viscoelastic materials exhibited interconnected multistimuli responsive behaviors including thermal-, photo-, chemo- and mechanical responses. All of them displayed thermoreversability with gel-to-sol transition temperatures established between 33-80 °C and gelation times from minutes to several hours. Structure-property relationship studies of a designed peptide library have demonstrated that the presence and position of the azobenzene residue can be operated as a versatile regulator to reduce the critical gelation concentration and enhance both the thermal stability and mechanical strength of the gels, as demonstrated by comparative dynamic rheology. The presence of N-Boc protecting group in the peptides showed also a remarkable effect on the formation and properties of the gels. Despite numerous examples of peptide-based gelators known in the literature, this is the first time in which low-molecular-weight peptides bearing side chain azobenzene units are used for the synthesis of "intelligent" supramolecular organogels. Compared with other approaches, this strategy is advantageous in terms of structural flexibility since it is compatible with a free, unprotected amino terminus and allows placement of the chromophore at any position of the peptide sequence. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. [Morphological investigations of deep sole ulcers in cattle. Part 2: Toe ulcers, white line disease in the heel and changes due to inappropriate weight bearing and deficient claw care].

    Science.gov (United States)

    Gehringer, Susanne; Müller, Matthias; Maierl, Johann

    2017-04-19

    To demonstrate the morphology of pathological changes to the inner structures of the claw in cases of toe ulcers, white line disease in the heel and changes due to inappropriate weight bearing and deficient claw care. Hind limbs of 55 cows displaying external signs of complicated sole ulcers were examined externally and internally. To examine the samples internally, a sagittal section was performed. Furthermore, the material was examined after bone maceration and histologically. A total of 43 claws of 112 digits with 120 deep sole ulcers displayed a toe ulcer and in 18 claws white line disease was diagnosed. In animals with toe ulcers, necrosis of the pedal bone was found in severely altered claws. In cows with white line disease, osteolysis in the abaxial region of the margo solearis and arthritis in the distal interphalangeal joint were the most common pathological findings. Claws with deficient claw care displayed severe pathological changes to the pedal bone. Sole ulcers may rapidly cause serious and irreversible changes to the structures encased within the hoof capsule and consequently have an impact on animal welfare. Therefore, prophylaxis and functional claw care are essential measures to avoid pathological conditions in claws and to improve animal welfare.

  20. Phasic-to-tonic shift in trunk muscle activity relative to walking during low-impact weight bearing exercise

    Science.gov (United States)

    Caplan, Nick; Gibbon, Karl; Hibbs, Angela; Evetts, Simon; Debuse, Dorothée

    2014-11-01

    The aim of this study was to investigate the influence of an exercise device, designed to improve the function of lumbopelvic muscles via low-impact weight-bearing exercise, on electromyographic (EMG) activity of lumbopelvic, including abdominal muscles. Surface EMG activity was collected from lumbar multifidus (LM), erector spinae (ES), internal oblique (IO), external oblique (EO) and rectus abdominis (RA) during overground walking (OW) and exercise device (EX) conditions. During walking, most muscles showed peaks in activity which were not seen during EX. Spinal extensors (LM, ES) were more active in EX. Internal oblique and RA were less active in EX. In EX, LM and ES were active for longer than during OW. Conversely, EO and RA were active for a shorter duration in EX than OW. The exercise device showed a phasic-to-tonic shift in activation of both local and global lumbopelvic muscles and promoted increased activation of spinal extensors in relation to walking. These features could make the exercise device a useful rehabilitative tool for populations with lumbopelvic muscle atrophy and dysfunction, including those recovering from deconditioning due to long-term bed rest and microgravity in astronauts.

  1. Effects of calcaneal eversion on three-dimensional kinematics of the hip, pelvis and thorax in unilateral weight bearing.

    Science.gov (United States)

    Tateuchi, Hiroshige; Wada, Osamu; Ichihashi, Noriaki

    2011-06-01

    Understanding the kinematic chain from foot to thorax will provide a better basis for assessment of malalignment of the body. The purpose of this study was to investigate the effects of induced calcaneal eversion on the kinematics of the hip, pelvis and thorax in three dimensions under unilateral weight-bearing. Twenty-eight healthy males were requested to stand on one leg under three conditions: normal (standing directly on the floor), and on wedges producing 5° and 10° calcaneal eversion. Recorded kinematic parameters included the angles of the hip joint, pelvis, and thorax in three dimensions. Eversion induced by wedges produced significant increases in hip flexion, hip medial rotation, pelvic anterior tilt, and thoracic lateral tilt and axial rotation to the standing side. In the frontal plane, pelvic lateral tilt to the standing side was decreased in 5° eversion condition compared with normal condition; conversely, it was increased in 10° eversion condition compared with 5° eversion condition. Arch height was negatively correlated with change in thoracic axial rotation to standing side from the normal to 10° eversion (r=-.528, pthorax through the hip joint and the pelvis. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. The effect of motor control training on abdominal muscle contraction during simulated weight bearing in elite cricketers.

    Science.gov (United States)

    Hides, Julie A; Endicott, Timothy; Mendis, M Dilani; Stanton, Warren R

    2016-07-01

    To investigate whether motor control training alters automatic contraction of abdominal muscles in elite cricketers with low back pain (LBP) during performance of a simulated unilateral weight-bearing task. Clinical trial. 26 male elite-cricketers attended a 13-week cricket training camp. Prior to the camp, participants were allocated to a LBP or asymptomatic group. Real-time ultrasound imaging was used to assess automatic abdominal muscle response to axial loading. During the camp, the LBP group performed a staged motor control training program. Following the camp, the automatic response of the abdominal muscles was re-assessed. At pre-camp assessment, when participants were axially loaded with 25% of their own bodyweight, the LBP group showed a 15.5% thicker internal oblique (IO) muscle compared to the asymptomatic group (p = 0.009). The post-camp assessment showed that participants in the LBP group demonstrated less contraction of the IO muscle in response to axial loading compared with the asymptomatic group. A trend was found in the automatic recruitment pattern of the transversus abdominis (p = 0.08). Motor control training normalized excessive contraction of abdominal muscles in response to a low load task. This may be a useful strategy for rehabilitation of cricketers with LBP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Dynamic weight bearing is an efficient and predictable method for evaluation of arthritic nociception and its pathophysiological mechanisms in mice.

    Science.gov (United States)

    Quadros, Andreza U; Pinto, Larissa G; Fonseca, Miriam M; Kusuda, Ricardo; Cunha, Fernando Q; Cunha, Thiago M

    2015-10-29

    The assessment of articular nociception in experimental animals is a challenge because available methods are limited and subject to investigator influence. In an attempt to solve this problem, the purpose of this study was to establish the use of dynamic weight bearing (DWB) as a new device for evaluating joint nociception in an experimental model of antigen-induced arthritis (AIA) in mice. AIA was induced in Balb/c and C57BL/6 mice, and joint nociception was evaluated by DWB. Western Blotting and real-time PCR were used to determine protein and mRNA expression, respectively. DWB detected a dose- and time-dependent increase in joint nociception during AIA and was able to detect the dose-response effects of different classes of analgesics. Using DWB, it was possible to evaluate the participation of spinal glial cells (microglia and astrocytes) and cytokines (IL-1β and TNFα) for the genesis of joint nociception during AIA. In conclusion, the present results indicated that DWB is an effective, objective and predictable test to study both the pathophysiological mechanisms involved in arthritic nociception in mice and for evaluating novel analgesic drugs against arthritis.

  4. Joint-space width in the weight-bearing radiogram of the tibiofemoral joint. Should the patient stand on one leg or two?

    Energy Technology Data Exchange (ETDEWEB)

    Boegaard, T.; Rudling, O. [County Hospital, Helsingborg (Sweden). Dept. of Diagnostic Radiology; Petersson, I.F. [Spenshult Hospital for Rheumatic Diseases, Halmstad (Sweden); Jonsson, K. [Univ. Hospital, Lund (Sweden)

    1998-01-01

    Purpose: The aim of the study was to compare the minimal joint-space (MJS) width of the tibiofemoral joint (TFJ) in weight-bearing radiograms with the patient in two different positions. Material and Methods: From a study of 54 patients with chronic knee pain (aged 42-59 years, mean 52 years), we selected 21 consecutive patients for this study. In these 21 patients, both knees were examined by means of p.a. weight-bearing radiograms in semiflexion with fluoroscopic guidance. The patient stood with the weight: (1) almost entirely on the examined leg; and (2) equally distributed on both legs. The MJS was measured with a scale loupe in tenths of a millimeter in the medial and lateral compartments of the TFJ. Results: With the patient standing on one leg, the MJS was 0.18 mm wider (p<0.006) in the medial compartment and 0.18 mm narrower (p<0.029) in the lateral compartment as compared to standing on both legs. Conclusion: With the technique used, the assessment of the MJS width in the p.a. view of the TFJ in weight-bearing examinations should be performed with equal weight on both legs. Standing on only the examined leg might be an option in cases of suspected narrowing in the lateral compartment. (orig.).

  5. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.

    Science.gov (United States)

    Melancon, D; Bagheri, Z S; Johnston, R B; Liu, L; Tanzer, M; Pasini, D

    2017-11-01

    Porous biomaterials can be additively manufactured with micro-architecture tailored to satisfy the stringent mechano-biological requirements imposed by bone replacement implants. In a previous investigation, we introduced structurally porous biomaterials, featuring strength five times stronger than commercially available porous materials, and confirmed their bone ingrowth capability in an in vivo canine model. While encouraging, the manufactured biomaterials showed geometric mismatches between their internal porous architecture and that of its as-designed counterpart, as well as discrepancies between predicted and tested mechanical properties, issues not fully elucidated. In this work, we propose a systematic approach integrating computed tomography, mechanical testing, and statistical analysis of geometric imperfections to generate statistical based numerical models of high-strength additively manufactured porous biomaterials. The method is used to develop morphology and mechanical maps that illustrate the role played by pore size, porosity, strut thickness, and topology on the relations governing their elastic modulus and compressive yield strength. Overall, there are mismatches between the mechanical properties of ideal-geometry models and as-manufactured porous biomaterials with average errors of 49% and 41% respectively for compressive elastic modulus and yield strength. The proposed methodology gives more accurate predictions for the compressive stiffness and the compressive strength properties with a reduction of the average error to 11% and 7.6%. The implications of the results and the methodology here introduced are discussed in the relevant biomechanical and clinical context, with insight that highlights promises and limitations of additively manufactured porous biomaterials for load-bearing bone replacement implants. In this work, we perform mechanical characterization of load-bearing porous biomaterials for bone replacement over their entire design

  6. Persistent organic pollutants, skull size and bone density of polar bears (Ursus maritimus) from East Greenland 1892-2015 and Svalbard 1964-2004.

    Science.gov (United States)

    Daugaard-Petersen, Tobias; Langebæk, Rikke; Rigét, Frank F; Letcher, Robert J; Hyldstrup, Lars; Jensen, Jens-Erik Bech; Bechshoft, Thea; Wiig, Øystein; Jenssen, Bjørn Munro; Pertoldi, Cino; Lorenzen, Eline D; Dietz, Rune; Sonne, Christian

    2017-12-26

    We investigated skull size (condylobasal length; CBL) and bone mineral density (BMD) in polar bears (Ursus maritimus) from East Greenland (n = 307) and Svalbard (n = 173) sampled during the period 1892-2015 in East Greenland and 1964-2004 at Svalbard. Adult males from East Greenland showed a continuous decrease in BMD from 1892 to 2015 (linear regression: p non-significant trend that the skull size of adult East Greenland females was negatively correlated with collection year 1892-2015 (linear regression: p = 0.06). No temporal change was found for BMD or skull size in Svalbard polar bears (ANOVA: all p > 0.05) nor was there any significant difference in BMD between Svalbard and East Greenland subpopulations. Skull size was larger in polar bears from Svalbard than from East Greenland (two-way ANOVA: p = 0.003). T-scores reflecting risk of osteoporosis showed that adult males from both East Greenland and Svalbard are at risk of developing osteopenia. Finally, when correcting for age and sex, BMD in East Greenland polar bears increased with increasing concentrations of persistent organic pollutants (POPs) i.e. ΣPCB (polychlorinated biphenyls), ΣHCH (hexachlorohexane), HCB (hexachlorobenzene) and ΣPBDE (polybrominated diphenyl ethers) while skull size increased with ΣHCH concentrations all in the period 1999-2014 (multiple linear regression: all p polar bears. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Optimizing ankle performance when taped: Effects of kinesiology and athletic taping on proprioception in full weight-bearing stance.

    Science.gov (United States)

    Long, Zhi; Wang, Renwei; Han, Jia; Waddington, Gordon; Adams, Roger; Anson, Judith

    2017-03-01

    To explore the effects of kinesiology taping (KT) and athletic taping (AT) on ankle proprioception when tested in functional, full weight-bearing stance. Cross-sectional study. Twenty-four healthy university students participated. Proprioception was measured using the Active Movement Extent Discrimination Apparatus (AMEDA). The three testing conditions: no-taping, KT, AT, and foot tested were randomly assigned. Perceived comfort, support and proprioceptive performance under two taping conditions were recorded. Proprioceptive discrimination scores with 95% CIs for no-taping, KT and AT were 0.81 (0.79-0.84), 0.81 (0.79-0.83), and 0.79 (0.77-0.81). Repeated measures ANOVA showed neither any significant difference associated with taping compared with no-taping (p=0.30), nor any difference between KT and AT (p=0.19). The group was then divided, according to their no-taping scores, into two sub-groups: with scores below the no-taping mean (n=13), and above the mean (n=11). ANOVA revealed a significant interaction (p=0.008) indicating that above-average no-taping performers proprioception scores were worse when taped, whereas below-average performers improved. For both KT and AT, only ratings of perceived comfort when taped were significantly associated with actual proprioceptive performance (both r>0.44, p≤0.03). Other perception ratings (support and performance) were significantly inter-correlated (both r>0.42, p0.31). Taping of the foot and ankle may amplify sensory input in a way that enhances proprioception of poor performers but produces an input overload that impairs proprioception in those who originally performed well when no-taping. Screening of ankle proprioception may identify those who would benefit most from taping. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Dynamic measurement of patello-femoral joint alignment using weight-bearing magnetic resonance imaging (WB-MRI).

    Science.gov (United States)

    Mariani, Silvia; La Marra, Alice; Arrigoni, Francesco; Necozione, Stefano; Splendiani, Alessandra; Di Cesare, Ernesto; Barile, Antonio; Masciocchi, Carlo

    2015-12-01

    Aim of our work was to compare standard and weight-bearing WB-MRI to define their contribution in unmasking patello-femoral (PF) maltracking and to define what measurement of patellar alignment is the most reliable. We prospectively collected 95 non consecutive patients, clinically divided into 2 groups: group A (the control group), including 20 patients (negative for patellar maltracking), and group B including 75 patients (positive for patellar maltracking). The patients underwent a dedicated 0.25 T MRI, in supine and WB position, with knee flexion of 12-15°. The following measurements were performed: Insall-Salvati index (IS), lateral patellar displacement (LPD), lateral patello-femoral angle (LPA) and lateral patellar tilt (LPT). Quantitative and qualitative statistical analyses were performed to compare the results obtained before and after WB-MRI. Measurements were subsequently performed on both groups. Group A patients showed no statistically significant variations at all measurements both on standard and WB-MRI. On the basis of measurements made on standard MRI, group B patients were divided into group B1 (23 patients) (negative or positive at 1 measurement) and group B2 (52 patients) (positive at 2 or more measurements). After WB-MRI, group B1 patients were divided into group B1a (6 patients), in case they remained positive at 0/1 measurement, and group B1b (17 patients), in case they became positive at 2 or more measurements. All group B2 patients confirmed to be positive at 2 or more measurements at WB-MRI. Quantitative statistical analysis showed that LPT and LPA were the most reproducible and clinically useful measurements. Qualitative statistical analysis performed on standard and WB-MRI demonstrated that LPT was the best predictive measurement. This study demonstrates both the high diagnostic value of WB-MRI in unmasking PF-maltracking and the best predictive value of LPT measurement. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Smoking cessation-related weight gain--beneficial effects on muscle mass, strength and bone health.

    Science.gov (United States)

    Rom, Oren; Reznick, Abraham Z; Keidar, Zohar; Karkabi, Khaled; Aizenbud, Dror

    2015-02-01

    To examine the effects of smoking cessation on body composition and muscle strength in comparison with continued smoking. Twelve-month longitudinal study of adult smokers conducted in Haifa, Israel. Eighty-one smokers recruited from a smoking cessation programme combining group counselling and varenicline treatment. Measurements were taken at the beginning of the programme and after 12 months. Body composition was assessed by dual-energy X-ray absorptiometry. Muscle strength was measured by handgrip dynamometry and predicted one-repetition maximum tests. Dietary intake and physical activity levels were estimated using questionnaires. Smoking status was determined by urine cotinine. The effect of smoking cessation was assessed using univariate and multivariable linear regression analyses. Forty-one participants (age 44 ± 12 years) completed all baseline and follow-up measurements (76% continued smokers; 24% quitters). All measures of body composition and muscle strength were increased among quitters when compared with continued smokers. Adjusted differences [95% confidence interval (CI)] between quitters and smokers were: body weight 4.43 kg (1.56-7.31 kg); lean mass 1.26 kg (0.24-2.28 kg); fat mass 3.15 kg (0.91-5.39 kg); bone mineral content 48.76 g (12.06-85.54 g); bone mineral density 0.024 g/cm(2) (0.004-0.043 g/cm(2) ); handgrip strength 3.6 kg (1.12-6.08 kg); predicted one-repetition maximum of chest press 7.85 kg (1.93-13.76 kg); and predicted one-repetition maximum of leg press 17.02 kg (7.29-26.75 kg). Smoking cessation is associated with weight gain mainly through accumulating extra fat, but is also associated with increased muscle mass, muscle strength and bone density. © 2014 Society for the Study of Addiction.

  10. LIGHT-WEIGHT LOAD-BEARING STRUCTURES REINFORCED BY CORE ELEMENTS MADE OF SEGMENTS AND A METHOD OF CASTING SUCH STRUCTURES

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure, reinforced by core elements (2) of a strong material constituting one or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2......), where the core (2) is constructed from segments (1) of core elements (2) assembled by means of one or more prestressing elements (4). The invention further relates to a method of casting of light-weight load-bearing structures, reinforced by core elements (2) of a strong material constituting one...... or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2), where the core (2) is constructed from segments (1) of core elements (2) assembled and hold together by means of one or more prestressing...

  11. Sustainable approach for recycling waste lamb and chicken bones for fluoride removal from water followed by reusing fluoride-bearing waste in concrete.

    Science.gov (United States)

    Ismail, Zainab Z; AbdelKareem, Hala N

    2015-11-01

    Sustainable management of waste materials is an attractive approach for modern societies. In this study, recycling of raw waste lamb and chicken bones for defluoridation of water has been estimated. The effects of several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existing anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal efficiency up to 99.4% and 99.8% using lamb and chicken bones, respectively at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the pseudo-second order kinetic model. Both, Langmuir and Freundlich isotherm models could fit the experimental data well with correlation coefficient values >0.99 suggesting favorable conditions of the process. Furthermore, for complete sustainable management of waste bones, the resulted fluoride-bearing sludge was reused in concrete mixes to partially replace sand. Tests of the mechanical properties of fluoride sludge-modified concrete mixes indicated a potential environmentally friendly approach to dispose fluoride sludge in concrete and simultaneously enhance concrete properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. [Calcium and bone metabolism across women's life stages. Exercise and sport to increase bone strength in accordance with female lifecycle.

    Science.gov (United States)

    Iwamoto, Jun

    Among females who require the strategies for preventing osteoporosis, appropriate exercise and sport through all their life are important to increase or maintain bone mass. However, the type of exercise and sport applied to females is different in accordance with the lifecycle. Jumping exercise increases bone mineral content(BMC)in prepubescent children(premenarcheal girls). Bone mineral density(BMD)is higher in adolescent athletes who are engaged in weight-bearing activities. Jumping exercise, muscle strengthening exercise, and weight-bearing plus muscle strengthening exercises increase BMD in young adults and premenopausal women. Walking, aerobic weight-bearing exercise, muscle strengthening exercise, and weight-bearing plus muscle strengthening exercises maintain or increase BMD in postmenopausal women. Thus, appropriate exercise and sport in accordance with the lifecycle are important strategies for preventing osteoporosis in females.

  13. Radiographic and functional results in the treatment of early stages of Charcot neuroarthropathy with a walker boot and immediate weight bearing

    Directory of Open Access Journals (Sweden)

    Maria Candida Ribeiro Parisi

    2013-10-01

    Full Text Available Background: One of the most common gold standards for the treatment of Charcot neuroarthropathy (CN in the early Eichenholtz stages I and II is immobilization with the total contact casting and lower limb offloading. However, the total amount of offloading is still debatable. Objectives: This study evaluates the clinical and radiographic findings in the treatment of early stages of CN (Eichenholtz stages I and II with a walker boot and immediate total weight-bearing status. Methods: Twenty-two patients with type 2 diabetes mellitus (DM and CN of Eichenholtz stages I and II were selected for non-operative treatment. All patients were educated about their condition, and full weight bearing was allowed as tolerated. Patients were monitored on a fortnightly basis in the earlier stages, with clinical examination, temperature measurement, and standardized weight-bearing radiographs. Their American Orthopedic Foot and Ankle Society (AOFAS scores were determined before and after the treatment protocol. Results: No cutaneous ulcerations or infections were observed in the evaluated cases. The mean measured angles at the beginning and end of the study, although showing relative increase, did not present a statistically significant difference (p > 0.05. Mean AOFAS scores showed a statistically significant improvement by the end of the study (p < 0.005. Conclusion: The treatment of early stages of CN (Eichenholtz stages I and II with emphasis on walker boot and immediate weight bearing has shown a good functional outcome, non-progressive deformity on radiographic assessment, and promising results as a safe treatment option.

  14. Estimating joint space of the knee during weight-bearing squatting activity using motion capture ? preliminary results of a new method

    OpenAIRE

    CLEMENT, Julien; CRESSON, T.; HAGEMEISTER, Nicola; DUMAS, Raphaël; DE GUISE, Jaques A

    2015-01-01

    Over the last 10 years, several studies analyzed 3D joint space of the knee and deduced articular contact kinematics during various weight-bearing activities. Joint space and articular contact kinematics provide relevant data on how the intrinsic biomechanics of the knee is altered after a disease or a surgical procedure, such as knee osteoarthritis (OA) or total knee arthroplasty. Although very accurate, the methods employed by these studies require complex acquisition protocols, implying 3D...

  15. THE EFFECT OF SWISS BALL THERAPY ON SIT-TO-STAND FUNCTION, PARETIC LIMB WEIGHT BEARING AND LOWER LIMB MOTOR SCORE IN PATIENTS WITH HEMIPLEGIA

    Directory of Open Access Journals (Sweden)

    Vadnagarwala Rasheeda

    2017-12-01

    Full Text Available Background: Swiss ball is used as a tool in stroke rehabilitation It is commonly used to improve postural control. Sitting on unstable surfaces can provoke lower extremity muscle contractions as a component of postural control. Effect of unstable surface sitting on lower extremity control and functions following stroke is not clear from available literature. Hence this study was planned to study the effect of Swiss ball training on sit to stand function, weight bearing through paretic lower limb and motor control of paretic limb in patients with hemiplegia. Methods: First-time stroke patients with hemiplegia were recruited from an acute stroke care set up in a University teaching hospital and assigned to control (n=34 and experimental group (n = 33. Along with physiotherapy based on impairments, patients in control group were trained for sitting to standing and sitting activities on a stool, and from in the experimental group were trained with Swiss Ball. Both the groups underwent 40 minutes of training for ten days. 30-second sit to stand, Percentage of weight bearing through the paretic limb and Brunnstrom stages were recorded. Parametric and non-parametric tests were used based on the outcome tested. Results: The baseline characteristics between the groups were similar statistically. Post-intervention experimental group had better weight bearing ability and motor control of lower limb (p<0.05, than the control group. The difference in 30-second sit to stand did not reach statistical significance (p=0.059. Conclusion: Training with Swiss ball results in greater improvement in weight - bearing ability and motor control of paretic lower limb, compared to conventional training. The Swiss ball training does not enhance the sit to stand performance more than conventional training.

  16. American Society of Biomechanics Clinical Biomechanics Award 2013: tibiofemoral contact location changes associated with lateral heel wedging--a weight bearing MRI study.

    Science.gov (United States)

    Barrance, Peter J; Gade, Venkata; Allen, Jerome; Cole, Jeffrey L

    2014-11-01

    Vertically open magnetic resonance imaging permits study of knee joint contact during weight bearing. Lateral wedging is a low cost intervention for knee osteoarthritis that may influence load distribution and contact. This study assessed the ability of feedback-assisted weight bearing magnetic resonance imaging to detect changes in tibiofemoral contact associated with lateral wedging. One knee in each of fourteen subjects with symptomatic knee osteoarthritis was studied, without specification of compartmental involvement. Knees were imaged during upright standing and at 20° knee flexion. Bilateral external heel wedges were used to provide non-wedged and 5° lateral wedging conditions. Computer modeling was used to measure the medial and lateral compartment contact patch center coordinates on the tibial plateau and the respective contact areas. Lateral heel wedging in flexion was associated with a significant anterior shift of the contact patch of the lateral femoral condyle. Changes with knee flexion were similar to previous reports: both medial and lateral contact centers moved posteriorly with flexion, and lateral condyle contact also moved laterally. Lateral condyle contact area significantly reduced with flexion, while lateral wedging did not significantly affect contact areas. In symptomatic knee osteoarthritis patients standing in knee flexion, weight bearing magnetic resonance imaging recorded an anterior shift of lateral condyle contact in response to lateral heel wedging. Future studies may investigate lateral wedging effects more specifically in candidates for this clinical intervention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Insulin, not glutamine dipeptide, reduces lipases expression and prevents fat wasting and weight loss in Walker 256 tumor-bearing rats.

    Science.gov (United States)

    de Morais, Hely; de Fatima Silva, Flaviane; da Silva, Francemilson Goulart; Silva, Milene Ortiz; Graciano, Maria Fernanda Rodrigues; Martins, Maria Isabel Lovo; Carpinelli, Ângelo Rafael; Mazucco, Tânia Longo; Bazotte, Roberto Barbosa; de Souza, Helenir Medri

    2017-07-05

    Cachexia is the main cause of mortality in advanced cancer patients. We investigated the effects of insulin (INS) and glutamine dipeptide (GDP), isolated or associated, on cachexia and metabolic changes induced by Walker 256 tumor in rats. INS (NPH, 40 UI/kg, sc) or GDP (1.5g/kg, oral gavage) was once-daily administered during 11 days after tumor cell inoculation. GDP, INS or INS+GDP treatments did not influence the tumor growth. However, INS and INS+GDP prevented retroperitoneal fat wasting and body weight loss of tumor-bearing rats. In consistency, INS and INS+GDP prevented the increased expression of triacylglycerol lipase (ATGL) and hormone sensitive lipase (HSL), without changing the expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in the retroperitoneal adipose tissue of tumor-bearing rats. INS and INS+GDP also prevented anorexia and hyperlactatemia of tumor-bearing rats. However, INS and INS+GDP accentuated the loss of muscle mass (gastrocnemius, soleus and long digital extensor) without affecting the myostatin expression in the gastrocnemius muscle and blood corticosterone. GDP treatment did not promote beneficial effects. It can be concluded that treatment with INS (INS or INS+GDP), not with GDP, prevented fat wasting and weight loss in tumor-bearing rats without reducing tumor growth. These effects might be attributed to the reduction of lipases expression (ATGL and LHS) and increased food intake. The results show the physiological function of INS in the suppression of lipolysis induced by cachexia mediators in tumor-bearing rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Association of weight-adjusted body fat and fat distribution with bone mineral density in middle-aged chinese adults: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Yan-hua Liu

    Full Text Available BACKGROUND: Although it is well established that a higher body weight is protective against osteoporosis, the effects of body fat and fat distribution on bone mineral density (BMD after adjustment for body weight remains uncertain. OBJECTIVE: To examine the relationship between body fat and fat distribution and BMD beyond its weight-bearing effect in middle-aged Chinese adults. METHOD: The study had a community-based cross-sectional design and involved 1,767 women and 698 men aged 50-75 years. The BMD of the lumbar spine, total hip, and whole body, and the fat mass (FM and percentage fat mass (%FM of the total body and segments of the body were measured by dual-energy X-ray absorptiometry. General information on the participants was collected using structured questionnaire interviews. RESULT: After adjusting for potential confounders, an analysis of covariance showed the weight-adjusted (WA- total FM (or %FM to be negatively associated with BMD in all of the studied sites (P<0.05 in both women and men. The unfavorable effects of WA-total FM were generally more substantial in men than in women, and the whole body was the most sensitive site related to FM, followed by the total hip and the lumbar spine, in both genders. The mean BMD of the lumbar spine, total hip, and whole body was 3.93%, 3.01%, and 3.65% (in women and 5.02%, 5.57%, 6.03% (in men lower in the highest quartile (vs. lowest quartile according to the WA-total FM (all p<0.05. Similar results were noted among the groups for WA-total FM%. In women, abdominal fat had the most unfavorable association with BMD, whereas in men it was limb fat. CONCLUSION: FM (or %FM is inversely associated with BMD beyond its weight-bearing effect. Abdominal fat in women and limb fat in men seems to have the greatest effect on BMD.

  19. Weight loss on stimulant medication: how does it affect body composition and bone metabolism? – A prospective longitudinal study

    Directory of Open Access Journals (Sweden)

    Poulton Alison

    2012-12-01

    Full Text Available Abstract Objective Children treated with stimulant medication for attention deficit hyperactivity disorder (ADHD often lose weight. It is important to understand the implications of this during growth. This prospective study was designed to quantify the changes in body composition and markers of bone metabolism on starting treatment. Methods 34 children (29 boys aged 4.7 to 9.1 years newly diagnosed with ADHD were treated with dexamphetamine or methylphenidate, titrating the dose to optimise the therapeutic response. Medication was continued for as long as clinically indicated. Body composition and bone density (dual-energy X-ray absorptiometry were measured at baseline, 6 months and 3 years; changes were analysed in Z-scores based on data from 241 healthy, local children. Markers of bone turnover were measured at baseline, 3 months and 3 years. Results Fat loss of 1.4±0.96kg (total fat 5.7±3.6 to 4.3±3.1kg, p Conclusions Stimulant medication was associated with early fat loss and reduced bone turnover. Lean tissue including bone increased more slowly over 3 years of continuous treatment than would be expected for growth in height. There was long-term improvement in the proportion of central fat for height. This study shows that relatively minor reductions in weight on stimulant medication can be associated with long-term changes in body composition. Further study is required to determine the effects of these changes on adult health.

  20. A Multiple-Kernel Relevance Vector Machine with Nonlinear Decreasing Inertia Weight PSO for State Prediction of Bearing

    OpenAIRE

    Sheng-wei Fei; Yong He

    2015-01-01

    The scientific and accurate prediction for state of bearing is the key to ensure its safe operation. A multiple-kernel relevance vector machine (MkRVM) including RBF kernel and polynomial kernel is proposed for state prediction of bearing in this study; the proportions of RBF kernel and polynomial kernel are determined by a controlled parameter. As the selection of the parameters of the kernel functions and the controlled parameter has a certain influence on the prediction results of MkRVM, n...

  1. Identification of quantitative trait loci associated with bone traits and body weight in an F2 resource population of chickens*

    Directory of Open Access Journals (Sweden)

    Schreiweis Melissa A

    2005-11-01

    Full Text Available Abstract Bone fractures at the end of lay are a significant problem in egg-laying strains of hens. The objective of the current study was to identify quantitative trait loci (QTL associated with bone mineralization and strength in a chicken resource population. Layer (White Leghorn hens and broiler (Cobb-Cobb roosters lines were crossed to generate an F2 population of 508 hens over seven hatches, and 26 traits related to bone integrity, including bone mineral density (BMD and content (BMC, were measured. Genotypes of 120 microsatellite markers on 28 autosomal groups were determined, and interval mapping was conducted to identify QTL regions. Twenty-three tests representing three chromosomal regions (chromosomes 4, 10 and 27 contained significant QTL that surpassed the 5% genome-wise threshold, and 47 tests representing 15 chromosomes identified suggestive QTL that surpassed the 5% chromosome-wise threshold. Although no significant QTL influencing BMD and BMC were detected after adjusting for variation in body weight and egg production, multiple suggestive QTL were found. These results support previous experiments demonstrating an important genetic regulation of bone strength in chickens, but suggest the regulation may be due to the effects of multiple genes that each account for relatively small amounts of variation in bone strength.

  2. Black bear parathyroid hormone has greater anabolic effects on trabecular bone in dystrophin-deficient mice than in wild type mice.

    Science.gov (United States)

    Gray, Sarah K; McGee-Lawrence, Meghan E; Sanders, Jennifer L; Condon, Keith W; Tsai, Chung-Jui; Donahue, Seth W

    2012-09-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease that has deleterious consequences in muscle and bone, leading to decreased mobility, progressive osteoporosis, and premature death. Patients with DMD experience a higher-than-average fracture rate, particularly in the proximal and distal femur and proximal tibia. The dystrophin-deficient mdx mouse is a model of DMD that demonstrates muscle degeneration and fibrosis and osteoporosis. Parathyroid hormone, an effective anabolic agent for post-menopausal and glucocorticoid-induced osteoporosis, has not been explored for DMD. Black bear parathyroid hormone (bbPTH) has been implicated in the maintenance of bone properties during extended periods of disuse (hibernation). We cloned bbPTH and found 9 amino acid residue differences from human PTH. Apoptosis was mitigated and cAMP was activated by bbPTH in osteoblast cultures. We administered 28nmol/kg of bbPTH 1-84 to 4-week old male mdx and wild type mice via daily (5×/week) subcutaneous injection for 6 weeks. Vehicle-treated mdx mice had 44% lower trabecular bone volume fraction than wild type mice. No changes were found in femoral cortical bone geometry or mechanical properties with bbPTH treatment in wild type mice, and only medio-lateral moment of inertia changed with bbPTH treatment in mdx femurs. However, μCT analyses of the trabecular regions of the distal femur and proximal tibia showed marked increases in bone volume fraction with bbPTH treatment, with a greater anabolic response (7-fold increase) in mdx mice than wild type mice (2-fold increase). Trabecular number increased in mdx long bone, but not wild type bone. Additionally, greater osteoblast area and decreased osteoclast area were observed with bbPTH treatment in mdx mice. The heightened response to PTH in mdx bone compared to wild type suggests a link between dystrophin deficiency, altered calcium signaling, and bone. These findings support further investigation of PTH as an anabolic

  3. Effects of Talocrural Mobilization with Movement on Ankle Strength, Mobility, and Weight-Bearing Ability in Hemiplegic Patients with Chronic Stroke: A Randomized Controlled Trial.

    Science.gov (United States)

    An, Chang-Man; Jo, Shin-Ok

    2017-01-01

    In general, adequate movement of the ankle joint is known to play an important role in functional activities. Stroke survivors frequently have limited range of motion of the ankle, leading to dysfunctional weight transfer toward the paretic lower limb during standing or gait. The purpose of this study was to investigate the effects of talocrural mobilization with movement (MWM) on ankle strength, dorsiflexion passive range of motion (DF-PROM), and weight-bearing ability on the paretic limb during standing or gait in stroke patients with limited ankle dorsiflexion. Twenty-six participants with chronic hemiplegia (>6 months post stroke) were divided into 2 groups: MWM group (n = 13) and control group (n = 13). Both groups attended conventional physiotherapy sessions 3 times a week for 5 weeks. Additionally, the MWM group underwent talocrural MWM 3 times a week for 5 weeks. Isokinetic ankle strength, DF-PROM, and weight-bearing ability measures included the limit of stability (LOS); gait parameters were evaluated before and after interventions. Plantarflexors peak torque and DF-PROM significantly increased in the MWM group. In addition, forward and forward-paretic direction LOS significantly increased in the MWM group. Paretic direction LOS, single-limb support phase of the paretic limb significantly increased and double limb support phase significantly decreased within the MWM group. This study demonstrates that talocrural MWM has an augmented effect on ankle strength, mobility, and weight-bearing ability in chronic stroke patients with limited ankle motion when added to conventional therapy. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. Disorders of bone-mineral metabolism and their correction with women who have body weight deficiency at pregravid stage and during pregnancy

    Directory of Open Access Journals (Sweden)

    L. P. Shelestova

    2017-10-01

    Full Text Available The processes in bone-mineral metabolism provide normal course of pregnancy, labour and fetus development, women with body weight deficiency are at risk reduction of bone tissue mineral density, progressing of osteopenia and osteoporosis. This shows the necessity of medical and preventive measures that have the aim to correct calcium- phosphorus and bone metabolism with women who have body weight deficiency. Aim. To elaborate and to evaluate medical and preventive measures that have the aim to correct disorders in bone-mineral metabolism with women who have body weight deficiency at pregravid stage and during pregnancy. Materials and methods. The efficiency of adding combined medicine of calcium carbonate and cholecalciferol and dietary nourishment to traditional treatment that affected the state of bone-mineral metabolism with women who have body weight deficiency at pregravid stage and during pregnancy was studied. Results. With women who have body weight deficiency at pregravid stage and during pregnancy it is noted statistically considerable reduction in blood of total calcium and bone tissue markers that grows with the course of gestation. The changes in mineral density of bone tissue can be seen from the existence of osteopenic syndrome at pregravid stage that occurs with every third woman who has body weight deficiency and with every second before labour. The use of elaborated medical and preventive measures including combined medicine of calcium carbonate and cholecalciferol allows to normalize the indexes of bone-mineral metabolism with women who have body weight deficiency. Conclusions. Women with body weight deficiency already at pregravid stage have disorders in bone metabolism and coming of pregnancy lead to aggravation of bone metabolism disorders. The additional use of combined medicine of calcium carbonate and cholecalciferol and dietary nourishment made the indexes of calcium-phosphorus and bone metabolism better and osteopenic

  5. Cellular Therapy to Obtain Rapid Endochondral Bone Formation

    Science.gov (United States)

    2008-02-01

    length from the tibial fusion site, and then stop which would be consistent with the resorption being associated with the lack of weight bearing load. In...Defect in the Rat Femur with Use of a Vascularized Periosteal Flap, a Biodegradable Matric, and Bone Morphogenetic Protein. J Bone Joint Surg 87-A(6

  6. Effects of ankle joint mobilization with movement and weight-bearing exercise on knee strength, ankle range of motion, and gait velocity in patients with stroke: a pilot study

    National Research Council Canada - National Science Library

    An, Chang-Man; Won, Jong-Im

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of ankle joint mobilization with movement on knee strength, ankle range of motion, and gait velocity, compared with weight-bearing exercise in stroke patients...

  7. The effect of frog pressure and downward vertical load on hoof wall weight-bearing and third phalanx displacement in the horse - an in vitro study : research communication

    Directory of Open Access Journals (Sweden)

    A. Olivier

    2001-07-01

    Full Text Available A shoe was designed to combine the advantages of a reverse shoe and an adjustable heart bar shoe in the treatment of chronic laminitis. This reverse even frog pressure (REFP shoe applies pressure uniformly over a large area of the frog solar surface. Pressure is applied vertically upward parallel to the solar surface of the frog and can be increased or decreased as required. Five clinically healthy horses were humanely euthanased and their dismem-bered forelimbs used in an in vitro study. Frog pressure was measured by strain gauges applied to the ground surface of the carrying tab portion of the shoe. A linear variable distance transducer (LVDT was inserted into a hole drilled in the dorsal hoof wall. The LVDT measured movement of the third phalanx (P3 in a dorsopalmar plane relative to the dorsal hoof wall. The vertical component of hoof wall compression was measured by means of unidirectional strain gauges attached to the toe, quarter and heel of the medial hoof wall of each specimen. The entire limb was mounted vertically in a tensile testing machine and submitted to vertical downward compressive forces of 0 to 2500 Nat a rate of 5 cm/minute. The effects of increasing frog pressure on hoof wall weight-bearing and third phalanx movement within the hoof were determined. Each specimen was tested with the shoe under the following conditions: zero frog pressure; frog pressure used to treat clinical cases of chronic laminitis (7 N-cm; frog pressure clinically painful to the horse as determined prior to euthanasia; frog pressure just alleviating this pain. The specimens were also tested after shoe removal. Total weight-bearing on the hoof wall at zero frog pressure was used as the basis for comparison. Pain-causing and pain-alleviating frog pressures decreased total weight-bearing on the hoof wall (P < 0.05. Frog pressure of 7 N-cm had no statistically significant effect on hoof wall weight-bearing although there was a trend for it to decrease as

  8. Measurements of Weight Bearing Asymmetry Using the Nintendo Wii Fit Balance Board Are Not Reliable for Older Adults and Individuals With Stroke.

    Science.gov (United States)

    Liuzzo, Derek M; Peters, Denise M; Middleton, Addie; Lanier, Wes; Chain, Rebecca; Barksdale, Brittany; Fritz, Stacy L

    Clinicians and researchers have used bathroom scales, balance performance monitors with feedback, postural scale analysis, and force platforms to evaluate weight bearing asymmetry (WBA). Now video game consoles offer a novel alternative for assessing this construct. By using specialized software, the Nintendo Wii Fit balance board can provide reliable measurements of WBA in healthy, young adults. However, reliability of measurements obtained using only the factory settings to assess WBA in older adults and individuals with stroke has not been established. To determine whether measurements of WBA obtained using the Nintendo Wii Fit balance board and default settings are reliable in older adults and individuals with stroke. Weight bearing asymmetry was assessed using the Nintendo Wii Fit balance board in 2 groups of participants-individuals older than 65 years (n = 41) and individuals with stroke (n = 41). Participants were given a standardized set of instructions and were not provided auditory or visual feedback. Two trials were performed. Intraclass correlation coefficients (ICC), standard error of measure (SEM), and minimal detectable change (MDC) scores were determined for each group. The ICC for the older adults sample was 0.59 (0.35-0.76) with SEM95 = 6.2% and MDC95 = 8.8%. The ICC for the sample including individuals with stroke was 0.60 (0.47-0.70) with SEM95 = 9.6% and MDC95 = 13.6%. Although measurements of WBA obtained using the Nintendo Wii Fit balance board, and its default factory settings, demonstrate moderate reliability in older adults and individuals with stroke, the relatively high associated SEM and MDC values substantially reduce the clinical utility of the Nintendo Wii Fit balance board as an assessment tool for WBA. Weight bearing asymmetry cannot be measured reliably in older adults and individuals with stroke using the Nintendo Wii Fit balance board without the use of specialized software.

  9. Effects of spine loading in a patient with post-decompression lumbar disc herniation: observations using an open weight-bearing MRI.

    Science.gov (United States)

    Mahato, Niladri Kumar; Sybert, Daryl; Law, Tim; Clark, Brian

    2017-05-01

    Our objective was to use an open weight-bearing MRI to identify the effects of different loading conditions on the inter-vertebral anatomy of the lumbar spine in a post-discectomy recurrent lumbar disc herniation patient. A 43-year-old male with a left-sided L5-S1 post-decompression re-herniation underwent MR imaging in three spine-loading conditions: (1) supine, (2) weight-bearing on standing (WB), and (3) WB with 10 % of body mass axial loading (WB + AL) (5 % through each shoulder). A segmentation-based proprietary software was used to calculate and compare linear dimensions, angles and cross sections across the lumbar spine. The L5 vertebrae showed a 4.6 mm posterior shift at L5-S1 in the supine position that changed to an anterior translation >2.0 mm on WB. The spinal canal sagittal thickness at L5-S1 reduced from supine to WB and WB + AL (13.4, 10.6, 9.5 mm) with corresponding increases of 2.4 and 3.5 mm in the L5-S1 disc protrusion with WB and WB + AL, respectively. Change from supine to WB and WB + AL altered the L5-S1 disc heights (10.2, 8.6, 7.0 mm), left L5-S1 foramen heights (12.9, 11.8, 10.9 mm), L5-S1 segmental angles (10.3°, 2.8°, 4.3°), sacral angles (38.5°, 38.3°, 40.3°), L1-L3-L5 angles (161.4°, 157.1°, 155.1°), and the dural sac cross sectional areas (149, 130, 131 mm2). Notably, the adjacent L4-L5 segment demonstrated a retro-listhesis >2.3 mm on WB. We observed that with weight-bearing, measurements indicative of spinal canal narrowing could be detected. These findings suggest that further research is warranted to determine the potential utility of weight-bearing MRI in clinical decision-making.

  10. Biofeedback in Partial Weight Bearing: Usability of Two Different Devices from a Patient’s and Physical Therapist’s Perspective

    Science.gov (United States)

    van Lieshout, Remko; Pisters, Martijn F.; Vanwanseele, Benedicte; de Bie, Rob A.; Wouters, Eveline J.; Stukstette, Mirelle J.

    2016-01-01

    Background Partial weight bearing is frequently instructed by physical therapists in patients after lower-limb trauma or surgery. The use of biofeedback devices seems promising to improve the patient’s compliance with weight-bearing instructions. SmartStep and OpenGo-Science are biofeedback devices that provide real-time feedback. For a successful implementation, usability of the devices is a critical aspect and should be tested from a user’s perspective. Aim To describe the usability from the physical therapists’ and a patients’ perspective of Smartstep and OpenGo-Science to provide feedback on partial weight bearing during supervised rehabilitation of patients after lower-limb trauma or surgery. Methods In a convergent mixed-methods design, qualitative and quantitative data were collected. Usability was subdivided into user performance, satisfaction and acceptability. Patients prescribed with partial weight bearing and their physical therapists were asked to use SmartStep and OpenGo-Science during supervised rehabilitation. Usability was qualitatively tested by a think-aloud method and a semi-structured interview and quantitatively tested by the System-Usability-Scale (SUS) and closed questions. For the qualitative data thematic content analyses were used. Results Nine pairs of physical therapists and their patients participated. The mean SUS scores for patients and physical therapists were for SmartStep 70 and 53, and for OpenGo-Science 79 and 81, respectively. Scores were interpreted with the Curved Grading Scale. The qualitative data showed that there were mixed views and perceptions from patients and physical therapists on satisfaction and acceptability. Conclusion This study gives insight in the usability of two biofeedback devices from the patient’s and physical therapist’s perspective. The overall usability from both perspectives seemed to be acceptable for OpenGo-Science. For SmartStep, overall usability seemed only acceptable from the

  11. Mammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength.

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Carey, Hannah V; Donahue, Seth W

    2008-12-01

    Reduced skeletal loading typically leads to bone loss because bone formation and bone resorption become unbalanced. Hibernation is a natural model of musculoskeletal disuse because hibernating animals greatly reduce weight-bearing activity, and therefore, they would be expected to lose bone. Some evidence suggests that small mammals like ground squirrels, bats, and hamsters do lose bone during hibernation, but the mechanism of bone loss is unclear. In contrast, hibernating bears maintain balanced bone remodeling and preserve bone structure and strength. Differences in the skeletal responses of bears and smaller mammals to hibernation may be due to differences in their hibernation patterns; smaller mammals may excrete calcium liberated from bone during periodic arousals throughout hibernation, leading to progressive bone loss over time, whereas bears may have evolved more sophisticated physiological processes to recycle calcium, prevent hypercalcemia, and maintain bone integrity. Investigating the roles of neural and hormonal control of bear bone metabolism could give valuable insight into translating the mechanisms that prevent disuse-induced bone loss in bears into novel therapies for treating osteoporosis.

  12. Wayside Bearing Fault Diagnosis Based on Envelope Analysis Paved with Time-Domain Interpolation Resampling and Weighted-Correlation-Coefficient-Guided Stochastic Resonance

    Directory of Open Access Journals (Sweden)

    Yongbin Liu

    2017-01-01

    Full Text Available Envelope spectrum analysis is a simple, effective, and classic method for bearing fault identification. However, in the wayside acoustic health monitoring system, owing to the high relative moving speed between the railway vehicle and the wayside mounted microphone, the recorded signal is embedded with Doppler effect, which brings in shift and expansion of the bearing fault characteristic frequency (FCF. What is more, the background noise is relatively heavy, which makes it difficult to identify the FCF. To solve the two problems, this study introduces solutions for the wayside acoustic fault diagnosis of train bearing based on Doppler effect reduction using the improved time-domain interpolation resampling (TIR method and diagnosis-relevant information enhancement using Weighted-Correlation-Coefficient-Guided Stochastic Resonance (WCCSR method. First, the traditional TIR method is improved by incorporating the original method with kinematic parameter estimation based on time-frequency analysis and curve fitting. Based on the estimated parameters, the Doppler effect is removed using the TIR easily. Second, WCCSR is employed to enhance the diagnosis-relevant period signal component in the obtained Doppler-free signal. Finally, paved with the above two procedures, the local fault is identified using envelope spectrum analysis. Simulated and experimental cases have verified the effectiveness of the proposed method.

  13. Differences in bone mineral density between normal-weight children and children with overweight and obesity: a systematic review and meta-analysis.

    Science.gov (United States)

    van Leeuwen, J; Koes, B W; Paulis, W D; van Middelkoop, M

    2017-05-01

    This study examines the differences in bone mineral density between normal-weight children and children with overweight or obesity. A systematic review and meta-analysis of observational studies (published up to 22 June 2016) on the differences in bone mineral density between normal-weight children and overweight and obese children was performed. Results were pooled when possible and mean differences (MDs) were calculated between normal-weight and overweight and normal-weight and obese children for bone content and density measures at different body sites. Twenty-seven studies, with a total of 5,958 children, were included. There was moderate and high quality of evidence that overweight (MD 213 g; 95% confidence interval [CI] 166, 261) and obese children (MD 329 g; 95%CI [229, 430]) have a significantly higher whole body bone mineral content than normal-weight children. Similar results were found for whole body bone mineral density. Sensitivity analysis showed that the association was stronger in girls. Overweight and obese children have a significantly higher bone mineral density compared with normal-weight children. Because there was only one study included with a longitudinal design, the long-term impact of childhood overweight and obesity on bone health at adulthood is not clear. © 2017 World Obesity Federation.

  14. Effects of Zinc Compound on Body Weight and Recovery of Bone Marrow in Mice Treated with Total Body Irradiation

    Directory of Open Access Journals (Sweden)

    Ming-Yii Huang

    2007-09-01

    Full Text Available This study aimed to investigate if zinc compound would have effects on body weight loss and bone marrow suppression induced by total body irradiation (TBI. ICR mice were divided randomly into two groups and treated with test or control compounds. The test compound contained zinc (amino acid chelated with bovine prostate extract, and the control was reverse osmosis pure water (RO water. One week after receiving the treatment, mice were unirradiated, or irradiated with 6 or 3 Gy by 6MV photon beams to the total body. Body weight changes were examined at regular intervals. Three and 5 weeks after the radiation, animals were sacrificed to examine the histologic changes in the bone marrow. Lower body weight in the period of 1-5 weeks after radiation and poor survival rate were found after the 6 Gy TBI, as compared with the 3 Gy groups. The median survival time after 6 Gy and 3 Gy TBI for mice given the test compound were 26 and 76 days, respectively, and the corresponding figures were 14 and 70 days, respectively, for mice given the control compound (p < 0.00001. With zinc supplement, the mean body weight in mice which received the same dose of radiation was 7-8 g heavier than in the water-supplement groups during the second and third weeks (p < 0.05. Hence, there was no statistically significant difference in survival rate between zinc and water supplement in mice given the same dose of irradiation. Histopathologically there was less recovery of bone marrow cells in the 6Gy groups compared with the 3Gy groups. In the 3 Gy water-supplement group, the nucleated cells and megakaryocytes were recovered in the fifth week when recovery was still not seen in the 6Gy group. With zinc supplement, these cells were recovered in the third week. In this study, we found that zinc is beneficial to body weight in mice treated with TBI. Histologic examination of bone marrow showed better recovery of bone marrow cells in groups of mice fed with zinc. This study

  15. Hormone replacement therapy dissociates fat mass and bone mass, and tends to reduce weight gain in early postmenopausal women

    DEFF Research Database (Denmark)

    Jensen, L B; Vestergaard, P; Hermann, A P

    2003-01-01

    The aim of this study was to study the influence of hormone replacement therapy (HRT) on weight changes, body composition, and bone mass in early postmenopausal women in a partly randomized comprehensive cohort study design. A total of 2016 women ages 45-58 years from 3 months to 2 years past last...... menstrual bleeding were included. One thousand were randomly assigned to HRT or no HRT in an open trial, whereas the others were allocated according to their preferences. All were followed for 5 years for body weight, bone mass, and body composition measurements. Body weight increased less over the 5 years...... in women randomized to HRT (1.94 +/- 4.86 kg) than in women randomized to no HRT (2.57 +/- 4.63, p = 0.046). A similar pattern was seen in the group receiving HRT or not by their own choice. The smaller weight gain in women on HRT was almost entirely caused by a lesser gain in fat. The main determinant...

  16. The effects of dynamic ankle-foot orthoses on functional ambulation activities, weight bearing and spatio-temporal characteristics of hemiparetic gait.

    Science.gov (United States)

    Suat, Erel; Fatma, Uygur; Nilgün, Bek

    2011-01-01

    To investigate the effects of dynamic ankle-foot orthoses (DAFOs) on functional ambulation activities, weight bearing and spatio-temporal characteristics of hemiparetic gait and to inquire whether wearing a DAFO for 3 months has a carryover effect. Fourteen chronic hemiparetic patients who could walk independently with or without a cane were the subjects of the study. Patients were assessed initially with tennis shoes and were given custom fabricated DAFOs which they wore for three months and were retested under two conditions: with tennis shoes only and with DAFOs worn in these shoes. All patients were assessed for weight bearing percentage of the affected side, cadence, step length of the involved and uninvolved sides, step width, functional reach, timed up and go, timed down stairs, timed up stairs, physiologic cost index and velocity. Comparison of initial and third month assessments with shoes only condition showed that there was no significant improvement for the measured parameters. When comparison was made at the third month while patients were wearing tennis shoes only and when they were wearing DAFO's in their shoes there was a significant difference in favour of the condition where patients were wearing DAFOs. The benefits of using DAFOs in chronic hemiparetic patients are lost when the patients are not wearing their orthoses.

  17. In vivo regulation of the beta-myosin heavy chain gene in soleus muscle of suspended and weight-bearing rats

    Science.gov (United States)

    Giger, J. M.; Haddad, F.; Qin, A. X.; Baldwin, K. M.

    2000-01-01

    In the weight-bearing hindlimb soleus muscle of the rat, approximately 90% of muscle fibers express the beta-myosin heavy chain (beta-MHC) isoform protein. Hindlimb suspension (HS) causes the MHC isoform population to shift from beta toward the fast MHC isoforms. Our aim was to establish a model to test the hypothesis that this shift in expression is transcriptionally regulated through specific cis elements of the beta-MHC promoter. With the use of a direct gene transfer approach, we determined the activity of different length beta-MHC promoter fragments, linked to a firefly luciferase reporter gene, in soleus muscle of control and HS rats. In weight-bearing rats, the relative luciferase activity of the longest beta-promoter fragment (-3500 bp) was threefold higher than the shorter promoter constructs, which suggests that an enhancer sequence is present in the upstream promoter region. After 1 wk of HS, the reporter activities of the -3500-, -914-, and -408-bp promoter constructs were significantly reduced ( approximately 40%), compared with the control muscles. However, using the -215-bp construct, no differences in promoter activity were observed between HS and control muscles, which indicates that the response to HS in the rodent appears to be regulated within the -408 and -215 bp of the promoter.

  18. Assessing Response to Radiation Therapy Treatment of Bone Metastases: Short-Term Followup of Radiation Therapy Treatment of Bone Metastases with Diffusion-Weighted Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Salvatore Cappabianca

    2014-01-01

    Full Text Available This study examined the usefulness of diffusion-weighted (DW Magnetic Resonance Imaging (MRI in monitoring bone metastases response to radiation therapy in 15 oligometastatic patients. For each metastasis, both mean apparent diffusion coefficient (ADC changes and high b-value DW metastasis/muscle signal intensity ratio (SIR variations were evaluated at 30 ± 5 days and 60 ± 7 days after the end of treatment. On baseline DW-MRI, all bone metastases were hyperintense and had signal intensities higher than normal bone marrow on calculated ADC maps. At follow-up evaluations, 4 patterns of response were identified: (I decreased high b-value DW SIR associated with increased mean ADC (83.3% of cases; (II increased mean ADC with no change of high b-value DW SIR (10% of cases; (III decreased both high b-value DW SIR and mean ADC (3.3% of cases; (IV a reduction in mean ADC associated with an increase in high b-value DW SIR compared to pretreatment values (3.3% of cases. Patterns (I and (II suggested a good response to therapy; pattern (III was classified as indeterminate, while pattern (IV was suggestive of disease progression. This pattern approach may represent a useful tool in the differentiation between treatment-induced necrosis and highly cellular residual tumor.

  19. A prospective randomised study of periprosthetic femoral bone remodeling using four different bearings in hybrid total hip arthroplasty

    DEFF Research Database (Denmark)

    Zerahn, Bo; Borgwardt, Lotte; Ribel-Madsen, Søren

    2011-01-01

    combinations: A: Zirconia ceramic head, polyethylene cup; B: Cobalt-Chrome-Molybdenum head and cup; C: Zirconia ceramic head, polyethylene moulded on the Titanium shell of the Asian cup; D: Alumina head and cup. Bone mineral density (BMD) was measured with Dual-Energy X-ray Absorptiometry in seven Gruen zones...

  20. Bone metabolism in obesity: changes related to severe overweight and dietary weight reduction

    DEFF Research Database (Denmark)

    Hyldstrup, Lars; Andersen, T; McNair, P

    1993-01-01

    very-low-calorie diet. Before treatment the bone mineral content of the distal forearm was increased compared to normals (51.9 U vs. 43.7 U, p ... molar ratio x 10(-3) vs 16.7 molar ratio x 10(-3), NS). After 2 months......, the bone mineral content had declined by 3.3%. Serum alkaline phosphatase remained unchanged (187.8 U/l vs 186.9 U/l, NS) but serum osteocalcin demonstrated a significant rise (3.94 nmol/l vs 10.53 nmol/l, p molar ratio x 10(-3) vs...

  1. Exercise Training and Bone Mineral Density.

    Science.gov (United States)

    Lohman, Timothy G.

    1995-01-01

    The effect of exercise on total and regional bone mineral density (BMD) in postmenopausal women is reviewed. Studies on non-estrogen-replete postmenopausal women show 1-2% changes in regional BMD with 1 year of weight-bearing exercises. Studies of exercise training in the estrogen-replete postmenopausal population suggest large BMD changes.…

  2. Short-term effects of self-mobilization with a strap on pain and range of motion of the wrist joint in patients with dorsal wrist pain when weight bearing through the hand: a case series.

    Science.gov (United States)

    Choung, Sung-Dae; Kwon, Oh-Yun; Park, Kyue-Nam; Kim, Si-Hyun; Cynn, Heon-Seock

    2013-12-01

    Dorsal wrist pain frequently occurs in weight bearing through the hand in patients with distal radius stress injuries, scaphoid impaction syndrome, and dorsal impingement. To improve the wrist extension motion, joint mobilization has been used. However, there is no report on the effects of mobilization on the range of motion (ROM) and pain onset in patients with dorsal wrist pain when weight bearing through the hand. This study determined the effects of self-mobilization with a strap (SMWS) while weight bearing through the hand on the ROM and force generated at the onset of pain (FGOP) and intensity in the wrist joints of patients with dorsal wrist pain. Fifteen patients (six men, nine women) with dorsal wrist pain during weight bearing through the hand were recruited from a workplace-based work-conditioning center. SMWS was applied during five visits for a 1-week period. Both passive and active wrist extension ROM, FGOP, and pain intensity (PI) while pushing down through the hand were measured before and after SMWS. Passive and active ROM of wrist extension and FGOP increased significantly after the five sessions over 1 week of SMWS (p wrist extension ROM and decrease wrist pain in patients with dorsal wrist pain during weight bearing through the hand. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Efficiency of high molecular weight backbone degradable HPMA copolymer-prostaglandin E1 conjugate in promotion of bone formation in ovariectomized rats.

    Science.gov (United States)

    Pan, Huaizhong; Sima, Monika; Miller, Scott C; Kopečková, Pavla; Yang, Jiyuan; Kopeček, Jindřich

    2013-09-01

    Multiblock, high molecular weight, linear, backbone degradable HPMA copolymer-prostaglandin E1 (PGE1) conjugate has been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA), which contains an enzymatically degradable oligopeptide sequence flanked by two dithiobenzoate groups, followed by postpolymerization aminolysis and thiol-ene chain extension. The multiblock conjugate contains Asp8 as the bone targeting moiety and enzymatically degradable bonds in the polymer backbone; in vivo degradation produces cleavage products that are below the renal threshold. Using an ovariectomized (OVX) rat model, the accumulation in bone and efficacy to promote bone formation was evaluated; low molecular weight conjugates served as control. The results indicated a higher accumulation in bone, greater enhancement of bone density, and higher plasma osteocalcin levels for the backbone degradable conjugate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Efficiency of High Molecular Weight Backbone Degradable HPMA Copolymer – Prostaglandin E1 Conjugate in Promotion of Bone Formation in Ovariectomized Rats

    Science.gov (United States)

    Pan, Huaizhong; Sima, Monika; Miller, Scott C.; Kopečková, Pavla; Yang, Jiyuan; Kopeček, Jindřich

    2013-01-01

    Multiblock, high molecular weight, linear, backbone degradable HPMA copolymer-prostaglandin E1 (PGE1) conjugate has been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA), which contains an enzymatically degradable oligopeptide sequence flanked by two dithiobenzoate groups, followed by post-polymerization aminolysis and thiol-ene chain extension. The multiblock conjugate contains Asp8 as the bone-targeting moiety and enzymatically degradable bonds in the polymer backbone; in vivo degradation produces cleavage products that are below the renal threshold. Using an ovariectomized (OVX) rat model, the accumulation in bone and efficacy to promote bone formation was evaluated; low molecular weight conjugates served as control. The results indicated a higher accumulation in bone, greater enhancement of bone density, and higher plasma osteocalcin levels for the backbone degradable conjugate. PMID:23731780

  5. Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood.

    Science.gov (United States)

    Evans, Amy L; Paggiosi, Margaret A; Eastell, Richard; Walsh, Jennifer S

    2015-05-01

    Obesity is associated with greater areal BMD (aBMD) and is considered protective against hip and vertebral fracture. Despite this, there is a higher prevalence of lower leg and proximal humerus fracture in obesity. We aimed to determine if there are site-specific differences in BMD, bone structure, or bone strength between obese and normal-weight adults. We studied 100 individually-matched pairs of normal (body mass index [BMI] 18.5 to 24.9 kg/m2) and obese (BMI >30 kg/m2) men and women, aged 25 to 40 years or 55 to 75 years. We assessed aBMD at the whole body (WB), hip (TH), and lumbar spine (LS) with dual-energy X-ray absorptiometry (DXA), LS trabecular volumetric BMD (Tb.vBMD) by quantitative computed tomography (QCT), and vBMD and microarchitecture and strength at the distal radius and tibia with high-resolution peripheral QCT (HR-pQCT) and micro-finite element analysis. Serum type 1 procollagen N-terminal peptide (P1NP) and collagen type 1 C-telopeptide (CTX) were measured by automated electrochemiluminescent immunoassay (ECLIA). Obese adults had greater WB, LS, and TH aBMD than normal adults. The effect of obesity on LS and WB aBMD was greater in older than younger adults (p Obese adults had greater vBMD than normal adults at the tibia (p BMD and tissue mineral density, lower cortical porosity, higher trabecular BMD, and higher trabecular number than normal adults. There was no difference in bone size between obese and normal adults. Obese adults had greater estimated failure load at the radius (p obese and normal adults were seen more consistently in the older than the younger group. Bone turnover markers were lower in obese than in normal adults. Greater BMD in obesity is not an artifact of DXA measurement. Obese adults have higher BMD, thicker and denser cortices, and higher trabecular number than normal adults. Greater differences between obese and normal adults in the older group suggest that obesity may protect against age-related bone loss and may

  6. Growth hormone, IGF-I, and exercise effects on non-weight-bearing fast muscles of hypophysectomized rats

    Science.gov (United States)

    Grossman, E. J.; Grindeland, R. E.; Roy, R. R.; Talmadge, R. J.; Evans, J.; Edgerton, V. R.

    1997-01-01

    The effects of growth hormone (GH) or insulin-like growth factor I (IGF-I) with or without exercise (ladder climbing) in countering the effects of unweighting on fast muscles of hypophysectomized rats during 10 days of hindlimb suspension were determined. Compared with untreated suspended rats, muscle weights were 16-29% larger in GH-treated and 5-15% larger in IGF-I-treated suspended rats. Exercise alone had no effect on muscle weights. Compared with ambulatory control, the medial gastrocnemius weight in suspended, exercised rats was larger after GH treatment and maintained with IGF-I treatment. The combination of GH or IGF-I plus exercise in suspended rats resulted in an increase in size of each predominant fiber type, i.e., types I, I + IIa and IIa + IIx, in the medial gastrocnemius compared with untreated suspended rats. Normal ambulation or exercise during suspension increased the proportion of fibers expressing embryonic myosin heavy chain in hypophysectomized rats. The phenotype of the medial gastrocnemius was minimally affected by GH, IGF-I, and/or exercise. These results show that there is an IGF-I, as well as a GH, and exercise interactive effect in maintaining medial gastrocnemius fiber size in suspended hypophysectomized rats.

  7. Upright MRI measurement of mechanical axis and frontal plane alignment as a new technique: a comparative study with weight bearing full length radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Liodakis, Emmanouil; Kenawey, Mohamed; Doxastaki, Iosifina; Krettek, Christian; Haasper, Carl; Hankemeier, Stefan [Medical School Hannover, Department of Trauma Surgery, Hannover (Germany)

    2011-07-15

    The purpose of this prospective study was to investigate the practicality, accuracy, and reliability of upright MR imaging as a new radiation-free technique for the measurement of mechanical axis. We used upright MRI in 15 consecutive patients (30 limbs, 44.7 {+-} 20.6 years old) to measure mechanical axis deviation (MAD), hip-knee-ankle (HKA) angle, leg length, and all remaining angles of the frontal plane alignment according to Paley (mLPFA, mLDTA, mMPTA, mLDTA, JLCA). The measurements were compared to weight bearing full length radiographs, which are considered to be the standard of reference for planning corrective surgery. FDA-approved medical planning software (MediCAD) was used for the above measurements. Intra- and inter-observer reproducibility using mean absolute differences was also calculated for both methods. The correlation coefficient between angles determined with upright MRI and weight bearing full length radiographs was high for mLPFA, mLDTA, mMPTA, mLDTA, and the HKA angle (r > 0.70). Mean interobserver and intraobserver agreements for upright MRI were also very high (r > 0.89). The leg length and the MAD were significantly underestimated by MRI (-3.2 {+-} 2.2 cm, p < 0.001 and -6.2 {+-} 4.4 mm, p = 0.006, respectively). With the exception of underestimation of leg length and MAD, upright MR imaging measurements of the frontal plane angles are precise and produce reliable, reproducible results. (orig.)

  8. Diffusion-weighted MRI of bone marrow oedema, soft tissue oedema and synovitis in paediatric patients: feasibility and initial experience

    Directory of Open Access Journals (Sweden)

    Neubauer Henning

    2012-07-01

    Full Text Available Abstract Background MRI has become the mainstay of diagnostic imaging in paediatric rheumatology for lesion detection, differential diagnosis and therapy surveillance. MR imaging of synovitis, in particular, is indispensable for early diagnosis and follow-up in arthritis patients. We used diffusion-weighted MRI (DWI as a new imaging modality in comparison to standard MRI sequences to study bone marrow oedema, soft-tissue oedema and synovitis in paediatric patients. Methods A total of 52 patients (mean age 11 ± 5 years with bone marrow oedema (n = 31, soft-tissue oedema (n = 20 and synovitis (n = 15 were examined with transversal diffusion-weighted single-shot echoplanar imaging in addition to standard MR sequences (T2W TIRM, T1W pre- and post-contrast. Diffusion-weighted images were used for lesion detection and apparent diffusion coefficient (ADC, unit × 10-3 mm2/s values were measured with ROI technique on ADC maps. Results In 50 of 52 patients, DWI delineated the lesion of interest corresponding to pathological signal increase on standard sequences. Mean ADC was 1.60 ± 0.14 (range 1.38 - 1.99 in osseous lesions, 1.72 ± 0.31 (range 1.43 - 2.56 in soft tissue oedema and 2.82 ± 0.24 (range 2.47 - 3.18 for joint effusion (ANOVA p  Conclusions Diffusion-weighted MRI reliably visualises osseous and soft tissue oedema, as compared to standard sequences. DWI of synovitis is feasible in large joints and presents a novel approach to contrast-free imaging of synovitis. Whole-body DWI for chronic non-bacterial osteomyelitis should be evaluated in future studies.

  9. Weight-reducing gastroplasty with Roux-en-Y gastric bypass: impact on vitamin D status and bone remodeling markers.

    Science.gov (United States)

    Biagioni, Maria Fernanda G; Mendes, Adriana L; Nogueira, Célia R; Paiva, Sérgio A R; Leite, Celso V; Mazeto, Gláucia M F S

    2014-02-01

    Despite the weight loss benefits of bariatric surgery, studies have shown considerably compromised nutritional conditions, particularly in relation to bone metabolism, in patients who have undergone this procedure. The goal of this study was evaluate bone metabolism alterations after gastroplasty through the concentrations of carboxy-terminal cross-linking telopeptides of type-I collagen (CTX) and bone-specific alkaline phosphatase (BSAP) and vitamin D status. This study, conducted at the Botucatu School of Medicine University Hospital, UNESP, analyzed 22 women with body mass index (BMI) values higher than 35 kg/m(2) who had undergone Roux-en-Y gastric bypass (RYGB) surgery, prior to and 3 and 6 months after the procedure. The patients were evaluated in relation to their anthropometric profile. Obese patients showed a vitamin D status that was compatible with moderate depletion, thus correlating negatively with parathyroid hormone (PTH) and positively with CTX. After surgery, 25-hydroxyvitamin D [25(OH)D] and CTX concentrations increased significantly. Other tests (calcium, phosphorus, magnesium, total AP and BSAP, and PTH) did not differ between the times of analysis and remained stable within the range of normality. Body fat correlated only with 25(OH)D concentrations and was inversely proportional to their increase. There was a positive correlation between PTH and CTX prior to surgery. Hypovitaminosis D is prevalent in obese individuals, and RYGB is related to CTX increase without BSAP alteration in the first follow-up semester.

  10. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion.

    Science.gov (United States)

    Dill, Karli E; Begalle, Rebecca L; Frank, Barnett S; Zinder, Steven M; Padua, Darin A

    2014-01-01

    Ankle-dorsiflexion (DF) range of motion (ROM) may influence movement variables that are known to affect anterior cruciate ligament loading, such as knee valgus and knee flexion. To our knowledge, researchers have not studied individuals with limited or normal ankle DF-ROM to investigate the relationship between those factors and the lower extremity movement patterns associated with anterior cruciate ligament injury. To determine, using 2 different measurement techniques, whether knee- and ankle-joint kinematics differ between participants with limited and normal ankle DF-ROM. Cross-sectional study. Sports medicine research laboratory. Forty physically active adults (20 with limited ankle DF-ROM, 20 with normal ankle DF-ROM). Ankle DF-ROM was assessed using 2 techniques: (1) nonweight-bearing ankle DF-ROM with the knee straight, and (2) weight-bearing lunge (WBL). Knee flexion, knee valgus-varus, knee internal-external rotation, and ankle DF displacements were assessed during the overhead-squat, single-legged squat, and jump-landing tasks. Separate 1-way analyses of variance were performed to determine whether differences in knee- and ankle-joint kinematics existed between the normal and limited groups for each assessment. We observed no differences between the normal and limited groups when classifying groups based on nonweight-bearing passive-ankle DF-ROM. However, individuals with greater ankle DF-ROM during the WBL displayed greater knee-flexion and ankle-DF displacement and peak knee flexion during the overhead-squat and single-legged squat tasks. In addition, those individuals also demonstrated greater knee-varus displacement during the single-legged squat. Greater ankle DF-ROM assessed during the WBL was associated with greater knee-flexion and ankle-DF displacement during both squatting tasks as well as greater knee-varus displacement during the single-legged squat. Assessment of ankle DF-ROM using the WBL provided important insight into compensatory

  11. Combined aerobic and resistance exercise is effective for achieving weight loss and reducing cardiovascular risk factors without deteriorating bone health in obese young adults

    Directory of Open Access Journals (Sweden)

    Jung Sub Lim

    2013-03-01

    Full Text Available PurposeWeight loss reduces cardiovascular risk factors in the obese. However, weight reduction through diet negatively affects long-term bone health. The aim of study was to determine the ability of combined aerobic and resistance exercise (CE to reduce weight and cardiovascular risk without diminishing bone health.MethodsTwenty-five young adults participated in an 8-week weight loss CE program. Subjects were allocated to an obese group or a control group by body mass index (BMI. Body weight, BMI, body composition, and bone mineral density (BMD of the lumbar spine and total hip were measured before and after the CE trial. Serum levels of metabolic markers, including adipokines and bone markers, were also evaluated.ResultsWeight loss was evident in the obese group after the 8 weeks CE trial. Fat mass was significantly reduced in both groups. Fasting insulin, homeostatic model assessment-insulin resistance (HOMA-IR, leptin and aminotransferases level were significantly reduced from baseline only in the obese group. High density lipoprotein cholesterol increased in both groups. Hip BMD increased in the obese group. In all study subjects, BMI changes were correlated with HOMA-IR, leptin, and HDL changes. BMI decreases were correlated with lumbar spine BMD increases, lumbar spine BMD increases were positively correlated with osteocalcin changes, and lumbar spine bone mineral content increases were correlated negatively with C-terminal telopeptide of type 1 collagen changes.ConclusionThese findings suggest that CE provides effective weight loss and improves cardiovascular risk factors without diminishing BMD. Furthermore, they indicate that lumbar spine BMD might be maintained by increasing bone formation and decreasing bone resorption.

  12. Sex Differences in the Effects of Weight Loss Diets on Bone Mineral Density and Body Composition: POUNDS LOST Trial.

    Science.gov (United States)

    Tirosh, Amir; de Souza, Russell J; Sacks, Frank; Bray, George A; Smith, Steven R; LeBoff, Meryl S

    2015-06-01

    Weight loss is associated with reduction in bone mineral density (BMD). The objective was to address the role of changes in fat mass (FM) and lean mass (LM) in BMD decline in both sexes. A 2-year randomized controlled trial, the Preventing Overweight Using Novel Dietary Strategies (POUNDS-LOST). The setting was the general community. Enrolled were 424 overweight and obese participants (mean age, 52 ± 9 y; 57% females). Intervention included weight loss diets differing in fat, protein, and carbohydrates. Main outcome measures were change in spine, total hip (TH), and femoral neck (FN) BMD and sex differences after dietary intervention. At baseline, a stronger correlation between BMD and body composition measurements was observed in women, primarily with LM (r = 0.419, 0.507, and 0.523 for spine, FN, and TH, respectively; all P weight loss at 2 years was -6.9%, without differences among diets. Two-year changes in BMD were 0.005 (P = .04), -0.014 (P women (r = 0.200, 0.324, and 0.260 for spine, FN, and TH, respectively), whereas FM loss correlated only with changes in TH BMD (0.274; P Weight loss diets result in sex-specific effects on BMD. Although men exhibited a paradoxical increase in spine BMD, women tended to decrease in BMD at all sites.

  13. Comparison of three different weight maintenance programs on cardiovascular risk, bone, and vitamins in sedentary older adults

    DEFF Research Database (Denmark)

    Christensen, Pia; Frederiksen, Rikke; Bliddal, Henning

    2013-01-01

    OBJECTIVE: Obese patients with knee osteoarthritis (OA) are encouraged to lose weight to obtain symptomatic relief. Risk of vascular events is higher in people with OA compared to people without arthritis. Our aim in this randomized trial was to compare changes in cardiovascular disease (CVD) risk......-factors, nutritional health, and body composition after 1-year weight-loss maintenance achieved by [D]diet, [E]knee-exercise, or [C]control, following weight loss by low-energy-diet. DESIGN AND METHODS: Obese individuals (n = 192, >50 years) with knee OA, 63 years (SD 6), weight 103.2 kg (15.0), body-mass index 37......: -3.8 cm (95%CI -6.2 to -1.4; P = 0.0024). There was no difference between the groups in changes in CVD risk factors; blood pressure, triglycerides, and cholesterol. Nutritional health was improved in all groups. For markers of bone, no statistical difference was found between the groups. CONCLUSIONS...

  14. Bone-tissue-engineering material poly(propylene fumarate): correlation between molecular weight, chain dimensions, and physical properties.

    Science.gov (United States)

    Wang, Shanfeng; Lu, Lichun; Yaszemski, Michael J

    2006-06-01

    Poly(propylene fumarate) (PPF) is an important biodegradable and cross-linkable polymer designed for bone-tissue-engineering applications. For the first time we report the extensive characterization of this biomaterial including molecular weight dependences of physical properties such as glass transition temperature Tg, thermal degradation temperature Td, density rho, melt viscosity eta0, hydrodynamic radius RH, and intrinsic viscosity [eta]. The temperature dependence of eta0 changes progressively with molecular weight, whereas it can be unified when the temperature is normalized to Tg. The plateau modulus and entanglement molecular weight Me have been obtained from the rheological master curves. A variety of chain microstructure parameters such as the Mark-Houwink-Sakurada constants K and alpha, characteristic ratio Cinfinity, unperturbed chain dimension r0(2)/M, packing lengthp, Kuhn length b, and tube diameter a have been deduced. Further correlation between the microstructure and macroscopic physical properties has been discussed in light of recent progress in polymer dynamics to supply a better understanding about this unsaturated polyester to advance its biomedical uses. The molecular weight dependence of Tg for six polymer species including PPF has been summarized to support that Me is irrelevant for the finite length effect on the glass transition, whereas surprisingly these polymers can be divided into two groups when their normalized Tg is plotted simply against Mw to indicate the deciding roles of inherent chain properties such as chain fragility, intermolecular cooperativity, and chain end mobility.

  15. Bone Tissue-Engineering Material Poly(propylene fumarate): Correlation between Molecular Weight, Chain Dimensions, and Physical Properties

    Science.gov (United States)

    Wang, Shanfeng; Lu, Lichun; Yaszemski, Michael J.

    2008-01-01

    Poly(propylene fumarate) (PPF) is an important biodegradable and crosslinkable polymer designed for bone tissue-engineering applications. For the first time we report the extensive characterization of this biomaterial including molecular weight dependences of physical properties such as glass transition temperature Tg, thermal degradation temperature Td, density ρ melt viscosity η0, hydrodynamic radius RH, and intrinsic viscosity [η]. The temperature dependence of η0 changes progressively with molecular weight, while it can be unified when the temperature is normalized to Tg. The plateau modulus GN0 and entanglement molecular weight Me have been obtained from the rheological master curves. A variety of chain microstructure parameters such as the Mark-Houwink-Sakurada constants K and α, characteristic ratio C∞, unperturbed chain dimension r02/M, packing length p, Kuhn length b, and tube diameter a have been deduced. Further correlation between the microstructure and macroscopic physical properties has been discussed in light of recent progress in polymer dynamics to supply a better understanding about this unsaturated polyester to advance its biomedical uses. The molecular weight dependence of Tg for six polymer species including PPF has been summarized to support that Me is irrelevant for the finite length effect on glass transition, while surprisingly these polymers can be divided into two groups when their normalized Tg is plotted simply against Mw to indicate the deciding roles of inherent chain properties such as chain fragility, intermolecular cooperativity, and chain end mobility. PMID:16768422

  16. A two-year program of aerobics and weight training enhances bone mineral density of young women

    Science.gov (United States)

    Friedlander, A. L.; Genant, H. K.; Sadowsky, S.; Byl, N. N.; Gluer, C. C.

    1995-01-01

    Previous research suggests that physical activity may have a beneficial effect on bone mineral density (BMD) in women. This relationship was explored in a 2-year, randomized, intervention trial investigating the efficacy of exercise and calcium supplementation on increasing peak bone mass in young women. One hundred and twenty-seven subjects (ages of 20-35 years) were randomly assigned either to an exercise program that contained both aerobics and weight training components or to a stretching program. Calcium supplementation (up to 1500 mg/day including dietary intake) or placebo was given in a double-blinded design to all subjects. Spinal trabecular BMD was determined using quantitative computed tomography (QCT). Spinal integral, femoral neck, and trochanteric BMD were measured by dual X-ray absorptiometry (DXA) and calcaneal BMD by single photon absorptiometry (SPA). Fitness variables included maximal aerobic capacity (VO2max), and isokinetic muscle performance of the trunk and thigh. Measurements were made at baseline, 1 year, and 2 years. Sixty-three subjects (32 exercise, 31 stretching) completed the study, and all the measured bone parameters indicated a positive influence of the exercise intervention. There were significant positive differences in BMD between the exercise and stretching groups for spinal trabecular (2.5%), femoral neck (2.4%), femoral trochanteric (2.3%), and calcaneal (6.4%) measurements. The exercise group demonstrated a significant gain in BMD for spinal integral (1.3 +/- 2.8%, p gains in VO2max and isokinetic (peak torque) values for the knee flexion and extension and trunk extension. This study indicates that over a 2-year period, a combined regimen of aerobics and weight training has beneficial effects on BMD and fitness parameters in young women. However, the addition of daily calcium supplementation does not add significant benefit to the intervention.

  17. Desaturation in procedural sedation for children with long bone fractures: Does weight status matter?

    Science.gov (United States)

    Hirsch, Danielle G; Tyo, John; Wrotniak, Brian H

    2017-08-01

    Childhood obesity remains a serious problem in the United States. Significant associated adverse incidents have been reported with sedation of children with obesity, namely hypoxemia. The objective of our study was to determine if overweight and obesity were associated with increased desaturations during procedural sedation compared with patients of healthy weight. This was a single-center retrospective chart review of data from a three-year period of patient's age 2-17years. Of the 1700 charts reviewed 823 of these patients received procedural sedation and met the study inclusion criteria. Weight status was classified based on age and gender specific body mass index (BMI) percentiles: underweight, healthy weight, overweight, obese. Among all weight categories there was no statistical significance, however children with obesity had greater desaturation rates (9.9%) compared with children of underweight, healthy weight, or overweight combined (5.4%), χ2=4.46, p=0.035. The results indicate that children with obesity are almost twice as likely to have a desaturation related to procedural sedation compared with children of other weight status. Providers should be aware that children with obesity may be more likely to desaturate than other children, and therefore be skilled at recognizing this. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Comminuted fracture of the ulnar carpal bone in a Labrador retriever dog

    OpenAIRE

    Vedrine, Bertrand

    2013-01-01

    A 4-year-old male Labrador retriever dog was evaluated for acute lameness without weight-bearing in the right forelimb after an 8-meter fall. Radiographs revealed a comminuted fracture of the ulnar carpal bone that required removal of bone fragments. This appears to be the first report of such a condition.

  19. Comminuted fracture of the ulnar carpal bone in a Labrador retriever dog.

    Science.gov (United States)

    Vedrine, Bertrand

    2013-11-01

    A 4-year-old male Labrador retriever dog was evaluated for acute lameness without weight-bearing in the right forelimb after an 8-meter fall. Radiographs revealed a comminuted fracture of the ulnar carpal bone that required removal of bone fragments. This appears to be the first report of such a condition.

  20. Pioglitazone treatment increases survival and prevents body weight loss in tumor-bearing animals: possible anti-cachectic effect.

    Science.gov (United States)

    Beluzi, Mércia; Peres, Sidney B; Henriques, Felipe S; Sertié, Rogério A L; Franco, Felipe O; Santos, Kaltinaitis B; Knobl, Pâmela; Andreotti, Sandra; Shida, Cláudio S; Neves, Rodrigo X; Farmer, Stephen R; Seelaender, Marília; Lima, Fábio B; Batista, Miguel L

    2015-01-01

    Cachexia is a multifactorial syndrome characterized by profound involuntary weight loss, fat depletion, skeletal muscle wasting, and asthenia; all symptoms are not entirely attributable to inadequate nutritional intake. Adipose tissue and skeletal muscle loss during cancer cachexia development has been described systematically. The former was proposed to precede and be more rapid than the latter, which presents a means for the early detection of cachexia in cancer patients. Recently, pioglitazone (PGZ) was proposed to exhibit anti-cancer properties, including a reduction in insulin resistance and adipose tissue loss; nevertheless, few studies have evaluated its effect on survival. For greater insight into a potential anti-cachectic effect due to PGZ, 8-week-old male Wistar rats were subcutaneously inoculated with 1 mL (2×107) of Walker 256 tumor cells. The animals were randomly assigned to two experimental groups: TC (tumor + saline-control) and TP5 (tumor + PGZ/5 mg). Body weight, food ingestion and tumor growth were measured at baseline and after removal of tumor on days 7, 14 and 26. Samples from different visceral adipose tissue (AT) depots were collected on days 7 and 14 and stored at -80o C (5 to 7 animals per day/group). The PGZ treatment showed an increase in the survival average of 27.3% (P< 0.01) when compared to TC. It was also associated with enhanced body mass preservation (40.7 and 56.3%, p< 0.01) on day 14 and 26 compared with the TC group. The treatment also reduced the final tumor mass (53.4%, p<0.05) and anorexia compared with the TC group during late-stage cachexia. The retroperitoneal AT (RPAT) mass was preserved on day 7 compared with the TC group during the same experimental period. Such effect also demonstrates inverse relationship with tumor growth, on day 14. Gene expression of PPAR-γ, adiponectin, LPL and C/EBP-α from cachectic rats was upregulated after PGZ. Glucose uptake from adipocyte cells (RPAT) was entirely re-established due to

  1. Pioglitazone treatment increases survival and prevents body weight loss in tumor-bearing animals: possible anti-cachectic effect.

    Directory of Open Access Journals (Sweden)

    Mércia Beluzi

    Full Text Available Cachexia is a multifactorial syndrome characterized by profound involuntary weight loss, fat depletion, skeletal muscle wasting, and asthenia; all symptoms are not entirely attributable to inadequate nutritional intake. Adipose tissue and skeletal muscle loss during cancer cachexia development has been described systematically. The former was proposed to precede and be more rapid than the latter, which presents a means for the early detection of cachexia in cancer patients. Recently, pioglitazone (PGZ was proposed to exhibit anti-cancer properties, including a reduction in insulin resistance and adipose tissue loss; nevertheless, few studies have evaluated its effect on survival. For greater insight into a potential anti-cachectic effect due to PGZ, 8-week-old male Wistar rats were subcutaneously inoculated with 1 mL (2×107 of Walker 256 tumor cells. The animals were randomly assigned to two experimental groups: TC (tumor + saline-control and TP5 (tumor + PGZ/5 mg. Body weight, food ingestion and tumor growth were measured at baseline and after removal of tumor on days 7, 14 and 26. Samples from different visceral adipose tissue (AT depots were collected on days 7 and 14 and stored at -80o C (5 to 7 animals per day/group. The PGZ treatment showed an increase in the survival average of 27.3% (P< 0.01 when compared to TC. It was also associated with enhanced body mass preservation (40.7 and 56.3%, p< 0.01 on day 14 and 26 compared with the TC group. The treatment also reduced the final tumor mass (53.4%, p<0.05 and anorexia compared with the TC group during late-stage cachexia. The retroperitoneal AT (RPAT mass was preserved on day 7 compared with the TC group during the same experimental period. Such effect also demonstrates inverse relationship with tumor growth, on day 14. Gene expression of PPAR-γ, adiponectin, LPL and C/EBP-α from cachectic rats was upregulated after PGZ. Glucose uptake from adipocyte cells (RPAT was entirely re

  2. Adolescent exercise associated with long-term superior measures of bone geometry: a cross-sectional DXA and MRI study.

    Science.gov (United States)

    Kato, T; Yamashita, T; Mizutani, S; Honda, A; Matumoto, M; Umemura, Y

    2009-12-01

    To investigate whether childhood sports participation, particularly weight-bearing sports, has any effect on bone mineral content (BMC), areal bone mineral density (aBMD) and bone geometric characteristics in middle-aged postmenopausal women. Design/ In this cross-sectional comparison of two groups, 46 middle-aged women (mean age, 60.2 (SD 5.6) years; range, 52-73 years) were grouped according to sport participation during growth: weight-bearing sports, including high-impact weight-bearing activities; and low-impact non-weight-bearing sports or no participation. Dual energy X-ray absorptiometry (DXA)-measured BMC, aBMD in the lumbar spine and femur. Magnetic resonance imaging (MRI) determined bone geometric characteristics in the femur, such as femoral mid-diaphyseal cross-sectional area, periosteal and endosteal perimeters and maximum and minimum second moment of area. Postmenopausal middle-aged women with participation in weight-bearing sports during junior high to high school (12-18 years old) displayed significantly greater BMC in both lumbar spine and femoral neck regions, and also significantly greater femoral mid-diaphyseal bone cross-sectional area, periosteal perimeter and maximum and minimum second moment of area than the non-weight-bearing sports group. Adolescent weight-bearing exercise exerts preservational effects on femoral mid-diaphyseal size and shape, while DXA-measured BMC effectively identified the same tendency. Weight-bearing exercise in youth affects bone, and these effects may be preserved as BMC, geometric and structural advantages even after 40 years.

  3. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats

    Science.gov (United States)

    Turner, R. T.; Evans, G. L.; Cavolina, J. M.; Halloran, B.; Morey-Holton, E.

    1998-01-01

    Gonadal insufficiency and reduced mechanical usage are two important risk factors for osteoporosis. The beneficial effects of PTH therapy to reverse the estrogen deficiency-induced bone loss in the laboratory rat are well known, but the influence of mechanical usage in this response has not been established. In this study, the effects of programed administration of PTH on cancellous bone volume and turnover at the proximal tibial metaphysis were determined in hindlimb-unloaded, ovariectomized (OVX), 3-month-old Sprague-Dawley rats. PTH was administered to weight-bearing and hindlimb-unloaded OVX rats with osmotic pumps programed to deliver 20 microg human PTH (approximately 80 microg/kg x day) during a daily 1-h infusion for 7 days. Compared with sham-operated rats, OVX increased longitudinal and radial bone growth, increased indexes of cancellous bone turnover, and resulted in net resorption of cancellous bone. Hindlimb unloading of OVX rats decreased longitudinal and radial bone growth, decreased osteoblast number, increased osteoclast number, and resulted in a further decrease in cancellous bone volume compared with those in weight-bearing OVX rats. Programed administration of PTH had no effect on either radial or longitudinal bone growth in weight-bearing and hindlimb-unloaded OVX rats. PTH treatment had dramatic effects on selected cancellous bone measurements; PTH maintained cancellous bone volume in OVX weight-bearing rats and greatly reduced cancellous bone loss in OVX hindlimb-unloaded rats. In the latter animals, PTH treatment prevented the hindlimb unloading-induced reduction in trabecular thickness, but the hormone was ineffective in preventing either the increase in osteoclast number or the loss of trabecular plates. Importantly, PTH treatment increased the retention of a baseline flurochrome label, osteoblast number, and bone formation in the proximal tibial metaphysis regardless of the level of mechanical usage. These findings demonstrate that

  4. Diets higher in dairy foods and dietary protein support bone health during diet- and exercise-induced weight loss in overweight and obese premenopausal women.

    Science.gov (United States)

    Josse, Andrea R; Atkinson, Stephanie A; Tarnopolsky, Mark A; Phillips, Stuart M

    2012-01-01

    Consolidation and maintenance of peak bone mass in young adulthood may be compromised by inactivity, low dietary calcium, and diet-induced weight loss. We aimed to determine whether higher intakes of dairy foods, dietary calcium, and protein during diet- and exercise-induced weight loss affected markers of bone health. Participants included premenopausal overweight and obese women. Ninety participants were randomized into three groups (n = 30 per group): high protein and high dairy (HPHD), adequate protein and medium dairy (APMD), and adequate protein and low dairy (APLD), differing in dietary protein (30, 15, or 15% of energy, respectively), dairy foods (15, 7.5, or protein, respectively), and dietary calcium (∼1600, ∼1000, or dietary calcium, and protein with daily exercise, favorably affected important bone health biomarkers vs. diets with less of these bone-supporting nutrients.

  5. A visão do ortopedista brasileiro sobre a descarga parcial de peso em ortostase nas fraturas expostas da diáfise da tíbia após osteossíntese The view of Brazilian orthopedists on partial weight bearing in open fractures of the tibial shaft following osteosynthesis

    Directory of Open Access Journals (Sweden)

    Valéria R. G. Sella

    2009-12-01

    Full Text Available CONTEXTUALIZAÇÃO: As fraturas da diáfise da tíbia são as mais frequentes dentre as dos ossos longos. Há descrições na literatura, de acordo com o método e dispositivo de tratamento, com recomendações que vão desde a descarga total até a proibição do suporte de peso corporal em ortostase. Existem estudos comparando os dispositivos de osteossíntese e os diversos aspectos cirúrgicos, porém não são encontradas referências que descrevam como e quando se deve liberar a descarga sobre o membro acometido na posição ortostática. OBJETIVOS: Verificar, entre os ortopedistas brasileiros, qual ou quais são os métodos de osteossíntese adotados para o tratamento de fraturas expostas de tíbia, se indicam o tratamento fisioterápico, quando e quais fatores influem para liberar a descarga parcial em ortostase, tanto para a função quanto para a fisioterapia. MÉTODOS: 235 ortopedistas responderam a um questionário durante o XIV Congresso Brasileiro de Trauma Ortopédico. RESULTADOS: Os resultados mostraram que, no Brasil, o dispositivo de osteossíntese mais utilizado é o fixador externo (FE, porém a descarga de peso em pé ocorre mais precocemente quando são utilizadas as hastes intramedulares. A grande maioria dos ortopedistas indica fisioterapia, e o período para liberação de descarga de peso parcial em ortostatismo varia de acordo com o material de síntese utilizado. Conclusões: Concluiu-se que há preferência pelos FEs, a grande maioria indica tratamento fisioterápico e o material de síntese influencia o tempo de liberação de descarga parcial de peso em ortostatismo.BACKGROUND: Tibial shaft fractures are the most frequent among long bone fractures. They are described in the literature according to the device and method of treatment, with recommendations that range from full weight bearing to non-weight bearing restrictions. There are studies comparing osteosynthesis devices and surgical aspects, but no references

  6. Loss of bone strength in response to exercise-induced weight loss in obese postmenopausal women: results from a pilot study.

    Science.gov (United States)

    Shea, K L; Gozansky, W S; Sherk, V D; Swibas, T A; Wolfe, P; Scherzinger, A; Stamm, E; Kohrt, W M

    2014-06-01

    Exercise-induced weight loss (WL) can lead to decreased areal bone mineral density (aBMD). It is unknown whether this translates into decreased volumetric BMD (vBMD) or bone strength. The purpose of this pilot study was to determine whether exercise-induced WL results in decreased vBMD and bone strength in postmenopausal women. Fourteen subjects participated in a 4-month endurance exercise WL intervention. A weight stable (WS) control group (n=10) was followed for 4 months. Proximal femur aBMD was measured by DXA. Femoral neck vBMD and estimates of bone strength (cross-sectional moment of inertia (CSMI) and section modulus (SM)) were measured by quantitative CT. Women were 54.6±2.4 years, BMI 32.1±5.9 kg/m(2) and 54.4±2.9 years, BMI 27.9±3.6 kg/m(2) in the WL and WS groups, respectively. The WL group lost 3.0±2.6 kg which was predominately fat mass. There was a significant decrease in SMmax. Changes in CSMImax and total hip aBMD were not significant. Total hip vBMD did not decrease significantly in response to WL. There were no significant changes in the WS group. WL may lead to decreased bone strength before changes in BMD are detected. Further studies are needed to determine whether bone-targeted exercise can preserve bone strength during WL.

  7. Diffusion-weighted MRI of bone marrow oedema, soft tissue oedema and synovitis in paediatric patients: feasibility and initial experience.

    Science.gov (United States)

    Neubauer, Henning; Evangelista, Laura; Morbach, Henner; Girschick, Hermann; Prelog, Martina; Köstler, Herbert; Hahn, Dietbert; Beer, Meinrad

    2012-07-31

    MRI has become the mainstay of diagnostic imaging in paediatric rheumatology for lesion detection, differential diagnosis and therapy surveillance. MR imaging of synovitis, in particular, is indispensable for early diagnosis and follow-up in arthritis patients. We used diffusion-weighted MRI (DWI) as a new imaging modality in comparison to standard MRI sequences to study bone marrow oedema, soft-tissue oedema and synovitis in paediatric patients. A total of 52 patients (mean age 11 ± 5 years) with bone marrow oedema (n = 31), soft-tissue oedema (n = 20) and synovitis (n = 15) were examined with transversal diffusion-weighted single-shot echoplanar imaging in addition to standard MR sequences (T2W TIRM, T1W pre- and post-contrast). Diffusion-weighted images were used for lesion detection and apparent diffusion coefficient (ADC, unit × 10-3 mm2/s) values were measured with ROI technique on ADC maps. In 50 of 52 patients, DWI delineated the lesion of interest corresponding to pathological signal increase on standard sequences. Mean ADC was 1.60 ± 0.14 (range 1.38 - 1.99) in osseous lesions, 1.72 ± 0.31 (range 1.43 - 2.56) in soft tissue oedema and 2.82 ± 0.24 (range 2.47 - 3.18) for joint effusion (ANOVA p < 0.001). No significant difference in mean ADC was seen for inflammatory vs. non-inflammatory lesions. Relative signal intensity of oedema was similar for DWI and T2W TIRM. DWI visualised synovial restricted diffusion with a mean ADC of 2.12 ± 0.45 in 12 of 15 patients with synovitis. Diffusion-weighted MRI reliably visualises osseous and soft tissue oedema, as compared to standard sequences. DWI of synovitis is feasible in large joints and presents a novel approach to contrast-free imaging of synovitis. Whole-body DWI for chronic non-bacterial osteomyelitis should be evaluated in future studies.

  8. Change in Bone Mineral Density During Weight Loss with Resistance Versus Aerobic Exercise Training in Older Adults.

    Science.gov (United States)

    Beavers, Kristen M; Beavers, Daniel P; Martin, Sarah B; Marsh, Anthony P; Lyles, Mary F; Lenchik, Leon; Shapses, Sue A; Nicklas, Barbara J

    2017-10-12

    To examine the effect of exercise modality during weight loss on hip and spine bone mineral density (BMD) in overweight and obese, older adults. This analysis compared data from two 5-month, randomized controlled trials of caloric restriction (CR; inducing 5-10% weight loss) with either resistance training (RT) or aerobic training (AT) in overweight and obese, older adults. Participants in the RT + CR study underwent 3 days/week of 8 upper/lower body exercises (3 sets, 10 repetitions at 70% 1 RM) and participants in the AT+CR study underwent 4 days/week of treadmill walking (30 min at 65-70% heart rate reserve). BMD at the total hip, femoral neck, and lumbar spine was assessed via dual-energy X-ray absorptiometry at baseline and 5 months. A total of 123 adults (69.4 ± 3.5 years, 67% female, 81% Caucasian) participated in the RT+CR (n = 60) and AT+CR (n = 63) interventions. Average weight loss was 5.7% (95% CI: 4.6-6.7%) and 8.2% (95% CI: 7.2-9.3%) in RT+CR and AT+CR groups, respectively. After adjustment for age, gender, race, baseline BMI and BMD, and weight change, differential treatment effects were observed for total hip and femoral neck (both p resistance, rather than aerobic, training during CR may attenuate loss of hip and femoral neck BMD in overweight and obese older adults. Findings warrant replication from a long-term, adequately powered, RCT.

  9. Sire carcass breeding values affect body composition in lambs--2. Effects on fat and bone weight and their distribution within the carcass as measured by computed tomography.

    Science.gov (United States)

    Anderson, F; Williams, A; Pannier, L; Pethick, D W; Gardner, G E

    2016-06-01

    This study assessed the effect of paternal Australian Sheep Breeding Values for post weaning c-site eye muscle depth (PEMD) and fat depth (PFAT), and post weaning weight (PWWT) on the composition of lamb carcasses. Composition was measured using computed tomography scans of 1665 lambs which were progeny of 85 Maternal, 115 Merino and 155 Terminal sires. Reducing sire PFAT decreased carcass fat weight by 4.8% and increased carcass bone by 1.3% per unit of PFAT (range 5.1 mm). Increasing sire PEMD reduced carcass fat weight by 3.8% in Maternal and 2% in Terminal sired lambs per unit of PEMD (range 4.3 and 7.8 mm), with no impact on bone. Increasing sire PWWT reduced carcass fat weight, but only at some experimental locations. Differences in composition varied between sire types with Maternal sired lambs having the most fat and Merino sired lambs the greatest bone weight. Genetic effects on fatness were greater than the environmental or production factor effects, with the converse true of bone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Effect of exercise and sports activity on bone health during the period of adolescence to young adulthood.

    Science.gov (United States)

    Kato, Takeru

    Physical activity may play an important role in maximizing bone mass during adolescence to young adulthood and may have long-lasting benefits on bone health. Because peak bone mass is thought to be attained by the end of the third decade, the early adult years may be the final opportunity for its augmentation. High-impact weight-bearing exercise during youth may provide lifelong benefits in terms of bone mineral content, structure and strength, and consequently reduce fracture risk. Weight-bearing exercise in youth affects bone, and these effects may be preserved as BMC, geometric and structural advantages even after 40 years. In order to evaluate the bone strength enhanced by the exercise and sporting activity, not only measuring the BMD by DXA but also the cross sectional geometric bone analysis may clarify the further contributions.

  11. EFFECTS OF TAEKWONDO TRAINING ON BONE MINERAL DENSITY OF HIGH SCHOOL GIRLS IN KOREA

    Directory of Open Access Journals (Sweden)

    S. Young Ho

    2011-09-01

    Full Text Available The incidence of bone fractures has increased in the current decade due to osteoporosis. Bone mineral density (BMD, or the amount of mineralized bone, is an important determinant of risk for bone fractures. Bone mineralization is strongly stimulated by weight-bearing exercise during growth and development. Taekwondo, a Korean martial art, is a well-known form of strenuous and weight-bearing physical activity. Therefore, the primary goal of this study was to determine the effects of taekwondo training on the bone health of female high school students in Korea. The secondary goal of this study was to clarify the relationships between body weight and BMD in this sample. Thirty taekwondo players (TKD and 30 sedentary high school girls (CON voluntarily participated in the present study and were split into three groups by weight: light weight (L under 51 kg; middle weight (M between 51 and under 57 kg; and heavy weight (H over 57 kg. BMD was determined from dual-emission X-ray absorptiometry (DEXA, and percent body fat was measured by the skin-fold method. Lumbar spine and femoral BMD were not significantly different between light, middle and heavy body weight groups. However, the average BMD in the TKD group was significantly greater than in the CON group for all lumbar spine regions (P<0.05. The results of this study suggest that taekwondo training during growth significantly improved bone health in all weight groups.

  12. Participation in road cycling vs running is associated with lower bone mineral density in men.

    Science.gov (United States)

    Rector, R Scott; Rogers, Robert; Ruebel, Meghan; Hinton, Pamela S

    2008-02-01

    The effects of regular non-weight-bearing (NWB) exercise on bone health are largely unknown. The objective of the study was to determine the effects of participation in NWB sports on bone health in adult male recreational athletes. Male cyclists (NWB; n = 27) and runners (weight-bearing [WB]; n = 16) aged 20 to 59 years were recruited from the community. Whole-body and regional bone mineral content and bone mineral density (BMD), and body composition were assessed using dual x-ray absorptiometry. Bone formation and resorption markers, and hormones were measured in serum. Bone-loading history was estimated from a sports participation history questionnaire. Nutrient intake and current physical activity were estimated from 7-day written logs. The NWB athletes had significantly lower BMD of the whole body and spine than the WB athletes, despite having similar age, weight, body mass index, body composition, hormonal status, current activity level, and nutrient intakes. Sixty-three percent of NWB athletes had osteopenia of the spine or hip, compared with 19% of WB athletes. Cyclists were 7 times more likely to have osteopenia of the spine than runners, controlling for age, body weight, and bone-loading history. There were no group differences in serum markers of bone turnover. Based on the results of this study, current bone loading is an important determinant of whole-body and lumbar spine BMD. Therefore, bone-loading activity should be sustained during adulthood to maintain bone mass.

  13. Kinematic Analysis of Healthy Hips during Weight-Bearing Activities by 3D-to-2D Model-to-Image Registration Technique

    Directory of Open Access Journals (Sweden)

    Daisuke Hara

    2014-01-01

    Full Text Available Dynamic hip kinematics during weight-bearing activities were analyzed for six healthy subjects. Continuous X-ray images of gait, chair-rising, squatting, and twisting were taken using a flat panel X-ray detector. Digitally reconstructed radiographic images were used for 3D-to-2D model-to-image registration technique. The root-mean-square errors associated with tracking the pelvis and femur were less than 0.3 mm and 0.3° for translations and rotations. For gait, chair-rising, and squatting, the maximum hip flexion angles averaged 29.6°, 81.3°, and 102.4°, respectively. The pelvis was tilted anteriorly around 4.4° on average during full gait cycle. For chair-rising and squatting, the maximum absolute value of anterior/posterior pelvic tilt averaged 12.4°/11.7° and 10.7°/10.8°, respectively. Hip flexion peaked on the way of movement due to further anterior pelvic tilt during both chair-rising and squatting. For twisting, the maximum absolute value of hip internal/external rotation averaged 29.2°/30.7°. This study revealed activity dependent kinematics of healthy hip joints with coordinated pelvic and femoral dynamic movements. Kinematics’ data during activities of daily living may provide important insight as to the evaluating kinematics of pathological and reconstructed hips.

  14. Optimization the Initial Weights of Artificial Neural Networks via Genetic Algorithm Applied to Hip Bone Fracture Prediction

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Chang

    2012-01-01

    Full Text Available This paper aims to find the optimal set of initial weights to enhance the accuracy of artificial neural networks (ANNs by using genetic algorithms (GA. The sample in this study included 228 patients with first low-trauma hip fracture and 215 patients without hip fracture, both of them were interviewed with 78 questions. We used logistic regression to select 5 important factors (i.e., bone mineral density, experience of fracture, average hand grip strength, intake of coffee, and peak expiratory flow rate for building artificial neural networks to predict the probabilities of hip fractures. Three-layer (one hidden layer ANNs models with back-propagation training algorithms were adopted. The purpose in this paper is to find the optimal initial weights of neural networks via genetic algorithm to improve the predictability. Area under the ROC curve (AUC was used to assess the performance of neural networks. The study results showed the genetic algorithm obtained an AUC of 0.858±0.00493 on modeling data and 0.802 ± 0.03318 on testing data. They were slightly better than the results of our previous study (0.868±0.00387 and 0.796±0.02559, resp.. Thus, the preliminary study for only using simple GA has been proved to be effective for improving the accuracy of artificial neural networks.

  15. Bone mineral density measurement over the shoulder region

    DEFF Research Database (Denmark)

    Doetsch, A M; Faber, J; Lynnerup, N

    2002-01-01

    The purpose of this study was to (1). establish a method for measuring bone mineral density (BMD) over the shoulder region; (2). compare the relationship between shoulder BMD levels with hip BMD and body mass index (BMI); and (3). discuss the relevance of the shoulder scan as an early indicator...... to the least relative influence of weight and stress loading because of migration of calcium to weight and stress-bearing areas. Since the effect of this migration could mask local osteoporotic bone loss, shoulder BMD measurement is likely to minimize false indicators of healthy bone in women with high BMI...

  16. Does Diet-Induced Weight Loss Lead to Bone Loss in Overweight or Obese Adults? A Systematic Review and Meta-Analysis of Clinical Trials.

    Science.gov (United States)

    Zibellini, Jessica; Seimon, Radhika V; Lee, Crystal M Y; Gibson, Alice A; Hsu, Michelle S H; Shapses, Sue A; Nguyen, Tuan V; Sainsbury, Amanda

    2015-12-01

    Diet-induced weight loss has been suggested to be harmful to bone health. We conducted a systematic review and meta-analysis (using a random-effects model) to quantify the effect of diet-induced weight loss on bone. We included 41 publications involving overweight or obese but otherwise healthy adults who followed a dietary weight-loss intervention. The primary outcomes examined were changes from baseline in total hip, lumbar spine, and total body bone mineral density (BMD), as assessed by dual-energy X-ray absorptiometry (DXA). Secondary outcomes were markers of bone turnover. Diet-induced weight loss was associated with significant decreases of 0.010 to 0.015 g/cm(2) in total hip BMD for interventions of 6, 12, or 24 (but not 3) months' duration (95% confidence intervals [CIs], -0.014 to -0.005, -0.021 to -0.008, and -0.024 to -0.000 g/cm(2), at 6, 12, and 24 months, respectively). There was, however, no statistically significant effect of diet-induced weight loss on lumbar spine or whole-body BMD for interventions of 3 to 24 months' duration, except for a significant decrease in total body BMD (-0.011 g/cm(2); 95% CI, -0.018 to -0.003 g/cm(2)) after 6 months. Although no statistically significant changes occurred in serum concentrations of N-terminal propeptide of type I procollagen (P1NP), interventions of 2 or 3 months in duration (but not of 6, 12, or 24 months' duration) induced significant increases in serum concentrations of osteocalcin (0.26 nmol/L; 95% CI, 0.13 to 0.39 nmol/L), C-terminal telopeptide of type I collagen (CTX) (4.72 nmol/L; 95% CI, 2.12 to 7.30 nmol/L) or N-terminal telopeptide of type I collagen (NTX) (3.70 nmol/L; 95% CI, 0.90 to 6.50 nmol/L bone collagen equivalents [BCEs]), indicating an early effect of diet-induced weight loss to promote bone breakdown. These data show that in overweight and obese individuals, a single diet-induced weight-loss intervention induces a small decrease in total hip BMD, but not lumbar spine

  17. Femoral fracture repair using a locking plate technique in an adult captive polar bear (Ursus maritimus).

    Science.gov (United States)

    Zimmerman, Dawn M; Dew, Terry; Douglass, Michael; Perez, Edward

    2010-02-01

    To report successful femoral fracture repair in a polar bear. Case report. Female polar bear (Ursus maritimus) 5 years and approximately 250 kg. A closed, complete, comminuted fracture of the distal midshaft femur was successfully reduced and stabilized using a compression plating technique with 2 specialized human femur plates offering axial, rotational, and bending support, and allowing the bone to share loads with the implant. Postoperative radiographs were obtained at 11.5 weeks, 11 months, and 24 months. Bone healing characterized by marked periosteal reaction was evident at 11 months with extensive remodeling evident at 24 months. No complications were noted. Distal mid shaft femoral fracture was reduced, stabilized, and healed in an adult polar bear with a locking plate technique using 2 plates. Previously, femoral fractures in polar bears were considered irreparable. Use of 2 plates applied with a locking plate technique can result in successful fracture repair despite large body weight and inability to restrict postoperative activity.

  18. Physical activity and bone health in children and adolescents.

    Science.gov (United States)

    Pitukcheewanont, Pisit; Punyasavatsut, Natavut; Feuille, Margaret

    2010-01-01

    Bone gain is the greatest during the pubertal years. However, physical activity declines precipitously with age among adolescents (1,2). Therefore, promotion of physical activity in children and adolescents is very important. It is imperative to maximize peak bone mass, so bones remain strong even after losing their density during later life (3). While a number of environmental factors determine the peak bone mass, such as calcium intake and physical activities (4), the latter is more influential as a contributor to the peak bone mass (4). Physical activity is the modifiable factor that can enhance bone accretion if the individual performs regularly. Weight-bearing activity has been shown to increase bone accretion more than non-weight bearing activity. In this article, we review all the physical activities and the exercise regimens that have been documented to be efficient in promoting bone gain in children and adolescents. We also suggest recommended physical activity regimens for children and adolescents in order to maintain and improve bone accretion. In addition, we emphasize participating in regular physical activity and maintaining a healthy lifestyle across the lifespan to maintain optimal bone health.

  19. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    Science.gov (United States)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  20. Reductions in heel bone quality across gestation are attenuated in pregnant adolescents with higher prepregnancy weight and greater increases in PTH across gestation.

    Science.gov (United States)

    Whisner, Corrie M; Young, Bridget E; Witter, Frank R; Harris, Zena Leah; Queenan, Ruth A; Cooper, Elizabeth M; O'Brien, Kimberly O

    2014-09-01

    Few studies have examined the effect of maternal calcium intake and vitamin D status on bone health across gestation in pregnant adolescents. This study aimed to characterize maternal bone quality and determinants of bone-quality change across gestation in pregnant adolescents. Healthy pregnant adolescents (n = 156; aged 13 to 18 years) with singleton pregnancies and at 12 to 30 weeks gestation at enrollment were recruited from two urban maternity clinics in Baltimore, MD, and Rochester, NY, for this prospective longitudinal study. Maternal serum was collected at midgestation and at delivery for assessment of bone biomarkers and calcitropic hormones. Maternal bone quality (assessed by heel ultrasound) and sonographic fetal biometry were measured up to three times across pregnancy. Racially diverse teens (64.7% African American, 35.3% white) were followed from 21.0 (interquartile range [IQR] 17.3, 27.0) weeks of gestation until delivery at 40.0 (IQR 39.0, 40.7) weeks. Significant decreases in calcaneal speed of sound (SOS), broadband ultrasound attenuation (BUA), and quantitative ultrasound index (QUI) (-9.2 ± 16.1 m/s, -3.2 (-8.0, 2.1) dB/MHz and -5.3 ± 8.8, respectively) were evident across pregnancy. Multivariate analysis controlling for baseline measures and measurement intervals was used to identify independent predictors of normalized (per week) calcaneal bone loss. Weekly decreases in bone quality were not significantly associated with maternal calcium intake or 25(OH)D concentration. Greater weekly reductions in calcaneal bone quality were evident in teens with lower prepregnancy weight (BUA, p = 0.006 and QUI, p = 0.012) and among those with lower weekly increase in PTH (SOS, p = 0.046). Overall, significant decreases in calcaneal bone quality occurred across pregnancy in adolescents, but the magnitude of this loss was attenuated in those with greater prepregnancy weight and weekly increases in PTH. Further studies are needed to

  1. The independent and combined effects of intensive weight loss and exercise training on bone mineral density in overweight and obese older adults with osteoarthritis.

    Science.gov (United States)

    Beavers, D P; Beavers, K M; Loeser, R F; Walton, N R; Lyles, M F; Nicklas, B J; Shapses, S A; Newman, J J; Messier, S P

    2014-06-01

    To determine the effects of dietary-induced weight loss (D) and weight loss plus exercise (D + E) compared to exercise alone (E) on bone mineral density (BMD) in older adults with knee osteoarthritis (OA). Data come from 284 older (66.0 ± 6.2 years), overweight/obese (body mass index (BMI) 33.4 ± 3.7 kg/m2), adults with knee OA enrolled in the Intensive Diet and Exercise for Arthritis (IDEA) study. Participants were randomized to 18 months of walking and strength training (E; n = 95), dietary-induced weight loss targeting 10% of baseline weight (D; n = 88) or a combination of the two (D + E; n = 101). Body weight and composition (DXA), regional BMD, were obtained at baseline and 18 months. E, D, and D + E groups lost 1.3 ± 4.5 kg, 9.1 ± 8.6 kg and 10.4 ± 8.0 kg, respectively (P losses compared to E (both P weight (r = 0.21 and 0.54 respectively, both P ≤ 0.01). Weight loss via an intensive dietary intervention, with or without exercise, results in bone loss at the hip and femoral neck in overweight and obese, older adults with OA. Although the exercise intervention did not attenuate weight loss-associated reductions in BMD, classification of osteoporosis and osteopenia remained unchanged. NCT00381290. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Histopathologic effects of a low molecular weight heparin on bone healing in rats: a promising adjuvant in dacryocystorhinostomy

    Directory of Open Access Journals (Sweden)

    Mehmet Numan Alp

    2016-06-01

    Full Text Available AIM: To investigate the effect of short-term prophylactic dose of a low molecular weight heparin (LMWH drug on the bone healing process in an animal model simulating the osteotomy obtained in dacryocystorhinostomy. METHODS: Forty male Wistar albino rats were divided into 2 groups. Subcutaneous injections of enoxaparin 1 mg/kg (enoxaparin-treated group and saline solution (control group were performed once daily for 4d, beginning on the first preoperative day. The osteotomy was created at the femoral diaphysis in all animals by using a Kirschner wire. Each group was further divided into 2 subgroups depending on the timing of the second operation, 14 or 21d following initial osteotomy. Patent osteotomy area on the second and the third weeks in each group were calculated by using a computer software on digital micrographs. RESULTS: The patent osteotomy areas at the second and the third weeks were significantly larger in the enoxaparin-treated group than those of the control group (P<0.001 for each time-period. In the control group, the patent osteotomy area at the third week of healing was significantly smaller than that of the second week (P=0.003, whereas there was no significant difference between these two measurements in the enoxaparin-treated group (P=0.185. CONCLUSION: Short-term administration of enoxaparin resultes in a significant alteration in bone healing at 14 and 21d after injury. LMWHs can be regarded as promising alternative adjuvants in dacryocystorhinostomy after being evaluated with further clinical and animal studies.

  3. High signal in bone marrow at diffusion-weighted imaging with body background suppression (DWIBS) in healthy children

    Energy Technology Data Exchange (ETDEWEB)

    Ording Mueller, Lil-Sofie; Avenarius, Derk [University Hospital North Norway, Department of Radiology, Tromsoe (Norway); Olsen, Oeystein E. [Great Ormond Street Hospital for Children, Department of Radiology, London (United Kingdom)

    2011-02-15

    In our experience, diffusion-weighted imaging with body background suppression (DWIBS) is hard to interpret in children who commonly have foci of restricted diffusion in their skeletons unrelated to pathology, sometimes in an asymmetrical pattern. This raises serious concern about the accuracy of DWIBS in cancer staging in children. To describe the signal distribution at DWIBS in the normal developing lumbar spine and pelvic skeleton. Forty-two healthy children underwent an MR DWIBS sequence of the abdomen and pelvis. An axial short-tau inversion-recovery (STIR) echo-planar imaging (EPI) pulse sequence was used. Two radiologists did a primary review of the images and based on these preliminary observations, separate scoring systems for the lumbar spine, pelvis and proximal femoral epiphyses/femoral heads were devised. Visual evaluation of the images was then performed by the two radiologists in consensus. The scoring was repeated separately 2 months later by a third radiologist. Restricted diffusion was defined as areas of high signal compared to the background. Coronal maximum intensity projection (MIP) reformats were used to assess the vertebral bodies. For the pelvis, the extension of high signal for each bone was given a score of 0 to 4. Cohen's Kappa interobserver agreement coefficients of signal distribution and asymmetry were calculated. All children had areas of high signal, both within the lumbar vertebral bodies and within the pelvic skeleton. Three patterns of signal distribution were seen in the lumbar spine, but no specific pattern was seen in the pelvis. There was a tendency toward a reduction of relative area of high signal within each bone with age, but also a widespread interindividual variation. Restricted diffusion is a normal finding in the pelvic skeleton and lumbar spine in children with an asymmetrical distribution seen in 48% of normal children in this study. DWIBS should be used with caution for cancer staging in children as this could

  4. Low bone mineral density in COPD patients related to worse lung function, low weight and decreased fat-free mass

    NARCIS (Netherlands)

    Vrieze, A; de Greef, M.H.G.; Wijkstra, P.J.; Wempe, J

    Low bone mineral density is frequently seen in COPD patients. Advanced COPD, low BMI and muscle depletion are risk factors for developing low bone mineral density (BMD). Low bone mineral density is seen in 75% of the GOLD stage IV patients. Introduction We set out to investigate the prevalence of

  5. Lower Limb Reconstruction with Tibia Allograft after Resection of Giant Aneurysmal Bone Cyst

    Directory of Open Access Journals (Sweden)

    Joaquim Soares do Brito

    2016-01-01

    Full Text Available Aneurysmal bone cysts (ABCs are benign, expansible, nonneoplastic lesions of the bone, characterized by channels of blood and spaces separated by fibrous septa, which occur in young patients and, occasionally, with aggressive behavior. Giant ABC is an uncommon pathological lesion and can be challenging because of the destructive effect of the cyst on the bones and the pressure on the nearby structures, especially on weight-bearing bones. In this scenario, en bloc resection is the mainstay treatment and often demands complex reconstructions. This paper reports a difficult case of an unusual giant aneurysmal bone cyst, which required extensive resection and a knee fusion like reconstruction with tibia allograft.

  6. Lower Limb Reconstruction with Tibia Allograft after Resection of Giant Aneurysmal Bone Cyst.

    Science.gov (United States)

    Soares do Brito, Joaquim; Teixeira, Joana; Portela, José

    2016-01-01

    Aneurysmal bone cysts (ABCs) are benign, expansible, nonneoplastic lesions of the bone, characterized by channels of blood and spaces separated by fibrous septa, which occur in young patients and, occasionally, with aggressive behavior. Giant ABC is an uncommon pathological lesion and can be challenging because of the destructive effect of the cyst on the bones and the pressure on the nearby structures, especially on weight-bearing bones. In this scenario, en bloc resection is the mainstay treatment and often demands complex reconstructions. This paper reports a difficult case of an unusual giant aneurysmal bone cyst, which required extensive resection and a knee fusion like reconstruction with tibia allograft.

  7. Detection of Traumatic Bone Marrow Lesions after Knee Trauma: Comparison of ADC Maps Derived from Diffusion-weighted Imaging with Standard Fat-saturated Proton Density-weighted Turbo Spin-Echo Sequences.

    Science.gov (United States)

    Klengel, Alexis; Stumpp, Patrick; Klengel, Steffen; Böttger, Ina; Rönisch, Nadja; Kahn, Thomas

    2017-05-01

    Purpose To compare single-shot echo-planar diffusion-weighted imaging-derived apparent diffusion coefficient (ADC) maps with fat-saturated (FS) proton density (PD)-weighted turbo spin-echo (TSE) imaging in the detection of bone marrow lesions (BMLs) after knee trauma. Materials and Methods Institutional review board approval was obtained from Leipzig University. Written informed consent was waived. Three radiologists retrospectively re-examined 97 consecutive patients with reported knee trauma who underwent 1.5-T magnetic resonance (MR) imaging within 90 days of knee trauma. The following sequences were used: (a) sagittal T1-weighted TSE and FS PD-weighted TSE and (b) sagittal T1-weighted TSE and single-shot echo-planar diffusion-weighted imaging-derived ADC mapping. BMLs on the lateral and medial femoral condyle, lateral and medial aspect of the tibial plateau, and patella were documented. Volumetry was performed on BMLs with a thickness of at least 15 mm (major BMLs). ADC values were measured in intact bone marrow and major BMLs. A McNemar test and t tests were used as appropriate to test for significant differences between BML number and volume at an α level of .05. Results Significantly more patients showed at least one BML on ADC maps (98%, 95 of 97 patients) than on FS PD-weighted TSE images (86%, 84 of 97 patients) (P maps. Only 58% of the affected regions detected on ADC maps (170 of 293 regions) were identified on FS PD-weighted TSE images (P maps (81 cm3) than on FS PD-weighted TSE images (39 cm3) (P maps are more sensitive than corresponding FS PD-weighted TSE images for detection of BML after knee trauma and allow detection of significantly more and larger BMLs. ADC map evaluation improves diagnostic performance in regions with insufficient spectral fat saturation, such as the patella. © RSNA, 2016 Online supplemental material is available for this article.

  8. The Masquelet technique of induced membrane for healing of bone defects. A review of 8 cases

    DEFF Research Database (Denmark)

    Olesen, Ulrik Kähler; Eckardt, Henrik; Bosemark, Per

    2015-01-01

    procedures and occurrence of complications. RESULTS: Time to full weight bearing seemed shorter in patients treated with nails. In two cases only partial radiographic consolidation was noted at the latest follow up visit. One patient needed secondary bone grafting and two limbs were malaligned. There were...... no amputations, no persistent infections, and no implant failures. DISCUSSION: The induced membrane technique is a useful tool to substitute bone loss yet consolidation time is somewhat unpredictable and prolonged non-weight bearing is required. CONCLUSION: Nailing seems to improve outcome compared to plating...

  9. Effect of Dynamic Platform Lateral Step-Up versus Stable Platform Lateral Step-Up Weight Bearing Exercise in Hip Abductor Strengthening on Healthy Male Volunteers - Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Jagatheesan Alagesan

    2011-07-01

    Full Text Available Objective & Background: To determine the effect of the dynamic platform lateral step-up and stable platform lateral step-up weight bearing standing exercise in strengthening of hip abductor. Many researchers have reported that strengthening of hip muscles as important component especially hip abductors in lower extremity rehabilitation program. Study Design: Single blinded randomized comparative clinical trial. Methodology: Sixty five healthy college going male subjects (Age group of 18 – 24 years volunteered for this study. They were randomly assigned to one of the 2 groups. One group received the dynamic platform lateral step-up and the other received stable platform lateral step-up weight bearing standing exercise. The strength measurements were recorded using hand held dynamometer. Results: The results indicate that both groups had a positive effect on the outcome measures. The strength of hip abductors in dynamic platform group improved from a mean value (SD of 19.47(3.59 to 26.93(3.19 and in stable platform group from 19.07(2.32 to 22.67(2.46. Significant difference is also observed between the two groups at p value .05. Conclusion: The study shows that dynamic platform lateral step-up exercise is more beneficial than stable platform lateral step-up weight bearing standing exercise in improving hip abductor muscle strength.

  10. Effects of ankle joint mobilization with movement and weight-bearing exercise on knee strength, ankle range of motion, and gait velocity in patients with stroke: a pilot study.

    Science.gov (United States)

    An, Chang-Man; Won, Jong-Im

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of ankle joint mobilization with movement on knee strength, ankle range of motion, and gait velocity, compared with weight-bearing exercise in stroke patients. [Subjects and Methods] Thirty subjects with chronic stroke were divided into three groups: MWM (n = 12), WBE (n = 8), and control (n = 10). All groups attended physical therapy sessions 3 times a week for 5 weeks. Subjects in the MWM group performed mobilization with movement exercises, whilst participants in the WBE group performed weight-bearing exercises. Knee peak torque, ankle range of motion, and spatiotemporal gait parameters were evaluated before and after the interventions. [Results] Knee extensor peak torque increased significantly in both MWM and WBE groups. However, only the MWM group showed significant improvement in passive and active ankle range of motion and gait velocity, among the three groups. [Conclusion] Ankle joint mobilization with movement intervention is more effective than simple weight-bearing intervention in improving gait speed in stroke patients with limited ankle motion.

  11. Evaluation of Diffusion-weighted MR Imaging as a Technique for Detecting Bone Marrow Edema in Patients with Osteitis Pubis.

    Science.gov (United States)

    Toslak, Iclal Erdem; Cekic, Bulent; Turk, Aysen; Eraslan, Ali; Parlak, A Eda

    2017-10-10

    Our aims were to determine the feasibility of diffusion-weighted magnetic resonance imaging (DWI) in the detection of bone marrow edema (BME) and explore the apparent diffusion coefficient (ADC) alterations in patients with osteitis pubis (OP). 42 consecutive patients clinically suspected to have athletic pubalgia and 31 control subjects were enrolled in the study. All subjects underwent diagnostic focused magnetic resonance imaging (MRI) and DWI at b values of 0 and 600 s/mm 2 . Two radiologists reviewed the images for the presence of active OP. The presence of subchondral BME and contrast enhancement were considered to indicate active OP. ADC values were measured from public bodies of both groups. DWI results were correlated with routine MRI findings. Receiver-operating-characteristic curves were formed. Cut-off values for ADC, sensitivity and specificity values were measured. 36/42 (85%) of the cases had BME/enhancement on routine MRIs and identified as active OP. ADC measurements of the patients were greater than the controls (P < 0.05). For the optimal cut-off values DWI showed sensitivity and specificity values of 97.3%, and 90.3%, for the right, and 97.1%, and 96.7% for the left side, respectively (Area under the curve 0.965 and 0.973). Intra-and inter-rater reliability for readers were substantial-perfect for all sessions. DWI is fast, accurate, and highly reproducible technique for the detection of BME in patients with active OP. It allows distinct bone marrow contrast without the use of gadolinium contrast, increases visual perception of active lesions, gives objective information by quantifying the diffusion coefficients, thus increase diagnostic confidence. We suggest the use of DWI as a cost-effective adjunctive tool for the diagnosis of active OP particularly in early cases and inconclusive diagnostic MRI. Future studies are necessary to determine the utility of DWI to evaluate severity of the disease and treatment response before returning athletes

  12. Journal bearing

    Science.gov (United States)

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  13. Bone Density

    Science.gov (United States)

    ... calcium and vitamin D and doing weight-bearing exercise such as walking, tennis, or dancing. In some cases, your doctor may prescribe medicines to prevent osteoporosis. NIH: National Institute of Arthritis and Musculoskeletal and Skin Diseases

  14. Reliability, validity, and minimal detectable change of the push-off test scores in assessing upper extremity weight-bearing ability.

    Science.gov (United States)

    Mehta, Saurabh P; George, Hannah R; Goering, Christian A; Shafer, Danielle R; Koester, Alan; Novotny, Steven

    2017-11-01

    Clinical measurement study. The push-off test (POT) was recently conceived and found to be reliable and valid for assessing weight bearing through injured wrist or elbow. However, further research with larger sample can lend credence to the preliminary findings supporting the use of the POT. This study examined the interrater reliability, construct validity, and measurement error for the POT in patients with wrist conditions. Participants with musculoskeletal (MSK) wrist conditions were recruited. The performance on the POT, grip isometric strength of wrist extensors was assessed. The shortened version of the Disabilities of the Arm, Shoulder and Hand and numeric pain rating scale were completed. The intraclass correlation coefficient assessed interrater reliability of the POT. Pearson correlation coefficients (r) examined the concurrent relationships between the POT and other measures. The standard error of measurement and the minimal detectable change at 90% confidence interval were assessed as measurement error and index of true change for the POT. A total of 50 participants with different elbow or wrist conditions (age: 48.1 ± 16.6 years) were included in this study. The results of this study strongly supported the interrater reliability (intraclass correlation coefficient: 0.96 and 0.93 for the affected and unaffected sides, respectively) of the POT in patients with wrist MSK conditions. The POT showed convergent relationships with the grip strength on the injured side (r = 0.89) and the wrist extensor strength (r = 0.7). The POT showed smaller standard error of measurement (1.9 kg). The minimal detectable change at 90% confidence interval for the POT was 4.4 kg for the sample. This study provides additional evidence to support the reliability and validity of the POT. This is the first study that provides the values for the measurement error and true change on the POT scores in patients with wrist MSK conditions. Further research should examine the

  15. Effects of weight-bearing exercise on a mini-trampoline on foot mobility, plantar pressure and sensation of diabetic neuropathic feet; a preliminary study.

    Science.gov (United States)

    Kanchanasamut, Wararom; Pensri, Praneet

    2017-01-01

    Objective : Foot and ankle exercise has been advocated as a preventative approach in reducing the risk of foot ulceration. However, knowledge about the appropriate types and intensity of exercise program for diabetic foot ulcer prevention is still limited. The current study aimed to examine the effects of an eight-week mini-trampoline exercise on improving foot mobility, plantar pressure and sensation of diabetic neuropathic feet. Methods : Twenty-one people with diabetic peripheral neuropathy who had impaired sensation perception were divided into two groups. The exercise group received a foot-care education program plus an eight-week home exercise program using the mini-trampoline ( n  = 11); whereas a control group received a foot-care education only ( n  = 10). Measurements were undertaken at the beginning, at the completion of the eight-week program and at a 20-week follow-up. Results : Both groups were similar prior to the study. Subjects in the exercise group significantly increased the range of the first metatarsophalangeal joint in flexion (left: p  = 0.040, right: p  = 0.012) and extension (left: p  = 0.013) of both feet more than controlled subjects. There was a trend for peak plantar pressure at the medial forefoot to decrease in the exercise group ( p  = 0.016), but not in the control group. At week 20, the number of subjects in the exercise group who improved their vibration perception in their feet notably increased when compared to the control group (left: p  = 0.043; right: p  = 0.004). Conclusions : This is a preliminary study to document the improvements in foot mobility, plantar pressure and sensation following weight-bearing exercise on a flexible surface in people with diabetic neuropathic feet. Mini-trampoline exercise may be used as an adjunct to other interventions to reduce risk of foot ulceration. A larger sample size is needed to verify these findings. This trial is registered with COA No. 097.2/55.

  16. A validated concept to model the bone-implant-compound for load-bearing implants in biomechanical finite-element-analyses

    Science.gov (United States)

    Kluess, D.; Lindner, T.; Fritsche, A.; Mittelmeier, W.; Bader, R.

    2010-03-01

    The finite element method is used in various approaches to solve biomechanical problems. We present a concept helping in the development of appropriate models of the implant-bone compound based on different software packages. The reconstruction of bone morphology is based on computed tomography (CT) data of the designated bone. After the bone is three-dimensionally reconstructed in the CAD-environment, virtual implantation can be undertaken. Differentiation of cortical bone and trabecular bone is realised by mapping the Hounsfield Units (HU), which are a measure of attenuation, from the CT-slices onto the nodes of the FE-mesh. The HU are mathematically treated as temperatures and are correlated with calcium density respectively bone stiffness in a temperature-dependent material model. In order to validate the presented approach, an experimental test-setup using a fresh-frozen human hemipelvis was designed. Rosette strain gauges were placed on the bone at five locations and a load corresponding to the maximum force during the gait cycle was applied by means of a universal testing machine. The same force was applied in the FE-model and the strain distribution as well as the micromotion was calculated. The minimum principal strains as a result of compression were calculated with a correlation coefficient of r2 = 0.94 resp. r2 = 0.86. Our concept is aimed at predicting the stress and strain states in the bone stock and within the implant and has the potential to predict relative interfacial micromotion.

  17. Anorexia nervosa and bone

    National Research Council Canada - National Science Library

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Anorexia nervosa (AN) is a condition of severe low weight that is associated with low bone mass, impaired bone structure, and reduced bone strength, all of which contribute to increased fracture risk...

  18. Effect of rhythmic gymnastics on volumetric bone mineral density and bone geometry in premenarcheal female athletes and controls.

    Science.gov (United States)

    Tournis, S; Michopoulou, E; Fatouros, I G; Paspati, I; Michalopoulou, M; Raptou, P; Leontsini, D; Avloniti, A; Krekoukia, M; Zouvelou, V; Galanos, A; Aggelousis, N; Kambas, A; Douroudos, I; Lyritis, G P; Taxildaris, K; Pappaioannou, N

    2010-06-01

    Weight-bearing exercise during growth exerts positive effects on the skeleton. Our objective was to test the hypothesis that long-term elite rhythmic gymnastics exerts positive effects on volumetric bone mineral density and geometry and to determine whether exercise-induced bone adaptation is associated with increased periosteal bone formation or medullary contraction using tibial peripheral quantitative computed tomography and bone turnover markers. We conducted a cross-sectional study at a tertiary center. We studied 26 elite premenarcheal female rhythmic gymnasts (RG) and 23 female controls, aged 9-13 yr. We measured bone age, volumetric bone mineral density, bone mineral content (BMC), cortical thickness, cortical and trabecular area, and polar stress strength index (SSIp) by peripheral quantitative computed tomography of the left tibia proximal to the distal metaphysis (trabecular) at 14, 38 (cortical), and 66% (muscle mass) from the distal end and bone turnover markers. The two groups were comparable according to height and chronological and bone age. After weight adjustment, cortical BMC, area, and thickness at 38% were significantly higher in RG (P < 0.005-0.001). Periosteal circumference, SSIp, and muscle area were higher in RG (P < 0.01-0.001). Muscle area was significantly associated with cortical BMC, area, and SSIp, whereas years of training showed positive association with cortical BMC, area, and thickness independent of chronological age. RG in premenarcheal girls may induce positive adaptations on the skeleton, especially in cortical bone. Increased duration of exercise is associated with a positive response of bone geometry.

  19. Long-term effects of a very-low-carbohydrate weight-loss diet and an isocaloric low-fat diet on bone health in obese adults.

    Science.gov (United States)

    Brinkworth, Grant D; Wycherley, Thomas P; Noakes, Manny; Buckley, Jonathan D; Clifton, Peter M

    2016-09-01

    Compromised bone health is a frequently cited concern of very-low-carbohydrate (LC) diets, although limited data are available from long-term, well-controlled, randomized studies. This study compared the effects of an energy-restricted LC diet and traditional, higher-carbohydrate, low-fat (LF) diet on bone health after 12 mo. One hundred eighteen abdominally obese adults were randomized to consume either an energy-restricted (∼6-7 MJ/d [∼1450-1650 kcal/d]), planned isocaloric LC, or LF diet for 12 mo. Body weight, total body bone mineral content and bone mineral density (BMD), and serum bone crosslaps were assessed pre- and postintervention. Sixty-five participants completed the study (LC = 32, LF = 33; age: 51.3 ± 7.1 y; BMI: 33.4 ± 4.0 kg/m(2)). Weight loss was similar in both groups (LC: -14.5 ± 9.8 kg, LF: -11.7 ± 7.3 kg; P = 0.26). By 1 y, total body bone mineral content had not changed in either group (LC: 2.84 ± 0.47 to 2.88 ± 0.49 kg, LF: 3.00 ± 0.52 to 3.00 ± 0.51 kg; P = 0.07 time × diet effect). In both groups, total body BMD decreased (LC: 1.26 ± 0.10 to 1.22 ± 0.09 g/cm(2), LF: 1.26 ± 0.09 to 1.23 ± 0.08 g/m(2); P Weight loss following a hypocaloric LC diet compared with an LF diet does not differentially affect markers of bone health over 12 mo in overweight and obese adults. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  20. Grizzly bear

    Science.gov (United States)

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  1. Bone metabolism markers in sports medicine.

    Science.gov (United States)

    Banfi, Giuseppe; Lombardi, Giovanni; Colombini, Alessandra; Lippi, Giuseppe

    2010-08-01

    -terminal collagen cross-links (CTx), a bone resorption marker, was shown to be less sensitive than amino-terminal cross-linking telopeptide of type I collagen (NTx) and urinary pyridinolines, which were sensitive to anaerobic exercise. Whereas, the bone formation markers, bone alkaline phosphatase (BAP) and osteocalcin (OC) changed after 1 month and 2 months of an exercise programme, respectively. After 2 months, while BAP normalized, it was found to be sensitive to aerobic exercise and OC was found to be sensitive to anaerobic exercise. After prolonged training and competition, bone formation markers are found to change in sedentary subjects enrolled in a physical activity programme. Professional athletes show changes in bone formation markers depending on programme intensity, whereas bone resorption appears to stabilize. Crucial for long-term training, are the characteristics of exercise (e.g. weight-bearing, impact).

  2. Aerospace applications of magnetic bearings

    Science.gov (United States)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-05-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  3. Osteogenic protein 1 device increases bone formation and bone graft resorption around cementless implants

    DEFF Research Database (Denmark)

    Jensen, Thomas B; Overgaard, Søren; Lind, Martin

    2002-01-01

    In each femoral condyle of 8 Labrador dogs, a non weight-bearing hydroxyapatite-coated implant was inserted surrounded by a 3 mm gap. Each gap was filled with bone allograft or ProOsteon with or without OP-1 delivered in a bovine collagen type I carrier (OP-1 device). 300 microg OP-1 was used...... in the 0.75 cc gap surrounding the implant. After 3 weeks, the OP-1 device enhanced implant fixation by 800% (p...

  4. Hormone Replacement Therapy Dissociates Fat Mass and Bone Mass, and Tends to Reduce Weight Gain in Early Postmenopausal Women: A Randomized Controlled 5‐Year Clinical Trial of the Danish Osteoporosis Prevention Study

    National Research Council Canada - National Science Library

    Jensen, LB; Vestergaard, P; Hermann, AP; Gram, J; Eiken, P; Abrahamsen, B; Brot, C; Kolthoff, N; Sørensen, OH; Beck‐Nielsen, H; Nielsen, S Pors; Charles, P; Mosekilde, L

    2003-01-01

    The aim of this study was to study the influence of hormone replacement therapy (HRT) on weight changes, body composition, and bone mass in early postmenopausal women in a partly randomized comprehensive cohort study design...

  5. Linear signal hyperintensity adjacent to the subchondral bone plate at the knee on T2-weighted fat-saturated sequences: imaging aspects and association with structural lesions

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Balaj, Clemence [CHU Hopital Central, Service D' Imagerie Guilloz, Nancy (France); Universite de Lorraine, IADI, UMR S 947, Nancy (France); Marie, Beatrice [CHU Hopital Central, Service d' Anatomo-Pathologie, Nancy (France); Lecocq, Sophie; Louis, Matthias; Blum, Alain [CHU Hopital Central, Service D' Imagerie Guilloz, Nancy (France); Braun, Marc [CHU Hopital Central, Service de Neuroradiologie, Nancy (France)

    2014-11-15

    To describe the association between linear T2 signal abnormalities in the subchondral bone and structural knee lesions. MR studies of patients referred for the evaluation of knee pain were retrospectively evaluated and 133 of these patients presented bone marrow edema pattern (BMEP) (study group) and while 61 did not (control group). The presence of linear anomalies of the subchondral bone on T2-weighted fat-saturated sequences was evaluated. The findings were correlated to the presence of structural knee lesions and to the duration of the patient's symptoms. Histologic analysis of a cadaveric specimen was used for anatomic correlation. Linear T2 hyperintensities at the subchondral bone were present in 41 % of patients with BMEP. None of the patients in the control group presented this sign. When a subchondral linear hyperintensity was present, the prevalence of radial or root tears was high and that of horizontal tears was low (71.4 and 4.8 %, respectively). Sixty-nine percent of the patients with a subchondral insufficiency fracture presented a subchondral linear hyperintensity. It was significantly more prevalent in patients with acute or sub-acute symptoms (p < 0.0001). The studied linear T2 hyperintensity is located at the subchondral spongiosa and can be secondary to local or distant joint injuries. Its presence should evoke acute and sub-acute knee injuries. This sign is closely related to subchondral insufficiency fractures and meniscal tears with a compromise in meniscal function. (orig.)

  6. Increased treatment durations lead to greater improvements in non-weight bearing dorsiflexion range of motion for asymptomatic individuals immediately following an anteroposterior grade IV mobilisation of the talus.

    Science.gov (United States)

    Holland, Christopher James; Campbell, Kevin; Hutt, Kim

    2015-08-01

    Manual therapy aims to minimise pain and restore joint mobility and function. Joint mobilisations are integral to these techniques, with anteroposterior (AP) talocrural joint mobilisations purported to increase dorsiflexion range of motion (DF-ROM). This study aimed to determine whether different treatment durations of single grade IV anteroposterior talocrural joint mobilisations elicit statistically significant differences in DF-ROM. Sixteen asymptomatic male football players (age = 27.1 ± 5.3 years) participated in the study. Non-weight bearing (NWB) and weight bearing (WB) DF-ROM was measured before and after 4 randomised treatment conditions: control treatment, 30 s, 1 min, 2 min. NWB DF-ROM was measured using a universal goniometer, and WB DF-ROM using the weight-bearing lunge test. A within-subjects design was employed so that all participants received each of the treatment conditions. A 4 × 4 balanced Latin square design and 1 week interval between sessions reduced any residual effects. Two-way repeated measures ANOVA revealed a significant improvement in DF-ROM following all AP mobilisation treatments (p < 0.001). The within subjects contrasts showed that increases in treatment duration was associated with statistically significant improvements in DF-ROM (NWB DF-ROM control = 0.01%, 30 s = 14.2%, 1 min = 21.6%, 2 min = 32.8%; WB DF-ROM control = 0.01%, 30 s = 5.0%, 1 min = 7.6%, 2 min = 10.9%; p < 0.05). However, WB DF-ROM improvements were below the minimal detectable change scores needed to conclude that improvements were not a consequence of measurement error. This research shows that single session mobilisations can elicit NWB DF-ROM improvements in asymptomatic individuals in the absence of pain, whilst increases in treatment duration confer greater improvements in NWB DF-ROM within this population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Non-pharmacological treatment and prevention of bone loss after spinal cord injury: a systematic review

    DEFF Research Database (Denmark)

    Biering-Sørensen, F; Hansen, B; Lee, B S B

    2009-01-01

    and outcome measures that could be improved. Five studies on weight-bearing early post-injury are conflicting, but standing or walking may help retain bone mineral. In the chronic phase, there was no effect of weight bearing (12 studies). One study found that an early commencement of sports after SCI improved...... bone mineral, and the longer the period of athletic career, the higher the (leg) bone mineral. Early after SCI, there may be some effects of electrical stimulation (ES) (five studies). Chronic-phase ES studies vary (14 studies, including mixed periods after injury), but improvement is seen with longer...... period of training, or higher frequency or stimulus intensity. Improvements correspond to trabecular bone in the distal femur or proximal tibia. Impact vibration and pulsed electromagnetic fields may have some positive effects, whereas pulsed ultrasound does not. Six studies on the influence...

  8. Trabecular bone loss after administration of the second-generation antipsychotic risperidone is independent of weight gain

    Science.gov (United States)

    Motyl, Katherine J.; Dick-de-Paula, Ingrid; Maloney, Ann E.; Lotinun, Sutada; Bornstein, Sheila; de Paula, Francisco J. A.; Baron, Roland; Houseknecht, Karen L.; Rosen, Clifford J.

    2011-01-01

    Second generation antipsychotics (SGAs) have been linked to metabolic and bone disorders in clinical studies, but the mechanisms of these side effects remain unclear. Additionally, no studies have examined whether SGAs cause bone loss in mice. Using in vivo and in vitro modeling we examined the effects of risperidone, the most commonly prescribed SGA, on bone in C57BL6/J (B6) mice. Mice were treated with risperidone orally by food supplementation at a dose of 1.25 mg/kg daily for 5 and 8 weeks, starting at 3.5 weeks of age. Risperidone reduced trabecular BV/TV, trabecular number and percent cortical area. Trabecular histomorphometry demonstrated increased resorption parameters, with no change in osteoblast number or function. Risperidone also altered adipose tissue distribution such that white adipose tissue mass was reduced and liver had significantly higher lipid infiltration. Next, in order to tightly control risperidone exposure, we administered risperidone by chronic subcutaneous infusion with osmotic minipumps (0.5 mg/kg daily for 4 weeks) in 7 week old female B6 mice. Similar trabecular and cortical bone differences were observed compared to the orally treated groups (reduced trabecular BV/TV, and connectivity density, and reduced percent cortical area) with no change in body mass, percent body fat, glucose tolerance or insulin sensitivity. Unlike in orally treated mice, risperidone infusion reduced bone formation parameters (serum P1NP, MAR and BFR/BV). Resorption parameters were elevated, but this increase did not reach statistical significance. To determine if risperidone could directly affect bone cells, primary bone marrow cells were cultured with osteoclast or osteoblast differentiation media. Risperidone was added to culture medium in clinically relevant doses of 0, 2.5 or 25 ng/ml. The number of osteoclasts was significantly increased by addition in vitro of risperidone while osteoblast differentiation was not altered. These studies indicate that

  9. Weight regulation and bone mass: a comparison between professional jockeys, elite amateur boxers, and age, gender and BMI matched controls.

    Science.gov (United States)

    Dolan, Eimear; Crabtree, Nicola; McGoldrick, Adrian; Ashley, David T; McCaffrey, Noel; Warrington, Giles D

    2012-03-01

    The aim of this study was to compare bone mass between two groups of jockeys (flat: n = 14; national hunt: n = 16); boxers (n = 14) and age, gender and BMI matched controls (n = 14). All subjects underwent dual energy X-ray absorptiometry (DXA) scanning for assessment of bone mass, with measurements made of the total body, vertebra L2-4 and femoral neck. Body composition and the relative contribution of fat and lean mass were extrapolated from the results. Data were analysed in accordance with differences in body composition, in particular, height, lean mass, fat mass and age. Both jockey groups were shown to display lower bone mass than either the boxers or control group at a number of sites including total body bone mineral density (BMD) (1.019 ± 0.06 and 1.17 ± 1.05 vs. 1.26 ± 0.01 and 1.26 ± 0.06 g cm(-2) for flat, national hunt, boxer and control, respectively), total body bone mineral content (BMC) less head, L2-4 BMD and femoral neck BMD and BMC (p athletes in light of the high risk nature of the sport. In contrast, the high intensity, high impact training associated with boxing may have conveyed an osteogenic stimulus on these athletes.

  10. Impaired body weight and tail length gain and altered bone quality after treatment with the aromatase inhibitor exemestane in male rats.

    Science.gov (United States)

    van Gool, Sandy A; Wit, Jan M; De Schutter, Tineke; De Clerck, Nora; Postnov, Andreï A; Kremer Hovinga, Sandra; van Doorn, Jaap; Veiga, Sergio J; Garcia-Segura, Luis Miguel; Karperien, Marcel

    2010-01-01

    Estrogen deficiency induced by aromatase inhibitors may be a novel treatment modality for growth enhancement in short children, but may have adverse effects on bone, brain and reproduction. To assess growth effects and potential adverse effects of aromatase inhibition in male rats. 26-day-old prepubertal rats received intramuscular injections with placebo or the aromatase inhibitor exemestane at a dose of 10, 30 or 100 mg/kg/week [E10, E30, E100(6)] for 6 weeks, completely covering the sexual maturation phase, or with 3 weeks E100 followed by 3 weeks placebo [E100(3)]. Growth parameters and histology of the testis, seminal vesicle and brain were analyzed. Bone architecture was studied with X-ray microtomography. Exemestane dose-dependently decreased body weight and tail length gain, as well as liver and seminal vesicle weights, but did not affect nose-anus length gain, growth plate width or radial growth. E100(6) decreased trabecular thickness (epiphysis and metaphysis) and number (metaphysis). Normal IGF-I levels and brain, testis and seminal vesicle morphology were observed. E100(3) resulted in decreased tail length gain only. Exemestane treatment during sexual maturation did not augment linear growth in male rats, but caused impaired body weight and tail length gain and osteopenia. Copyright 2010 S. Karger AG, Basel.

  11. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging of focal vertebral bone marrow lesions: initial experience of the differentiation of nodular hyperplastic hematopoietic bone marrow from malignant lesions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sunghoon; Kwack, Kyu-Sung; Kim, Jae Ho [Ajou University School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, Suwon, Gyeonggi-do (Korea, Republic of); Ajou University Medical Center, Musculoskeletal Imaging Laboratory, Suwon (Korea, Republic of); Chung, Nam-Su [Ajou University School of Medicine, Department of Orthopaedic Surgery, Suwon (Korea, Republic of); Hwang, Jinwoo [Philips Healthcare, Department of Clinical Science, Seoul (Korea, Republic of); Lee, Hyun Young [Ajou University Medical Center, Regional Clinical Trial Center, Suwon (Korea, Republic of); Yonsei University College of Medicine, Department of Biostatistics, Seoul (Korea, Republic of)

    2017-05-15

    To evaluate the ability of intravoxel incoherent motion (IVIM) diffusion-weighted magnetic resonance imaging (MRI) parameters to differentiate nodular hyperplastic hematopoietic bone marrow (HHBM) from malignant vertebral bone marrow lesions (VBMLs). A total of 33 patients with 58 VBMLs, including 9 nodular HHBM lesions, 39 bone metastases, and 10 myelomas, were retrospectively assessed. All diagnoses were confirmed either pathologically or via image assessment. IVIM diffusion-weighted MRI with 11 b values (from 0 to 800 s/mm{sup 2}) were obtained using a 3.0-T MR imager. The apparent diffusion coefficient (ADC), pure diffusion coefficient (D), perfusion fraction (f), and pseudodiffusion coefficient (D*) were calculated. ADC and IVIM parameters were compared using the Mann-Whitney U test. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic performances of ADC, D, f, and D* in terms of VBML characterization. The diagnostic performance of morphological MR sequences was also assessed for comparison. The ADC and D values of nodular HHBM were significantly lower than those of malignant VBML (both p values < 0.001), whereas the f value was significantly higher (p < 0.001). However, there were no significant differences in D* between the two groups (p = 0.688). On ROC analysis, the area under the curve (AUC) for D was 1.000, which was significantly larger than that for ADC (AUC = 0.902). Intravoxel incoherent motion diffusion-weighted MRI can be used to differentiate between nodular HHBM and malignant VBML. The D value was significantly lower for nodular HHBM, and afforded a better diagnostic performance than the ADC, f, and D* values in terms of such differentiation. (orig.)

  12. Grievous Temporal and Occipital Injury Caused by a Bear Attack

    Directory of Open Access Journals (Sweden)

    Sampath Chandra Prasad

    2013-01-01

    Full Text Available Bear attacks are reported from nearly every part of the world. The chance of a human encountering a bear increases as the remote bear territory diminishes. The sloth bear is one of the three species of bears found in India, which inhabits the forests of India and its neighboring countries. Here we describe a teenager who came to us with a critical injury involving the face, temporal and occipital bones inflicted by a sloth bear attack. He underwent a temporal exploration, facial nerve decompression, pinna reconstruction, and occipital bone repair to save him from fatality.

  13. Low-magnitude whole body vibration does not affect bone mass but does affect weight in ovariectomized rats

    NARCIS (Netherlands)

    O.P. van der Jagt (Olav); J.C. van der Linden (Jacqueline); J.H. Waarsing (Jan); J.A.N. Verhaar (Jan); H.H. Weinans (Harrie)

    2012-01-01

    textabstractMechanical loading has stimulating effects on bone architecture, which can potentially be used as a therapy for osteoporosis. We investigated the skeletal changes in the tibia of ovariectomized rats during treatment with whole body vibration (WBV). Different low-magnitude WBV treatment

  14. Outcome of patients after lower limb fracture with partial weight bearing postoperatively treated with or without anti-gravity treadmill (alter G®) during six weeks of rehabilitation - a protocol of a prospective randomized trial.

    Science.gov (United States)

    Henkelmann, Ralf; Schneider, Sebastian; Müller, Daniel; Gahr, Ralf; Josten, Christoph; Böhme, Jörg

    2017-03-14

    Partial or complete immobilization leads to different adjustment processes like higher risk of muscle atrophy or a decrease of general performance. The present study is designed to prove efficacy of the anti-gravity treadmill (alter G®) compared to a standard rehabilitation protocol in patients with tibial plateau (group 1)or ankle fractures (group 2) with six weeks of partial weight bearing of 20 kg. This prospective randomized study will include a total of 60 patients for each group according to predefined inclusion and exclusion criteria. 1:1 randomization will be performed centrally via fax supported by the Clinical Trial Centre Leipzig (ZKS Leipzig). Patients in the treatment arm will be treated with an anti-gravity treadmill (alter G®) instead of physiotherapy. The protocol is designed parallel to standard physiotherapy with a frequency of two to three times of training with the treadmill per week with duration of 20 min for six weeks. Up to date no published randomized controlled trial with an anti-gravity treadmill is available. The findings of this study can help to modify rehabilitation of patients with partial weight bearing due to their injury or postoperative protocol. It will deliver interesting results if an anti-gravity treadmill is useful in rehabilitation in those patients. Further ongoing studies will identify different indications for an anti-gravity treadmill. Thus, in connection with those studies, a more valid statement regarding safety and efficacy is possible. NCT02790229 registered on May 29, 2016.

  15. Hibernating bears as a model for preventing disuse osteoporosis.

    Science.gov (United States)

    Donahue, Seth W; McGee, Meghan E; Harvey, Kristin B; Vaughan, Michael R; Robbins, Charles T

    2006-01-01

    The hibernating bear is an excellent model for disuse osteoporosis in humans because it is a naturally occurring large animal model. Furthermore, bears and humans have similar lower limb skeletal morphology, and bears walk plantigrade like humans. Black bears (Ursus americanus) may not develop disuse osteoporosis during long periods of disuse (i.e. hibernation) because they maintain osteoblastic bone formation during hibernation. As a consequence, bone volume, mineral content, porosity, and strength are not adversely affected by annual periods of disuse. In fact, cortical bone bending strength has been shown to increase with age in hibernating black bears without a significant change in porosity. Other animals require remobilization periods 2-3 times longer than the immobilization period to recover the bone lost during disuse. Our findings support the hypothesis that black bears, which hibernate for as long as 5-7 months annually, have evolved biological mechanisms to mitigate the adverse effects of disuse on bone porosity and strength.

  16. Risk factors associated with the loss of cartilage volume on weight-bearing areas in knee osteoarthritis patients assessed by quantitative magnetic resonance imaging: a longitudinal study.

    Science.gov (United States)

    Pelletier, Jean-Pierre; Raynauld, Jean-Pierre; Berthiaume, Marie-Josée; Abram, François; Choquette, Denis; Haraoui, Boulos; Beary, John F; Cline, Gary A; Meyer, Joan M; Martel-Pelletier, Johanne

    2007-01-01

    The objective of this study was to identify, on a symptomatic knee osteoarthritis (OA) cohort, the risk factors associated with the progression of the disease. More specifically, we investigated the correlation between knee cartilage volume loss from subregions over the span of 24 months by means of quantitative magnetic resonance imaging (qMRI) with demographic, clinical, radiological, and MRI structural changes. A cohort of 107 patients with knee OA selected from a large trial evaluating the effect of a bisphosphonate underwent x-rays and MRI of the knee at baseline and 24 months. Joint space width (JSW) and joint space narrowing (JSN) and cartilage volume loss over time in subregions of the tibial plateaus and femoral condyles were quantitated. Structural changes in the subchondral bone (hypersignal) and in the menisci (tear and extrusion) were also evaluated. The greatest cartilage volume loss was found in the medial compartment, and risk factors included female gender, JSW, meniscal lesions, and bone changes at baseline. Subregion analysis revealed that the greatest cartilage volume loss at 24 months was found in the central area of the medial tibial plateau (15%; p < 0.0001) and of the medial femoral condyle (12%; p < 0.0001). These findings were associated with the presence at baseline of meniscal extrusion, particularly severe meniscal extrusion, medial and severe meniscal tear, bone hypersignal, high body mass index (BMI), smaller JSW, increases in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain and patient global scores over time, and greater JSN. Parameters predicting medial central femoral condyle cartilage volume loss at 24 months were lateral meniscal tear, SF-36 and BMI at baseline, and JSN. At the medial central tibial plateau, the parameters were severe meniscal extrusion, severe lateral meniscal tear, and bone hypersignal in the lateral compartment at baseline, and WOMAC pain change. Meniscal damage and bone changes are

  17. Seismic bearing

    Science.gov (United States)

    Power, Dennis

    2009-05-01

    Textron Systems (Textron) has been using geophones for target detection for many years. This sensing capability was utilized for detection and classification purposes only. Recently Textron has been evaluating multiaxis geophones to calculate bearings and track targets more specifically personnel. This capability will not only aid the system in locating personnel in bearing space or cartesian space but also enhance detection and reduce false alarms. Textron has been involved in the testing and evaluation of several sensors at multiple sites. One of the challenges of calculating seismic bearing is an adequate signal to noise ratio. The sensor signal to noise ratio is a function of sensor coupling to the ground, seismic propagation and range to target. The goals of testing at multiple sites are to gain a good understanding of the maximum and minimum ranges for bearing and detection and to exploit that information to tailor sensor system emplacement to achieve desired performance. Test sites include 10A Site Devens, MA, McKenna Airfield Ft. Benning, GA and Yuma Proving Ground Yuma, AZ. Geophone sensors evaluated include a 28 Hz triax spike, a 15 Hz triax spike and a hybrid triax spike consisting of a 10 Hz vertical geophone and two 28 Hz horizontal geophones. The algorithm uses raw seismic data to calculate the bearings. All evaluated sensors have triaxial geophone configuration mounted to a spike housing/fixture. The suite of sensors also compares various types of geophones to evaluate benefits in lower bandwidth. The data products of these tests include raw geophone signals, seismic features, seismic bearings, seismic detection and GPS position truth data. The analyses produce Probability of Detection vs range, bearing accuracy vs range, and seismic feature level vs range. These analysis products are compared across test sites and sensor types.

  18. Immunostimulatory activities of a low molecular weight antitumoral polysaccharide isolated from Agaricus blazei Murill (LMPAB) in Sarcoma 180 ascitic tumor-bearing mice.

    Science.gov (United States)

    Niu, Ying-Cai; Liu, Ji-Cheng; Zhao, Xue-Mei; Su, Fu-Qin; Cui, Hong-Xia

    2009-07-01

    LMPAB is a linear beta-(1-3)-glucan we isolated from polysaccharide extract of Agaricus blazei Murill (AbM). Effects of LMPAB on splenic natural killer (NK) cell activity, splenocyte proliferation, index of spleen and thymus, IFN-gamma expression in spleen and the concentration of IL-12, IL-18 and TNF-alpha in serum of S180 ascitic tumor-bearing mice were detected. The results showed that intraperitoneal injection of LMPAB (100 mg x kg(-1) x d(-1)) significantly increased the thymus index. LMPAB augmented splenic NK cell activity in a dose-dependent manner (50-200 mg x kg(-1) x d(-1)). The concanavalin A (3 microg/ ml) stimulated splenocyte proliferation was significantly enhanced by LMPAB at dosages of 50, 100 or 200 mg x kg(-1) x d(-1). Further studies showed that LMPAB (50, 100 or 200 mg x kg(-1) x d(-1), 14d) significantly increased the production of IL-12, TNF-alpha, IL-18 and the expression IFN-gamma as determined by ELISA and immunohistochemistry, respectively. These results clearly indicate that the anti-tumor effects of LMPAB are closely associated with up-regulation of activity of NK cells, expression of IFN-gamma in spleen and the systemic level of IL-12, IL-18 and TNF-alpha in tumor-bearing mice.

  19. The Digital Astronaut Project Computational Bone Remodeling Model (Beta Version) Bone Summit Summary Report

    Science.gov (United States)

    Pennline, James; Mulugeta, Lealem

    2013-01-01

    Under the conditions of microgravity, astronauts lose bone mass at a rate of 1% to 2% a month, particularly in the lower extremities such as the proximal femur [1-3]. The most commonly used countermeasure against bone loss in microgravity has been prescribed exercise [4]. However, data has shown that existing exercise countermeasures are not as effective as desired for preventing bone loss in long duration, 4 to 6 months, spaceflight [1,3,5,6]. This spaceflight related bone loss may cause early onset of osteoporosis to place the astronauts at greater risk of fracture later in their lives. Consequently, NASA seeks to have improved understanding of the mechanisms of bone demineralization in microgravity in order to appropriately quantify this risk, and to establish appropriate countermeasures [7]. In this light, NASA's Digital Astronaut Project (DAP) is working with the NASA Bone Discipline Lead to implement well-validated computational models to help predict and assess bone loss during spaceflight, and enhance exercise countermeasure development. More specifically, computational modeling is proposed as a way to augment bone research and exercise countermeasure development to target weight-bearing skeletal sites that are most susceptible to bone loss in microgravity, and thus at higher risk for fracture. Given that hip fractures can be debilitating, the initial model development focused on the femoral neck. Future efforts will focus on including other key load bearing bone sites such as the greater trochanter, lower lumbar, proximal femur and calcaneus. The DAP has currently established an initial model (Beta Version) of bone loss due to skeletal unloading in femoral neck region. The model calculates changes in mineralized volume fraction of bone in this segment and relates it to changes in bone mineral density (vBMD) measured by Quantitative Computed Tomography (QCT). The model is governed by equations describing changes in bone volume fraction (BVF), and rates of

  20. Birth Weight Could Influence Bone Mineral Contents of 10- to 18-Year-Old Korean Adolescents: Results from the Korea National Health and Nutrition Examination Survey (KNHANES) 2010.

    Science.gov (United States)

    Cho, Won Kyoung; Ahn, Moonbae; Jeon, Yeon Jin; Jung, In Ah; Han, Kyungdo; Kim, Shin Hee; Cho, Kyoung Soon; Park, So Hyun; Jung, Min Ho; Suh, Byung-Kyu

    2016-01-01

    We investigate the relationship between birth weight (BW) and bone mineral content (BMC) in Korean adolescents. Data were obtained from the Korea National Health and Nutrition Examination Survey conducted in 2010. Baseline characteristics were compared according to age- and sex-specific BMC quartiles of total body less head (TBLH), lumbar spine (LS) and femur neck (FN) in 10- to 18-year-old adolescents (male = 474, female = 394). BW showed a positive correlation with current weight-SDS (p = 0.006 in males, p = 0.008 in females). BW according to TBLH-BMC quartile groups (p for trend 16-year-old adolescents) and FN-BMC (OR = 2.62 in males, OR = 3.06 in >16-year-old adolescents) after adjusting for age, height, smoking, drinking, metabolic equivalent of task, and gestational age. BW might be one of the determinant factors of BMC in Korean adolescents. © 2016 S. Karger AG, Basel.

  1. Skeletal muscle fat content is inversely associated with bone strength in young girls.

    Science.gov (United States)

    Farr, Joshua N; Funk, Janet L; Chen, Zhao; Lisse, Jeffrey R; Blew, Robert M; Lee, Vinson R; Laudermilk, Monica; Lohman, Timothy G; Going, Scott B

    2011-09-01

    Childhood obesity is an established risk factor for metabolic disease. The influence of obesity on bone development, however, remains controversial and may depend on the pattern of regional fat deposition. Therefore, we examined the associations of regional fat compartments of the calf and thigh with weight-bearing bone parameters in girls. Data from 444 girls aged 9 to 12 years from the Jump-In: Building Better Bones study were analyzed. Peripheral quantitative computed tomography (pQCT) was used to assess bone parameters at metaphyseal and diaphyseal sites of the femur and tibia along with subcutaneous adipose tissue (SAT, mm(2) ) and muscle density (mg/cm(3) ), an index of skeletal muscle fat content. As expected, SAT was positively correlated with total-body fat mass (r = 0.87-0.89, p fat mass (r = -0.24 to -0.28, p bone length, maturity, and ethnicity as independent variables showed significant associations between muscle density and indices of bone strength at metaphyseal (β = 0.13-0.19, p bone strength were nonsignificant at all skeletal sites (β = 0.03-0.05, p > .05), except the distal tibia (β = 0.09, p = .03). In conclusion, skeletal muscle fat content of the calf and thigh is inversely associated with weight-bearing bone strength in young girls. Copyright © 2011 American Society for Bone and Mineral Research.

  2. Comparação entre medidas de descarga, simetria e transferência de peso em indivíduos com e sem hemiparesia Comparison between bearing, symmetry, and transfer weight measurements in subjects with or without hemiparesis

    Directory of Open Access Journals (Sweden)

    Emerson Fachin Martins

    2011-09-01

    Full Text Available Avaliação da Simetria e Transferência de Peso (ASTP foi indicada para se fazer associação entre simetria e atividades funcionais nas hemiparesias, apontando simétricos como mais capacitados. Contudo, tais relações não são claras e divergem com evidências que sugerem assimetrias como estratégias funcionais. Assim, objetivou-se verificar se as medidas subjetivamente determinadas pela ASTP concordam com medidas calculas pela descarga de peso entre os pés. Realizou-se estudo observacional do tipo transversal para amostra de sujeitos com hemiparesia (n=20 pareados por idade e gênero a controles (n=20. Os participantes submeteram-se a procedimentos para obtenção de escore determinado pela ASTP e para cálculo da razão de simetria (RS na descarga de peso entre os pés obtido por meio de duas balanças digitais. Os resultados obtidos pela ASTP identificaram apenas um sujeito com hemiparesia apresentando simetria, dentre os quatro sujeitos identificados pela RS como simétricos. Ainda, a ASTP não diferenciou assimetrias com sobrecarga para o lado afetado e apresentou correlação significativa somente quando os escores foram analisados com os valores de RSAssessment of symmetry and weight-transfer (ASWT was indicated to relate symmetry and functional activity in the hemiparesis, pointing as the most qualified symmetrical. However, such relationships are not clear and disagree with evidences suggesting asymmetries as strategies for functional strategies. Then, it was proposed to verify the measurements subjectively determined by ASWT agree with measurements calculated by weight-bearing distribution for each foot. It was applied observational study with transversal design for sample of subjects with hemiparesis (n=20 matched by age and gender with controls (n=20. Participants were included in procedures toobtain scores by ASWT and to calculate symmetry ratio (SR in the weight-bearing between feet by digital scales. The results obtained by

  3. Are organohalogen contaminants a bears (Ursus maritimus)?

    DEFF Research Database (Denmark)

    Sonne, Christian; Dietz, Rune; Leifsson, PS

    2006-01-01

    Tissues of polar bears (Ursus maritimus) from East Greenland contain the highest concentrations of organohalogen contaminants (OHCs) among subpopulations of any mammalian species in the Arctic. Negative associations also have been found between OHC concentrations and bone mineral density and liver...... histology parameters for this subpopulation of polar bears. The present study examined the OHC concentrations and adverse effects on renal tissue for 75 polar bears collected during 1999 to 2002. Specific lesions were diffuse glomerular capillary wall thickening, mesangial glomerular deposits, tubular...

  4. 3D fabrication and characterization of phosphoric acid scaffold with a HA/β-TCP weight ratio of 60:40 for bone tissue engineering applications.

    Science.gov (United States)

    Wang, Yanen; Wang, Kai; Li, Xinpei; Wei, Qinghua; Chai, Weihong; Wang, Shuzhi; Che, Yu; Lu, Tingli; Zhang, Bo

    2017-01-01

    A key requirement for three-dimensional printing (3-DP) at room temperature of medical implants depends on the availability of printable and biocompatible binder-powder systems. Different concentration polyvinyl alcohol (PVA) and phosphoric acid solutions were chosen as the binders to make the artificial stent biocompatible with sufficient compressive strength. In order to achieve an optimum balance between the bioceramic powder and binder solution, the biocompatibility and mechanical properties of these artificial stent samples were tested using two kinds of binder solutions. This study demonstrated the printable binder formulation at room temperature for the 3D artificial bone scaffolds. 0.6 wt% PVA solution was ejected easily via inkjet printing, with a supplementation of 0.25 wt% Tween 80 to reduce the surface tension of the polyvinyl alcohol solution. Compared with the polyvinyl alcohol scaffolds, the phosphoric acid scaffolds had better mechanical properties. Though both scaffolds supported the cell proliferation, the absorbance of the polyvinyl alcohol scaffolds was higher than that of the phosphoric acid scaffolds. The artificial stents with a hydroxyapatite/beta-tricalcium phosphate (HA/β-TCP) weight ratios of 60:40 depicted good biocompatibility for both scaffolds. Considering the scaffolds' mechanical and biocompatible properties, the phosphoric acid scaffolds with a HA/β-TCP weight ratio of 60:40 may be the best combination for bone tissue engineering applications.

  5. Persistent organic pollutants, skull size and bone density of polar bears (Ursus maritimus) from East Greenland 1892-2015 and Svalbard 1964-2004

    DEFF Research Database (Denmark)

    Daugaard-Petersen, Tobias; Langebæk, Rikke; Rigét, Frank F

    2017-01-01

    and sex, BMD in East Greenland polar bears increased with increasing concentrations of persistent organic pollutants (POPs) i.e. ΣPCB (polychlorinated biphenyls), ΣHCH (hexachlorohexane), HCB (hexachlorobenzene) and ΣPBDE (polybrominated diphenyl ethers) while skull size increased with ΣHCH concentrations...... a continuous decrease in BMD from 1892 to 2015 (linear regression: p pollution period had the highest BMD. A similar decrease in BMD over time was not found for the East Greenland adult females. However, there was a non-significant trend...

  6. Relationship between Weight, Body Mass Index, and Bone Mineral Density in Men Referred for Dual-Energy X-Ray Absorptiometry Scan in Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Salamat

    2013-01-01

    Full Text Available Objective. Although several studies have investigated the association between body mass index (BMI and bone mineral density (BMD, the results are inconsistent. The aim of this study was to further investigate the relation between BMI, weight and BMD in an Iranian men population. Methods. A total of 230 men 50-79 years old were examined. All men underwent a standard BMD scans of hip (total hip, femoral neck, trochanter, and femoral shaft and lumbar vertebrae (L2-L4 using a Dual-Energy X-ray Absorptiometry (DXA scan and examination of body size. Participants were categorised in two BMI group: normal weight <25.0 kg/m2 and overweight and obese, BMI ≥ 25 kg/m2. Results. Compared to men with BMI ≥ 25, the age-adjusted odds ratio of osteopenia was 2.2 (95% CI 0.85, 5.93 and for osteoporosis was 4.4 (1.51, 12.87 for men with BMI < 25. It was noted that BMI and weight was associated with a high BMD, compatible with a diagnosis of osteoporosis. Conclusions. These data indicate that both BMI and weight are associated with BMD of hip and vertebrae and overweight and obesity decreased the risk for osteoporosis. The results of this study highlight the need for osteoporosis prevention strategies in elderly men as well as postmenopausal women.

  7. Development of a surrogate model based on patient weight, bone mass and geometry to predict femoral neck strains and fracture loads.

    Science.gov (United States)

    Taylor, Mark; Perilli, Egon; Martelli, Saulo

    2017-04-11

    Osteoporosis and related bone fractures are an increasing global burden in our ageing society. Areal bone mineral density assessed through dual energy X-ray absorptiometry (DEXA), the clinically accepted and most used method, is not sufficient to assess fracture risk individually. Finite element (FE) modelling has shown improvements in prediction of fracture risk, better than aBMD from DEXA, but is not practical for widespread clinical use. The aim of this study was to develop an adaptive neural network (ANN)-based surrogate model to predict femoral neck strains and fracture loads obtained from a previously developed population-based FE model. The surrogate model performance was assessed in simulating two loading conditions: the stance phase of gait and a fall. The surrogate model successfully predicted strains estimated by FE (r 2 =0.90-0.98 for level gait load case, r 2 =0.92-0.96 for the fall load case). Moreover, an ANN model based on three measurements obtainable in clinics (femoral neck length (level gait) or maximum femoral neck diameter (fall), femoral neck bone mass, body weight) was able to give reasonable predictions (r 2 =0.84-0.94) for all of the strain metrics and the estimated femoral neck fracture load. Overall, the surrogate model has potential for clinical applications as they are based on simple measures of geometry and bone mass which can be derived from DEXA images, accurately predicting FE model outcomes, with advantages over FE models as they are quicker and easier to perform. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. [Influence of weight reduction on leptin concentration and bone mineral density in patients with morbid obesity before and 6 months after bariatric surgery].

    Science.gov (United States)

    Walicka, Magdalena; Czerwińska, Ewa; Tałałaj, Marek; Marcinowska-Suchowierska, Ewa

    2009-01-01

    Leptin is considered to exert dual effect on bone metabolism: anabolic (through peripheral pathways) and antiosteogenic (through central nervous system). The total leptin's effect on bone is not known. The aim of the study was to examine bone metabolism and leptin concentration in patients with morbid obesity before and after bariatric surgery (BS). Forty one patients with morbid obesity selected for BS were included in the prospective study. Body mass index (BMI), serum leptin, parathyroid hormone (PTH), 25-hydroxy vitamin D (25(OH)D) concentrations and bone mineral density (BMD) in the lumbar spine (LS) and proximal femur (PF) were examined before and 6 months after BS. Before operation (mean BMI 44.0 kg/m(2)) mean leptin and PTH concentration was increased (accordingly 37.1 ng/ml and 82.7 pg/ml), mean 25OHD concentration was decreased to 4.3 ng/ml. Mean BMD was within the upper limit of the population reference range. Leptin concentration was positively correlated with BMI. There was no correlation of leptin with BMD (in LS and PF), PTH and 25(OH)D. Following the operation (mean BMI 31.8 kg/m(2)) mean leptin concentration decreased by 30.6 ng/ml (p BMD in LS increased by 0.067 g/cm(2) (p BMD (in both sites), PTH, 25(OH)D. Weight loss in patients with morbid obesity after BS leads to decrease in serum leptin, increase in BMD in LS and decrease in PF. These changes are accompanied by regression of hyperparathyroidism, which is probably secondary to vitamin D deficiency.

  9. Changes in Physical Fitness, Bone Mineral Density and Body Composition During Inpatient Treatment of Underweight and Normal Weight Females with Longstanding Eating Disorders

    Directory of Open Access Journals (Sweden)

    Solfrid Bratland-Sanda

    2012-01-01

    Full Text Available The purpose of this study was to examine changes in aerobic fitness, muscular strength, bone mineral density (BMD and body composition during inpatient treatment of underweight and normal weight patients with longstanding eating disorders (ED. Twenty-nine underweight (BMI < 18.5, n = 7 and normal weight (BMI ≥ 18.5, n = 22 inpatients (mean (SD age: 31.0 (9.0 years, ED duration: 14.9 (8.8 years, duration of treatment: 16.6 (5.5 weeks completed this prospective naturalistic study. The treatment consisted of nutritional counseling, and 2 × 60 min weekly moderate intensive physical activity in addition to psychotherapy and milieu therapy. Underweight patients aimed to increase body weight with 0.5 kg/week until the weight gain goal was reached. Aerobic fitness, muscular strength, BMD and body composition were measured at admission and discharge. Results showed an increase in mean muscular strength, total body mass, fat mass, and body fat percentage, but not aerobic capacity, among both underweight and normal weight patients. Lumbar spine BMD increased among the underweight patients, no changes were observed in BMD among the normal weight patients. Three out of seven underweight patients were still underweight at discharge, and only three out of nine patients with excessive body fat (i.e., >33% managed to reduce body fat to normal values during treatment. These results calls for a more individualized treatment approach to achieve a more optimal body composition among both underweight and normal to overweight patients with longstanding ED.

  10. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  11. Ready to Use Tissue Construct for Military Bone & Cartilage Trauma

    Science.gov (United States)

    2013-10-01

    bone and cartilage constructs for rats and rabbits . Early joint motion and ambulation are important in human patients. We hypothesize that our ready...partial weight bearing, and ambulation. Our hypothesis is based on compelling preliminary data in small animal models, such as mice, rats and rabbits . The...abnormalities were found during the necropsy exam by the ICM veterinarian. Dogs 5 and 6, with allograft implants underwent their full 16 weeks post

  12. To Compare the Effect of Pre and Post Weight Bearing Anxiety, Depression in Conventional and Modular Prosthesis on Unilateral Transtibial Amputees

    Directory of Open Access Journals (Sweden)

    R. Raja

    2014-01-01

    Full Text Available Aims and Objectives: To compare the effect of anxiety and depression on unilateral trans tibial amputees those who are using conventional and modular patellar tendon bearing (PTB prosthesis with stump exercises. Material and Methods: A sample of 40 persons with below knee amputation who were trained to wear prosthesis were studied with an experimental comparative study design. Patients who were admitted at Kempegowda Institute of Medical Sciences and Research Centre, Bangalore, K. S. Hegde Medical Academy and Research Centre Mangalore, (N=150 who underwent unilateral transtibial, transfemoral and other amputations between August 2009 - December 2011. To find out peri and postoperative prosthetic fitting, anxiety and depression level of transtibial amputees who wear conventional and modular PTB prosthesis. 3 years of experimental comparative study reveals that the outcome measures of peri and post-operative anxiety and depression level while using conventional PTB prosthesis with stump exercises and modular PTB prosthesis with stump exercises on unilateral transtibial amputees. Results: The unilateral transtibial amputees who were trained with modular prosthesis along with stump exercises group patients anxiety and depression levels are reduced as compared to the unilateral transtibial amputees who were trained with conventional PTB prosthesis along with stump exercises. There is no significant difference seen in both the groups while giving stump exercises alone. Conclusion: The unilateral transtibial amputees who were trained with modular prosthesis along with stump exercises group, patient’s anxiety and depression levels are reduced drastically.

  13. Five-dimensional long bones biometry for estimation of femur length and fetal weight at term compared to two-dimensional ultrasound: a pilot study.

    Science.gov (United States)

    Laban, Mohamed; Alanwar, Ahmed A; Etman, Mohamed K; Elsokkary, Mohammed S; Elkotb, Ahmed M; Hasanien, Ahmad S; KhalafAllah, Ali E; Noah, Nancy M

    2017-07-27

    This study aimed to evaluate accuracy of five-dimensional long bones (5D LB) compared to two-dimensional ultrasound (2DUS) biometry to predict fetal weight among normal term women. Fifty six normal term women were recruited at Ain Shams Maternity Hospital, Egypt from 14 May to 30 November 2015. Fetal weight was estimated by Hadlock's IV formula using 2DUS and 5D LB. Estimated fetal weights (EFW) by 2DUS and 5D LB were compared with actual birth weights (ABW). Mean femur length (FL) was 7.07 ± 0.73 cm and 6.74 ± 0.67 cm by 2DUS and 5D LB (p = .02). EFW was 3309.86 ± 463.06 g by 2DUS and 3205.46 ± 447.85 g by 5D LB (p = .25). No statistical difference was observed between ABW and EFW by 2DUS (p = .7) or 5D LB (p = .45). Positive correlation was found between EFW by 2DUS, 5D LB, and ABW (r = 0.67 and 0.7; p < .001). There was strong agreement between FL measured by 2DUS and 5D LB (ICC = 0.78), and perfect agreement between EFW by 2DUS and EFW by 5D LB (ICC = 0.918). 2DUS and 5D LB showed mean absolute percentage error for EFW of 10 ± 7% and 8 ± 7% compared to ABW (p = .15). 2DUS and 5D LB had same accuracy for fetal weight estimation at normal term pregnancy.

  14. Bone Mineral Density Changes after Physical Training and Calcium Intake in Students with Attention Deficit and Hyper Activity Disorders

    Science.gov (United States)

    Arab ameri, Elahe; Dehkhoda, Mohammad Reza; Hemayattalab, Rasool

    2012-01-01

    In this study we investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with attention deficit and hyper activity (ADHD) disorder. For this reason 54 male students with ADHD (age 8-12 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical…

  15. Bone Mineral Density Accrual in Students with Autism Spectrum Disorders: Effects of Calcium Intake and Physical Training

    Science.gov (United States)

    Goodarzi, Mahmood; Hemayattalab, Rasool

    2012-01-01

    The purpose of this study was to investigate the effects of weight bearing exercise and calcium intake on bone mineral density (BMD) of students with autism spectrum disorders. For this reason 60 boy students with autism disorder (age 8-10 years old) were assigned to four groups with no differences in age, BMD, calcium intake, and physical…

  16. Bone Turnover Markers and Lean Mass in Pubescent Boys: Comparison Between Elite Soccer Players and Controls.

    Science.gov (United States)

    Nebigh, Ammar; Abed, Mohamed Elfethi; Borji, Rihab; Sahli, Sonia; Sellami, Slaheddine; Tabka, Zouhair; Rebai, Haithem

    2017-11-01

    The aim of this study was to examine the relationship between bone mass and bone turnover markers with lean mass (LM) in pubescent soccer players. Two groups participated in this study, which included 65 elite young soccer players who trained for 6-8 hours per week and 60 controls. Bone mineral density; bone mineral content in the whole body, lower limbs, lumbar spine, and femoral neck; biochemical markers of osteocalcin; bone-specific alkaline phosphatase; C-telopeptide type I collagen; and total LM were assessed. Young soccer players showed higher bone mineral density and bone mineral content in the whole body and weight-bearing sites (P < .001). Indeed, the total LM correlated with whole-body bone mineral density and bone mineral content (P < .001). There were significant differences within the bone formation markers and osteocalcin (formation)/C-telopeptide type I collagen (resorption) ratio between young soccer players compared with the control group, but no significant difference in C-telopeptide type I collagen was observed between the 2 groups. This study showed a significant positive correlation among bone-specific alkaline phosphatase, osteocalcin, and total LM (r = .29; r = .31; P < .05) only for the young soccer players. Findings of this study highlight the importance of soccer practice for bone mineral parameters and bone turnover markers during the puberty stage.

  17. An update on childhood bone health: mineral accrual, assessment and treatment.

    Science.gov (United States)

    Sopher, Aviva B; Fennoy, Ilene; Oberfield, Sharon E

    2015-02-01

    To update the reader's knowledge about the factors that influence bone mineral accrual and to review the advances in the assessment of bone health and treatment of bone disorders. Maternal vitamin D status influences neonatal calcium levels, bone mineral density (BMD) and bone size. In turn, BMD z-score tends to track in childhood. These factors highlight the importance of bone health as early as fetal life. Dual-energy x-ray absorptiometry is the mainstay of clinical bone health assessment in this population because of the availability of appropriate reference data. Recently, more information has become available about the assessment and treatment of bone disease in chronically ill pediatric patients. Bone health must become a health focus starting prenatally in order to maximize peak bone mass and to prevent osteoporosis-related bone disease in adulthood. Vitamin D, calcium and weight-bearing activity are the factors of key importance throughout childhood in achieving optimal bone health as BMD z-score tracks through childhood and into adulthood. Recent updates of the International Society for Clinical Densitometry focus on the appropriate use of dual-energy x-ray absorptiometry in children of all ages, including children with chronic disease, and on the treatment of pediatric bone disease.

  18. Evaluation of knee-joint cartilage and menisci ten years after isolated and combined ruptures of the medial collateral ligament. Investigation by weight-bearing radiography, MR imaging and analysis of proteoglycan fragments in the joint fluid

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, M. [Univ. Hospital, Linkoeping (Sweden). Dept. of Orthopaedics and Sports Medicine (Sweden); Thuomas, K.Aa. [Univ. Hospital, Linkoeping (Sweden). Dept. of Diagnostic Radiology; Messner, K. [Univ. Hospital, Linkoeping (Sweden). Dept. of Orthopaedics and Sports Medicine (Sweden)

    1997-01-01

    Purpose: To compare radiography, MR imaging, and chemical analysis in posttraumatic knees. Material and Methods: Ten matched pairs with either isolated partial rupture of the medial collateral ligament or combined medial collateral ligament/anterior cruciate ligament rupture were compared with matched controls 10 years after trauma. Weight-bearing radiographys and MR examinations were compared with proteoglycan fragment concentrations in the joint fluid. Results: The chemical analyses were similar in both trauma groups. The radiographs showed mild signs of arthrosis in half the patients with combined injury. MR images showed almost all injuried knees to have degenerative changes of various degrees in the cartilage and menisci. More frequent and more advanced changes were found after combined injury than after isolated injury (p<0.01). There were no changes in the controls. Conclusion: MR imaging is the best method for detecting and differentiating early posttraumatic knee arthrosis. (orig.).

  19. Optimizing Bone Defect Reconstruction-Balanced Cable Transport With Circular External Fixation.

    Science.gov (United States)

    Quinnan, Stephen Matthew; Lawrie, Charles

    2017-10-01

    Distraction osteogenesis has proven effective in the management of tibial bone loss from severe trauma and infection. Unfortunately, pain and scarring from wires and half pins dragging through the skin and the required prolonged time in the external fixator make treatment difficult. Cable bone transport has been shown to improve cosmesis and decrease pain during transport. However, the published methods have limitations in that they have poor control of transport segment alignment, do not allow for lengthening of the limb, and do not permit weight bearing during the treatment process. We describe a novel method of cable bone transport that addresses each of these limitations with excellent control of alignment including the transport segment, easy conversion to allow limb lengthening, and full weight bearing throughout the treatment process. In addition, the method facilitates multifocal transport and safe conversion to intramedullary nail fixation, both of which can be used to substantially shorten the time of reconstruction.

  20. Diffusion-weighted magnetic resonance imaging in painful bone metastases: Using quantitative apparent diffusion coefficient as an indicator of effectiveness of single fraction versus multiple fraction radiotherapy.

    Science.gov (United States)

    Musio, Daniela; De Francesco, Irene; Galdieri, Alessandro; Marsecano, Claudia; Piciocchi, Alfonso; Napoli, Alessandro; De Felice, Francesca; Tombolini, Vincenzo

    2018-01-01

    Bone metastases are a common cause of cancer-related pain. The aim of this study is to determine the optimal radiotherapy schedule for the treatment of painful bone metastases and verify if could cause different biological effects on bone. This has been achieved using functional Magnetic Resonance Imaging (MRI) with diffusion-weighted imaging (DWI). Fifteen patients received Multiple Fractions Radiation Therapy (MFRT) with a total dose of 30Gy in 10 daily fractions of 3Gy given over 2 weeks and 15 patients received a Single Fraction Radiation Therapy (SFRT) with a dose of 8Gy. Quantitative Apparent Diffusion Coefficient (ADC) values after SFRT or MFRT were compared with response to treatment (pain relief), assessed by Visual Analogue Scale (VAS) before radiotherapy and at 1 and 3 months after the completion of treatment. The two schedules had equal efficacy in terms of pain control, without any difference at 1 and 3 months post radiotherapy. In both treatments, pain reduction was related to an increase in the ADC. However, the median ADC value had an increase of 575 points between the baseline and 3 months (from 1010 to 1585, p=0.02) in the 30Gy group, while it was only 178 points (from 1417 to 1595) in the 8Gy group. The increase in the ADC values after radiotherapy corresponds to increased cell death. Despite an equal pain control, MFRT treatment seems to be more effective to achieve cancer cells kill. Our preliminary data could also explain the higher retreatment rates in SFRT vs MFRT in long survivors. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study.

    Directory of Open Access Journals (Sweden)

    Matthew D Blackledge

    Full Text Available We describe our semi-automatic segmentation of whole-body diffusion-weighted MRI (WBDWI using a Markov random field (MRF model to derive tumor total diffusion volume (tDV and associated global apparent diffusion coefficient (gADC; and demonstrate the feasibility of using these indices for assessing tumor burden and response to treatment in patients with bone metastases. WBDWI was performed on eleven patients diagnosed with bone metastases from breast and prostate cancers before and after anti-cancer therapies. Semi-automatic segmentation incorporating a MRF model was performed in all patients below the C4 vertebra by an experienced radiologist with over eight years of clinical experience in body DWI. Changes in tDV and gADC distributions were compared with overall response determined by all imaging, tumor markers and clinical findings at serial follow up. The segmentation technique was possible in all patients although erroneous volumes of interest were generated in one patient because of poor fat suppression in the pelvis, requiring manual correction. Responding patients showed a larger increase in gADC (median change = +0.18, range = -0.07 to +0.78 × 10(-3 mm2/s after treatment compared to non-responding patients (median change = -0.02, range = -0.10 to +0.05 × 10(-3 mm2/s, p = 0.05, Mann-Whitney test, whereas non-responding patients showed a significantly larger increase in tDV (median change = +26%, range = +3 to +284% compared to responding patients (median change = -50%, range = -85 to +27%, p = 0.02, Mann-Whitney test. Semi-automatic segmentation of WBDWI is feasible for metastatic bone disease in this pilot cohort of 11 patients, and could be used to quantify tumor total diffusion volume and median global ADC for assessing response to treatment.

  2. Elbow arthrodesis following a pathological fracture in a dog with bilateral humeral bone cysts.

    Science.gov (United States)

    Choate, C J; Arnold, G A

    2011-01-01

    A 10-month-old Yorkshire Terrier was referred for evaluation of an intermittent right thoracic limb lameness that acutely progressed to non-weight-bearing. A diagnosis of bilateral bone cysts of the humeral condyles with a pathologic fracture of the lateral aspect of the right humeral condyle was given following radiographic and histopathologic examination. Bilateral pathology necessitated consideration of treatment modalities other than amputation of the limb, as previously reported. Arthrodesis of the right elbow using a 2.0 mm locking bone plate was performed. The dog did not experience any complications associated with the procedure or the contralateral bone cyst.

  3. [Effects of exercise and sports on bone health in pre- and postmenopausal women.

    Science.gov (United States)

    Miyakoshi, Naohisa

    Exercise and sports are an important means of improving bone health in pre- and postmenopausal women. Generally accepted strategies to improve bone health in this population aim to minimize age-related bone loss. In terms of physical activity, those forms that feature high-impact or weight-bearing activity appear to exert positive influences on bone health. Results of recent meta-analyses have shown that high-impact exercise significantly improves bone mineral density(BMD)in pre- and postmenopausal women. Studies have also shown that walking as an exercise therapy for more than 6 months exerts significant and positive effects on femoral neck BMD in peri- and postmenopausal women. Exercise and sports can be strongly recommended as non-pharmacologic interventions for improving bone health in pre- and postmenopausal women.

  4. Bone Structural Changes and Estimated Strength After Gastric Bypass Surgery Evaluated by HR-pQCT

    DEFF Research Database (Denmark)

    Frederiksen, Katrine Diemer; Hanson, Stine; Hansen, Stinus

    2016-01-01

    Roux-en-Y gastric bypass surgery (RYGB) is an effective treatment of morbid obesity, with positive effects on obesity-related complications. The treatment is associated with bone loss, which in turn might increase fracture risk. The aim of this study was to evaluate changes in bone mineral densit...... increased risk of fracture in bariatric patients after surgery. We only observed bone structural changes in the weight-bearing bone, which indicates that mechanical un-loading is the primary mediator.......Roux-en-Y gastric bypass surgery (RYGB) is an effective treatment of morbid obesity, with positive effects on obesity-related complications. The treatment is associated with bone loss, which in turn might increase fracture risk. The aim of this study was to evaluate changes in bone mineral density...

  5. Low bone mineral density in patients with well-suppressed HIV infection: association with body weight, smoking, and prior advanced HIV disease.

    Science.gov (United States)

    Kooij, Katherine W; Wit, Ferdinand W N M; Bisschop, Peter H; Schouten, Judith; Stolte, Ineke G; Prins, Maria; van der Valk, Marc; Prins, Jan M; van Eck-Smit, Berthe L F; Lips, Paul; Reiss, Peter

    2015-02-15

    Human immunodeficiency virus (HIV) and combination antiretroviral therapy (cART) may both contribute to the higher prevalence of osteoporosis and osteopenia in HIV-infected individuals. Using dual-energy X-ray absorptiometry, we compared lumbar spine, total hip, and femoral neck bone mineral density (BMD) in 581 HIV-positive (94.7% receiving cART) and 520 HIV-negative participants of the AGEhIV Cohort Study, aged ≥45 years. We used multivariable linear regression to investigate independent associations between HIV, HIV disease characteristics, ART, and BMD. The study population largely consisted of men who have sex with men (MSM). Osteoporosis was significantly more prevalent in those with HIV infection (13.3% vs 6.7%; Pbody weight and smoking, being HIV-positive was no longer independently associated with BMD. Low body weight was more strongly negatively associated with BMD in HIV-positive persons with a history of a Centers for Disease Control and Prevention class B or C event. Interestingly, regardless of HIV status, younger MSM had significantly lower BMD than older MSM, heterosexual men, and women. The observed lower BMD in treated HIV-positive individuals was largely explained by both lower body weight and more smoking. Having experienced symptomatic HIV disease, often associated with weight loss, was another risk factor. The low BMD observed in younger MSM remains unexplained and needs further study. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. The longitudinal effects of physical activity and dietary calcium on bone mass accrual across stages of pubertal development.

    Science.gov (United States)

    Lappe, Joan M; Watson, Patrice; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J; Oberfield, Sharon; Shepherd, John; Winer, Karen K; Zemel, Babette

    2015-01-01

    Childhood and adolescence are critical periods of bone mineral content (BMC) accrual that may have long-term consequences for osteoporosis in adulthood. Adequate dietary calcium intake and weight-bearing physical activity are important for maximizing BMC accrual. However, the relative effects of physical activity and dietary calcium on BMC accrual throughout the continuum of pubertal development in childhood remains unclear. The purpose of this study was to determine the effects of self-reported dietary calcium intake and weight-bearing physical activity on bone mass accrual across the five stages of pubertal development in a large, diverse cohort of US children and adolescents. The Bone Mineral Density in Childhood study was a mixed longitudinal study with 7393 observations on 1743 subjects. Annually, we measured BMC by dual-energy X-ray absorptiometry (DXA), physical activity and calcium intake by questionnaire, and pubertal development (Tanner stage) by examination for up to 7 years. Mixed-effects regression models were used to assess physical activity and calcium intake effects on BMC accrual at each Tanner stage. We found that self-reported weight-bearing physical activity contributed to significantly greater BMC accrual in both sexes and racial subgroups (black and nonblack). In nonblack males, the magnitude of the activity effect on total body BMC accrual varied among Tanner stages after adjustment for calcium intake; the greatest difference between high- and low-activity boys was in Tanner stage 3. Calcium intake had a significant effect on bone accrual only in nonblack girls. This effect was not significantly different among Tanner stages. Our findings do not support differential effects of physical activity or calcium intake on bone mass accrual according to maturational stage. The study demonstrated significant longitudinal effects of weight-bearing physical activity on bone mass accrual through all stages of pubertal development. © 2014 American

  7. Effects of Acute Fatigue of the Tibialis Anterior Due to a Weight-Bearing Muscle Activity on the Ankle Joint Position Sense in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Ali Ghanbari

    2014-09-01

    Full Text Available Background: Joint position sense (JPS is comprised of sensory input from several sources, including skin, joint capsule/ligaments, and muscular receptors. If the muscle receptors play a leading role in detecting joint position awareness, then muscle fatigue might yield a declination in JPS. The aim of this study was to evaluate if a sustained fatiguing contraction of the tibialis anterior (ankle dorsiflexor could alter the ankle JPS. Methods: This was a cross-sectional study in which 40 healthy subjects (age, 23.9±2.3 years; height, 172.6±5.7 cm; weight, 67.8±4.7 kg were recruited. Subjects were asked to recognize 2 pre-recognized positions (10° in dorsiflexion (DF and 21° in plantarflexion (PF for 2 experimental conditions: normal and fatigued. Muscular fatigue was induced in the tibialis anterior of the dominant leg by using an isometric test. The average of the absolute angular error (AAE deviations from the target positions of three trials were recorded as scores for both fatigue and non-fatigue conditions. Results: There was significant decrease in subjects’ abilities to recognize active and passive repositioning of their ankle after a fatigue protocol (P=0.0001. Conclusion: The acuity of the ankle JPS is reduced subsequent to a fatigue protocol.

  8. Determination of relative bioavailability of zinc in a petit suisse cheese using weight gain and bone zinc content in rats as markers.

    Science.gov (United States)

    Salgueiro, J; Leonardi, N; Zubillaga, M; Weill, R; Goldman, C; Calmanovici, G; Barrado, A; Sarrasague, M Martinez; Boccio, J

    2005-06-01

    The aim of the study was to determine the relative bioavailability of zinc gluconate stabilized with glycine in a Petit Suisse cheese from an infant dessert. Weight gain and bone zinc content were the nutritional responses evaluated for the diets of different zinc content: 2 ppm (basal) and 5, 10, and 30 ppm from zinc gluconate stabilized with glycine and zinc sulfate. Nonlinear regression analysis of the fitted curves for weight gain determined a relative zinc bioavailability of 100% for the Ymax ratio and 96% for Ymax/t1/2 ratio for zinc gluconate stabilized with glycine (R2=0.7996 for zinc sulfate and 0.8665 for zinc gluconate stabilized with glycine). The slope ratio analysis from linear regression of femur zinc determined a relative zinc bioavailability of 93% for zinc gluconate stabilized with glycine (R2=0.8693 for zinc sulfate and 0.8307 for zinc gluconate stabilized with glycine). Zinc gluconate stabilized with glycine has similar bioavailability as zinc sulfate in a Petit Suisse cheese nutritional matrix, with the advantage that the stabilized compound does not modify the sensorial characteristics of the fortified cheese.

  9. Human bone marrow mesenchymal stem cells display anti-cancer activity in SCID mice bearing disseminated non-Hodgkin's lymphoma xenografts.

    Directory of Open Access Journals (Sweden)

    Paola Secchiero

    Full Text Available BACKGROUND: Although multimodality treatment can induce high rate of remission in many subtypes of non-Hodgkin's lymphoma (NHL, significant proportions of patients relapse with incurable disease. The effect of human bone marrow (BM mesenchymal stem cells (MSC on tumor cell growth is controversial, and no specific information is available on the effect of BM-MSC on NHL. METHODOLOGY/PRINCIPAL FINDINGS: The effect of BM-MSC was analyzed in two in vivo models of disseminated non-Hodgkin's lymphomas with an indolent (EBV(- Burkitt-type BJAB, median survival = 46 days and an aggressive (EBV(+ B lymphoblastoid SKW6.4, median survival = 27 days behavior in nude-SCID mice. Intra-peritoneal (i.p. injection of MSC (4 days after i.p. injection of lymphoma cells significantly increased the overall survival at an optimal MSC:lymphoma ratio of 1:10 in both xenograft models (BJAB+MSC, median survival = 58.5 days; SKW6.4+MSC, median survival = 40 days. Upon MSC injection, i.p. tumor masses developed more slowly and, at the histopathological observation, exhibited a massive stromal infiltration coupled to extensive intra-tumor necrosis. In in vitro experiments, we found that: i MSC/lymphoma co-cultures modestly affected lymphoma cell survival and were characterized by increased release of pro-angiogenic cytokines with respect to the MSC, or lymphoma, cultures; ii MSC induce the migration of endothelial cells in transwell assays, but promoted endothelial cell apoptosis in direct MSC/endothelial cell co-cultures. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that BM-MSC exhibit anti-lymphoma activity in two distinct xenograft SCID mouse models of disseminated NHL.

  10. MR imaging of hematopoietic regions in bone marrow of aplastic anemia. Diagnostic usefulness of opposed phase T1-weighted images

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yasuo; Tanabe, Yoshihiro; Amano, Maki; Kumazaki, Tatsuo [Nippon Medical School, Tokyo (Japan)

    1996-01-01

    The signal intensity of hematopoietic regions in the marrow of aplastic anemia were investigated on opposed phase T1-weighted images (op-T1WI) with a 0.5-Tesla MR unit. Hematopoietic regions were classified into two groups: low intensity hematopoietic areas (LH) isointense to normal marrow and high intensity hematopoietic regions (HH) with higher intensity than normal marrow on op-T1WI. The signal intensity of LH was significantly lower than that of HH on STIR. LH converted into HH with improvement of laboratory data after therapy, whereas HH decreased with impairment of data. HH were hyperintense to cerebrospinal fluid on op-T1WI. These results indicated that the signal intensity of hematopoietic regions on op-T1WI reflected the cellularity in these regions and that aplastic anemia included hypercellular regions relative to normal marrow. (author).

  11. Effects of Dietary Fermented (CBT on Growth Performance, Relative Organ Weights, Cecal Microflora, Tibia Bone Characteristics, and Meat Qualities in Pekin Ducks

    Directory of Open Access Journals (Sweden)

    S T. Oh

    2015-01-01

    Full Text Available Fermented Chlorella vulgaris was examined for its effects on growth performance, cecal microflora, tibia bone strength, and meat qualities in commercial Pekin ducks. A total of three hundred, day-old male Pekin ducks were divided into three groups with five replicates (n = 20 ducklings per replicate and offered diets supplemented with commercial fermented C. vulgaris (CBT® at the level of 0, 1,000 or 2,000 mg/kg, respectively for 6 wks. The final body weight was linearly (p = 0.001 increased as the addition of fermented C. vulgaris into diets increased. Similarly, dietary C. vulgaris linearly increased body weight gain (p = 0.001 and feed intake (p = 0.001 especially at the later days of the feeding trial. However, there was no C. vulgaris effect on feed efficiency. Relative weights of liver were significantly lowered by dietary fermented C. vulgaris (linear effect at p = 0.044. Dietary fermented C. vulgaris did not affect total microbes, lactic acid bacteria, and coliforms in cecal contents. Finally, meat quality parameters such as meat color (i.e., yellowness, shear force, pH, or water holding capacity were altered by adding fermented C. vulgaris into the diet. In our knowledge, this is the first report to show that dietary fermented C. vulgaris enhanced meat qualities of duck meats. In conclusion, our study indicates that dietary fermented C. vulgaris exerted benefits on productivity and can be employed as a novel, nutrition-based strategy to produce value-added duck meats.

  12. Effects of Dietary Fermented Chlorella vulgaris (CBT®) on Growth Performance, Relative Organ Weights, Cecal Microflora, Tibia Bone Characteristics, and Meat Qualities in Pekin Ducks

    Science.gov (United States)

    Oh, S T.; Zheng, L.; Kwon, H. J.; Choo, Y. K.; Lee, K. W.; Kang, C. W.; An, B. K.

    2015-01-01

    Fermented Chlorella vulgaris was examined for its effects on growth performance, cecal microflora, tibia bone strength, and meat qualities in commercial Pekin ducks. A total of three hundred, day-old male Pekin ducks were divided into three groups with five replicates (n = 20 ducklings per replicate) and offered diets supplemented with commercial fermented C. vulgaris (CBT®) at the level of 0, 1,000 or 2,000 mg/kg, respectively for 6 wks. The final body weight was linearly (p = 0.001) increased as the addition of fermented C. vulgaris into diets increased. Similarly, dietary C. vulgaris linearly increased body weight gain (p = 0.001) and feed intake (p = 0.001) especially at the later days of the feeding trial. However, there was no C. vulgaris effect on feed efficiency. Relative weights of liver were significantly lowered by dietary fermented C. vulgaris (linear effect at p = 0.044). Dietary fermented C. vulgaris did not affect total microbes, lactic acid bacteria, and coliforms in cecal contents. Finally, meat quality parameters such as meat color (i.e., yellowness), shear force, pH, or water holding capacity were altered by adding fermented C. vulgaris into the diet. In our knowledge, this is the first report to show that dietary fermented C. vulgaris enhanced meat qualities of duck meats. In conclusion, our study indicates that dietary fermented C. vulgaris exerted benefits on productivity and can be employed as a novel, nutrition-based strategy to produce value-added duck meats. PMID:25557680

  13. Return to sports after arthroscopic debridement and bone marrow stimulation of osteochondral talar defects: a 5- to 24-year follow-up study

    NARCIS (Netherlands)

    van Eekeren, I. C. M.; van Bergen, C. J. A.; Sierevelt, I. N.; Reilingh, M. L.; van Dijk, C. N.

    2016-01-01

    Osteochondral defects (OCD) often have a severe impact on the quality of life due to deep ankle pain during and after weight bearing, which prevents young patients from leading an active life. Arthroscopic debridement and bone marrow stimulation are currently the gold standard treatment. The purpose

  14. Alterations in calcium homeostasis and bone during actual and simulated space flight

    Science.gov (United States)

    Wronski, T. J.; Morey, E. R.

    1983-01-01

    Skeletal alteration in experimental animals induced by actual and simulated spaceflight are discussed, noting that the main factor contributing to bone loss in growing rats placed in orbit aboard Soviet Cosmos biosatellites appears to be diminished bone formation. Mechanical unloading is seen as the most obvious cause of bone loss in a state of weightlessness. Reference is made to a study by Roberts et al. (1981), which showed that osteoblast differentiation in the periodontal ligament of the maxilla was suppressed in rats flown in space. Since the maxilla lacks a weight-bearing function, this finding indicates that the skeletal alterations associated with orbital flight may be systemic rather than confined to weight-bearing bones. In addition, the skeletal response to simulated weightlessness may also be systemic (wronski and Morey, 1982). In suspended rats, the hindlimbs lost all weight-bearing functions, while the forelimbs maintained contact with the floor of the hypokinetic model. On this basis, it was to be expected that there would be different responses at the two skeletal sites if the observed abnormalities were due to mechanical unloading alone. The changes induced by simulated weightlessness in the proximal tibia and humerus, however, were generally comparable. This evidence for systemic skeletal responses has drawn attention to endocrine factors.

  15. [The use of tantalum cones for reconstruction of bone defects in revision total knee arthroplasty].

    Science.gov (United States)

    Gebauer, M; Gehrke, T; Jakobs, O

    2015-02-01

    Revision arthroplasty of the knee is often associated with substantial femoral and/or tibial bone loss. Tantalum cones are used to reconstruct these defects and to improve initial stability. This requires an implantation in the "press-fit" technique with maximum contact to the host bone. Tantalum cones may be used in grade 2-3 femoral and/or tibial defects according to the AORI (Anderson Orthopedic Research Institute) classification system. There are no contraindications described. After removal of the implant and cement remnants, bone defects have to be evaluated. A tantalum cone which adequately fills the bone defect is implanted using the "press-fit" technique. If necessary, saving resection of surplus bone to fit the cone properly. Gaps between the cone and the host bone are filled with cancellous bone in "impaction-bone-grafting" technique to increase the area of contact. Fitting the revision knee prosthesis and fixing with the use of bone cement. Postoperative physiotherapy is adjusted to the result of the reconstruction. In most cases with stable reconstruction, mobilization with full weight-bearing and the use of two crutches can be performed. Additional bone grafting may require a partial weight-bearing regimen for postoperative mobilization. Physiotherapy to improve range of motion is performed starting on postoperative day 1. Several studies reported promising midterm results (observation period about 36 months) after implantation of tantalum cones in revision knee arthroplasty. There is consistent evidence for stable osteointegration of the cones. The main intraoperative complication is fracture of the host bone during impaction of the cones.

  16. Bone health in children and adolescents with perinatal HIV infection

    Directory of Open Access Journals (Sweden)

    George K Siberry

    2013-06-01

    Full Text Available The long-term impact on bone health of lifelong HIV infection and prolonged ART in growing and developing children is not yet known. Measures of bone health in youth must be interpreted in the context of expected developmental and physiologic changes in bone mass, size, density and strength that occur from fetal through adult life. Low bone mineral density (BMD appears to be common in perinatally HIV-infected youth, especially outside of high-income settings, but data are limited and interpretation complicated by the need for better pediatric norms. The potential negative effects of tenofovir on BMD and bone mass accrual are of particular concern as this drug may be used more widely in younger children. Emphasizing good nutrition, calcium and vitamin D sufficiency, weight-bearing exercise and avoidance of alcohol and smoking are effective and available approaches to maintain and improve bone health in all settings. More data are needed to inform therapies and monitoring for HIV-infected youth with proven bone fragility. While very limited data suggest lack of marked increase in fracture risk for youth with perinatal HIV infection, the looming concern for these children is that they may fail to attain their expected peak bone mass in early adulthood which could increase their risk for fractures and osteoporosis later in adulthood.

  17. A Computational Model for Simulating Spaceflight Induced Bone Remodeling

    Science.gov (United States)

    Pennline, James A.; Mulugeta, Lealem

    2014-01-01

    An overview of an initial development of a model of bone loss due to skeletal unloading in weight bearing sites is presented. The skeletal site chosen for the initial application of the model is the femoral neck region because hip fractures can be debilitating to the overall performance health of astronauts. The paper begins with the motivation for developing such a model of the time course of change in bone in order to understand the mechanism of bone demineralization experienced by astronauts in microgravity, to quantify the health risk, and to establish countermeasures. Following this, a general description of a mathematical formulation of the process of bone remodeling is discussed. Equations governing the rate of change of mineralized bone volume fraction and active osteoclast and osteoblast are illustrated. Some of the physiology of bone remodeling, the theory of how imbalance in remodeling can cause bone loss, and how the model attempts to capture this is discussed. The results of a preliminary validation analysis that was carried out are presented. The analysis compares a set of simulation results against bone loss data from control subjects who participated in two different bed rest studies. Finally, the paper concludes with outlining the current limitations and caveats of the model, and planned future work to enhance the state of the model.

  18. Semiquantitative assessment of subchondral bone marrow edema-like lesions and subchondral cysts of the knee at 3T MRI: A comparison between intermediate-weighted fat-suppressed spin echo and Dual Echo Steady State sequences

    Directory of Open Access Journals (Sweden)

    Jakicic John M

    2011-09-01

    Full Text Available Abstract Background Choice of appropriate MR pulse sequence is important for any research studies using imaging-derived data. The aim of this study was to compare semiquantitative assessment of subchondral bone marrow edema-like lesions and subchondral cysts using intermediate-weighted (IW fat-suppressed (fs spin echo and Dual Echo Steady State (DESS sequences on 3 T MRI. Methods Included were 201 subjects aged 35-65 with frequent knee pain. 3T MRI was performed with the same sequence protocol as in the Osteoarthritis Initiative (OAI. In a primary reading subchondral bone marrow edema-like lesions were assessed according to the WORMS system. Two hundred subregions with such lesions were randomly chosen. The extent of subchondral bone marrow edema-like lesions was re-evaluated separately using sagittal IW fs and DESS sequences according to WORMS. Lesion size and confidence of the differentiation between subchondral bone marrow edema-like lesions and subchondral cysts located within or adjacent to them was rated from 0 to 3. Wilcoxon signed-rank tests and chi-square statistics were used to examine differences between the two sequences. Results Of 200 subchondral bone marrow edema-like lesions detected by IW fs sequence, 93 lesions (46.5% were not depicted by the DESS sequence. The IW fs sequence depicted subchondral bone marrow edema-like lesions to a larger extent than DESS (p Conclusions In direct comparison the IW fs sequence depicts more subchondral bone marrow edema-like lesions and better demonstrate the extent of their maximum size. The DESS sequence helps in the differentiation of subchondral bone marrow edema-like lesions and subchondral cysts. The IW fs sequence should be used for determination of lesion extent whenever the size of subchondral bone marrow edema-like lesions is the focus of attention.

  19. Use of an arm weight-bearing combined with upper-limb reaching apparatus to facilitate motor paralysis recovery in an incomplete spinal cord injury patient: a single case report.

    Science.gov (United States)

    Hoei, Takashi; Kawahira, Kazumi; Fukuda, Hidefumi; Sihgenobu, Keizo; Shimodozono, Megumi; Ogura, Tadashi

    2017-01-01

    [Purpose] Training using an arm weight-bearing device combined with upper-limb reaching apparatus to facilitate motor paralysis recovery, named the "Reaching Robot", as well as Repetitive Facilitation Exercise were applied to a patient with severe impairment of the shoulder and elbow due to incomplete spinal cord injury and the effects were examined. [Subjects and Methods] A 66-year-old man with incomplete spinal cord injury participated in an upper extremity rehabilitation program involving a Reaching Robot. The program was comprised of active motor suspension, continuous low amplitude neuromuscular electrical stimulation and functional vibratory stimulation, as well as Repetitive Facilitation Exercise combined with continuous low amplitude neuromuscular electrical stimulation. This protocol used a crossover design following an A1-B1-A2-B2. "A" consisted of 2 weeks of Repetitive Facilitation Exercise, and "B" consisted of 2 weeks of Reaching Robot training. [Results] Improvements were observed after all sessions. Active range of motion for shoulder flexion improved after 2 weeks of Reaching Robot sessions only. There were no adverse events. [Conclusion] Reaching Robot training for severe paretic upper-extremity after incomplete spinal cord injury was a safe and effective treatment. Reaching Robot training may be useful for rehabilitation of paretic upper-extremity after incomplete spinal cord injury.

  20. Real-time Classification of Non-Weight Bearing Lower-Limb Movements Using EMG to Facilitate Phantom Motor Execution: Engineering and Case Study Application on Phantom Limb Pain

    Science.gov (United States)

    Lendaro, Eva; Mastinu, Enzo; Håkansson, Bo; Ortiz-Catalan, Max

    2017-01-01

    Phantom motor execution (PME), facilitated by myoelectric pattern recognition (MPR) and virtual reality (VR), is positioned to be a viable option to treat phantom limb pain (PLP). A recent clinical trial using PME on upper-limb amputees with chronic intractable PLP yielded promising results. However, further work in the area of signal acquisition is needed if such technology is to be used on subjects with lower-limb amputation. We propose two alternative electrode configurations to conventional, bipolar, targeted recordings for acquiring surface electromyography. We evaluated their performance in a real-time MPR task for non-weight-bearing, lower-limb movements. We found that monopolar recordings using a circumferential electrode of conductive fabric, performed similarly to classical bipolar recordings, but were easier to use in a clinical setting. In addition, we present the first case study of a lower-limb amputee with chronic, intractable PLP treated with PME. The patient’s Pain Rating Index dropped by 22 points (from 32 to 10, 68%) after 23 PME sessions. These results represent a methodological advancement and a positive proof-of-concept of PME in lower limbs. Further work remains to be conducted for a high-evidence level clinical validation of PME as a treatment of PLP in lower-limb amputees. PMID:28955294

  1. Real-time Classification of Non-Weight Bearing Lower-Limb Movements Using EMG to Facilitate Phantom Motor Execution: Engineering and Case Study Application on Phantom Limb Pain.

    Science.gov (United States)

    Lendaro, Eva; Mastinu, Enzo; Håkansson, Bo; Ortiz-Catalan, Max

    2017-01-01

    Phantom motor execution (PME), facilitated by myoelectric pattern recognition (MPR) and virtual reality (VR), is positioned to be a viable option to treat phantom limb pain (PLP). A recent clinical trial using PME on upper-limb amputees with chronic intractable PLP yielded promising results. However, further work in the area of signal acquisition is needed if such technology is to be used on subjects with lower-limb amputation. We propose two alternative electrode configurations to conventional, bipolar, targeted recordings for acquiring surface electromyography. We evaluated their performance in a real-time MPR task for non-weight-bearing, lower-limb movements. We found that monopolar recordings using a circumferential electrode of conductive fabric, performed similarly to classical bipolar recordings, but were easier to use in a clinical setting. In addition, we present the first case study of a lower-limb amputee with chronic, intractable PLP treated with PME. The patient's Pain Rating Index dropped by 22 points (from 32 to 10, 68%) after 23 PME sessions. These results represent a methodological advancement and a positive proof-of-concept of PME in lower limbs. Further work remains to be conducted for a high-evidence level clinical validation of PME as a treatment of PLP in lower-limb amputees.

  2. Real-time Classification of Non-Weight Bearing Lower-Limb Movements Using EMG to Facilitate Phantom Motor Execution: Engineering and Case Study Application on Phantom Limb Pain

    Directory of Open Access Journals (Sweden)

    Eva Lendaro

    2017-09-01

    Full Text Available Phantom motor execution (PME, facilitated by myoelectric pattern recognition (MPR and virtual reality (VR, is positioned to be a viable option to treat phantom limb pain (PLP. A recent clinical trial using PME on upper-limb amputees with chronic intractable PLP yielded promising results. However, further work in the area of signal acquisition is needed if such technology is to be used on subjects with lower-limb amputation. We propose two alternative electrode configurations to conventional, bipolar, targeted recordings for acquiring surface electromyography. We evaluated their performance in a real-time MPR task for non-weight-bearing, lower-limb movements. We found that monopolar recordings using a circumferential electrode of conductive fabric, performed similarly to classical bipolar recordings, but were easier to use in a clinical setting. In addition, we present the first case study of a lower-limb amputee with chronic, intractable PLP treated with PME. The patient’s Pain Rating Index dropped by 22 points (from 32 to 10, 68% after 23 PME sessions. These results represent a methodological advancement and a positive proof-of-concept of PME in lower limbs. Further work remains to be conducted for a high-evidence level clinical validation of PME as a treatment of PLP in lower-limb amputees.

  3. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects passed down ...

  4. Influence of sports participation and menarche on bone mineral density of female high school athletes.

    Science.gov (United States)

    Barkai, Hava-Shoshana; Nichols, Jeanne F; Rauh, Mitchell J; Barrack, Michelle T; Lawson, Mandra J; Levy, Susan S

    2007-06-01

    Weight-bearing exercise during adolescence may enhance peak bone mineral density (BMD) and reduce osteoporosis risk. The association of sports participation before and after menarche with areal BMD (by central DXA) was investigated in 99 female high school athletes (age 15.5+/-1.3 year). The frequency and duration of structured sports (school-based or other organized team) were assessed using an interviewer-assisted questionnaire. Overall, the average number of years of weight-bearing sport participation was 7.4+/-3.4 years; 72% of the athletes began sport participation before menarche. Training patterns and BMD were examined by tertiles of yearly weight-bearing sport participation (hours/year) before (WBpre), after (WBpost) menarche, and in total (WBtotal). After adjusting for chronological age, gynecological age, and BMI, compared to athletes in the WBtotal low tertile, athletes in the WBtotal high tertile had significantly greater BMD at the spine (p=0.009), total hip (p=0.03), trochanter (p=0.03), and total body (p=0.009). Similar patterns were found by WBpre or WBpost status, separately, with the exception of spine BMD which was significantly different across tertiles in WBpost only (presults indicate that near year-round participation in structured weight-bearing sports during early adolescence may help young girls optimize bone mineral accrual during these critical years, and may decrease their risk of osteoporosis with advancing age.

  5. Bone mineral content and bone mineral density in female swimmers during the time of peak bone mass attainment

    Directory of Open Access Journals (Sweden)

    B Długołęcka

    2011-03-01

    Full Text Available The aim of this study was to assess bone mineral content and bone mineral density in girls practising swimming in the period of peak bone mass attainment in comparison to girls at the same age who are not actively involved in sports. This study involved girls from sports school specialising in swimming (n=41 aged 11-15 years, practising swimming (non-weight bearing activities, and girls at the same age not actively involved in sports (n=45. The current condition of bones was assessed based on the method of densitometry DEXA (lumbar spine L2-L4. Data on sports careers, including the length of training and training load, and hormonal status were collected using a diagnostic survey with an especially developed questionnaire. The quantitative composition of diet was determined based on 3 individual interviews on dietary intake in the last 24 hours preceding the test. Analysis of the results showed that the average values of the measured bone parameters were not different between the groups. However, we observed a trend of higher values in the control group. In the assessment of diet, we observed in both groups a deficiency in average calcium intake. Based on the results it can be concluded that the tested female swimmers were not at increased risk of developing osteopenia, when compared to girls not actively involved in sports.

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Arthritis X- ...

  7. Exercise during growth and young adulthood is independently associated with cortical bone size and strength in old Swedish men.

    Science.gov (United States)

    Nilsson, Martin; Sundh, Daniel; Ohlsson, Claes; Karlsson, Magnus; Mellström, Dan; Lorentzon, Mattias

    2014-08-01

    Previous studies have reported an association between exercise during youth and increased areal bone mineral density at old age. The primary aim of this study was to investigate if exercise during growth was independently associated with greater cortical bone size and whole bone strength in weight-bearing bone in old men. The tibia and radius were measured using both peripheral quantitative computed tomography (pQCT) (XCT-2000; Stratec) at the diaphysis and high-resolution pQCT (HR-pQCT) (XtremeCT; Scanco) at the metaphysis to obtain cortical bone geometry and finite element-derived bone strength in distal tibia and radius, in 597 men, 79.9 ± 3.4 (mean ± SD) years old. A self-administered questionnaire was used to collect information about previous and current physical activity. In order to determine whether level of exercise during growth and young adulthood or level of current physical activity were independently associated with bone parameters in both tibia and radius, analysis of covariance (ANCOVA) analyses were used. Adjusting for covariates and current physical activity, we found that men in the group with the highest level of exercise early in life (regular exercise at a competitive level) had higher tibial cortical cross-sectional area (CSA; 6.3%, p bone strength (failure load: 7.5%, p exercise during growth and young adulthood. Subjects in the group with the highest level of current physical activity had smaller tibial endosteal circumference (EC; 3.6%, p = 0.012) at the diaphysis than subjects with a lower current physical activity, when adjusting for covariates and level of exercise during growth and young adulthood. These findings indicate that exercise during growth can increase the cortical bone size via periosteal expansion, whereas exercise at old age may decrease endosteal bone loss in weight-bearing bone in old men. © 2014 American Society for Bone and Mineral Research.

  8. Bone turnover in wild type and pleiotrophin-transgenic mice housed for three months in the International Space Station (ISS.

    Directory of Open Access Journals (Sweden)

    Sara Tavella

    Full Text Available Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt and pleiotrophin-transgenic (PTN-Tg mice exposed to a near-zero gravity on the International Space Station (ISS during the Mice Drawer System (MDS mission, to date, the longest mice permanence (91 days in space. The transgenic mouse strain over-expressing pleiotrophin (PTN in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity's negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice.

  9. Swimming and bone: Is low bone mass due to hypogravity alone or does other physical activity influence it?

    Science.gov (United States)

    Gómez-Bruton, A; González-Agüero, A; Gómez-Cabello, A; Matute-Llorente, A; Casajús, J A; Vicente-Rodríguez, G

    2016-05-01

    Swimming during adolescence has shown neutral or even negative effects on bone mass. Nevertheless, it is still unknown if these effects are due to swimming or to other factors, such as sedentary behaviors. Three objectives were described (1) to measure objective physical activity (PA) additional to swimming performed by adolescent swimmers (SWI) and compare it to that performed by normo-active controls (CG), (2) to describe the relationship between objectively measured PA and bone mass, and (3) to compare bone mass of swimmers that meet the World Health Organization PA guidelines (active) WHO and those that do not (inactive). A total of 71 SWI (33 females) and 41 CG (17 females) wore an accelerometer for at least 4 days. PA was expressed as the amount of time (minutes/day) in each intensity [sedentary/light/moderate or vigorous (VPA), and the sum of moderate and vigorous (MVPA)]. Using the cutoff points proposed by Vanhelst et al. SWI were classified as active or inactive according to whether they reached 60 min of weight-bearing MVPA per day or not. Bone mineral density (BMD) was measured by dual energy X-ray absorptiometry, and bone strength values were calculated with peripheral quantitative computed tomography. Differences in PA intensities were calculated between SWI and CG. The relation of VPA to bone mass was studied in the SWI. Male-SWI spend less time in VPA and MVPA than male-GC, which partly explains the lower BMD values in SWI than CG. Swimming may displace weight-bearing VPA with serious implications on bone health.

  10. Exercise training, menstrual irregularities and bone development in children and adolescents.

    Science.gov (United States)

    Eliakim, Alon; Beyth, Yoram

    2003-08-01

    Weight bearing physical activity plays an important role in bone development. This is particularly important in children and adolescents since bone mineral density reaches about 90% of its peak by the end of the second decade, and because about one quarter of adult bone is accumulated during the two years surrounding the peak bone growth velocity. Recent studies suggested that the exercise-induced increase in bone mineralization is maturity dependent, and that there is a "window of opportunity" and a critical period for bone response to weight bearing exercise during early puberty and premenarchal years. This supports the idea that increase in physical activity during childhood and adolescence can prevent bone disorders (like osteoporosis) later in life. In contrast, strenuous physical activity may affect the female reproductive system and lead to "athletic amenorrhea". The prevalence of "athletic amenorrhea" is 4-20 times higher than the general population. As a consequence, bone demineralization may develop with increased risk of skeletal fragility, fractures, vertebral instability, and curvature. Menstrual abnormalities in the female athlete result from hypothalamic suppression of the spontaneous pulsatile secretion of gonadotropin releasing hormone. Recent studies suggested that reduced energy availability (increased energy expenditure with inadequate caloric intake) is the main cause of the central suppression of the hypothalamic pituitary-gonadal axis. Therefore, effort should be made to optimize the nutritional state of female athletes, and if not successful, to reduce the training load in order to prevent menstrual abnormalities, and deleterious bone effects in particular during the critical period of rapid bone growth.

  11. Utility of unenhanced fat-suppressed T1-weighted MRI in children with sickle cell disease - can it differentiate bone infarcts from acute osteomyelitis?

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Jorge; Bedoya, Maria A. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Green, Abby M. [The Children' s Hospital of Philadelphia, Division of Oncology, Philadelphia, PA (United States); Jaramillo, Diego; Ho-Fung, Victor [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (United States)

    2015-12-15

    Children with sickle cell disease (SCD) are at risk of bone infarcts and acute osteomyelitis. The clinical differentiation between a bone infarct and acute osteomyelitis is a diagnostic challenge. Unenhanced T1-W fat-saturated MR images have been proposed as a potential tool to differentiate bone infarcts from osteomyelitis. To evaluate the reliability of unenhanced T1-W fat-saturated MRI for differentiation between bone infarcts and acute osteomyelitis in children with SCD. We retrospectively reviewed the records of 31 children (20 boys, 11 girls; mean age 10.6 years, range 1.1-17.9 years) with SCD and acute bone pain who underwent MR imaging including unenhanced T1-W fat-saturated images from 2005 to 2010. Complete clinical charts were reviewed by a pediatric hematologist with training in infectious diseases to determine a clinical standard to define the presence or absence of osteomyelitis. A pediatric radiologist reviewed all MR imaging and was blinded to clinical information. Based on the signal intensity in T1-W fat-saturated images, the children were further classified as positive for osteomyelitis (low bone marrow signal intensity) or positive for bone infarct (high bone marrow signal intensity). Based on the clinical standard, 5 children were classified as positive for osteomyelitis and 26 children as positive for bone infarct (negative for osteomyelitis). The bone marrow signal intensity on T1-W fat-saturated imaging was not significant for the differentiation between bone infarct and osteomyelitis (P = 0.56). None of the additional evaluated imaging parameters on unenhanced MRI proved reliable in differentiating these diagnoses. The bone marrow signal intensity on unenhanced T1-W fat-saturated MR images is not a reliable criterion to differentiate bone infarcts from osteomyelitis in children. (orig.)

  12. Utility of unenhanced fat-suppressed T1-weighted MRI in children with sickle cell disease -- can it differentiate bone infarcts from acute osteomyelitis?

    Science.gov (United States)

    Delgado, Jorge; Bedoya, Maria A; Green, Abby M; Jaramillo, Diego; Ho-Fung, Victor

    2015-12-01

    Children with sickle cell disease (SCD) are at risk of bone infarcts and acute osteomyelitis. The clinical differentiation between a bone infarct and acute osteomyelitis is a diagnostic challenge. Unenhanced T1-W fat-saturated MR images have been proposed as a potential tool to differentiate bone infarcts from osteomyelitis. To evaluate the reliability of unenhanced T1-W fat-saturated MRI for differentiation between bone infarcts and acute osteomyelitis in children with SCD. We retrospectively reviewed the records of 31 children (20 boys, 11 girls; mean age 10.6 years, range 1.1-17.9 years) with SCD and acute bone pain who underwent MR imaging including unenhanced T1-W fat-saturated images from 2005 to 2010. Complete clinical charts were reviewed by a pediatric hematologist with training in infectious diseases to determine a clinical standard to define the presence or absence of osteomyelitis. A pediatric radiologist reviewed all MR imaging and was blinded to clinical information. Based on the signal intensity in T1-W fat-saturated images, the children were further classified as positive for osteomyelitis (low bone marrow signal intensity) or positive for bone infarct (high bone marrow signal intensity). Based on the clinical standard, 5 children were classified as positive for osteomyelitis and 26 children as positive for bone infarct (negative for osteomyelitis). The bone marrow signal intensity on T1-W fat-saturated imaging was not significant for the differentiation between bone infarct and osteomyelitis (P = 0.56). None of the additional evaluated imaging parameters on unenhanced MRI proved reliable in differentiating these diagnoses. The bone marrow signal intensity on unenhanced T1-W fat-saturated MR images is not a reliable criterion to differentiate bone infarcts from osteomyelitis in children.

  13. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration - Effects of organic crosslinker valence, content and molecular weight on mechanical properties.

    Science.gov (United States)

    Hendrikx, Stephan; Kascholke, Christian; Flath, Tobias; Schumann, Dirk; Gressenbuch, Mathias; Schulze, F Peter; Hacker, Michael C; Schulz-Siegmund, Michaela

    2016-04-15

    We present a series of organic/inorganic hybrid sol-gel derived glasses, made from a tetraethoxysilane-derived silica sol (100% SiO2) and oligovalent organic crosslinkers functionalized with 3-isocyanatopropyltriethoxysilane. The material was susceptible to heat sterilization. The hybrids were processed into pore-interconnected scaffolds by an indirect rapid prototyping method, described here for the first time for sol-gel glass materials. A large panel of polyethylene oxide-derived 2- to 4-armed crosslinkers of molecular weights ranging between 170 and 8000Da were incorporated and their effect on scaffold mechanical properties was investigated. By multiple linear regression, 'organic content' and the 'content of ethylene oxide units in the hybrid' were identified as the main factors that determined compressive strength and modulus, respectively. In general, 3- and 4-armed crosslinkers performed better than linear molecules. Compression tests and cell culture experiments with osteoblast-like SaOS-2 cells showed that macroporous scaffolds can be produced with compressive strengths of up to 33±2MPa and with a pore structure that allows cells to grow deep into the scaffolds and form mineral deposits. Compressive moduli between 27±7MPa and 568±98MPa were obtained depending on the hybrid composition and problems associated with the inherent brittleness of sol-gel glass materials could be overcome. SaOS-2 cells showed cytocompatibility on hybrid glass scaffolds and mineral accumulation started as early as day 7. On day 14, we also found mineral accumulation on control hybrid glass scaffolds without cells, indicating a positive effect of the hybrid glass on mineral accumulation. We produced a hybrid sol-gel glass material with significantly improved mechanical properties towards an application in bone regeneration and processed the material into macroporous scaffolds of controlled architecture by indirect rapid prototyping. We were able to produce macroporous materials

  14. Differences in trabecular bone of leptin-deficient ob/ob mice in response to biomechanical loading.

    Science.gov (United States)

    Heep, Hansjoerg; Wedemeyer, Christian; Wegner, Alexander; Hofmeister, Sebastian; von Knoch, Marius

    2008-06-15

    It is known that bone mineral density (BMD) and the strength of bone is predicted by body mass. Fat mass is a significant predictor of bone mineral density which correlates with body weight. This suggests that body fat regulates bone metabolism first by means of hormonal factors and second that the effects of muscle and loading are signaling factors in mechanotransduction. Leptin, a peptide hormone produced predominantly by white fat cells, is one of these hormonal factors. The aim of this study was to investigate and measure by micro-CT the different effects of weight-bearing on trabecular bone formation in mice without the stimulation of leptin. Animals with an ad-libitum-diet (Group A) were found to increase body weight significantly at the age of six weeks in comparison with lean mice (Group B). From this point on, the difference increased constantly. At the age of twenty weeks the obese mice were almost twice as heavy as the lean mice. Significant statistical differences are shown between the two groups for body weight and bone mineral density. Examination of trabecular bone (BV/TV, trabecular number (Tb.N.), trabecular thickness (Tb.Th.)) revealed that the only statistically significant difference between the two groups was the Tb.N. for the proximal femur. High weight-bearing insignificantly improved all trabecular bone parameters in the obese mice. Compared with the control-diet Group B, the BV/TV and Tb.N. were slightly higher in the controlled-diet Group A, but not the Tb.Th.. However, correlation was found between Tb.N. and BMD on the one hand and body weight on the other hand. biomechanical loading led to decreased bone mineral density by a decrease in the number of trabeculae. Trabecular thickness was not increased by biomechanical loading in growing mice. Decreased body weight in leptin-deficient mice protects against bone loss. This finding is consistent with the principle of light-weight construction of bone. Differences in cortical and trabecular

  15. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly.

    Science.gov (United States)

    Rizzoli, René; Bianchi, Maria Luisa; Garabédian, Michèle; McKay, Heather A; Moreno, Luis A

    2010-02-01

    Bone mass is a key determinant of fracture risk. Maximizing bone mineral mass during childhood and adolescence may contribute to fracture risk reduction during adolescence and possibly in the elderly. Although more than 60% of the variance of peak bone mass (PBM), the amount of bone present in the skeleton at the end of its maturation process, is genetically determined, the remainder is likely influenced by factors amenable to positive intervention, such as adequate dietary intake of dairy products as a natural source of calcium and proteins, vitamin D, and regular weight-bearing physical activity. Low calcium and vitamin D intakes are associated with negative effects on bone, including suboptimal PBM acquisition. As suggested by intervention studies, regular intake of dairy products may have positive and possibly sustained effects on bone mineral mass gain, contributing thereby to fracture risk reduction. Further evidence from intervention studies suggests that weight-bearing physical activities, such as jumping, may contribute to bone mineral mass gain in children. Optimizing PBM acquisition through dietary and physical exercise measures may represent a valuable primary method for the prevention of fractures. (c) 2009 Elsevier Inc. All rights reserved.

  16. [Modern implant design for the osteosynthesis of osteoporotic bone fractures].

    Science.gov (United States)

    Augat, P; Bühren, V

    2010-04-01

    Osteoporosis is characterized by a reduction of bone mass and changes in bone micro-architecture. The resulting reduction in bone strength leads to the well recognized increase in the risk of fracture, particularly at the radius, hip, and spine. The treatment of osteoporotic fractures is challenged by the reduced mechanical capacity of osteoporotic bone, reflected in reduced holding power and increased fragility. The aim of successful fracture treatment in individuals with osteoporosis is early fixation of the fracture with immediate and almost unrestricted weight-bearing capacity. The key factor for effective fracture treatment is strict adherence to the basic principles of stable fracture fixation: reposition, compression, long, wide supports, as well as additive techniques such as angular stability and bone augmentation. Modern osteosynthesis implants effectively support the application of these principles. Modifications in implant design and techniques enable the surgeon to apply and combine the essential components of the basic principles for the treatment of mechanically impaired bone. The key components employed in modern implants include integrated compression techniques, multidirectional angular stability, expandable support surfaces, as well as multiple augmentation options. However, despite modern implant technology, osteoporotic bone fractures remain a significant challenge for the orthopaedic surgeon and require meticulous planning and implementation of the basic principles.

  17. Low Molecular Weight Fraction of Commercial Human Serum Albumin Induces Morphologic and Transcriptional Changes of Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Bar-Or, David; Thomas, Gregory W; Rael, Leonard T; Gersch, Elizabeth D; Rubinstein, Pablo; Brody, Edward

    2015-08-01

    Osteoarthritis (OA) is the most common chronic disease of the joint; however, the therapeutic options for severe OA are limited. The low molecular weight fraction of commercial 5% human serum albumin (LMWF5A) has been shown to have anti-inflammatory properties that are mediated, in part, by a diketopiperazine that is present in the albumin preparation and that was demonstrated to be safe and effective in reducing pain and improving function when administered intra-articularly in a phase III clinical trial. In the present study, bone marrow-derived mesenchymal stem cells (BMMSCs) exposed to LMWF5A exhibited an elongated phenotype with diffuse intracellular F-actin, pronounced migratory leading edges, and filopodia-like projections. In addition, LMWF5A promoted chondrogenic condensation in "micromass" culture, concurrent with the upregulation of collagen 2α1 mRNA. Furthermore, the transcription of the CXCR4-CXCL12 axis was significantly regulated in a manner conducive to migration and homing. Several transcription factors involved in stem cell differentiation were also found to bind oligonucleotide response element probes following exposure to LMWF5A. Finally, a rapid increase in PRAS40 phosphorylation was observed following treatment, potentially resulting in the activation mTORC1. Proteomic analysis of synovial fluid taken from a preliminary set of patients indicated that at 12 weeks following administration of LMWF5A, a microenvironment exists in the knee conducive to stem cell infiltration, self-renewal, and differentiation, in addition to indications of remodeling with a reduction in inflammation. Taken together, these findings imply that LMWF5A treatment may prime stem cells for both mobilization and chondrogenic differentiation, potentially explaining some of the beneficial effects achieved in clinical trials. ©AlphaMed Press.

  18. Functional assessment of endoprosthesis in the treatment of bone tumors

    Directory of Open Access Journals (Sweden)

    Denis Kiyoshi Fukumothi

    Full Text Available ABSTRACT OBJECTIVES: Evaluate the functional grade of these patients and to identify the types of complications found that influenced the average life span of endoprostheses the functions of the operated limb. METHODS: We analyzed 14 post-operative cases of endoprosthesis, patients with malignant bone tumors and aggressive benign bone tumors submitted to surgery between 2004 and 2014. The evaluation system used was proposed by Enneking, recommended by the Musculoskeletal Tumor Society (MSTS, in addition to the radiologic evaluation. RESULTS: Endoprosthesis are excellent choices for the treatment of bone tumors with limb preservation in relation to pain, strength, and patient's emotional acceptance. Another factor for good results is the immediate weight-bearing capacity, generating a greater independence. CONCLUSION: The authors conclude that all patients classified the therapy as excellent/good, regardless of the type of prosthesis used, extent of injury, and/or type of tumor resection performed.

  19. Functional assessment of endoprosthesis in the treatment of bone tumors.

    Science.gov (United States)

    Fukumothi, Denis Kiyoshi; Pupo, Hiran; Reganin, Luciano Augusto; Matte, Silvia Raquel Fricke; Lima, Bruno Spagnuolo de; Mattos, Carlos Augusto de

    2016-01-01

    Evaluate the functional grade of these patients and to identify the types of complications found that influenced the average life span of endoprostheses the functions of the operated limb. We analyzed 14 post-operative cases of endoprosthesis, patients with malignant bone tumors and aggressive benign bone tumors submitted to surgery between 2004 and 2014. The evaluation system used was proposed by Enneking, recommended by the Musculoskeletal Tumor Society (MSTS), in addition to the radiologic evaluation. Endoprosthesis are excellent choices for the treatment of bone tumors with limb preservation in relation to pain, strength, and patient's emotional acceptance. Another factor for good results is the immediate weight-bearing capacity, generating a greater independence. The authors conclude that all patients classified the therapy as excellent/good, regardless of the type of prosthesis used, extent of injury, and/or type of tumor resection performed.

  20. Impaired bone strength estimates at the distal tibia and its determinants in adolescents with anorexia nervosa.

    Science.gov (United States)

    Singhal, Vibha; Tulsiani, Shreya; Campoverde, Karen Joanie; Mitchell, Deborah M; Slattery, Meghan; Schorr, Melanie; Miller, Karen K; Bredella, Miriam A; Misra, Madhusmita; Klibanski, Anne

    2018-01-01

    Altered bone microarchitecture and higher marrow adipose tissue (MAT) may reduce bone strength. High resolution pQCT (HRpQCT) allows assessment of volumetric BMD (vBMD), and size and microarchitecture parameters of bone, while 1H-magnetic resonance spectroscopy (1H-MRS) allows MAT evaluation. We have reported impaired microarchitecture at the non-weight bearing radius in adolescents with anorexia nervosa (AN) and that these changes may precede aBMD deficits. Data are lacking regarding effects of AN on microarchitecture and strength at the weight-bearing tibia in adolescents and young adults, and the impact of changes in microarchitecture and MAT on strength estimates. To compare strength estimates at the distal tibia in adolescents/young adults with AN and controls in relation to vBMD, bone size and microarchitecture, and spine MAT. This was a cross-sectional study of 47 adolescents/young adults with AN and 55 controls 14-24years old that assessed aBMD and body composition using DXA, and distal tibia vBMD, size, microarchitecture and strength estimates using HRpQCT, extended cortical analysis, individual trabecular segmentation, and finite element analysis. Lumbar spine MAT (1H-MRS) was assessed in a subset of 19 AN and 22 controls. Areal BMD Z-scores were lower in AN than controls. At the tibia, AN had greater cortical porosity, lower total and cortical vBMD, cortical area and thickness, trabecular number, and strength estimates than controls. Within AN, strength estimates were positively associated with lean mass, aBMD, vBMD, bone size and microarchitectural parameters. MAT was higher in AN, and associated inversely with strength estimates. Adolescents/young adults with AN have impaired microarchitecture at the weight-bearing tibia and higher spine MAT, associated with reduced bone strength. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The circulating concentration and ratio of total and high molecular weight adiponectin in post-menopausal women with and without osteoporosis and its association with body mass index and biochemical markers of bone metabolism.

    Science.gov (United States)

    Sodi, R; Hazell, M J; Durham, B H; Rees, C; Ranganath, L R; Fraser, W D

    2009-09-01

    There is increasing evidence suggesting that adiponectin plays a role in the regulation of bone metabolism. This was a cross-sectional study of 34 post-menopausal women with and 37 without osteoporosis. All subjects had body mass index (BMI), bone mineral density (BMD), total-, high molecular weight (HMW)-adiponectin and their ratio, osteoprotegerin (OPG), a marker of bone resorption (betaCTX) and formation (P1NP) measured. We observed a positive correlation between BMI and BMD (r=0.44, p<0.001). When normalised for BMI, total-, HMW-adiponectin concentrations and HMW/total-adiponectin ratio were significantly lower in obese compared to lean subjects but there was no difference between those with or without osteoporosis. There were significant negative correlations between HMW/total-adiponectin ratio and BMI (r=-0.27, p=0.030) and with OPG (r=-0.44, p<0.001). Our data suggests that there is no significant difference in the circulating concentration of fasting early morning total- or HMW-adiponectin in post-menopausal women with or without osteoporosis. The correlation between HMW/total-adiponectin ratio and OPG may indicate that adiponectin could influence bone metabolism by altering osteoblast production of OPG thereby affecting osteoclasts mediated bone resorption.

  2. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    Science.gov (United States)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  3. Successful use of autogenous bone graft for the treatment of a radius-ulna nonunion in an amputee dog

    Directory of Open Access Journals (Sweden)

    B.W. Minto

    2015-08-01

    Full Text Available Fracture nonunions represent important complications in orthopedic surgeries. Nonunion repairs or bone defects are surgically challenging. Our aim was to describe a nonunion case, which was repaired with rapid bone recovery. An 8-month-old male mixed breed dog that has been previously operated was presented to the Veterinary Medical Teaching Hospital of São Paulo State University, with a right radius-ulna nonunion and an amputated contralateral forelimb. A cancellous bone graft was collected from a partially amputated limb, in order to correct the nonunion, and used in association with a locking plate. After four weeks, the bone graft had been incorporated into the original bone. Clinical union with good weight bearing was achieved after eight weeks.

  4. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.

    Science.gov (United States)

    Igwe, John C; Mikael, Paiyz E; Nukavarapu, Syam P

    2014-02-01

    The development of a bone mechanically-compatible and osteoinductive scaffold is important for bone tissue engineering applications, particularly for the repair and regeneration of large area critically-sized bone defects. Although previous studies with weight-bearing scaffolds have shown promising results, there is a clear need to develop better osteoinductive strategies for effective scaffold-based bone regeneration. In this study, we designed and fabricated a novel polymer-hydrogel hybrid scaffold system in which a load-bearing polymer matrix and a peptide hydrogel allowed for the synergistic combination of mechanical strength and great potential for osteoinductivity in a single scaffold. The hybrid scaffold system promoted increased pre-osteoblastic cell proliferation. Further, we biotinylated human recombinant bone morphogenetic protein 2 (rhBMP2), and characterized the biotin addition and its effect on rhBMP2 biological activity. The biotinylated rhBMP2 was tethered to the hybrid scaffold using biotin-streptavidin complexation. Controlled release studies demonstrated increased rhBMP2 retention with the tethered rhBMP2 hybrid scaffold group. In vitro evaluation of the hybrid scaffold was performed with rat bone marrow stromal cells and mouse pre-osteoblast cell line MC3T3-E1 cells. Gene expression of alkaline phosphatase (ALP), collagen I (Col I), osteopontin (OPN), bone sialoprotein (BSP), Runx-2 and osteocalcin (OC) increased in MC3T3-E1 cells seeded on the rhBMP2 tethered hybrid scaffolds over the untethered counterparts, demonstrating osteoinductive potential of the hybrid graft. These findings suggest the possibility of developing a novel polymer-hydrogel hybrid system that is weight bearing and osteoinductive for effective bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Noninvasive assessment of response to neoadjuvant chemotherapy in osteosarcoma of long bones with diffusion-weighted imaging: an initial in vivo study.

    Directory of Open Access Journals (Sweden)

    Cheng-Sheng Wang

    Full Text Available OBJECTIVES: The purpose of our study is to investigate whether diffusion-weighted imaging (DWI is useful for monitoring the therapeutic response after neoadjuvant chemotherapy in osteosarcoma of long bones. MATERIALS AND METHODS: Conventional magnetic resonance imaging (MRI and DWI were obtained from 35 patients with histologically proven osteosarcomas. MR examinations were performed in all patients before and after 4 courses of preoperative neoadjuvant chemotherapy. Apparent diffusion coefficients (ADC were measured. The degree of tumor necrosis was assessed macroscopically and histologically by two experienced pathologists after operation. Student's t test was performed for testing changes in ADC value. Pearson's correlation coefficient was used to estimate the correlation between necrosis rate and post- neoadjuvant chemotherapy ADC values. P<0.05 was considered to denote a significant difference. RESULTS: The difference of the whole osteosarcoma between pre- neoadjuvant chemotherapy ADC value (1.24±0.17×10(-3 mm(2/s and post- (1.93±0.39×10(-3 mm(2/s was significant difference (P<0.01. Regarding in patients with good response, the post- neoadjuvant chemotherapy values were significantly higher than the pre- neoadjuvant chemotherapy values (P<0.01. The post- neoadjuvant chemotherapy ADC value in patients with good response was higher than that of poor response (t = 8.995, P<0.01. The differences in post- neoadjuvant chemotherapy ADC between viable (1.03±0.17×10(-3 mm(2/s and necrotic (2.38±0.25×10(-3 mm(2/s tumor was highly significant (t = 23.905, P<0.01. A positive correlation between necrosis rates and the whole tumor ADC values (r = 0.769, P<0.01 was noted, but necrosis rates were not correlated with the ADC values of necrotic (r = -0.191, P = 0.272 and viable tumor areas (r = 0.292, P = 0.089. CONCLUSIONS: DWI can identify residual viable tumor tissues and tumor necrosis induced by neoadjuvant

  6. Effectiveness of elastic band-type ankle–foot orthoses on postural control in poststroke elderly patients as determined using combined measurement of the stability index and body weight-bearing ratio

    Directory of Open Access Journals (Sweden)

    Kim JH

    2015-11-01

    Full Text Available Jong Hyun Kim, Woo Sang Sim, Byeong Hee Won Usability Evaluation Technology Center, Advanced Biomedical and Welfare R&D Group, Korea Institute of Industrial Technology, Cheonan-si, Chungcheongnam-do, South Korea Purpose: Poor recovery of postural stability poststroke is the primary cause of impairment in activities and social participation in elderly stroke survivors. The purpose of our study was to experimentally evaluate the effectiveness of our new elastic ankle–foot orthosis (AFO, compared to a traditional AFO fabricated with hard plastic, in improving postural stability in elderly chronic stroke survivors. Patients and methods: Postural stability was evaluated in ten chronic stroke patients, 55.7±8.43 years old. Postural stability was evaluated using the standardized methods of the Biodex Balance System combined with a foot pressure system, under three experimental conditions, no AFO, rigid plastic AFO, and elastic AFO (E-AFO. The following dependent variables of postural stability were analyzed: plantar pressure under the paretic and nonparetic foot, area of the center of balance (COB and % time spent in each location, distance traveled by the COB away from the body center, distance traveled by the center of pressure, and calculated index of overall stability, as well as indices anterior–posterior and medial–lateral stability. Results: Both AFO designs improved all indices of postural stability. Compared to the rigid plastic AFO, the E-AFO produced additional positive effects in controlling anterior–posterior body sway, equalizing weight bearing through the paretic and nonparetic limbs, and restraining the displacement of the center of pressure and of the COB. Conclusion: Based on our outcomes, we recommend the prescription of E-AFOs as part of a physiotherapy rehabilitation program to promote recovery of postural stability poststroke. When possible, therapeutic outcomes should be documented using the Biodex Balance System and

  7. Integrating participatory ergonomic management in non-weight-bearing exercise and progressive resistance exercise on self-care and functional ability in aged farmers with knee osteoarthritis: a clustered randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Isaramalai SA

    2018-01-01

    Full Text Available Sang-arun Isaramalai,1 Kanokwan Hounsri,1 Chanon Kongkamol,2 Pornnit Wattanapisitkul,3 Napaporn Tangadulrat,3 Tippawan Kaewmanee,3 Varah Yuenyongviwat4 1Research Center for Caring System of Thai Elderly, Faculty of Nursing, 2Research Unit of Holistic Health and Safety Management in Community, Faculty of Medicine, 3Department of Physical Therapy, Faculty of Medicine, 4Department of Orthopaedic Surgery and Physical Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand Background: Ergonomic hazards are the most important cause of knee osteoarthritis (OA in aged para rubber farmers. Ergonomic management comprising improvement of working conditions and muscle-strengthening exercise has been well documented in terms of workers’ health benefit. However, those interventions were not adequate to sustain the advantage. Few studies have demonstrated the effect of integrating participatory ergonomic management (PEM in non-weight-bearing exercise (NWE and progressive resistance exercise (PRE, and none has focused on aged para rubber farmers with knee OA.Purpose: This study investigated the effect of PEM-NWE, PEM-PRE, and standard treatment (ST on self-care and functional ability in the aged population.Materials and methods: A single-blinded, clustered randomized controlled trial was carried out. Participants (n=75 from three different communities in southern Thailand were randomly assigned to PEM-NWE, PEM-PRE, and ST. Self-care and functional ability (pain, stiffness, and physical function were examined at baseline (B, during the intervention at Week 5 (W5, and after its completion at Week 9 (W9. Mean comparison of those outcomes over time was made using Generalized Linear Mixed Models (GLMMs.Results: Compared to the standard treatment, the means of both groups, PEM-NWE and PEM-PRE, were significantly increased in self-care and functional ability. However, no significant difference between PEM-NWE and PEM-PRE was found

  8. Bone Turnover in Wild Type and Pleiotrophin-Transgenic Mice Housed for Three Months in the International Space Station (ISS)

    Science.gov (United States)

    Brun, Francesco; Canciani, Barbara; Manescu, Adrian; Marozzi, Katia; Cilli, Michele; Costa, Delfina; Liu, Yi; Piccardi, Federica; Tasso, Roberta; Tromba, Giuliana; Rustichelli, Franco; Cancedda, Ranieri

    2012-01-01

    Bone is a complex dynamic tissue undergoing a continuous remodeling process. Gravity is a physical force playing a role in the remodeling and contributing to the maintenance of bone integrity. This article reports an investigation on the alterations of the bone microarchitecture that occurred in wild type (Wt) and pleiotrophin-transgenic (PTN-Tg) mice exposed to a near-zero gravity on the International Space Station (ISS) during the Mice Drawer System (MDS) mission, to date, the longest mice permanence (91 days) in space. The transgenic mouse strain over-expressing pleiotrophin (PTN) in bone was selected because of the PTN positive effects on bone turnover. Wt and PTN-Tg control animals were maintained on Earth either in a MDS payload or in a standard vivarium cage. This study revealed a bone loss during spaceflight in the weight-bearing bones of both strains. For both Tg and Wt a decrease of the trabecular number as well as an increase of the mean trabecular separation was observed after flight, whereas trabecular thickness did not show any significant change. Non weight-bearing bones were not affected. The PTN-Tg mice exposed to normal gravity presented a poorer trabecular organization than Wt mice, but interestingly, the expression of the PTN transgene during the flight resulted in some protection against microgravity’s negative effects. Moreover, osteocytes of the Wt mice, but not of Tg mice, acquired a round shape, thus showing for the first time osteocyte space-related morphological alterations in vivo. The analysis of specific bone formation and resorption marker expression suggested that the microgravity-induced bone loss was due to both an increased bone resorption and a decreased bone deposition. Apparently, the PTN transgene protection was the result of a higher osteoblast activity in the flight mice. PMID:22438896

  9. The Role of Nutrition in the Changes in Bone and Calcium Metabolism During Space Flight

    Science.gov (United States)

    Morey-Holton, Emily R.; Arnaud, Sara B.

    1995-01-01

    On Earth, the primary purpose of the skeleton is provide structural support for the body. In space, the support function of the skeleton is reduced since, without gravity, structures have only mass and no weight. The adaptation to space flight is manifested by shifts in mineral distribution, altered bone turnover, and regional mineral deficits in weight-bearing bones. The shifts in mineral distribution appear to be related to the cephalic fluid shift. The redistribution of mineral from one bone to another or to and from areas in the same bone in response to alterations in gravitational loads is more likely to affect skeletal function than quantitative whole body losses and gains. The changes in bone turnover appear dependent upon changes in body weight with weight loss tending to increase bone resorption as well as decrease bone formation. During bedrest, the bone response to unloading varies depending upon the routine activity level of the subjects with more active subjects showing a greater suppression of bone formation in the iliac crest with inactivity. Changes in body composition during space flight are predicted by bedrest studies on Earth which show loss of lean body mass and increase tn body fat in adult males after one month. In ambulatory studies on Earth, exercising adult males of the same age, height, g weight, body mass index, and shoe size show significantly higher whole body mineral and lean body mass. than non-exercising subjects. Nutritional preference appears to change with activity level. Diet histories in exercisers and nonexercisers who maintain identical body weights show no differences in nutrients except for slightly higher carbohydrate intake in the exercisers. The absence of differences in dietary calcium in men with higher total body calcium is noteworthy. In this situation, the increased bone mineral content was facilitated by the calcium endocrine system. This regulatory system can be by-passed by raising dietary calcium. Increased

  10. Foil Bearing Stiffness Estimation with Pseudospectral Scheme

    Directory of Open Access Journals (Sweden)

    Sankar Balaji

    2016-01-01

    Full Text Available Compliant foil gas lubricated bearings are used for the support of light loads in the order of few kilograms at high speeds, in the order of 50,000 RPM. The stiffness of the foil bearings depends both on the stiffness of the compliant foil and on the lubricating gas film. The stiffness of the bearings plays a crucial role in the stable operation of the supported rotor over a range of speeds. This paper describes a numerical approach to estimate the stiffness of the bearings using pseudo spectral scheme. Methodology to obtain the stiffness of the foil bearing as a function of weight of the shaft is given and the results are presented.

  11. Genomic sequencing of Pleistocene cave bears

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, James P.; Hofreiter, Michael; Smith, Doug; Priest, JamesR.; Rohland, Nadin; Rabeder, Gernot; Krause, Johannes; Detter, J. Chris; Paabo, Svante; Rubin, Edward M.

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome, the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.

  12. Bone Biopsy

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Bone Biopsy Bone biopsy uses a needle and imaging guidance ... limitations of Bone Biopsy? What is a Bone Biopsy? A bone biopsy is an image-guided procedure ...

  13. Polar bear use of a persistent food subsidy: insights from non-invasive genetic sampling in Alaska

    Science.gov (United States)

    Peacock, Elizabeth; Herreman, Jason

    2013-01-01

    Remains of bowhead whales (Balaena mysticetus) harvested by Iñupiat whalers are deposited in bone piles along the coast of Alaska and have become persistent and reliable food sources for polar bears (Ursus maritimus). The importance of bone piles to individuals and the population, the patterns of use, and the number, sex, and age of bears using these resources are poorly understood. We implemented barbed-wire hair snaring to obtain genetic identities from bears using the Point Barrow bone pile in winter 2010–11. Eighty-three percent of genotyped samples produced individual and sex identification. We identified 97 bears from 200 samples. Using genetic mark–recapture techniques, we estimated that 228 bears used the bone pile during November to February, which would represent approximately 15% of the Southern Beaufort Sea polar bear subpopulation, if all bears were from this subpopulation. We found that polar bears of all age and sex classes simultaneously used the bone pile. More males than females used the bone pile, and males predominated in February, likely because 1/3 of adult females would be denning during this period. On average, bears spent 10 days at the bone pile (median  =  5 days); the probability that an individual bear remained at the bone pile from week to week was 63% for females and 45% for males. Most bears in the sample were detected visiting the bone pile once or twice. We found some evidence of matrilineal fidelity to the bone pile, but the group of animals visiting the bone pile did not differ genetically from the Southern Beaufort Sea subpopulation, nor did patterns of relatedness. We demonstrate that bowhead whale bone piles may be an influential food subsidy for polar bears in the Barrow region in autumn and winter for all sex and age classes.

  14. The role of lean body mass and physical activity in bone health in children.

    Science.gov (United States)

    Baptista, Fátima; Barrigas, Carlos; Vieira, Filomena; Santa-Clara, Helena; Homens, Pedro Mil; Fragoso, Isabel; Teixeira, Pedro J; Sardinha, Luís B

    2012-01-01

    In the context of physical education curricula, markers of physical fitness (e.g., aerobic capacity, muscular strength, flexibility, and body mass index or body fat) are usually evaluated in reference to health standards. Despite their possible mediating role in the relationship between weight-bearing or muscle forces and features of bone tissue, these attributes of fitness may not be the most relevant to predict skeletal health. It is therefore important to analyze the relative contribution of these factors to the variability in bone tissue of different parts of the skeleton, and to analyze it by gender, as sensitivity to mechanical loading can diverge for boys and girls. We compared the effects of habitual physical activity (PA) and lean mass, as surrogates of weight-bearing and muscle forces, and of physical fitness (aerobic and muscle capacity of lower and upper limbs) on bone mineral content (BMC) and size of total body, lumbar spine, femoral neck, and 1/3 radius in 53 girls and 64 boys from 7.9 to 9.7 years of age. After controlling for bone age, body mass, body height, and calcium intake, lean mass was the most important predictor of bone size and/or mineral in both genders (p bone was not determined by PA and fitness score did not explain bone variability. Femoral neck was the bone site more closely associated with mechanical loading factors; boys with a PA > 608 counts/min/day (~105 min/day of moderate and vigorous intensity) showed 13-20% more BMC than those with less physical activity, and girls with a lean mass >19 kg showed 12-19% more BMC than those with less lean mass. These findings suggest that lean mass was the most important predictor of bone size and/or mineralization in both genders, while habitual weight-bearing PA appears to positively impact on bone mineral in prepubertal boys and that both lean mass and PA need to be considered in physical education curricula and other health-enhancing programs.

  15. Plyometric exercise and bone health in children and adolescents: a systematic review.

    Science.gov (United States)

    Gómez-Bruton, Alejandro; Matute-Llorente, Ángel; González-Agüero, Alejandro; Casajús, José A; Vicente-Rodríguez, Germán

    2017-04-01

    Many jumping interventions have been performed in children and adolescents in order to improve bone-related variables and thus, ensure a healthy bone development during these periods and later in life. This systematic review aims to summarize and update present knowledge regarding the effects that jumping interventions may have on bone mass, structure and metabolism in order to ascertain the efficacy and durability (duration of the effects caused by the intervention) of the interventions. Identification of studies was performed by searching in the database MEDLINE/PubMed and SportDiscus. Additional studies were identified by contacting clinical experts and searching bibliographies and abstracts. Search terms included "bone and bones", "jump*", "weight-bearing", "resistance training" and "school intervention". The search was conducted up to October 2014. Only studies that had performed a specific jumping intervention in under 18-year olds and had measured bone mass were included. Independent extraction of articles was done by 2 authors using predefined data fields. A total of 26 studies were included in this review. Twenty-four studies found positive results as subjects included in the intervention groups showed higher bone mineral density, bone mineral content and bone structure improvements than controls. Only two studies found no effects on bone mass after a 10-week and 9-month intervention. Moreover, those studies that evaluated the durability of the effects found that some of the increases in the intervention groups were maintained after several years. Jumping interventions during childhood and adolescence improve bone mineral content, density and structural properties without side effects. These type of interventions should be therefore implemented when possible in order to increase bone mass in early stages of life, which may have a direct preventive effect on bone diseases like osteoporosis later in life.

  16. Impaired ambulation and steroid therapy impact negatively on bone health in multiple sclerosis.

    Science.gov (United States)

    Tyblova, M; Kalincik, T; Zikan, V; Havrdova, E

    2015-04-01

    The prevalence of osteopenia and osteoporosis is higher amongst patients with multiple sclerosis in comparison with the general population. In addition to the general determinants of bone health, two factors may contribute to reduced bone mineral density in multiple sclerosis: physical disability and corticosteroid therapy. The aim of this study was to examine the effect of physical disability and steroid exposure on bone health in weight-bearing bones and spine and on the incidence of low-trauma fractures in multiple sclerosis. In this retrospective analysis of prospectively collected data, associations between bone mineral density (at the femoral neck, total femur and the lumbar spine) and its change with disability or cumulative steroid dose were evaluated with random-effect models adjusted for demographic and clinical determinants of bone health. The incidence of low-trauma fractures during the study follow-up was evaluated with Andersen-Gill models. Overall, 474 and 438 patients were included in cross-sectional and longitudinal analyses (follow-up 2347 patient-years), respectively. The effect of severely impaired gait was more apparent in weight-bearing bones (P ≤ 10(-15) ) than in spine (P = 0.007). The effect of cumulative steroid dose was relatively less pronounced but diffuse (P ≤ 10(-4) ). Risk of low-trauma fractures was associated with disability (P = 0.02) but not with cumulative steroid exposure and was greater amongst patients with severely impaired gait (annual risk 3.5% vs. 3.0%). Synergistic effects were found only between cumulative steroid dose in patients ambulatory without support (P = 0.02). Bone health and the incidence of low-trauma fractures in multiple sclerosis are more related to impaired gait than to extended corticosteroid therapy. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.

  17. Bear maul craniocerebral trauma in Kashmir Valley.

    Science.gov (United States)

    Bashir, Sheikh Adil; Rasool, Altaf; Zaroo, Mohamad Inam; Wani, Adil Hafeez; Zargar, Haroon Rashid; Darzi, Mohammad Ashraf; Khursheed, Nayil

    2013-01-01

    Craniocerebral injuries constitute the bulk of the trauma patients in all the tertiary-care hospitals. Bear attacks as a cause of trauma to the brain and its protective covering are rare. This was a hospital-based retrospective (January 1990 to July 2005) and prospective study (August 2005 to December 2010). Craniocerebral trauma was seen in 49 patients of bear maul injuries. Loss of scalp tissue was seen in 17 patients, 13 of whom had exposed pericranium and needed split-thickness skin grafting, while 4 patients with exposed skull bones required scalp transposition flaps as an initial procedure. Skull bone fractures without associated brain injury were observed in 24 cases. Frontal bone was the site of fracture in the majority of cases (95%). Surgical intervention was needed in 18 patients for significantly depressed fractures. Three of these patients had depressed frontal bone fractures with underlying contusions and needed brain debridement and duraplasty. Injury to the brain was observed in 8 patients. Trauma to the brain and its protective coverings as a result of bear attacks is rarely known. Brain injury occurs less commonly as compared to soft tissue and bony injury. Craniocerebral trauma as a result of bear assaults has been a hitherto neglected area of trauma as the past reported incidence has been very low. Of late, the incidence and severity of such attacks has assumed grave proportions in areas adjacent to known bear habitats. An innocuous-looking surface wound might be the only presentation of an underlying severe brain trauma. Public awareness has to be generated to protect the people living in hilly areas.

  18. Prospective study of the cementless "New Wave" total knee mobile-bearing arthroplasty: 8-year follow-up.

    Science.gov (United States)

    Normand, Xavier; Pinçon, Jean-Louis; Ragot, Jean-Marie; Verdier, Régis; Aslanian, Thierry

    2015-02-01

    One of the main factors affecting the survival of a total knee arthroplasty (TKA) is the fixation method. The constraints placed on the bone-implant interface of a mobile-bearing TKA must be taken in account during the design and evaluation phases. For more than two decades, calcium phosphate ceramics, particularly hydroxyapatitis, have been used in Europe to accelerate the bone integration of cementless implants. A prospective study of patients continuously recruited by three senior surgeons at three French private hospitals has been carried out. There were no exclusion criteria. Eighty-four (84) cementless mobile-bearing total knee prosthesis of the brand "New Wave" were implanted in 74 patients over a 2-year period (2004-2005). Implant survival at 8 years was 95% [with a confidence interval of 95%: 80.2-96.4%] when revision for any cause was defined as the endpoint. Five implants required surgical revision to exchange all or part of the implant: two for aseptic loosening of tibial component, one for osteolysis, one for persistent flessum (30°) and one for tibial periprosthetic fracture. Completely integrated implants and event-free outcomes were recorded in 91.4% of the cases at eight-year follow-up. The Hospital for Special Surgery score significantly improved from 56.8/100 points before the surgery to 83.9/100 points at the last follow-up (p < 0.05). Radiologically, only one patient had radiolucent lines around the tibial and femoral components. This cementless total knee prosthesis yielded good medium-term survival. Cementless arthroplasty can generate solid and durable bone fixation in this total weight-bearing implant, and it seems that the hidroxyapathitis surface in this series stimulate the bone integration at the bone-implant interface.

  19. Teddy Bear Stories

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Caldas-Coulthardt, Carmen

    2014-01-01

    This paper presents a semiotic analysis of a key cultural artefact, the teddy bear. After introducing the iconography of the teddy bear, it analyses different kinds of stories to show how teddy bears are endowed with meaning in everyday life: stories from children's books, reminiscenses by adults...... about their childhood teddy bears, and children's accounts of what they do with teddy bears, both written for school and told 'out of school', The chapter sees teddy bears as artefacts that provide a cultural channeling for the child's need of a transitional object and argues that the meanings of teddy...... bears have traditionally centred on interpersonal relations within the nuclear family, but have recently been institutionalized and commercialized....

  20. Adaptive remodeling of trabecular bone core cultured in 3-D bioreactor providing cyclic loading: an acoustic microscopy study.

    Science.gov (United States)

    Rupin, Fabienne; Bossis, Dorothée; Vico, Laurence; Peyrin, Françoise; Raum, Kay; Laugier, Pascal; Saïed, Amena

    2010-06-01

    Scanning acoustic microscopy (SAM) provides high-resolution mapping of acoustic impedance related to tissue stiffness. This study investigates changes in tissue acoustic impedance resulting from mechanical loading in trabecular bone cores cultured in 3-D bioreactor. Trabecular bone cores were extracted from bovine sternum (n = 15) and ulna metaphysis (n = 15). From each bone, the samples were divided in three groups. The basal control (BC) group was fixed post-extraction, the control (C) and loaded (L) groups were maintained as viable in a controlled culture-loading cell over three weeks. Samples of L group underwent a dynamic compressive strain, whereas C samples were left free from loading. After three weeks, L and C samples were embedded in polymethylmethacrylate and all samples were explored with a 200-MHz SAM. For each specimen, the acoustic impedance distribution was obtained over flat and polished section of bone blocks prepared parallel to the loading axis. Our results showed that in basal controls, the acoustic impedance varied with bone anatomical location and was 15% higher in weight-bearing ulna compared with nonweight-bearing sternum. The comparison between loaded and nonloaded groups showed that sternum-only exhibited significant change in acoustic impedance (L vs. C sternum: +9%). This result suggests that when the applied load is comparable with the stress naturally experienced by a weight-bearing bone (ulna), the tissue material properties (manifested by acoustic impedance) remained unchanged. In conclusion, SAM is a potentially relevant tool for the assessment of subtle changes in intrinsic microelastic properties of bone induced by adaptive remodeling process in response to mechanical loading. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Biochemical Assessment of Bone Health in Working Obese Egyptian Females with Metabolic Syndrome; the Effect of Weight Loss by Natural Dietary Therapies

    Directory of Open Access Journals (Sweden)

    Maha I.A. Moaty

    2015-12-01

    CONCLUSION: These results confirm the benefit of doum in improving bone health parameter [25 (OH D/PTH axis] in the MetS patients, beside the MetS criteria. So, we can conclude that natural effective supplements lead towards the optimization of biochemical parameters in favor of a healthy outcome.

  2. Kangaroo rat bone compared to white rat bone after short-term disuse and exercise

    Science.gov (United States)

    Muths, E.; Reichman, O. J.

    1996-01-01

    Kangaroo rats (Dipodomys ordii) were used to study the effects of confinement on mechanical properties of bone with a long range objective of proposing an alternative to the white rat model for the study of disuse osteoporosis. Kangaroo rats exhibit bipedal locomotion, which subjects their limbs to substantial accelerative forces in addition to the normal stress of weight bearing. We subjected groups of kangaroo rats and white rats (Rattus norvegicus) to one of two confinement treatments or to an exercise regime; animals were exercised at a rate calculated to replicate their (respective) daily exercise patterns. White laboratory rats were used as the comparison because they are currently the accepted model used in the study of disuse osteoporosis. After 6 weeks of treatment, rats were killed and the long bones of their hind limbs were tested mechanically and examined for histomorphometric changes. We found that kangaroo rats held in confinement had less ash content in their hind limbs than exercised kangaroo rats. In general, treated kangaroo rats showed morphometric and mechanical bone deterioration compared to controls and exercised kangaroo rats appeared to have slightly “stronger” bones than confined animals. White rats exhibited no significant differences between treatments. These preliminary results suggest that kangaroo rats may be an effective model in the study of disuse osteoporosis.

  3. Trabecular and Cortical Bone of Growing C3H Mice Is Highly Responsive to the Removal of Weightbearing.

    Directory of Open Access Journals (Sweden)

    Bing Li

    Full Text Available Genetic make-up strongly influences the skeleton's susceptibility to the loss of weight bearing with some inbred mouse strains experiencing great amounts of bone loss while others lose bone at much smaller rates. At young adulthood, female inbred C3H/HeJ (C3H mice are largely resistant to catabolic pressure induced by unloading. Here, we tested whether the depressed responsivity to unloading is inherent to the C3H genetic make-up or whether a younger age facilitates a robust skeletal response to unloading. Nine-week-old, skeletally immature, female C3H mice were subjected to 3wk of hindlimb unloading (HLU, n = 12 or served as normal baseline controls (BC, n = 10 or age-matched controls (AC, n = 12. In all mice, cortical and trabecular architecture of the femur, as well as levels of bone formation and resorption, were assessed with μCT, histomorphometry, and histology. Changes in bone marrow progenitor cell populations were determined with flow cytometry. Following 21d of unloading, HLU mice had 52% less trabecular bone in the distal femur than normal age-matched controls. Reflecting a loss of trabecular tissue compared to baseline controls, trabecular bone formation rates (BFR/BS in HLU mice were 40% lower than in age-matched controls. Surfaces undergoing osteoclastic resorption were not significantly different between groups. In the mid-diaphysis, HLU inhibited cortical bone growth leading to 14% less bone area compared to age-matched controls. Compared to AC, BFR/BS of HLU mice were 53% lower at the endo-cortical surface and 49% lower at the periosteal surface of the mid-diaphysis. The enriched osteoprogenitor cell population (OPC comprised 2% of the bone marrow stem cells in HLU mice, significantly different from 3% OPC in the AC group. These data show that bone tissue in actively growing C3H mice is lost rapidly, or fails to grow, during the removal of functional weight bearing-in contrast to the insignificant response previously

  4. Tendon Reattachment to Bone in an Ovine Tendon Defect Model of Retraction Using Allogenic and Xenogenic Demineralised Bone Matrix Incorporated with Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Tanujan Thangarajah

    Full Text Available Tendon-bone healing following rotator cuff repairs is mainly impaired by poor tissue quality. Demineralised bone matrix promotes healing of the tendon-bone interface but its role in the treatment of tendon tears with retraction has not been investigated. We hypothesized that cortical demineralised bone matrix used with minimally manipulated mesenchymal stem cells will result in improved function and restoration of the tendon-bone interface with no difference between xenogenic and allogenic scaffolds.In an ovine model, the patellar tendon was detached from the tibial tuberosity and a complete distal tendon transverse defect measuring 1 cm was created. Suture anchors were used to reattach the tendon and xenogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5, or allogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5 were used to bridge the defect. Graft incorporation into the tendon and its effect on regeneration of the enthesis was assessed using histomorphometry. Force plate analysis was used to assess functional recovery.Compared to the xenograft, the allograft was associated with significantly higher functional weight bearing at 6 (P = 0.047, 9 (P = 0.028, and 12 weeks (P = 0.009. In the allogenic group this was accompanied by greater remodeling of the demineralised bone matrix into tendon-like tissue in the region of the defect (p = 0.015, and a more direct type of enthesis characterized by significantly more fibrocartilage (p = 0.039. No failures of tendon-bone healing were noted in either group.Demineralised bone matrix used with minimally manipulated mesenchymal stem cells promotes healing of the tendon-bone interface in an ovine model of acute tendon retraction, with superior mechanical and histological results associated with use of an allograft.

  5. Black bear femoral geometry and cortical porosity are not adversely affected by ageing despite annual periods of disuse (hibernation).

    Science.gov (United States)

    McGee, Meghan E; Miller, Danielle L; Auger, Janene; Black, Hal L; Donahue, Seth W

    2007-02-01

    Disuse (i.e. inactivity) causes bone loss, and a recovery period that is 2-3 times longer than the inactive period is usually required to recover lost bone. However, black bears experience annual disuse (hibernation) and remobilization periods that are approximately equal in length, yet bears maintain or increase cortical bone material properties and whole bone mechanical properties with age. In this study, we investigated the architectural properties of bear femurs to determine whether cortical structure is preserved with age in bears. We showed that cross-sectional geometric properties increase with age, but porosity and resorption cavity density do not change with age in skeletally immature male and female bears. These findings suggest that structural properties substantially contribute to increasing whole bone strength with age in bears, particularly during skeletal maturation. Porosity was not different between skeletally immature and mature bears, and showed minimal regional variations between anatomical quadrants and radial positions that were similar in pattern and magnitude between skeletally immature and mature bears. We also found gender dimorphisms in bear cortical bone properties: females have smaller, less porous bones than males. Our results provide further support for the idea that black bears possess a biological mechanism to prevent disuse osteoporosis.

  6. Bone Mineral Density During Total Contact Cast Immobilization for a Patient With Neuropathic (Charcot) Arthropathy

    Science.gov (United States)

    Hastings, Mary K; Sinacore, David R; Fielder, Faye A; Johnson, Jeffrey E

    2014-01-01

    Background and Purpose Diabetes mellitus (DM)-related neuropathic arthropathy of the foot is a destructive bone and joint process. The effect of cast immobilization and non–weight bearing on bone loss has not been well studied. The purpose of this case report is to describe the changes in bone mineral density (BMD) of the calcaneus in the feet of a patient with acute neuropathic arthropathy during total contact cast immobilization. Case Description The patient was a 34-year-old woman with type 1 DM, renal failure requiring dialysis, and a 7-week duration of neuropathic arthropathy of the midfoot. Intervention included total contact casting and minimal to no weight bearing for 10 weeks, with transition to therapeutic footwear. Ultrasound-derived estimates of BMD were taken of both involved and uninvolved calcanei. Outcome Bone mineral density decreased for the involved foot (from 0.25 g/cm2 to 0.20 g/cm2) and increased for the uninvolved foot (from 0.27 g/cm2 to 0.31 g/cm2) during casting. Discussion The low initial BMD and further loss during casting suggest the need for transitional bracing and a well-monitored return to full activity to minimize the risk of recurrence and progression of foot deformity. PMID:15733049

  7. Body composition during childhood and adolescence: relations to bone strength and microstructure.

    Science.gov (United States)

    Farr, Joshua N; Amin, Shreyasee; LeBrasseur, Nathan K; Atkinson, Elizabeth J; Achenbach, Sara J; McCready, Louise K; Joseph Melton, L; Khosla, Sundeep

    2014-12-01

    Numerous studies have examined the association of body composition with bone development in children and adolescents, but none have used micro-finite element (μFE) analysis of high-resolution peripheral quantitative computed tomography images to assess bone strength. This study sought to examine the relations of appendicular lean mass (ALM) and total body fat mass (TBFM) to bone strength (failure load) at the distal radius and tibia. This was a cross-sectional study of 198 healthy 8- to bone age, height, fracture history, ALM, and TBFM, multiple linear regression analyses in boys and girls, separately, showed robust positive associations between ALM and failure loads at both the distal radius (boys: β = 0.92, P relationship between TBFM and failure load at the distal radius was virtually nonexistent (boys: β = -0.07; P = .284; girls: β = -0.03; P = .729). At the distal tibia, positive, albeit weak, associations were observed between TBFM and failure load in both boys (β = 0.09, P = .075) and girls (β = 0.17, P = .033). Our data highlight the importance of lean mass for optimizing bone strength during growth, and suggest that fat mass may have differential relations to bone strength at weight-bearing vs non-weight-bearing sites in children and adolescents. These observations suggest that the strength of the distal radius does not commensurately increase with excess gains in adiposity during growth, which may result in a mismatch between bone strength and the load experienced by the distal forearm during a fall. These findings may explain, in part, why obese children are over-represented among distal forearm fracture cases.

  8. Seasonal variation of bone turnover markers in top-level female skiers.

    Science.gov (United States)

    Lombardi, Giovanni; Colombini, Alessandra; Freschi, Marco; Tavana, Rodolfo; Banfi, Giuseppe

    2011-03-01

    Different levels of weight-bearing activities imply different levels of anabolic effects on skeletal tissue and this can be assessed by measuring biochemical markers reflecting bone metabolism. With this study we wanted to determine how the serum levels of bone turnover markers change during different phases of annual training in elite female skiers. Fourteen top-level Caucasian athletes, from the Italian Women's Alpine Ski Team (slalom and giant slalom), were tested at the end of the relative rest period (T1), the pre-competitive season (T2) and the competitive season (T3). Serum levels of bone-specific alkaline phosphatase (BAP) and tartrate-resistant acid phosphatase (TRAP5b) activities and of osteocalcin (OC), and crosslaps (the carboxyterminal crosslinked telopeptide of type I collagen--β-CTx), were assayed together with the determination of 25(OH)D levels. The formation markers, BAP and OC and the resorption marker TRAP5b significantly increased from T2 to T3, while crosslaps showed no significant changes. The peculiar trends of bone formation markers correlated one to each other at T2 versus T3, and this was probably linked to the highly demanding period of competitions when, in athletes performing weight-bearing exercise, bone is more stimulated by mechanical forces. 25(OH)D levels, instead, changed from T1 to T2 and from T1 to T3 and its trend do not show any correlation with that of bone markers. In conclusion, we found that both the bone formation markers and TRAP5b, marker of resorption, are significantly increased from the pre-competitive season to the competitive season.

  9. Comparison of patella bone strain between females with and without patellofemoral pain: a finite element analysis study.

    Science.gov (United States)

    Ho, Kai-Yu; Keyak, Joyce H; Powers, Christopher M

    2014-01-03

    Elevated bone principal strain (an indicator of potential bone injury) resulting from reduced cartilage thickness has been suggested to contribute to patellofemoral symptoms. However, research linking patella bone strain, articular cartilage thickness, and patellofemoral pain (PFP) remains limited. The primary purpose was to determine whether females with PFP exhibit elevated patella bone strain when compared to pain-free controls. A secondary objective was to determine the influence of patella cartilage thickness on patella bone strain. Ten females with PFP and 10 gender, age, and activity-matched pain-free controls participated. Patella bone strain fields were quantified utilizing subject-specific finite element (FE) models of the patellofemoral joint (PFJ). Input parameters for the FE model included (1) PFJ geometry, (2) elastic moduli of the patella bone, (3) weight-bearing PFJ kinematics, and (4) quadriceps muscle forces. Using quasi-static simulations, peak and average minimum principal strains as well as peak and average maximum principal strains were quantified. Cartilage thickness was quantified by computing the perpendicular distance between opposing voxels defining the cartilage edges on axial plane magnetic resonance images. Compared to the pain-free controls, individuals with PFP exhibited increased peak and average minimum and maximum principal strain magnitudes in the patella. Additionally, patella cartilage thickness was negatively associated with peak minimum principal patella strain and peak maximum principal patella strain. The elevated bone strain magnitudes resulting from reduced cartilage thickness may contribute to patellofemoral symptoms and bone injury in persons with PFP. © 2013 Published by Elsevier Ltd.

  10. Bone status in professional cyclists.

    Science.gov (United States)

    Campion, F; Nevill, A M; Karlsson, M K; Lounana, J; Shabani, M; Fardellone, P; Medelli, J

    2010-07-01

    Professional cycling combines extensive endurance training with non weight-bearing exercise, two factors often associated with lower bone mineral density (BMD). Therefore BMD was measured with dual-energy x-ray absorptiometry in 30 professional road cyclists (mean (SD) age: 29.1 (3.4) years; height: 178.5 (6.7) cm; weight: 71.3 (6.1) kg; %fat mass: 9.7 (3.2)%; VO (2)max: 70.5 (5.5) ml.kg (-1).min (-1)) and in 30 young healthy males used as reference (28.6 (4.5) years; 176.5 (6.3) cm; 73.4 (7.3) kg; 20.7 (5.8)%). Adjusting for differences in age, height, fat mass, lean body mass, and calcium intake by ANCOVA, professional cyclists had similar head BMD (p=0.383) but lower total body (1.135 (0.071) vs. 1.248 (0.104) g.cm (-2); pProfessional cycling appears to negatively affect BMD in young healthy and highly active males, the femoral neck being the most affected site (-18%) in spite of the elevated muscle contractions inherent to the activity. Georg Thieme Verlag KG Stuttgart, New York.

  11. Bearing Health Monitoring

    Directory of Open Access Journals (Sweden)

    S. Shah

    2016-09-01

    Full Text Available Health monitoring of bearings is a widely researched topic and has been attempted by analysing acoustic, thermal and vibration signatures. The methods usually require signal of a healthy bearing to be used as a baseline. This limits their use in practical scenarios. This work proposes a kurtosis based baseline free method of analysing vibration signals to identify the bearing which has generated a fault. It then reports a detailed study on empirical mode decomposition technique for extracting intrinsic mode functions and suggests a set of steps which are necessary and sufficient for the purpose of bearing health monitoring. Thereafter, it compares a few dominant frequencies with the expected ones based on known bearing dimensions. This process has been shown to be fairly accurate in identifying the location of fault in a bearing.

  12. Bearings: Technology and needs

    Science.gov (United States)

    Anderson, W. J.

    1982-01-01

    A brief status report on bearing technology and present and near-term future problems that warrant research support is presented. For rolling element bearings a material with improved fracture toughness, life data in the low Lambda region, a comprehensive failure theory verified by life data and incorporated into dynamic analyses, and an improved corrosion resistant alloy are perceived as important needs. For hydrodynamic bearings better definition of cavitation boundaries and pressure distributions for squeeze film dampers, and geometry optimization for minimum power loss in turbulent film bearings are needed. For gas film bearings, foil bearing geometries that form more nearly optimum film shapes for maximum load capacity, and more effective surface protective coatings for high temperature operation are needed.

  13. Polar bears, Ursus maritimus

    Science.gov (United States)

    Rode, Karyn D.; Stirling, Ian

    2017-01-01

    Polar bears are the largest of the eight species of bears found worldwide and are covered in a pigment-free fur giving them the appearance of being white. They are the most carnivorous of bear species consuming a high-fat diet, primarily of ice-associated seals and other marine mammals. They range throughout the circumpolar Arctic to the southernmost extent of seasonal pack ice.

  14. [Imaging diagnostics of bone sarcomas].

    Science.gov (United States)

    Krämer, J A; Gübitz, R; Beck, L; Heindel, W; Vieth, V

    2014-06-01

    Bone tumors and especially bone sarcomas are rare lesions of the skeletal system in comparison to the much more frequently occurring bone metastases. Despite the relative rarity they are important differential diagnoses of bone lesions. The aim of this article is to give the reader an insight into the fundamentals of the primary imaging of bone sarcomas and to illustrate this with the help of two examples (e.g. osteosarcoma and chondrosarcoma). The foundation of the imaging of bone sarcomas is the radiograph in two planes. This method delivers important information on bone tumors. This information should be analyzed with the help of the Lodwick classification, the configuration of periosteal reactions and a possible reaction of the cortex. A possible tumor matrix and the localization within the skeleton or within long bones also provide important information for differential diagnostic delimitation. Magnetic resonance imaging (MRI) with specific adapted bone tumor sequences allows an exact local staging of a bone sarcoma. In addition to local imaging a compartmental MRI which illustrates the entire extent of tumor-bearing bone and the adjacent joints should be performed to rule out possible skip lesions. The most common distant metastases of osteosarcoma and chondrosarcoma occur in the lungs; therefore, a computed tomography (CT) of the chest is part of staging. Other imaging methods, such as CT of the tumor, positron emission tomography CT (PET-CT), bone scan and whole body MRI supplement the imaging depending on tumor type.

  15. Hibernating little pocket mice show few seasonal changes in bone properties

    Science.gov (United States)

    Noellyn Pineda; Marjorie Owen; Claire Tucker; Samantha Wojda; Stanley Kitchen; Hal Black; Seth Donahue

    2017-01-01

    Periods of disuse or physical inactivity increases bone porosity and decreases bone mineral density, resulting in a loss of bone mechanical competence in many animals. Although large hibernators like bears and marmots prevent bone loss during hibernation, despite long periods of physical inactivity, some small hibernators do lose bone during hibernation. Little pocket...

  16. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  17. Body composition and reproductive function exert unique influences on indices of bone health in exercising women.

    Science.gov (United States)

    Mallinson, Rebecca J; Williams, Nancy I; Hill, Brenna R; De Souza, Mary Jane

    2013-09-01

    Reproductive function, metabolic hormones, and lean mass have been observed to influence bone metabolism and bone mass. It is unclear, however, if reproductive, metabolic and body composition factors play unique roles in the clinical measures of areal bone mineral density (aBMD) and bone geometry in exercising women. This study compares lumbar spine bone mineral apparent density (BMAD) and estimates of femoral neck cross-sectional moment of inertia (CSMI) and cross-sectional area (CSA) between exercising ovulatory (Ov) and amenorrheic (Amen) women. It also explores the respective roles of reproductive function, metabolic status, and body composition on aBMD, lumbar spine BMAD and femoral neck CSMI and CSA, which are surrogate measures of bone strength. Among exercising women aged 18-30 years, body composition, aBMD, and estimates of femoral neck CSMI and CSA were assessed by dual-energy x-ray absorptiometry. Lumbar spine BMAD was calculated from bone mineral content and area. Estrone-1-glucuronide (E1G) and pregnanediol glucuronide were measured in daily urine samples collected for one cycle or monitoring period. Fasting blood samples were collected for measurement of leptin and total triiodothyronine. Ov (n = 37) and Amen (n = 45) women aged 22.3 ± 0.5 years did not differ in body mass, body mass index, and lean mass; however, Ov women had significantly higher percent body fat than Amen women. Lumbar spine aBMD and BMAD were significantly lower in Amen women compared to Ov women (p bone mass at a site composed of primarily trabecular bone. However, lean mass is one of the most influential predictors of bone mass and bone geometry at weight-bearing sites, such as the hip. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Bears Arouse Interest in Microbiota's Role in Health.

    Science.gov (United States)

    Dill-McFarland, Kimberly A; Suen, Garret; Carey, Hannah V

    2016-04-01

    The first report of the effect of hibernation on the gut microbiota of bears reveals trends both similar and distinct from those found in small hibernators. A model mouse system also suggested possible roles of the microbiota for healthy weight gain and insulin tolerance in bears during their active season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. EcoBears

    DEFF Research Database (Denmark)

    Nielsen, Nick; Pedersen, Sandra Bleuenn; Sørensen, Jens Ager

    2015-01-01

    In this paper, we introduce the EcoBears concept that aims to augment household appliances with functional and aesthetic features to promote their "use'' and "longevity of use'' to prevent their disposal. The EcoBears also aim to support the communication of environmental issues in the home setting...

  20. Low-Dose Adefovir-Induced Hypophosphatemic Osteomalacia on Whole-Body Bone Scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hoon; Won, Kyoung Sook; Song, Bongil; Jo, Il; Zeon, Seok Kil [Keimyung Univ., Daegu (Korea, Republic of)

    2013-12-15

    While adefovir dipivoxil (ADV) effectively suppresses the hepatitis B virus, it can cause proximal renal tubular dysfunction leading to phosphate wasting. The safety of low-dose ADV (a dose of 10 mg/day), which does not induce clinically significant nephrotoxicity, is well recognized, but a few cases of hypophosphatemic osteomalacia (HO) caused by low-dose ADV therapy have recently been reported. Although HO induced by low-dose ADV therapy is rare, the presence of bone pain in patients treated with ADV should be monitored. Bone scintigraphy can be performed to confirm the occurrence of osteomalacia and to determine the disease extent. Bone scintigraphic and radiological image findings with a brief review of the literature are presented in this article. We report two cases of HO induced by low-dose ADV therapy that showed multifocal increased radiotracer uptakes in the bilateral bony ribs, spines, pelvic bones and lower extremities on whole-body bone scintigraphy. Bone pain gradually improved after phosphate supplementation and by changing the antiviral agent. Whole-body bone scintigraphy is a highly sensitive imaging tool and can show disease extent at once in the setting of the wide range of the clinical spectrum with nonspecific radiological findings. Furthermore, frequent involvement of the lower extremities, as a result of maximum weight bearing, could be an additional scintigraphic clue for the diagnosis of HO. These cases could be helpful for both clinicians prescribing ADV and nuclear physicians to prevent delayed diagnosis and plan further appropriate treatment.

  1. BONE GEOMETRY AND PHYSICAL ACTIVITY IN CHILDREN AND ADOLESCENTS: SYSTEMATIC REVIEW.

    Science.gov (United States)

    Krahenbühl, Tathyane; Guimarães, Roseane de Fátima; Barros Filho, Antonio de Azevedo; Gonçalves, Ezequiel Moreira

    2018-01-15

    To perform a systematic review on the practice of physical activity and/or sports in health and its influence on bone geometry of healthy children and adolescents. The method used as reference was the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Databases searched for articles published from 2006 to 2016, with "Bone geometry" AND (Sport* OR Exercise* OR "Physical Activity") as descriptors, were PubMed, BIREME/LILACS and SciELO. After the selection, 21 articles were included. Most studies stated that practice of physical activity and/or sports was beneficial for bone geometry and bone mineral density. Only two studies presented values of bone parameters for control individuals better than those of swimmers. Physical activities and sports studied were: gymnastics (n=7), rhythmic gymnastics (n=2), tennis (n=1), soccer (n=3), capoeira (n=1), swimming (n=4), cycling (n=0), jumping activities (n=2), studies relating physical activity with isokinetic peak torque (n=1), physical activity measured by questionnaire (n=4), and additional physical education classes (n=2). Among the sports and physical activities found, gymnastics, soccer, and more intense physical activity assessed by questionnaires were mentioned along with better results in bone geometry compared to the absence of physical activity, whereas swimming and jumping exercises did not influence it. Therefore, sports activities with weight bearing and those practiced more frequently and intensively are beneficial for bone geometry.

  2. Insights into relationships between body mass, composition and bone: findings in elite rugby players.

    Science.gov (United States)

    Hind, Karen; Gannon, Lisa; Brightmore, Amy; Beck, Belinda

    2015-01-01

    Recent reports indicate that bone strength is not proportional to body weight in obese populations. Elite rugby players have a similar body mass index (BMI) to obese individuals but differ markedly with low body fat, high lean mass, and frequent skeletal exposure to loading through weight-bearing exercise. The purpose of this study was to determine relationships between body weight, composition, and bone strength in male rugby players characterized by high BMI and high lean mass. Fifty-two elite male rugby players and 32 nonathletic, age-matched controls differing in BMI (30.2 ± 3.2 vs 24.1 ± 2.1 kg/m²; p = 0.02) received 1 total body and one total hip dual-energy X-ray absorptiometry scan. Hip structural analysis of the proximal femur was used to determine bone mineral density (BMD) and cross-sectional bone geometry. Multiple linear regression was computed to identify independent variables associated with total hip and femoral neck BMD and hip structural analysis-derived bone geometry parameters. Analysis of covariance was used to explore differences between groups. Further comparisons between groups were performed after normalizing parameters to body weight and to lean mass. There was a trend for a positive fat-bone relationship in rugby players, and a negative relationship in controls, although neither reached statistical significance. Correlations with lean mass were stronger for bone geometry (r(2): 0.408-0.520) than for BMD (r(2): 0.267-0.293). Relative to body weight, BMD was 6.7% lower in rugby players than controls (p Rugby players were heavier than controls, with greater lean mass and BMD (p rugby players (p rugby players was reduced in proportion to body weight and lean mass. However, their superior bone geometry suggests that overall bone strength may be adequate for loading demands. Fat-bone interactions in athletes engaged in high-impact sports require further exploration. Copyright © 2015. Published by Elsevier Inc.

  3. Height, muscle, fat and bone response to growth hormone in short children with very low birth weight born appropriate for gestational age and small for gestational age.

    Science.gov (United States)

    Berndt, Cornelia; Schweizer, Roland; Ranke, Michael B; Binder, Gerhard; Martin, David D

    2014-01-01

    Growth hormone (GH) treatment is approved for short children born SGA but not for AGA. Our aim was to study the effect of GH in short VLBW SGA and AGA children. The study group comprised 44 prepubertal short children with a birth weight Growth, muscle and fat mass are similarly impaired in short prepubertal AGA and SGA VLBW children. The children born AGA show a similar or better response to GH compared to those born SGA. These results reveal the arbitrary nature of using the criterion 'SGA' for eligibility to GH treatment in children born with a birth weight <1,500 g. © 2014 S. Karger AG, Basel.

  4. Exercise-induced rib stress fractures: influence of reduced bone mineral density

    DEFF Research Database (Denmark)

    Vinther, Anders; Kanstrup, Inge-Lis; Christiansen, Erik

    2005-01-01

    Exercise-induced rib stress fractures have been reported frequently in elite rowers during the past decade. The etiology of rib stress fractures is unclear, but low bone mineral density (BMD) has been suggested to be a potential risk factor for stress fractures in weight-bearing bones. The present...... density may be a potential risk factor for the development of exercise-induced rib stress fractures in elite rowers....... a DEXA scanner. The RSF subjects showed significantly lower L2-L4 BMD: RSF: 1.22+/-0.05 g cm(-2) (mean+/-SEM) (median 1.19 g cm(-2), range 1.02-1.37 g cm(-2)) compared to C: 140+/-0.04 g cm(-2) (median 1.41 g cm(-2), range 1.27-1.57 g cm(-2)) (P=0.028). The present results suggest that low bone mineral...

  5. Transmit TACAN Bearing Information with a Circular Array

    Directory of Open Access Journals (Sweden)

    W. Mark Dorsey

    2015-01-01

    Full Text Available Using TACAN and array fundamentals, we derive an architecture for transmitting TACAN bearing information from a circular array with time-varying weights. We evaluate performance for a simulated example array of Vivaldi elements.

  6. The salmon bears: giants of the great bear rainforest

    National Research Council Canada - National Science Library

    McAllister, I; Read, N

    2010-01-01

    The Salmon Bears explores the delicate balance that exists between the grizzly, black and spirit bears of the Great Bear Rainforest and their natural environment on the central coast of British Columbia...

  7. Touchdown Ball-Bearing System for Magnetic Bearings

    Science.gov (United States)

    Kingsbury, Edward P.; Price, Robert; Gelotte, Erik; Singer, Herbert B.

    2003-01-01

    The torque-limited touchdown bearing system (TLTBS) is a backup mechanical-bearing system for a high-speed rotary machine in which the rotor shaft is supported by magnetic bearings in steady-state normal operation. The TLTBS provides ball-bearing support to augment or supplant the magnetic bearings during startup, shutdown, or failure of the magnetic bearings. The TLTBS also provides support in the presence of conditions (in particular, rotational acceleration) that make it difficult or impossible to control the magnetic bearings or in which the magnetic bearings are not strong enough (e.g., when the side load against the rotor exceeds the available lateral magnetic force).

  8. Stress fractures of the foot and ankle, part 1: biomechanics of bone and principles of imaging and treatment.

    Science.gov (United States)

    Mandell, Jacob C; Khurana, Bharti; Smith, Stacy E

    2017-08-01

    A stress fracture is a focal failure of bone induced by the summation of repetitive forces, which overwhelms the normal bone remodeling cycle. This review, the first of two parts, discusses the general principles of stress fractures of the foot and ankle. This includes bone structure, biomechanics of stress applied to bone, bone remodeling, risk factors for stress fracture, and general principles of imaging and treatment of stress fractures. Cortical bone and trabecular bone have a contrasting macrostructure, which leads to differing resistances to externally applied forces. The variable and often confusing imaging appearance of stress fractures of the foot and ankle can largely be attributed to the different imaging appearance of bony remodeling of trabecular and cortical bone. Risk factors for stress fracture can be divided into intrinsic and extrinsic factors. Stress fractures subject to compressive forces are considered low-risk and are treated with activity modification and correction of any modifiable risk factors. Stress fractures subject to tensile forces and/or located in regions of decreased vascularity are considered high risk, with additional treatment options including restricted weight-bearing or surgery.

  9. Rotordynamics and bearing design of turbochargers

    Science.gov (United States)

    Chen, Wen Jeng

    2012-05-01

    Turbochargers have gained significant attention in recent years. They are already widely used in automotive, locomotive, and marine applications with diesel engines. They are also applied in the aerospace application to increase the engine performance now. The turbochargers used in automotive and aerospace industry are very light-weight with operating speeds above 100,000 rpm. The turbochargers used in locomotive and marine applications are relatively heavy in size and power compared to the automotive and aerospace applications, and the maximum continuous operating speeds are around 30,000 rpm depending on the diesel engine power rating. Floating ring bushings, semi-floating dampers, ball bearings, and ball bearings with dampers are commonly used in automotive applications for small turbochargers. However, these bearings may not be appropriate for large turbochargers in locomotive and marine applications. Instead, multi-lobed bearings with and without squeeze film dampers are commonly used in these heavy-duty turbochargers. This paper deals with the rotordynamic characteristics of larger turbochargers in locomotive and marine applications. Various bearing designs are discussed. Bearing design parameters are studied and optimal values are suggested. Test results are also presented to support the analytical simulation.

  10. Oral Treatment with the Ghrelin Receptor Agonist HM01 Attenuates Cachexia in Mice Bearing Colon-26 (C26) Tumors.

    Science.gov (United States)

    Villars, Fabienne O; Pietra, Claudio; Giuliano, Claudio; Lutz, Thomas A; Riediger, Thomas

    2017-05-05

    The gastrointestinal hormone ghrelin reduces energy expenditure and stimulates food intake. Ghrelin analogs are a possible treatment against cancer anorexia-cachexia syndrome (CACS). This study aimed to investigate whether oral treatment with the non-peptidergic ghrelin receptor agonist HM01 counteracts CACS in colon-26 (C26) tumor-bearing mice. The C26 tumor model is characterized by pronounced body weight (BW) loss and muscle wasting in the absence of severe anorexia. We analyzed the time course of BW loss, body composition, muscle mass, bone mineral density, and the cytokines interleukin-6 (IL-6) and macrophage-inhibitory cytokine-1 (MIC-1). Moreover, we measured the expression of the muscle degradation markers muscle RING-finger-protein-1 (MuRF-1) and muscle atrophy F-box (MAFbx). After tumor inoculation, MIC-1 levels increased earlier than IL-6 and both cytokines were elevated before MuRF-1/MAFbx expression increased. Oral HM01 treatment increased BW, fat mass, and neuronal hypothalamic activity in healthy mice. In tumor-bearing mice, HM01 increased food intake, BW, fat mass, muscle mass, and bone mineral density while it decreased energy expenditure. These effects appeared to be independent of IL-6, MIC-1, MuRF-1 or MAFbx, which were not affected by HM01. Therefore, HM01 counteracts cachectic body weight loss under inflammatory conditions and is a promising compound for the treatment of cancer cachexia in the absence of severe anorexia.

  11. Bone Diseases

    Science.gov (United States)

    ... need to get enough calcium, vitamin D, and exercise. You should also avoid smoking and drinking too much alcohol. Bone diseases can make bones easy to break. Different kinds of bone problems include Low bone density and osteoporosis, which make your bones weak and ...

  12. Ultra-precision bearings

    CERN Document Server

    Wardle, F

    2015-01-01

    Ultra-precision bearings can achieve extreme accuracy of rotation, making them ideal for use in numerous applications across a variety of fields, including hard disk drives, roundness measuring machines and optical scanners. Ultraprecision Bearings provides a detailed review of the different types of bearing and their properties, as well as an analysis of the factors that influence motion error, stiffness and damping. Following an introduction to basic principles of motion error, each chapter of the book is then devoted to the basic principles and properties of a specific type of bearin

  13. Bone marrow macrophages support prostate cancer growth in bone.

    Science.gov (United States)

    Soki, Fabiana N; Cho, Sun Wook; Kim, Yeo Won; Jones, Jacqueline D; Park, Serk In; Koh, Amy J; Entezami, Payam; Daignault-Newton, Stephanie; Pienta, Kenneth J; Roca, Hernan; McCauley, Laurie K

    2015-11-03

    Resident macrophages in bone play important roles in bone remodeling, repair, and hematopoietic stem cell maintenance, yet their role in skeletal metastasis remains under investigated. The purpose of this study was to determine the role of macrophages in prostate cancer skeletal metastasis, using two in vivo mouse models of conditional macrophage depletion. RM-1 syngeneic tumor growth was analyzed in an inducible macrophage (CSF-1 receptor positive cells) ablation model (MAFIA mice). There was a significant reduction in tumor growth in the tibiae of macrophage-ablated mice, compared with control non-ablated mice. Similar results were observed when macrophage ablation was performed using liposome-encapsulated clodronate and human PC-3 prostate cancer cells where tumor-bearing long bones had increased numbers of tumor associated-macrophages. Although tumors were consistently smaller in macrophage-depleted mice, paradoxical results of macrophage depletion on bone were observed. Histomorphometric and micro-CT analyses demonstrated that clodronate-treated mice had increased bone volume, while MAFIA mice had reduced bone volume. These results suggest that the effect of macrophage depletion on tumor growth was independent of its effect on bone responses and that macrophages in bone may be more important to tumor growth than the bone itself. In conclusion, resident macrophages play a pivotal role in prostate cancer growth in bone.

  14. Management recommendations: Bear River

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a review of land management practices at the Bear River Migratory Bird Refuge, by a land use specialist. Recommendations, time frame and additional...

  15. DW_BEAR

    Data.gov (United States)

    Department of Homeland Security — Subset of BEAR (Bi-Weekly Examination Analysis and Reporting) data used for financial audit remediation reporting within the Coast Guard Business Intelligence (CGBI)...

  16. Bone Metastasis

    Science.gov (United States)

    ... help reduce pain and other symptoms of bone metastases. Symptoms Sometimes, bone metastasis causes no signs and ... cancers most likely to cause bone metastasis include: Breast cancer Kidney cancer Lung cancer Lymphoma Multiple myeloma Prostate ...

  17. Bone Cancer

    Science.gov (United States)

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  18. Fat and Bone: An Odd Couple

    OpenAIRE

    Richard eKremer; Vicente eGilsanz

    2016-01-01

    In this review, we will first discuss the concept of bone strength and introduce how fat at different locations, including the bone marrow, directly or indirectly regulates bone turnover. We will then review the current literature supporting the mechanistic relationship between marrow fat and bone and our understanding of the relationship between body fat, body weight, and bone with emphasis on its hormonal regulation. Finally, we will briefly discuss the importance and challenges of accurate...

  19. Black bears with longer disuse (hibernation) periods have lower femoral osteon population density and greater mineralization and intracortical porosity.

    Science.gov (United States)

    Wojda, Samantha J; Weyland, David R; Gray, Sarah K; McGee-Lawrence, Meghan E; Drummer, Thomas D; Donahue, Seth W

    2013-08-01

    Intracortical bone remodeling is persistent throughout life, leading to age related increases in osteon population density (OPD). Intracortical porosity also increases with age in many mammals including humans, contributing to bone fragility and fracture risk. Unbalanced bone resorption and formation during disuse (e.g., physical inactivity) also increases intracortical porosity. In contrast, hibernating bears are a naturally occurring model for the prevention of both age-related and disuse osteoporoses. Intracortical bone remodeling is decreased during hibernation, but resorption and formation remain balanced. Black bears spend 0.25-7 months in hibernation annually depending on climate and food availability. We found longer hibernating bears demonstrate lower OPD and higher cortical bone mineralization than bears with shorter hibernation durations, but we surprisingly found longer hibernating bears had higher intracortical porosity. However, bears from three different latitudes showed age-related decreases in intracortical porosity, indicating that regardless of hibernation duration, black bears do not show the disuse- or age-related increases in intracortical porosity which is typical of other animals. This ability to prevent increases in intracortical porosity likely contributes to their ability to maintain bone strength during prolonged periods of physical inactivity and throughout life. Improving our understanding of the unique bone metabolism in hibernating bears will potentially increase our ability to develop treatments for age- and disuse-related osteoporoses in humans. Copyright © 2013 Wiley Periodicals, Inc.

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different ... bear denotes child-specific content. Related Articles and Media ... Images related to X-ray (Radiography) - Bone Sponsored by ...

  1. Rolling bearing analysis

    CERN Document Server

    Harris, Tedric A

    2001-01-01

    One of the most well-known experts in the field brings cutting-edge research to practitioners in the new edition of this important reference. Covers the improved mathematical calculations for rolling bearing endurance developed by the American Society of Mechanical Engineers and the Society of Lubrication and Tribology Engineers. Updated with new material on Condition-Based Maintenance, new testing methods, and new bearing materials.

  2. Gear bearing drive

    Science.gov (United States)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  3. Forces associated with launch into space do not impact bone fracture healing

    Science.gov (United States)

    Childress, Paul; Brinker, Alexander; Gong, Cynthia-May S.; Harris, Jonathan; Olivos, David J.; Rytlewski, Jeffrey D.; Scofield, David C.; Choi, Sungshin Y.; Shirazi-Fard, Yasaman; McKinley, Todd O.; Chu, Tien-Min G.; Conley, Carolynn L.; Chakraborty, Nabarun; Hammamieh, Rasha; Kacena, Melissa A.

    2018-02-01

    Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy trauma typify such a clinical scenario. These patients frequently sustain composite injuries with SBDs in concert with extensive soft tissue damage. For soft tissue injury resolution and skeletal reconstruction a patient may experience limited weight bearing for upwards of 6 months. Many small animal investigations have evaluated interventions for SBDs. While providing foundational information regarding the treatment of bone defects, these models do not simulate limited weight bearing conditions after injury. For example, mice ambulate immediately following anesthetic recovery, and in most cases are normally ambulating within 1-3 days post-surgery. Thus, investigations that combine disuse with bone healing may better test novel bone healing strategies. To remove weight bearing, we have designed a SBD rodent healing study in microgravity (μG) on the International Space Station (ISS) for the Rodent Research-4 (RR-4) Mission, which launched February 19, 2017 on SpaceX CRS-10 (Commercial Resupply Services). In preparation for this mission, we conducted an end-to-end mission simulation consisting of surgical infliction of SBD followed by launch simulation and hindlimb unloading (HLU) studies. In brief, a 2 mm defect was created in the femur of 10 week-old C57BL6/J male mice (n = 9-10/group). Three days after surgery, 6 groups of mice were treated as follows: 1) Vivarium Control (maintained continuously in standard cages); 2) Launch Negative Control (placed in the same spaceflight-like hardware as the Launch Positive Control group but were not subjected to launch simulation conditions); 3) Launch Positive Control (placed in spaceflight-like hardware and also subjected to vibration followed by centrifugation); 4) Launch Positive

  4. Load responsive hydrodynamic bearing

    Science.gov (United States)

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  5. Management of resistant pseudarthrosis of long bones.

    Science.gov (United States)

    Zaslav, K R; Meinhard, B P

    1988-08-01

    A retrospective review was undertaken of 15 patients with long-bone pseudarthrosis with long-standing nonunion. These patients were referred to a tertiary care center after their fractures failed to unite after numerous surgical attempts as well as a course of electrical stimulation. Fourteen patients had nonunion of the tibia, and one had nonunion of a humerus fracture. Twelve were originally Gustillo Grade II or III fractures, and four sustained multiple injuries. The average duration of nonunion before presentation to the clinic was 22.5 months. Five patients presented as infected nonunions. Each nonunion was analyzed with specific reference to injury mechanism, skin and bone conditions, presence of infection, primary treatment protocol, and selection criteria for treatment with electrical stimulation. Review of the data revealed that the most common factor associated with failure of electrical stimulation treatment was inappropriate patient selection, according to criteria previously published for the use of these techniques. Treatment modalities consisted of intramedullary fixation in three, open reduction and internal fixation using Arbeitsgemeinschaft fur Osteosynthesefragen (AO) technique in nine, and external fixation in three. All patients were bone grafted. The mean follow-up duration was 1.5 years. Nonunions were healed in fourteen patients. Twelve were fully weight bearing at six months, and one at 12 months. Success was defined as restoration of a functional extremity, giving a success rate of 87%. A thorough reevaluation of the original treatment regimen and a return to basic principles of operative fracture management and bone grafting can yield excellent results, even in patients with recalcitrant nonunion.

  6. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET).

    Science.gov (United States)

    Rosenstock, Julio; Frias, Juan; Páll, Dénes; Charbonnel, Bernard; Pascu, Raluca; Saur, Didier; Darekar, Amanda; Huyck, Susan; Shi, Harry; Lauring, Brett; Terra, Steven G

    2017-08-31

    We evaluated the efficacy and safety of ertugliflozin, an SGLT2 inhibitor, in type 2 diabetes mellitus (T2DM) inadequately controlled (HbA1c, 7.0%-10.5%) with metformin monotherapy (≥1500 mg/d for ≥8 weeks). This was a double-blind, 26-week, multicentre study with ongoing 78-week extension (ClinicalTrials.gov identifier: NCT02033889). A total of 621 participants were randomized 1:1:1 to placebo, or ertugliflozin 5 or 15 mg/d. The primary endpoint was change from baseline at week 26 in HbA1c. Secondary efficacy endpoints were change from baseline at week 26 in fasting plasma glucose (FPG), body weight, systolic/diastolic blood pressure (SBP/DBP) and number of participants with HbA1c body weight, SBP and DBP vs placebo. The incidence of genital mycotic infections was higher in the ertugliflozin groups (female subjects: placebo, 0.9%; ertugliflozin 5 mg, 5.5%; ertugliflozin 15 mg, 6.3% [P = .032]; male subjects: 0%; 3.1%; 3.2%, respectively), as was the incidence of urinary tract infections and symptomatic hypoglycaemia. The incidence of hypovolaemia AEs was similar across groups. Ertugliflozin had no adverse impact on BMD at week 26. Ertugliflozin added to metformin in patients with inadequately controlled T2DM improved glycaemic control, reduced body weight and BP, but increased the incidence of genital mycotic infections. © 2017 John Wiley & Sons Ltd.

  7. Orthopedic surgery and bone fracture pain are both significantly attenuated by sustained blockade of nerve growth factor.

    Science.gov (United States)

    Majuta, Lisa A; Longo, Geraldine; Fealk, Michelle N; McCaffrey, Gwen; Mantyh, Patrick W

    2015-01-01

    The number of patients suffering from postoperative pain due to orthopedic surgery and bone fracture is projected to dramatically increase because the human life span, weight, and involvement in high-activity sports continue to rise worldwide. Joint replacement or bone fracture frequently results in skeletal pain that needs to be adequately controlled for the patient to fully participate in needed physical rehabilitation. Currently, the 2 major therapies used to control skeletal pain are nonsteroidal anti-inflammatory drugs and opiates, both of which have significant unwanted side effects. To assess the efficacy of novel therapies, mouse models of orthopedic and fracture pain were developed and evaluated here. These models, orthopedic surgery pain and bone fracture pain, resulted in skeletal pain-related behaviors that lasted 3 weeks and 8 to 10 weeks, respectively. These skeletal pain behaviors included spontaneous and palpation-induced nocifensive behaviors, dynamic weight bearing, limb use, and voluntary mechanical loading of the injured hind limb. Administration of anti-nerve growth factor before orthopedic surgery or after bone fracture attenuated skeletal pain behaviors by 40% to 70% depending on the end point being assessed. These data suggest that nerve growth factor is involved in driving pain due to orthopedic surgery or bone fracture. These animal models may be useful in developing an understanding of the mechanisms that drive postoperative orthopedic and bone fracture pain and the development of novel therapies to treat these skeletal pains.

  8. Electromechanical Properties of Bone Tissue.

    Science.gov (United States)

    Regimbal, Raymond L.

    Discrepancies between calculated and empirical properties of bone are thought to be due to a general lack of consideration for the extent and manner(s) with which bone components interact at the molecular level. For a bone component in physiological fluid or whenever two phases are in contact, there is a region between the bulk phases called the electrical double layer which is marked by a separation of electric charges. For the purpose of studying electrical double layer interactions, the method of particle microelectrophoresis was used to characterize bone and its major constituents on the basis of the net charge they bear when suspended in ionic media of physiological relevance. With the data presented as pH versus zeta (zeta ) potential, the figures reveal an isoelectric point (IEP) for bone mineral near pH 8.6, whereas intact and EDTA demineralized bone tissue both exhibit IEPs near pH 5.1. While these data demonstrate the potential for a significant degree of coulombic interaction between the bone mineral and organic constituent double layers, it was also observed that use of inorganic phosphate buffers, as a specific marker for bone mineral, resulted in (1) an immediate reversal, from positive to negative, of the bone mineral zeta potential (2) rendered the zeta potential of intact bone more negative in a manner linearly dependent on both time and temperature and (3) had no affect on demineralized bone (P load for a 3 day period. While it is thus demonstrated that the major inorganic and organic phases of bone are electromechanically coupled, a thermodynamic consideration of the data suggests that the nature of the bond is to preserve mineral and organic phase electroneutralities by participating in electrical double layer interactions. The results are discussed in terms of bone mechanical modeling, electrokinetic properties, aging, tissue-implant compatibility and the etiologies of bone pathologic conditions.

  9. Crescimento de cordeiros abatidos com diferentes pesos: osso, músculo e gordura da carcaça e de seus cortes Growth of lambs slaughtered at different weights: bone, muscle and fat of the carcass and its cuts

    Directory of Open Access Journals (Sweden)

    Lisiane Furtado da Silva

    2000-08-01

    Full Text Available O trabalho foi realizado no Setor de Ovinocultura do Departamento de Zootecnia da Universidade Federal de Santa Maria, objetivando determinar as quantidades de osso, músculo e gordura da carcaça e o crescimento de osso e músculo da carcaça e dos diferentes cortes da mesma. Foram utilizados 22 cordeiros machos inteiros, filhos de carneiros Texel e ovelhas cruza (Texel x Ideal. Desses, quatro/oram abatidos no início do experimento (24 horas após o nascimento, e os restantes, ao desmame (45 dias de idade e aos 28 e 33kg. Os cordeiros foram confinados em baias individuais, com suas respectivas mães, até o desmame (45 dias de idade. A determinação do crescimento dos tecidos da carcaça e de seus cortes (quarto, paleta, costela, espinhaço e pescoço foi realizada através de equações alométricas, utilizando-se o logaritmo do peso de osso ou músculo, em função do logaritmo do peso de corpo vazio (PCV ou peso de carcaça fria (PCF. As quantidades de osso e músculo aumentaram (P0,05 com a elevação do peso de carcaça fria. A proporção de gordura aumentou do nascimento ao desmame (PThis experiment was developed at the Ovine Section of Animal Science Department, at Federal University of Santa Maria, Brazil- The purpose of this experiment was to determine the quantity of bone, muscle and fat of the carcass, and the growth ofbone and muscle of the carcass, and of the carcass cuts. Twenty-two intact mate lambs, sired by Texel males, from crossbreed Texel -Ideal dams were used. Four lambs were siaughtered at the beginning of the experiment (24 hours after birth and groups of six lambs were siaughtered at weaning and when reaching 28 and 33kg. The lambs were kept in individual stalls together with their respective mothers until weaning (45 days of age. To study the growth of the carcass tissues and carcass cuts (hindquarter, shoulder, rib, backbone, neck, regression equations of the log of weight of each tissue, as a function of the log of

  10. Effect of sport training on forearm bone sites in female handball and soccer players.

    Science.gov (United States)

    Boshnjaku, Arben; Dimauro, Ivan; Krasniqi, Ermira; Grazioli, Elisa; Tschan, Harald; Migliaccio, Silvia; DI Luigi, Luigi; Caporossi, Daniela

    2016-12-01

    The objective of this study was to evaluate the bone mineral density (BMD) and Z-score of a skeletal region, considered as weight-bearing site in trained handball players (HP), but as non-weight-bearing site in trained soccer players (SP). The bone health status of the same site was also analyzed in an untrained group (CG). BMD and Z-score at distal forearm regions (dominant, D; non-dominant, ND) were evaluated in 30 female HP and in 30 female SP, who have been training for 7.7±3.8 years, 17 hours per week, as well as in 30 females CG. Playing handball was associated with higher BMD of the skeleton at both measured sites than in CG. Also in comparison with SP, HPs' arms showed a significant increase in BMD. On the other hand, female SP have been reported to exhibit an enhanced ND arm BMD compared with controls. The benefits of exercise appeared to be significantly improved only in SP sub-group who started sport activity before or at menarche. These athletes showed at ND forearm a BMD 4% greater than those SP who started later, reaching a BMD of 11.6% higher than CG, a value similar to the corresponding in HP sub-group. Moreover, their D arm BMD was 7.1% higher compared with CG. This study indicates that, compared with non-trained subjects, long-term high-impact sport participation is associated with an higher bone health state, especially if the playing careers were started before or at menarche. This effect was observed at level of both forearms in HP, which are considered as weight-bearing sites for this discipline but also on the same skeletal regions of SP, which are not directly loaded by sport-related regular training.

  11. Foothills model forest grizzly bear study : project update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    This report updates a five year study launched in 1999 to ensure the continued healthy existence of grizzly bears in west-central Alberta by integrating their needs into land management decisions. The objective was to gather better information and to develop computer-based maps and models regarding grizzly bear migration, habitat use and response to human activities. The study area covers 9,700 square km in west-central Alberta where 66 to 147 grizzly bears exist. During the first 3 field seasons, researchers captured and radio collared 60 bears. Researchers at the University of Calgary used remote sensing tools and satellite images to develop grizzly bear habitat maps. Collaborators at the University of Washington used trained dogs to find bear scat which was analyzed for DNA, stress levels and reproductive hormones. Resource Selection Function models are being developed by researchers at the University of Alberta to identify bear locations and to see how habitat is influenced by vegetation cover and oil, gas, forestry and mining activities. The health of the bears is being studied by researchers at the University of Saskatchewan and the Canadian Cooperative Wildlife Health Centre. The study has already advanced the scientific knowledge of grizzly bear behaviour. Preliminary results indicate that grizzlies continue to find mates, reproduce and gain weight and establish dens. These are all good indicators of a healthy population. Most bear deaths have been related to poaching. The study will continue for another two years. 1 fig.

  12. Muscle density predicts changes in bone density and strength: a prospective study in girls.

    Science.gov (United States)

    Laddu, D R; Farr, J N; Lee, V R; Blew, R M; Stump, C; Houtkooper, L; Lohman, T G; Going, S B

    2014-06-01

    We sought to determine whether muscle density, an index of skeletal muscle fat content, was predictive of 2-year changes in weight-bearing bone parameters in young girls. Two-year prospective data from 248 girls, aged 8-13 years at baseline. Peripheral quantitative computed tomography was used to measure changes in bone strength indices (bone strength index [BSI, mg(2)/mm(4)] and strength-strain index [SSIp, mm(3)]) and volumetric bone mineral density [vBMD, mg/cm(3)] at distal metaphyseal and diaphyseal regions of the femur and tibia, as well as calf and thigh muscle density (mg/cm(3)), and muscle cross-sectional area (MCSA, mm(2)), indices of skeletal muscle fat content and muscle force production, respectively. After controlling for potential confounders, greater gains in femur BSI (44%, Pmuscle density. Greater gains in tibial BSI (25%, Pcalf muscle density groups. Baseline muscle density is a significant predictor of changes in bone density and bone strength in young girls during a period of rapid skeletal development.

  13. Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Killion, John A., E-mail: jkillion@research.ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Co. Westmeath (Ireland); Kehoe, Sharon, E-mail: sh625116@dal.ca [Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 34R2 (Canada); Geever, Luke M., E-mail: lgeever@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Co. Westmeath (Ireland); Devine, Declan M., E-mail: ddevine@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Co. Westmeath (Ireland); Sheehan, Eoin, E-mail: eoinsheehan@aol.com [Department of Trauma and Orthopaedics, MRHT, Tullamore, Co. Offaly (Ireland); Boyd, Daniel, E-mail: d.boyd@dal.ca [Department of Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 34R2 (Canada); Higginbotham, Clement L., E-mail: chigginbotham@ait.ie [Materials Research Institute, Athlone Institute of Technology, Dublin Rd, Athlone, Co. Westmeath (Ireland)

    2013-10-15

    Due to the deficiencies of current commercially available biological bone grafts, alternative bone graft substitutes have come to the forefront of tissue engineering in recent times. The main challenge for scientists in manufacturing bone graft substitutes is to obtain a scaffold that has sufficient mechanical strength and bioactive properties to promote formation of new tissue. The ability to synthesise hydrogel based composite scaffolds using photopolymerisation has been demonstrated in this study. The prepared hydrogel based composites were characterised using techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectrometry (EDX), rheological studies and compression testing. In addition, gel fraction, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), porosity and swelling studies of the composites were carried out. It was found that these novel hydrogel bioglass composite formulations did not display the inherent brittleness that is typically associated with bioactive glass based bone gra