WorldWideScience

Sample records for weigh in motion

  1. Weigh-in-Motion Stations

    Data.gov (United States)

    Department of Homeland Security — The data included in the GIS Traffic Stations Version database have been assimilated from station description files provided by FHWA for Weigh-in-Motion (WIM), and...

  2. Improving truck safety: Potential of weigh-in-motion technology

    Directory of Open Access Journals (Sweden)

    Bernard Jacob

    2010-07-01

    Full Text Available Trucks exceeding the legal mass limits increase the risk of traffic accidents and damage to the infrastructure. They also result in unfair competition between transport modes and companies. It is therefore important to ensure truck compliance to weight regulation. New technologies are being developed for more efficient overload screening and enforcement. Weigh-in-Motion (WIM technologies allow trucks to be weighed in the traffic flow, without any disruption to operations. Much progress has been made recently to improve and implement WIM systems, which can contribute to safer and more efficient operation of trucks.

  3. Weigh-in-Motion Sensor and Controller Operation and Performance Comparison

    Science.gov (United States)

    2018-01-01

    This research project utilized statistical inference and comparison techniques to compare the performance of different Weigh-in-Motion (WIM) sensors. First, we analyzed test-vehicle data to perform an accuracy check of the results reported by the sen...

  4. Static Scale Conversion Weigh-In-Motion System; FINAL

    International Nuclear Information System (INIS)

    Beshears, D.L.

    2001-01-01

    In support of the Air Mobility Battle Lab (AMBL), the Defense Advanced Research Projects Agency (DARPA) Advanced Logistics Program and the U. S. Transportation Command (USTRANSCOM), the ultimate objective of this project is to develop and demonstrate a full-scale prototype static scale conversion weigh-in-motion/Profilometry (SSC-WIM/P) system to measure and record dimensional and weight information for the Department of Defense (DoD) equipment and cargo. The Oak Ridge National Laboratory (ORNL), along with the AMBL, and Intercomp, Inc. have developed a long-range plan for developing a dual-use system which can be used as a standard static scale or an accurate weigh-in-motion system. AMBL will work to define requirements for additional activities with U.S. Transportation Command, Air Mobility Command, and the Joint Warfighting Battle Lab for both the SSC-WIM/P and a portable Weigh-in-Motion System for individual units. The funding goal is to fully fund the development of two prototype test articles (a SSC-WIM kit, and a laser profilometer) and have at least one fully operational system by the early 2002 timeframe. The objective of this portion of the project will be to develop a SSC-WIM system, which at a later date can be fully integrated with a profilometry system; to fully characterize DOD wheeled vehicles and cargo (individual axle weights, total vehicle weight, center of balance, height, width and length measurements). The program will be completed in phases with the initial AMBL/DARPA funding being used to initiate the efforts while AMBL/USTC obtains funding to complete the first generation system effort. At the completion of an initial effort, the interface hardware and the data acquisition/analysis hardware will be developed, fabricated, and system principles and basic functionality evaluated, tested, and demonstrated. Additional funding, when made available, will allow the successful completion of a first generation prototype system. This effort will be

  5. The Effect of Flexible Pavement Mechanics on the Accuracy of Axle Load Sensors in Vehicle Weigh-in-Motion Systems.

    Science.gov (United States)

    Burnos, Piotr; Rys, Dawid

    2017-09-07

    Weigh-in-Motion systems are tools to prevent road pavements from the adverse phenomena of vehicle overloading. However, the effectiveness of these systems can be significantly increased by improving weighing accuracy, which is now insufficient for direct enforcement of overloaded vehicles. Field tests show that the accuracy of Weigh-in-Motion axle load sensors installed in the flexible (asphalt) pavements depends on pavement temperature and vehicle speeds. Although this is a known phenomenon, it has not been explained yet. The aim of our study is to fill this gap in the knowledge. The explanation of this phenomena which is presented in the paper is based on pavement/sensors mechanics and the application of the multilayer elastic half-space theory. We show that differences in the distribution of vertical and horizontal stresses in the pavement structure are the cause of vehicle weight measurement errors. These studies are important in terms of Weigh-in-Motion systems for direct enforcement and will help to improve the weighing results accuracy.

  6. Portable bench tester for piezo weigh-in-motion equipment : executive summary report.

    Science.gov (United States)

    2006-06-01

    The Ohio Department of Transportation's (ODOT) piezo weigh-in-motion (WIM) equipment must be tested for initial working operation and to insure continued correct operation. Currently, the only available method to verify the vehicle classification par...

  7. Portable bench tester for piezo weigh-in-motion equipment : final report, June 2006.

    Science.gov (United States)

    2006-06-01

    The Ohio Department of Transportation's (ODOT) piezo weigh-in-motion (WIM) equipment must be tested for initial working operation and to insure continued correct operation. Currently, the only available method to verify the vehicle classification par...

  8. Probability Based Evaluation of Vehicular Bridge Load using Weigh-in-Motion Data

    OpenAIRE

    Widi Nugraha; Indra Djati Sidi

    2016-01-01

    Load and Resistance Factored Design (LRFD) method for designing bridge in Indonesia have been implemented for more than 25 years. LRFD method treating loads and strengths variables as random variables with specific safety factors for different loads and strengths variables type. The nominal loads, load factors, reduction factors, and other criteria for bridge design code can be determined to meet the reliability criteria. Statistical data of weigh-in-motion (WIM) vehicular loads measurement i...

  9. Weighing in motion and characterization of the railroad traffic with using the B-WIM technique

    Directory of Open Access Journals (Sweden)

    J. A. DE CARVALHO NETO

    Full Text Available AbstractThe knowledge on the active moving load of a bridge is crucial for the achievement of the information on the behavior of the structure, and thus foresee maintenance, repairs and better definition of the logistics of its active vehicles. This paper presents the development of the algorithms for the application of the Bridge-Weigh In Motion (B-WIM method created by Moses for the weighing of trains during motion and also for the characterization of the rail traffic, allowing the obtainment of information like passage's train velocity and number and spacing of axles, eliminating the dynamic effect. There were implemented algorithms for the determination of the data referring to the geometry of the train and its loads, which were evaluated using a theoretical example, in which it was simulated the passage of the train over a bridge and the loads of its axles were determined with one hundred percent of precision. In addition, it was made a numerical example in finite elements of a reinforced concrete viaduct from the Carajás' Railroad, in which the developed system reached great results on the characterization and weighing of the locomotive when the constitutive equation of the Brazilian Standards was substituted by the one proposed by Collins and Mitchell.

  10. Analysis of axle and vehicle load properties through Bayesian networks based on weigh-in-motion data

    NARCIS (Netherlands)

    Morales Napoles, O.; Steenbergen, R.D.J.M.

    2014-01-01

    Weigh-in-Motion (WIM) systems are used, among other applications, in pavement and bridge reliability. The system measures quantities such as individual axle load, vehicular loads, vehicle speed, vehicle length and number ofaxles. Because ofthe nature ofúamc configuration, the quantities measured are

  11. Second Interim Report on the Installation and Evaluation of Weigh-In-Motion Utilizing Quartz-Piezo Sensor Technology

    Science.gov (United States)

    1999-11-01

    The objective of this study is to determine the sensor survivability, accuracy and reliability of quartz-piezoelectric weigh-in-motion (WIM) sensors under actual traffic conditions in Connecticut's environment. This second interim report provides a s...

  12. Using weigh-in-motion data to determine bridge dynamic amplification factor

    Directory of Open Access Journals (Sweden)

    Kalin Jan

    2015-01-01

    Full Text Available The dynamic component of bridge traffic loading is commonly taken into account with a Dynamic Amplification Factor (DAF – the ratio between the maximum dynamic and static load effects on a bridge. In the design codes, this factor is generally higher than in reality. While this is fine for new bridges that must account for various risks during their life-time, it imposes unnecessary conservativism into assessment of the existing well defined bridges. Therefore, analysis of existing bridges should apply more realistic DAF values. One way of obtaining them experimentally is by bridge weigh-in-motion (B-WIM measurements, which use an existing instrumented bridge or culvert to weigh all crossing vehicles at highway speeds. The B-WIM system had been equipped with two methods of obtaining an approximation to the static response of the. The first method uses the sum of influence lines. This method relies on accurate axle identification, the failure of which can have a large influence on the DAF value. The other method uses a pre-determined low-pass filter to remove the dynamic component of the measured signal; however an expert is needed to set the filter parameters. A new approach that tries to eliminate these two drawbacks has been developed. In this approach the parameters for the filter are determined automatically by fitting the filtered response to the sum of the influence lines. The measurement of DAF on a typical bridge site agrees with experiments performed in the ARCHES [1] project: dynamic amplification decreases as static loading increases.

  13. The analysis of overloaded trucks in indonesia based on weigh in motion data (east of sumatera national road case study

    Directory of Open Access Journals (Sweden)

    Jihanny Jongga

    2018-01-01

    Full Text Available Overloaded trucks phenomena generally common in developing countries where the traffic control is poor. In Indonesia, the percentage of overloaded trucks can reach more than 60% in the total number of trucks and may be one of the substantial factors that reduce the service life of the road pavements. This paper presents the analysis results of the weigh in motion survey data at East of Sumatera National Road (Jalintim in Indonesia and the impact of overloaded trucks on the pavement. For the analysis the simplified approach was used, the axle loads were converted into representative single-axle loads based on 4th power formula by AASHTO 1993 equation. The vehicle damage factor of vehicles is presented and will be compared with the Highways National Standard to estimate the remaining service life of pavement and IRI value prediction. The analysis showed that the vehicle damage factor that determined from weigh in motion data is extremely greater than vehicle damage factor of the national standard in Indonesia which may lead to accelerated deterioration, reducing the service life of the pavement structures and significantly influence the IRI value.

  14. Traffic volume and load data measurement using a portable weigh in motion system: A case study

    Directory of Open Access Journals (Sweden)

    Abu N.M. Faruk

    2016-05-01

    Full Text Available Traditionally, traffic loading characteristics are collected for pavement design and performance prediction purposes using permanent roadside weigh-in-motion (WIM stations. However, high installation and maintenance costs associated with these permanent WIM stations dictate that their deployment be mostly limited to major highways, such as the interstate network. Quite often however, pavement damage on high volume rural highways with heavy truck proportions is more severe than anticipated, and there is no effective way of quantifying the traffic loading on these highways. Therefore, this study was conducted to evaluate the potential application of portable WIM systems as a means for bringing the WIM technology to these high volume rural highways. A portable WIM unit was deployed in the Texas overweight corridor in Hidalgo County (Pharr District near the USA-Mexico border on highway FM 1016 for collecting traffic data for a minimum of three weeks in each direction. The collected traffic data were analyzed to generate traffic parameters such as volume, load spectra, and overloading information both in terms of the gross vehicle weight (GVW and axle weight. The computed traffic parameters were successful in partially explaining some of the existing pavement conditions on this highway. Overall, the study findings indicated that the portable WIM unit can be used as a convenient and cost-effective means for collecting reliable traffic information for design, analysis, and monitoring purposes. However, proper in-situ calibration of the portable WIM unit at each site is imperative prior to any real-time traffic data collection. Keywords: Traffic data, Load spectra, Truck overweight, Weigh-in-motion (WIM, Portable WIM, Texas overweight corridor

  15. Low-cost, distributed, sensor-based weigh-in-motion systems.

    Science.gov (United States)

    2009-12-01

    Monitoring truck weights is essential for traffic operations, roadway design, traffic safety, and regulations. : Traditional roadside static truck weighing stations have many operational shortcomings, and so there have : been ongoing efforts to devel...

  16. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System

    Directory of Open Access Journals (Sweden)

    Min-Seok Park

    2009-10-01

    Full Text Available This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  17. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.

    Science.gov (United States)

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  18. Effectiveness of vehicle weight enforcement in a developing country using weigh-in-motion sorting system considering vehicle by-pass and enforcement capability

    Directory of Open Access Journals (Sweden)

    Mohamed Rehan Karim

    2014-03-01

    Full Text Available Vehicle overloading has been identified as one of the major contributors to road pavement damage in Malaysia. In this study, the weigh-in-motion (WIM system has been used to function as a vehicle weight sorting tool to complement the exsiting static weigh bridge enforcement station. Data collected from the developed system is used to explore the effectiveness of using WIM system in terms of generating more accurate data for enforcement purposes and at the same time improving safety and reducing the number of vehicle weight violations on the roads. This study specifically focus on the effect of vehicle by-pass and static weigh station enforcement capability on the overall effectiveness of vehicle weight enforcement system in a developing country. Results from this study suggest that the WIM system will significantly enhance the effectiveness and efficiency of the current vehicle weight enforcement, thus generating substantial revenue that would greatly off-set the current road maintenance budget that comes from tax payers money. If there is substantial reduction in overloaded vehicles, the public will still gain through reduction in road maintenance budget, less accident risks involving heavy trucks, and lesser greenhouse gases (GHGs emissions.

  19. Probability Based Evaluation of Vehicular Bridge Load using Weigh-in-Motion Data

    Directory of Open Access Journals (Sweden)

    Widi Nugraha

    2016-02-01

    Full Text Available Load and Resistance Factored Design (LRFD method for designing bridge in Indonesia have been implemented for more than 25 years. LRFD method treating loads and strengths variables as random variables with specific safety factors for different loads and strengths variables type. The nominal loads, load factors, reduction factors, and other criteria for bridge design code can be determined to meet the reliability criteria. Statistical data of weigh-in-motion (WIM vehicular loads measurement in Northern Java highway, Cikampek - Pamanukan, West Java (2011, used in as statistical loads variable. A 25 m simple span bridge with reinforced concrete T-girder is used as a model for structural analysis due to WIM measured and nominal vehicular load based on RSNI T-02-2005, with applied bending moment of girder as the output. The distribution fitting result of applied bending moment due to WIM measured vehicular loads is lognormal. The maximum bending moment due to RSNI T-02-2005 nominal vehicular load is 842.45 kN-m and has probability of exceedance of 5x10-5. It can be concluded, for this study, that the bridge designed using RSNI T-02-2005 is safely designed, since it has reliability index, β of 5.02, higher than target reliability, β ranging from 3.50 or 3.72.

  20. Use of Finite Elements Analysis for a Weigh-in-Motion Sensor Design

    Directory of Open Access Journals (Sweden)

    Viorel Goanta

    2012-05-01

    Full Text Available High speed weigh-in-motion (WIM sensors are utilized as components of complex traffic monitoring and measurement systems. They should be able to determine the weights on wheels, axles and vehicle gross weights, and to help the classification of vehicles (depending on the number of axles. WIM sensors must meet the following main requirements: good accuracy, high endurance, low price and easy installation in the road structure. It is not advisable to use cheap materials in constructing these devices for lower prices, since the sensors are normally working in harsh environmental conditions such as temperatures between –40 °C and +70 °C, dust, temporary water immersion, shocks and vibrations. Consequently, less expensive manufacturing technologies are recommended. Because the installation cost in the road structure is high and proportional to the WIM sensor cross section (especially with its thickness, the device needs to be made as flat as possible. The WIM sensor model presented and analyzed in this paper uses a spring element equipped with strain gages. Using Finite Element Analysis (FEA, the authors have attempted to obtain a more sensitive, reliable, lower profile and overall cheaper elastic element for a new WIM sensor.

  1. Sampling optimization for high-speed weigh-in-motion measurements using in-pavement strain-based sensors

    International Nuclear Information System (INIS)

    Zhang, Zhiming; Huang, Ying; Bridgelall, Raj; Palek, Leonard; Strommen, Robert

    2015-01-01

    Weigh-in-motion (WIM) measurement has been widely used for weight enforcement, pavement design, freight management, and intelligent transportation systems to monitor traffic in real-time. However, to use such sensors effectively, vehicles must exit the traffic stream and slow down to match their current capabilities. Hence, agencies need devices with higher vehicle passing speed capabilities to enable continuous weight measurements at mainline speeds. The current practices for data acquisition at such high speeds are fragmented. Deployment configurations and settings depend mainly on the experiences of operation engineers. To assure adequate data, most practitioners use very high frequency measurements that result in redundant samples, thereby diminishing the potential for real-time processing. The larger data memory requirements from higher sample rates also increase storage and processing costs. The field lacks a sampling design or standard to guide appropriate data acquisition of high-speed WIM measurements. This study develops the appropriate sample rate requirements as a function of the vehicle speed. Simulations and field experiments validate the methods developed. The results will serve as guidelines for future high-speed WIM measurements using in-pavement strain-based sensors. (paper)

  2. Sampling optimization for high-speed weigh-in-motion measurements using in-pavement strain-based sensors

    Science.gov (United States)

    Zhang, Zhiming; Huang, Ying; Bridgelall, Raj; Palek, Leonard; Strommen, Robert

    2015-06-01

    Weigh-in-motion (WIM) measurement has been widely used for weight enforcement, pavement design, freight management, and intelligent transportation systems to monitor traffic in real-time. However, to use such sensors effectively, vehicles must exit the traffic stream and slow down to match their current capabilities. Hence, agencies need devices with higher vehicle passing speed capabilities to enable continuous weight measurements at mainline speeds. The current practices for data acquisition at such high speeds are fragmented. Deployment configurations and settings depend mainly on the experiences of operation engineers. To assure adequate data, most practitioners use very high frequency measurements that result in redundant samples, thereby diminishing the potential for real-time processing. The larger data memory requirements from higher sample rates also increase storage and processing costs. The field lacks a sampling design or standard to guide appropriate data acquisition of high-speed WIM measurements. This study develops the appropriate sample rate requirements as a function of the vehicle speed. Simulations and field experiments validate the methods developed. The results will serve as guidelines for future high-speed WIM measurements using in-pavement strain-based sensors.

  3. Design of a Capacitive Flexible Weighing Sensor for Vehicle WIM System

    Directory of Open Access Journals (Sweden)

    Qing Li

    2007-08-01

    Full Text Available With the development of the Highway Transportation and Business Trade, vehicle weigh-in-motion (WIM technology has become a key technology and trend of measuring traffic loads. In this paper, a novel capacitive flexible weighing sensor which is light weight, smaller volume and easy to carry was applied in the vehicle WIM system. The dynamic behavior of the sensor is modeled using the Maxwell-Kelvin model because the materials of the sensor are rubbers which belong to viscoelasticity. A signal processing method based on the model is presented to overcome effects of rubber mechanical properties on the dynamic weight signal. The results showed that the measurement error is less than ���±10%. All the theoretic analysis and numerical results demonstrated that appliance of this system to weigh in motion is feasible and convenient for traffic inspection.

  4. The Potential and Beneficial Use of Weigh-In-Motion (WIM) Systems Integrated with Radio Frequency Identification (RFID) Systems for Characterizing Disposal of Waste Debris to Optimize the Waste Shipping Process

    International Nuclear Information System (INIS)

    Abercrombie, Robert K.; Buckner, Dooley Jr.; Newton, David D.

    2010-01-01

    The Oak Ridge National Laboratory (ORNL) Weigh-In-Motion (WIM) system provides a portable and/or semi-portable means of accurately weighing vehicles and its cargo as each vehicle crosses the scales (while in motion), and determining (1) axle weights and (2) axle spacing for vehicles (for determination of Bridge Formula compliance), (3) total vehicle/cargo weight and (4) longitudinal center of gravity (for safety considerations). The WIM system can also weigh the above statically. Because of the automated nature of the WIM system, it eliminates the introduction of human errors caused by manual computations and data entry, adverse weather conditions, and stress. Individual vehicles can be weighed continuously at low speeds (approximately 3-10 mph) and at intervals of less than one minute. The ORNL WIM system operates and is integrated into the Bethel Jacobs Company Transportation Management and Information System (TMIS, a Radio-Frequency Identification (RFID) enabled information system). The integrated process is as follows: Truck Identification Number and Tare Weight are programmed into a RFID Tag. Handheld RFID devices interact with the RFID Tag, and Electronic Shipping Document is written to the RFID Tag. The RFID tag read by an RFID tower identifies the vehicle and its associated cargo, the specific manifest of radioactive debris for the uniquely identified vehicle. The weight of the cargo (in this case waste debris) is calculated from total vehicle weight information supplied from WIM to TMIS and is further processed into the Information System and kept for historical and archival purposes. The assembled data is the further process in downstream information systems where waste coordination activities at the Y-12 Environmental Management Waste Management Facility (EMWMF) are written to RFID Tag. All cycle time information is monitored by Transportation Operations and Security personnel.

  5. Dictionary of weighing terms a guide to the terminology of weighing

    CERN Document Server

    Nater, Roland; Reichmuth, Arthur; Schwartz, Roman; Zervos, Panagiotis

    2009-01-01

    This book explains over 1,000 terms from weighing technology and includes many illustrations. Terms used relate to the following topics: Fundamentals of Weighing, Using Scales, International Norms and Legal Requirements for Weighing, and Precision in Weighing.

  6. Research on Automotive Dynamic Weighing Method Based on Piezoelectric Sensor

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available In order to effectively measure the dynamic axle load of vehicles in motion, the dynamic weighing method of vehicles based on piezoelectric sensor was studied. Firstly, the influencing factors of the measurement accuracy in the dynamic weighing process were analyzed systematically, and the impacts of road irregularities and dynamic weighing system vibration on measurement error were discussed. On the basis of the analysis, the arithmetic mean filter method was used in the software algorithm to filter out the periodic interference added in the sensor signal, the most suitable n value was selected to get the better filtering result by simulation comparison. Then, the dynamic axle load calculation model of high speed vehicles was studied deeply, based on the theoretical response curve of the sensor, the dynamic axle load calculation method based on frequency reconstruction was established according to actual measurement signals of sensors and the analysis from time domain and frequency domain, also the least square method was used to realize the identification of temperature correction coefficient. A large amount of data that covered the usual vehicle weighing range was collected by experiment. The results show that the dynamic weighing signal system identification error all controlled within 10% at the same temperature and 60% of the vehicle data error can be controlled within 7%. The temperature correction coefficient and the correction formula at different temperatures ranges are well adapted to ensure that the vehicle temperature error at different temperatures can also be controlled within 10% and 70% of the vehicle data error within 7%. Furthermore, the weighing results remain stable regardless of the speed of the vehicle which meets the requirements for high-speed dynamic weighing.

  7. Halon containers - to weigh or not to weigh

    International Nuclear Information System (INIS)

    Phillips, K.C.

    1984-04-01

    The National Fire Protection Association requires that the quantity of agent in Halon fire extinguishing systems be verified every six months. The accepted method for determining the quantity of agent has been weighing the containers. Because of problems involved with this method, such as the size of the containers, access, etc., the question what other alternatives are there to weighing halon containers has arisen. This report includes the evaluation and test program whereby the Fire Engineering Group selected and tested alternative methods: the thermal strip tape method, the infrared scanner, ultrasonics, and the radiation detector. Also evaluated, but not tested, were the dip stick method, the pressure supervision method, and weighing using a transducer. As a result of this program, it was determined that weighing is still the most positive method for determining agent quantity, but there are alternatives that can be used. The use of some of these alternatives will provide cost savings, time savings, and maintain the fire protection system in service. However, it will be important for the organization or company intending to use one of the alternative methods, to evaluate and make sure it is compatible with their particular halon protection system

  8. Nucleonic weighing systems

    International Nuclear Information System (INIS)

    Teller, S.

    1977-01-01

    Nucleonic weighing systems utilize the principle of the absorption or the scattering of nuclear radiation for a contactless measurement of the weight of material per unit length, the loading, of a conveyor. The load signal is processed in an electronic unit with a tachometer signal for the conveyor velocity to indicate the flow rate and the integrated flow of material. The different sources of error in nucleonic weighing using transmitted and forward scattered radiation are discussed, and the design of two nucleonic weighing systems is described. One is a conventional transmission gauge particularly suited for measuring rapid variation in belt loading due to a fast detection and linearizing unit. The other system consists of a forward scattering gauge, particularly suitable for measuring light inhomogeneous materials due to the linear relationship between the weight per unit area and the gauge response. Results from on-line trials with different materials are presented, and experiences from more than one year of operation for a batch weighing system for quick lime and a continuous weighing system for mineral wool are reported. (author)

  9. Weighing every day matters: daily weighing improves weight loss and adoption of weight control behaviors.

    Science.gov (United States)

    Steinberg, Dori M; Bennett, Gary G; Askew, Sandy; Tate, Deborah F

    2015-04-01

    Daily weighing is emerging as the recommended self-weighing frequency for weight loss. This is likely because it improves adoption of weight control behaviors. To examine whether weighing every day is associated with greater adoption of weight control behaviors compared with less frequent weighing. Longitudinal analysis of a previously conducted 6-month randomized controlled trial. Overweight men and women in Chapel Hill, NC, participated in the intervention arm (N=47). The intervention focused on daily weighing for weight loss using an e-scale that transmitted weights to a study website, along with weekly e-mailed lessons and tailored feedback on daily weighing adherence and weight loss progress. We gathered objective data on self-weighing frequency from the e-scales. At baseline and 6 months, weight change was measured in the clinic and weight control behaviors (total items=37), dietary strategies, and calorie expenditure from physical activity were assessed via questionnaires. Calorie intake was assessed using an online 24-hour recall tool. We used χ(2) tests to examine variation in discrete weight control behaviors and linear regression models to examine differences in weight, dietary strategies, and calorie intake and expenditure by self-weighing frequency. Fifty-one percent of participants weighed every day (n=24) over 6 months. The average self-weighing frequency among those weighing less than daily (n=23) was 5.4±1.2 days per week. Daily weighers lost significantly more weight compared with those weighing less than daily (mean difference=-6.1 kg; 95% CI -10.2 to -2.1; P=0.004). The total number of weight control behaviors adopted was greater among daily weighers (17.6±7.6 vs 11.2±6.4; P=0.004). There were no differences by self-weighing frequency in dietary strategies, calorie intake, or calorie expenditure. Weighing every day led to greater adoption of weight control behaviors and produced greater weight loss compared with weighing most days of the

  10. Rounding errors in weighing

    International Nuclear Information System (INIS)

    Jeach, J.L.

    1976-01-01

    When rounding error is large relative to weighing error, it cannot be ignored when estimating scale precision and bias from calibration data. Further, if the data grouping is coarse, rounding error is correlated with weighing error and may also have a mean quite different from zero. These facts are taken into account in a moment estimation method. A copy of the program listing for the MERDA program that provides moment estimates is available from the author. Experience suggests that if the data fall into four or more cells or groups, it is not necessary to apply the moment estimation method. Rather, the estimate given by equation (3) is valid in this instance. 5 tables

  11. Self-weighing in weight management: a systematic literature review.

    Science.gov (United States)

    Zheng, Yaguang; Klem, Mary Lou; Sereika, Susan M; Danford, Cynthia A; Ewing, Linda J; Burke, Lora E

    2015-02-01

    Regular self-weighing, which in this article is defined as weighing oneself regularly over a period of time (e.g., daily, weekly), is recommended as a weight loss strategy. However, the published literature lacks a review of the recent evidence provided by prospective, longitudinal studies. Moreover, no paper has reviewed the psychological effects of self-weighing. Therefore, the objective is to review the literature related to longitudinal associations between self-weighing and weight change as well as the psychological outcomes. Electronic literature searches in PubMed, Ovid PsycINFO, and Ebscohost CINAHL were conducted. Keywords included overweight, obesity, self-weighing, etc. Inclusion criteria included trials that were published in the past 25 years in English; participants were adults seeking weight loss treatment; results were based on longitudinal data. The results (N=17 studies) revealed that regular self-weighing was associated with more weight loss and not with adverse psychological outcomes (e.g., depression, anxiety). Findings demonstrated that the effect sizes of association between self-weighing and weight change varied across studies and also that the reported frequency of self-weighing varied across studies. The findings from prospective, longitudinal studies provide evidence that regular self-weighing has been associated with weight loss and not with negative psychological outcomes. © 2014 The Obesity Society.

  12. Influence of the weighing bar position in vessel on measurement of cement’s particle size distribution by using the buoyancy weighing-bar method

    Science.gov (United States)

    Tambun, R.; Sihombing, R. O.; Simanjuntak, A.; Hanum, F.

    2018-02-01

    The buoyancy weighing-bar method is a new simple and cost-effective method to determine the particle size distribution both settling and floating particle. In this method, the density change in a suspension due to particle migration is measured by weighing buoyancy against a weighing-bar hung in the suspension, and then the particle size distribution is calculated using the length of the bar and the time-course change in the mass of the bar. The apparatus of this method consists of a weighing-bar and an analytical balance with a hook for under-floor weighing. The weighing bar is used to detect the density change in suspension. In this study we investigate the influences of position of weighing bar in vessel on settling particle size distribution measurements of cement by using the buoyancy weighing-bar method. The vessel used in this experiment is graduated cylinder with the diameter of 65 mm and the position of weighing bar is in center and off center of vessel. The diameter of weighing bar in this experiment is 10 mm, and the kerosene is used as a dispersion liquids. The results obtained show that the positions of weighing bar in vessel have no significant effect on determination the cement’s particle size distribution by using buoyancy weighing-bar method, and the results obtained are comparable to those measured by using settling balance method.

  13. Design and realization of the high-precision weighing systems as the gravimetric references in PTB's national water flow standard

    International Nuclear Information System (INIS)

    Engel, Rainer; Beyer, Karlheinz; Baade, Hans-Joachim

    2012-01-01

    PTB's ‘Hydrodynamic Test Field’, which represents a high-accuracy water flow calibration facility, serves as the national primary standard for liquid flow measurands. As the core reference device of this flow facility, a gravimetric standard has been incorporated, which comprises three special-design weighing systems: 300 kg, 3 tons and 30 tons. These gravimetric references were realized as a combination of a strain-gauge-based and an electromagnetic-force-compensation load-cell-based balance, each. Special emphasis had to be placed upon the dynamics design of the whole weighing system, due to the high measurement resolution and the dynamic behavior of the weighing systems, which are dynamically affected by mechanical vibrations caused by environmental impacts, flow machinery operation, flow noise in the pipework and induced wave motions in the weigh tanks. Taking into account all the above boundary conditions, the design work for the gravimetric reference resulted in a concrete foundation ‘rock’ of some 300 tons that rests on a number of vibration isolators. In addition to these passively operating vibration isolators, the vibration damping effect is enhanced by applying an electronic level regulation device. (paper)

  14. 27 CFR 30.44 - Weighing containers.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Weighing containers. 30.44... Weighing containers. (a) Weighing containers of more than 10 wine gallons. The weight of containers having.... (b) Weighing containers of 10 wine gallons or less. The weight for containers of a capacity of 10...

  15. Use of portable in motion weight control technologies at landfill sites

    CSIR Research Space (South Africa)

    Fisher, D

    2006-09-01

    Full Text Available Requirements for landfilling. In-motion weighing technology currently available in South Africa was investigated to assess its suitability as a 'portable landfill weighbridge'. The experience gained through testing the portable weighpad technology has indicated...

  16. Influence of the weighing bar size to determine optimal time of biodiesel-glycerol separation by using the buoyancy weighing-bar method

    Science.gov (United States)

    Tambun, R.; Sibagariang, Y.; Manurung, J.

    2018-02-01

    The buoyancy weighing-bar method is a novel method in the particle size distribution measurement. This method can measure particle size distributions of the settling particles and floating particles. In this study, the buoyancy weighing-bar method is applied to determine optimal time of biodiesel-glycerol separation. The buoyancy weighing-bar method can be applied to determine the separation time because biodiesel and glycerol have the different densities. The influences of diameter of weighing-bar by using the buoyancy weighing-bar method would be experimentally investigated. The diameters of weighing-bar in this experiment are 8 mm, 10 mm, 15 mm and 20 mm, while the graduated cylinder (diameter : 65 mm) is used as vessel. The samples used in this experiment are the mixture of 95 % of biodiesel and 5 % of glycerol. The data obtained by the buoyancy weighing-bar method are analized by using the gas chromatography to determine the purity of biodiesel. Based on the data obtained, the buoyancy weighing-bar method can be used to detect the separation time of biodiesel-glycerol by using the weighing-bar diameter of 8 mm, 10 mm, 15 mm and 20 mm, but the most accuracy in determination the biodiesel-glycerol separation time is obtained by using the weighing-bar diameter of 20 mm. The biodiesel purity of 97.97 % could be detected at 64 minutes by using the buoyancy weighing-bar method when the weighing-bar diameter of 20 mm is used.

  17. Weighing Rain Gauge Recording Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weighing rain gauge charts record the amount of precipitation that falls at a given location. The vast majority of the Weighing Rain Gauge Recording Charts...

  18. A nucleonic weighing machine

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The design and operation of a nucleonic weighing machine fabricated for continuous weighing of material over conveyor belt are described. The machine uses a 40 mCi cesium-137 line source and a 10 litre capacity ionization chamber. It is easy to maintain as there are no moving parts. It can also be easily removed and reinstalled. (M.G.B.)

  19. Conveyor belt nuclear weighing machine

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    In many industries the flow of materials on conveyor belts must be measured and controlled. Electromechanical weighing devices have high accuracy but are complicated and expensive to install and maintain. For many applications the nuclear weighing machine has sufficient accuracy but is considerably simpler, cheaper and more robust and is easier to maintain. The rating and performance of a gamma ray balance on the mar ket are detailed. (P.G.R.)

  20. Creation and Reliability Analysis of Vehicle Dynamic Weighing Model

    Directory of Open Access Journals (Sweden)

    Zhi-Ling XU

    2014-08-01

    Full Text Available In this paper, it is modeled by using ADAMS to portable axle load meter of dynamic weighing system, controlling a single variable simulation weighing process, getting the simulation weighing data under the different speed and weight; simultaneously using portable weighing system with the same parameters to achieve the actual measurement, comparative analysis the simulation results under the same conditions, at 30 km/h or less, the simulation value and the measured value do not differ by more than 5 %, it is not only to verify the reliability of dynamic weighing model, but also to create possible for improving algorithm study efficiency by using dynamic weighing model simulation.

  1. Radiometric weighing devices. Part 1 and 2

    International Nuclear Information System (INIS)

    Glaeser, M.

    1985-01-01

    Proceeding from the physical and mathematical fundamentals and from the types of radiometric weighing devices presently available, the radiation protection problems arising from the application of radiometric gages in industry and agriculture are discussed. Nuclear weighing devices have been found to be effective from economic point of view but in some cases gravimetric conveyor weighers are indispensable. Information and guidance is given especially for users of radiometric weighing devices. 91 refs., 69 figs., and 8 tabs

  2. Individual nuclear fuel rod weighing system

    International Nuclear Information System (INIS)

    Fogg, J. L.; Howell, C. A.; Smith, J. H.; Vining, G. E.

    1985-01-01

    An individual nuclear fuel rod weighing system for rods carried on a tray which moves along a materials handling conveyor. At a first tray position on the conveyor, a lifting device raises the rods off the tray and places them on an overhead ramp. A loading mechanism conveys the rods singly from the overhead ramp onto an overhead scale for individual weighing. When the tray is at a second position on the conveyor, a transfer apparatus transports each weighed rod from the scale back onto the tray

  3. Individual nuclear fuel rod weighing system

    International Nuclear Information System (INIS)

    Fogg, J.L.; Smith, J.H.; Vining, G.E.; Howell, C.A.

    1985-01-01

    An individual nuclear fuel rod weighing system for rods carried on a tray which moves along a materials handling conveyor is discussed. At a first tray position on the conveyor, a lifting device raises the rods off the tray and places them on an overhead ramp. A loading mechanism conveys the rods singly from the overhead ramp onto an overhead scale for individual weighing. When the tray is at a second position on the conveyor, a transfer apparatus transports each weighed rod from the scale back onto the tray

  4. Weigh Station and Grid Plate Testing

    International Nuclear Information System (INIS)

    PAJUNEN, A.L.

    2000-01-01

    The purpose of this test is to verify that the Shortened Fuel Canister Hook with Certified Scale (i.e. Weigh Station) can be used to weigh an empty canister from the Canister Well and the empty Primary Cleaning Machine (PCM) Strainer Basket from the process table. Drawing H-1-84835, ''Canister Handling Hook for Fuel Retrieval System Process Table,'' provides details of the Shortened Fuel Canister Hook. It is also necessary to verify that the grid plate can be lifted and tilted over a canister in the canister well. This testing shall be performed before N Reactor fuel is processed through the FRS in Phase 3. The Phase 3 Test will repeatedly weigh fuel and scrap canisters and the PCM strainer basket containing N Reactor fuel (Pajunen, et. al, 2000). Advance testing of this weigh station will ensure that accurate fuel weight data can be recorded in the Phase 3 Test. This document satisfies the requirements EN-6-031-00, ''Testing Process'' for a test plan, test specification and test procedure

  5. Clinician’s Attitudes to the Introduction of Routine Weighing in Pregnancy

    Directory of Open Access Journals (Sweden)

    Tim Hasted

    2016-01-01

    Full Text Available Background. Excessive gestational weight gain poses significant short- and long-term health risks to both mother and baby. Professional bodies and health services increasingly recommend greater attention be paid to weight gain in pregnancy. A large Australian tertiary maternity hospital plans to facilitate the (reintroduction of routine weighing of all women at every antenatal visit. Objective. To identify clinicians’ perspectives of barriers and enablers to routinely weighing pregnant women and variations in current practice, knowledge, and attitudes between different staff groups. Method. Forty-four maternity staff from three professional groups were interviewed in four focus groups. Staff included midwives; medical staff; and dietitians. Transcripts underwent qualitative content analysis to identify and examine barriers and enablers to the routine weighing of women throughout pregnancy. Results. While most staff supported routine weighing, various concerns were raised. Issues included access to resources and staff; the ability to provide appropriate counselling and evidence-based interventions; and the impact of weighing on patients and the therapeutic relationship. Conclusion. Many clinicians supported the practice of routine weighing in pregnancy, but barriers were also identified. Implementation strategies will be tailored to the discrete professional groups and will address identified gaps in knowledge, resources, and clinician skills and confidence.

  6. An Integrated Dynamic Weighing System Based on SCADA

    Directory of Open Access Journals (Sweden)

    Piotr Bazydło

    2015-01-01

    Full Text Available A prototyped dynamic weighing system has been presented which integrates together three advanced software environments: MATLAB, LabVIEW and iFIX SCADA. They were used for advanced signal processing, data acquisition, as well as visualization and process control. Dynamic weighing is a constantly developing field of metrology. Because of the highly complicated structure of any electronic weighing module, it is vulnerable to many sources of environmental disturbances. For this reason, there is a lot of research concerned with weighing signal processing, mechanical matters and functionality of the system. In the paper, some issues connected with dynamic weighing have been presented, and the necessity of implementing signal processing methods has been discussed. Implementation of this feature is impossible in the majority of SCADA systems. The integration of the three environments mentioned above is an attempt to create an industrial system with capabilities to deal with major dynamic weighing problems. It is innovative because it connects the industrial SCADA, laboratory/industrial product LabVIEW and MATLAB. In addition, the algorithms responsible for process control and data exchange are presented. The paper includes a description of the capabilities, performance tests, as well as benefits and drawbacks, of the system. The outcome of the research is a prototyped system and evaluation of its usefulness. (original abstract

  7. 7 CFR 800.97 - Weighing grain in containers, land carriers, barges, and shiplots.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Weighing grain in containers, land carriers, barges... (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE GENERAL REGULATIONS Weighing Provisions and Procedures § 800.97 Weighing grain in...

  8. Uncertainty evaluation of a modified elimination weighing for source preparation

    Energy Technology Data Exchange (ETDEWEB)

    Cacais, F.L.; Loayza, V.M., E-mail: facacais@gmail.com [Instituto Nacional de Metrologia, Qualidade e Tecnologia, (INMETRO), Rio de Janeiro, RJ (Brazil); Delgado, J.U. [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Metrologia das Radiações Ionizantes

    2017-07-01

    Some modification in elimination weighing method for radioactive source allowed correcting weighing results without non-linearity problems assign a uncertainty contribution for the correction of the same order of the mass of drop uncertainty and check weighing variability in series source preparation. This analysis has focused in knowing the achievable weighing accuracy and the uncertainty estimated by Monte Carlo method for a mass of a 20 mg drop was at maximum of 0.06%. (author)

  9. System and method for weighing and characterizing moving or stationary vehicles and cargo

    Science.gov (United States)

    Beshears, David L [Knoxville, TN; Scudiere, Matthew B [Oak Ridge, TN; White, Clifford P [Seymour, TN

    2008-05-20

    A weigh-in-motion device and method having at least one transducer pad, each transducer pad having at least one transducer group with transducers positioned essentially perpendicular to the direction of travel. At least one pad microcomputer is provided on each transducer pad having a means for calculating first output signal indicative of weight, second output signal indicative of time, and third output signal indicative of speed. At least one host microcomputer is in electronic communication with each pad microcomputer, and having a means for calculating at least one unknown selected from the group consisting of individual tire weight, individual axle weight, axle spacing, speed profile, longitudinal center of balance, and transverse center of balance.

  10. 40 CFR 92.110 - Weighing chamber and micro-balance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Weighing chamber and micro-balance. 92... Weighing chamber and micro-balance. (a) Ambient conditions—(1) Temperature. The temperature of the chamber... shall be 45±8 percent during all filter conditioning and weighing. The dew point shall be 6.4 to 12.4 °C...

  11. The Weighing Chair of Sanctorius Sanctorius: A Replica.

    Science.gov (United States)

    Hollerbach, Teresa

    2018-05-14

    In 1614, the physician Sanctorius Sanctorius (1561-1636) published his most famous work entitled Ars […] de statica medicina (On static medicine). This is a work composed of aphorisms that present the practical results of a series of weighing procedures, rather than theoretical observations. De statica medicina is the result of a large number of test series that Sanctorius carried out over many years with the weighing chair he constructed himself in order to quantify the so-called perspiratio insensibilis, an insensible perspiration of the human body. Through his weighing experiments, Sanctorius introduced the idea of quantitative research into physiology. Although historical accounts ascribe an important role to Sanctorius as the founder of a new medical science, up until now the design of his weighing chair and the method of measurement have not been closely analysed. The aim of this paper is to close this gap. Through a collaboration between the Max Planck Institute for the History of Science and the Technical University of Berlin (Institute of Vocational Education and Work Studies), Sanctorius's weighing chair was reconstructed and experiments carried out with it. This opened new perspectives on Sanctorius's work and led to a reconsideration of the function and purpose of his weighing chair. With his static medicine, Sanctorius repurposed an old instrument. The replication of the weighing chair and the repetition of the experiments demonstrate that this novel application of scales posed some challenges for the mechanical design of the instrument. We recognized that the instrument fulfilled different functions that might in turn have affected its design, precision, and the measuring method applied. Although in the end we could not clarify how Sanctorius actually conducted his measurements, we were nevertheless able to develop an understanding of Sanctorius's mechanical and practical knowledge that would not have been possible for us to develop solely on

  12. 9 CFR 201.108-1 - Instructions for weighing live poultry.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Instructions for weighing live poultry... STOCKYARDS ACT Poultry-Packers and Live Poultry Dealers § 201.108-1 Instructions for weighing live poultry. Live poultry dealers who operate scales on which live poultry is weighed for purposes of purchase, sale...

  13. A Comparison of Cervical Spine Motion After Immobilization With a Traditional Spine Board and Full-Body Vacuum-Mattress Splint.

    Science.gov (United States)

    Etier, Brian E; Norte, Grant E; Gleason, Megan M; Richter, Dustin L; Pugh, Kelli F; Thomson, Keith B; Slater, Lindsay V; Hart, Joe M; Brockmeier, Stephen F; Diduch, David R

    2017-12-01

    The National Athletic Trainers' Association (NATA) advocates for cervical spine immobilization on a rigid board or vacuum splint and for removal of athletic equipment before transfer to an emergency medical facility. To (1) compare triplanar cervical spine motion using motion capture between a traditional rigid spine board and a full-body vacuum splint in equipped and unequipped athletes, (2) assess cervical spine motion during the removal of a football helmet and shoulder pads, and (3) evaluate the effect of body mass on cervical spine motion. Controlled laboratory study. Twenty healthy male participants volunteered for this study to examine the influence of immobilization type and presence of equipment on triplanar angular cervical spine motion. Three-dimensional cervical spine kinematics was measured using an electromagnetic motion analysis system. Independent variables included testing condition (static lift and hold, 30° tilt, transfer, equipment removal), immobilization type (rigid, vacuum-mattress), and equipment (on, off). Peak sagittal-, frontal-, and transverse-plane angular motions were the primary outcome measures of interest. Subjective ratings of comfort and security did not differ between immobilization types ( P > .05). Motion between the rigid board and vacuum splint did not differ by more than 2° under any testing condition, either with or without equipment. In removing equipment, the mean peak motion ranged from 12.5° to 14.0° for the rigid spine board and from 11.4° to 15.4° for the vacuum-mattress splint, and more transverse-plane motion occurred when using the vacuum-mattress splint compared with the rigid spine board (mean difference, 0.14 deg/s [95% CI, 0.05-0.23 deg/s]; P = .002). In patients weighing more than 250 lb, the rigid board provided less motion in the frontal plane ( P = .027) and sagittal plane ( P = .030) during the tilt condition and transfer condition, respectively. The current study confirms similar motion in the

  14. Baxter elastomeric pumps: Weighing as an alternative to visual inspection.

    Science.gov (United States)

    Cusano, Ellen L; Ali, Raafi; Sawyer, Michael B; Chambers, Carole R; Tang, Patricia A

    2018-04-01

    Purpose Elastomeric pumps are used to administer 46-hour infusions of 5-fluorouracil (5FU). Baxter suggests patients visually monitor their pumps to ensure that infusions are proceeding correctly. This can be confusing and lead to concerns about under- or over-dosing. Baxter has not considered weighing pumps as a validated method for monitoring. This study aims to validate weighing as a more accurate method for patients and healthcare professionals, and describe real life Baxter Infusor™ variability. Methods Patients who had been started on a 46-hour 5FU infusion returned to the clinic approximately 24 h after starting treatment. The pump was weighed on a StarFrit kitchen scale, and date, time, and weights recorded. Patients were asked if they had a preference for weighing or visually inspecting their pump. Results Pumps ( n = 103) were weighed between 17.25 and 27.5 h after connection. The average weight of a pump was 189 g. Of 103 pumps weighed, 99 weighed less than expected, corresponding to average flow rates of 5.69 mL/h over the elapsed time. The expected flow rate is 5 mL/h with 10% variability. Average flow rates within the 17.25- to 27.5-hour window were 4.561 mL/h, which is 8.78% slower than expected, but within the 10% known variability. Forty-seven percent of patients didn't have a preference for either method, but for those who did have a preference, more than twice as many preferred weighing. Conclusion With proper education, weighing Baxter Infusors at home with kitchen scales can be an accepted and objective alternative to the current recommendation of visual inspection.

  15. Portable load-cell based system for weighing UF6 cylinders

    International Nuclear Information System (INIS)

    Fainberg, A.; Gordon, D.; Dermendjiev, E.; Terrey, D.; Mitchell, R.

    1982-01-01

    A load-cell-based portable weighing system which is capable of verifying the weights of 2.2 tonne 30-inch UF 6 cylinders has been developed by the US National Bureau of Standards (NBS). This system weighs about 13 kg and has an attainable accuracy of about 1 kg. After an initial calibration at NBS, the system is ready for use in the field. Approximately 5 to 10 minutes are needed for assembly, and, if an overhead crane has access to all cylinders to be weighed, from 10 to 15 weighings may be performed in one hour. During the past year the system has been tested at several facilities around the world with satisfactory results and with favorable comments from the facility operators. Results of several tests are presented in this paper

  16. Pad-weighing test performed with standardized bladder volume

    DEFF Research Database (Denmark)

    Lose, G; Rosenkilde, P; Gammelgaard, J

    1988-01-01

    The result of the one-hour pad-weighing test proposed by the International Continence Society has been demonstrated to depend on the urine load during the test. To increase reproducibility of the pad-weighing test by minimizing the influence of variation in urine load the test was done with a sta...... to +/- 24 g between two tests. It is concluded that this setup (i.e., standardized bladder volume) of the one-hour pad-weighing test allows for a more reliable assessment of urinary incontinence for quantitative purposes....... with a standardized bladder volume (50% of the cystometric bladder capacity). Twenty-five female patients with stress or mixed incontinence underwent two separate tests. Test-retest results were highly correlated (r = 0.97, p less than 0.001). Nonetheless, analysis of test-retest differences revealed a variation up...

  17. High-speed precision weighing of pharmaceutical capsules

    International Nuclear Information System (INIS)

    Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2009-01-01

    In this paper, we present a cost-effective method for fast and accurate in-line weighing of hard gelatin capsules based on the optimized capacitance sensor and real-time processing of the capsule capacitance profile resulting from 5000 capacitance measurements per second. First, the effect of the shape and size of the capacitive sensor on the sensitivity and stability of the measurements was investigated in order to optimize the performance of the system. The method was tested on two types of hard gelatin capsules weighing from 50 mg to 650 mg. The results showed that the capacitance profile was exceptionally well correlated with the capsule weight with the correlation coefficient exceeding 0.999. The mean precision of the measurements was in the range from 1 mg to 3 mg, depending on the size of the capsule and was significantly lower than the 5% weight tolerances usually used by the pharmaceutical industry. Therefore, the method was found feasible for weighing pharmaceutical hard gelatin capsules as long as certain conditions are met regarding the capsule fill properties and environment stability. The proposed measurement system can be calibrated by using only two or three sets of capsules with known weight. However, for most applications it is sufficient to use only empty and nominally filled capsules for calibration. Finally, a practical application of the proposed method showed that a single system is capable of weighing around 75 000 capsules per hour, while using multiple systems could easily increase the inspection rate to meet almost any requirements

  18. The Impact of Regular Self-weighing on Weight Management: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Welsh Ericka M

    2008-11-01

    Full Text Available Abstract Background Regular self-weighing has been a focus of attention recently in the obesity literature. It has received conflicting endorsement in that some researchers and practitioners recommend it as a key behavioral strategy for weight management, while others caution against its use due to its potential to cause negative psychological consequences associated with weight management failure. The evidence on frequent self-weighing, however, has not yet been synthesized. The purpose of this paper is to evaluate the evidence regarding the use of regular self-weighing for both weight loss and weight maintenance. Methods A systematic literature review was conducted using the MEDLINE, CINAHL, and PsycINFO online databases. Reviewed studies were broken down by sample characteristics, predictors/conditions, dependent measures, findings, and evidence grade. Results Twelve studies met the inclusion/exclusion criteria, but nearly half received low evidence grades in terms of methodological quality. Findings from 11 of the 12 reviewed studies indicated that more frequent self-weighing was associated with greater weight loss or weight gain prevention. Specifically, individuals who reported self-weighing weekly or daily, typically over a period of several months, held a 1 to 3 kg/m2 (current advantage over individuals who did not self-weigh frequently. The effects of self-weighing in experimental studies, especially those where self-weighing behaviors could be isolated, were less clear. Conclusion Based on the consistency of the evidence reviewed, frequent self-weighing, at the very least, seems to be a good predictor of moderate weight loss, less weight regain, or the avoidance of initial weight gain in adults. More targeted research is needed in this area to determine the causal role of frequent self-weighing in weight loss/weight gain prevention programs. Other open questions to be pursued include the optimal dose of self-weighing, as well as the

  19. Perancangan dan Implementasi Sistem Monitoring Beban dan Kecepatan Kendaraan Menggunakan Teknologi Weigh in Motion

    Directory of Open Access Journals (Sweden)

    Trisya Septiana

    2018-03-01

    Full Text Available Weight in Motion (WIM merupakan salah satu solusi inovatif dalam manajemen lalu lintas yang memungkinkan kendaraan ditimbang pada saat dalam perjalanan. Pada penelitian ini dirancang sebuah sistem monitoring yang mampu mengolah dan menghitung data kendaraan berupa beban dan kecepatan kendaraan melalui sistem WIM. Untuk mendukung sistem ini digunakan perangkat keras berupa sensor WIM yang terdiri dari Load Cell, modul penguat HX711 dan Arduino serta untuk data sinyal beban yang telah dihasilkan sistem WIM menggunakan metode analisa pengolahan sinyal. Pengujian sistem ini dilakukan menggunakan sebuah mobil penumpang dengan kecepatan yang berbeda-beda. Dari hasil pengujian didapatkan sistem WIM mampu melakukan pengukuran kendaraan berjalan dengan nilai rata-rata error yang dihasilkan untuk kecepatan 8.94%, jarak sumbu kendaraan 14.64%, dan beban kendaraan 10.21%.

  20. Estimating passenger numbers in trains using existing weighing capabilities

    DEFF Research Database (Denmark)

    Nielsen, Bo Friis; Frølich, Laura; Nielsen, Otto Anker

    2013-01-01

    trains to control braking. This technique makes passenger counting cheaper and ensures a complete sample. The paper compares numbers estimated by this technique with manual counts and counts from an infrared system in trains in urban Copenhagen. It shows that the weighing system provides more accurate......Knowing passenger numbers is important for the planning and operation of the urban rail systems. Manual and electronic counting systems (typically infrared or video) are expensive and therefore entail small sample sizes. They usually count boarding and alighting passengers, which means that errors...... in estimates of total numbers of passengers propagate along train runs. Counting errors in manual and electronic counting systems are typically flow-dependent, making uncertainty a function of volume. This paper presents a new counting technique that exploits the weighing systems installed in most modern...

  1. Reduction of weighing errors caused by tritium decay heating

    International Nuclear Information System (INIS)

    Shaw, J.F.

    1978-01-01

    The deuterium-tritium source gas mixture for laser targets is formulated by weight. Experiments show that the maximum weighing error caused by tritium decay heating is 0.2% for a 104-cm 3 mix vessel. Air cooling the vessel reduces the weighing error by 90%

  2. Quantum Algorithms for Weighing Matrices and Quadratic Residues

    OpenAIRE

    van Dam, Wim

    2000-01-01

    In this article we investigate how we can employ the structure of combinatorial objects like Hadamard matrices and weighing matrices to device new quantum algorithms. We show how the properties of a weighing matrix can be used to construct a problem for which the quantum query complexity is ignificantly lower than the classical one. It is pointed out that this scheme captures both Bernstein & Vazirani's inner-product protocol, as well as Grover's search algorithm. In the second part of the ar...

  3. The first weighing of plutonium

    International Nuclear Information System (INIS)

    1967-01-01

    The following text, transcribed from the remarks of those scientists who gathered at the University of Chicago on September 10, 1967, to celebrate the 25th anniversary of the first weighing of plutonium, tells an important part of the story of this fascinating new element that is destined to play an increasingly significant role in the future of man

  4. The first weighing of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-09-10

    The following text, transcribed from the remarks of those scientists who gathered at the University of Chicago on September 10, 1967, to celebrate the 25th anniversary of the first weighing of plutonium, tells an important part of the story of this fascinating new element that is destined to play an increasingly significant role in the future of man.

  5. FFTF/IEM cell fuel pin weighing system

    International Nuclear Information System (INIS)

    Gibbons, P.W.

    1987-01-01

    The Interim Examination and Maintenance (IEM) cell in the Fast Flux Test Facility (FFTF) is used for remote disassembly of irradiated fuel and materials experiments. For those fuel experiments where the FFTF tag-gas detection system has indicated a fuel pin cladding breach, a weighing system is used in identifying that fuel pin with a reduced weight due to the escape of gaseous and volatile fission products. A fuel pin weighing machine, originally purchased for use in the Fuels and Materials Examination Facility (FMEF), was the basis for the IEM cell system. Design modifications to the original equipment were centered around adapting the machine to the differences between the two facilities and correcting deficiencies discovered during functional testing in the IEM cell mock-up

  6. Weighing fluidized powder

    International Nuclear Information System (INIS)

    Adomitis, J.T.; Larson, R.I.

    1980-01-01

    Fluidized powder is discharged from a fluidizing vessel into a container. Accurate metering is achieved by opening and closing the valve to discharge the powder in a series of short-duration periods until a predetermined weight is measured by a load cell. The duration of the discharge period may be increased in inverse proportion to the amount of powder in the vessel. Preferably the container is weighed between the discharge periods to prevent fluctuations resulting from dynamic effects. The gas discharged into the container causes the pressures in the vessel and container to equalize thereby decreasing the rate of discharge and increasing the accuracy of metering as the weight reaches the predetermined value. (author)

  7. Apical Extrusion of Debris Produced during Continuous Rotating and Reciprocating Motion

    Directory of Open Access Journals (Sweden)

    Giselle Nevares

    2015-01-01

    Full Text Available This study aimed to analyse and compare apical extrusion of debris in canals instrumented with systems used in reciprocating and continuous motion. Sixty mandibular premolars were randomly divided into 3 groups (n=20: the Reciproc (REC, WaveOne (WO, and HyFlex CM (HYF groups. One Eppendorf tube per tooth was weighed in advance on an analytical balance. The root canals were instrumented according to the manufacturer’s instructions, and standardised irrigation with 2.5% sodium hypochlorite was performed to a total volume of 9 mL. After instrumentation, the teeth were removed from the Eppendorf tubes and incubated at 37°C for 15 days to evaporate the liquid. The tubes were weighed again, and the difference between the initial and final weight was calculated to determine the weight of the debris. The data were statistically analysed using the Shapiro-Wilk, Wilcoxon, and Mann-Whitney tests (α=5%. All systems resulted in the apical extrusion of debris. Reciproc produced significantly more debris than WaveOne (p<0.05, and both systems produced a greater apical extrusion of debris than HyFlex CM (p<0.001. Cross section and motion influenced the results, despite tip standardization.

  8. Weighing the legal basis for housing rights in Zimbabwe | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-12-13

    Dec 13, 2016 ... Weighing the legal basis for housing rights in Zimbabwe ... through the Safe and Inclusive Cities partnership with the UK's Department for International Development. ... Transforming the slum: The case of Mumbai's M-Ward.

  9. An automated walk-over weighing system as a tool for measuring liveweight change in lactating dairy cows.

    Science.gov (United States)

    Dickinson, R A; Morton, J M; Beggs, D S; Anderson, G A; Pyman, M F; Mansell, P D; Blackwood, C B

    2013-07-01

    Automated walk-over weighing systems can be used to monitor liveweights of cattle. Minimal literature exists to describe agreement between automated and static scales, and no known studies describe repeatability when used for daily measurements of dairy cows. This study establishes the repeatability of an automated walk-over cattle-weighing system, and agreement with static electronic scales, when used in a commercial dairy herd to weigh lactating cows. Forty-six lactating dairy cows from a seasonal calving, pasture-based dairy herd in southwest Victoria, Australia, were weighed once using a set of static scales and repeatedly using an automated walk-over weighing system at the exit of a rotary dairy. Substantial agreement was observed between the automated and static scales when assessed using Lin's concordance correlation coefficient. Weights measured by the automated walkover scales were within 5% of those measured by the static scales in 96% of weighings. Bland and Altman's 95% limits of agreement were -23.3 to 43.6 kg, a range of 66.9 kg. The 95% repeatability coefficient for automated weighings was 46.3 kg. Removal of a single outlier from the data set increased Lin's concordance coefficient, narrowed Bland and Altman's 95% limits of agreement to a range of 32.5 kg, and reduced the 95% repeatability coefficient to 18.7 kg. Cow misbehavior during walk-over weighing accounted for many of the larger weight discrepancies. The automated walk-over weighing system showed substantial agreement with the static scales when assessed using Lin's concordance correlation coefficient. This contrasted with limited agreement when assessed using Bland and Altman's method, largely due to poor repeatability. This suggests the automated weighing system is inadequate for detecting small liveweight differences in individual cows based on comparisons of single weights. Misbehaviors and other factors can result in the recording of spurious values on walk-over scales. Excluding

  10. Weighing and Body Monitoring among College Women: The Scale Number as an Emotional Barometer

    Science.gov (United States)

    Mintz, Laurie B.; Awad, Germine H.; Stinson, Rebecca D.; Bledman, Rashanta A.; Coker, Angela D.; Kashubeck-West, Susan; Connelly, Kathleen

    2013-01-01

    This study investigated weighing and body-monitoring behaviors, as well as psychological and behavioral reactions to weighing, among female college students. Weighing and body monitoring were engaged in by the majority of participants. Participants changed food intake and exercise based on weight. About 63% reported that the scale number impacts…

  11. Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE

    Directory of Open Access Journals (Sweden)

    J. Kochendorfer

    2018-02-01

    Full Text Available Weighing precipitation gauges are used widely for the measurement of all forms of precipitation, and are typically more accurate than tipping-bucket precipitation gauges. This is especially true for the measurement of solid precipitation; however, weighing precipitation gauge measurements must still be adjusted for undercatch in snowy, windy conditions. In WMO-SPICE (World Meteorological Organization Solid Precipitation InterComparison Experiment, different types of weighing precipitation gauges and shields were compared, and adjustments were determined for the undercatch of solid precipitation caused by wind. For the various combinations of gauges and shields, adjustments using both new and previously existing transfer functions were evaluated. For most of the gauge and shield combinations, previously derived transfer functions were found to perform as well as those more recently derived. This indicates that wind shield type (or lack thereof is more important in determining the magnitude of wind-induced undercatch than the type of weighing precipitation gauge. It also demonstrates the potential for widespread use of the previously developed transfer functions. Another overarching result was that, in general, the more effective shields, which were associated with smaller unadjusted errors, also produced more accurate measurements after adjustment. This indicates that although transfer functions can effectively reduce measurement biases, effective wind shielding is still required for the most accurate measurement of solid precipitation.

  12. Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE

    Science.gov (United States)

    Kochendorfer, John; Nitu, Rodica; Wolff, Mareile; Mekis, Eva; Rasmussen, Roy; Baker, Bruce; Earle, Michael E.; Reverdin, Audrey; Wong, Kai; Smith, Craig D.; Yang, Daqing; Roulet, Yves-Alain; Meyers, Tilden; Buisan, Samuel; Isaksen, Ketil; Brækkan, Ragnar; Landolt, Scott; Jachcik, Al

    2018-02-01

    Weighing precipitation gauges are used widely for the measurement of all forms of precipitation, and are typically more accurate than tipping-bucket precipitation gauges. This is especially true for the measurement of solid precipitation; however, weighing precipitation gauge measurements must still be adjusted for undercatch in snowy, windy conditions. In WMO-SPICE (World Meteorological Organization Solid Precipitation InterComparison Experiment), different types of weighing precipitation gauges and shields were compared, and adjustments were determined for the undercatch of solid precipitation caused by wind. For the various combinations of gauges and shields, adjustments using both new and previously existing transfer functions were evaluated. For most of the gauge and shield combinations, previously derived transfer functions were found to perform as well as those more recently derived. This indicates that wind shield type (or lack thereof) is more important in determining the magnitude of wind-induced undercatch than the type of weighing precipitation gauge. It also demonstrates the potential for widespread use of the previously developed transfer functions. Another overarching result was that, in general, the more effective shields, which were associated with smaller unadjusted errors, also produced more accurate measurements after adjustment. This indicates that although transfer functions can effectively reduce measurement biases, effective wind shielding is still required for the most accurate measurement of solid precipitation.

  13. A Practical Probabilistic Graphical Modeling Tool for Weighing ...

    Science.gov (United States)

    Past weight-of-evidence frameworks for adverse ecological effects have provided soft-scoring procedures for judgments based on the quality and measured attributes of evidence. Here, we provide a flexible probabilistic structure for weighing and integrating lines of evidence for ecological risk determinations. Probabilistic approaches can provide both a quantitative weighing of lines of evidence and methods for evaluating risk and uncertainty. The current modeling structure wasdeveloped for propagating uncertainties in measured endpoints and their influence on the plausibility of adverse effects. To illustrate the approach, we apply the model framework to the sediment quality triad using example lines of evidence for sediment chemistry measurements, bioassay results, and in situ infauna diversity of benthic communities using a simplified hypothetical case study. We then combine the three lines evidence and evaluate sensitivity to the input parameters, and show how uncertainties are propagated and how additional information can be incorporated to rapidly update the probability of impacts. The developed network model can be expanded to accommodate additional lines of evidence, variables and states of importance, and different types of uncertainties in the lines of evidence including spatial and temporal as well as measurement errors. We provide a flexible Bayesian network structure for weighing and integrating lines of evidence for ecological risk determinations

  14. Elimination of motion and pulsation artifacts using BLADE sequences in shoulder MR imaging

    International Nuclear Information System (INIS)

    Lavdas, E.; Zaloni, E.; Vlychou, M.; Vassiou, K.; Fezoulidis, I.; Tsagkalis, A.; Dailiana, Z.

    2015-01-01

    To evaluate the ability of proton-density with fat-suppression BLADE (proprietary name for periodically rotated overlapping parallel lines with enhanced reconstruction in MR systems from Siemens Healthcare, PDFS BLADE) and turbo inversion recovery magnitude-BLADE (TIRM BLADE) sequences to reduce motion and pulsation artifacts in shoulder magnetic resonance examinations. Forty-one consecutive patients who had been routinely scanned for shoulder examination participated in the study. The following pairs of sequences with and without BLADE were compared: (a) Oblique coronal proton-density sequence with fat saturation of 25 patients and (b) oblique sagittal T2 TIRM-weighed sequence of 20 patients. Qualitative analysis was performed by two experienced radiologists. Image motion and pulsation artifacts were also evaluated. In oblique coronal PDFS BLADE sequences, motion artifacts have been significantly eliminated, even in five cases of non-diagnostic value with conventional imaging. Similarly, in oblique sagittal T2 TIRM BLADE sequences, image quality has been improved, even in six cases of non-diagnostic value with conventional imaging. Furthermore, flow artifacts have been improved in more than 80% of all the cases. The use of BLADE sequences is recommended in shoulder imaging, especially in uncooperative patients because it effectively eliminates motion and pulsation artifacts. (orig.)

  15. Uncertainty estimation in nuclear material weighing

    Energy Technology Data Exchange (ETDEWEB)

    Thaure, Bernard [Institut de Radioprotection et de Surete Nucleaire, Fontenay aux Roses, (France)

    2011-12-15

    The assessment of nuclear material quantities located in nuclear plants requires knowledge of additions and subtractions of amounts of different types of materials. Most generally, the quantity of nuclear material held is deduced from 3 parameters: a mass (or a volume of product); a concentration of nuclear material in the product considered; and an isotopic composition. Global uncertainties associated with nuclear material quantities depend upon the confidence level of results obtained in the measurement of every different parameter. Uncertainties are generally estimated by considering five influencing parameters (ISHIKAWA's rule): the material itself; the measurement system; the applied method; the environmental conditions; and the operator. A good practice guide, to be used to deal with weighing errors and problems encountered, is presented in the paper.

  16. Chronic hemodialysis in children weighing less than 10 kg.

    LENUS (Irish Health Repository)

    Quinlan, Catherine

    2013-05-01

    Hemodialysis (HD) in infants is usually used when peritoneal dialysis (PD) has failed. We describe our experience with HD, outlining the morbidity, complications, and outcomes for infants weighing less than 10 kg managed with HD for more than 6 months over a 10-year period.

  17. Weighing Efficiency-Robustness in Supply Chain Disruption by Multi-Objective Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Tong Shu

    2016-03-01

    Full Text Available This paper investigates various supply chain disruptions in terms of scenario planning, including node disruption and chain disruption; namely, disruptions in distribution centers and disruptions between manufacturing centers and distribution centers. Meanwhile, it also focuses on the simultaneous disruption on one node or a number of nodes, simultaneous disruption in one chain or a number of chains and the corresponding mathematical models and exemplification in relation to numerous manufacturing centers and diverse products. Robustness of the design of the supply chain network is examined by weighing efficiency against robustness during supply chain disruptions. Efficiency is represented by operating cost; robustness is indicated by the expected disruption cost and the weighing issue is calculated by the multi-objective firefly algorithm for consistency in the results. It has been shown that the total cost achieved by the optimal target function is lower than that at the most effective time of supply chains. In other words, the decrease of expected disruption cost by improving robustness in supply chains is greater than the increase of operating cost by reducing efficiency, thus leading to cost advantage. Consequently, by approximating the Pareto Front Chart of weighing between efficiency and robustness, enterprises can choose appropriate efficiency and robustness for their longer-term development.

  18. Analysis of weighing cells based on the principle of electromagnetic force compensation

    International Nuclear Information System (INIS)

    Marangoni, Rafael R; Rahneberg, Ilko; Fröhlich, Thomas; Hilbrunner, Falko; Theska, René

    2017-01-01

    An analytical model that considers the static behaviour of weighing cells based on the principle of electromagnetic force compensation (EMFC) is presented. With this model, adjustment strategies for the stiffness and tilt sensitivity of EMFC weighing cells are derived. These parameters are known as limiting factors for the achievable sensitivity and measurement uncertainty respectively. In order to obtain the analytical equations of the system, linear and rigid-body behaviour is assumed. The results obtained with the model are compared with results from multi-body simulations. It is shown that, for the considered model, an optimum design that eliminates the tilt sensitivity of the weighing cell while minimizing its stiffness exists. (paper)

  19. New laser power sensor using weighing method

    Science.gov (United States)

    Pinot, P.; Silvestri, Z.

    2018-01-01

    We present a set-up using a piece of pyrolytic carbon (PyC) to measure laser power in the range from a few milliwatts to a few watts. The experimental configuration consists in measuring the magnetic repulsion force acting between a piece of PyC placed on a weighing pan and in a magnetic induction generated by a magnet array in a fixed position above the PyC sheet. This involves a repulsion force on the PyC piece which is expressed in terms of mass by the balance display. The quantities affecting the measurement results have been identified. An example of metrological characterization in terms of accuracy, linearity and sensitivity is given. A relative uncertainty of optical power measurement for the first experimental set-up is around 1%. The wavelength and power density dependence on power response of this device has been demonstrated. This PyC-based device presented here in weighing configuration and the other one previously studied in levitation configuration offer a new technique for measuring optical power.

  20. Metrological approach to the force exerted by the axle of a road vehicle in motion carrying liquid

    International Nuclear Information System (INIS)

    Faruolo, Luciano Bruno; Pinto, Fernando Augusto de Noronha Castro

    2016-01-01

    Weigh-in-motion (WIM) systems are used for identifying the dynamic force exerted on the ground by axles of a vehicle. These systems are important for monitoring the gross vehicle weight and the vehicle axle load. Overweighted trucks on the roads increase pavement damage and traffic accidents. Knowing the accuracy of WIM systems is necessary. In the case of liquid transport the ‘sloshing effect’ affects this accuracy. This paper aims to analyze the dynamic measurement of the axle forces in vehicles carrying liquid during WIM up to 6 km h −1 . Laboratory experiments using one vehicle with six axles and liquid loads on different levels in weighing instruments are presented. A non-linear computational multi-mass-springs model was developed and laboratory experiments were carried out to show the acceleration influences on axle forces of vehicles with six axles and with and without baffles to vary the ‘sloshing effect’. (paper)

  1. Design and construction of a large weighing lysimeter in an almond orchard

    Energy Technology Data Exchange (ETDEWEB)

    Lorite, I. J.; Santos, C.; Testi, L.; Fereres, E.

    2012-11-01

    Effective water management is essential to ensure the sustainability of irrigated agriculture. The accurate determination of crop water requirements is the first step in this task. This paper describes the building of a one-tree weighing lysimeter (3 × 3 m and 2.15 m depth) located in an almond (Prunus dulcis cv. Guara) orchard, inside the experimental farm “Alameda del Obispo” in Córdoba, Spain, to measure orchard evapotranspiration (ETc). Following a review on lysimetry, the description of the construction of the weighing lysimeter is provided in detail, including considerations relative to system resolution and wind effects on the measurements. Finally, some preliminary results of the evaporation and transpiration of young almond trees are presented demonstrating that lysimetry in orchards provides accurate ETc values needed to determine irrigation water requirements. (Author) 72 refs.

  2. Evidence Based Weighing Policy during the First Week to Prevent Neonatal Hypernatremic Dehydration while Breastfeeding.

    Science.gov (United States)

    Boer, Suzanne; Unal, Sevim; van Wouwe, Jacobus P; van Dommelen, Paula

    2016-01-01

    Neonatal hypernatremic dehydration is prevented by daily neonatal weight monitoring. We aim to provide evidence-based support of this universally promoted weighing policy and to establish the most crucial days of weighing. Weight measurements of 2,359 healthy newborns and of 271 newborns with clinical hypernatremic dehydration were used within the first seven days of life to simulate various weighting policies to prevent hypernatremic dehydration; its sensitivity, specificity and positive predictive value (PPV) of these policies were calculated. Various referral criteria were also evaluated. A policy of daily weighing with a cut-off value of -2.5 Standard Deviation Score (SDS) on the growth chart for weight loss, had a 97.6% sensitivity, 97.6% specificity and a PPV of 2.80%. Weighing at birth and only at days two, four and seven with the same -2.5 SDS cut-off, resulted in 97.3% sensitivity, 98.5% specificity and a PPV of 4.43%. A weighing policy with measurements restricted to birth and day two, four and seven applying the -2.5 SDS cut-off seems an optimal policy to detect hypernatremic dehydration. Therefore we recommend to preferably weigh newborns at least on day two (i.e. ~48h), four and seven, and refer them to clinical pediatric care if their weight loss increases below -2.5 SDS. We also suggest lactation support for the mother, full clinical assessment of the infant and weighing again the following day in all newborns reaching a weight loss below -2.0 SDS.

  3. Weighing Designs to Detect a Single Counterfeit Coin

    Indian Academy of Sciences (India)

    IAS Admin

    research-level problems have been posed and resolved from time to time. .... 1b shows this method of fake coin detection. 2. ... the same weighing design) whether there is a fake coin of ..... He put all 101 pills in the last bottle, and mixed it up.

  4. Continuous weighing of conveyor-transported materials based on gamma radiation conversion to electric current

    International Nuclear Information System (INIS)

    The principle is described of the continuous weighing of conveyer-transported materials applied in the food industry. The weighing technique is based on the measurement of the absorption of gamma radiation emitted by a source located behind the material to be scaled. (Z.M.)

  5. 9 CFR 201.49 - Requirements regarding scale tickets evidencing weighing of livestock, live poultry, and feed.

    Science.gov (United States)

    2010-01-01

    ... evidencing weighing of livestock, live poultry, and feed. 201.49 Section 201.49 Animals and Animal Products... regarding scale tickets evidencing weighing of livestock, live poultry, and feed. (a) Livestock. When... the weigher. (b) Poultry. When live poultry is weighed for the purpose of purchase, sale, acquisition...

  6. Dynamic global model of oxide Czochralski process with weighing control

    Science.gov (United States)

    Mamedov, V. M.; Vasiliev, M. G.; Yuferev, V. S.

    2011-03-01

    A dynamic model of oxide Czochralski growth with weighing control has been developed for the first time. A time-dependent approach is used for the calculation of temperature fields in different parts of a crystallization set-up and convection patterns in a melt, while internal radiation in crystal is considered in a quasi-steady approximation. A special algorithm is developed for the calculation of displacement of a triple point and simulation of a crystal surface formation. To calculate variations in the heat generation, a model of weighing control with a commonly used PID regulator is applied. As an example, simulation of the growth process of gallium-gadolinium garnet (GGG) crystals starting from the stage of seeding is performed.

  7. Heart rate detection from single-foot plantar bioimpedance measurements in a weighing scale.

    Science.gov (United States)

    Diaz, Delia H; Casas, Oscar; Pallas-Areny, Ramon

    2010-01-01

    Electronic bathroom scales are an easy-to-use, affordable mean to measure physiological parameters in addition to body weight. They have been proposed to obtain the ballistocardiogram (BCG) and derive from it the heart rate, cardiac output and systolic blood pressure. Therefore, weighing scales may suit intermittent monitoring in e-health and patient screening. Scales intended for bioelectrical impedance analysis (BIA) have also been proposed to estimate the heart rate by amplifying the pulsatile impedance component superimposed on the basal impedance. However, electronic weighing scales cannot easily obtain the BCG from people that have a single leg neither are bioimpedance measurements between both feet recommended for people wearing a pacemaker or other electronic implants, neither for pregnant women. We propose a method to detect the heart rate (HR) from bioimpedance measured in a single foot while standing on an bathroom weighting scale intended for BIA. The electrodes built in the weighing scale are used to apply a 50 kHz voltage between the outer electrode pair and to measure the drop in voltage across the inner electrode pair. The agreement with the HR simultaneously obtained from the ECG is excellent. We have also compared the drop in voltage across the waist and the thorax with that obtained when measuring bioimpedance between both feet to compare the possible risk of the proposed method to that of existing BIA scales.

  8. Statistical analysis of vehicle loads measured with three different vehicle weighing devices

    CSIR Research Space (South Africa)

    Mkhize, ZQP

    2005-07-01

    Full Text Available MEASURED WITH THREE DIFFERENT VEHICLE WEIGHING DEVICES Z Q P MKHIZE and M DE BEER CSIR Transportek, PO Box 395, Pretoria, 0001 ABSTRACT This study introduces a new scale for weighing individual tyres of slow moving vehicles. The new technology... that vehicles exert on pavements plays a vital part in the deterioration of the structural and functional capacity of the road. It also influences the safety of the vehicles, especially when vehicles are operated under overloaded and/or inappropriately loaded...

  9. Weighing the evidence of common beliefs in obesity research

    DEFF Research Database (Denmark)

    Casazza, Krista; Brown, Andrew; Astrup, Arne

    2015-01-01

    Abstract Obesity is a topic on which many views are strongly held in the absence of scientific evidence to support those views, and some views are strongly held despite evidence to contradict those views. We refer to the former as "presumptions" and the latter as "myths". Here we present nine myths...... and ten presumptions surrounding the effects of rapid weight loss; setting realistic goals in weight loss therapy; stage of change or readiness to lose weight; physical education classes; breast-feeding; daily self-weighing; genetic contribution to obesity; the "Freshman 15"; food deserts; regularly...

  10. 7 CFR 27.16 - Inspection; weighing; samples; supervision.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Inspection; weighing; samples; supervision. 27.16 Section 27.16 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON CLASSIFICATION...

  11. Study on the weighing system based on optical fiber Bragg grating

    Science.gov (United States)

    Wang, Xiaona; Yu, Qingxu; Li, Yefang

    2010-10-01

    The optical fiber sensor based on wavelength demodulation such as fiber Bragg grating(FBG), with merits of immunity to electromagnetic interference, low drift and high precision, has been widely used in many areas, such as structural health monitoring and smart materials, and the wavelength demodulation system was also studied widely. In the paper, a weighing system based on FBG was studied. The optical source is broadband Erbium-doped fiber ring laser with a spectral range of 1500~1600nm and optical power of 2mW; A Fabry-Perot Etalon with orientation precision of 1pm was adopted as real-time wavelength calibration for the swept laser; and multichannel high resolution simultaneous sampling card was used in the system to acquire sensing signals simultaneously, thus high-resolution and real-time calibration of sweep-wavelength can be achieved. The FBG was adhered to a cantilever beam and the Bragg wavelength was demodulated with the system. The weighing system was done after calibrated with standard weight. Experimental results show that the resolution of the weighing system is 0.5 g with a full scale of 2Kg.

  12. 40 CFR 86.1339-90 - Particulate filter handling and weighing.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... humidity exchange) petri dish and place in a weighing chamber meeting the specifications of § 86.1312 for...

  13. Potential Utilization of Automatic Cows Weighing for Evaluation of Health and Nutritional Condition of Herd

    Directory of Open Access Journals (Sweden)

    Šárka Podlahová

    2011-10-01

    Full Text Available Weight of cows affects a large number of factors. Regular weighing and data processing can detect differences that may indicate disorders requiring nursing interventions, e.g. nutritional deficiencies, incorrect fetal development and health problems. The current weighing systems operate as stationary - the animal is fixed, identified and weighed. However, the procedure is time consuming and operation, and that is way this system is used minimally. That implies the need of complete automation of all activities associated with the weighing, which enables introduction of pass – through weight. The aim of this thesis was to develop a methodology for evaluating health and nutritional status of the herd based on data from an automated system for weighing a live weight of dairy cows. There was used in the weighing unit for milking robots Astronaut A3 (Lely company to obtain weight data of individual cows. There were selected dairy cows with the longest period of lactation or already drying off, and especially dairy cows with various health problems for study. Limiting values of weight changes were established after assembling a general equation of mass curve. In the sphere of the diseases there was manifested only ketosis in the weight curve with a loss of 10.2 kg / day (38% weight loss. Additionally, the completion of growth during the first 2 periodes of lactations and weight gain due to advanced pregnancy were confirmed. The maximum daily weight difference recorded in healthy animals was 7 %, equivalent to 40 - 45 kg. The results of the study will be applied for compiling algorithm that will be implemented in the complete management system of cattle breeding, monitoring the dairy cows every day and highlight possible deviations exceeding of physiological changes in weight.

  14. Statistical analysis of nuclear material weighing systems at the Oak Ridge - Y-12 plant

    International Nuclear Information System (INIS)

    Hammer, A.H.

    1980-04-01

    The variation in weight measurements on the electronic scales purchased for the Dynamic Special Nuclear Materials Control and Accountability System (DYMCAS) has been characterized and estimated to be more than is acceptable when using the current weighing methods. New weighing procedures have been developed which substantially reduce this variation and bring the weight errors within the Y-12 Plant Nuclear Materials Control and Accountability Department's desired +- 2-g accuracy

  15. Basic theory of diameter control in Czochralski growth using the melt-weighing technique

    International Nuclear Information System (INIS)

    Johansen, T.H.

    1986-04-01

    The unconfined crystal growth in the Czochralski configuration is recognized as a process which is quite dependent upon successful control of the shape determining conditions. In the paper attention is focused on the meniscus region, and its relevance to the crystal diameter behaviour is discussed. The dynamic stability of the configuration is analyzed according to the Surek criterion. In contrast to earlier zeroth order arguments, the system is shown to be inherently stable at normal growth conditions if the thermal impedance of the meniscus is taken into account. General difficulties associated with small diameter growth are pointed out. Reference is made to various growth monitoring arrangements, and the melt-weighing method is described in detail. Assuming uniform growth with a flat interface, the exact relation between the force experienced by a weighing cell and the growth parameters during both stationary and non-stationary conditions is derived. Growth at a constant angle is analyzed, and a new procedure for deriving the crystal diameter is suggested

  16. The Bohr--Einstein ''weighing-of-energy'' debate and the principle of equivalence

    International Nuclear Information System (INIS)

    Hughes, R.J.

    1990-01-01

    The Bohr--Einstein debate over the ''weighing of energy'' and the validity of the time--energy uncertainty relation is reexamined in the context of gravitation theories that do not respect the equivalence principle. Bohr's use of the equivalence principle is shown to be sufficient, but not necessary, to establish the validity of this uncertainty relation in Einstein's ''weighing-of-energy'' gedanken experiment. The uncertainty relation is shown to hold in any energy-conserving theory of gravity, and so a failure of the equivalence principle does not engender a failure of quantum mechanics. The relationship between the gravitational redshift and the equivalence principle is reviewed

  17. 78 FR 51658 - Weighing, Feed, and Swine Contractors

    Science.gov (United States)

    2013-08-21

    ..., one zero balance documented on a scale ticket along with the tare and gross weight for the grower or..., there is no need for a zero balance between individual hopper loads for one grower. This sentence was...) The zero balance; provided that when using a vehicle scale to weigh feed for more than one producer or...

  18. A Weighing Algorithm for Checking Missing Components in a Pharmaceutical Line

    Directory of Open Access Journals (Sweden)

    Alessandro Silvestri

    2014-11-01

    image. The goal of the present work is the development of an algorithm able to optimize the production line of a pharmaceutical firm. In particular, the proposed weighing procedure allows both checking missing components in packaging and minimizing false rejects of packages by dynamic scales. The main problem is the presence at the same time, in the same package, of different components with different variable weights. The consequence is uncertainty in recognizing the absence of one or more components.

  19. Study on granulated material automatic weighing machine%颗粒状物料自动称量机研究

    Institute of Scientific and Technical Information of China (English)

    贾丽娜; 张辉; 陈文庆

    2012-01-01

    In order to solve the problems of the granulated material automatic weighing, according to the characteristics of granulated material, the granulated material automatic weighing machine based on PLC was established. A method was presented to improve the automatic weighing machine speed and accuracy effectively, that used frequency conversion motor driving synchronous belt rough charging and vibrating feeder fine dosing. The weighing experiments were evaluated on the granulated material automatic weighing machine, the several kinds of drug were tested. The experimental results show that the equipment has high weighing accuracy and weighing speed, the characteristics of the operation is stable and reliable, and the equipment can satisfy different granulated drug automatic weighing requirements.%为了解决颗粒状物料自动称量的问题,根据颗粒状物料特性,研制了一种基于PLC的颗粒状物料自动称量机,该系统采用变频电机驱动同步带进行粗加料和振动给料机精加料结合的方式,有效提高了自动称量机的速度和精度.对不同种类的颗粒状药品进行了称量试验,试验结果表明,该称量设备具有精度高、称量速度快、运行稳定可靠的特点,且可以满足不同颗粒药品的自动称量要求.

  20. The Role of Motion Concepts in Understanding Non-Motion Concepts

    Directory of Open Access Journals (Sweden)

    Omid Khatin-Zadeh

    2017-12-01

    Full Text Available This article discusses a specific type of metaphor in which an abstract non-motion domain is described in terms of a motion event. Abstract non-motion domains are inherently different from concrete motion domains. However, motion domains are used to describe abstract non-motion domains in many metaphors. Three main reasons are suggested for the suitability of motion events in such metaphorical descriptions. Firstly, motion events usually have high degrees of concreteness. Secondly, motion events are highly imageable. Thirdly, components of any motion event can be imagined almost simultaneously within a three-dimensional space. These three characteristics make motion events suitable domains for describing abstract non-motion domains, and facilitate the process of online comprehension throughout language processing. Extending the main point into the field of mathematics, this article discusses the process of transforming abstract mathematical problems into imageable geometric representations within the three-dimensional space. This strategy is widely used by mathematicians to solve highly abstract and complex problems.

  1. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Science.gov (United States)

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (pperception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion

  2. Load-cell-based weighing system for weighing 9.1- and 12.7-tonne UF6 cylinders

    International Nuclear Information System (INIS)

    McAuley, W.A.; Kane, W.R.

    1986-01-01

    For the independent verification of UF 6 cylinder masses by the International Atomic Energy Agency (IAEA) at uranium enrichment facilities, an 18-tonne capacity Load-Cell-Based Weighing System (LCBWS) has been developed. The system was developed at Brookhaven National Laboratory and the Oak Ridge Gaseous Diffusion Plant and calibrated at the US National Bureau of Standards. The principal components of the LCBWS are two load cells, with readout and ancillary equipment, and a lifting fixture that couples the load cells to a cylinder. Initial experience with the system demonstrates that it has the advantages of transportability, ease of application, stability, and an attainable accuracy of 2 kg or better for a full cylinder

  3. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    Full Text Available A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37 participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001 and rotation (p0.1 for both. Thus, although a true moving visual field can induce self-motion, results of this

  4. Heart rate detection from an electronic weighing scale

    International Nuclear Information System (INIS)

    González-Landaeta, R; Casas, O; Pallàs-Areny, R

    2008-01-01

    We propose a novel technique for beat-to-beat heart rate detection based on the ballistocardiographic (BCG) force signal from a subject standing on a common electronic weighing scale. The detection relies on sensing force variations related to the blood acceleration in the aorta, works even if wearing footwear and does not require any sensors attached to the body because it uses the load cells in the scale. We have devised an approach to estimate the sensitivity and frequency response of three commercial weighing scales to assess their capability to detect the BCG force signal. Static sensitivities ranged from 490 nV V −1 N −1 to 1670 nV V −1 N −1 . The frequency response depended on the subject's mass but it was broad enough for heart rate estimation. We have designed an electronic pulse detection system based on off-the-shelf integrated circuits to sense heart-beat-related force variations of about 0.24 N. The signal-to-noise ratio of the main peaks of the force signal detected was higher than 30 dB. A Bland–Altman plot was used to compare the RR time intervals estimated from the ECG and BCG force signals for 17 volunteers. The error was ±21 ms, which makes the proposed technique suitable for short-term monitoring of the heart rate

  5. Ground Snow Measurements: Comparisons of the Hotplate, Weighing and Manual Methods

    Science.gov (United States)

    Wettlaufer, A.; Snider, J.; Campbell, L. S.; Steenburgh, W. J.; Burkhart, M.

    2015-12-01

    The Yankee Environmental Systems (YES) Hotplate was developed to avoid some of the problems associated with weighing snowfall sensors. This work compares Hotplate, weighing sensor (ETI NOAH-II) and manual measurements of liquid-equivalent depth. The main field site was at low altitude in western New York; Hotplate and ETI comparisons were also made at two forested subalpine sites in southeastern Wyoming. The manual measurement (only conducted at the New York site) was derived by weighing snow cores sampled from a snow board. The two recording gauges (Hotplate and ETI) were located within 5 m of the snow board. Hotplate-derived accumulations were corrected using a wind-speed dependent catch efficiency and the ETI orifice was heated and alter shielded. Three important findings are evident from the comparisons: 1) The Yes-derived accumulations, recorded in a user-accessible file, were compared to accumulations derived using an in-house calibration and fundamental measurements (plate power, long and shortwave radiances, wind speed, and temperature). These accumulations are highly correlated (N=24; r2=0.99), but the YES-derived values are larger by 20%. 2) The in-house Hotplate accumulations are in good agreement with ETI-based accumulations but with larger variability (N=24; r2=0.88). 3) The comparison of in-house Hotplate accumulation versus manual accumulation, expressed as mm of liquid, exhibits a fitted linear relationship Y (in-house) versus X (manual) given by Y = -0.2 (±1.4) + 0.9 (±0.1) · X (N= 20; r2=0.89). Thus, these two methods agree within statistical uncertainty.

  6. 不客忽视的衡器监管%Weighing instrument regulation can not be ignored

    Institute of Scientific and Technical Information of China (English)

    吴娜

    2012-01-01

    衡器作为经济贸易中重要的计量手段之一,在我国经济飞速发展的今天起着越来越重要的作用。本文对我国衡器发展的现状和存在的问题进行分析,提出在衡器监管措施方面的建议。%Weighing instrument is as one of the important economic and trade measurement instruments, and plays a more and more role nowadays. This article analyzes current situation and existing problems of the weighing instrument development in China, and suggests on the weighing instrument regulatory measures.

  7. 9 CFR 201.73-1 - Instructions for weighing livestock.

    Science.gov (United States)

    2010-01-01

    ... come to rest at the center of the trig loop. (5) Dial scales shall be balanced by releasing all drop... lock when the weigher is not at his duty station. (3) Accurate weighing and correct weight recording... use the scale until it has been tested and inspected and found to be accurate. (6) Count-off men, gate...

  8. ALICE: structures weighing several tonnes are moved with millimetric precision

    CERN Multimedia

    2005-01-01

    The ALICE collaboration has just conducted one of its most spectacular transport operations to date in lifting the dipole of the muon spectrometer and reassembling it on the other side of the huge solenoid magnet. This incredible feat involved lifting no fewer than 900 tonnes of equipment over the red octagonal yoke inherited from the L3 experiment at a height of 18 metres. Following initial assembly and successful testing at the end of last year (see Bulletin No. 4/2005), the dipole was completely dismantled and moved to the other end of the cavern. The yoke was transported as 28 modules, each weighing 30 tonnes. The most spectacular feat of all, though, was undoubtedly the removal of the two 32-tonne coils. The first of these was moved on 18 April, as recorded in the following photos: A special lifting gantry weighing 5 tonnes had to be developed to move and install the coils. Huge clamps, which can be seen at the front, were used to rotate these enormous 32-tonne components. The whole assembly was raised ...

  9. Development of an Upper Limb Power Assist System Using Pneumatic Actuators for Farming Lift-up Motion

    Science.gov (United States)

    Yagi, Eiichi; Harada, Daisuke; Kobayashi, Masaaki

    A power assist system has lately attracted considerable attention to lifting-up an object without low back pain. We have been developing power assist systems with pneumatic actuators for the elbow and shoulder to farming support of lifting-up a bag of rice weighing 30kg. This paper describes the mechanism and control method of this power assist system. The pneumatic rotary actuator supports shoulder motion, and the air cylinder supports elbow motion. In this control method, the surface electromyogram(EMG) signals are used as input information of the controller. The joint support torques of human are calculated based on the antigravity term of necessary joint torques, which are estimated on the dynamics of a human approximated link model. The experimental results show the effectiveness of the proposed mechanism and control method of the power assist system.

  10. Greenhouse gas credits trade versus biomass trade – weighing (Workshop Summary)

    NARCIS (Netherlands)

    Junginger, H.M.; Faaij, A.P.C.; Robertson, K.; Woes-Gallasch, S.; Schlamadinger, B.

    2006-01-01

    A workshop entitled ‘Greenhouse gas credits trade versus biomass trade – weighing the benefits’, jointly organised by IEA Bioenergy Tasks 38 (GHG Balances of Biomass and Bioenergy Systems) and 40 (Sustainable International Bioenergy Trade: Securing Supply and Demand), and ENOVA, took place in

  11. Prevalence of pre-diabetes, diabetes, pre-hypertension, and hypertension in children weighing more than normal

    Directory of Open Access Journals (Sweden)

    Priti Phatale

    2012-01-01

    Full Text Available Aim: Prevalence of pre-diabetes, diabetes, pre-hypertension (pre-HT, and hypertension (HT in children weighing more than normal. Materials and Methods: Three- to eighteen-year old children weighing more than normal were included. Pathological short children were excluded. According to Centre for Disease Control (CDC, children are grouped into overweight (OW and obese (OB. Indian B.P. reference tables are used for defining HT and pre-HT. [2] HbA1c by HPLC (BIO RAD method was used to define pre-diabetes and diabetes. [3] Children with HbA1c ≥6.5 were subjected for Glucose Tolerance Test (GTT. C-peptide assay was done to rule out (r/o IDDM. Observations: When we compare this with our earlier presentation at PEDICON 2011, we found that hypertension (HTN (22.9% vs. 23.07% is not significantly different but pre-HTN (28.09% vs. 33.9%, pre-diabetes mellitus (pre-DM (3.7% vs. 64.3%, and diabetes mellitus (DM (0.35% vs. 3.8% are significantly high in this study. Conclusion: (1 Prevalence of HT (22.90% vs. 23.07% is similar in both groups but pre-HT (33.9% vs. 28.09% is high in this study. (2 Significant rise in prevalence of diabetes (3.84% vs. 0.35% and pre-diabetes (64.33% vs. 3.7% is seen in this study. (3 This change is because of using HbA1c as screening tool in children weighing more than normal.

  12. Motion in radiotherapy

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia

    2012-01-01

    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPE...

  13. Deficient Biological Motion Perception in Schizophrenia: Results from a Motion Noise Paradigm

    Directory of Open Access Journals (Sweden)

    Jejoong eKim

    2013-07-01

    Full Text Available Background: Schizophrenia patients exhibit deficient processing of perceptual and cognitive information. However, it is not well understood how basic perceptual deficits contribute to higher level cognitive problems in this mental disorder. Perception of biological motion, a motion-based cognitive recognition task, relies on both basic visual motion processing and social cognitive processing, thus providing a useful paradigm to evaluate the potentially hierarchical relationship between these two levels of information processing. Methods: In this study, we designed a biological motion paradigm in which basic visual motion signals were manipulated systematically by incorporating different levels of motion noise. We measured the performances of schizophrenia patients (n=21 and healthy controls (n=22 in this biological motion perception task, as well as in coherent motion detection, theory of mind, and a widely used biological motion recognition task. Results: Schizophrenia patients performed the biological motion perception task with significantly lower accuracy than healthy controls when perceptual signals were moderately degraded by noise. A more substantial degradation of perceptual signals, through using additional noise, impaired biological motion perception in both groups. Performance levels on biological motion recognition, coherent motion detection and theory of mind tasks were also reduced in patients. Conclusion: The results from the motion-noise biological motion paradigm indicate that in the presence of visual motion noise, the processing of biological motion information in schizophrenia is deficient. Combined with the results of poor basic visual motion perception (coherent motion task and biological motion recognition, the association between basic motion signals and biological motion perception suggests a need to incorporate the improvement of visual motion perception in social cognitive remediation.

  14. 21 CFR 864.9195 - Blood mixing devices and blood weighing devices.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood mixing devices and blood weighing devices. 864.9195 Section 864.9195 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Products Used In Establishments That...

  15. 40 CFR 1065.390 - PM balance verifications and weighing process verification.

    Science.gov (United States)

    2010-07-01

    .... Successive mass determinations of each reference PM sample media (e.g., filter) must return the same value... individual test media (e.g., filter) mass readings occurring between the successive reference media (e.g., filter) mass determinations. You may reweigh these media (e.g., filter) in another weighing session. If...

  16. Human-milk intake measured by administration of deuterium oxide to the mother: a comparison with the test-weighing technique

    International Nuclear Information System (INIS)

    Butte, N.F.; Wong, W.W.; Patterson, B.W.; Garza, C.; Klein, P.D.

    1988-01-01

    A comparison was made between the dose-to-the-mother deuterium-dilution method and the conventional test-weighing technique for determining human-milk intake in five exclusively breast-fed infants and in four breast-fed infants who received supplemental foods. After administration of 2 H to the mothers human milk and infant urine were sampled over 14 d and analyzed for 2 H: 1 H ratios by gas-isotope-ratio mass spectrometry. Infant total body water was determined by 18 O dilution. The test-weighing procedure was conducted for 5 d consecutively. The intake of human milk (mean +/- SD) estimated by 2 H dilution was 648 +/- 63 g/d and estimated by test-weighing was 636 +/- 84 g/d. The mean difference between the two methods was not significantly different from 0. The 2 H-dilution and test-weighing techniques provide similar estimates of human-milk intake

  17. Overestimation of infant and toddler energy intake by 24-h recall compared with weighed food records.

    Science.gov (United States)

    Fisher, Jennifer O; Butte, Nancy F; Mendoza, Patricia M; Wilson, Theresa A; Hodges, Eric A; Reidy, Kathleen C; Deming, Denise

    2008-08-01

    Twenty-four-hour dietary recalls have been used in large surveys of infant and toddler energy intake, but the accuracy of the method for young children is not well documented. We aimed to determine the accuracy of infant and toddler energy intakes by a single, telephone-administered, multiple-pass 24-h recall as compared with 3-d weighed food records. A within-subjects design was used in which a 24-h recall and 3-d weighed food records were completed within 2 wk by 157 mothers (56 non-Hispanic white, 51 non-Hispanic black, and 50 Hispanic) of 7-11-mo-old infants or 12-24-mo-old toddlers. Child and caregiver anthropometrics, child eating patterns, and caregiver demographics and social desirability were evaluated as correlates of reporting bias. Intakes based on 3-d weighed food records were within 5% of estimated energy requirements. Compared with the 3-d weighed food records, the 24-h recall overestimated energy intake by 13% among infants (740 +/- 154 and 833 +/- 255 kcal, respectively) and by 29% among toddlers (885 +/- 197 and 1140 +/- 299 kcal, respectively). Eating patterns (ie, frequency and location) did not differ appreciably between methods. Macronutrient and micronutrient intakes were higher by 24-h recall than by 3-d weighed food record. Dairy and grains contributed the most energy to the diet and accounted for 74% and 54% of the overestimation seen in infants and toddlers, respectively. Greater overestimation was associated with a greater number of food items reported by the caregiver and lower child weight-for-length z scores. The use of a single, telephone-administered, multiple-pass 24-h recall may significantly overestimate infant or toddler energy and nutrient intakes because of portion size estimation errors.

  18. FFTF [Fast Flux Test Facility]/IEM [Interim Examination and Maintenance] Cell Fuel Pin Weighing System

    International Nuclear Information System (INIS)

    Gibbons, P.W.

    1987-09-01

    A Fuel Pin Weighing Machine has been developed for use in the Fast Flux Test Facility (FFTF) Interim Examination and Maintenance (IEM) Cell to assist in identifying an individual breached fuel pin from its fuel assembly pin bundle. A weighing machine, originally purchased for use in the Fuels and Materials Examination Facility (FMEF) at Hanford, was used as the basis for the IEM Cell system. Design modifications to the original equipment were centered around: 1) adapting the FMEF machine for use in the IEM Cell and 2) correcting operational deficiencies discovered during functional testing in the IEM Cell Mockup

  19. A Dual-Range Strain Gage Weighing Transducer Employing Automatic Switching

    Science.gov (United States)

    Rodger A. Arola

    1968-01-01

    Describes a dual-range strain gage transducer which has proven to be an excellent weight-sensing device for weighing trees and tree-length logs; discusses basic principals of the design and operation; and shows that a single transducer having two sensitivity ranges with automatic internal switching can sense weight with good repeatability and that one calibration curve...

  20. Pulmonary diseases of the infants weighing under 1500 grams at birth: clinical and radiographic findings

    International Nuclear Information System (INIS)

    Kim, Ok Hwa; Park, Jeong Mi; Bahk, Yong Whee

    1990-01-01

    Since the introduction of the intensive perinatal care, the survival rate of the infants weighing less than 1500 gm at birth has improved substantially. However, pulmonary diseases remain to be the major causes of the high mortality of these low birthweight infants. In order to systematically assess an epidemiologic distribution of the pulmonary diseases in these very low weight prematures, we have analyzed the chest x-rays of 102 infants weighing less than 1500 gm. These consisted of 30 with extreme low birth weight (ELBW) weighing less than 1000 gm and 72 with very low birth weight (VLBW) weighing 1001 - 1500 gm. The survival rate of ELBW and VLBW was 10% and 49%, respectively. Seventy of 102 infants had abnormal findings in the chest x-ray. Forty-eight had idiopathic respiratory distress syndrome (IRDS), 8 immature lung, 6 Wilson-Mikity syndrome, 4 pneumonia, 2 pulmonary hemorrhage, 1 congenital heart disease, and 1 suspicious Pierre-Robin syndrome. Seven out of 48 infants with IRDS had persistent ductus arteriosus, and in only 2(30%) of 7 cases were alive. Endotracheal intubation and assisted ventilation application for the treatment of IRDS resulted in pulmonary interstitial emphysema in 4 infants and pneumothorax and / or pneumomediastinum in 4 infants. Displacement of endotracheal intubation showed lobar and / or unilateral lung atelectasis in 8 infants and a case of accidental dislodgement of intubation tube into the esophagus resulted in air esophagogram and worsened lung aeration. In spite of the development of many sophisticated methods of diagnostic radiology, the chest x-ray was still the most valuable yet simple way of evaluating the pulmonary problems in these extreme and very low birth weight prematures

  1. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  2. FFTF/IEM [Fast Flux Test Facility/Interim Examination and Maintenance] cell fuel pin weighing system: Remote maintenance design considerations

    International Nuclear Information System (INIS)

    Gibbons, P.W.

    1986-06-01

    A Fuel Pin Weighing Machine has been developed for use in the Fast Flux Test Facility (FFTF) Interim Examination and Maintenance (IEM) Cell to assist in identifying an individual breached fuel pin from its fuel assembly pin bundle. Optimum configuration for remote maintenance was a major consideration in the design of each element of the Pin Weighing System

  3. 40 CFR 1065.595 - PM sample post-conditioning and total weighing.

    Science.gov (United States)

    2010-07-01

    ... minutes before weighing. Note that 400 µg on sample media (e.g., filters) is an approximate net mass of 0... the procedures in § 1065.590(f) through (i) to determine post-test mass of the sample media (e.g., filters). (g) Subtract each buoyancy-corrected tare mass of the sample medium (e.g., filter) from its...

  4. Research on the Influence of Weighing Accuracy Caused by the Position of Tension Wheel on the Electronic Belt-Conveyor Scale

    Science.gov (United States)

    Zhang, Kun; Zhang, Hu; Song, Qiuzhi

    2018-01-01

    In this paper, a Single- Idler electronic belt-conveyor scale is the Object of study. The contact force between the belt and the supporting roller is calculated by the finite element analysis software ABAQUS. The relationship between the tension distance of the tension wheel and the contact force between the belt and the weighing roller is obtained. The best stretching distance is found through analysis. And the conclusion which is the weighing error is different at the same stretching distance but the different weight of material is obtained. A compensation mechanism is proposed to improve the weighing accuracy.

  5. 76 FR 45397 - Export Inspection and Weighing Waiver for High Quality Specialty Grain Transported in Containers

    Science.gov (United States)

    2011-07-29

    ...-AB18 Export Inspection and Weighing Waiver for High Quality Specialty Grain Transported in Containers... permanent a waiver due to expire on July 31, 2012, for high quality specialty grain exported in containers... of high quality specialty grain exported in containers are small entities that up until recently...

  6. A novel cell weighing method based on the minimum immobilization pressure for biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qili [Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800 (Australia); Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071 (China); Shirinzadeh, Bijan [Robotics and Mechatronics Research Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800 (Australia); Cui, Maosheng [Biotechnology Lab of Animal Reproduction, Tianjin Animal Sciences, Tianjin 300112 (China); Sun, Mingzhu; Liu, Yaowei; Zhao, Xin, E-mail: zhaoxin@nankai.edu.cn [Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071 (China)

    2015-07-28

    A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cell mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10{sup −15 }kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections.

  7. A novel cell weighing method based on the minimum immobilization pressure for biological applications

    International Nuclear Information System (INIS)

    Zhao, Qili; Shirinzadeh, Bijan; Cui, Maosheng; Sun, Mingzhu; Liu, Yaowei; Zhao, Xin

    2015-01-01

    A novel weighing method for cells with spherical and other regular shapes is proposed in this paper. In this method, the relationship between the cell mass and the minimum aspiration pressure to immobilize the cell (referred to as minimum immobilization pressure) is derived for the first time according to static theory. Based on this relationship, a robotic cell weighing process is established using a traditional micro-injection system. Experimental results on porcine oocytes demonstrate that the proposed method is able to weigh cells at an average speed of 16.3 s/cell and with a success rate of more than 90%. The derived cell mass and density are in accordance with those reported in other published results. The experimental results also demonstrated that this method is able to detect less than 1% variation of the porcine oocyte mass quantitatively. It can be conducted by a pair of traditional micropipettes and a commercial pneumatic micro-injection system, and is expected to perform robotic operation on batch cells. At present, the minimum resolution of the proposed method for measuring the cell mass can be 1.25 × 10 −15  kg. Above advantages make it very appropriate for quantifying the amount of the materials injected into or moved out of the cells in the biological applications, such as nuclear enucleations and embryo microinjections

  8. A Practical Probabilistic Graphical Modeling Tool for Weighing Ecological Risk-Based Evidence

    Science.gov (United States)

    Past weight-of-evidence frameworks for adverse ecological effects have provided soft-scoring procedures for judgments based on the quality and measured attributes of evidence. Here, we provide a flexible probabilistic structure for weighing and integrating lines of evidence for e...

  9. A programmable motion phantom for quality assurance of motion management in radiotherapy

    International Nuclear Information System (INIS)

    Dunn, L.; Franich, R.D.; Kron, T.; Taylor, M.L.; Johnston, P.N.; McDermott, L.N.; Callahan, J.

    2012-01-01

    A commercially available motion phantom (QUASAR, Modus Medical) was modified for programmable motion control with the aim of reproducing patient respiratory motion in one dimension in both the anterior–posterior and superior–inferior directions, as well as, providing controllable breath-hold and sinusoidal patterns for the testing of radiotherapy gating systems. In order to simulate realistic patient motion, the DC motor was replaced by a stepper motor. A separate 'chest-wall' motion platform was also designed to accommodate a variety of surrogate marker systems. The platform employs a second stepper motor that allows for the decoupling of the chest-wall and insert motion. The platform's accuracy was tested by replicating patient traces recorded with the Varian real-time position management (RPM) system and comparing the motion platform's recorded motion trace with the original patient data. Six lung cancer patient traces recorded with the RPM system were uploaded to the motion platform's in-house control software and subsequently replicated through the phantom motion platform. The phantom's motion profile was recorded with the RPM system and compared to the original patient data. Sinusoidal and breath-hold patterns were simulated with the motion platform and recorded with the RPM system to verify the systems potential for routine quality assurance of commercial radiotherapy gating systems. There was good correlation between replicated and actual patient data (P 0.003). Mean differences between the location of maxima in replicated and patient data-sets for six patients amounted to 0.034 cm with the corresponding minima mean equal to 0.010 cm. The upgraded motion phantom was found to replicate patient motion accurately as well as provide useful test patterns to aid in the quality assurance of motion management methods and technologies.

  10. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    Science.gov (United States)

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  11. Objects in Motion

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  12. Twenty-Seven Years Experience With Transvenous Pacemaker Implantation in Children Weighing <10 kg.

    Science.gov (United States)

    Konta, Laura; Chubb, Mark Henry; Bostock, Julian; Rogers, Jan; Rosenthal, Eric

    2016-02-01

    Epicardial pacemaker implantation is the favored approach in children weighing pacemaker implantation in neonates and infants from 1987. To date there have been no long-term follow-up reports of what is for many a controversial strategy. Between 1987 and 2003, 37 neonates and infants-median age 6.7 months (1 day to 3 years) and median weight 4.6 kg (2.7-10 kg)-had a permanent transvenous pacing system implanted. Pacing leads were placed into the right ventricular apex/outflow tract through a subclavian vein puncture with a redundant loop in the atrium. Three patients were lost to follow-up, 4 patients died from complications of cardiac surgery, and 2 patients had their system removed. At long-term follow-up in 28 patients at a median of 17.2 (range, 11.2-27.4) years, 10 patients have a single chamber ventricular pacemaker, 14 a dual chamber pacemaker, 3 a biventricular pacemaker, and 1 has a single chamber implantable cardioverter defibrillator. Subclavian vein patency was assessed in 26 patients. The overall subclavian vein occlusion rate was 10 of 13 (77%) 5 kg during long-term follow-up. After a median of 14.3 (range, 13.4-17.6) years of pacing, 7 patients continue with their original lead. Transvenous pacing in infants <10 kg results in encouraging short- and long-term clinical outcomes. Subclavian vein occlusion remains an important complication, occurring predominantly in those weighing <5 kg. © 2016 American Heart Association, Inc.

  13. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  14. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  15. Applying distance-to-target weighing methodology to evaluate the environmental performance of bio-based energy, fuels, and materials

    International Nuclear Information System (INIS)

    Weiss, Martin; Patel, Martin; Heilmeier, Hermann; Bringezu, Stefan

    2007-01-01

    The enhanced use of biomass for the production of energy, fuels, and materials is one of the key strategies towards sustainable production and consumption. Various life cycle assessment (LCA) studies demonstrate the great potential of bio-based products to reduce both the consumption of non-renewable energy resources and greenhouse gas emissions. However, the production of biomass requires agricultural land and is often associated with adverse environmental effects such as eutrophication of surface and ground water. Decision making in favor of or against bio-based and conventional fossil product alternatives therefore often requires weighing of environmental impacts. In this article, we apply distance-to-target weighing methodology to aggregate LCA results obtained in four different environmental impact categories (i.e., non-renewable energy consumption, global warming potential, eutrophication potential, and acidification potential) to one environmental index. We include 45 bio- and fossil-based product pairs in our analysis, which we conduct for Germany. The resulting environmental indices for all product pairs analyzed range from -19.7 to +0.2 with negative values indicating overall environmental benefits of bio-based products. Except for three options of packaging materials made from wheat and cornstarch, all bio-based products (including energy, fuels, and materials) score better than their fossil counterparts. Comparing the median values for the three options of biomass utilization reveals that bio-energy (-1.2) and bio-materials (-1.0) offer significantly higher environmental benefits than bio-fuels (-0.3). The results of this study reflect, however, subjective value judgments due to the weighing methodology applied. Given the uncertainties and controversies associated not only with distance-to-target methodologies in particular but also with weighing approaches in general, the authors strongly recommend using weighing for decision finding only as a

  16. A laboratory evaluation of the influence of weighing gauges performance on extreme events statistics

    Science.gov (United States)

    Colli, Matteo; Lanza, Luca

    2014-05-01

    The effects of inaccurate ground based rainfall measurements on the information derived from rain records is yet not much documented in the literature. La Barbera et al. (2002) investigated the propagation of the systematic mechanic errors of tipping bucket type rain gauges (TBR) into the most common statistics of rainfall extremes, e.g. in the assessment of the return period T (or the related non-exceedance probability) of short-duration/high intensity events. Colli et al. (2012) and Lanza et al. (2012) extended the analysis to a 22-years long precipitation data set obtained from a virtual weighing type gauge (WG). The artificial WG time series was obtained basing on real precipitation data measured at the meteo-station of the University of Genova and modelling the weighing gauge output as a linear dynamic system. This approximation was previously validated with dedicated laboratory experiments and is based on the evidence that the accuracy of WG measurements under real world/time varying rainfall conditions is mainly affected by the dynamic response of the gauge (as revealed during the last WMO Field Intercomparison of Rainfall Intensity Gauges). The investigation is now completed by analyzing actual measurements performed by two common weighing gauges, the OTT Pluvio2 load-cell gauge and the GEONOR T-200 vibrating-wire gauge, since both these instruments demonstrated very good performance under previous constant flow rate calibration efforts. A laboratory dynamic rainfall generation system has been arranged and validated in order to simulate a number of precipitation events with variable reference intensities. Such artificial events were generated basing on real world rainfall intensity (RI) records obtained from the meteo-station of the University of Genova so that the statistical structure of the time series is preserved. The influence of the WG RI measurements accuracy on the associated extreme events statistics is analyzed by comparing the original intensity

  17. Online weighing of kiwifruit using impact method

    Directory of Open Access Journals (Sweden)

    S. M Mir-ahmadi

    2016-04-01

    Full Text Available Introduction: Iran is one of the main producers of kiwifruit in the world. Unfortunately, the sorting and grading of the kiwifruits are manual, which is a time consuming and labor intensive task. Due to the lack of appropriate devices for sorting and grading of kiwifruit based on the quality parameters, only 10% of total production is exported (Mohammadian & Esehaghi Teymouri, 1999. One of the main quality attribute for evaluating the kiwifruits is weight. Based on the standards, the minimum weight for an excellent kiwifruit is 90 g, while these values for the first and second classes should be 70 and 65 g, respectively (Abedini, 2003. Therefore, developing a device for fast weighing of fruits in the sorting lines can be useful in packaging, storage, exporting and distributing kiwifruit to the consumer markets. In the past, the mechanical-based systems were commonly used for online weighing of the agricultural materials, but they did not lead to the promising accuracy and speed in sorting lines. Today, electrical instruments equipped with the precise load cells are substituted for fast weighing in the sorting lines. The dropping impact method, in which a free falling fruit drops on a load cell, is one of the suitable techniques for this purpose. Different studies have addressed the application of dropping impact for fast weighing of agricultural materials (Rohrbach et al., 1982; Calpe et al., 2002; Gilman & Bailey, 2005; Stropek & Gołacki, 2007; Elbeltagi, 2011. The aim of this study reported here was to develop an on-line system for fast weighing of kiwifruit and compare the accuracy of different methods for extracting the weight predictive models. Materials and Methods: Sample selection: A total of 232 samples with the weight range of 40 to 120 g were selected. Before conducting the main experiments, the weight and dimensions of the sample were measured using a digital balance and caliper, with the precisions of 0.001 g and 0.01 mm

  18. 40 CFR 1065.590 - PM sampling media (e.g., filters) preconditioning and tare weighing.

    Science.gov (United States)

    2010-07-01

    ..., as follows: (1) For automatic weighing, follow the automation system manufacturer's instructions to..., covered or sealed container before removing them from the stabilization environment for transport to the...

  19. Waste container weighing data processing to create reliable information of household waste generation.

    Science.gov (United States)

    Korhonen, Pirjo; Kaila, Juha

    2015-05-01

    Household mixed waste container weighing data was processed by knowledge discovery and data mining techniques to create reliable information of household waste generation. The final data set included 27,865 weight measurements covering the whole year 2013 and it was selected from a database of Helsinki Region Environmental Services Authority, Finland. The data set contains mixed household waste arising in 6m(3) containers and it was processed identifying missing values and inconsistently low and high values as errors. The share of missing values and errors in the data set was 0.6%. This provides evidence that the waste weighing data gives reliable information of mixed waste generation at collection point level. Characteristic of mixed household waste arising at the waste collection point level is a wide variation between pickups. The seasonal variation pattern as a result of collective similarities in behaviour of households was clearly detected by smoothed medians of waste weight time series. The evaluation of the collection time series against the defined distribution range of pickup weights on the waste collection point level shows that 65% of the pickups were from collection points with optimally dimensioned container capacity and the collection points with over- and under-dimensioned container capacities were noted in 9.5% and 3.4% of all pickups, respectively. Occasional extra waste in containers occurred in 21.2% of the pickups indicating the irregular behaviour of individual households. The results of this analysis show that processing waste weighing data using knowledge discovery and data mining techniques provides trustworthy information of household waste generation and its variations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    Science.gov (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  1. Wind-powered electrical systems : highway rest areas, weigh stations, and team section buildings.

    Science.gov (United States)

    2009-02-01

    This project considered the use of wind for providing electrical power at Illinois Department of Transportation : (IDOT) highway rest areas, weigh stations, and team section buildings. The goal of the project was to determine : the extent to which wi...

  2. 7 CFR 800.17 - Special inspection and weighing requirements for sacked export grain.

    Science.gov (United States)

    2010-01-01

    ... sacked export grain. 800.17 Section 800.17 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE... Requirements § 800.17 Special inspection and weighing requirements for sacked export grain. (a) General...

  3. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    Science.gov (United States)

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  4. Motion of the esophagus due to cardiac motion.

    Directory of Open Access Journals (Sweden)

    Jacob Palmer

    Full Text Available When imaging studies (e.g. CT are used to quantify morphological changes in an anatomical structure, it is necessary to understand the extent and source of motion which can give imaging artifacts (e.g. blurring or local distortion. The objective of this study was to assess the magnitude of esophageal motion due to cardiac motion. We used retrospective electrocardiogram-gated contrast-enhanced computed tomography angiography images for this study. The anatomic region from the carina to the bottom of the heart was taken at deep-inspiration breath hold with the patients' arms raised above their shoulders, in a position similar to that used for radiation therapy. The esophagus was delineated on the diastolic phase of cardiac motion, and deformable registration was used to sequentially deform the images in nearest-neighbor phases among the 10 cardiac phases, starting from the diastolic phase. Using the 10 deformation fields generated from the deformable registration, the magnitude of the extreme displacements was then calculated for each voxel, and the mean and maximum displacement was calculated for each computed tomography slice for each patient. The average maximum esophageal displacement due to cardiac motion for all patients was 5.8 mm (standard deviation: 1.6 mm, maximum: 10.0 mm in the transverse direction. For 21 of 26 patients, the largest esophageal motion was found in the inferior region of the heart; for the other patients, esophageal motion was approximately independent of superior-inferior position. The esophagus motion was larger at cardiac phases where the electrocardiogram R-wave occurs. In conclusion, the magnitude of esophageal motion near the heart due to cardiac motion is similar to that due to other sources of motion, including respiratory motion and intra-fraction motion. A larger cardiac motion will result into larger esophagus motion in a cardiac cycle.

  5. High Precision Motion Control System for the Two-Stage Light Gas Gun at the Dynamic Compression Sector

    Science.gov (United States)

    Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.

    2017-06-01

    The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.

  6. AQUA-motion domain and metaphorization patterns in European Portuguese: AQUA-motion metaphor in AERO-motion and abstract domains

    Directory of Open Access Journals (Sweden)

    Hanna Jakubowicz Batoréo

    2016-03-01

    Full Text Available The AQUA-motion verbs – as studied by Majsak & Rahilina 2003 and 2007, Lander, Majsak & Rahilina [2005] 2008, 2012 and 2013, and Divjak & Lemmens 2007, and in European Portuguese (EP by Batoréo, 2007, 2008, 2009; Batoréo et al., 2007; Casadinho, 2007 – allow typically metaphorical uses, which we postulate can be organized in patterns. Our study shows that in European Portuguese there are two metaphorization patterns to be observed: (i AQUA-motion metaphor in AERO-motion domain and (ii AQUA-motion metaphor in abstract domain (e.g. abundance, arts, politics, etc.. In the first case, where the target domain of the metaphorization is the air, in EP we navigate through a crowd or we float in a waltz, whereas in the second, where it is abstract, we swim in money or in blood, and politicians navigate at sea or face floating currency in finances. In the present paper we survey the EP verbs of AQUA-motion metaphors in non-elicited data from electronically available language corpora (cf. Linguateca. In some cases comparisons are made with typologically diferent languages (as, e.g. Polish, cf. Prokofjeva’s 2007, Batoréo 2009.

  7. Motion perception in motion : how we perceive object motion during smooth pursuit eye movements

    NARCIS (Netherlands)

    Souman, J.L.

    2005-01-01

    Eye movements change the retinal image motion of objects in the visual field. When we make an eye movement, the image of a stationary object will move across the retinae, while the retinal image of an object that we follow with the eyes is approximately stationary. To enable us to perceive motion in

  8. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Directory of Open Access Journals (Sweden)

    Gyungho Khim

    2015-01-01

    Full Text Available We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement.

  9. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    Science.gov (United States)

    Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok

    2015-01-01

    We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715

  10. 7 CFR 27.10 - Supervision of cotton inspection, weighing, sampling; and other duties.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Supervision of cotton inspection, weighing, sampling; and other duties. 27.10 Section 27.10 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER...

  11. Antenatal Weight Management: Women’s Experiences, Behaviours, and Expectations of Weighing in Early Pregnancy

    Directory of Open Access Journals (Sweden)

    J. A. Swift

    2016-01-01

    Full Text Available The current emphasis on obstetric risk management helps to frame gestational weight gain as problematic and encourages intervention by healthcare professionals. However pregnant women have reported confusion, distrust, and negative effects associated with antenatal weight management interactions. The MAGIC study (MAnaging weiGht In pregnanCy sought to examine women’s self-reported experiences of usual-care antenatal weight management in early pregnancy and consider these alongside weight monitoring behaviours and future expectations. 193 women (18 yrs+ were recruited from routine antenatal clinics at the Nottingham University Hospital NHS Trust. Self-reported gestation was 10–27 weeks, with 41.5% (n=80 between 12 and 14 and 43.0% (n=83 between 20 and 22 weeks. At recruitment 50.3% of participants (n=97 could be classified as overweight or obese. 69.4% of highest weight women (≥30 kg/m2 did not report receiving advice about weight, although they were significantly more likely compared to women with BMI < 30 kg/m2. The majority of women (regardless of BMI did not express any barriers to being weighed and 40.8% reported weighing themselves at home. Women across the BMI categories expressed a desire for more engagement from healthcare professionals on the issue of bodyweight. Women are clearly not being served appropriately in the current situation which simultaneously problematizes and fails to offer constructive dialogue.

  12. Abraham Pais Prize for History of Physics Talk: Henry Cavendish, John Michell, Weighing the Stars

    Science.gov (United States)

    McCormmach, Russell

    2010-03-01

    This talk is about an interaction between two 18th-century natural philosophers (physical scientists), Henry Cavendish and John Michell, and its most important outcome, the experiment of weighing the world (their name for it) using a torsion balance (our name for it). Michell was the most inventive of the 18th century English natural philosophers, and Cavendish was the first of his countrymen to possess abilities at all comparable with Newton's. By their interests and skills, they were drawn to one another. Both were universal natural philosophers, equally adept at building scientific instruments, performing experiments, constructing theory, and using mathematics; both had a penchant for exacting, quantitative work. Both also had fitful habits of publication, which did not begin to reveal the range of their work, to the mystification of later scientists and historians. Late in life, Cavendish and Michell turned their attention to the force that Newton had examined most completely, a singular triumph of his natural philosophy, the force of universal gravitation. Over the course of the 18th century, abundant evidence of attraction had been gathered from the motions of the earth, moon, planets, and comets, phenomena which span the intermediate range of masses, sizes, and distances. But in three domains of experience, involving the extreme upper and lower limits of masses and dimensions, the universality of gravitation remained an article of faith. These were the gravity of the ``fixed'' stars, the mutual attraction of terrestrial bodies, and the gravitation of light and other special substances. Michell took on himself the task of deducing observable consequences from each of these prospective instances of universal gravitation. Cavendish encouraged Michell, and he followed up the resulting observational and experimental questions. The experiment of weighing the world was the last experiment Mitchell planned and the last experiment Cavendish published. The capstone of

  13. Early Improper Motion Detection in Golf Swings Using Wearable Motion Sensors: The First Approach

    Science.gov (United States)

    Stančin, Sara; Tomažič, Sašo

    2013-01-01

    This paper presents an analysis of a golf swing to detect improper motion in the early phase of the swing. Led by the desire to achieve a consistent shot outcome, a particular golfer would (in multiple trials) prefer to perform completely identical golf swings. In reality, some deviations from the desired motion are always present due to the comprehensive nature of the swing motion. Swing motion deviations that are not detrimental to performance are acceptable. This analysis is conducted using a golfer's leading arm kinematic data, which are obtained from a golfer wearing a motion sensor that is comprised of gyroscopes and accelerometers. Applying the principal component analysis (PCA) to the reference observations of properly performed swings, the PCA components of acceptable swing motion deviations are established. Using these components, the motion deviations in the observations of other swings are examined. Any unacceptable deviations that are detected indicate an improper swing motion. Arbitrarily long observations of an individual player's swing sequences can be included in the analysis. The results obtained for the considered example show an improper swing motion in early phase of the swing, i.e., the first part of the backswing. An early detection method for improper swing motions that is conducted on an individual basis provides assistance for performance improvement. PMID:23752563

  14. The systems of automatic weight control of vehicles in the road and rail transport in Poland

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available . Condition of roads in Poland, despite the on-going modernisation works is still unsatisfactory. One reason is the excessive wear caused by overloaded vehicles. This problem also applies to rail transport, although to a much lesser extent. One solution may be the system of automatic weight control of road and rail vehicles. The article describes the legal and organizational conditions of oversize vehicles inspection in Poland. Characterized current practices weighing road vehicles, based on measurements of static technology. The article includes the description of the existing applications of the automatic dynamic weighing technology, known as systems WIM (Weigh in Motion. Additionally, the weighing technology and construction of weighing stands in road and rail are characterized. The article ends with authors' conclusions indicating the direction and ways of improving the weighing control systems for vehicles.

  15. A Pursuit Theory Account for the Perception of Common Motion in Motion Parallax.

    Science.gov (United States)

    Ratzlaff, Michael; Nawrot, Mark

    2016-09-01

    The visual system uses an extraretinal pursuit eye movement signal to disambiguate the perception of depth from motion parallax. Visual motion in the same direction as the pursuit is perceived nearer in depth while visual motion in the opposite direction as pursuit is perceived farther in depth. This explanation of depth sign applies to either an allocentric frame of reference centered on the fixation point or an egocentric frame of reference centered on the observer. A related problem is that of depth order when two stimuli have a common direction of motion. The first psychophysical study determined whether perception of egocentric depth order is adequately explained by a model employing an allocentric framework, especially when the motion parallax stimuli have common rather than divergent motion. A second study determined whether a reversal in perceived depth order, produced by a reduction in pursuit velocity, is also explained by this model employing this allocentric framework. The results show than an allocentric model can explain both the egocentric perception of depth order with common motion and the perceptual depth order reversal created by a reduction in pursuit velocity. We conclude that an egocentric model is not the only explanation for perceived depth order in these common motion conditions. © The Author(s) 2016.

  16. The Importance of Spatiotemporal Information in Biological Motion Perception: White Noise Presented with a Step-like Motion Activates the Biological Motion Area.

    Science.gov (United States)

    Callan, Akiko; Callan, Daniel; Ando, Hiroshi

    2017-02-01

    Humans can easily recognize the motion of living creatures using only a handful of point-lights that describe the motion of the main joints (biological motion perception). This special ability to perceive the motion of animate objects signifies the importance of the spatiotemporal information in perceiving biological motion. The posterior STS (pSTS) and posterior middle temporal gyrus (pMTG) region have been established by many functional neuroimaging studies as a locus for biological motion perception. Because listening to a walking human also activates the pSTS/pMTG region, the region has been proposed to be supramodal in nature. In this study, we investigated whether the spatiotemporal information from simple auditory stimuli is sufficient to activate this biological motion area. We compared spatially moving white noise, having a running-like tempo that was consistent with biological motion, with stationary white noise. The moving-minus-stationary contrast showed significant differences in activation of the pSTS/pMTG region. Our results suggest that the spatiotemporal information of the auditory stimuli is sufficient to activate the biological motion area.

  17. Design of a nucleonic conveyor belt weighing machine

    International Nuclear Information System (INIS)

    Magal, B.S.; Sunder Singh, V.P.

    1979-01-01

    A brief literature survey of the existing conventional units and the nucleonic belt weigher is made. The design of a 250 ton per hour coal weighing unit working in conjunction with a 24 inch wide belt, running at 350 feet per minute has been attempted and a unit has been built to the above specifications. Caseium-137 line source has been used as an isotope and a 10 litre volume argon filled ionisation chamber has been used as a detector. A line source has been preferred to a point source. The unit is under trial and the accuracy of the same is being evaluated by changing the variables like particle size profile of the material deposited on the belt and sudden changes in loading. Initial trials indicate that an accuracy of +- 1 p.c. can be achieved. (auth.)

  18. Desien, ConstruThe design, fabrication and evaluation of egg weighing device using capacitive sensor and neural networksction and Evaluation of Egg Weighing Device Using Capacitive Sensor and Neural Networks

    Directory of Open Access Journals (Sweden)

    S Khalili

    2015-09-01

    Full Text Available Introduction: Grading agricultural products always has a particular important position for submission to domestic and overseas markets. The grading causes more profitable product ranges and customer satisfaction. Grading treatment is carried out based on various parameters such as color, ripeness level, dimensions and weight. Product weight is one of the most effective parameters in grading operation. Egg weight is directly related to the smallness and coarseness of eggs. In egg grading, the largeness value is very important in marketing. This research aimed to design, fabricate and evaluate the egg weighing system based on its dielectric properties. Materials and Methods: To perform this research, the stages of work are divided into several sections including, design and construction of the hardware section, writing code for the software section to collect data, conducting nondestructive tests and data collection, analysis of obtained data using artificial intelligence, and giving the results of analysis for device calibration of the system as the software code. The large eggs as dielectric substances cause more increase in the capacity of the capacitive sensor. Furthermore, by derivation of a relation between capacity of capacitive sensor and egg weight, one can predict the weight of the sample. A prototype unit of weighing system was designed and fabricated. The designed unit was composed of a chassis, a voltage source, a sinusoidal signal generator, a voltage measurement unit, an AVR micro controller, a COM port, a capacitive sensor, and an LCD and a keyboard. Neural network technique was used for egg weight prediction. The designed net receives 16 voltage values at different frequencies as inputs and its output is the egg weight. In order to calibrate and evaluate the weighing unit, 150 fresh egg samples were provided on egg laying day from a local poultry farm. Experiments were divided into three groups. The experiments were carried out on

  19. Motion correction options in PET/MRI.

    Science.gov (United States)

    Catana, Ciprian

    2015-05-01

    Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body PET and MRI studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (eg, by acquiring the data when the organ of interest is relatively at rest). Additionally, nonperiodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (eg, respiratory bellows or the electrocardiogram signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained using either the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion-free or corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during, or after the image reconstruction. Integrating all these methods for motion control, characterization, and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Transcatheter closure of patent ductus arteriosus in children weighing 10 kg or less: Initial experience at Sohag University Hospital.

    Science.gov (United States)

    Ali, Safaa; El Sisi, Amel

    2016-04-01

    To assess the challenges, feasibility, and efficacy of device closure of patent ductus arteriosus (PDA) in small children weighing ⩽10 kg for different types of devices used in an initial experience at Sohag University hospital. Between March 2011 and September 2014, 91 patients with PDA underwent transcatheter closure in our institute, among whom 54 weighed ⩽10 kg. All of these patients underwent transcatheter closure of PDA using either a Cook Detachable Coil, PFM Nit-Occlud, or Amplatzer duct occluder. A retrospective review of the treatment results and adverse events was performed. Successful device placement was achieved in 53/54 small children (98.1%). The median minimum PDA diameter was 2.4 mm [interquartile range (IQR, 1.8-3.5 mm), median weight 8 kg (IQR, 7-10 kg), and median age 10 months (IQR, 8-17 months)]. Mild aortic obstruction occurred in one case (1.9%), as the device became displaced towards the aorta after release. The device embolized in one case (1.9%) and no retrieval attempt was made. Five cases (9.3%) had minor vascular complications. With the current availability of devices for PDA closure, transcatheter closure of PDA is considered safe and efficacious in small children weighing ⩽10 kg with good mid-term outcome. The procedure had a low rate of high-severity adverse events even with the initial experience of the catheterization laboratory.

  1. Estimated weight on goats with a commercial weighing tape and thoracic perimeter.

    Directory of Open Access Journals (Sweden)

    Pablo Chacón-Hernández

    2016-12-01

    Full Text Available The objective of this paper was to determine the technical viability of using a weighing tape to measure the pectoral circumference and estimate the body weight of goats. The study took place in the Alfredo Volio Mata Experimental Station in the University of Costa Rica, during the month of February 2015, by measuring the weight with a scale, a calibrated weighing tape and the thoracic diameter of sixty female goats. The data was adjusted through polynomial equations from rst to third degree. The thoracic diameter was used to determine the living weight of the goat population analyzed. Signi cant differences were found (p<0,05 when using the calibrated tape and the scale to determine the weight, with the obtained values of an average of 48,62kg y 39,99kg, respectively. There were differences (p<0,05 in the average of the weight depending on the age with results of 24,40kg in animals less than a year old, 40,39kg for the ages from one to three and 57,25kg for animals older with more than three years of age. The rst degree lineal regression, presented a good adjustment in the thoracic diameter and living weight( r2 = 0,88, with the values of ß0 and ß1 of -50,84 y 1,11, respectively.

  2. Attraction of posture and motion-trajectory elements of conspecific biological motion in medaka fish.

    Science.gov (United States)

    Shibai, Atsushi; Arimoto, Tsunehiro; Yoshinaga, Tsukasa; Tsuchizawa, Yuta; Khureltulga, Dashdavaa; Brown, Zuben P; Kakizuka, Taishi; Hosoda, Kazufumi

    2018-06-05

    Visual recognition of conspecifics is necessary for a wide range of social behaviours in many animals. Medaka (Japanese rice fish), a commonly used model organism, are known to be attracted by the biological motion of conspecifics. However, biological motion is a composite of both body-shape motion and entire-field motion trajectory (i.e., posture or motion-trajectory elements, respectively), and it has not been revealed which element mediates the attractiveness. Here, we show that either posture or motion-trajectory elements alone can attract medaka. We decomposed biological motion of the medaka into the two elements and synthesized visual stimuli that contain both, either, or none of the two elements. We found that medaka were attracted by visual stimuli that contain at least one of the two elements. In the context of other known static visual information regarding the medaka, the potential multiplicity of information regarding conspecific recognition has further accumulated. Our strategy of decomposing biological motion into these partial elements is applicable to other animals, and further studies using this technique will enhance the basic understanding of visual recognition of conspecifics.

  3. Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions.

    Science.gov (United States)

    Riemer, Raziel; Shapiro, Amir

    2011-04-26

    Biomechanical energy harvesting from human motion presents a promising clean alternative to electrical power supplied by batteries for portable electronic devices and for computerized and motorized prosthetics. We present the theory of energy harvesting from the human body and describe the amount of energy that can be harvested from body heat and from motions of various parts of the body during walking, such as heel strike; ankle, knee, hip, shoulder, and elbow joint motion; and center of mass vertical motion. We evaluated major motions performed during walking and identified the amount of work the body expends and the portion of recoverable energy. During walking, there are phases of the motion at the joints where muscles act as brakes and energy is lost to the surroundings. During those phases of motion, the required braking force or torque can be replaced by an electrical generator, allowing energy to be harvested at the cost of only minimal additional effort. The amount of energy that can be harvested was estimated experimentally and from literature data. Recommendations for future directions are made on the basis of our results in combination with a review of state-of-the-art biomechanical energy harvesting devices and energy conversion methods. For a device that uses center of mass motion, the maximum amount of energy that can be harvested is approximately 1 W per kilogram of device weight. For a person weighing 80 kg and walking at approximately 4 km/h, the power generation from the heel strike is approximately 2 W. For a joint-mounted device based on generative braking, the joints generating the most power are the knees (34 W) and the ankles (20 W). Our theoretical calculations align well with current device performance data. Our results suggest that the most energy can be harvested from the lower limb joints, but to do so efficiently, an innovative and light-weight mechanical design is needed. We also compared the option of carrying batteries to the

  4. Percutaneous closure of a large patent ductus arteriosus in a preterm newborn weighing 1400 g without using arterial sheath: an innovative technique.

    Science.gov (United States)

    Garg, Gaurav; Garg, Vishal; Prakash, Amit

    2018-03-01

    Percutaneous closure of patent ductus arteriosus is well established in infants weighing >5 kg, but data regarding outcome of preterm especially very low birth weight infants is minimal. Although surgical ligation of patent ductus arteriosus is the preferred and well-accepted modality of treatment after failure of drug therapy in preterm infants, it has also got its own demerits in such a small and fragile subset. Device closure in infants weighing closure of large patent ductus arteriosus. Percutaneous closure of patent ductus arteriosus was done successfully and the infant was discharged on room air with a weight of 1.8 kg. We present here an innovative technique in which successful patent ductus arteriosus device closure was done in a 1.4-kg infant without using arterial sheath.

  5. Validation of uncertainty of weighing in the preparation of radionuclide standards by Monte Carlo Method

    International Nuclear Information System (INIS)

    Cacais, F.L.; Delgado, J.U.; Loayza, V.M.

    2016-01-01

    In preparing solutions for the production of radionuclide metrology standards is necessary measuring the quantity Activity by mass. The gravimetric method by elimination is applied to perform weighing with smaller uncertainties. At this work is carried out the validation, by the Monte Carlo method, of the uncertainty calculation approach implemented by Lourenco and Bobin according to ISO GUM for the method by elimination. The results obtained by both uncertainty calculation methods were consistent indicating that were fulfilled the conditions for the application of ISO GUM in the preparation of radioactive standards. (author)

  6. Markerless motion estimation for motion-compensated clinical brain imaging

    Science.gov (United States)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  7. The rational reconstruction of weighing and balancing on the basis of teleological-evaluative considerations in the justification of judicial decisions

    NARCIS (Netherlands)

    Feteris, E.T.

    2008-01-01

    In this contribution the author develops an argumentation model for the reconstruction of weighing and balancing on the basis of teleological-evaluative considerations. The model is intended as a heuristic and critical tool for the rational reconstruction of the justification of judicial decisions.

  8. Measurement of shoulder motion fraction and motion ratio

    International Nuclear Information System (INIS)

    Kang, Yeong Han

    2006-01-01

    This study was to understand about the measurement of shoulder motion fraction and motion ratio. We proposed the radiological criterior of glenohumeral and scapulothoracic movement ratio. We measured the motion fraction of the glenohumeral and scapulothoracic movement using CR (computed radiological system) of arm elevation at neutral, 90 degree, full elevation. Central ray was 15 .deg., 19 .deg., 22 .deg. to the cephald for the parallel scapular spine, and the tilting of torso was external oblique 40 .deg., 36 .deg., 22 .deg. for perpendicular to glenohumeral surface. Healthful donor of 100 was divided 5 groups by age (20, 30, 40, 50, 60). The angle of glenohumeral motion and scapulothoracic motion could be taken from gross arm angle and radiological arm angle. We acquired 3 images at neutral, 90 .deg. and full elevation position and measured radiographic angle of glenoheumeral, scapulothoracic movement respectively. While the arm elevation was 90 .deg., the shoulder motion fraction was 1.22 (M), 1.70 (W) in right arm and 1.31, 1.54 in left. In full elevation, Right arm fraction was 1.63, 1.84 and left was 1.57, 1.32. In right dominant arm (78%), 90 .deg. and Full motion fraction was 1.58, 1.43, in left (22%) 1.82, 1.94. In generation 20, 90 .deg. and Full motion fraction was 1.56, 1.52, 30' was 1.82, 1.43, 40' was 1.23, 1.16, 50' was 1.80, 1.28,60' was 1.24, 1.75. There was not significantly by gender, dominant arm and age. The criteria of motion fraction was useful reference for clinical diagnosis the shoulder instability

  9. Ground motion input in seismic evaluation studies

    International Nuclear Information System (INIS)

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants

  10. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  11. Weighing the Evidence of Common Beliefs in Obesity Research.

    Science.gov (United States)

    Casazza, Krista; Brown, Andrew; Astrup, Arne; Bertz, Fredrik; Baum, Charles; Brown, Michelle Bohan; Dawson, John; Durant, Nefertiti; Dutton, Gareth; Fields, David A; Fontaine, Kevin R; Heymsfield, Steven; Levitsky, David; Mehta, Tapan; Menachemi, Nir; Newby, P K; Pate, Russell; Raynor, Hollie; Rolls, Barbara J; Sen, Bisakha; Smith, Daniel L; Thomas, Diana; Wansink, Brian; Allison, David B

    2015-01-01

    Obesity is a topic on which many views are strongly held in the absence of scientific evidence to support those views, and some views are strongly held despite evidence to contradict those views. We refer to the former as "presumptions" and the latter as "myths." Here, we present nine myths and 10 presumptions surrounding the effects of rapid weight loss; setting realistic goals in weight loss therapy; stage of change or readiness to lose weight; physical education classes; breastfeeding; daily self-weighing; genetic contribution to obesity; the "Freshman 15"; food deserts; regularly eating (versus skipping) breakfast; eating close to bedtime; eating more fruits and vegetables; weight cycling (i.e., yo-yo dieting); snacking; built environment; reducing screen time in childhood obesity; portion size; participation in family mealtime; and drinking water as a means of weight loss. For each of these, we describe the belief and present evidence that the belief is widely held or stated, reasons to support the conjecture that the belief might be true, evidence to directly support or refute the belief, and findings from randomized controlled trials, if available. We conclude with a discussion of the implications of these determinations, conjecture on why so many myths and presumptions exist, and suggestions for limiting the spread of these and other unsubstantiated beliefs about the obesity domain.

  12. P1-17: Pseudo-Haptics Using Motion-in-Depth Stimulus and Second-Order Motion Stimulus

    Directory of Open Access Journals (Sweden)

    Shuichi Sato

    2012-10-01

    Full Text Available Modification of motion of the computer cursor during the manipulation by the observer evokes illusory haptic sensation (Lecuyer et al., 2004 ACM SIGCHI '04 239–246. This study investigates the pseudo-haptics using motion-in-depth and second-order motion. A stereoscopic display and a PHANTOM were used in the first experiment. A subject was asked to move a visual target at a constant speed in horizontal, vertical, or front-back direction. During the manipulation, the speed was reduced to 50% for 500 msec. The haptic sensation was measured using the magnitude estimation method. The result indicates that perceived haptic sensation from motion-in-depth was about 30% of that from horizontal or vertical motion. A 2D display and the PHANTOM were used in the second experiment. The motion cue was second order—in each frame, dots in a square patch reverses in contrast (i.e., all black dots become white and all white dots become black. The patch was moved in a horizontal direction. The result indicates that perceived haptic sensation from second-order motion was about 90% of that from first-order motion.

  13. 75 FR 76254 - Official Performance and Procedural Requirements for Grain Weighing Equipment and Related Grain...

    Science.gov (United States)

    2010-12-08

    ... DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration 7 CFR Part 802 [Docket GIPSA-2010-FGIS-0012] RIN 0580-AB19 Official Performance and Procedural Requirements for Grain Weighing Equipment and Related Grain Handling Systems AGENCY: Grain Inspection, Packers and Stockyards...

  14. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  15. Motion camouflage in three dimensions

    OpenAIRE

    Reddy, P. V.; Justh, E. W.; Krishnaprasad, P. S.

    2006-01-01

    We formulate and analyze a three-dimensional model of motion camouflage, a stealth strategy observed in nature. A high-gain feedback law for motion camouflage is formulated in which the pursuer and evader trajectories are described using natural Frenet frames (or relatively parallel adapted frames), and the corresponding natural curvatures serve as controls. The biological plausibility of the feedback law is discussed, as is its connection to missile guidance. Simulations illustrating motion ...

  16. Densimetry in compressed fluids by combining hydrostatic weighing and magnetic levitation

    International Nuclear Information System (INIS)

    Masui, R.; Haynes, W.M.; Chang, R.F.; Davis, H.A.; Sengers, J.M.H.L.

    1984-01-01

    A magnetic suspension densimeter is described that has been built for measuring the density of compressed liquids at pressures up to 15 MPa in the temperature range 20 0 --200 0 C with an uncertainty of 0.1%. The densimeter combines the principle of magnetic levitation of a buoy with that of liquid density determination by hydrostatic weighing. To accomplish this, the support coil is suspended from an electronic balance, and the balance readings are recorded (1) with the buoy at rest, and (2) with the buoy in magnetic suspension. Details are given of the construction of the cell, coil, buoy, and thermostat. The procedure is described by which cell and buoy are aligned so that the suspended buoy does not touch the cell wall. Test data on the densities of seven different liquids were obtained at room temperature. They agree with reliable literature values to within 0.1%. In a separate experiment, the bulk thermal expansion coefficient of the buoy material was determined. This experiment and its results are also given here

  17. Direct Contribution of Auditory Motion Information to Sound-Induced Visual Motion Perception

    Directory of Open Access Journals (Sweden)

    Souta Hidaka

    2011-10-01

    Full Text Available We have recently demonstrated that alternating left-right sound sources induce motion perception to static visual stimuli along the horizontal plane (SIVM: sound-induced visual motion perception, Hidaka et al., 2009. The aim of the current study was to elucidate whether auditory motion signals, rather than auditory positional signals, can directly contribute to the SIVM. We presented static visual flashes at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flashes appeared to move in the situation where auditory positional information would have little influence on the perceived position of visual stimuli; the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the auditory motion altered visual motion perception in a global motion display; in this display, different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception so that there was no clear one-to-one correspondence between the auditory stimuli and each visual stimulus. These findings suggest the existence of direct interactions between the auditory and visual modalities in motion processing and motion perception.

  18. Perception of biological motion in visual agnosia

    Directory of Open Access Journals (Sweden)

    Elisabeth eHuberle

    2012-08-01

    Full Text Available Over the past twenty-five years, visual processing has been discussed in the context of the dual stream hypothesis consisting of a ventral (‘what' and a dorsal ('where' visual information processing pathway. Patients with brain damage of the ventral pathway typically present with signs of visual agnosia, the inability to identify and discriminate objects by visual exploration, but show normal perception of motion perception. A dissociation between the perception of biological motion and non-biological motion has been suggested: Perception of biological motion might be impaired when 'non-biological' motion perception is intact and vice versa. The impact of object recognition on the perception of biological motion remains unclear. We thus investigated this question in a patient with severe visual agnosia, who showed normal perception of non-biological motion. The data suggested that the patient's perception of biological motion remained largely intact. However, when tested with objects constructed of coherently moving dots (‘Shape-from-Motion’, recognition was severely impaired. The results are discussed in the context of possible mechanisms of biological motion perception.

  19. A multistage motion vector processing method for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai- Mei; Nguyen, Truong Q

    2008-05-01

    In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.

  20. Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway

    NARCIS (Netherlands)

    Lubeck, A.J.A.; Bos, J.E.; Stins, J.F.

    2015-01-01

    Abstract Objective It is generally assumed that motion in motion images is responsible for increased postural sway as well as for visually induced motion sickness (VIMS). However, this has not yet been tested. To that end, we studied postural sway and VIMS induced by motion and still images. Method

  1. Analysis of motion in speed skating

    Science.gov (United States)

    Koga, Yuzo; Nishimura, Tetsu; Watanabe, Naoki; Okamoto, Kousuke; Wada, Yuhei

    1997-03-01

    A motion on sports has been studied by many researchers from the view of the medical, psychological and mechanical fields. Here, we try to analyze a speed skating motion dynamically for an aim of performing the best record. As an official competition of speed skating is performed on the round rink, the skating motion must be studied on the three phases, that is, starting phase, straight and curved course skating phase. It is indispensable to have a visual data of a skating motion in order to analyze kinematically. So we took a several subject's skating motion by 8 mm video cameras in order to obtain three dimensional data. As the first step, the movement of the center of gravity of skater (abbreviate to C. G.) is discussed in this paper, because a skating motion is very complicated. The movement of C. G. will give an information of the reaction force to a skate blade from the surface of ice. We discuss the discrepancy of several skating motion by studied subjects. Our final goal is to suggest the best skating form for getting the finest record.

  2. [Weighing use and safety of therapeutic agents and feed additives (author's transl)].

    Science.gov (United States)

    van der Wal, P

    1982-02-01

    (1) The pros and cons of using feed additives and therapeutic agents may be successfully weighed in the light of carefully considered consumer requirements. (2) The socio-economic interests of the producer and the welfare of the animal will also determine the response of the production apparatus to consumer requirements. (3) Consumption of the current amounts of products of animal origin and maintenance of price and quality will only be feasible in the event of rational large-scale production in which constituents used in nutrition, prophylaxis and therapeutics are highly important factors. (4) Using these ingredients should be preceded by accurate evaluation of their use and safety. Testing facilities, conduct of studies and reporting should be such as to make the results nationally and internationally acceptable to all those concerned. (5) In deciding whether feed constituents are acceptable in view of the established use and safety, compliance will have to be sought with those standards which are accepted in other fields of society. Measures which result in raising the price of food without actually helping to reduce the risks to the safety of man, animals and environment, are likely to be rejected by any well-informed consumer who is aware of the facts. (6) For accurate weighing of use and safety at a national level, possibilities are hardly adequate in Europe. Decisions reached within the framework of the European Community, also tuned to U.S.A.- conditions are rightly encouraged. A centrally managed professionally staffed and equipped test system in the European Community would appear to be indispensable.

  3. Adaptive Motion Compensation in Radiotherapy

    CERN Document Server

    Murphy, Martin J

    2011-01-01

    External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution--adapting delivery to natural movement--a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and pati

  4. Trajectory of coronary motion and its significance in robotic motion cancellation.

    Science.gov (United States)

    Cattin, Philippe; Dave, Hitendu; Grünenfelder, Jürg; Szekely, Gabor; Turina, Marko; Zünd, Gregor

    2004-05-01

    To characterize remaining coronary artery motion of beating pig hearts after stabilization with an 'Octopus' using an optical remote analysis technique. Three pigs (40, 60 and 65 kg) underwent full sternotomy after receiving general anesthesia. An 8-bit high speed black and white video camera (50 frames/s) coupled with a laser sensor (60 microm resolution) were used to capture heart wall motion in all three dimensions. Dopamine infusion was used to deliberately modulate cardiac contractility. Synchronized ECG, blood pressure, airway pressure and video data of the region around the first branching point of the left anterior descending (LAD) coronary artery after Octopus stabilization were captured for stretches of 8 s each. Several sequences of the same region were captured over a period of several minutes. Computerized off-line analysis allowed us to perform minute characterization of the heart wall motion. The movement of the points of interest on the LAD ranged from 0.22 to 0.81 mm in the lateral plane (x/y-axis) and 0.5-2.6 mm out of the plane (z-axis). Fast excursions (>50 microm/s in the lateral plane) occurred corresponding to the QRS complex and the T wave; while slow excursion phases (movement of the coronary artery after stabilization appears to be still significant. Minute characterization of the trajectory of motion could provide the substrate for achieving motion cancellation for existing robotic systems. Velocity plots could also help improve gated cardiac imaging.

  5. A synchronous surround increases the motion strength gain of motion.

    Science.gov (United States)

    Linares, Daniel; Nishida, Shin'ya

    2013-11-12

    Coherent motion detection is greatly enhanced by the synchronous presentation of a static surround (Linares, Motoyoshi, & Nishida, 2012). To further understand this contextual enhancement, here we measured the sensitivity to discriminate motion strength for several pedestal strengths with and without a surround. We found that the surround improved discrimination of low and medium motion strengths, but did not improve or even impaired discrimination of high motion strengths. We used motion strength discriminability to estimate the perceptual response function assuming additive noise and found that the surround increased the motion strength gain, rather than the response gain. Given that eye and body movements continuously introduce transients in the retinal image, it is possible that this strength gain occurs in natural vision.

  6. "Sorpvej" for Sorption Curves - A Windows Program for collecting Weighing Data and determining Equilibrium State

    DEFF Research Database (Denmark)

    Strømdahl, Kenneth; Hansen, Kurt Kielsgaard

    1998-01-01

    The Windows program SORPVEJ collects weighing data from the balance and plots points on the sorption curve. The features of the program are: All data are transmitted automatically from the balance to the computer. Each point on the curve (upper right inset)is an original measurement and every time...

  7. Community based weighing of newborns and use of mobile phones by village elders in rural settings in Kenya: a decentralised approach to health care provision

    Directory of Open Access Journals (Sweden)

    Gisore Peter

    2012-03-01

    Full Text Available Abstract Background Identifying every pregnancy, regardless of home or health facility delivery, is crucial to accurately estimating maternal and neonatal mortality. Furthermore, obtaining birth weights and other anthropometric measurements in rural settings in resource limited countries is a difficult challenge. Unfortunately for the majority of infants born outside of a health care facility, pregnancies are often not recorded and birth weights are not accurately known. Data from the initial 6 months of the Maternal and Neonatal Health (MNH Registry Study of the Global Network for Women and Children's Health study area in Kenya revealed that up to 70% of newborns did not have exact weights measured and recorded by the end of the first week of life; nearly all of these infants were born outside health facilities. Methods To more completely obtain accurate birth weights for all infants, regardless of delivery site, village elders were engaged to assist in case finding for pregnancies and births. All elders were provided with weighing scales and mobile phones as tools to assist in subject enrollment and data recording. Subjects were instructed to bring the newborn infant to the home of the elder as soon as possible after birth for weight measurement. The proportion of pregnancies identified before delivery and the proportion of births with weights measured were compared before and after provision of weighing scales and mobile phones to village elders. Primary outcomes were the percent of infants with a measured birth weight (recorded within 7 days of birth and the percent of women enrolled before delivery. Results The recorded birth weight increased from 43 ± 5.7% to 97 ± 1.1. The birth weight distributions between infants born and weighed in a health facility and those born at home and weighed by village elders were similar. In addition, a significant increase in the percent of subjects enrolled before delivery was found. Conclusions Pregnancy

  8. Validation of a Dietary History Questionnaire against a 7-D Weighed Record for Estimating Nutrient Intake among Rural Elderly Malays.

    Science.gov (United States)

    Shahar, S; Earland, J; Abdulrahman, S

    2000-03-01

    Energy and nutrient intake estimated using a pre-coded dietary history questionnaire (DHQ) was compared with results obtained from a 7-d weighed intake record (WI) in a group of 37 elderly Malays residing in rural areas of Mersing District, Johor, Malaysia to determine the validity of the DHQ. The DHQ consists of a pre-coded dietary history with a qualitative food frequency questionnaire which was developed to obtain information on food intake and usual dietary habits. The 7-d WI requires subjects to weigh each food immediately before eating and to weigh any leftovers. The medians of intake from the two methods were rather similar and varied by less than 30% for every nutrient, except for vitamin C (114%). For most of the nutrients, analysis of group means using the Wilcoxon matched pairs signed rank sum test showed no significant difference between the estimation of intake from the DHQ and from the WI, with the exceptions of vitamin C and niacin. The DHQ significantly overestimated the intake of vitamin C compared to the WI (ppopulation with a high prevalence of illiteracy, a specially designed DHQ can provide very similar estimations to that obtained from 7-d WI.

  9. Inter-fraction variations in respiratory motion models

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J R; Modat, M; Ourselin, S; Hawkes, D J [Centre for Medical Image Computing, University College London (United Kingdom); Hughes, S; Qureshi, A; Ahmad, S; Landau, D B, E-mail: j.mcclelland@cs.ucl.ac.uk [Department of Oncology, Guy' s and St Thomas' s Hospitals NHS Trust, London (United Kingdom)

    2011-01-07

    Respiratory motion can vary dramatically between the planning stage and the different fractions of radiotherapy treatment. Motion predictions used when constructing the radiotherapy plan may be unsuitable for later fractions of treatment. This paper presents a methodology for constructing patient-specific respiratory motion models and uses these models to evaluate and analyse the inter-fraction variations in the respiratory motion. The internal respiratory motion is determined from the deformable registration of Cine CT data and related to a respiratory surrogate signal derived from 3D skin surface data. Three different models for relating the internal motion to the surrogate signal have been investigated in this work. Data were acquired from six lung cancer patients. Two full datasets were acquired for each patient, one before the course of radiotherapy treatment and one at the end (approximately 6 weeks later). Separate models were built for each dataset. All models could accurately predict the respiratory motion in the same dataset, but had large errors when predicting the motion in the other dataset. Analysis of the inter-fraction variations revealed that most variations were spatially varying base-line shifts, but changes to the anatomy and the motion trajectories were also observed.

  10. Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view

    NARCIS (Netherlands)

    Bos, J.E.; MacKinnon, S.N.; Patterson, A.

    2005-01-01

    Vehicle motion characteristics differ between air, road, and sea environments, both vestibularly and visually. Effects of vision on motion sickness have been studied before, though less systematically in a naval setting. It is hypothesized that appropriate visual information on self-motion is

  11. Directional Limits on Motion Transparency Assessed Through Colour-Motion Binding.

    Science.gov (United States)

    Maloney, Ryan T; Clifford, Colin W G; Mareschal, Isabelle

    2018-03-01

    Motion-defined transparency is the perception of two or more distinct moving surfaces at the same retinal location. We explored the limits of motion transparency using superimposed surfaces of randomly positioned dots defined by differences in motion direction and colour. In one experiment, dots were red or green and we varied the proportion of dots of a single colour that moved in a single direction ('colour-motion coherence') and measured the threshold direction difference for discriminating between two directions. When colour-motion coherences were high (e.g., 90% of red dots moving in one direction), a smaller direction difference was required to correctly bind colour with direction than at low coherences. In another experiment, we varied the direction difference between the surfaces and measured the threshold colour-motion coherence required to discriminate between them. Generally, colour-motion coherence thresholds decreased with increasing direction differences, stabilising at direction differences around 45°. Different stimulus durations were compared, and thresholds were higher at the shortest (150 ms) compared with the longest (1,000 ms) duration. These results highlight different yet interrelated aspects of the task and the fundamental limits of the mechanisms involved: the resolution of narrowly separated directions in motion processing and the local sampling of dot colours from each surface.

  12. Ion Motion in the Adiabatic Focuser

    International Nuclear Information System (INIS)

    Henestroza, E.; Sessler, A.M.; Yu, S.S.

    2006-01-01

    In this paper we numerically study the effect of ion motion in an adiabatic focuser, motivated by a recent suggestion that ion motion in an adiabatic focuser might be significant and even preclude operation of the focuser as previously envisioned. It is shown that despite ion motion the adiabatic focuser should work as well as originally envisioned

  13. Motion-induced dose artifacts in helical tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bryan; Chen, Jeff; Battista, Jerry [London Regional Cancer Program, London Health Sciences Centre, London, ON (Canada); Kron, Tomas [Peter MacCallum Cancer Center, Melbourne (Australia)], E-mail: bryan.kim@lhsc.on.ca

    2009-10-07

    Tumor motion is a particular concern for a complex treatment modality such as helical tomotherapy, where couch position, gantry rotation and MLC leaf opening all change with time. In the present study, we have investigated the impact of tumor motion for helical tomotherapy, which could result in three distinct motion-induced dose artifacts, namely (1) dose rounding, (2) dose rippling and (3) IMRT leaf opening asynchronization effect. Dose rounding and dose rippling effects have been previously described, while the IMRT leaf opening asynchronization effect is a newly discovered motion-induced dose artifact. Dose rounding is the penumbral widening of a delivered dose distribution near the edges of a target volume along the direction of tumor motion. Dose rippling is a series of periodic dose peaks and valleys observed within the target region along the direction of couch motion, due to an asynchronous interplay between the couch motion and the longitudinal component of tumor motion. The IMRT leaf opening asynchronization effect is caused by an asynchronous interplay between the temporal patterns of leaf openings and tumor motion. The characteristics of each dose artifact were investigated individually as functions of target motion amplitude and period for both non-IMRT and IMRT helical tomotherapy cases, through computer simulation modeling and experimental verification. The longitudinal dose profiles generated by the simulation program agreed with the experimental data within {+-}0.5% and {+-}1.5% inside the PTV region for the non-IMRT and IMRT cases, respectively. The dose rounding effect produced a penumbral increase up to 20.5 mm for peak-to-peak target motion amplitudes ranging from 1.0 cm to 5.0 cm. Maximum dose rippling magnitude of 25% was calculated, when the target motion period approached an unusually high value of 10 s. The IMRT leaf opening asynchronization effect produced dose differences ranging from -29% to 7% inside the PTV region. This information

  14. Ambiguity in Tactile Apparent Motion Perception.

    Directory of Open Access Journals (Sweden)

    Emanuela Liaci

    Full Text Available In von Schiller's Stroboscopic Alternative Motion (SAM stimulus two visually presented diagonal dot pairs, located on the corners of an imaginary rectangle, alternate with each other and induce either horizontal, vertical or, rarely, rotational motion percepts. SAM motion perception can be described by a psychometric function of the dot aspect ratio ("AR", i.e. the relation between vertical and horizontal dot distances. Further, with equal horizontal and vertical dot distances (AR = 1 perception is biased towards vertical motion. In a series of five experiments, we presented tactile SAM versions and studied the role of AR and of different reference frames for the perception of tactile apparent motion.We presented tactile SAM stimuli and varied the ARs, while participants reported the perceived motion directions. Pairs of vibration stimulators were attached to the participants' forearms and stimulator distances were varied within and between forearms. We compared straight and rotated forearm conditions with each other in order to disentangle the roles of exogenous and endogenous reference frames.Increasing the tactile SAM's AR biased perception towards vertical motion, but the effect was weak compared to the visual modality. We found no horizontal disambiguation, even for very small tactile ARs. A forearm rotation by 90° kept the vertical bias, even though it was now coupled with small ARs. A 45° rotation condition with crossed forearms, however, evoked a strong horizontal motion bias.Existing approaches to explain the visual SAM bias fail to explain the current tactile results. Particularly puzzling is the strong horizontal bias in the crossed-forearm conditions. In the case of tactile apparent motion, there seem to be no fixed priority rule for perceptual disambiguation. Rather the weighting of available evidence seems to depend on the degree of stimulus ambiguity, the current situation and on the perceptual strategy of the individual

  15. How much motion is too much motion? Determining motion thresholds by sample size for reproducibility in developmental resting-state MRI

    Directory of Open Access Journals (Sweden)

    Julia Leonard

    2017-03-01

    Full Text Available A constant problem developmental neuroimagers face is in-scanner head motion. Children move more than adults and this has led to concerns that developmental changes in resting-state connectivity measures may be artefactual. Furthermore, children are challenging to recruit into studies and therefore researchers have tended to take a permissive stance when setting exclusion criteria on head motion. The literature is not clear regarding our central question: How much motion is too much? Here, we systematically examine the effects of multiple motion exclusion criteria at different sample sizes and age ranges in a large openly available developmental cohort (ABIDE; http://preprocessed-connectomes-project.org/abide. We checked 1 the reliability of resting-state functional magnetic resonance imaging (rs-fMRI pairwise connectivity measures across the brain and 2 the accuracy with which we can separate participants with autism spectrum disorder from typically developing controls based on their rs-fMRI scans using machine learning. We find that reliability on average is primarily sensitive to the number of participants considered, but that increasingly permissive motion thresholds lower case-control prediction accuracy for all sample sizes.

  16. Non-constrained monitoring of systolic blood pressure on a weighing scale

    International Nuclear Information System (INIS)

    Shin, Jae Hyuk; Lee, Kang Moo; Park, Kwang Suk

    2009-01-01

    In this study, we developed a novel technique for estimating non-constrained and cuffless blood pressure (BP) that was based on electrocardiogram (ECG) and ballistocardiogram (BCG). The BCG was non-invasively measured using a common electronic weighing scale when a subject was standing on it. The ECG was measured using three different methods: on the chest using Ag/AgCl electrodes, on the hands using dry electrodes and on the feet also using dry electrodes. For a BP correlated parameter, a time interval parameter, which was defined as the time difference between the ECG R-peak and BCG J-peak, was employed for evaluating and estimating beat-to-beat BP. Under a BP varying experiment with a Valsalva manoeuvre, the R–J intervals were extracted at every beat cycle and a systolic blood pressure (SBP) estimation equation was established using linear regression analysis for each subject. In the case of feet delivered ECG (F-ECG), an ensemble average technique synchronized at the BCG J-peak point was applied to extract the ECG signal from the feet. The performance of the proposed method was evaluated using Finapres, a non-invasive blood pressure measurement system, as a reference BP signal, and a scatter plot was used to find the regression line between the reference values and estimated BPs. A moving-window averaging technique was applied to remove the high-frequency noise in the R–J intervals and was applied to enhance the accuracy of the SBP estimation. For all individuals, the estimated SBP was similar to the measured SBP with a reliable correlation, which makes the proposed method suitable for use in a home healthcare system to monitor blood pressure on a weighing scale at the same time as measuring weight

  17. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries.

    Science.gov (United States)

    Jeon, Jae-Hyung; Metzler, Ralf

    2010-02-01

    Motivated by subdiffusive motion of biomolecules observed in living cells, we study the stochastic properties of a non-Brownian particle whose motion is governed by either fractional Brownian motion or the fractional Langevin equation and restricted to a finite domain. We investigate by analytic calculations and simulations how time-averaged observables (e.g., the time-averaged mean-squared displacement and displacement correlation) are affected by spatial confinement and dimensionality. In particular, we study the degree of weak ergodicity breaking and scatter between different single trajectories for this confined motion in the subdiffusive domain. The general trend is that deviations from ergodicity are decreased with decreasing size of the movement volume and with increasing dimensionality. We define the displacement correlation function and find that this quantity shows distinct features for fractional Brownian motion, fractional Langevin equation, and continuous time subdiffusion, such that it appears an efficient measure to distinguish these different processes based on single-particle trajectory data.

  18. Challenges in device closure of a large patent ductus arteriosus in infants weighing less than 6 kg.

    Science.gov (United States)

    Vijayalakshmi, I B; Chitra, Narasimhan; Praveen, Jayan; Prasanna, Simha Rao

    2013-02-01

    Transcatheter closure of patent ductus arteriosus (PDA) has replaced surgery in most institutions. Despite improvements in techniques and the devices available, closure of large PDA in very small infants remains a challenge. To assess the challenges, feasibility, and efficacy of device closure of large PDA, in infants weighing ≤6 kg. Analysis of device closure of a PDA was done in 61 infants ≤6 kg. Their ages, ranged from 9 days-12 months (mean 8.9 months), weight ranged from 2.2 to 6 kg (mean 5.3 kg), and PDA measured 3.2-8.7 mm (mean 4.8 mm). The fluoroscopy time was 3-18 minutes. The largest device used was 12 × 10 mm. Successful device placement was achieved in 60/61 infants (98.4%). Mild aortic obstruction occurred in 2 cases (3.3%), as the device got displaced towards the aorta after release. The device embolized in 2 cases (3.3%). In one it was retrieved by a novel method like fastening the screw in the aorta and was closed with a 4 × 6 ADO II. In the other infant, with a single kidney, died of uremia after device retrieval. Mild left pulmonary artery (LPA) obstruction occurred in one case (1.6%). Four cases (6.6%) had minor vascular complications. The postprocedure weight gain after 3 months was between 2.5 kg ± 250 mg. Device closure of large PDA in infants weighing ≤6 kg with left ventricular failure is challenging but possible, safe and effective. Retrieval of embolized device could be tricky. © 2012, Wiley Periodicals, Inc.

  19. Management of respiratory motion in radiation oncology

    International Nuclear Information System (INIS)

    Vedam, Subrahmanya Sastry

    2003-01-01

    Respiration affects the instantaneous position of almost all thoracic and abdominal structures (lung, breast, liver, pancreas, etc.), posing significant problems in the radiotherapy of tumors located at these sites. The diaphragm, for example, has been shown to move approximately 1.5 cm in the superior-inferior direction during normal breathing. During radiotherapy, margin expansion around the tumor, based on an estimate of the expected range of tumor motion, is commonly employed to ensure adequate dose coverage. Such a margin estimate may or may not encompass the 'current' extent of motion exhibited by the tumor, resulting in either a higher dose to the surrounding normal tissue or a cold spot in the tumor volume, leading to poor prognosis. Accounting for respiratory motion by active management during radiotherapy can, however, potentiate a reduction in the amount of high dose to normal tissue. Active management of respiratory motion forms the primary theme of this dissertation. Among the various techniques available to manage respiratory motion, our research focused on respiratory gated and respiration synchronized radiotherapy, with an external marker to monitor respiratory motion. Multiple session recordings of diaphragm and external marker motion revealed a consistent linear relationship, validating the use of external marker motion as a 'surrogate' for diaphragm motion. The predictability of diaphragm motion based on such external marker motion both within and between treatment sessions was also determined to be of the order of 0.1 cm. Gating during exhalation was found to be more reproducible than gating during inhalation. Although, a reduction in the 'gate' width achieved a modest reduction in the margins added around the tumor further reduction was limited by setup error. A motion phantom study of the potential gains from respiratory gating indicated margin reduction of 0.2-1.1 cm while employing gating. In addition, gating also improved the quality of

  20. Rolling motion in moving droplets

    Indian Academy of Sciences (India)

    motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively .... rigid body rotation. The solid body rotation makes sense in the context of small Reynolds. (Re) number flows ...

  1. Photon motion in Kerr-de Sitter spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Charbulak, Daniel; Stuchlik, Zdenek [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic)

    2017-12-15

    We study the general motion of photons in the Kerr-de Sitter black-hole and naked singularity spacetimes. The motion is governed by the impact parameters X, related to the axial symmetry of the spacetime, and q, related to its hidden symmetry. Appropriate 'effective potentials' governing the latitudinal and radial motion are introduced and their behavior is examined by the 'Chinese boxes' technique giving regions allowed for the motion in terms of the impact parameters. Restrictions on the impact parameters X and q are established in dependence on the spacetime parameters M, Λ, a. The motion can be of orbital type (crossing the equatorial plane, q > 0) and vortical type (tied above or below the equatorial plane, q < 0). It is shown that for negative values of q, the reality conditions imposed on the latitudinal motion yield stronger constraints on the parameter X than that following from the reality condition of the radial motion, excluding the existence of vortical motion of constant radius. The properties of the spherical photon orbits of the orbital type are determined and used along with the properties of the effective potentials as criteria of classification of the KdS spacetimes according to the properties of the motion of the photon. (orig.)

  2. Motion correction in neurological fan beam SPECT using motion tracking and fully 3D reconstruction

    International Nuclear Information System (INIS)

    Fulton, R.R.; Hutton, B.; Eberl, S.; Meikle, S.; Braun, M.; Westmead Hospital, Westmead, NSW; University of Technology, Sydney, NSW

    1998-01-01

    Full text: We have previously proposed the use of fully three-dimensional (3D) reconstruction and continuous monitoring of head position to correct for motion artifacts in neurological SPECT and PET. Knowledge of the motion during acquisition provided by a head tracking system can be used to reposition the projection data in space in such a way as to negate motion effects during reconstruction. The reconstruction algorithm must deal with variations in the projection geometry resulting from differences in the timing and nature of motion between patients. Rotational movements about any axis other than the camera's axis of rotation give rise to projection geometries which necessitate the use of a fully 3D reconstruction algorithm. Our previous work with computer simulations assuming parallel hole collimation demonstrated the feasibility of correcting for motion. We have now refined our iterative 3D reconstruction algorithm to support fan beam data and attenuation correction, and developed a practical head tracking system for use on a Trionix Triad SPECT system. The correction technique has been tested in fan beam SPECT studies of the 3D Hoffman brain phantom. Arbitrary movements were applied to the phantom during acquisition and recorded by the head tracker which monitored the position and orientation of the phantom throughout the study. 3D reconstruction was then performed using the motion data provided by the tracker. The accuracy of correction was assessed by comparing the corrected images with a motion free study acquired immediately beforehand, visually and by calculating mean squared error (MSE). Motion correction reduced distortion perceptibly and, depending on the motions applied, improved MSE by up to an order of magnitude. 3D reconstruction of the 128x128x128 data set took 20 minutes on a SUN Ultra 1 workstation. The results of these phantom experiments suggest that the technique can effectively compensate for head motion under clinical SPECT imaging

  3. PET motion correction using PRESTO with ITK motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Melissa [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Caldeira, Liliana; Scheins, Juergen [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany); Matela, Nuno [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Kops, Elena Rota; Shah, N Jon [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany)

    2014-07-29

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  4. PET motion correction using PRESTO with ITK motion estimation

    International Nuclear Information System (INIS)

    Botelho, Melissa; Caldeira, Liliana; Scheins, Juergen; Matela, Nuno; Kops, Elena Rota; Shah, N Jon

    2014-01-01

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  5. Installation and evaluation of weigh-in-motion utilizing quartz-piezo sensor technology.

    Science.gov (United States)

    2016-06-28

    The objective of the research study was: to install a quartz-piezo based WIM system, and to : determine sensor survivability, accuracy and reliability under actual traffic conditions in : Connecticuts environment. If the systems prove dependable a...

  6. Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET

    International Nuclear Information System (INIS)

    Tsoumpas, C.; Mackewn, J.E.; Halsted, P.; King, A.P.; Buerger, C.; Totman, J.J.; Schaeffter, T.; Marsden, P.K.

    2010-01-01

    Positron emission tomography (PET) provides an accurate measurement of radiotracer concentration in vivo, but performance can be limited by subject motion which degrades spatial resolution and quantitative accuracy. This effect may become a limiting factor for PET studies in the body as PET scanner technology improves. In this work, we propose a new approach to address this problem by employing motion information from images measured simultaneously using a magnetic resonance (MR) scanner. The approach is demonstrated using an MR-compatible PET scanner and PET-MR acquisition with a purpose-designed phantom capable of non-rigid deformations. Measured, simultaneously acquired MR data were used to correct for motion in PET, and results were compared with those obtained using motion information from PET images alone. Motion artefacts were significantly reduced and the PET image quality and quantification was significantly improved by the use of MR motion fields, whilst the use of PET-only motion information was less successful. Combined PET-MR acquisitions potentially allow PET motion compensation in whole-body acquisitions without prolonging PET acquisition time or increasing radiation dose. This, to the best of our knowledge, is the first study to demonstrate that simultaneously acquired MR data can be used to estimate and correct for the effects of non-rigid motion in PET. (author)

  7. Driven motion of vortices in superconductors

    International Nuclear Information System (INIS)

    Crabtree, G.W.; Leaf, G.K.; Kaper, H.G.; Vinokur, V.M.; Koshelev, A.E.; Braun, D.W.; Levine, D.M.

    1995-09-01

    The driven motion of vortices in the solid vortex state is analyzed with the time-dependent Ginzburg-Landau equations. In large-scale numerical simulations, carried out on the IBM Scalable POWERparallel (SP) system at Argonne National Laboratory, many hundreds of vortices are followed as they move under the influence of a Lorentz force induced by a transport current in the presence of a planar defect (similar to a twin boundary in YBa 2 CU 3 O 7 ). Correlations in the positions and velocities of the vortices in plastic and elastic motion are identified and compared. Two types of plastic motion are observed. Organized plastic motion displaying long-range orientational correlation and shorter-range velocity correlation occurs when the driving forces are small compared to the pinning forces in the twin boundary. Disorganized plastic motion displaying no significant correlation in either the velocities or orientation of the vortex system occurs when the driving and pinning forces axe of the same order

  8. Motion artifacts in computed tomography

    International Nuclear Information System (INIS)

    Yang, C.K.

    1979-01-01

    In the year 1972, the first Computed Tomography Scanner (or CT) was introduced and caused a revolution in the field of Diagnostic Radiology. A tomogram is a cross-sectional image of a three-dimensional object obtained through non-invasive measurements. The image that is presented is very similar to what would be seen if a thin cross-sectional slice of the patient was examined. In Computed Tomography, x-rays are passed through the body of a patient in many different directions and their attenuation is detected. By using some mathematical theorems, the attenuation information can be converted into the density of the patient along the x-ray path. Combined with modern sophisticated computer signal processing technology, a cross-sectional image can be generated and displayed on a TV monitor. Usually a good CT image relies on the patient not moving during the x-ray scanning. However, for some unconscious or severely ill patients, this is very difficult to achieve. Thus, the motion during the scan causes the so-called motion artifacts which distort the displayed image and sometimes these motion artifacts make diagnosis impossible. Today, to remove or avoid motion artifacts is one of the major efforts in developing new scanner systems. In this thesis, a better understanding of the motion artifacts problem in CT scaning is gained through computer simulations, real scanner experiments and theoretical analyses. The methods by which the distorted image can be improved are simulated also. In particular, it is assumed that perfect knowledge of the patient motion is known since this represents the theoretical limit on how well the distorted image can be improved

  9. 78 FR 2627 - Fees for Official Inspection and Official Weighing Services Under the United States Grain...

    Science.gov (United States)

    2013-01-14

    ... authority to charge and collect reasonable fees to cover the cost of performing official services. These fees also cover the costs associated with managing the program. After a financial review of GIPSA's Fees for Official Inspection and Weighing Services, including a comparison of the costs and revenues...

  10. 78 FR 22151 - Fees for Official Inspection and Official Weighing Services Under the United States Grain...

    Science.gov (United States)

    2013-04-15

    ... Inspection Service (FGIS) with the authority to charge and collect reasonable fees to cover the cost of performing official services. The fees also cover the costs associated with managing the program. After a... associated administrative and supervisory costs. The fees for official inspection and weighing services were...

  11. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, Jing [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Wang, Hongjun [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Chang, Zheng; Czito, Brian G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Bashir, Mustafa R. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin, Fang-Fang, E-mail: fangfang.yin@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2014-11-15

    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff). The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.

  12. Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator

    International Nuclear Information System (INIS)

    Renaud, Michael; Fiorini, Paolo; Van Hoof, Chris; Van Schaijk, Rob

    2009-01-01

    Vibration energy harvesters can replace batteries and serve as clean and renewable energy sources in low-consumption wireless applications. Harvesters delivering sufficient power for sensors operating in an industrial environment have been developed, but difficulties are encountered when the devices to be powered are located on the human body. In this case, classical harvester designs (resonant systems) are not adapted to the low-frequency and high-amplitude characteristics of the motion. For this reason, we propose in this paper an alternative design based on the impact of a moving mass on piezoelectric bending structures. A model of the system is presented and analysed in order to determine the parameters influencing the device performances in terms of energy harvesting. A prototype of the impact harvester is experimentally characterized: for a generator occupying approximately 25 cm 3 and weighing 60 g, an output power of 47 µW was measured across a resistive load when the device was rotated by 180° each second. 600 µW were obtained for a 10 Hz frequency and 10 cm amplitude linear motion. Further optimization of the piezoelectric transducer is possible, allowing a large increase in these values, bringing the power density for the two cases respectively to 10 and 120 µW cm −3

  13. Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator

    Science.gov (United States)

    Renaud, Michael; Fiorini, Paolo; van Schaijk, Rob; van Hoof, Chris

    2009-03-01

    Vibration energy harvesters can replace batteries and serve as clean and renewable energy sources in low-consumption wireless applications. Harvesters delivering sufficient power for sensors operating in an industrial environment have been developed, but difficulties are encountered when the devices to be powered are located on the human body. In this case, classical harvester designs (resonant systems) are not adapted to the low-frequency and high-amplitude characteristics of the motion. For this reason, we propose in this paper an alternative design based on the impact of a moving mass on piezoelectric bending structures. A model of the system is presented and analysed in order to determine the parameters influencing the device performances in terms of energy harvesting. A prototype of the impact harvester is experimentally characterized: for a generator occupying approximately 25 cm3 and weighing 60 g, an output power of 47 µW was measured across a resistive load when the device was rotated by 180° each second. 600 µW were obtained for a 10 Hz frequency and 10 cm amplitude linear motion. Further optimization of the piezoelectric transducer is possible, allowing a large increase in these values, bringing the power density for the two cases respectively to 10 and 120 µW cm-3.

  14. Breathing-synchronized irradiation using stereoscopic kV-imaging to limit influence of interplay between leaf motion and organ motion in 3D-CRT and IMRT: Dosimetric verification and first clinical experience

    International Nuclear Information System (INIS)

    Verellen, Dirk; Tournel, Koen; Steene, Jan van de; Linthout, Nadine; Wauters, Tom; Vinh-Hung, Vincent; Storme, Guy

    2006-01-01

    gated delivery showed good agreement with the original theoretical dose distribution. These findings were confirmed by dose-volume histograms. The three different clinical cases revealed three different practical problems that could easily be resolved by minor adjustments to the system. The applied breathing-synchronization technique introduced an increased treatment time by a factor of 3 to 4. Conclusions: Initial tests with the prototype for breathing-synchronized irradiation showed promising results. The use of measured fluence fields, delivered by the linac in nongated and gated mode as imported fluence maps for the treatment planning system, revealed the dramatic impact of dose blurring and interplay between leaf motion and organ motion, as well as the advantage of breathing synchronization to resolve this issue. The latter should, however, be weighed against the increased treatment time

  15. Algorithmic Issues in Modeling Motion

    DEFF Research Database (Denmark)

    Agarwal, P. K; Guibas, L. J; Edelsbrunner, H.

    2003-01-01

    This article is a survey of research areas in which motion plays a pivotal role. The aim of the article is to review current approaches to modeling motion together with related data structures and algorithms, and to summarize the challenges that lie ahead in producing a more unified theory of mot...

  16. Evaluation of a direct motion estimation/correction method in respiratory-gated PET/MRI with motion-adjusted attenuation.

    Science.gov (United States)

    Bousse, Alexandre; Manber, Richard; Holman, Beverley F; Atkinson, David; Arridge, Simon; Ourselin, Sébastien; Hutton, Brian F; Thielemans, Kris

    2017-06-01

    Respiratory motion compensation in PET/CT and PET/MRI is essential as motion is a source of image degradation (motion blur, attenuation artifacts). In previous work, we developed a direct method for joint image reconstruction/motion estimation (JRM) for attenuation-corrected (AC) respiratory-gated PET, which uses a single attenuation-map (μ-map). This approach was successfully implemented for respiratory-gated PET/CT, but since it relied on an accurate μ-map for motion estimation, the question of its applicability in PET/MRI is open. The purpose of this work is to investigate the feasibility of JRM in PET/MRI and to assess the robustness of the motion estimation when a degraded μ-map is used. We performed a series of JRM reconstructions from simulated PET data using a range of simulated Dixon MRI sequence derived μ-maps with wrong attenuation values in the lungs, from -100% (no attenuation) to +100% (double attenuation), as well as truncated arms. We compared the estimated motions with the one obtained from JRM in ideal conditions (no noise, true μ-map as an input). We also applied JRM on 4 patient datasets of the chest, 3 of them containing hot lesions. Patient list-mode data were gated using a principal component analysis method. We compared SUV max values of the JRM reconstructed activity images and non motion-corrected images. We also assessed the estimated motion fields by comparing the deformed JRM-reconstructed activity with individually non-AC reconstructed gates. Experiments on simulated data showed that JRM-motion estimation is robust to μ-map degradation in the sense that it produces motion fields similar to the ones obtained when using the true μ-map, regardless of the attenuation errors in the lungs (PET/MRI clinical datasets. It provides a potential alternative to existing methods where the motion fields are pre-estimated from separate MRI measurements. © 2017 University College London (UCL). Medical Physics published by Wiley Periodicals, Inc

  17. Robot motion control in mobile environment

    Institute of Scientific and Technical Information of China (English)

    Iliya V Miroshnik; HUANG Xian-lin(黄显林); HE Jie(贺杰)

    2003-01-01

    With the problem of robot motion control in dynamic environment represented by mobile obstacles,working pieces and external mechanisms considered, a relevant control actions design procedure has been pro-posed to provide coordination of robot motions with respect to the moving external objects so that an extension ofrobot spatial motion techniques and active robotic strategies based on approaches of nonlinear control theory canbe achieved.

  18. Motion control, motion sickness, and the postural dynamics of mobile devices.

    Science.gov (United States)

    Stoffregen, Thomas A; Chen, Yi-Chou; Koslucher, Frank C

    2014-04-01

    Drivers are less likely than passengers to experience motion sickness, an effect that is important for any theoretical account of motion sickness etiology. We asked whether different types of control would affect the incidence of motion sickness, and whether any such effects would be related to participants' control of their own bodies. Participants played a video game on a tablet computer. In the Touch condition, the device was stationary and participants controlled the game exclusively through fingertip inputs via the device's touch screen. In the Tilt condition, participants held the device in their hands and moved the device to control some game functions. Results revealed that the incidence of motion sickness was greater in the Touch condition than in the Tilt condition. During game play, movement of the head and torso differed as a function of the type of game control. Before the onset of subjective symptoms of motion sickness, movement of the head and torso differed between participants who later reported motion sickness and those that did not. We discuss implications of these results for theories of motion sickness etiology.

  19. Example-based human motion denoising.

    Science.gov (United States)

    Lou, Hui; Chai, Jinxiang

    2010-01-01

    With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.

  20. Semi-automatic detection and correction of body organ motion, particularly cardiac motion in SPECT studies

    International Nuclear Information System (INIS)

    Quintana, J.C.; Caceres, F.; Vargas, P.

    2002-01-01

    Aim: Detect patient motion during SPECT imaging. Material and Method: SPECT study is carried out on a patient's body organ, such as the heart, and frame of image data are thereby acquired. The image data in these frames are subjected to a series of mappings and computations, from which frame containing a significant quantity of organ motion can be identified. Quantification of motion occurs by shifting some of the mapped data within a predetermined range, and selecting that data shift which minimizes the magnitude of a motion sensitive mathematical function. The sensitive mathematical function is constructed from all set of image frames using the pixel data within a region covering the body organ. Using cine display of planar image data, the operator defines the working region by marking two points, which define two horizontal lines covering the area of the body organ. This is the only operator intervention. The mathematical function integrates pixel data from all set of image frames and therefore does not use derivatives which may cause distortion in noisy data. Moreover, as a global function, this method is superior than that using frame-to-frame cross-correlation function to identify motion between adjacent frames. Using standard image processing software, the method was implemented computationally. Ten SPECT studies with movement (Sestamibi cardiac studies and 99m-ECD brain SPECT studies) were selected plus two others with no movement. The acquisition SPECT protocol for the cardiac study was as follow: Step and shoot mode, non-circular orbit, 64 stops 20s each, 64x64x16 matrix and LEHR colimator. For the brain SPECT, 128 stops over 360 0 were used. Artificial vertical displacements (±1-2 pixels) over several frames were introduced in those studies with no movement to simulate patient motion. Results: The method was successfully tested in all cases and was capable to recognize SPECT studies with no body motion as well as those with body motion (both from the

  1. Curves from Motion, Motion from Curves

    Science.gov (United States)

    2000-01-01

    De linearum curvarum cum lineis rectis comparatione dissertatio geometrica - an appendix to a treatise by de Lalouv~re (this was the only publication... correct solution to the problem of motion in the gravity of a permeable rotating Earth, considered by Torricelli (see §3). If the Earth is a homogeneous...in 1686, which contains the correct solution as part of a remarkably comprehensive theory of orbital motions under centripetal forces. It is a

  2. Structural motion engineering

    CERN Document Server

    Connor, Jerome

    2014-01-01

    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  3. The notion of the motion: the neurocognition of motion lines in visual narratives.

    Science.gov (United States)

    Cohn, Neil; Maher, Stephen

    2015-03-19

    Motion lines appear ubiquitously in graphic representation to depict the path of a moving object, most popularly in comics. Some researchers have argued that these graphic signs directly tie to the "streaks" appearing in the visual system when a viewer tracks an object (Burr, 2000), despite the fact that previous studies have been limited to offline measurements. Here, we directly examine the cognition of motion lines by comparing images in comic strips that depicted normal motion lines with those that either had no lines or anomalous, reversed lines. In Experiment 1, shorter viewing times appeared to images with normal lines than those with no lines, which were shorter than those with anomalous lines. In Experiment 2, measurements of event-related potentials (ERPs) showed that, compared to normal lines, panels with no lines elicited a posterior positivity that was distinct from the frontal positivity evoked by anomalous lines. These results suggested that motion lines aid in the comprehension of depicted events. LORETA source localization implicated greater activation of visual and language areas when understanding was made more difficult by anomalous lines. Furthermore, in both experiments, participants' experience reading comics modulated these effects, suggesting motion lines are not tied to aspects of the visual system, but rather are conventionalized parts of the "vocabulary" of the visual language of comics. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Attention and apparent motion.

    Science.gov (United States)

    Horowitz, T; Treisman, A

    1994-01-01

    Two dissociations between short- and long-range motion in visual search are reported. Previous research has shown parallel processing for short-range motion and apparently serial processing for long-range motion. This finding has been replicated and it has also been found that search for short-range targets can be impaired both by using bicontrast stimuli, and by prior adaptation to the target direction of motion. Neither factor impaired search in long-range motion displays. Adaptation actually facilitated search with long-range displays, which is attributed to response-level effects. A feature-integration account of apparent motion is proposed. In this theory, short-range motion depends on specialized motion feature detectors operating in parallel across the display, but subject to selective adaptation, whereas attention is needed to link successive elements when they appear at greater separations, or across opposite contrasts.

  5. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    International Nuclear Information System (INIS)

    Könik, Arda; Johnson, Karen L; Dasari, Paul; Pretorius, P H; Dey, Joyoni; King, Michael A; Connolly, Caitlin M; Segars, Paul W; Lindsay, Clifford

    2014-01-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  6. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    Science.gov (United States)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  7. 75 FR 18134 - Function and Reliability Flight Testing for Turbine-Powered Airplanes Weighing 6,000 Pounds or Less

    Science.gov (United States)

    2010-04-09

    ... undergo F & R flight testing regardless of the airplane's systems complexity or level of automation. After... airplanes that weigh 6,000 pounds or less to be more complex and integrated than some transport category...

  8. Learning Motion Features for Example-Based Finger Motion Estimation for Virtual Characters

    Science.gov (United States)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-09-01

    This paper presents a methodology for estimating the motion of a character's fingers based on the use of motion features provided by a virtual character's hand. In the presented methodology, firstly, the motion data is segmented into discrete phases. Then, a number of motion features are computed for each motion segment of a character's hand. The motion features are pre-processed using restricted Boltzmann machines, and by using the different variations of semantically similar finger gestures in a support vector machine learning mechanism, the optimal weights for each feature assigned to a metric are computed. The advantages of the presented methodology in comparison to previous solutions are the following: First, we automate the computation of optimal weights that are assigned to each motion feature counted in our metric. Second, the presented methodology achieves an increase (about 17%) in correctly estimated finger gestures in comparison to a previous method.

  9. Hemolysis During Open-Heart Surgery With Vacuum-Assisted Venous Drainage at Different Negative Pressures in Pediatric Patients Weighing Less Than 10 kilograms.

    Science.gov (United States)

    Kwak, Jae Gun; Lee, Jinkwon; Park, Minkyoung; Seo, Yu-Jin; Lee, Chang-Ha

    2017-03-01

    This study examined the degree of hemolysis during vacuum-assisted venous drainage at different negative pressures to identify an adequate negative pressure that provides effective venous drainage without significant hemolysis in open-heart surgery in children weighing less than 10 kg. Patients weighing less than 10 kg who underwent surgery for ventricular septal defect or atrial septal defect from 2011 to 2014 were enrolled. We used one of four negative pressures (20, 30, 40, or 60 mm Hg) for each patient. We measured haptoglobin, plasma hemoglobin, aspartate aminotransferase, and lactate dehydrogenase levels in the patients' blood three times perioperatively and determined the potential correlation between the change in each parameter with the level of negative pressure. Forty-six patients were enrolled in this study (mean age: 7.1 ± 7.0 months, mean body weight: 6.1 ± 1.8 kg). There were no significant differences according to the degree of negative pressure with respect to patient age, body weight, cardiopulmonary bypass (CPB) time, aorta cross-clamping time, blood flow during CPB, or lowest body temperature. All parameters that we measured reflected progression of hemolysis during CPB; however, the degree of change in the parameters did not correlate with negative pressure. In pediatric patients weighing less than 10 kg, the change in the degree of hemolysis did not differ with the amount of negative pressure. We may apply negative pressures up to 60 mm Hg without increasing the risk of hemolysis, with almost same the level of hemolysis using negative pressures of 20, 30, and 40 mm Hg for effective venous drainage and an ideal operative field during open-heart surgery.

  10. Symmetries and conserved quantities in geodesic motion

    International Nuclear Information System (INIS)

    Hojman, S.; Nunez, L.; Patino, A.; Rago, H.

    1986-01-01

    Recently obtained results linking several constants of motion to one (non-Noetherian) symmetry to the problem of geodesic motion in Riemannian space-times are applied. The construction of conserved quantities in geodesic motion as well as the deduction of geometrical statements about Riemannian space-times are achieved

  11. Visual motion influences the contingent auditory motion aftereffect

    NARCIS (Netherlands)

    Vroomen, J.; de Gelder, B.

    2003-01-01

    In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa).

  12. Outcomes of systemic to pulmonary artery shunts in patients weighing less than 3 kg: analysis of shunt type, size, and surgical approach.

    Science.gov (United States)

    Myers, John W; Ghanayem, Nancy S; Cao, Yumei; Simpson, Pippa; Trapp, Katie; Mitchell, Michael E; Tweddell, James S; Woods, Ronald K

    2014-02-01

    To evaluate outcomes of systemic to pulmonary artery shunts (SPS) in patients weighing less than 3 kg with regard to shunt type, shunt size, and surgical approach. Patients weighing less than 3 kg who underwent modified Blalock-Taussig or central shunts with polytetrafluoroethylene grafts at our institution from January 1, 2000, to May 31, 2011, were reviewed. Patients who had undergone other major concomitant procedures were excluded from the analysis. Primary outcomes included mortality (discharge mortality and mortality before next planned palliative procedure or definitive repair), cardiac arrest and/or extracorporeal membrane oxygenation (ECMO), and shunt reintervention. In this cohort of 80 patients, discharge survival was 96% (77/80). Postoperative cardiac arrest or ECMO occurred in 6/80 (7.5%), and shunt reintervention was required in 14/80 (17%). On univariate analysis, shunt reintervention was more common in patients with 3-mm shunts (11/30, 37%) compared with 3.5-mm (2/36, 6%) or 4-mm shunts (1/14, 7%) (P approach and cardiac arrest/ECMO or mortality. Multiple logistic regression demonstrated that a shunt size of 3 mm (P = .019) and extracardiac anomaly (P = .047) were associated with shunt reintervention, whereas no variable was associated with cardiac arrest/ECMO or mortality. In this high-risk group of neonates weighing less than 3 kg at the time of SPS, survival to discharge and the next planned surgical procedure was high. Outcomes were good with the 3.5- and 4-mm shunts; however, shunt reintervention was common with 3-mm shunts. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  13. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    He-Yuan Lin

    2008-03-01

    Full Text Available A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  14. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Li Hsin-Te

    2008-01-01

    Full Text Available Abstract A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  15. Equations of motion in phase space

    International Nuclear Information System (INIS)

    Broucke, R.

    1979-01-01

    The article gives a general review of methods of constructing equations of motion of a classical dynamical system. The emphasis is however on the linear Lagrangian in phase space and the corresponding form of Pfaff's equations of motion. A detailed examination of the problem of changes of variables in phase space is first given. It is shown that the Linear Lagrangian theory falls very naturally out of the classical quadratic Lagrangian theory; we do this with the use of the well-known Lagrange multiplier method. Another important result is obtained very naturally as a by-product of this analysis. If the most general set of 2n variables (coordinates in phase space) is used, the coefficients of the equations of motion are the Poisson Brackets of these variables. This is therefore the natural way of introducing not only Poisson Brackets in Dynamics formulations but also the associated Lie Algebras and their important properties and consequences. We give then several examples to illustrate the first-order equations of motion and their simplicity in relation to general changes of variables. The first few examples are elementary (the harmonic Oscillator) while the last one concerns the motion of a rigid body about a fixed point. In the next three sections we treat the first-order equations of motion as derived from a Linear differential form, sometimes called Birkhoff's equations. We insist on the generality of the equations and especially on the unity of the space-time concept: the time t and the coordinates are here completely identical variables, without any privilege to t. We give a brief review of Cartan's 2-form and the corresponding equations of motion. As an illustration the standard equations of aircraft flight in a vertical plane are derived from Cartan's exterior differential 2-form. Finally we mention in the last section the differential forms that were proposed by Gallissot for the derivation of equations of motion

  16. Using Simulated Ground Motions to Constrain Near-Source Ground Motion Prediction Equations in Areas Experiencing Induced Seismicity

    Science.gov (United States)

    Bydlon, S. A.; Dunham, E. M.

    2016-12-01

    Recent increases in seismic activity in historically quiescent areas such as Oklahoma, Texas, and Arkansas, including large, potentially induced events such as the 2011 Mw 5.6 Prague, OK, earthquake, have spurred the need for investigation into expected ground motions associated with these seismic sources. The neoteric nature of this seismicity increase corresponds to a scarcity of ground motion recordings within 50 km of earthquakes Mw 3.0 and greater, with increasing scarcity at larger magnitudes. Gathering additional near-source ground motion data will help better constraints on regional ground motion prediction equations (GMPEs) and will happen over time, but this leaves open the possibility of damaging earthquakes occurring before potential ground shaking and seismic hazard in these areas are properly understood. To aid the effort of constraining near-source GMPEs associated with induced seismicity, we integrate synthetic ground motion data from simulated earthquakes into the process. Using the dynamic rupture and seismic wave propagation code waveqlab3d, we perform verification and validation exercises intended to establish confidence in simulated ground motions for use in constraining GMPEs. We verify the accuracy of our ground motion simulator by performing the PEER/SCEC layer-over-halfspace comparison problem LOH.1 Validation exercises to ensure that we are synthesizing realistic ground motion data include comparisons to recorded ground motions for specific earthquakes in target areas of Oklahoma between Mw 3.0 and 4.0. Using a 3D velocity structure that includes a 1D structure with additional small-scale heterogeneity, the properties of which are based on well-log data from Oklahoma, we perform ground motion simulations of small (Mw 3.0 - 4.0) earthquakes using point moment tensor sources. We use the resulting synthetic ground motion data to develop GMPEs for small earthquakes in Oklahoma. Preliminary results indicate that ground motions can be amplified

  17. Weighing the Dark and Light in Cosmology with Machine Learning

    Science.gov (United States)

    Trac, Hy

    2017-09-01

    Galaxy clusters contain large amounts of cold dark matter, hot ionized gas, and tens to hundreds of visible galaxies. They are the largest gravitationally bound systems in the Universe and make excellent laboratories for studying cosmology and astrophysics. Historically, Fritz Zwicky postulated the existence of dark matter when he inferred the total mass of the nearby Coma Cluster from the motions of its galaxies and found it to be much larger than the visible mass. Nowadays, the abundance of clusters as a function of mass and time can be used to study structure formation and constrain cosmological parameters. Dynamical measurements of the motions of galaxies can be used to probe the entire mass distribution, but standard analyses yield unwanted high mass errors. First, we show that modern machine learning algorithms can improve mass measurements by more than a factor of two compared to using standard scaling relations. Support Distribution Machines are used to train and test on the entire distribution of galaxy velocities to maximally use available information. Second, we discuss how Deep Learning can be used to train on multi-wavelength images of galaxies and clusters and to predict the underlying total matter distribution. By applying machine learning to observations and simulations, we can map out the dark and light in the Universe. DOE DE-SC0011114, NSF RI-1563887.

  18. Hydrometer calibration by hydrostatic weighing with automated liquid surface positioning

    Science.gov (United States)

    Aguilera, Jesus; Wright, John D.; Bean, Vern E.

    2008-01-01

    We describe an automated apparatus for calibrating hydrometers by hydrostatic weighing (Cuckow's method) in tridecane, a liquid of known, stable density, and with a relatively low surface tension and contact angle against glass. The apparatus uses a laser light sheet and a laser power meter to position the tridecane surface at the hydrometer scale mark to be calibrated with an uncertainty of 0.08 mm. The calibration results have an expanded uncertainty (with a coverage factor of 2) of 100 parts in 106 or less of the liquid density. We validated the apparatus by comparisons using water, toluene, tridecane and trichloroethylene, and found agreement within 40 parts in 106 or less. The new calibration method is consistent with earlier, manual calibrations performed by NIST. When customers use calibrated hydrometers, they may encounter uncertainties of 370 parts in 106 or larger due to surface tension, contact angle and temperature effects.

  19. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai-Mei; Nguyen, Truong

    2009-04-01

    In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

  20. Performance assessment of a programmable five degrees-of-freedom motion platform for quality assurance of motion management techniques in radiotherapy.

    Science.gov (United States)

    Huang, Chen-Yu; Keall, Paul; Rice, Adam; Colvill, Emma; Ng, Jin Aun; Booth, Jeremy T

    2017-09-01

    Inter-fraction and intra-fraction motion management methods are increasingly applied clinically and require the development of advanced motion platforms to facilitate testing and quality assurance program development. The aim of this study was to assess the performance of a 5 degrees-of-freedom (DoF) programmable motion platform HexaMotion (ScandiDos, Uppsala, Sweden) towards clinically observed tumor motion range, velocity, acceleration and the accuracy requirements of SABR prescribed in AAPM Task Group 142. Performance specifications for the motion platform were derived from literature regarding the motion characteristics of prostate and lung tumor targets required for real time motion management. The performance of the programmable motion platform was evaluated against (1) maximum range, velocity and acceleration (5 DoF), (2) static position accuracy (5 DoF) and (3) dynamic position accuracy using patient-derived prostate and lung tumor motion traces (3 DoF). Translational motion accuracy was compared against electromagnetic transponder measurements. Rotation was benchmarked with a digital inclinometer. The static accuracy and reproducibility for translation and rotation was quality assurance and commissioning of motion management systems in radiation oncology.

  1. Compensating for Quasi-periodic Motion in Robotic Radiosurgery

    CERN Document Server

    Ernst, Floris

    2012-01-01

    Compensating for Quasi-periodic Motion in Robotic Radiosurgery outlines the techniques needed to accurately track and compensate for respiratory and pulsatory motion during robotic radiosurgery. The algorithms presented within the book aid in the treatment of tumors that move during respiration. In Chapters 1 and 2,  the book introduces the concept of stereotactic body radiation therapy, motion compensation strategies and the clinical state-of-the-art. In Chapters 3 through 5, the author describes and evaluates new methods for motion prediction, for correlating external motion to internal organ motion, and for the evaluation of these algorithms’ output based on an unprecedented amount of real clinical data. Finally, Chapter 6 provides a brief introduction into currently investigated, open questions and further fields of research. Compensating for Quasi-periodic Motion in Robotic Radiosurgery targets researchers working in the related fields of surgical oncology, artificial intelligence, robotics and more. ...

  2. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  3. Individuality and togetherness in joint improvised motion.

    Directory of Open Access Journals (Sweden)

    Yuval Hart

    Full Text Available Actors, dancers and musicians that improvise together report special moments of togetherness: high performance and synchrony, seemingly without a leader and a follower. Togetherness seems to conflict with individuality- the idiosyncratic character of each person's performance. To understand the relation of individuality and togetherness, we employed the mirror game paradigm in which two players are asked to mirror each other and create interesting synchronized motion, with and without a designated leader. The mirror game enables quantitative characterization of moments of togetherness in which complex motion is generated with high synchrony. We find that each person as a leader does basic strokes of motion with a characteristic signature, in terms of the shape of their velocity profile between two stopping events. In moments of togetherness both players change their signature to a universal stroke shape. This universal velocity profile resembles a half-period of a sine wave, and is therefore symmetric and maximally smooth. Thus, instead of converging to an intermediate motion signature, or having one player dominate, players seem to shift their basic motion signatures to a shape that is altogether different from their individually preferred shapes; the resulting motion may be easier to predict and to agree on. The players then build complex motion by using such smooth elementary strokes.

  4. Individuality and togetherness in joint improvised motion.

    Science.gov (United States)

    Hart, Yuval; Noy, Lior; Feniger-Schaal, Rinat; Mayo, Avraham E; Alon, Uri

    2014-01-01

    Actors, dancers and musicians that improvise together report special moments of togetherness: high performance and synchrony, seemingly without a leader and a follower. Togetherness seems to conflict with individuality- the idiosyncratic character of each person's performance. To understand the relation of individuality and togetherness, we employed the mirror game paradigm in which two players are asked to mirror each other and create interesting synchronized motion, with and without a designated leader. The mirror game enables quantitative characterization of moments of togetherness in which complex motion is generated with high synchrony. We find that each person as a leader does basic strokes of motion with a characteristic signature, in terms of the shape of their velocity profile between two stopping events. In moments of togetherness both players change their signature to a universal stroke shape. This universal velocity profile resembles a half-period of a sine wave, and is therefore symmetric and maximally smooth. Thus, instead of converging to an intermediate motion signature, or having one player dominate, players seem to shift their basic motion signatures to a shape that is altogether different from their individually preferred shapes; the resulting motion may be easier to predict and to agree on. The players then build complex motion by using such smooth elementary strokes.

  5. Large-scale motions in the universe: a review

    International Nuclear Information System (INIS)

    Burstein, D.

    1990-01-01

    The expansion of the universe can be retarded in localised regions within the universe both by the presence of gravity and by non-gravitational motions generated in the post-recombination universe. The motions of galaxies thus generated are called 'peculiar motions', and the amplitudes, size scales and coherence of these peculiar motions are among the most direct records of the structure of the universe. As such, measurements of these properties of the present-day universe provide some of the severest tests of cosmological theories. This is a review of the current evidence for large-scale motions of galaxies out to a distance of ∼5000 km s -1 (in an expanding universe, distance is proportional to radial velocity). 'Large-scale' in this context refers to motions that are correlated over size scales larger than the typical sizes of groups of galaxies, up to and including the size of the volume surveyed. To orient the reader into this relatively new field of study, a short modern history is given together with an explanation of the terminology. Careful consideration is given to the data used to measure the distances, and hence the peculiar motions, of galaxies. The evidence for large-scale motions is presented in a graphical fashion, using only the most reliable data for galaxies spanning a wide range in optical properties and over the complete range of galactic environments. The kinds of systematic errors that can affect this analysis are discussed, and the reliability of these motions is assessed. The predictions of two models of large-scale motion are compared to the observations, and special emphasis is placed on those motions in which our own Galaxy directly partakes. (author)

  6. Data-driven motion correction in brain SPECT

    International Nuclear Information System (INIS)

    Kyme, A.Z.; Hutton, B.F.; Hatton, R.L.; Skerrett, D.W.

    2002-01-01

    Patient motion can cause image artifacts in SPECT despite restraining measures. Data-driven detection and correction of motion can be achieved by comparison of acquired data with the forward-projections. By optimising the orientation of the reconstruction, parameters can be obtained for each misaligned projection and applied to update this volume using a 3D reconstruction algorithm. Digital and physical phantom validation was performed to investigate this approach. Noisy projection data simulating at least one fully 3D patient head movement during acquisition were constructed by projecting the digital Huffman brain phantom at various orientations. Motion correction was applied to the reconstructed studies. The importance of including attenuation effects in the estimation of motion and the need for implementing an iterated correction were assessed in the process. Correction success was assessed visually for artifact reduction, and quantitatively using a mean square difference (MSD) measure. Physical Huffman phantom studies with deliberate movements introduced during the acquisition were also acquired and motion corrected. Effective artifact reduction in the simulated corrupt studies was achieved by motion correction. Typically the MSD ratio between the corrected and reference studies compared to the corrupted and reference studies was > 2. Motion correction could be achieved without inclusion of attenuation effects in the motion estimation stage, providing simpler implementation and greater efficiency. Moreover the additional improvement with multiple iterations of the approach was small. Improvement was also observed in the physical phantom data, though the technique appeared limited here by an object symmetry. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  7. Auditory motion-specific mechanisms in the primate brain.

    Directory of Open Access Journals (Sweden)

    Colline Poirier

    2017-05-01

    Full Text Available This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI. We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream.

  8. Structural Motion Grammar for Universal Use of Leap Motion: Amusement and Functional Contents Focused

    Directory of Open Access Journals (Sweden)

    Byungseok Lee

    2018-01-01

    Full Text Available Motions using Leap Motion controller are not standardized while the use of it is spreading in media contents. Each content defines its own motions, thereby creating confusion for users. Therefore, to alleviate user inconvenience, this study categorized the commonly used motion by Amusement and Functional Contents and defined the Structural Motion Grammar that can be universally used based on the classification. To this end, the Motion Lexicon was defined, which is a fundamental motion vocabulary, and an algorithm that enables real-time recognition of Structural Motion Grammar was developed. Moreover, the proposed method was verified by user evaluation and quantitative comparison tests.

  9. International Conference on Heavy Vehicles : HVParis 2008 : Weigh-In-Motion (ICWIM5)

    OpenAIRE

    JACOB, Bernard; O'BRIEN, Eugene; O'CONNOR, Alan; BOUTELDJA, Mohamed

    2008-01-01

    The conference addresses the broad range of technical issues related to heavy vehicles, surface transport technology, safety and weight measurement systems. It provides access to current research, best practice and related policy issues. It is a multi-disciplinary, inter-agency supported event.

  10. Motion and relativity

    CERN Document Server

    Infeld, Leopold

    1960-01-01

    Motion and Relativity focuses on the methodologies, solutions, and approaches involved in the study of motion and relativity, including the general relativity theory, gravitation, and approximation.The publication first offers information on notation and gravitational interaction and the general theory of motion. Discussions focus on the notation of the general relativity theory, field values on the world-lines, general statement of the physical problem, Newton's theory of gravitation, and forms for the equation of motion of the second kind. The text then takes a look at the approximation meth

  11. Contrast configuration influences grouping in apparent motion.

    Science.gov (United States)

    Ma-Wyatt, Anna; Clifford, Colin W G; Wenderoth, Peter

    2005-01-01

    We investigated whether the same principles that influence grouping in static displays also influence grouping in apparent motion. Using the Ternus display, we found that the proportion of group motion reports was influenced by changes in contrast configuration. Subjects made judgments of completion of these same configurations in a static display. Generally, contrast configurations that induced a high proportion of group motion responses were judged as more 'complete' in static displays. Using a stereo display, we then tested whether stereo information and T-junction information were critical for this increase in group motion. Perceived grouping was consistently higher for same contrast polarity configurations than for opposite contrast polarity configurations, regardless of the presence of stereo information or explicit T-junctions. Thus, while grouping in static and moving displays showed a similar dependence on contrast configuration, motion grouping showed little dependence on stereo or T-junction information.

  12. Hydrometer calibration by hydrostatic weighing with automated liquid surface positioning

    International Nuclear Information System (INIS)

    Aguilera, Jesus; Wright, John D; Bean, Vern E

    2008-01-01

    We describe an automated apparatus for calibrating hydrometers by hydrostatic weighing (Cuckow's method) in tridecane, a liquid of known, stable density, and with a relatively low surface tension and contact angle against glass. The apparatus uses a laser light sheet and a laser power meter to position the tridecane surface at the hydrometer scale mark to be calibrated with an uncertainty of 0.08 mm. The calibration results have an expanded uncertainty (with a coverage factor of 2) of 100 parts in 10 6 or less of the liquid density. We validated the apparatus by comparisons using water, toluene, tridecane and trichloroethylene, and found agreement within 40 parts in 10 6 or less. The new calibration method is consistent with earlier, manual calibrations performed by NIST. When customers use calibrated hydrometers, they may encounter uncertainties of 370 parts in 10 6 or larger due to surface tension, contact angle and temperature effects

  13. The Effectiveness of Simulator Motion in the Transfer of Performance on a Tracking Task Is Influenced by Vision and Motion Disturbance Cues.

    Science.gov (United States)

    Grundy, John G; Nazar, Stefan; O'Malley, Shannon; Mohrenshildt, Martin V; Shedden, Judith M

    2016-06-01

    To examine the importance of platform motion to the transfer of performance in motion simulators. The importance of platform motion in simulators for pilot training is strongly debated. We hypothesized that the type of motion (e.g., disturbance) contributes significantly to performance differences. Participants used a joystick to perform a target tracking task in a pod on top of a MOOG Stewart motion platform. Five conditions compared training without motion, with correlated motion, with disturbance motion, with disturbance motion isolated to the visual display, and with both correlated and disturbance motion. The test condition involved the full motion model with both correlated and disturbance motion. We analyzed speed and accuracy across training and test as well as strategic differences in joystick control. Training with disturbance cues produced critical behavioral differences compared to training without disturbance; motion itself was less important. Incorporation of disturbance cues is a potentially important source of variance between studies that do or do not show a benefit of motion platforms in the transfer of performance in simulators. Potential applications of this research include the assessment of the importance of motion platforms in flight simulators, with a focus on the efficacy of incorporating disturbance cues during training. © 2016, Human Factors and Ergonomics Society.

  14. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    Science.gov (United States)

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  15. What motion is: William Neile and the laws of motion.

    Science.gov (United States)

    Kemeny, Max

    2017-07-01

    In 1668-1669 William Neile and John Wallis engaged in a protracted correspondence regarding the nature of motion. Neile was unhappy with the laws of motion that had been established by the Royal Society in three papers published in 1668, deeming them not explanations of motion at all, but mere descriptions. Neile insisted that science could not be informative without a discussion of causes, meaning that Wallis's purely kinematic account of collision could not be complete. Wallis, however, did not consider Neile's objections to his work to be serious. Rather than engage in a discussion of the proper place of natural philosophy in science, Wallis decided to show how Neile's preferred treatment of motion lead to absurd conclusions. This dispute is offered as a case study of dispute resolution within the early Royal Society.

  16. Image-guided radiotherapy and motion management in lung cancer

    DEFF Research Database (Denmark)

    Korreman, Stine

    2015-01-01

    In this review, image guidance and motion management in radiotherapy for lung cancer is discussed. Motion characteristics of lung tumours and image guidance techniques to obtain motion information are elaborated. Possibilities for management of image guidance and motion in the various steps...

  17. Wireless motion sensor network for monitoring motion in a process, wireless sensor node, reasoning node, and feedback and/or actuation node for such wireless motion sensor network

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Marin Perianu, Raluca; Marin Perianu, Mihai

    2010-01-01

    Wireless motion sensor network for monitoring motion in a process comprising at least one wireless sensor node for measuring at least one physical quantity related to motion or orientation, feature extraction means for deriving a feature for the measured quantities, a wireless transmitter connected

  18. Motion sensor technologies in education

    Directory of Open Access Journals (Sweden)

    T. Bratitsis

    2014-05-01

    Full Text Available This paper attempts to raise a discussion regarding motion sensor technologies, mainly seen as peripherals of contemporary video game consoles, by examining their exploitation within educational context. An overview of the existing literature is presented, while attempting to categorize the educational approaches which involve motion sensor technologies, in two parts. The first one concerns the education of people with special needs. The utilization of motion sensor technologies, incorporated by game consoles, in the education of such people is examined. The second one refers to various educational approaches in regular education, under which not so many research approaches, but many teaching ideas can be found. The aim of the paper is to serve as a reference point for every individual/group, willing to explore the Sensor-Based Games Based Learning (SBGBL research area, by providing a complete and structured literature review.

  19. Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion

    International Nuclear Information System (INIS)

    Kissick, Michael W.; Boswell, Sarah A.; Jeraj, Robert; Mackie, T. Rockwell

    2005-01-01

    The interplay between a constant scan speed and intrafraction oscillatory motion produces interesting fluence intensity modulations along the axis of motion that are sensitive to the motion function, as originally shown in a classic paper by Yu et al. [Phys. Med. Biol. 43, 91-104 (1998)]. The fluence intensity profiles are explored in this note for an intuitive understanding, then compared with Yu et al., and finally further explored for the effects of low scan speed and random components of both intrafraction and interfraction motion. At slow scan speeds typical of helical tomotherapy, these fluence intensity modulations are only a few percent. With the addition of only a small amount of cycle-to-cycle randomness in frequency and amplitude, the fluence intensity profiles change dramatically. It is further shown that after a typical 30-fraction treatment, the sensitivities displayed in the single fraction fluence intensity profiles greatly diminish

  20. [Vestibular testing abnormalities in individuals with motion sickness].

    Science.gov (United States)

    Ma, Yan; Ou, Yongkang; Chen, Ling; Zheng, Yiqing

    2009-08-01

    To evaluate the vestibular function of motion sickness. VNG, which tests the vestibular function of horizontal semicircular canal, and CPT, which tests vestibulospinal reflex and judge proprioceptive, visual and vestibular status, were performed in 30 motion sickness patients and 20 healthy volunteers (control group). Graybiel score was recorded at the same time. Two groups' Graybiel score (12.67 +/- 11.78 vs 2.10 +/- 6.23; rank test P<0.05), caloric test labyrinth value [(19.02 +/- 8.59) degrees/s vs (13.58 +/- 5.25) degrees/s; t test P<0.05], caloric test labyrinth value of three patients in motion sickness group exceeded 75 degrees/s. In computerized posturography testing (CPT), motion sickness patients were central type (66.7%) and disperse type (23.3%); all of control group were central type. There was statistical significance in two groups' CTP area, and motion sickness group was obviously higher than control group. While stimulating vestibulum in CPT, there was abnormality (35%-50%) in motion sickness group and none in control group. Generally evaluating CPT, there was only 2 proprioceptive hypofunction, 3 visual hypofunction, and no vestibular hypofunction, but none hypofunction in control group. Motion sickness patients have high vestibular susceptible, some with vestibular hyperfunction. In posturography, a large number of motion sickness patients are central type but no vestibular hypofunction, but it is hard to keep balance when stimulating vestibulum.

  1. Impaired Perception of Biological Motion in Parkinson’s Disease

    Science.gov (United States)

    Jaywant, Abhishek; Shiffrar, Maggie; Roy, Serge; Cronin-Golomb, Alice

    2016-01-01

    Objective We examined biological motion perception in Parkinson’s disease (PD). Biological motion perception is related to one’s own motor function and depends on the integrity of brain areas affected in PD, including posterior superior temporal sulcus. If deficits in biological motion perception exist, they may be specific to perceiving natural/fast walking patterns that individuals with PD can no longer perform, and may correlate with disease-related motor dysfunction. Method 26 non-demented individuals with PD and 24 control participants viewed videos of point-light walkers and scrambled versions that served as foils, and indicated whether each video depicted a human walking. Point-light walkers varied by gait type (natural, parkinsonian) and speed (0.5, 1.0, 1.5 m/s). Participants also completed control tasks (object motion, coherent motion perception), a contrast sensitivity assessment, and a walking assessment. Results The PD group demonstrated significantly less sensitivity to biological motion than the control group (pperception (p=.02, Cohen’s d=.68). There was no group difference in coherent motion perception. Although individuals with PD had slower walking speed and shorter stride length than control participants, gait parameters did not correlate with biological motion perception. Contrast sensitivity and coherent motion perception also did not correlate with biological motion perception. Conclusion PD leads to a deficit in perceiving biological motion, which is independent of gait dysfunction and low-level vision changes, and may therefore arise from difficulty perceptually integrating form and motion cues in posterior superior temporal sulcus. PMID:26949927

  2. MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI

    Science.gov (United States)

    Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges

    2014-01-01

    Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection

  3. Measurement accuracy of weighing and tipping-bucket rainfall intensity gauges under dynamic laboratory testing

    Science.gov (United States)

    Colli, M.; Lanza, L. G.; La Barbera, P.; Chan, P. W.

    2014-07-01

    The contribution of any single uncertainty factor in the resulting performance of infield rain gauge measurements still has to be comprehensively assessed due to the high number of real world error sources involved, such as the intrinsic variability of rainfall intensity (RI), wind effects, wetting losses, the ambient temperature, etc. In recent years the World Meteorological Organization (WMO) addressed these issues by fostering dedicated investigations, which revealed further difficulties in assessing the actual reference rainfall intensity in the field. This work reports on an extensive assessment of the OTT Pluvio2 weighing gauge accuracy when measuring rainfall intensity under laboratory dynamic conditions (time varying reference flow rates). The results obtained from the weighing rain gauge (WG) were also compared with a MTX tipping-bucket rain gauge (TBR) under the same test conditions. Tests were carried out by simulating various artificial precipitation events, with unsteady rainfall intensity, using a suitable dynamic rainfall generator. Real world rainfall data measured by an Ogawa catching-type drop counter at a field test site located within the Hong Kong International Airport (HKIA) were used as a reference for the artificial rain generation system. Results demonstrate that the differences observed between the laboratory and field performance of catching-type gauges are only partially attributable to the weather and operational conditions in the field. The dynamics of real world precipitation events is responsible for a large part of the measurement errors, which can be accurately assessed in the laboratory under controlled environmental conditions. This allows for new testing methodologies and the development of instruments with enhanced performance in the field.

  4. Motion of particles and spin in polarized media

    International Nuclear Information System (INIS)

    Silenko, A.Ya.

    2003-01-01

    The equations of the particle and spin motion in media with polarized electrons placed in external fields are found. The exchange interaction affects the motion of electrons and their spin, and the annihilation interaction affects the motion of positrons and their spin. The second-order terms in spin are taken into account for particles with spin S ≥ 1. The found equations can be used for the description of the particle and spin motion in both magnetic and nonmagnetic media [ru

  5. Exit from Synchrony in Joint Improvised Motion.

    Directory of Open Access Journals (Sweden)

    Assi Dahan

    Full Text Available Motion synchrony correlates with effective and well-rated human interaction. However, people do not remain locked in synchrony; Instead, they repeatedly enter and exit synchrony. In many important interactions, such as therapy, marriage and parent-infant communication, it is the ability to exit and then re-enter synchrony that is thought to build strong relationship. The phenomenon of entry into zero-phase synchrony is well-studied experimentally and in terms of mathematical modeling. In contrast, exit-from-synchrony is under-studied. Here, we focus on human motion coordination, and examine the exit-from-synchrony phenomenon using experimental data from the mirror game paradigm, in which people perform joint improvised motion, and from human tracking of computer-generated stimuli. We present a mathematical mechanism that captures aspects of exit-from-synchrony in human motion. The mechanism adds a random motion component when the accumulated velocity error between the players is small. We introduce this mechanism to several models for human coordinated motion, including the widely studied HKB model, and the predictor-corrector model of Noy, Dekel and Alon. In all models, the new mechanism produces realistic simulated behavior when compared to experimental data from the mirror game and from tracking of computer generated stimuli, including repeated entry and exit from zero-phase synchrony that generates a complexity of motion similar to that of human players. We hope that these results can inform future research on exit-from-synchrony, to better understand the dynamics of coordinated action of people and to enhance human-computer and human-robot interaction.

  6. Déjà vu: Motion Prediction in Static Images

    NARCIS (Netherlands)

    Pintea, S.L.; van Gemert, J.C.; Smeulders, A.W.M.; Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T.

    2014-01-01

    This paper proposes motion prediction in single still images by learning it from a set of videos. The building assumption is that similar motion is characterized by similar appearance. The proposed method learns local motion patterns given a specific appearance and adds the predicted motion in a

  7. Visual-vestibular interaction in motion perception

    NARCIS (Netherlands)

    Hosman, Ruud J A W; Cardullo, Frank M.; Bos, Jelte E.

    2011-01-01

    Correct perception of self motion is of vital importance for both the control of our position and posture when moving around in our environment. With the development of human controlled vehicles as bicycles, cars and aircraft motion perception became of interest for the understanding of vehicle

  8. The role of human ventral visual cortex in motion perception

    Science.gov (United States)

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  9. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  10. Necessary conditions for tumbling in the rotational motion

    Science.gov (United States)

    Carrera, Danny H. Z.; Weber, Hans I.

    2012-11-01

    The goal of this work is the investigation of the necessary conditions for the possible existence of tumbling in rotational motion of rigid bodies. In a stable spinning satellite, tumbling may occur by sufficient strong action of external impulses, when the conical movement characteristic of the stable attitude is de-characterized. For this purpose a methodology is chosen to simplify the study of rotational motions with great amplitude, for example free bodies in space, allowing an extension of the analysis to non-conservative systems. In the case of a satellite in space, the projection of the angular velocity along the principal axes of inertia must be known, defining completely the initial conditions of motion for stability investigations. In this paper, the coordinate systems are established according to the initial condition in order to allow a simple analytical work on the equations of motion. Also it will be proposed the definition of a parameter, calling it tumbling coefficient, to measure the intensity of the tumbling and the amplitude of the motion when crossing limits of stability in the concept of Lyapunov. Tumbling in the motion of bodies in space is not possible when this coefficient is positive. Magnus Triangle representation will be used to represent the geometry of the body, establishing regions of stability/instability for possible initial conditions of motion. In the study of nonconservative systems for an oblate body, one sufficient condition will be enough to assure damped motion, and this condition is checked for a motion damped by viscous torques. This paper seeks to highlight the physical understanding of the phenomena and the influence of various parameters that are important in the process.

  11. Method through motion:structuring theory and practice for motion graphics in spatial contexts

    OpenAIRE

    Steijn, Arthur

    2016-01-01

    Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design...

  12. Alpha motion based on a motion detector, but not on the Müller-Lyer illusion

    Science.gov (United States)

    Suzuki, Masahiro

    2014-07-01

    This study examined the mechanism of alpha motion, the apparent motion of the Müller-Lyer figure's shaft that occurs when the arrowheads and arrow tails are alternately presented. The following facts were found: (a) reduced exposure duration decreased the amount of alpha motion, and this phenomenon was not explainable by the amount of the Müller-Lyer illusion; (b) the motion aftereffect occurred after adaptation to alpha motion; (c) occurrence of alpha motion became difficult when the temporal frequency increased, and this characteristic of alpha motion was similar to the characteristic of a motion detector that motion detection became difficult when the temporal frequency increased from the optimal frequency. These findings indicated that alpha motion occurs on the basis of a motion detector but not on the Müller-Lyer illusion, and that the mechanism of alpha motion is the same as that of general motion perception.

  13. Motion in an Asymmetric Double Well

    OpenAIRE

    Brizard, Alain J.; Westland, Melissa C.

    2016-01-01

    The problem of the motion of a particle in an asymmetric double well is solved explicitly in terms of the Weierstrass and Jacobi elliptic functions. While the solution of the orbital motion is expressed simply in terms of the Weierstrass elliptic function, the period of oscillation is more directly expressed in terms of periods of the Jacobi elliptic functions.

  14. Audiovisual biofeedback improves diaphragm motion reproducibility in MRI

    Science.gov (United States)

    Kim, Taeho; Pollock, Sean; Lee, Danny; O’Brien, Ricky; Keall, Paul

    2012-01-01

    Purpose: In lung radiotherapy, variations in cycle-to-cycle breathing results in four-dimensional computed tomography imaging artifacts, leading to inaccurate beam coverage and tumor targeting. In previous studies, the effect of audiovisual (AV) biofeedback on the external respiratory signal reproducibility has been investigated but the internal anatomy motion has not been fully studied. The aim of this study is to test the hypothesis that AV biofeedback improves diaphragm motion reproducibility of internal anatomy using magnetic resonance imaging (MRI). Methods: To test the hypothesis 15 healthy human subjects were enrolled in an ethics-approved AV biofeedback study consisting of two imaging sessions spaced ∼1 week apart. Within each session MR images were acquired under free breathing and AV biofeedback conditions. The respiratory signal to the AV biofeedback system utilized optical monitoring of an external marker placed on the abdomen. Synchronously, serial thoracic 2D MR images were obtained to measure the diaphragm motion using a fast gradient-recalled-echo MR pulse sequence in both coronal and sagittal planes. The improvement in the diaphragm motion reproducibility using the AV biofeedback system was quantified by comparing cycle-to-cycle variability in displacement, respiratory period, and baseline drift. Additionally, the variation in improvement between the two sessions was also quantified. Results: The average root mean square error (RMSE) of diaphragm cycle-to-cycle displacement was reduced from 2.6 mm with free breathing to 1.6 mm (38% reduction) with the implementation of AV biofeedback (p-value biofeedback (p-value biofeedback (p-value = 0.012). The diaphragm motion reproducibility improvements with AV biofeedback were consistent with the abdominal motion reproducibility that was observed from the external marker motion variation. Conclusions: This study was the first to investigate the potential of AV biofeedback to improve the motion

  15. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data

    Science.gov (United States)

    Brigadoi, Sabrina; Ceccherini, Lisa; Cutini, Simone; Scarpa, Fabio; Scatturin, Pietro; Selb, Juliette; Gagnon, Louis; Boas, David A.; Cooper, Robert J.

    2013-01-01

    Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is limited, and multiple motion artifacts are common, particularly in challenging populations. Many methods have been proposed recently to correct for motion artifacts, including principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and correlation-based signal improvement. The performance of different techniques has been often compared in simulations, but only rarely has it been assessed on real functional data. Here, we compare the performance of these motion correction techniques on real functional data acquired during a cognitive task, which required the participant to speak aloud, leading to a low-frequency, low-amplitude motion artifact that is correlated with the hemodynamic response. To compare the efficacy of these methods, objective metrics related to the physiology of the hemodynamic response have been derived. Our results show that it is always better to correct for motion artifacts than reject trials, and that wavelet filtering is the most effective approach to correcting this type of artifact, reducing the area under the curve where the artifact is present in 93% of the cases. Our results therefore support previous studies that have shown wavelet filtering to be the most promising and powerful technique for the correction of motion artifacts in fNIRS data. The analyses performed here can serve as a guide for others to objectively test the impact of different motion correction algorithms and therefore select the most appropriate for the analysis of their own fNIRS experiment. PMID:23639260

  16. Experience in Solar System and Sky Motions

    Science.gov (United States)

    Coles, K. S.

    2017-12-01

    To help students predict where they will see objects in the sky, they must comprehend sky motion and the relative motions of individual objects. Activities to promote this comprehension among college and secondary students include: Tracking star motion in the planetarium: Students predict star motion by marking the expected path on plastic hemisphere models of the celestial dome. They check their prediction by observing and marking the actual motion. For comprehension, comparing motion in different parts of the sky surpasses two-dimensional views of the sky in books or on computers. Mastery is assessed by the same exercise with the sky set at other latitudes, including those on the other side of the equator. Making sundials: Students first make a horizontal sundial for the latitude of their choice following written directions (e.g., Waugh, 1973). One problem to solve is how to convert sundial time to standard time. A prompt is a picture of the analemma (the position of the Sun in the sky at a fixed clock time over the course of a year). Tests of mastery include the questions, "What accounts for the shape of the analemma?" and "What information is needed to predict the shape of the analemma one would see on other planets?" Reference: Waugh, A. E., 1973, Sundials: their theory and construction: Dover, 228 p.

  17. Analysis of secondary motions in square duct flow

    Science.gov (United States)

    Modesti, Davide; Pirozzoli, Sergio; Orlandi, Paolo; Grasso, Francesco

    2018-04-01

    We carry out direct numerical simulations (DNS) of square duct flow spanning the friction Reynolds number range {Re}τ * =150-1055, to study the nature and the role of secondary motions. We preliminarily find that secondary motions are not the mere result of the time averaging procedure, but rather they are present in the instantaneous flow realizations, corresponding to large eddies persistent in both space and time. Numerical experiments have also been carried out whereby the secondary motions are suppressed, hence allowing to quantifying their effect on the mean flow field. At sufficiently high Reynolds number, secondary motions are found to increase the friction coefficient by about 3%, hence proportionally to their relative strength with respect to the bulk flow. Simulations without secondary motions are found to yield larger deviations on the mean velocity profiles from the standard law-of-the-wall, revealing that secondary motions act as a self-regulating mechanism of turbulence whereby the effect of the corners is mitigated.

  18. Joint motion clusters in servomanipulator operation

    International Nuclear Information System (INIS)

    Draper, J.V.; Sundstrom, E.; Herndon, J.N.

    1986-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory is developing advanced teleoperator systems for maintenance of future nuclear fuel reprocessing facilities. Remote maintenance systems developed by the CFRP emphasize man-in-the-loop teleoperation. This paper reports the results of a recent experiment which investigated how users interact with a multi-degree-of-freedom servomanipulator. Principal components analysis performed on data collected during completion of typical remote maintenance tests indicates that joint motions may be summarized by two orthogonal clusters, one which represents fine-adjusting motions and one which represents slewing motions. Implications of these findings for servomanipulator design are discussed. 5 refs., 1 fig., 2 tabs

  19. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  20. INS integrated motion analysis for autonomous vehicle navigation

    Science.gov (United States)

    Roberts, Barry; Bazakos, Mike

    1991-01-01

    The use of inertial navigation system (INS) measurements to enhance the quality and robustness of motion analysis techniques used for obstacle detection is discussed with particular reference to autonomous vehicle navigation. The approach to obstacle detection used here employs motion analysis of imagery generated by a passive sensor. Motion analysis of imagery obtained during vehicle travel is used to generate range measurements to points within the field of view of the sensor, which can then be used to provide obstacle detection. Results obtained with an INS integrated motion analysis approach are reviewed.

  1. Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation.

    Science.gov (United States)

    Dikbas, Salih; Altunbasak, Yucel

    2013-08-01

    In this paper, a new low-complexity true-motion estimation (TME) algorithm is proposed for video processing applications, such as motion-compensated temporal frame interpolation (MCTFI) or motion-compensated frame rate up-conversion (MCFRUC). Regular motion estimation, which is often used in video coding, aims to find the motion vectors (MVs) to reduce the temporal redundancy, whereas TME aims to track the projected object motion as closely as possible. TME is obtained by imposing implicit and/or explicit smoothness constraints on the block-matching algorithm. To produce better quality-interpolated frames, the dense motion field at interpolation time is obtained for both forward and backward MVs; then, bidirectional motion compensation using forward and backward MVs is applied by mixing both elegantly. Finally, the performance of the proposed algorithm for MCTFI is demonstrated against recently proposed methods and smoothness constraint optical flow employed by a professional video production suite. Experimental results show that the quality of the interpolated frames using the proposed method is better when compared with the MCFRUC techniques.

  2. 41 CFR 60-30.8 - Motions; disposition of motions.

    Science.gov (United States)

    2010-07-01

    ... a supporting memorandum. Within 10 days after a written motion is served, or such other time period... writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may require that they be reduced to writing and filed and served on all parties in the same manner as a formal...

  3. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    Science.gov (United States)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  4. Measurement and Compensation of BPM Chamber Motion in HLS

    Science.gov (United States)

    Li, J. W.; Sun, B. G.; Cao, Y.; Xu, H. L.; Lu, P.; Li, C.; Xuan, K.; Wang, J. G.

    2010-06-01

    Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS. The horizontal drifts of beam orbit have been really suppressed within 20μm without the compensation of BPM chamber motion in the runtime.

  5. Measurement and Compensation of BPM Chamber Motion in HLS

    International Nuclear Information System (INIS)

    Li, J. W.; Sun, B. G.; Cao, Y.; Xu, H. L.; Lu, P.; Li, C.; Xuan, K.; Wang, J. G.

    2010-01-01

    Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS. The horizontal drifts of beam orbit have been really suppressed within 20μm without the compensation of BPM chamber motion in the runtime.

  6. Designing a compact MRI motion phantom

    Directory of Open Access Journals (Sweden)

    Schmiedel Max

    2016-09-01

    Full Text Available Even today, dealing with motion artifacts in magnetic resonance imaging (MRI is a challenging task. Image corruption due to spontaneous body motion complicates diagnosis. In this work, an MRI phantom for rigid motion is presented. It is used to generate motion-corrupted data, which can serve for evaluation of blind motion compensation algorithms. In contrast to commercially available MRI motion phantoms, the presented setup works on small animal MRI systems. Furthermore, retrospective gating is performed on the data, which can be used as a reference for novel motion compensation approaches. The motion of the signal source can be reconstructed using motor trigger signals and be utilized as the ground truth for motion estimation. The proposed setup results in motion corrected images. Moreover, the importance of preprocessing the MRI raw data, e.g. phase-drift correction, is demonstrated. The gained knowledge can be used to design an MRI phantom for elastic motion.

  7. CNA-motion in a PS - Fn

    International Nuclear Information System (INIS)

    Singh, M.P.; Mishra, C.K.

    1989-12-01

    A Finsler space Fn (n > 2), throughout with the projective curvature tensor possessing vanishing covariant derivative, has been called a ''projectively symmetric Finsler space'' and such a space is denoted PS-Fn. The conditions in which an infinitesimal transformation defines non-affine motion with a contra-field, briefly called CNA-motion, are discussed. 7 refs

  8. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion

    Science.gov (United States)

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu

    2015-01-01

    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828

  9. Wave motion in elastic solids

    CERN Document Server

    Graff, Karl F

    1991-01-01

    This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter

  10. Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion.

    Science.gov (United States)

    Tisdall, M Dylan; Reuter, Martin; Qureshi, Abid; Buckner, Randy L; Fischl, Bruce; van der Kouwe, André J W

    2016-02-15

    Recent work has demonstrated that subject motion produces systematic biases in the metrics computed by widely used morphometry software packages, even when the motion is too small to produce noticeable image artifacts. In the common situation where the control population exhibits different behaviors in the scanner when compared to the experimental population, these systematic measurement biases may produce significant confounds for between-group analyses, leading to erroneous conclusions about group differences. While previous work has shown that prospective motion correction can improve perceived image quality, here we demonstrate that, in healthy subjects performing a variety of directed motions, the use of the volumetric navigator (vNav) prospective motion correction system significantly reduces the motion-induced bias and variance in morphometry. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  12. Determination of proper motions in the Pleiades cluster

    Science.gov (United States)

    Schilbach, E.

    1991-04-01

    For 458 stars in the Pleiades field from the catalog of Eichhorn et al. (1970) proper motions were derived on Tautenburg and CERGA Schmidt telescope plates measured with the automated measuring machine MAMA in Paris. The catalog positions were considered as first epoch coordinates with an epoch difference of ca. 33 years to the observations. The results show good coincidence of proper motions derived with both Schmidt telescopes within the error bars. Comparison with proper motions determined by Vasilevskis et al. (1979) displays some significant differences but no systematic effects depending on plate coordinates or magnitudes could be found. An accuracy of 0.3 arcsec/100a for one proper motion component was estimated. According to the criterion of common proper motion 34 new cluster members were identified.

  13. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    Directory of Open Access Journals (Sweden)

    Valeriya Gritsenko

    Full Text Available To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery.Descriptive study of motion measured via 2 methods.Academic cancer center oncology clinic.20 women (mean age = 60 yrs were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery following mastectomy (n = 4 or lumpectomy (n = 16 for breast cancer.Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle.Correlation of motion capture with goniometry and detection of motion limitation.Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80, while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more.Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  14. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    Science.gov (United States)

    Gritsenko, Valeriya; Dailey, Eric; Kyle, Nicholas; Taylor, Matt; Whittacre, Sean; Swisher, Anne K

    2015-01-01

    To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery. Descriptive study of motion measured via 2 methods. Academic cancer center oncology clinic. 20 women (mean age = 60 yrs) were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery) following mastectomy (n = 4) or lumpectomy (n = 16) for breast cancer. Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle). Correlation of motion capture with goniometry and detection of motion limitation. Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80), while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more. Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  15. Effects of ship motions on laminar flow in tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.H., E-mail: yanbh1986@163.co [Department of Nuclear Science and Engineering, Naval University of Engineering, 717 Jiefang Street, Wuhan 430033 (China); Yu, L. [Department of Nuclear Science and Engineering, Naval University of Engineering, 717 Jiefang Street, Wuhan 430033 (China); Yang, Y.H. [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2010-01-15

    The thermal-hydraulics of barge-mounted floating nuclear desalination plants is the incentive for this study. Laminar flow in tubes in heaving motion is modeled. The friction factor and heat transfer coefficient are obtained. All the equations of laminar flow in steady state are applicable for heeling motion. The effect of ship motions on the laminar developing region is also analyzed. The ship motions can weaken the boundary layer in the laminar developing region and strengthen the laminar frictional resistance. The effect of ship motions on the instability of laminar flow is also investigated. The ship motions do not affect the instability point, but they can shorten the distance between the instability point and the transition point, and cause the transition from laminar flow to turbulent flow to occur earlier.

  16. Contrast and assimilation in motion perception and smooth pursuit eye movements.

    Science.gov (United States)

    Spering, Miriam; Gegenfurtner, Karl R

    2007-09-01

    The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.

  17. Motion Transplantation Techniques: A Survey

    NARCIS (Netherlands)

    van Basten, Ben; Egges, Arjan

    2012-01-01

    During the past decade, researchers have developed several techniques for transplanting motions. These techniques transplant a partial auxiliary motion, possibly defined for a small set of degrees of freedom, on a base motion. Motion transplantation improves motion databases' expressiveness and

  18. S3-3: Misbinding of Color and Motion in Human V2 Revealed by Color-Contingent Motion Adaptation

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-10-01

    Full Text Available Wu, Kanai, & Shimojo (2004 Nature 429 262 described a compelling illusion demonstrating a steady-state misbinding of color and motion. Here, we took advantage of the illusion and performed psychophysical and fMRI adaptation experiments to explore the neural mechanism of color-motion misbinding. The stimulus subtended 20 deg by 14 deg of visual angle and contained two sheets of random dots, one sheet moving up and the other moving down. On the upward-moving sheet, dots in the right-end area (4 deg by 14 deg were red, and the rest of the dots were green. On the downward-moving sheet, dots in the right-end area were green, and the rest of the dots were red. When subjects fixated at the center of the stimulus, they bound the color and motion of the dots in the right-end area erroneously–the red dots appeared to move downwards and the green dots appeared to move upwards. In the psychophysical experiment, we measured the color-contingent motion aftereffect in the right-end area after adaptation to the illusory stimulus. A significant aftereffect was observed as if subjects had adapted to the perceived binding of color and motion, rather than the physical binding. For example, after adaptation, stationary red dots appeared to move upwards, and stationary green dots appeared to move downwards. In the fMRI experiment, we measured direction-selective motion adaptation effects in V1, V2, V3, V4, V3A/B, and V5. Relative to other cortical areas, V2 showed a much stronger adaptation effect to the perceived motion direction (rather than the physical direction for both the red and green dots. Significantly, the fMRI adaptation effect in V2 correlated with the color-contingent motion aftereffect across twelve subjects. This study provides the first human evidence that color and motion could be misbound at a very early stage of visual processing.

  19. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET

    International Nuclear Information System (INIS)

    Heß, Mirco; Büther, Florian; Dawood, Mohammad; Schäfers, Klaus P.; Gigengack, Fabian

    2015-01-01

    Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects are used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical 18 F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was found

  20. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET

    Energy Technology Data Exchange (ETDEWEB)

    Heß, Mirco, E-mail: mirco.hess@uni-muenster.de; Büther, Florian; Dawood, Mohammad; Schäfers, Klaus P. [European Institute for Molecular Imaging, University of Münster, Münster 48149 (Germany); Gigengack, Fabian [European Institute for Molecular Imaging, University of Münster, Münster 48149, Germany and Department of Mathematics and Computer Science, University of Münster, Münster 48149 (Germany)

    2015-05-15

    Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects are used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical {sup 18}F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was

  1. Mitigation of motion artifacts in CBCT of lung tumors based on tracked tumor motion during CBCT acquisition

    International Nuclear Information System (INIS)

    Lewis, John H; Li Ruijiang; Jia Xun; Watkins, W Tyler; Song, William Y; Jiang, Steve B; Lou, Yifei

    2011-01-01

    An algorithm capable of mitigating respiratory motion blurring artifacts in cone-beam computed tomography (CBCT) lung tumor images based on the motion of the tumor during the CBCT scan is developed. The tumor motion trajectory and probability density function (PDF) are reconstructed from the acquired CBCT projection images using a recently developed algorithm Lewis et al (2010 Phys. Med. Biol. 55 2505-22). Assuming that the effects of motion blurring can be represented by convolution of the static lung (or tumor) anatomy with the motion PDF, a cost function is defined, consisting of a data fidelity term and a total variation regularization term. Deconvolution is performed through iterative minimization of this cost function. The algorithm was tested on digital respiratory phantom, physical respiratory phantom and patient data. A clear qualitative improvement is evident in the deblurred images as compared to the motion-blurred images for all cases. Line profiles show that the tumor boundaries are more accurately and clearly represented in the deblurred images. The normalized root-mean-squared error between the images used as ground truth and the motion-blurred images are 0.29, 0.12 and 0.30 in the digital phantom, physical phantom and patient data, respectively. Deblurring reduces the corresponding values to 0.13, 0.07 and 0.19. Application of a -700 HU threshold to the digital phantom results in tumor dimension measurements along the superior-inferior axis of 2.8, 1.8 and 1.9 cm in the motion-blurred, ground truth and deblurred images, respectively. Corresponding values for the physical phantom are 3.4, 2.7 and 2.7 cm. A threshold of -500 HU applied to the patient case gives measurements of 3.1, 1.6 and 1.7 cm along the SI axis in the CBCT, 4DCT and deblurred images, respectively. This technique could provide more accurate information about a lung tumor's size and shape on the day of treatment.

  2. Hyperventilation in a motion sickness desensitization program

    NARCIS (Netherlands)

    Mert, A.; Bles, W.; Nooij, S.A.E.

    2007-01-01

    Introduction: In motion sickness desensitization programs, the motion sickness provocative stimulus is often a forward bending of the trunk on a rotating chair, inducing Coriolis effects. Since respiratory relaxation techniques are applied successfully in these courses, we investigated whether these

  3. Weighing Evidence "Steampunk" Style via the Meta-Analyser.

    Science.gov (United States)

    Bowden, Jack; Jackson, Chris

    2016-10-01

    The funnel plot is a graphical visualization of summary data estimates from a meta-analysis, and is a useful tool for detecting departures from the standard modeling assumptions. Although perhaps not widely appreciated, a simple extension of the funnel plot can help to facilitate an intuitive interpretation of the mathematics underlying a meta-analysis at a more fundamental level, by equating it to determining the center of mass of a physical system. We used this analogy to explain the concepts of weighing evidence and of biased evidence to a young audience at the Cambridge Science Festival, without recourse to precise definitions or statistical formulas and with a little help from Sherlock Holmes! Following on from the science fair, we have developed an interactive web-application (named the Meta-Analyser) to bring these ideas to a wider audience. We envisage that our application will be a useful tool for researchers when interpreting their data. First, to facilitate a simple understanding of fixed and random effects modeling approaches; second, to assess the importance of outliers; and third, to show the impact of adjusting for small study bias. This final aim is realized by introducing a novel graphical interpretation of the well-known method of Egger regression.

  4. 12 CFR 747.23 - Motions.

    Science.gov (United States)

    2010-01-01

    ... written motions except as otherwise directed by the administrative law judge. Written memorandum, briefs... Procedure § 747.23 Motions. (a) In writing. (1) Except as otherwise provided herein, an application or request for an order or ruling must be made by written motion. (2) All written motions must state with...

  5. Motion-to-Motion Gauge for the Electroweak Interaction of Leptons

    Directory of Open Access Journals (Sweden)

    Tselnik F.

    2015-01-01

    Full Text Available Comprised of rods and clocks, a reference system is a mere intermediary between the motion that is of interest in the problem and the motions of auxiliary test bodies the reference system is to be gauged with. However, a theory base d on such reference sys- tems might hide some features of this actual motion-to-motion correspondence, thus leaving these features incomprehensible. It is therefore d esirable to consider this corre- spondence explicitly, if only to substantiate a particular scheme. To this end, the very existence of a (local top-speed signal is shown to be sufficient to explain some peculiar- ities of the weak interaction using symmetrical configurations of auxiliary trajectories as a means for the gauge. In particular, the unification of the electromagnetic and weak interactions, parity violation, SU(2 L × U(1 group structure with the values of its cou- pling constants, and the intermediate vector boson are found to be a direct consequence of this gauge procedure.

  6. Sound-contingent visual motion aftereffect

    Directory of Open Access Journals (Sweden)

    Kobayashi Maori

    2011-05-01

    Full Text Available Abstract Background After a prolonged exposure to a paired presentation of different types of signals (e.g., color and motion, one of the signals (color becomes a driver for the other signal (motion. This phenomenon, which is known as contingent motion aftereffect, indicates that the brain can establish new neural representations even in the adult's brain. However, contingent motion aftereffect has been reported only in visual or auditory domain. Here, we demonstrate that a visual motion aftereffect can be contingent on a specific sound. Results Dynamic random dots moving in an alternating right or left direction were presented to the participants. Each direction of motion was accompanied by an auditory tone of a unique and specific frequency. After a 3-minutes exposure, the tones began to exert marked influence on the visual motion perception, and the percentage of dots required to trigger motion perception systematically changed depending on the tones. Furthermore, this effect lasted for at least 2 days. Conclusions These results indicate that a new neural representation can be rapidly established between auditory and visual modalities.

  7. Performance characterization of Watson Ahumada motion detector using random dot rotary motion stimuli.

    Directory of Open Access Journals (Sweden)

    Siddharth Jain

    Full Text Available The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display.Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs.When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode approximately 2 s. These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon.

  8. Motion sickness and postural sway in console video games.

    Science.gov (United States)

    Stoffregen, Thomas A; Faugloire, Elise; Yoshida, Ken; Flanagan, Moira B; Merhi, Omar

    2008-04-01

    We tested the hypotheses that (a) participants might develop motion sickness while playing "off-the-shelf" console video games and (b) postural motion would differ between sick and well participants, prior to the onset of motion sickness. There have been many anecdotal reports of motion sickness among people who play console video games (e.g., Xbox, PlayStation). Participants (40 undergraduate students) played a game continuously for up to 50 min while standing or sitting. We varied the distance to the display screen (and, consequently, the visual angle of the display). Across conditions, the incidence of motion sickness ranged from 42% to 56%; incidence did not differ across conditions. During game play, head and torso motion differed between sick and well participants prior to the onset of subjective symptoms of motion sickness. The results indicate that console video games carry a significant risk of motion sickness. Potential applications of this research include changes in the design of console video games and recommendations for how such systems should be used.

  9. Modelling the motion of meteors in the Earth's atmosphere

    International Nuclear Information System (INIS)

    Rodrigues, Hilário

    2013-01-01

    This work discusses the motion of meteors in the Earth's atmosphere. The equations of motion of the projectile are presented and a simplified numerical approach to solve them is discussed. An algorithm for solving the equations of motion is constructed, and implemented in a very simple way using Excel software. The paper is intended as an example of the application of Newton's laws of motion at undergraduate level. (paper)

  10. Motion Capture Technique Applied Research in Sports Technique Diagnosis

    Directory of Open Access Journals (Sweden)

    Zhiwu LIU

    2014-09-01

    Full Text Available The motion capture technology system definition is described in the paper, and its components are researched, the key parameters are obtained from motion technique, the quantitative analysis are made on technical movements, the method of motion capture technology is proposed in sport technical diagnosis. That motion capture step includes calibration system, to attached landmarks to the tester; to capture trajectory, and to analyze the collected data.

  11. Marker-Free Human Motion Capture

    DEFF Research Database (Denmark)

    Grest, Daniel

    Human Motion Capture is a widely used technique to obtain motion data for animation of virtual characters. Commercial optical motion capture systems are marker-based. This book is about marker-free motion capture and its possibilities to acquire motion from a single viewing direction. The focus...

  12. Orbital motion in pre-main sequence binaries

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, G. H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Prato, L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Simon, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Patience, J., E-mail: schaefer@chara-array.org [Astrophysics Group, School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2014-06-01

    We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five other binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.

  13. The moving minimum audible angle is smaller during self motion than during source motion.

    Directory of Open Access Journals (Sweden)

    W. Owen eBrimijoin

    2014-09-01

    Full Text Available We are rarely perfectly still: our heads rotate in three axes and move in three dimensions, constantly varying the spectral and binaural cues at the ear drums. In spite of this motion, static sound sources in the world are typically perceived as stable objects. This argues that the auditory system – in a manner not unlike the vestibulo-ocular reflex – works to compensate for self motion and stabilize our sensory representation of the world. We tested a prediction arising from this postulate: that self motion should be processed more accurately than source motion.We used an infrared motion tracking system to measure head angle, and real-time interpolation of head related impulse responses to create head-stabilized signals that appeared to remain fixed in space as the head turned. After being presented with pairs of simultaneous signals consisting of a man and a woman speaking a snippet of speech, normal and hearing impaired listeners were asked to report whether the female voice was to the left or the right of the male voice. In this way we measured the moving minimum audible angle (MMAA. This measurement was made while listeners were asked to turn their heads back and forth between ± 15° and the signals were stabilized in space. After this self-motion condition we measured MMAA in a second source-motion condition when listeners remained still and the virtual locations of the signals were moved using the trajectories from the first condition.For both normal and hearing impaired listeners, we found that the MMAA for signals moving relative to the head was ~1-2° smaller when the movement was the result of self motion than when it was the result of source motion, even though the motion with respect to the head was identical. These results as well as the results of past experiments suggest that spatial processing involves an ongoing and highly accurate comparison of spatial acoustic cues with self-motion cues.

  14. Smoothing of respiratory motion traces for motion-compensated radiotherapy.

    Science.gov (United States)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera "as is." Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS2 algorithms. The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the exception of the FP5000 and the

  15. Smoothing of respiratory motion traces for motion-compensated radiotherapy

    International Nuclear Information System (INIS)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    Purpose: The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera ''as is''. Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. Methods: The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS 2 algorithms. Results: The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the

  16. Integration Method of Emphatic Motions and Adverbial Expressions with Scalar Parameters for Robotic Motion Coaching System

    Science.gov (United States)

    Okuno, Keisuke; Inamura, Tetsunari

    A robotic coaching system can improve humans' learning performance of motions by intelligent usage of emphatic motions and adverbial expressions according to user reactions. In robotics, however, method to control both the motions and the expressions and how to bind them had not been adequately discussed from an engineering point of view. In this paper, we propose a method for controlling and binding emphatic motions and adverbial expressions by using two scalar parameters in a phase space. In the phase space, variety of motion patterns and verbal expressions are connected and can be expressed as static points. We show the feasibility of the proposing method through experiments of actual sport coaching tasks for beginners. From the results of participants' improvements in motion learning, we confirmed the feasibility of the methods to control and bind emphatic motions and adverbial expressions, as well as confirmed contribution of the emphatic motions and positive correlation of adverbial expressions for participants' improvements in motion learning. Based on the results, we introduce a hypothesis that individually optimized method for binding adverbial expression is required.

  17. 7 CFR 1.327 - Motions.

    Science.gov (United States)

    2010-01-01

    ... be in writing. The ALJ may require that oral motions be reduced to writing. (c) The ALJ may require written motions to be accompanied by supporting memorandums. (d) Within 15 days after a written motion is...) The ALJ may not grant a written motion prior to expiration of the time for filing responses thereto...

  18. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    International Nuclear Information System (INIS)

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A.; Beckman, J.

    2015-01-01

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc

  19. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Beckman, J., E-mail: tere@astro.unam.mx, E-mail: leonel@astro.unam.mx, E-mail: wsteffen@astro.unam.mx, E-mail: jal@astro.unam.mx, E-mail: jeb@iac.es [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain)

    2015-01-10

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc.

  20. Respiratory impact on motion sickness induced by linear motion

    NARCIS (Netherlands)

    Mert, A.; Klöpping-Ketelaars, I.; Bles, W.

    2009-01-01

    Motion sickness incidence (MSI) for vertical sinusoidal motion reaches a maximum at 0.167 Hz. Normal breathing frequency is close to this frequency. There is some evidence for synchronization of breathing with this stimulus frequency. If this enforced breathing takes place over a larger frequency

  1. Knee Motion Generation Method for Transfemoral Prosthesis Based on Kinematic Synergy and Inertial Motion.

    Science.gov (United States)

    Sano, Hiroshi; Wada, Takahiro

    2017-12-01

    Previous research has shown that the effective use of inertial motion (i.e., less or no torque input at the knee joint) plays an important role in achieving a smooth gait of transfemoral prostheses in the swing phase. In our previous research, a method for generating a timed knee trajectory close to able-bodied individuals, which leads to sufficient clearance between the foot and the floor and the knee extension, was proposed using the inertial motion. Limb motions are known to correlate with each other during walking. This phenomenon is called kinematic synergy. In this paper, we measure gaits in level walking of able-bodied individuals with a wide range of walking velocities. We show that this kinematic synergy also exists between the motions of the intact limbs and those of the knee as determined by the inertial motion technique. We then propose a new method for generating the motion of the knee joint using its inertial motion close to the able-bodied individuals in mid-swing based on its kinematic synergy, such that the method can adapt to the changes in the motion velocity. The numerical simulation results show that the proposed method achieves prosthetic walking similar to that of able-bodied individuals with a wide range of constant walking velocities and termination of walking from steady-state walking. Further investigations have found that a kinematic synergy also exists at the start of walking. Overall, our method successfully achieves knee motion generation from the initiation of walking through steady-state walking with different velocities until termination of walking.

  2. Parallel search for conjunctions with stimuli in apparent motion.

    Science.gov (United States)

    Casco, C; Ganis, G

    1999-01-01

    A series of experiments was conducted to determine whether apparent motion tends to follow the similarity rule (i.e. is attribute-specific) and to investigate the underlying mechanism. Stimulus duration thresholds were measured during a two-alternative forced-choice task in which observers detected either the location or the motion direction of target groups defined by the conjunction of size and orientation. Target element positions were randomly chosen within a nominally defined rectangular subregion of the display (target region). The target region was presented either statically (followed by a 250 ms duration mask) or dynamically, displaced by a small distance (18 min of arc) from frame to frame. In the motion display, the position of both target and background elements was changed randomly from frame to frame within the respective areas to abolish spatial correspondence over time. Stimulus duration thresholds were lower in the motion than in the static task, indicating that target detection in the dynamic condition does not rely on the explicit identification of target elements in each static frame. Increasing the distractor-to-target ratio was found to reduce detectability in the static, but not in the motion task. This indicates that the perceptual segregation of the target is effortless and parallel with motion but not with static displays. The pattern of results holds regardless of the task or search paradigm employed. The detectability in the motion condition can be improved by increasing the number of frames and/or by reducing the width of the target area. Furthermore, parallel search in the dynamic condition can be conducted with both short-range and long-range motion stimuli. Finally, apparent motion of conjunctions is insufficient on its own to support location decision and is disrupted by random visual noise. Overall, these findings show that (i) the mechanism underlying apparent motion is attribute-specific; (ii) the motion system mediates temporal

  3. Neural correlates of visually induced self-motion illusion in depth.

    Science.gov (United States)

    Kovács, Gyula; Raabe, Markus; Greenlee, Mark W

    2008-08-01

    Optic-flow fields can induce the conscious illusion of self-motion in a stationary observer. Here we used functional magnetic resonance imaging to reveal the differential processing of self- and object-motion in the human brain. Subjects were presented a constantly expanding optic-flow stimulus, composed of disparate red-blue dots, viewed through red-blue glasses to generate a vivid percept of three-dimensional motion. We compared the activity obtained during periods of illusory self-motion with periods of object-motion percept. We found that the right MT+, precuneus, as well as areas located bilaterally along the dorsal part of the intraparietal sulcus and along the left posterior intraparietal sulcus were more active during self-motion perception than during object-motion. Additional signal increases were located in the depth of the left superior frontal sulcus, over the ventral part of the left anterior cingulate, in the depth of the right central sulcus and in the caudate nucleus/putamen. We found no significant deactivations associated with self-motion perception. Our results suggest that the illusory percept of self-motion is correlated with the activation of a network of areas, ranging from motion-specific areas to regions involved in visuo-vestibular integration, visual imagery, decision making, and introspection.

  4. Semiportable load-cell-based weighing system prototype of 18.14-metric-ton (20-ton) capacity for UF6 cylinder weight verifications: description and testing procedure

    International Nuclear Information System (INIS)

    McAuley, W.A.

    1984-01-01

    The 18.14-metric-ton-capacity (20-ton) Load-Cell-Based Weighing System (LCBWS) prototype tested at the Oak Ridge (Tennessee) Gaseous Diffusion Plant March 20-30, 1984, is semiportable and has the potential for being highly accurate. Designed by Brookhaven National Laboratory, it can be moved to cylinders for weighing as opposed to the widely used operating philosophy of most enrichment facilities of moving cylinders to stationary accountability scales. Composed mainly of commercially available, off-the-shelf hardware, the system's principal elements are two load cells that sense the weight (i.e., force) of a uranium hexafluoride (UF 6 ) cylinder suspended from the LCBWS while the cylinder is in the process of being weighed. Portability is achieved by its attachment to a double-hook, overhead-bridge crane. The LCBWS prototype is designed to weigh 9.07- and 12.70-metric ton (10- and 14-ton) UF 6 cylinders. A detailed description of the LCBWS is given, design information and criteria are supplied, a testing procedure is outlined, and initial test results are reported. A major objective of the testing is to determine the reliability and accuracy of the system. Other testing objectives include the identification of (1) potential areas for system improvements and (2) procedural modifications that will reflect an improved and more efficient system. The testing procedure described includes, but is not limited to, methods that account for temperature sensitivity of the instrumentation, the local variation in the acceleration due to gravity, and buoyance effects. Operational and safety considerations are noted. A preliminary evaluation of the March test data indicates that the LCBWS prototype has the potential to have an accuracy in the vicinity of 1 kg

  5. Self versus environment motion in postural control.

    Directory of Open Access Journals (Sweden)

    Kalpana Dokka

    2010-02-01

    Full Text Available To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results.

  6. Biophysical profile in the treatment of intrauterine growth-restricted fetuses who weigh <1000 g.

    Science.gov (United States)

    Kaur, Satinder; Picconi, Jason L; Chadha, Rati; Kruger, Michael; Mari, Giancarlo

    2008-09-01

    The aim of this study was to determine the biophysical profile (BPP) usefulness in the prediction of cord pH, base excess, and guidance regarding the timing of delivery in preterm intrauterine growth-restricted (IUGR) fetuses. A BPP was performed daily in 48 IUGR fetuses and was considered abnormal when it was 2/10 on 1 single occasion or 4/10 on 2 consecutive occasions 2 hours apart. The median gestational age and fetal weight for the total population was 27.6 weeks and 632 g, respectively. In 13 fetuses with a BPP of 6, there were 3 deaths, and 7 fetuses were acidemic. In 27 fetuses with a BPP of 8, there were 3 deaths, and 12 fetuses were acidemic. BPP alone is not a reliable test in the treatment of preterm IUGR fetuses, because of high false-positive and -negative results. The common notion of a good BPP providing reassurance for at least 24 hours is not applicable in severely preterm IUGR fetuses who weigh <1000 g.

  7. Audiovisual biofeedback improves the correlation between internal/external surrogate motion and lung tumor motion.

    Science.gov (United States)

    Lee, Danny; Greer, Peter B; Paganelli, Chiara; Ludbrook, Joanna Jane; Kim, Taeho; Keall, Paul

    2018-03-01

    Breathing management can reduce breath-to-breath (intrafraction) and day-by-day (interfraction) variability in breathing motion while utilizing the respiratory motion of internal and external surrogates for respiratory guidance. Audiovisual (AV) biofeedback, an interactive personalized breathing motion management system, has been developed to improve reproducibility of intra- and interfraction breathing motion. However, the assumption of the correlation of respiratory motion between surrogates and tumors is not always verified during medical imaging and radiation treatment. Therefore, the aim of the study was to test the hypothesis that the correlation of respiratory motion between surrogates and tumors is the same under free breathing without guidance (FB) and with AV biofeedback guidance for voluntary motion management. For 13 lung cancer patients receiving radiotherapy, 2D coronal and sagittal cine-MR images were acquired across two MRI sessions (pre- and mid-treatment) with two breathing conditions: (a) FB and (b) AV biofeedback, totaling 88 patient measurements. Simultaneously, the external respiratory motion of the abdomen was measured. The internal respiratory motion of the diaphragm and lung tumor was retrospectively measured from 2D coronal and sagittal cine-MR images. The correlation of respiratory motion between surrogates and tumors was calculated using Pearson's correlation coefficient for: (a) abdomen to tumor (abdomen-tumor) and (b) diaphragm to tumor (diaphragm-tumor). The correlations were compared between FB and AV biofeedback using several metrics: abdomen-tumor and diaphragm-tumor correlations with/without ≥5 mm tumor motion range and with/without adjusting for phase shifts between the signals. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 11% (p = 0.12) from 0.53 to 0.59 and diaphragm-tumor correlation by 13% (p = 0.02) from 0.55 to 0.62. Compared to FB, AV biofeedback improved abdomen-tumor correlation by 17% (p = 0

  8. Motion sickness: a negative reinforcement model.

    Science.gov (United States)

    Bowins, Brad

    2010-01-15

    Theories pertaining to the "why" of motion sickness are in short supply relative to those detailing the "how." Considering the profoundly disturbing and dysfunctional symptoms of motion sickness, it is difficult to conceive of why this condition is so strongly biologically based in humans and most other mammalian and primate species. It is posited that motion sickness evolved as a potent negative reinforcement system designed to terminate motion involving sensory conflict or postural instability. During our evolution and that of many other species, motion of this type would have impaired evolutionary fitness via injury and/or signaling weakness and vulnerability to predators. The symptoms of motion sickness strongly motivate the individual to terminate the offending motion by early avoidance, cessation of movement, or removal of oneself from the source. The motion sickness negative reinforcement mechanism functions much like pain to strongly motivate evolutionary fitness preserving behavior. Alternative why theories focusing on the elimination of neurotoxins and the discouragement of motion programs yielding vestibular conflict suffer from several problems, foremost that neither can account for the rarity of motion sickness in infants and toddlers. The negative reinforcement model proposed here readily accounts for the absence of motion sickness in infants and toddlers, in that providing strong motivation to terminate aberrant motion does not make sense until a child is old enough to act on this motivation.

  9. Ground motions and its effects in accelerator design

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators

  10. Human motion simulation predictive dynamics

    CERN Document Server

    Abdel-Malek, Karim

    2013-01-01

    Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...

  11. The roles of non-retinotopic motions in visual search

    Directory of Open Access Journals (Sweden)

    Ryohei eNakayama

    2016-06-01

    Full Text Available In visual search, a moving target among stationary distracters is detected more rapidly and more efficiently than a static target among moving distracters. Here we examined how this search asymmetry depends on motion signals from three distinct coordinate system – retinal, relative, and spatiotopic (head/body-centered. Our search display consisted of a target element, distracters elements, and a fixation point tracked by observers. Each element was composed of a spatial carrier grating windowed by a Gaussian envelope, and the motions of carriers, windows, and fixation were manipulated independently and used in various combinations to decouple the respective effects of motion coordinates systems on visual search asymmetry. We found that retinal motion hardly contributes to reaction times and search slopes but that relative and spatiotopic motions contribute to them substantially. Results highlight the important roles of non-retinotopic motions for guiding observer attention in visual search.

  12. Recollection and unitization in associating actors with extrinsic and intrinsic motions.

    Science.gov (United States)

    Kersten, Alan W; Earles, Julie L; Berger, Johanna D

    2015-04-01

    Four experiments provide evidence for a distinction between 2 different kinds of motion representations. Extrinsic motions involve the path of an object with respect to an external frame of reference. Intrinsic motions involve the relative motions of the parts of an object. This research suggests that intrinsic motions are represented conjointly with information about the identities of the actors who perform them, whereas extrinsic motions are represented separately from identity information. Experiment 1 demonstrated that participants remembered which actor had performed a particular intrinsic motion better than they remembered which actor had performed a particular extrinsic motion. Experiment 2 replicated this effect with incidental encoding of actor information, suggesting that encoding intrinsic motions leads one to automatically encode identity information. The results of Experiments 3 and 4 were fit by Yonelinas's (1999) source-memory model to quantify the contributions of familiarity and recollection to memory for the actors who carried out the intrinsic and extrinsic motions. Successful performance with extrinsic motion items in Experiment 3 required participants to remember in which scene contexts an actor had appeared, whereas successful performance in Experiment 4 required participants to remember the exact path taken by an actor in each scene. In both experiments, discrimination of old and new combinations of actors and extrinsic motions relied strongly on recollection, suggesting independent but associated representations of actors and extrinsic motions. In contrast, participants discriminated old and new combinations of actors and intrinsic motions primarily on the basis of familiarity, suggesting unitized representations of actors and intrinsic motions. (c) 2015 APA, all rights reserved).

  13. Collective motion in behaviorally heterogeneous systems

    OpenAIRE

    Copenhagen, Katherine

    2017-01-01

    Collective motion is a widespread phenomenon in nature where individuals actively propel themselves, gather together and move as a group. Some examples of collective motion are bird flocks, fish schools, bacteria swarms, cell clusters, and crowds of people. Many models seek to understand the effects of activity in collective systems including things such as environmental disorder, density, and interaction details primarily at infinite size limits and with uniform populations. In this disserta...

  14. Interactions between motion and form processing in the human visual system.

    Science.gov (United States)

    Mather, George; Pavan, Andrea; Bellacosa Marotti, Rosilari; Campana, Gianluca; Casco, Clara

    2013-01-01

    The predominant view of motion and form processing in the human visual system assumes that these two attributes are handled by separate and independent modules. Motion processing involves filtering by direction-selective sensors, followed by integration to solve the aperture problem. Form processing involves filtering by orientation-selective and size-selective receptive fields, followed by integration to encode object shape. It has long been known that motion signals can influence form processing in the well-known Gestalt principle of common fate; texture elements which share a common motion property are grouped into a single contour or texture region. However, recent research in psychophysics and neuroscience indicates that the influence of form signals on motion processing is more extensive than previously thought. First, the salience and apparent direction of moving lines depends on how the local orientation and direction of motion combine to match the receptive field properties of motion-selective neurons. Second, orientation signals generated by "motion-streaks" influence motion processing; motion sensitivity, apparent direction and adaptation are affected by simultaneously present orientation signals. Third, form signals generated by human body shape influence biological motion processing, as revealed by studies using point-light motion stimuli. Thus, form-motion integration seems to occur at several different levels of cortical processing, from V1 to STS.

  15. Motion video analysis using planar parallax

    Science.gov (United States)

    Sawhney, Harpreet S.

    1994-04-01

    Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.

  16. Prediction of Motion Induced Image Degradation Using a Markerless Motion Tracker

    DEFF Research Database (Denmark)

    Olsen, Rasmus Munch; Johannesen, Helle Hjorth; Henriksen, Otto Mølby

    In this work a markerless motion tracker, TCL2, is used to predict image quality in 3D T1 weighted MPRAGE MRI brain scans. An experienced radiologist scored the image quality for 172 scans as being usable or not usable, i.e. if a repeated scan was required. Based on five motion parameters......, a classification algorithm was trained and an accuracy for identifying not usable images of 95.9% was obtained with a sensitivity of 91.7% and specificity of 96.3%. This work shows the feasibility of the markerless motion tracker for predicting image quality with a high accuracy....

  17. Contrast gain control in first- and second-order motion perception.

    Science.gov (United States)

    Lu, Z L; Sperling, G

    1996-12-01

    A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.

  18. Geodesic motion and confinement in Goedel's universe

    International Nuclear Information System (INIS)

    Novello, M.; Soares, I.D.; Tiomno, J.

    1982-01-01

    A complete study of geodesic motion in Goedel's universe, using the method of the Effective Potential is presented. It then emerges a clear physical picture of free motion and its stability in this universe. Geodesics of a large class have finite intervals in which the particle moves back in time (dt/ds [pt

  19. Filling gaps in visual motion for target capture

    Directory of Open Access Journals (Sweden)

    Gianfranco eBosco

    2015-02-01

    Full Text Available A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation.

  20. Filling gaps in visual motion for target capture

    Science.gov (United States)

    Bosco, Gianfranco; Delle Monache, Sergio; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka; Lacquaniti, Francesco

    2015-01-01

    A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation. PMID:25755637

  1. Filling gaps in visual motion for target capture.

    Science.gov (United States)

    Bosco, Gianfranco; Monache, Sergio Delle; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka; Lacquaniti, Francesco

    2015-01-01

    A remarkable challenge our brain must face constantly when interacting with the environment is represented by ambiguous and, at times, even missing sensory information. This is particularly compelling for visual information, being the main sensory system we rely upon to gather cues about the external world. It is not uncommon, for example, that objects catching our attention may disappear temporarily from view, occluded by visual obstacles in the foreground. Nevertheless, we are often able to keep our gaze on them throughout the occlusion or even catch them on the fly in the face of the transient lack of visual motion information. This implies that the brain can fill the gaps of missing sensory information by extrapolating the object motion through the occlusion. In recent years, much experimental evidence has been accumulated that both perceptual and motor processes exploit visual motion extrapolation mechanisms. Moreover, neurophysiological and neuroimaging studies have identified brain regions potentially involved in the predictive representation of the occluded target motion. Within this framework, ocular pursuit and manual interceptive behavior have proven to be useful experimental models for investigating visual extrapolation mechanisms. Studies in these fields have pointed out that visual motion extrapolation processes depend on manifold information related to short-term memory representations of the target motion before the occlusion, as well as to longer term representations derived from previous experience with the environment. We will review recent oculomotor and manual interception literature to provide up-to-date views on the neurophysiological underpinnings of visual motion extrapolation.

  2. Apparent diffusive motion of centrin foci in living cells: implications for diffusion-based motion in centriole duplication

    Science.gov (United States)

    Rafelski, Susanne M.; Keller, Lani C.; Alberts, Jonathan B.; Marshall, Wallace F.

    2011-04-01

    The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713-22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed.

  3. Modeling of earthquake ground motion in the frequency domain

    Science.gov (United States)

    Thrainsson, Hjortur

    In recent years, the utilization of time histories of earthquake ground motion has grown considerably in the design and analysis of civil structures. It is very unlikely, however, that recordings of earthquake ground motion will be available for all sites and conditions of interest. Hence, there is a need for efficient methods for the simulation and spatial interpolation of earthquake ground motion. In addition to providing estimates of the ground motion at a site using data from adjacent recording stations, spatially interpolated ground motions can also be used in design and analysis of long-span structures, such as bridges and pipelines, where differential movement is important. The objective of this research is to develop a methodology for rapid generation of horizontal earthquake ground motion at any site for a given region, based on readily available source, path and site characteristics, or (sparse) recordings. The research includes two main topics: (i) the simulation of earthquake ground motion at a given site, and (ii) the spatial interpolation of earthquake ground motion. In topic (i), models are developed to simulate acceleration time histories using the inverse discrete Fourier transform. The Fourier phase differences, defined as the difference in phase angle between adjacent frequency components, are simulated conditional on the Fourier amplitude. Uniformly processed recordings from recent California earthquakes are used to validate the simulation models, as well as to develop prediction formulas for the model parameters. The models developed in this research provide rapid simulation of earthquake ground motion over a wide range of magnitudes and distances, but they are not intended to replace more robust geophysical models. In topic (ii), a model is developed in which Fourier amplitudes and Fourier phase angles are interpolated separately. A simple dispersion relationship is included in the phase angle interpolation. The accuracy of the interpolation

  4. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-04-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in The Physics Teacher; however, the "Hoop Challenge" is a new setup not before described in TPT. In this article an experiment is illustrated to explore projectile motion in a fun and challenging manner that has been used with both high school and university students. With a few simple materials, students have a vested interest in being able to calculate the height of the projectile at a given distance from its launch site. They also have an exciting visual demonstration of projectile motion when the lab is over.

  5. Motion compensated digital tomosynthesis

    NARCIS (Netherlands)

    van der Reijden, Anneke; van Herk, Marcel; Sonke, Jan-Jakob

    2013-01-01

    Digital tomosynthesis (DTS) is a limited angle image reconstruction method for cone beam projections that offers patient surveillance capabilities during VMAT based SBRT delivery. Motion compensation (MC) has the potential to mitigate motion artifacts caused by respiratory motion, such as blur. The

  6. Biological Motion Perception in Autism

    Directory of Open Access Journals (Sweden)

    J Cusack

    2011-04-01

    Full Text Available Typically developing adults can readily recognize human actions, even when conveyed to them via point-like markers placed on the body of the actor (Johansson, 1973. Previous research has suggested that children affected by autism spectrum disorder (ASD are not equally sensitive to this type of visual information (Blake et al, 2003, but it remains unknown why ASD would impact the ability to perceive biological motion. We present evidence which looks at how adolescents and adults with autism are affected by specific factors which are important in biological motion perception, such as (eg, inter-agent synchronicity, upright/inverted, etc.

  7. Hand motion modeling for psychology analysis in job interview using optical flow-history motion image: OF-HMI

    Science.gov (United States)

    Khalifa, Intissar; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    To survive the competition, companies always think about having the best employees. The selection is depended on the answers to the questions of the interviewer and the behavior of the candidate during the interview session. The study of this behavior is always based on a psychological analysis of the movements accompanying the answers and discussions. Few techniques are proposed until today to analyze automatically candidate's non verbal behavior. This paper is a part of a work psychology recognition system; it concentrates in spontaneous hand gesture which is very significant in interviews according to psychologists. We propose motion history representation of hand based on an hybrid approach that merges optical flow and history motion images. The optical flow technique is used firstly to detect hand motions in each frame of a video sequence. Secondly, we use the history motion images (HMI) to accumulate the output of the optical flow in order to have finally a good representation of the hand`s local movement in a global temporal template.

  8. Robust motion estimation using connected operators

    OpenAIRE

    Salembier Clairon, Philippe Jean; Sanson, H

    1997-01-01

    This paper discusses the use of connected operators for robust motion estimation The proposed strategy involves a motion estimation step extracting the dominant motion and a ltering step relying on connected operators that remove objects that do not fol low the dominant motion. These two steps are iterated in order to obtain an accurate motion estimation and a precise de nition of the objects fol lowing this motion This strategy can be applied on the entire frame or on individual connected c...

  9. Improved frame-based estimation of head motion in PET brain imaging

    International Nuclear Information System (INIS)

    Mukherjee, J. M.; Lindsay, C.; King, M. A.; Licho, R.; Mukherjee, A.; Olivier, P.; Shao, L.

    2016-01-01

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  10. Improved frame-based estimation of head motion in PET brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.; Licho, R. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Mukherjee, A. [Aware, Inc., Bedford, Massachusetts 01730 (United States); Olivier, P. [Philips Medical Systems, Cleveland, Ohio 44143 (United States); Shao, L. [ViewRay, Oakwood Village, Ohio 44146 (United States)

    2016-05-15

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  11. WE-G-18C-06: Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, J; Zheng, C; Czito, B; Palta, M; Yin, F [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Wang, H [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Bashir, M [Department of Radiology, Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: To investigate whether diaphragm motion is a good surrogate for liver tumor motion by comparing their motion trajectories obtained from cine-MRI. Methods: Fourteen patients with hepatocellular carcinoma (10/14) or liver metastases (4/14) undergoing radiation therapy were included in this study. All patients underwent single-slice 2D cine-MRI simulations across the center of the tumor in three orthogonal planes. Tumor and diaphragm motion trajectories in the superior-inferior (SI), anteriorposterior (AP), and medial-lateral (ML) directions were obtained using the normalized cross-correlation based tracking technique. Agreement between tumor and diaphragm motions was assessed by calculating the phase difference percentage (PDP), intra-class correlation coefficient (ICC), Bland-Altman analysis (Diffs) and paired t-test. The distance (D) between tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between tumor and diaphragm motions. Results: Of all patients, the means (±standard deviations) of PDP were 7.1 (±1.1)%, 4.5 (±0.5)% and 17.5 (±4.5)% in the SI, AP and ML directions, respectively. The means of ICC were 0.98 (±0.02), 0.97 (±0.02), and 0.08 (±0.06) in the SI, AP and ML directions, respectively. The Diffs were 2.8 (±1.4) mm, 2.4 (±1.1) mm, and 2.2 (±0.5) mm in the SI, AP and ML directions, respectively. The p-values derived from the paired t-test were < 0.02 in SI and AP directions, whereas were > 0.58 in ML direction primarily due to the small motion in ML direction. Tumor and diaphragmatic motion had high concordance when the distance between the tumor and tracked diaphragm areas was small. Conclusion: Preliminary results showed that liver tumor motion had good correlations with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be a reliable surrogate for liver tumor motion. NIH (1R21CA165384-01A1), Golfers Against Cancer (GAC

  12. Synthesis of High-Frequency Ground Motion Using Information Extracted from Low-Frequency Ground Motion

    Science.gov (United States)

    Iwaki, A.; Fujiwara, H.

    2012-12-01

    Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion

  13. Interactions between motion and form processing in the human visual system

    Directory of Open Access Journals (Sweden)

    George eMather

    2013-05-01

    Full Text Available The predominant view of motion and form processing in the human visual system assumes that these two attributes are handled by separate and independent modules. Motion processing involves filtering by direction-selective sensors, followed by integration to solve the aperture problem. Form processing involves filtering by orientation-selective and size-selective receptive fields, followed by integration to encode object shape. It has long been known that motion signals can influence form processing in the well-known Gestalt principle of common fate; texture elements which share a common motion property are grouped into a single contour or texture region. However recent research in psychophysics and neuroscience indicates that the influence of form signals on motion processing is more extensive than previously thought. First, the salience and apparent direction of moving lines depends on how the local orientation and direction of motion combine to match the receptive field properties of motion-selective neurons. Second, orientation signals generated by ‘motion-streaks’ influence motion processing; motion sensitivity, apparent direction and adaptation are affected by simultaneously present orientation signals. Third, form signals generated by human body shape influence biological motion processing, as revealed by studies using point-light motion stimuli. Thus form-motion integration seems to occur at several different levels of cortical processing, from V1 to STS.

  14. Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography

    Science.gov (United States)

    Hahn, Bernadette N.

    2017-12-01

    A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.

  15. Direction detection thresholds of passive self-motion in artistic gymnasts.

    Science.gov (United States)

    Hartmann, Matthias; Haller, Katia; Moser, Ivan; Hossner, Ernst-Joachim; Mast, Fred W

    2014-04-01

    In this study, we compared direction detection thresholds of passive self-motion in the dark between artistic gymnasts and controls. Twenty-four professional female artistic gymnasts (ranging from 7 to 20 years) and age-matched controls were seated on a motion platform and asked to discriminate the direction of angular (yaw, pitch, roll) and linear (leftward-rightward) motion. Gymnasts showed lower thresholds for the linear leftward-rightward motion. Interestingly, there was no difference for the angular motions. These results show that the outstanding self-motion abilities in artistic gymnasts are not related to an overall higher sensitivity in self-motion perception. With respect to vestibular processing, our results suggest that gymnastic expertise is exclusively linked to superior interpretation of otolith signals when no change in canal signals is present. In addition, thresholds were overall lower for the older (14-20 years) than for the younger (7-13 years) participants, indicating the maturation of vestibular sensitivity from childhood to adolescence.

  16. Cataclysmic variables in the SUPERBLINK proper motion survey

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Julie N.; Thorstensen, John R. [Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755-3528 (United States); Lépine, Sébastien, E-mail: jns@dartmouth.edu [Department of Physics and Astronomy, Georgia State University, 25 Park Place NE, Atlanta, GA 30303 (United States)

    2014-12-01

    We have discovered a new high proper motion cataclysmic variable (CV) in the SUPERBLINK proper motion survey, which is sensitive to stars with proper motions greater than 40 mas yr{sup −1}. This CV was selected for follow-up observations as part of a larger search for CVs selected based on proper motions and their near-UV−V and V−K{sub s} colors. We present spectroscopic observations from the 2.4 m Hiltner Telescope at MDM Observatory. The new CV's orbital period is near 96 minutes, its spectrum shows the double-peaked Balmer emission lines characteristic of quiescent dwarf novae, and its V magnitude is near 18.2. Additionally, we present a full list of known CVs in the SUPERBLINK catalog.

  17. Vertical Axis Rotational Motion Cues in Hovering Flight Simulation

    Science.gov (United States)

    Schroeder, Jeffrey A.; Johnson, Walter W.; Showman, Robert D. (Technical Monitor)

    1994-01-01

    A previous study that examined how yaw motion affected a pilot's ability to perform realistic hovering flight tasks indicated that any amount of pure yaw motion had little-to-no effect on pilot performance or opinion. In that experiment, pilots were located at the vehicle's center of rotation; thus lateral or longitudinal accelerations were absent. The purpose of the new study described here was to investigate further these unanticipated results for additional flight tasks, but with the introduction of linear accelerations associated with yaw rotations when the pilot is not at the center of rotation. The question of whether a yaw motion degree-of-freedom is necessary or not is important to government regulators who specify what simulator motions are necessary according to prescribed levels of simulator sophistication. Currently, specifies two levels of motion sophistication for flight simulators: full 6-degree-of-freedom and 3-degree-of-freedom. For the less sophisticated simulator, the assumed three degrees of freedom are pitch, roll, and heave. If other degrees of freedom are selected, which are different f rom these three, they must be qualified on a case-by-case basis. Picking the assumed three axes is reasonable and based upon experience, but little empirical data are available to support the selection of critical axes. Thus, the research described here is aimed at answering this question. The yaw and lateral degrees of freedom were selected to be examined first, and maneuvers were defined to uncouple these motions from changes in the gravity vector with respect to the pilot. This approach simplifies the problem to be examined. For this experiment, the NASA Ames Vertical Motion Simulator was used in a comprehensive investigation. The math model was an AH-64 Apache in hover, which was identified from flight test data and had previously been validated by several AH-64 pilots. The pilot's head was located 4.5 ft in front of the vehicle center of gravity, which is

  18. Homothetic motions in general relativity

    International Nuclear Information System (INIS)

    McIntosh, C.B.G.

    1976-01-01

    Properties of homothetic or self-similar motions in general relativity are examined with particular reference to vacuum and perfect-fluid space-times. The role of the homothetic bivector with components Hsub((a;b)) formed from the homothetic vector H is discussed in some detail. It is proved that a vacuum space-time only admits a nontrivial homothetic motion if the homothetic vector field is non-null and is not hypersurface orthogonal. As a subcase of a more general result it is shown that a perfect-fluid space-time cannot admit a non-trivial homothetic vector which is orthogonal to the fluid velocity 4-vector. (author)

  19. Tuning self-motion perception in virtual reality with visual illusions.

    Science.gov (United States)

    Bruder, Gerd; Steinicke, Frank; Wieland, Phil; Lappe, Markus

    2012-07-01

    Motion perception in immersive virtual environments significantly differs from the real world. For example, previous work has shown that users tend to underestimate travel distances in virtual environments (VEs). As a solution to this problem, researchers proposed to scale the mapped virtual camera motion relative to the tracked real-world movement of a user until real and virtual motion are perceived as equal, i.e., real-world movements could be mapped with a larger gain to the VE in order to compensate for the underestimation. However, introducing discrepancies between real and virtual motion can become a problem, in particular, due to misalignments of both worlds and distorted space cognition. In this paper, we describe a different approach that introduces apparent self-motion illusions by manipulating optic flow fields during movements in VEs. These manipulations can affect self-motion perception in VEs, but omit a quantitative discrepancy between real and virtual motions. In particular, we consider to which regions of the virtual view these apparent self-motion illusions can be applied, i.e., the ground plane or peripheral vision. Therefore, we introduce four illusions and show in experiments that optic flow manipulation can significantly affect users' self-motion judgments. Furthermore, we show that with such manipulations of optic flow fields the underestimation of travel distances can be compensated.

  20. String-like cooperative motion in homogeneous melting.

    Science.gov (United States)

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F

    2013-03-28

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static

  1. Analytical Analysis of Motion Separability

    Directory of Open Access Journals (Sweden)

    Marjan Hadian Jazi

    2013-01-01

    Full Text Available Motion segmentation is an important task in computer vision and several practical approaches have already been developed. A common approach to motion segmentation is to use the optical flow and formulate the segmentation problem using a linear approximation of the brightness constancy constraints. Although there are numerous solutions to solve this problem and their accuracies and reliabilities have been studied, the exact definition of the segmentation problem, its theoretical feasibility and the conditions for successful motion segmentation are yet to be derived. This paper presents a simplified theoretical framework for the prediction of feasibility, of segmentation of a two-dimensional linear equation system. A statistical definition of a separable motion (structure is presented and a relatively straightforward criterion for predicting the separability of two different motions in this framework is derived. The applicability of the proposed criterion for prediction of the existence of multiple motions in practice is examined using both synthetic and real image sequences. The prescribed separability criterion is useful in designing computer vision applications as it is solely based on the amount of relative motion and the scale of measurement noise.

  2. Visual search for motion-form conjunctions: is form discriminated within the motion system?

    Science.gov (United States)

    von Mühlenen, A; Müller, H J

    2001-06-01

    Motion-form conjunction search can be more efficient when the target is moving (a moving 45 degrees tilted line among moving vertical and stationary 45 degrees tilted lines) rather than stationary. This asymmetry may be due to aspects of form being discriminated within a motion system representing only moving items, whereas discrimination of stationary items relies on a static form system (J. Driver & P. McLeod, 1992). Alternatively, it may be due to search exploiting differential motion velocity and direction signals generated by the moving-target and distractor lines. To decide between these alternatives, 4 experiments systematically varied the motion-signal information conveyed by the moving target and distractors while keeping their form difference salient. Moving-target search was found to be facilitated only when differential motion-signal information was available. Thus, there is no need to assume that form is discriminated within the motion system.

  3. Equations of motion in relativistic gravity

    CERN Document Server

    Lämmerzahl, Claus; Schutz, Bernard

    2015-01-01

     The present volume aims to be a comprehensive survey on the derivation of the equations of motion, both in General Relativity as well as in alternative gravity theories. The topics covered range from the description of test bodies, to self-gravitating (heavy) bodies, to current and future observations. Emphasis is put on the coverage of various approximation methods (e.g., multipolar, post-Newtonian, self-force methods) which are extensively used in the context of the relativistic problem of motion. Applications discussed in this volume range from the motion of binary systems -- and the gravitational waves emitted by such systems -- to observations of the galactic center. In particular the impact of choices at a fundamental theoretical level on the interpretation of experiments is highlighted. This book provides a broad and up-do-date status report, which will not only be of value for the experts working in this field, but also may serve as a guideline for students with background in General Relativity who ...

  4. 19 CFR 210.26 - Other motions.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Other motions. 210.26 Section 210.26 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Motions § 210.26 Other motions. Motions pertaining to discovery shall be filed in...

  5. Wobbling motion in high spin states

    International Nuclear Information System (INIS)

    Onishi, Naoki

    1982-01-01

    By generalizing the cranking model, interwoven motions of collective and non-collective rotation of nuclei are treated as three dimensional non-uniform rotations including precession and wobbling. Classical trajectories are obtained for the + j vector + = 30 h/2π sphere. A method of quantization for wobbling motions is discussed and is applied to estimate excitation energies. (author)

  6. Real-time motion-adaptive-optimization (MAO) in TomoTherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weiguo; Chen Mingli; Ruchala, Kenneth J; Chen Quan; Olivera, Gustavo H [TomoTherapy Inc., 1240 Deming Way, Madison, WI (United States); Langen, Katja M; Kupelian, Patrick A [MD Anderson Cancer Center-Orlando, Orlando, FL (United States)], E-mail: wlu@tomotherapy.com

    2009-07-21

    IMRT delivery follows a planned leaf sequence, which is optimized before treatment delivery. However, it is hard to model real-time variations, such as respiration, in the planning procedure. In this paper, we propose a negative feedback system of IMRT delivery that incorporates real-time optimization to account for intra-fraction motion. Specifically, we developed a feasible workflow of real-time motion-adaptive-optimization (MAO) for TomoTherapy delivery. TomoTherapy delivery is characterized by thousands of projections with a fast projection rate and ultra-fast binary leaf motion. The technique of MAO-guided delivery calculates (i) the motion-encoded dose that has been delivered up to any given projection during the delivery and (ii) the future dose that will be delivered based on the estimated motion probability and future fluence map. These two pieces of information are then used to optimize the leaf open time of the upcoming projection right before its delivery. It consists of several real-time procedures, including 'motion detection and prediction', 'delivered dose accumulation', 'future dose estimation' and 'projection optimization'. Real-time MAO requires that all procedures are executed in time less than the duration of a projection. We implemented and tested this technique using a TomoTherapy (registered) research system. The MAO calculation took about 100 ms per projection. We calculated and compared MAO-guided delivery with two other types of delivery, motion-without-compensation delivery (MD) and static delivery (SD), using simulated 1D cases, real TomoTherapy plans and the motion traces from clinical lung and prostate patients. The results showed that the proposed technique effectively compensated for motion errors of all test cases. Dose distributions and DVHs of MAO-guided delivery approached those of SD, for regular and irregular respiration with a peak-to-peak amplitude of 3 cm, and for medium and large

  7. Real-time motion-adaptive-optimization (MAO) in TomoTherapy

    International Nuclear Information System (INIS)

    Lu Weiguo; Chen Mingli; Ruchala, Kenneth J; Chen Quan; Olivera, Gustavo H; Langen, Katja M; Kupelian, Patrick A

    2009-01-01

    IMRT delivery follows a planned leaf sequence, which is optimized before treatment delivery. However, it is hard to model real-time variations, such as respiration, in the planning procedure. In this paper, we propose a negative feedback system of IMRT delivery that incorporates real-time optimization to account for intra-fraction motion. Specifically, we developed a feasible workflow of real-time motion-adaptive-optimization (MAO) for TomoTherapy delivery. TomoTherapy delivery is characterized by thousands of projections with a fast projection rate and ultra-fast binary leaf motion. The technique of MAO-guided delivery calculates (i) the motion-encoded dose that has been delivered up to any given projection during the delivery and (ii) the future dose that will be delivered based on the estimated motion probability and future fluence map. These two pieces of information are then used to optimize the leaf open time of the upcoming projection right before its delivery. It consists of several real-time procedures, including 'motion detection and prediction', 'delivered dose accumulation', 'future dose estimation' and 'projection optimization'. Real-time MAO requires that all procedures are executed in time less than the duration of a projection. We implemented and tested this technique using a TomoTherapy (registered) research system. The MAO calculation took about 100 ms per projection. We calculated and compared MAO-guided delivery with two other types of delivery, motion-without-compensation delivery (MD) and static delivery (SD), using simulated 1D cases, real TomoTherapy plans and the motion traces from clinical lung and prostate patients. The results showed that the proposed technique effectively compensated for motion errors of all test cases. Dose distributions and DVHs of MAO-guided delivery approached those of SD, for regular and irregular respiration with a peak-to-peak amplitude of 3 cm, and for medium and large prostate motions. The results conceptually

  8. Helicopter flight simulation motion platform requirements

    Science.gov (United States)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  9. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  10. Images of illusory motion in primary visual cortex

    DEFF Research Database (Denmark)

    Larsen, A.; Madsen, Kristoffer Hougaard; Lund, T.E.

    2006-01-01

    Illusory motion can be generated by successively flashing a stationary visual stimulus in two spatial locations separated by several degrees of visual angle. In appropriate conditions, the apparent motion is indistinguishable from real motion: The observer experiences a luminous object traversing...... a continuous path from one stimulus location to the other through intervening positions where no physical stimuli exist. The phenomenon has been extensively investigated for nearly a century but little is known about its neurophysiological foundation. Here we present images of activations in the primary visual...

  11. Apparent diffusive motion of centrin foci in living cells: implications for diffusion-based motion in centriole duplication

    International Nuclear Information System (INIS)

    Rafelski, Susanne M; Keller, Lani C; Marshall, Wallace F; Alberts, Jonathan B

    2011-01-01

    The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713–22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed

  12. Passive containment system in high earthquake motion

    International Nuclear Information System (INIS)

    Kleimola, F.W.; Falls, O.B. Jr.

    1977-01-01

    High earthquake motion necessitates major design modifications in the complex of plant structures, systems and components in a nuclear power plant. Distinctive features imposed by seismic category, safety class and quality classification requirements for the high seismic ground acceleration loadings significantly reflect in plant costs. The design features in the Passive Containment System (PCS) responding to high earthquake ground motion are described

  13. The Motion Of A Deformable Body In - Bounded Fluid

    International Nuclear Information System (INIS)

    Galpert, A.R.; Miloh, T.

    1998-01-01

    The Hamiltonian formalism for the motion of a deformable body in an inviscid irrotational fluid is generalized for the case of the motion in a bounded fluid. We found that the presence of the boundaries in a liquid leads to the chaotization of the body's motion. The ('memory' effect connected with a free surface boundary condition is also accounted for

  14. A motion algorithm to extract physical and motion parameters of mobile targets from cone-beam computed tomographic images.

    Science.gov (United States)

    Alsbou, Nesreen; Ahmad, Salahuddin; Ali, Imad

    2016-05-17

    A motion algorithm has been developed to extract length, CT number level and motion amplitude of a mobile target from cone-beam CT (CBCT) images. The algorithm uses three measurable parameters: Apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm are tested with mobile targets having different well-known sizes that are made from tissue-equivalent gel which is inserted into a thorax phantom. The phantom moves sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0-20 mm. Using this motion algorithm, three unknown parameters are extracted that include: Length of the target, CT number level, speed or motion amplitude for the mobile targets from CBCT images. The motion algorithm solves for the three unknown parameters using measured length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agrees with the measured lengths which are dependent on the target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, the target length and motion amplitude. Motion frequency and phase do not affect the elongation and CT number distribution of the mobile target and could not be determined. A motion algorithm has been developed to extract three parameters that include length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement of motion tracking and sorting of the images into different breathing phases. The motion model developed here works well for tumors that have simple shapes, high contrast relative to surrounding tissues and move nearly in regular motion pattern

  15. Evolution of motion uncertainty in rectal cancer: implications for adaptive radiotherapy

    Science.gov (United States)

    Kleijnen, Jean-Paul J. E.; van Asselen, Bram; Burbach, Johannes P. M.; Intven, Martijn; Philippens, Marielle E. P.; Reerink, Onne; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2016-01-01

    Reduction of motion uncertainty by applying adaptive radiotherapy strategies depends largely on the temporal behavior of this motion. To fully optimize adaptive strategies, insight into target motion is needed. The purpose of this study was to analyze stability and evolution in time of motion uncertainty of both the gross tumor volume (GTV) and clinical target volume (CTV) for patients with rectal cancer. We scanned 16 patients daily during one week, on a 1.5 T MRI scanner in treatment position, prior to each radiotherapy fraction. Single slice sagittal cine MRIs were made at the beginning, middle, and end of each scan session, for one minute at 2 Hz temporal resolution. GTV and CTV motion were determined by registering a delineated reference frame to time-points later in time. The 95th percentile of observed motion (dist95%) was taken as a measure of motion. The stability of motion in time was evaluated within each cine-MRI separately. The evolution of motion was investigated between the reference frame and the cine-MRIs of a single scan session and between the reference frame and the cine-MRIs of several days later in the course of treatment. This observed motion was then converted into a PTV-margin estimate. Within a one minute cine-MRI scan, motion was found to be stable and small. Independent of the time-point within the scan session, the average dist95% remains below 3.6 mm and 2.3 mm for CTV and GTV, respectively 90% of the time. We found similar motion over time intervals from 18 min to 4 days. When reducing the time interval from 18 min to 1 min, a large reduction in motion uncertainty is observed. A reduction in motion uncertainty, and thus the PTV-margin estimate, of 71% and 75% for CTV and tumor was observed, respectively. Time intervals of 15 and 30 s yield no further reduction in motion uncertainty compared to a 1 min time interval.

  16. Observing electron motion in molecules

    International Nuclear Information System (INIS)

    Chelkowski, S; Yudin, G L; Bandrauk, A D

    2006-01-01

    We study analytically the possibility for monitoring electron motion in a molecule using two ultrashort laser pulses. The first prepares a coherent superposition of two electronic molecular states whereas the second (attosecond pulse) photoionizes the molecule. We show that interesting information about electron dynamics can be obtained from measurement of the photoelectron spectra as a function of the time delay between two pulses. In particular, asymmetries in photoelectron angular distribution provide a simple signature of the electron motion within the initial time-dependent coherently coupled two molecular states. Both asymmetries and electron spectra show very strong two-centre interference patterns. We illustrate these effects using as an example a dissociating hydrogen molecular ion probed by the attosecond pulses

  17. 19 CFR 210.15 - Motions.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Motions. 210.15 Section 210.15 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Motions § 210.15 Motions. (a) Presentation and disposition. (1) During the period...

  18. Ion motion and conductivity in rubidium and cesium hexafluorotitanates

    International Nuclear Information System (INIS)

    Moskvich, Yu.N.; Cherkasov, B.I.; Sukhovskij, A.A.; Davidovich, R.L.; AN SSSR, Vladivostok. Inst. Khimii)

    1988-01-01

    Relaxation times for 19 F nuclei and electric conductivity in Rb 2 TiF 6 and Cs 2 TiF 6 polycrystals are measured. The parameters of reoriented anion motion and diffusion cation motion are determined according to the NMR data. The effect of phase transition to the cubic phase on the parameters of these motions are studied. High conductivity reaching values σ∼10 -2 -10 -3 Ohm -1 xm -1 is detected at high temperatures. The electric conductivity observed is shown to be caused by the diffusion motion of Rb + and Cs + cations

  19. TU-F-BRB-02: Motion Artifacts and Suppression in MRI

    International Nuclear Information System (INIS)

    Zhong, X.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  20. TU-F-BRB-02: Motion Artifacts and Suppression in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, X. [Siemens (Germany)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  1. Motion-compensated processing of image signals

    NARCIS (Netherlands)

    2010-01-01

    In a motion-compensated processing of images, input images are down-scaled (scl) to obtain down-scaled images, the down-scaled images are subjected to motion- compensated processing (ME UPC) to obtain motion-compensated images, the motion- compensated images are up-scaled (sc2) to obtain up-scaled

  2. COMPARISON OF BACKGROUND SUBTRACTION, SOBEL, ADAPTIVE MOTION DETECTION, FRAME DIFFERENCES, AND ACCUMULATIVE DIFFERENCES IMAGES ON MOTION DETECTION

    Directory of Open Access Journals (Sweden)

    Dara Incam Ramadhan

    2018-02-01

    Full Text Available Nowadays, digital image processing is not only used to recognize motionless objects, but also used to recognize motions objects on video. One use of moving object recognition on video is to detect motion, which implementation can be used on security cameras. Various methods used to detect motion have been developed so that in this research compared some motion detection methods, namely Background Substraction, Adaptive Motion Detection, Sobel, Frame Differences and Accumulative Differences Images (ADI. Each method has a different level of accuracy. In the background substraction method, the result obtained 86.1% accuracy in the room and 88.3% outdoors. In the sobel method the result of motion detection depends on the lighting conditions of the room being supervised. When the room is in bright condition, the accuracy of the system decreases and when the room is dark, the accuracy of the system increases with an accuracy of 80%. In the adaptive motion detection method, motion can be detected with a condition in camera visibility there is no object that is easy to move. In the frame difference method, testing on RBG image using average computation with threshold of 35 gives the best value. In the ADI method, the result of accuracy in motion detection reached 95.12%.

  3. Validation of strong-motion stochastic model using observed ground motion records in north-east India

    Directory of Open Access Journals (Sweden)

    Dipok K. Bora

    2016-03-01

    Full Text Available We focused on validation of applicability of semi-empirical technique (spectral models and stochastic simulation for the estimation of ground-motion characteristics in the northeastern region (NER of India. In the present study, it is assumed that the point source approximation in far field is valid. The one-dimensional stochastic point source seismological model of Boore (1983 (Boore, DM. 1983. Stochastic simulation of high frequency ground motions based on seismological models of the radiated spectra. Bulletin of Seismological Society of America, 73, 1865–1894. is used for modelling the acceleration time histories. Total ground-motion records of 30 earthquakes of magnitudes lying between MW 4.2 and 6.2 in NER India from March 2008 to April 2013 are used for this study. We considered peak ground acceleration (PGA and pseudospectral acceleration (response spectrum amplitudes with 5% damping ratio at three fundamental natural periods, namely: 0.3, 1.0, and 3.0 s. The spectral models, which work well for PGA, overestimate the pseudospectral acceleration. It seems that there is a strong influence of local site amplification and crustal attenuation (kappa, which control spectral amplitudes at different frequencies. The results would allow analysing regional peculiarities of ground-motion excitation and propagation and updating seismic hazard assessment, both the probabilistic and deterministic approaches.

  4. 6 CFR 13.28 - Motions.

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Motions. 13.28 Section 13.28 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROGRAM FRAUD CIVIL REMEDIES § 13.28 Motions. (a) Any application to the ALJ for an order or ruling will be by motion. Motions will state the relief...

  5. Trained neurons-based motion detection in optical camera communications

    Science.gov (United States)

    Teli, Shivani; Cahyadi, Willy Anugrah; Chung, Yeon Ho

    2018-04-01

    A concept of trained neurons-based motion detection (TNMD) in optical camera communications (OCC) is proposed. The proposed TNMD is based on neurons present in a neural network that perform repetitive analysis in order to provide efficient and reliable motion detection in OCC. This efficient motion detection can be considered another functionality of OCC in addition to two traditional functionalities of illumination and communication. To verify the proposed TNMD, the experiments were conducted in an indoor static downlink OCC, where a mobile phone front camera is employed as the receiver and an 8 × 8 red, green, and blue (RGB) light-emitting diode array as the transmitter. The motion is detected by observing the user's finger movement in the form of centroid through the OCC link via a camera. Unlike conventional trained neurons approaches, the proposed TNMD is trained not with motion itself but with centroid data samples, thus providing more accurate detection and far less complex detection algorithm. The experiment results demonstrate that the TNMD can detect all considered motions accurately with acceptable bit error rate (BER) performances at a transmission distance of up to 175 cm. In addition, while the TNMD is performed, a maximum data rate of 3.759 kbps over the OCC link is obtained. The OCC with the proposed TNMD combined can be considered an efficient indoor OCC system that provides illumination, communication, and motion detection in a convenient smart home environment.

  6. Deficient motion-defined and texture-defined figure-ground segregation in amblyopic children.

    Science.gov (United States)

    Wang, Jane; Ho, Cindy S; Giaschi, Deborah E

    2007-01-01

    Motion-defined form deficits in the fellow eye and the amblyopic eye of children with amblyopia implicate possible direction-selective motion processing or static figure-ground segregation deficits. Deficient motion-defined form perception in the fellow eye of amblyopic children may not be fully accounted for by a general motion processing deficit. This study investigates the contribution of figure-ground segregation deficits to the motion-defined form perception deficits in amblyopia. Performances of 6 amblyopic children (5 anisometropic, 1 anisostrabismic) and 32 control children with normal vision were assessed on motion-defined form, texture-defined form, and global motion tasks. Performance on motion-defined and texture-defined form tasks was significantly worse in amblyopic children than in control children. Performance on global motion tasks was not significantly different between the 2 groups. Faulty figure-ground segregation mechanisms are likely responsible for the observed motion-defined form perception deficits in amblyopia.

  7. Test-particle motion in the nonsymmetric gravitation theory

    International Nuclear Information System (INIS)

    Moffat, J.W.

    1987-01-01

    A derivation of the motion of test particles in the nonsymmetric gravitational theory (NGT) is given using the field equations in the presence of matter. The motion of the particle is governed by the Christoffel symbols, which are formed from the symmetric part of the fundamental tensor g/sub μ//sub ν/, as well as by a tensorial piece determined by the skew part of the contracted curvature tensor R/sub μ//sub ν/. Given the energy-momentum tensor for a perfect fluid and the definition of a test particle in the NGT, the equations of motion follow from the conservation laws. The tensorial piece in the equations of motion describes a new force in nature that acts on the conserved charge in a body. Particles that carry this new charge do not follow geodesic world lines in the NGT, whereas photons do satisfy geodesic equations of motion and the equivalence principle of general relativity. Astronomical predictions, based on the exact static, spherically symmetric solution of the field equations in a vacuum and the test-particle equations of motion, are derived in detail. The maximally extended coordinates that remove the event-horizon singularities in the static, spherically symmetric solution are presented. It is shown how an inward radially falling test particle can be prevented from forming an event horizon for a value greater than a specified critical value of the source charge. If a test particle does fall through an event horizon, then it must continue to fall until it reaches the singularity at r = 0

  8. Test-particle motion in the nonsymmetric gravitation theory

    Science.gov (United States)

    Moffat, J. W.

    1987-06-01

    A derivation of the motion of test particles in the nonsymmetric gravitational theory (NGT) is given using the field equations in the presence of matter. The motion of the particle is governed by the Christoffel symbols, which are formed from the symmetric part of the fundamental tensor gμν, as well as by a tensorial piece determined by the skew part of the contracted curvature tensor Rμν. Given the energy-momentum tensor for a perfect fluid and the definition of a test particle in the NGT, the equations of motion follow from the conservation laws. The tensorial piece in the equations of motion describes a new force in nature that acts on the conserved charge in a body. Particles that carry this new charge do not follow geodesic world lines in the NGT, whereas photons do satisfy geodesic equations of motion and the equivalence principle of general relativity. Astronomical predictions, based on the exact static, spherically symmetric solution of the field equations in a vacuum and the test-particle equations of motion, are derived in detail. The maximally extended coordinates that remove the event-horizon singularities in the static, spherically symmetric solution are presented. It is shown how an inward radially falling test particle can be prevented from forming an event horizon for a value greater than a specified critical value of the source charge. If a test particle does fall through an event horizon, then it must continue to fall until it reaches the singularity at r=0.

  9. Monitoring internal organ motion with continuous wave radar in CT

    International Nuclear Information System (INIS)

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-01-01

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the

  10. Latent stereopsis for motion in depth in strabismic amblyopia.

    Science.gov (United States)

    Hess, Robert F; Mansouri, Behzad; Thompson, Benjamin; Gheorghiu, Elena

    2009-10-01

    To investigate the residual stereo function of a group of 15 patients with strabismic amblyopia, by using motion-in-depth stimuli that allow discrimination of contributions from local disparity as opposed to those from local velocity mechanisms as a function of the rate of depth change. The stereo performance (percentage correct) was measured as a function of the rate of depth change for dynamic random dot stimuli that were either temporally correlated or uncorrelated. Residual stereoscopic function was demonstrated for motion in depth based on local disparity information in 2 of the 15 observers with strabismic amblyopia. The use of a neutral-density (ND) filter in front of the fixing eye enhanced motion-in-depth performance in four subjects randomly selected from the group that originally displayed only chance performance. This finding was true across temporal rate and for correlated and uncorrelated stimuli, suggesting that it was disparity based. The opposite occurred in a group of normal subjects. In a separate experiment, the hypothesis was that the beneficial effect of the ND filter is due to its contrast and/or mean luminance-reducing effects rather than any interocular time delay that it may introduce and that it is specific to motion-in-depth performance, as similar improvements were not found for static stereopsis. A small proportion of observers with strabismic amblyopia exhibit residual performance for motion in depth, and it is disparity based. Furthermore, some observers with strabismic amblyopia who do not display any significant stereo performance for motion in depth under normal binocular viewing may display above-chance stereo performance if the degree of interocular suppression is reduced. The authors term this phenomenon latent stereopsis.

  11. Motion Analysis of Thumb in Cellular Phone Use

    Directory of Open Access Journals (Sweden)

    Naotaka Sakai

    2010-01-01

    Full Text Available The thumb motion of 10 normal subjects during cellular phone use was measured using a reflective marker detection system to compare the maximum, minimum and range of flexion angles of the interphalangeal (IP, metacarpophalangeal (MP and carpometacarpal (CM joints. Two micro-reflective markers 3 mm in diameter were each placed on the dorsal surface of the distal phalanx, basal phalanx and metacarpal bone of the thumb. Three markers were placed on the dorsal hand in order to define the dorsal hand plane. Each subject pushed the 12 keys of a folding cellular phone with an 85-mm-long and 40-mm-wide keypad, sequentially from ‘1’ to ‘#’, and the pushing motion was recorded by six infrared video cameras for 12 seconds, using the VICON 612 system. The mean maximum flexion angle of the MP joint was significantly (p < .05 larger than the CM joint, and the mean minimum flexion angle of the CM joint was significantly (p < .01 smaller than the IP and MP joints. The mean range of motion of the IP joint was significantly (p < .05 larger than the MP and the CM joints. In a comparison of different key-pushing motions, only the CM joint was significantly (p < .05 larger in its range of motion. In conclusion, thumb motion on pushing the keys of the cellular phone was produced mainly by the MP and the CM joints. In addition, the ability to reach keys in different areas of the cellular phone keypad is regulated by changing the flexion angle of the CM joint.

  12. Energy Optimal Trajectories in Human Arm Motion Aiming for Assistive Robots

    Directory of Open Access Journals (Sweden)

    Lelai Zhou

    2017-01-01

    Full Text Available The energy expenditure in human arm has been of great interests for seeking optimal human arm trajectories. This paper presents a new way for calculating metabolic energy consumption of human arm motions. The purpose is to reveal the relationship between the energy consumption and the trajectory of arm motion, and further, the acceleration and arm orientation contributions. Human arm motion in horizontal plane is investigated by virtue of Qualisys motion capture system. The motion data is post-processed by a biomechanical model to obtain the metabolic expenditure. Results on the arm motion kinematics, dynamics and metabolic energy consumption, are included.

  13. The Application of Leap Motion in Astronaut Virtual Training

    Science.gov (United States)

    Qingchao, Xie; Jiangang, Chao

    2017-03-01

    With the development of computer vision, virtual reality has been applied in astronaut virtual training. As an advanced optic equipment to track hand, Leap Motion can provide precise and fluid tracking of hands. Leap Motion is suitable to be used as gesture input device in astronaut virtual training. This paper built an astronaut virtual training based Leap Motion, and established the mathematics model of hands occlusion. At last the ability of Leap Motion to handle occlusion was analysed. A virtual assembly simulation platform was developed for astronaut training, and occlusion gesture would influence the recognition process. The experimental result can guide astronaut virtual training.

  14. Coupled transverse motion

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-01-01

    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs

  15. Digital ranges of motion: normal values in young adults.

    Science.gov (United States)

    Mallon, W J; Brown, H R; Nunley, J A

    1991-09-01

    Analysis of the range of motion of fingers was done in young (eighteen to thirty-five year old) adult volunteers with no history of previous injury to their hands. The data show that there are slight differences between the individual digits. Notably, metacarpophalangeal flexion and total active motion increase linearly in proceeding from the index to the small finger. There were also minor differences in comparing sexes. Women have greater extension at the metacarpophalangeal joint in both active and passive motion and have a greater total active motion at all digits as a result. A significant tenodesis effect was found at the distal interphalangeal joint in normal subjects. No differences were found that could be attributable to handedness.

  16. Terahertz Generation & Vortex Motion Control in Superconductors

    Science.gov (United States)

    Nori, Franco

    2005-03-01

    A grand challenge is to controllably generate electromagnetic waves in layered superconducting compounds because of its Terahertz frequency range. We propose [1] four experimentally realizable devices for generating continuous and pulsed THz radiation in a controllable frequency range. We also describe [2-4] several novel devices for controlling the motion of vortices in superconductors, including a reversible rectifier made of a magnetic-superconducting hybrid structure [4]. Finally, we summarize a study [5] of the friction force felt by moving vortices. 1) S. Savel'ev, V. Yampol'skii, A. Rakhmanov, F. Nori, Tunable Terahertz radiation from Josephson vortices, preprint 2) S. Savel'ev and F. Nori, Experimentally realizable devices for controlling the motion of magnetic flux quanta, Nature Mat. 1, 179 (2002) 3) S. Savel'ev, F. Marchesoni, F. Nori, Manipulating small particles, PRL 92, 160602 (2004); B. Zhu, F. Marchesoni, F. Nori, Controlling the motion of magnetic flux quanta, PRL 92, 180602 (2004) 4) J.E. Villegas, et al., Reversible Rectifier that Controls the Motion of Magnetic Flux Quanta, Science 302, 1188 (2003) 5) A. Maeda, et al., Nano-scale friction: kinetic friction of magnetic flux quanta and charge density waves, preprint

  17. Large proper motions in the Orion nebula

    International Nuclear Information System (INIS)

    Cudworth, K.M.; Stone, R.C.

    1977-01-01

    Several nebular features, as well as one faint star, with large proper motions were identified within the Orion nebula. The measured proper motions correspond to tangential velocities of up to approximately 70 km sec -1 . One new probable variable star was also found

  18. Estimating Vertical Land Motion in the Chesapeake Bay

    Science.gov (United States)

    Houttuijn Bloemendaal, L.; Hensel, P.

    2017-12-01

    This study aimed to provide a modern measurement of subsidence in the Chesapeake Bay region and establish a methodology for measuring vertical land motion using static GPS, a cheaper alternative to InSAR or classical leveling. Vertical land motion in this area is of particular concern because tide gages are showing up to 5 mm/yr of local, relative sea level rise. While a component of this rate is the actual eustatic sea level rise itself, part of the trend may also be vertical land motion, in which subsidence exacerbates the effects of actual changes in sea level. Parts of this region are already experiencing an increase in the frequency and magnitude of near-shore coastal flooding, but the last comprehensive study of vertical land motion in this area was conducted by NOAA in 1974 (Holdahl & Morrison) using repeat leveled lines. More recent measures of vertical land motion can help inform efforts on resilience to sea level rise, such as in the Hampton Roads area. This study used measured GPS-derived vertical heights in conjunction with legacy GPS data to calculate rates of vertical motion at several points in time for a selection of benchmarks scattered throughout the region. Seventeen marks in the stable Piedmont area and in the areas suspected of subsidence in the Coastal Plain were selected for the analysis. Results indicate a significant difference between the rates of vertical motion in the Piedmont and Coastal Plain, with a mean rate of -4.10 mm/yr in the Coastal Plain and 0.15 mm/yr in the Piedmont. The rates indicate particularly severe subsidence at the southern Delmarva Peninsula coast and the Hampton-Roads area, with a mean rate of -6.57 mm/yr in that region. By knowing local rates of subsidence as opposed to sea level change itself, coastal managers may make better informed decisions regarding natural resource use, such as deciding whether or not to reduce subsurface fluid withdrawals or to consider injecting treated water back into the aquifer to slow

  19. Interpersonal Coordination of Head Motion in Distressed Couples

    Science.gov (United States)

    Hammal, Zakia; Cohn, Jeffrey F.; George, David T.

    2015-01-01

    In automatic emotional expression analysis, head motion has been considered mostly a nuisance variable, something to control when extracting features for action unit or expression detection. As an initial step toward understanding the contribution of head motion to emotion communication, we investigated the interpersonal coordination of rigid head motion in intimate couples with a history of interpersonal violence. Episodes of conflict and non-conflict were elicited in dyadic interaction tasks and validated using linguistic criteria. Head motion parameters were analyzed using Student’s paired t-tests; actor-partner analyses to model mutual influence within couples; and windowed cross-correlation to reveal dynamics of change in direction of influence over time. Partners’ RMS angular displacement for yaw and RMS angular velocity for pitch and yaw each demonstrated strong mutual influence between partners. Partners’ RMS angular displacement for pitch was higher during conflict. In both conflict and non-conflict, head angular displacement and angular velocity for pitch and yaw were strongly correlated, with frequent shifts in lead-lag relationships. The overall amount of coordination between partners’ head movement was more highly correlated during non-conflict compared with conflict interaction. While conflict increased head motion, it served to attenuate interpersonal coordination. PMID:26167256

  20. Characteristics of near-field earthquake ground motion

    International Nuclear Information System (INIS)

    Kim, H. K.; Choi, I. G.; Jeon, Y. S.; Seo, J. M.

    2002-01-01

    The near-field ground motions exhibit special response characteristics that are different from those of ordinary ground motions in the velocity and displacement response. This study first examines the characteristics of near-field ground motion depending on fault directivity and fault normal and parallel component. And the response spectra of the near field ground motion are statistically processed, and are compared with the Regulatory Guide 1.60 spectrum that is present design spectrum of the nuclear power plant. The response spectrum of the near filed ground motions shows large spectral velocity and displacement in the low frequency range. The spectral accelerations of near field ground motion are greatly amplified in the high frequency range for the rock site motions, and in the low frequency range for the soil site motions. As a result, the near field ground motion effects should be considered in the seismic design and seismic safety evaluation of the nuclear power plant structures and equipment

  1. Temporal logic motion planning

    CSIR Research Space (South Africa)

    Seotsanyana, M

    2010-01-01

    Full Text Available In this paper, a critical review on temporal logic motion planning is presented. The review paper aims to address the following problems: (a) In a realistic situation, the motion planning problem is carried out in real-time, in a dynamic, uncertain...

  2. Reynolds number scaling of straining motions in turbulence

    Science.gov (United States)

    Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.

    2017-11-01

    Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.

  3. Measurements of boat motion in waves at Durban harbour for qualitative validation of motion model

    CSIR Research Space (South Africa)

    Mosikare, OR

    2010-09-01

    Full Text Available in Waves at Durban Harbour for Qualitative Validation of Motion Model O.R. Mosikare1,2, N.J. Theron1, W. Van der Molen 1 University of Pretoria, South Africa, 0001 2Council for Scientific and Industrial Research, Meiring Naude Rd, Brummeria, 0001... stream_source_info Mosikare_2010.pdf.txt stream_content_type text/plain stream_size 3033 Content-Encoding UTF-8 stream_name Mosikare_2010.pdf.txt Content-Type text/plain; charset=UTF-8 Measurements of Boat Motion...

  4. Distinguishing advective and powered motion in self-propelled colloids

    Science.gov (United States)

    Byun, Young-Moo; Lammert, Paul E.; Hong, Yiying; Sen, Ayusman; Crespi, Vincent H.

    2017-11-01

    Self-powered motion in catalytic colloidal particles provides a compelling example of active matter, i.e. systems that engage in single-particle and collective behavior far from equilibrium. The long-time, long-distance behavior of such systems is of particular interest, since it connects their individual micro-scale behavior to macro-scale phenomena. In such analyses, it is important to distinguish motion due to subtle advective effects—which also has long time scales and length scales—from long-timescale phenomena that derive from intrinsically powered motion. Here, we develop a methodology to analyze the statistical properties of the translational and rotational motions of powered colloids to distinguish, for example, active chemotaxis from passive advection by bulk flow.

  5. General principles in motion vision: color blindness of object motion depends on pattern velocity in honeybee and goldfish.

    Science.gov (United States)

    Stojcev, Maja; Radtke, Nils; D'Amaro, Daniele; Dyer, Adrian G; Neumeyer, Christa

    2011-07-01

    Visual systems can undergo striking adaptations to specific visual environments during evolution, but they can also be very "conservative." This seems to be the case in motion vision, which is surprisingly similar in species as distant as honeybee and goldfish. In both visual systems, motion vision measured with the optomotor response is color blind and mediated by one photoreceptor type only. Here, we ask whether this is also the case if the moving stimulus is restricted to a small part of the visual field, and test what influence velocity may have on chromatic motion perception. Honeybees were trained to discriminate between clockwise- and counterclockwise-rotating sector disks. Six types of disk stimuli differing in green receptor contrast were tested using three different rotational velocities. When green receptor contrast was at a minimum, bees were able to discriminate rotation directions with all colored disks at slow velocities of 6 and 12 Hz contrast frequency but not with a relatively high velocity of 24 Hz. In the goldfish experiment, the animals were trained to detect a moving red or blue disk presented in a green surround. Discrimination ability between this stimulus and a homogenous green background was poor when the M-cone type was not or only slightly modulated considering high stimulus velocity (7 cm/s). However, discrimination was improved with slower stimulus velocities (4 and 2 cm/s). These behavioral results indicate that there is potentially an object motion system in both honeybee and goldfish, which is able to incorporate color information at relatively low velocities but is color blind with higher speed. We thus propose that both honeybees and goldfish have multiple subsystems of object motion, which include achromatic as well as chromatic processing.

  6. Linearized motion estimation for articulated planes.

    Science.gov (United States)

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  7. A multicentre 'end to end' dosimetry audit of motion management (4DCT-defined motion envelope) in radiotherapy.

    Science.gov (United States)

    Palmer, Antony L; Nash, David; Kearton, John R; Jafari, Shakardokht M; Muscat, Sarah

    2017-12-01

    External dosimetry audit is valuable for the assurance of radiotherapy quality. However, motion management has not been rigorously audited, despite its complexity and importance for accuracy. We describe the first end-to-end dosimetry audit for non-SABR (stereotactic ablative body radiotherapy) lung treatments, measuring dose accumulation in a moving target, and assessing adequacy of target dose coverage. A respiratory motion lung-phantom with custom-designed insert was used. Dose was measured with radiochromic film, employing triple-channel dosimetry and uncertainty reduction. The host's 4DCT scan, outlining and planning techniques were used. Measurements with the phantom static and then moving at treatment delivery separated inherent treatment uncertainties from motion effects. Calculated and measured dose distributions were compared by isodose overlay, gamma analysis, and we introduce the concept of 'dose plane histograms' for clinically relevant interpretation of film dosimetry. 12 radiotherapy centres and 19 plans were audited: conformal, IMRT (intensity modulated radiotherapy) and VMAT (volumetric modulated radiotherapy). Excellent agreement between planned and static-phantom results were seen (mean gamma pass 98.7% at 3% 2 mm). Dose blurring was evident in the moving-phantom measurements (mean gamma pass 88.2% at 3% 2 mm). Planning techniques for motion management were adequate to deliver the intended moving-target dose coverage. A novel, clinically-relevant, end-to-end dosimetry audit of motion management strategies in radiotherapy is reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Superluminal motion (review)

    Science.gov (United States)

    Malykin, G. B.; Romanets, E. A.

    2012-06-01

    Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.

  9. Measuring and weighing psychostasia in Q 6:37–38: Intertexts from the Old Testament

    Directory of Open Access Journals (Sweden)

    Llewellyn Howes

    2014-02-01

    Full Text Available This article is the first of three on the relationship between the Sayings Gospel Q and the ancient concept of ‘psychostasia,’ which is the ancient notion that a divine or supernatural figure weighed people’s souls when judging them. The ultimate goal of all three articles is to enhance our understanding of Q 6:37–38, as well as of the Q document as a whole. In the current article, attention is focused on intertexts from the Old Testament, and the occurrences therein of the word ‘measure’ and the concept of ‘psychostasia’. The implications of these results for our interpretation of Q 6:37–38 are briefly noted. A second (future article will focus on intertexts in apocryphal and pseudepigraphical writings from Second Temple Judaism dealing with ‘psychostasia’. A third study will ultimately spell out in more comprehensive detail the implications of the foregoing intertextual investigations on both our understanding of Q 6:37–38 and our understanding of the Sayings Gospel Q as a whole.

  10. Cell adhesion during bullet motion in capillaries.

    Science.gov (United States)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.

  11. Motion correction improves image quality of dGEMRIC in finger joints

    International Nuclear Information System (INIS)

    Miese, Falk; Kröpil, Patric; Ostendorf, Benedikt; Scherer, Axel; Buchbender, Christian; Quentin, Michael; Lanzman, Rotem S.; Blondin, Dirk; Schneider, Matthias; Bittersohl, Bernd; Zilkens, Christoph; Jellus, Vladimir; Mamisch, Tallal Ch.; Wittsack, Hans-Jörg

    2011-01-01

    Purpose: To assess motion artifacts in dGEMRIC of finger joints and to evaluate the effectiveness of motion correction. Materials and methods: In 40 subjects (26 patients with finger arthritis and 14 healthy volunteers) dGEMRIC of metacarpophalangeal joint II was performed. Imaging used a dual flip angle approach (TE 3.72 ms, TR 15 ms, flip angles 5° and 26°). Two sets of T1 maps were calculated for dGEMRIC analysis from the imaging data for each subject: one with and one without motion correction. To compare image quality, visual grading analysis and precision of dGEMRIC measurement of both dGEMRIC maps for each case were evaluated. Results: Motion artifacts were present in 82% (33/40) of uncorrected dGEMRIC maps. Motion artifacts were graded as severe or as rendering evaluation impossible in 43% (17/40) of uncorrected dGEMRIC maps. Motion corrected maps showed significantly less motion artifacts (P < 0.001) and were graded as evaluable in 97% (39/40) of cases. Precision was significantly higher in motion corrected images (coefficient of variation (CV = .176 ± .077), compared to uncorrected images (CV .445 ± .347) (P < .001). Motion corrected dGERMIC was different in volunteers and patients (P = .044), whereas uncorrected dGEMRIC was not (P = .234). Conclusion: Motion correction improves image quality, dGEMRIC measurement precision and diagnostic performance in dGEMRIC of finger joints.

  12. Method through motion

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2016-01-01

    Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic...... construction as a support to working systematically practice-led research project. The design model is being developed through design laboratories and workshops with students and professionals who provide feedback that lead to incremental improvements. Working with this model construction-as-method reveals...... context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design and studies of motion graphics in spatial contexts. The focus of this paper is the role of model...

  13. Psychophysical evidence for auditory motion parallax.

    Science.gov (United States)

    Genzel, Daria; Schutte, Michael; Brimijoin, W Owen; MacNeilage, Paul R; Wiegrebe, Lutz

    2018-04-17

    Distance is important: From an ecological perspective, knowledge about the distance to either prey or predator is vital. However, the distance of an unknown sound source is particularly difficult to assess, especially in anechoic environments. In vision, changes in perspective resulting from observer motion produce a reliable, consistent, and unambiguous impression of depth known as motion parallax. Here we demonstrate with formal psychophysics that humans can exploit auditory motion parallax, i.e., the change in the dynamic binaural cues elicited by self-motion, to assess the relative depths of two sound sources. Our data show that sensitivity to relative depth is best when subjects move actively; performance deteriorates when subjects are moved by a motion platform or when the sound sources themselves move. This is true even though the dynamic binaural cues elicited by these three types of motion are identical. Our data demonstrate a perceptual strategy to segregate intermittent sound sources in depth and highlight the tight interaction between self-motion and binaural processing that allows assessment of the spatial layout of complex acoustic scenes.

  14. Respiratory lung motion analysis using a nonlinear motion correction technique for respiratory-gated lung perfusion SPECT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2007-01-01

    This study evaluated the respiratory motion of lungs using a nonlinear motion correction technique for respiratory-gated single photon emission computed tomography (SPECT) images. The motion correction technique corrects the respiratory motion of the lungs nonlinearly between two-phase images obtained by respiratory-gated SPECT. The displacement vectors resulting from respiration can be computed at every location of the lungs. Respiratory lung motion analysis is carried out by calculating the mean value of the body axis component of the displacement vector in each of the 12 small regions into which the lungs were divided. In order to enable inter-patient comparison, the 12 mean values were normalized by the length of the lung region along the direction of the body axis. This method was applied to 25 Technetium (Tc)-99m-macroaggregated albumin (MAA) perfusion SPECT images, and motion analysis results were compared with the diagnostic results. It was confirmed that the respiratory lung motion reflects the ventilation function. A statistically significant difference in the amount of the respiratory lung motion was observed between the obstructive pulmonary diseases and other conditions, based on an unpaired Student's t test (P<0.0001). A difference in the motion between normal lungs and lungs with a ventilation obstruction was detected by the proposed method. This method is effective for evaluating obstructive pulmonary diseases such as pulmonary emphysema and diffuse panbronchiolitis. (author)

  15. Ground motion and its effects in accelerator design

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1985-07-01

    The effects of ground motion on accelerator design are discussed. The limitations on performance are discussed for various categories of motion. For example, effects due to ground settlement, tides, seismic disturbances and man-induced disturbances are included in this discussion. 42 figs., 7 tabs

  16. A MultiFactorial Risk Score to weigh toxicities and co-morbidities relative to costs of antiretrovirals in a cohort of HIV-infected patients

    OpenAIRE

    M Tontodonati; F Sozio; F Vadini; E Polilli; T Ursini; G Calella; P Di Stefano; E Mazzotta; A Costantini; C D'Amario; G Parruti

    2012-01-01

    Purpose of the study: Considering costs of antiretrovirals (ARVs) for HIV patients is increasingly needed. A simple and comprehensive tool weighing comorbidities and ARV-related toxicities could be useful to judge the appropriateness of use of more expensive drugs. We conceived a MultiFactorial Risk Score (MFRS) to evaluate the appropriateness of ARVs prescription relative to their costs. Methods: HIV patients were consecutively enrolled in 2010-2011. We considered socio-demographic character...

  17. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    . The experiment is conducted in a oscillating water tunnel, for both smooth bed and rough bed. The particle motion is determined by utilizing particle tracking base on a video recording of the particle motion in the flow. In the oscillatory flow, in contrast to steady current, the particle motion is a function...

  18. Cervical spine motion: radiographic study

    International Nuclear Information System (INIS)

    Morgan, J.P.; Miyabayashi, T.; Choy, S.

    1986-01-01

    Knowledge of the acceptable range of motion of the cervical spine of the dog is used in the radiographic diagnosis of both developmental and degenerative diseases. A series of radiographs of mature Beagle dogs was used to identify motion within sagittal and transverse planes. Positioning of the dog's head and neck was standardized, using a restraining board, and mimicked those thought to be of value in diagnostic radiology. The range of motion was greatest between C2 and C5. Reports of severe disk degeneration in the cervical spine of the Beagle describe the most severely involved disks to be C4 through C7. Thus, a high range of motion between vertebral segments does not seem to be the cause for the severe degenerative disk disease. Dorsoventral slippage between vertebral segments was seen, but was not accurately measured. Wedging of disks was clearly identified. At the atlantoaxio-occipital region, there was a high degree of motion within the sagittal plane at the atlantoaxial and atlanto-occipital joints; the measurement can be a guideline in the radiographic diagnosis of instability due to developmental anomalies in this region. Lateral motion within the transverse plane was detected at the 2 joints; however, motion was minimal, and the measurements seemed to be less accurate because of rotation of the cervical spine. Height of the vertebral canal was consistently noted to be greater at the caudal orifice, giving some warning to the possibility of overdiagnosis in suspected instances of cervical spondylopathy

  19. Motion Learning Based on Bayesian Program Learning

    Directory of Open Access Journals (Sweden)

    Cheng Meng-Zhen

    2017-01-01

    Full Text Available The concept of virtual human has been highly anticipated since the 1980s. By using computer technology, Human motion simulation could generate authentic visual effect, which could cheat human eyes visually. Bayesian Program Learning train one or few motion data, generate new motion data by decomposing and combining. And the generated motion will be more realistic and natural than the traditional one.In this paper, Motion learning based on Bayesian program learning allows us to quickly generate new motion data, reduce workload, improve work efficiency, reduce the cost of motion capture, and improve the reusability of data.

  20. Eye Movements in Darkness Modulate Self-Motion Perception.

    Science.gov (United States)

    Clemens, Ivar Adrianus H; Selen, Luc P J; Pomante, Antonella; MacNeilage, Paul R; Medendorp, W Pieter

    2017-01-01

    During self-motion, humans typically move the eyes to maintain fixation on the stationary environment around them. These eye movements could in principle be used to estimate self-motion, but their impact on perception is unknown. We had participants judge self-motion during different eye-movement conditions in the absence of full-field optic flow. In a two-alternative forced choice task, participants indicated whether the second of two successive passive lateral whole-body translations was longer or shorter than the first. This task was used in two experiments. In the first ( n = 8), eye movements were constrained differently in the two translation intervals by presenting either a world-fixed or body-fixed fixation point or no fixation point at all (allowing free gaze). Results show that perceived translations were shorter with a body-fixed than a world-fixed fixation point. A linear model indicated that eye-movement signals received a weight of ∼25% for the self-motion percept. This model was independently validated in the trials without a fixation point (free gaze). In the second experiment ( n = 10), gaze was free during both translation intervals. Results show that the translation with the larger eye-movement excursion was judged more often to be larger than chance, based on an oculomotor choice probability analysis. We conclude that eye-movement signals influence self-motion perception, even in the absence of visual stimulation.

  1. Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms, 1933-1994

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms is a database of over 15,000 digitized and processed accelerograph records from...

  2. Modeling repetitive motions using structured light.

    Science.gov (United States)

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  3. Homothetic and conformal motions in spacelike slices of solutions of Einstein's equations

    International Nuclear Information System (INIS)

    Berger, B.K.

    1976-01-01

    Components of Killing's equation are used to obtain constraints satisfied in a spacelike hypersurface by the intrinsic metric and extrinsic curvature in the presence of a spacetime conformal motion for a solution of Einstein's equations. If the conformal motion is either a homothetic motion or a motion, it is shown that these Killing constraints are preserved by the Einstein evolution equations. It is then shown that the generator of the homothetic motion (homothetic Killing vector) can be constructed if the Killing constraints are satisfied by a set of initial data. It is shown that a homothetic motion in the intrinsic metric is a spacetime homothetic motion if the extrinsic curvature is transformed correctly under the spatial homothetic motion. Further restrictions on a proper conformal motion due to the fact that it is not identically a curvature collineation are obtained. Restrictions on the matter--stress--energy tensor are discussed. Examples are presented

  4. Motion Artifact in the MR imaging of temporomandibular disorders

    International Nuclear Information System (INIS)

    Tamamura, Kiyoharu; Miyajima, Hisashi; Nihei, Yoshinobu; Nemoto, Ryuichi; Ohno, Tomoya

    1997-01-01

    Recently, magnetic resonance imaging (MRI) is indispensable for the diagnosis of temporomandibular disorders (TMD). Motion Artifacts of MRI occur more frequently than in other conventional methods, because it takes a long time to obtain the images. This paper reported on Motion Artifacts on MRI. MRI studies of 232 temporomandibular joints were performed in 116 patients with TMD by using a 0.5-T magnetic resonance (MR) scanner, with spin echo sequence: protondensity-weighted. And we took MRI slices at opening phase and closing phase. So 232 slices were gathered and we evaluated clinically the incidence of Motion Artifacts, that is to say, double and multiple images and other factors. The 103 slices in 56 patients showed Motion Artifacts. There is no significant difference between sexes. By age group, those in their teens were most frequent, followed by those in their fifties, forties, thirties and twenties. Also the same results were obtained for double image and multiple image. Incidence of Motion Artifact was most frequent at the opening phase. There is no significant difference between double and multiple image. (author)

  5. Motion estimation by data assimilation in reduced dynamic models

    International Nuclear Information System (INIS)

    Drifi, Karim

    2013-01-01

    Motion estimation is a major challenge in the field of image sequence analysis. This thesis is a study of the dynamics of geophysical flows visualized by satellite imagery. Satellite image sequences are currently underused for the task of motion estimation. A good understanding of geophysical flows allows a better analysis and forecast of phenomena in domains such as oceanography and meteorology. Data assimilation provides an excellent framework for achieving a compromise between heterogeneous data, especially numerical models and observations. Hence, in this thesis we set out to apply variational data assimilation methods to estimate motion on image sequences. As one of the major drawbacks of applying these assimilation techniques is the considerable computation time and memory required, we therefore define and use a model reduction method in order to significantly decrease the necessary computation time and the memory. We then explore the possibilities that reduced models provide for motion estimation, particularly the possibility of strictly imposing some known constraints on the computed solutions. In particular, we show how to estimate a divergence free motion with boundary conditions on a complex spatial domain [fr

  6. Applications of Phase-Based Motion Processing

    Science.gov (United States)

    Branch, Nicholas A.; Stewart, Eric C.

    2018-01-01

    Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB.

  7. Human motion retrieval from hand-drawn sketch.

    Science.gov (United States)

    Chao, Min-Wen; Lin, Chao-Hung; Assa, Jackie; Lee, Tong-Yee

    2012-05-01

    The rapid growth of motion capture data increases the importance of motion retrieval. The majority of the existing motion retrieval approaches are based on a labor-intensive step in which the user browses and selects a desired query motion clip from the large motion clip database. In this work, a novel sketching interface for defining the query is presented. This simple approach allows users to define the required motion by sketching several motion strokes over a drawn character, which requires less effort and extends the users’ expressiveness. To support the real-time interface, a specialized encoding of the motions and the hand-drawn query is required. Here, we introduce a novel hierarchical encoding scheme based on a set of orthonormal spherical harmonic (SH) basis functions, which provides a compact representation, and avoids the CPU/processing intensive stage of temporal alignment used by previous solutions. Experimental results show that the proposed approach can well retrieve the motions, and is capable of retrieve logically and numerically similar motions, which is superior to previous approaches. The user study shows that the proposed system can be a useful tool to input motion query if the users are familiar with it. Finally, an application of generating a 3D animation from a hand-drawn comics strip is demonstrated.

  8. Coupled motions in human and porcine thoracic and lumbar spines

    NARCIS (Netherlands)

    Kingma, Idsart; Busscher, Iris; van der Veen, Albert J.; Verkerke, Gijsbertus J.; Veldhuizen, Albert G.; Homminga, Jasper; van Dieën, Jaap H.

    2018-01-01

    Coupled motions, i.e., motions along axes other than the loaded axis, have been reported to occur in the human spine, and are likely to be influenced by inclined local axes due to the sagittal plane spine curvature. Furthermore, the role of facet joints in such motions is as yet unclear. Therefore,

  9. Coupled motions in human and porcine thoracic and lumbar spines

    NARCIS (Netherlands)

    Kingma, Idsart; Busscher, Iris; van der Veen, Albert J.; Verkerke, Gijsbertus J.; Veldhuizen, Albert G.; Homminga, Jasper; van Dieën, Jaap H.

    2017-01-01

    Coupled motions, i.e., motions along axes other than the loaded axis, have been reported to occur in the human spine, and are likely to be influenced by inclined local axes due to the sagittal plane spine curvature. Furthermore, the role of facet joints in such motions is as yet unclear. Therefore,

  10. Characteristics of Earthquake Ground Motion Attenuation in Korea and Japan

    International Nuclear Information System (INIS)

    Choi, In-Kil; Choun, Young-Sun; Nakajima, Masato; Ohtori, Yasuki; Yun, Kwan-Hee

    2006-01-01

    The characteristics of a ground motion attenuation in Korea and Japan were estimated by using the earthquake ground motions recorded at the equal distance observation station by KMA, K-NET and KiK-net of Korea and Japan. The ground motion attenuation equations proposed for Korea and Japan were evaluated by comparing the predicted value for the Fukuoka earthquake with the observed records. The predicted values from the attenuation equations show a good agreement with the observed records and each other. It can be concluded from this study that the ground motion attenuation equations can be used for the prediction of strong ground motion attenuation and for an evaluation of the attenuation equations proposed for Korea

  11. Five-dimensional motion compensation for respiratory and cardiac motion with cone-beam CT of the thorax region

    Science.gov (United States)

    Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc

    2016-03-01

    We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.

  12. Active motions of Brownian particles in a generalized energy-depot model

    International Nuclear Information System (INIS)

    Zhang Yong; Koo Kim, Chul; Lee, Kong-Ju-Bock

    2008-01-01

    We present a generalized energy-depot model in which the rate of conversion of the internal energy into motion can be dependent on the position and velocity of a particle. When the conversion rate is a general function of the velocity, the active particle exhibits diverse patterns of motion, including a braking mechanism and a stepping motion. The phase trajectories of the motion are investigated in a systematic way. With a particular form of the conversion rate dependent on the position and velocity, the particle shows a spontaneous oscillation characterizing a negative stiffness. These types of active behaviors are compared with similar phenomena observed in biology, such as the stepping motion of molecular motors and amplification in the hearing mechanism. Hence, our model can provide a generic understanding of the active motion related to the energy conversion and also a new control mechanism for nano-robots. We also investigate the effect of noise, especially on the stepping motion, and observe random walk-like behavior as expected.

  13. Demonstration and evaluation of the 20-ton-capacity load-cell-based weighing system, Eldorado Resources, Ltd., Port Hope, Ontario, September 3-4, 1986

    International Nuclear Information System (INIS)

    Cooley, J.N.; Huxford, T.J.

    1986-01-01

    On September 3 and 4, 1986, the prototype 20-ton-capacity load-cell-based weighing system (LCBWS) developed by the US Enrichment Safeguards Program (ESP) at Martin Marietta Energy Systems, Inc., was field tested at the Eldorado Resources, Ltd., (ERL) facility in Port Hope, Ontario. The 20-ton-capacity LCBWS has been designed and fabricated for use by the International Atomic Energy Agency (IAEA) for verifying the masses of large-capacity UF 6 cylinders during IAEA safeguards inspections at UF 6 handling facilities. The purpose of the Canadian field test was to demonstrate and to evaluate with IAEA inspectorates and with UF 6 bulk handling facility operators at Eldorado the principles, procedures, and hardware associated with using the 20-ton-capacity LCBWS as a portable means for verifying the masses of 10- and 14-ton UF 6 cylinders. Session participants included representatives from the IAEA, Martin Marietta Energy Systems, Inc., Eldorado Resources, Ltd., the Atomic Energy Control Board (AECB), and the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL). Appendix A presents the list of participants and their organization affiliation. The two-day field test involved a formal briefing by ESP staff, two cylinder weighing sessions, IAEA critiques of the LCBWS hardware and software, and concluding discussions on the field performance of the system. Appendix B cites the meeting agenda. Summarized in this report are (1) the technical information presented by the system developers, (2) results from the weighing sessions, and (3) observations, suggestions, and concluding statements from meeting participants

  14. Clinical significance of perceptible fetal motion.

    Science.gov (United States)

    Rayburn, W F

    1980-09-15

    The monitoring of fetal activity during the last trimester of pregnancy has been proposed to be useful in assessing fetal welfare. The maternal perception of fetal activity was tested among 82 patients using real-time ultrasonography. All perceived fetal movements were visualized on the scanner and involved motion of the lower limbs. Conversely, 82% of all visualized motions of fetal limbs were perceived by the patients. All combined motions of fetal trunk with limbs were preceived by the patients and described as strong movements, whereas clusters of isolated, weak motions of the fetal limbs were less accurately perceived (56% accuracy). The number of fetal movements perceived during the 15-minute test period was significantly (p fetal motion was present (44 of 45 cases) than when it was absent (five of 10 cases). These findings reveal that perceived fetal motion is: (1) reliable; (2) related to the strength of lower limb motion; (3) increased with ruptured amniotic membranes; and (4) reassuring if considered to be active.

  15. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-01-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in "The Physics Teacher" ("TPT"); however, the "Hoop Challenge" is a new setup not…

  16. Decision-level adaptation in motion perception.

    Science.gov (United States)

    Mather, George; Sharman, Rebecca J

    2015-12-01

    Prolonged exposure to visual stimuli causes a bias in observers' responses to subsequent stimuli. Such adaptation-induced biases are usually explained in terms of changes in the relative activity of sensory neurons in the visual system which respond selectively to the properties of visual stimuli. However, the bias could also be due to a shift in the observer's criterion for selecting one response rather than the alternative; adaptation at the decision level of processing rather than the sensory level. We investigated whether adaptation to implied motion is best attributed to sensory-level or decision-level bias. Three experiments sought to isolate decision factors by changing the nature of the participants' task while keeping the sensory stimulus unchanged. Results showed that adaptation-induced bias in reported stimulus direction only occurred when the participants' task involved a directional judgement, and disappeared when adaptation was measured using a non-directional task (reporting where motion was present in the display, regardless of its direction). We conclude that adaptation to implied motion is due to decision-level bias, and that a propensity towards such biases may be widespread in sensory decision-making.

  17. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes

    DEFF Research Database (Denmark)

    Mjøsund, Hanne Leirbekk; Boyle, Eleanor; Kjær, Per

    2017-01-01

    . CONCLUSIONS: We found a clinically acceptable level of agreement between these two methods for measuring standing lumbar inclination motion in these two cardinal movement planes. Further research should investigate the ViMove system's ability to measure lumbar motion in more complex 3D functional movements...

  18. Motion of a spinning test particle in Vaidya's radiating metric

    International Nuclear Information System (INIS)

    Carmeli, M.; Charach, C.; Kaye, M.

    1977-01-01

    The motion of a spinning test particle in Vaidya's gravitational field is considered in the framework of Papapetrou's equations of motion. Use is made of the supplementary condition S/sup μ//sup u/ = 0, where u is the retarded Schwarzschild time coordinate. We derive the equations for the dynamical variables, and consider the conservation laws, that follow from the equations of motion. Particular cases of motion are also discussed and additional first integrals corresponding to these cases are found. Some of the new extra integrals are related to the Casimir operators of the Poincare group. It is found that under special conditions on the spin tensor components the particle follows a geodesic. Motion of the spinning test particle in the Schwarzschild field is considered as one of the particular cases

  19. Blind retrospective motion correction of MR images.

    Science.gov (United States)

    Loktyushin, Alexander; Nickisch, Hannes; Pohmann, Rolf; Schölkopf, Bernhard

    2013-12-01

    Subject motion can severely degrade MR images. A retrospective motion correction algorithm, Gradient-based motion correction, which significantly reduces ghosting and blurring artifacts due to subject motion was proposed. The technique uses the raw data of standard imaging sequences; no sequence modifications or additional equipment such as tracking devices are required. Rigid motion is assumed. The approach iteratively searches for the motion trajectory yielding the sharpest image as measured by the entropy of spatial gradients. The vast space of motion parameters is efficiently explored by gradient-based optimization with a convergence guarantee. The method has been evaluated on both synthetic and real data in two and three dimensions using standard imaging techniques. MR images are consistently improved over different kinds of motion trajectories. Using a graphics processing unit implementation, computation times are in the order of a few minutes for a full three-dimensional volume. The presented technique can be an alternative or a complement to prospective motion correction methods and is able to improve images with strong motion artifacts from standard imaging sequences without requiring additional data. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  20. Ground Motion Characteristics of Induced Earthquakes in Central North America

    Science.gov (United States)

    Atkinson, G. M.; Assatourians, K.; Novakovic, M.

    2017-12-01

    The ground motion characteristics of induced earthquakes in central North America are investigated based on empirical analysis of a compiled database of 4,000,000 digital ground-motion records from events in induced-seismicity regions (especially Oklahoma). Ground-motion amplitudes are characterized non-parametrically by computing median amplitudes and their variability in magnitude-distance bins. We also use inversion techniques to solve for regional source, attenuation and site response effects. Ground motion models are used to interpret the observations and compare the source and attenuation attributes of induced earthquakes to those of their natural counterparts. Significant conclusions are that the stress parameter that controls the strength of high-frequency radiation is similar for induced earthquakes (depth of h 5 km) and shallow (h 5 km) natural earthquakes. By contrast, deeper natural earthquakes (h 10 km) have stronger high-frequency ground motions. At distances close to the epicenter, a greater focal depth (which increases distance from the hypocenter) counterbalances the effects of a larger stress parameter, resulting in motions of similar strength close to the epicenter, regardless of event depth. The felt effects of induced versus natural earthquakes are also investigated using USGS "Did You Feel It?" reports; 400,000 reports from natural events and 100,000 reports from induced events are considered. The felt reports confirm the trends that we expect based on ground-motion modeling, considering the offsetting effects of the stress parameter versus focal depth in controlling the strength of motions near the epicenter. Specifically, felt intensity for a given magnitude is similar near the epicenter, on average, for all event types and depths. At distances more than 10 km from the epicenter, deeper events are felt more strongly than shallow events. These ground-motion attributes imply that the induced-seismicity hazard is most critical for facilities in

  1. Project Physics Tests 2, Motion in the Heavens.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 2 are presented in this booklet. Included are 70 multiple-choice and 22 problem-and-essay questions. Concepts of motion in the heavens are examined for planetary motions, heliocentric theory, forces exerted on the planets, Kepler's laws, gravitational force, Galileo's work, satellite orbits, Jupiter's…

  2. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    International Nuclear Information System (INIS)

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L.

    2014-01-01

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  3. Measurement of time delays in gated radiotherapy for realistic respiratory motions

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Brige P.; Quirk, Sarah; Conroy, Leigh; Smith, Wendy L., E-mail: Wendy.Smith@albertahealthservices.ca [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta T2N 4N2 (Canada)

    2014-09-15

    Purpose: Gated radiotherapy is used to reduce internal motion margins, escalate target dose, and limit normal tissue dose; however, its temporal accuracy is limited. Beam-on and beam-off time delays can lead to treatment inefficiencies and/or geographic misses; therefore, AAPM Task Group 142 recommends verifying the temporal accuracy of gating systems. Many groups use sinusoidal phantom motion for this, under the tacit assumption that use of sinusoidal motion for determining time delays produces negligible error. The authors test this assumption by measuring gating time delays for several realistic motion shapes with increasing degrees of irregularity. Methods: Time delays were measured on a linear accelerator with a real-time position management system (Varian TrueBeam with RPM system version 1.7.5) for seven motion shapes: regular sinusoidal; regular realistic-shape; large (40%) and small (10%) variations in amplitude; large (40%) variations in period; small (10%) variations in both amplitude and period; and baseline drift (30%). Film streaks of radiation exposure were generated for each motion shape using a programmable motion phantom. Beam-on and beam-off time delays were determined from the difference between the expected and observed streak length. Results: For the system investigated, all sine, regular realistic-shape, and slightly irregular amplitude variation motions had beam-off and beam-on time delays within the AAPM recommended limit of less than 100 ms. In phase-based gating, even small variations in period resulted in some time delays greater than 100 ms. Considerable time delays over 1 s were observed with highly irregular motion. Conclusions: Sinusoidal motion shapes can be considered a reasonable approximation to the more complex and slightly irregular shapes of realistic motion. When using phase-based gating with predictive filters even small variations in period can result in time delays over 100 ms. Clinical use of these systems for patients

  4. Visual motion detection and habitat preference in Anolis lizards.

    Science.gov (United States)

    Steinberg, David S; Leal, Manuel

    2016-11-01

    The perception of visual stimuli has been a major area of inquiry in sensory ecology, and much of this work has focused on coloration. However, for visually oriented organisms, the process of visual motion detection is often equally crucial to survival and reproduction. Despite the importance of motion detection to many organisms' daily activities, the degree of interspecific variation in the perception of visual motion remains largely unexplored. Furthermore, the factors driving this potential variation (e.g., ecology or evolutionary history) along with the effects of such variation on behavior are unknown. We used a behavioral assay under laboratory conditions to quantify the visual motion detection systems of three species of Puerto Rican Anolis lizard that prefer distinct structural habitat types. We then compared our results to data previously collected for anoles from Cuba, Puerto Rico, and Central America. Our findings indicate that general visual motion detection parameters are similar across species, regardless of habitat preference or evolutionary history. We argue that these conserved sensory properties may drive the evolution of visual communication behavior in this clade.

  5. Effectiveness of external respiratory surrogates for in vivo liver motion estimation

    International Nuclear Information System (INIS)

    Chang, Kai-Hsiang; Ho, Ming-Chih; Yeh, Chi-Chuan; Chen, Yu-Chien; Lian, Feng-Li; Lin, Win-Li; Yen, Jia-Yush; Chen, Yung-Yaw

    2012-01-01

    Purpose: Due to low frame rate of MRI and high radiation damage from fluoroscopy and CT, liver motion estimation using external respiratory surrogate signals seems to be a better approach to track liver motion in real-time for liver tumor treatments in radiotherapy and thermotherapy. This work proposes a liver motion estimation method based on external respiratory surrogate signals. Animal experiments are also conducted to investigate related issues, such as the sensor arrangement, multisensor fusion, and the effective time period. Methods: Liver motion and abdominal motion are both induced by respiration and are proved to be highly correlated. Contrary to the difficult direct measurement of the liver motion, the abdominal motion can be easily accessed. Based on this idea, our study is split into the model-fitting stage and the motion estimation stage. In the first stage, the correlation between the surrogates and the liver motion is studied and established via linear regression method. In the second stage, the liver motion is estimated by the surrogate signals with the correlation model. Animal experiments on cases of single surrogate signal, multisurrogate signals, and long-term surrogate signals are conducted and discussed to verify the practical use of this approach. Results: The results show that the best single sensor location is at the middle of the upper abdomen, while multisurrogate models are generally better than the single ones. The estimation error is reduced from 0.6 mm for the single surrogate models to 0.4 mm for the multisurrogate models. The long-term validity of the estimation models is quite satisfactory within the period of 10 min with the estimation error less than 1.4 mm. Conclusions: External respiratory surrogate signals from the abdomen motion produces good performance for liver motion estimation in real-time. Multisurrogate signals enhance estimation accuracy, and the estimation model can maintain its accuracy for at least 10 min. This

  6. Improved motion description for action classification

    NARCIS (Netherlands)

    Jain, M.; Jégou, H.; Bouthemy, P.

    2016-01-01

    Even though the importance of explicitly integrating motion characteristics in video descriptions has been demonstrated by several recent papers on action classification, our current work concludes that adequately decomposing visual motion into dominant and residual motions, i.e., camera and scene

  7. Respiratory and cardiac motion correction in dual gated PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, Hadi; Monnier, Florian [LaTIM, INSERM, UMR 1101, Brest (France); Odille, Freedy; Felblinger, Jacques [INSERM U947, University of Nancy, Nancy (France); Lamare, Frederic [INCIA, UMR5287, CNRS, CHU Bordeaux, Bordeaux (France); Visvikis, Dimitris [LaTIM, INSERM, UMR 1101, Brest (France)

    2015-05-18

    Respiratory and cardiac motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies involve the use of double gated acquisitions which lead to low signal-to-noise ratio (SNR) and to issues concerning the combination of cardiac and respiratory frames. The objective of this work is to use a generalized reconstruction by inversion of coupled systems (GRICS) approach, previously used for PET/MR respiratory motion correction, combined with a cardiac phase signal and a reconstruction incorporated PET motion correction approach in order to reconstruct motion free images from dual gated PET acquisitions. The GRICS method consists of formulating parallel MRI in the presence of patient motion as a coupled inverse problem. Its resolution, using a fixed-point method, allows the reconstructed image to be improved using a motion model constructed from the raw MR data and two respiratory belts. GRICS obtained respiratory displacements are interpolated using the cardiac phase derived from an ECG to model simultaneous cardiac and respiratory motion. Three different volunteer datasets (4DMR acquisitions) were used for evaluation. GATE was used to simulate 4DPET datasets corresponding to the acquired 4DMR images. Simulated data were subsequently binned using 16 cardiac phases (M1) vs diastole only (M2), in combination with 8 respiratory amplitude gates. Respiratory and cardiac motion corrected PET images using either M1 or M2 were compared to respiratory only corrected images and evaluated in terms of SNR and contrast improvement. Significant visual improvements were obtained when correcting simultaneously for respiratory and cardiac motion (using 16 cardiac phase or diastole only) compared to respiratory motion only compensation. Results were confirmed by an associated increased SNR and contrast. Results indicate that using GRICS is an efficient tool for respiratory and cardiac motion correction in dual gated PET/MR imaging.

  8. Evaluation of simulation motion fidelity criteria in the vertical and directional axes

    Science.gov (United States)

    Schroeder, Jeffery A.

    1993-01-01

    An evaluation of existing motion fidelity criteria was conducted on the NASA Ames Vertical Motion Simulator. Experienced test pilots flew single-axis repositioning tasks in both the vertical and the directional axes. Using a first-order approximation of a hovering helicopter, tasks were flown with variations only in the filters that attenuate the commands to the simulator motion system. These filters had second-order high-pass characteristics, and the variations were made in the filter gain and natural frequency. The variations spanned motion response characteristics from nearly full math-model motion to fixed-base. Between configurations, pilots recalibrated their motion response perception by flying the task with full motion. Pilots subjectively rated the motion fidelity of subsequent configurations relative to this full motion case, which was considered the standard for comparison. The results suggested that the existing vertical-axis criterion was accurate for combinations of gain and natural frequency changes. However, if only the gain or the natural frequency was changed, the rated motion fidelity was better than the criterion predicted. In the vertical axis, the objective and subjective results indicated that a larger gain reduction was tolerated than the existing criterion allowed. The limited data collected in the yaw axis revealed that pilots had difficulty in distinguishing among the variations in the pure yaw motion cues.

  9. Figure-ground segregation can rely on differences in motion direction.

    Science.gov (United States)

    Kandil, Farid I; Fahle, Manfred

    2004-12-01

    If the elements within a figure move synchronously while those in the surround move at a different time, the figure is easily segregated from the surround and thus perceived. Lee and Blake (1999) [Visual form created solely from temporal structure. Science, 284, 1165-1168] demonstrated that this figure-ground separation may be based not only on time differences between motion onsets, but also on the differences between reversals of motion direction. However, Farid and Adelson (2001) [Synchrony does not promote grouping in temporally structured displays. Nature Neuroscience, 4, 875-876] argued that figure-ground segregation in the motion-reversal experiment might have been based on a contrast artefact and concluded that (a)synchrony as such was 'not responsible for the perception of form in these or earlier displays'. Here, we present experiments that avoid contrast artefacts but still produce figure-ground segregation based on purely temporal cues. Our results show that subjects can segregate figure from ground even though being unable to use motion reversals as such. Subjects detect the figure when either (i) motion stops (leading to contrast artefacts), or (ii) motion directions differ between figure and ground. Segregation requires minimum delays of about 15 ms. We argue that whatever the underlying cues and mechanisms, a second stage beyond motion detection is required to globally compare the outputs of local motion detectors and to segregate figure from ground. Since analogous changes take place in both figure and ground in rapid succession, this second stage has to detect the asynchrony with high temporal precision.

  10. Figure-ground segregation modulates apparent motion.

    Science.gov (United States)

    Ramachandran, V S; Anstis, S

    1986-01-01

    We explored the relationship between figure-ground segmentation and apparent motion. Results suggest that: static elements in the surround can eliminate apparent motion of a cluster of dots in the centre, but only if the cluster and surround have similar "grain" or texture; outlines that define occluding surfaces are taken into account by the motion mechanism; the brain uses a hierarchy of precedence rules in attributing motion to different segments of the visual scene. Being designated as "figure" confers a high rank in this scheme of priorities.

  11. Integrals of motion in the many-body localized phase

    Directory of Open Access Journals (Sweden)

    V. Ros

    2015-02-01

    Full Text Available We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0,1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization–delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition.

  12. Measuring Post-Partum Haemorrhage in Low-Resource Settings: The Diagnostic Validity of Weighed Blood Loss versus Quantitative Changes in Hemoglobin.

    Directory of Open Access Journals (Sweden)

    Esther Cathyln Atukunda

    Full Text Available Accurate estimation of blood loss is central to prompt diagnosis and management of post-partum hemorrhage (PPH, which remains a leading cause of maternal mortality in low-resource countries. In such settings, blood loss is often estimated visually and subjectively by attending health workers, due to inconsistent availability of laboratory infrastructure. We evaluated the diagnostic accuracy of weighed blood loss (WBL versus changes in peri-partum hemoglobin to detect PPH.Data from this analysis were collected as part of a randomized controlled trial comparing oxytocin with misoprostol for PPH (NCT01866241. Blood samples for complete blood count were drawn on admission and again prior to hospital discharge or before blood transfusion. During delivery, women were placed on drapes and had pre-weighed sanitary towels placed around their perineum. Blood was then drained into a calibrated container and the sanitary towels were added to estimate WBL, where each gram of blood was estimated as a milliliter. Sensitivity, specificity, negative and positive predictive values (PPVs were calculated at various blood volume loss and time combinations, and we fit receiver-operator curves using blood loss at 1, 2, and 24 hours compared to a reference standard of haemoglobin decrease of >10%.A total of 1,140 women were enrolled in the study, of whom 258 (22.6% developed PPH, defined as a haemoglobin drop >10%, and 262 (23.0% had WBL ≥500mL. WBL generally had a poor sensitivity for detection of PPH (85% in high prevalence settings when WBL exceeds 750mL.WBL has poor sensitivity but high specificity compared to laboratory-based methods of PPH diagnosis. These characteristics correspond to a high PPV in areas with high PPH prevalence. Although WBL is not useful for excluding PPH, this low-cost, simple and reproducible method is promising as a reasonable method to identify significant PPH in such settings where quantifiable red cell indices are unavailable.

  13. Lumbar motion changes in chronic low back pain patients

    DEFF Research Database (Denmark)

    Mieritz, Rune M; Hartvigsen, Jan; Boyle, Eleanor

    2014-01-01

    BACKGROUND CONTEXT: Several therapies have been used in the treatment of chronic low back pain, including various exercise strategies and spinal manipulative therapy. A common belief is that spinal motion changes in particular ways in direct response to specific interventions, such as exercise...... or spinal manipulation. PURPOSE: The purpose of this study was to assess changes in lumbar region motion over 12 weeks by evaluating four motion parameters in the sagittal plane and two in the horizontal plane in LBP patients treated with either exercise therapy or spinal manipulation. STUDY DESIGN......, and the University of Southern Denmark. No conflicts of interest. RESULTS: For the cohort as a whole, lumbar region motion parameters were altered over the 12-week period, except for the jerk index parameter. The group receiving spinal manipulation changed significantly in all, and the exercise groups in half...

  14. Ground motion predictions

    Energy Technology Data Exchange (ETDEWEB)

    Loux, P C [Environmental Research Corporation, Alexandria, VA (United States)

    1969-07-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  15. Ground motion predictions

    International Nuclear Information System (INIS)

    Loux, P.C.

    1969-01-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  16. FPGA-based architecture for motion recovering in real-time

    Science.gov (United States)

    Arias-Estrada, Miguel; Maya-Rueda, Selene E.; Torres-Huitzil, Cesar

    2002-03-01

    A key problem in the computer vision field is the measurement of object motion in a scene. The main goal is to compute an approximation of the 3D motion from the analysis of an image sequence. Once computed, this information can be used as a basis to reach higher level goals in different applications. Motion estimation algorithms pose a significant computational load for the sequential processors limiting its use in practical applications. In this work we propose a hardware architecture for motion estimation in real time based on FPGA technology. The technique used for motion estimation is Optical Flow due to its accuracy, and the density of velocity estimation, however other techniques are being explored. The architecture is composed of parallel modules working in a pipeline scheme to reach high throughput rates near gigaflops. The modules are organized in a regular structure to provide a high degree of flexibility to cover different applications. Some results will be presented and the real-time performance will be discussed and analyzed. The architecture is prototyped in an FPGA board with a Virtex device interfaced to a digital imager.

  17. Visual Motion Perception

    Science.gov (United States)

    1991-08-15

    displace- ment limit for motion in random dots," Vision Res., 24, 293-300. Pantie , A. & K. Turano (1986) "Direct comparisons of apparent motions...Hicks & AJ, Pantie (1978) "Apparent movement of successively generated subjec. uve figures," Perception, 7, 371-383. Ramachandran. V.S. & S.M. Anstis...thanks think deaf girl until world uncle flag home talk finish short thee our screwdiver sonry flower wrCstlir~g plan week wait accident guilty tree

  18. Cohesive motion in one-dimensional flocking

    International Nuclear Information System (INIS)

    Dossetti, V

    2012-01-01

    A one-dimensional rule-based model for flocking, which combines velocity alignment and long-range centering interactions, is presented and studied. The induced cohesion in the collective motion of the self-propelled agents leads to unique group behavior that contrasts with previous studies. Our results show that the largest cluster of particles, in the condensed states, develops a mean velocity slower than the preferred one in the absence of noise. For strong noise, the system also develops a non-vanishing mean velocity, alternating its direction of motion stochastically. This allows us to address the directional switching phenomenon. The effects of different sources of stochasticity on the system are also discussed. (paper)

  19. ROBUST MOTION SEGMENTATION FOR HIGH DEFINITION VIDEO SEQUENCES USING A FAST MULTI-RESOLUTION MOTION ESTIMATION BASED ON SPATIO-TEMPORAL TUBES

    OpenAIRE

    Brouard , Olivier; Delannay , Fabrice; Ricordel , Vincent; Barba , Dominique

    2007-01-01

    4 pages; International audience; Motion segmentation methods are effective for tracking video objects. However, objects segmentation methods based on motion need to know the global motion of the video in order to back-compensate it before computing the segmentation. In this paper, we propose a method which estimates the global motion of a High Definition (HD) video shot and then segments it using the remaining motion information. First, we develop a fast method for multi-resolution motion est...

  20. Haptically Induced Illusory Self-motion and the Influence of Context of Motion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Nordahl, Rolf; Sikström, Erik

    2012-01-01

    of the feet. The experiment was based on the a within-subjects design and included four conditions, each representing one context of motion: an elevator, a train compartment, a bathroom, and a completely dark environment. The audiohaptic stimuli was identical across all conditions. The participants’ sensation...... of movement was assessed by means of existing measures of illusory self-motion, namely, reported self-motion illusion per stimulus type, illusion compellingness, intensity and onset time. Finally the participants were also asked to estimate the experienced direction of movement. While the data obtained from...

  1. Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system

    NARCIS (Netherlands)

    Heitwerth, J.; Kern, R.; Hateren, J.H. van; Egelhaaf, M.

    Neurons sensitive to visual motion change their response properties during prolonged motion stimulation. These changes have been interpreted as adaptive and were concluded, for instance, to adjust the sensitivity of the visual motion pathway to velocity changes or to increase the reliability of

  2. Motion sensing energy controller

    International Nuclear Information System (INIS)

    Saphir, M.E.; Reed, M.A.

    1984-01-01

    A moving object sensing processor responsive to slowly varying motions of a human being or other moving object in a zone of interest employs high frequency pulse modulated non-visible radiation generated by a radiation generating source, such as an LED, and detected by a detector sensitive to radiation of a preselected wavelength which generates electrical signals representative of the reflected radiation received from the zone of interest. The detectorsignals are processed to normalize the base level and remove variations due to background level changes, and slowly varying changes in the signals are detected by a bi-polar threshold detector. The control signals generated by the threshold detector in response to slowly varying motion are used to control the application of power to a utilization device, such as a set of fluoroescent lights in a room, the power being applied in response to detection of such motion and being automatically terminated in the absence of such motion after a predetermined time period established by a settable incrementable counter

  3. Gravity Cues Embedded in the Kinematics of Human Motion Are Detected in Form-from-Motion Areas of the Visual System and in Motor-Related Areas.

    Science.gov (United States)

    Cignetti, Fabien; Chabeauti, Pierre-Yves; Menant, Jasmine; Anton, Jean-Luc J J; Schmitz, Christina; Vaugoyeau, Marianne; Assaiante, Christine

    2017-01-01

    The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer's motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex.

  4. Atypical anticlockwise internal tidal motions in the deep ocean

    NARCIS (Netherlands)

    van Haren, H.

    2015-01-01

    In the ocean, horizontal motions associated with freely propagating semidiurnal tidal inertia-gravity waves mainly describe an ellipse that is traversed in a clockwise direction in the Northern Hemisphere. In this article, rare observations of anticlockwise polarised semidiurnal motions are

  5. A Mixed-Methods Evaluation of the Choose Less, Weigh Less Portion Size Health Marketing Campaign in Los Angeles County.

    Science.gov (United States)

    Gase, Lauren N; Barragan, Noel C; Robles, Brenda; Leighs, Michael; Kuo, Tony

    2015-01-01

    To assess the impact of the Choose Less, Weigh Less portion size health marketing campaign. A mixed-methods, cross-sectional evaluation. A quantitative Internet panel survey was administered through an online sampling vendor and qualitative interviews were conducted by street intercept. The panel survey included 796 participants, weighted to represent Los Angeles County. Street intercept interviews were conducted with 50 other participants. The Choose Less, Weigh Less campaign included print media on transit shelters, bus and rail cars, and billboards; radio and online advertising; and Web site content and social media outreach. The panel survey measured self-reported campaign exposure and outcomes, including knowledge of recommended daily calorie limits, attitudes toward portion sizes, and intent to reduce calories and portion size. Intercept interviews assessed campaign appeal, clarity, and utility. Weighted survey data were analyzed using logistic regression to assess the association between campaign exposure and outcomes. Interview data were analyzed for themes. The campaign reached 19.7% of the Los Angeles County population. Significant differences were seen for 2 of the 10 outcomes assessed. Participants who saw the campaign were more likely than those who did not to report fast-food portion sizes as being too large (adjusted odds ratio [Adj. OR]: 1.89; 95% confidence interval [CI]: 1.16, 3.07) and intention to choose a smaller portion (Adj. OR: 1.99; 95% CI: 1.20, 3.31). Qualitative data revealed three themes about appeal, clarity, and utility. Health marketing efforts targeting portion size can have relatively broad reach and limited but positive impacts on consumer attitudes and intent to select smaller portions.

  6. Direct flow/motion, coils, and field strength concerns in MRI

    International Nuclear Information System (INIS)

    Moran, P.R.

    1986-01-01

    Specific flow/motion bipolar phase-gradient encodings are interlaced into MR sequences for direct NMR imaging of motion quantities, velocity, acceleration, etc. This allows evaluation of the functional properties of tissue, blood flow, heart-wall velocity, vortical-eddies in vascular disease, and perfusion assessment. Attention to fundamentals and basics is important in designing successful flow/motion imaging sequences. 2 refs.; 5 figs

  7. Newton's laws of motion in form of Riccati equation

    OpenAIRE

    Nowakowski, M.; Rosu, H. C.

    2001-01-01

    We discuss two applications of Riccati equation to Newton's laws of motion. The first one is the motion of a particle under the influence of a power law central potential $V(r)=k r^{\\epsilon}$. For zero total energy we show that the equation of motion can be cast in the Riccati form. We briefly show here an analogy to barotropic Friedmann-Robertson-Lemaitre cosmology where the expansion of the universe can be also shown to obey a Riccati equation. A second application in classical mechanics, ...

  8. Theory of motion for monopole-dipole singularities of classical Yang-Mills-Higgs fields. I. Laws of motion

    International Nuclear Information System (INIS)

    Drechsler, W.; Havas, P.; Rosenblum, A.

    1984-01-01

    In two recent papers, the general form of the laws of motion for point particles which are multipole sources of the classical coupled Yang-Mills-Higgs fields was determined by Havas, and for the special case of monopole singularities of a Yang-Mills field an iteration procedure was developed by Drechsler and Rosenblum to obtain the equations of motion of mass points, i.e., the laws of motion including the explicit form of the fields of all interacting particles. In this paper we give a detailed derivation of the laws of motion of monopole-dipole singularities of the coupled Yang-Mills-Higgs fields for point particles with mass and spin, following a procedure first applied by Mathisson and developed by Havas. To obtain the equations of motion, a systematic approximation method is developed in the following paper for the solution of the nonlinear field equations and determination of the fields entering the laws of motion found here to any given order in the coupling constant g

  9. Motion and gravity effects in the precision of quantum clocks.

    Science.gov (United States)

    Lindkvist, Joel; Sabín, Carlos; Johansson, Göran; Fuentes, Ivette

    2015-05-19

    We show that motion and gravity affect the precision of quantum clocks. We consider a localised quantum field as a fundamental model of a quantum clock moving in spacetime and show that its state is modified due to changes in acceleration. By computing the quantum Fisher information we determine how relativistic motion modifies the ultimate bound in the precision of the measurement of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher information. We show that coherent states are generally more resilient to this degradation and that in the case of very low initial number of photons, the optimal precision can be even increased by motion. These results can be tested with current technology by using superconducting resonators with tunable boundary conditions.

  10. Sensing Movement: Microsensors for Body Motion Measurement

    Directory of Open Access Journals (Sweden)

    Hansong Zeng

    2011-01-01

    Full Text Available Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics.

  11. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy ...

  12. Galileo and the Problems of Motion

    Science.gov (United States)

    Hooper, Wallace Edd

    Galileo's science of motion changed natural philosophy. His results initiated a broad human awakening to the intricate new world of physical order found in the midst of familiar operations of nature. His thinking was always based squarely on the academic traditions of the spiritual old world. He advanced physics by new standards of judgment drawn from mechanics and geometry, and disciplined observation of the world. My study first determines the order of composition of the earliest essays on motion and physics, ca. 1588 -1592, from internal evidence, and bibliographic evidence. There are clear signs of a Platonist critique of Aristotle, supported by Archimedes, in the Ten Section Version of On Motion, written ca. 1588, and probably the earliest of his treatises on motion or physics. He expanded upon his opening Platonic -Archimedean position by investigating the ideas of scholastic critics of Aristotle, including the Doctores Parisienses, found in his readings of the Jesuit Professors at the Collegio Romano. Their influences surfaced clearly in Galileo's Memoranda on Motion and the Dialogue on Motion, and in On Motion, which followed, ca. 1590-1592. At the end of his sojourn in Pisa, Galileo opened the road to the new physics by solving an important problem in the mechanics of Pappus, concerning motion along inclined planes. My study investigates why Galileo gave up attempts to establish a ratio between speed and weight, and why he began to seek the ratios of time and distance and speed, by 1602. It also reconstructs Galileo's development of the 1604 principle, seeking to outline its invention, elaboration, and abandonment. Then, I try to show that we have a record of Galileo's moment of recognition of the direct relation between the time of fall and the accumulated speed of motion--that great affinity between time and motion and the key to the new science of motion established before 1610. Evidence also ties the discovery of the time affinity directly to Galileo

  13. Validation of the Leap Motion Controller using markered motion capture technology.

    Science.gov (United States)

    Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David

    2016-06-14

    The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Supersymmetries and constants of motion in Taub-NUT spinning space

    International Nuclear Information System (INIS)

    Vaman, D.; Visinescu, M.

    1998-01-01

    Models of relativistic particles with spin have been proposed for a long time. The models involving only conventional coordinates are called classical, while the models involving anticommuting coordinates are generally called pseudo-classical. In this paper, the relativistic spin one half particle models involving anticommuting vectorial degrees of freedom, which are usually called the spinning particles, are considered. Spinning particles are in some sense the classical limit of the Dirac particles. After the first quantization these new anticommuting variables are mapped into the Dirac matrices and they disappear from the theory. In the present paper, the motion of pseudo-classical spinning particles in curved spaces is investigated and the relevant equations of motion are investigated. The generalized Killing equations for the configuration space of spinning particles (spinning spaces) are discussed and the constants of motion are derived in terms of the solutions of these equations. We also analysed the motion of pseudo-classical spinning particles in the Euclidean Taub-NUT space. The generalized Killing equations for this spinning space are examined and derivation of the constants of motion in terms of the Killing-Yano tensors is described. The equations obtained for the special case of motion on cone are solved. This case represents an extension of the scalar particle motions in the usual Taub-NUT space in which the orbits are conic sections. An explicit exact solution is given. In spite of its simplicity, this solution occurs to be far from trivial. (authors)

  15. Stochastic motion of particles in tandem mirror devices

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Kamimura, T.

    1982-01-01

    Stochastic motion of particles in tandem mirror devices is examined on basis of a nonlinear mapping of particle positions on the equatorial plane. Local stability analysis provides detailed informations on particle trajectories. The rate of stochastic plasma diffusion is estimated from numerical observations of motions of particles over a large number of time steps. (author)

  16. Molecular motion in restricted geometries

    Indian Academy of Sciences (India)

    Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...

  17. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1977-01-01

    History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

  18. Frustration-guided motion planning reveals conformational transitions in proteins.

    Science.gov (United States)

    Budday, Dominik; Fonseca, Rasmus; Leyendecker, Sigrid; van den Bedem, Henry

    2017-10-01

    Proteins exist as conformational ensembles, exchanging between substates to perform their function. Advances in experimental techniques yield unprecedented access to structural snapshots of their conformational landscape. However, computationally modeling how proteins use collective motions to transition between substates is challenging owing to a rugged landscape and large energy barriers. Here, we present a new, robotics-inspired motion planning procedure called dCC-RRT that navigates the rugged landscape between substates by introducing dynamic, interatomic constraints to modulate frustration. The constraints balance non-native contacts and flexibility, and instantaneously redirect the motion towards sterically favorable conformations. On a test set of eight proteins determined in two conformations separated by, on average, 7.5 Å root mean square deviation (RMSD), our pathways reduced the Cα atom RMSD to the goal conformation by 78%, outperforming peer methods. We then applied dCC-RRT to examine how collective, small-scale motions of four side-chains in the active site of cyclophilin A propagate through the protein. dCC-RRT uncovered a spatially contiguous network of residues linked by steric interactions and collective motion connecting the active site to a recently proposed, non-canonical capsid binding site 25 Å away, rationalizing NMR and multi-temperature crystallography experiments. In all, dCC-RRT can reveal detailed, all-atom molecular mechanisms for small and large amplitude motions. Source code and binaries are freely available at https://github.com/ExcitedStates/KGS/. © 2017 Wiley Periodicals, Inc.

  19. Use of 3D reconstruction to correct for patient motion in SPECT

    International Nuclear Information System (INIS)

    Fulton, R.R.; Hutton, B.F.; Braun, M.; Ardekani, B.; Larkin, R.

    1994-01-01

    Patient motion occurring during data acquisition in single photon emission computed tomography (SPECT) can cause serious reconstruction artefacts. We have developed a new approach to correct for head motion in brain SPECT. Prior to motion, projections are assigned to conventional projections. When head motion occurs, it is measured by a motion monitoring system, and subsequent projection data are mapped 'virtual' projections. The appropriate position of each virtual projection is determined by applying the converse of the patient's accumulated motion to the actual camera projection. Conventional and virtual projections, taken together, form a consistent set that can be reconstructed using a three-dimensional (3D) algorithm. The technique has been tested on a range of simulated rotational movements, both within and out of the transaxial plane. For all simulated movements, the motion corrected images exhibited better agreement with a motion free reconstruction than did the uncorrected images. (Author)

  20. Periodic motions and grazing in a harmonically forced, piecewise, linear oscillator with impacts

    International Nuclear Information System (INIS)

    Luo, Albert C.J.; Chen Lidi

    2005-01-01

    In this paper, an idealized, piecewise linear system is presented to model the vibration of gear transmission systems. Periodic motions in a generalized, piecewise linear oscillator with perfectly plastic impacts are predicted analytically. The analytical predictions of periodic motion are based on the mapping structures, and the generic mappings based on the discontinuous boundaries are developed. This method for the analytical prediction of the periodic motions in non-smooth dynamic systems can give all possible periodic motions based on the adequate mapping structures. The stability and bifurcation conditions for specified periodic motions are obtained. The periodic motions and grazing motion are demonstrated. This model is applicable to prediction of periodic motion in nonlinear dynamics of gear transmission systems

  1. Internal Motion Estimation by Internal-external Motion Modeling for Lung Cancer Radiotherapy.

    Science.gov (United States)

    Chen, Haibin; Zhong, Zichun; Yang, Yiwei; Chen, Jiawei; Zhou, Linghong; Zhen, Xin; Gu, Xuejun

    2018-02-27

    The aim of this study is to develop an internal-external correlation model for internal motion estimation for lung cancer radiotherapy. Deformation vector fields that characterize the internal-external motion are obtained by respectively registering the internal organ meshes and external surface meshes from the 4DCT images via a recently developed local topology preserved non-rigid point matching algorithm. A composite matrix is constructed by combing the estimated internal phasic DVFs with external phasic and directional DVFs. Principle component analysis is then applied to the composite matrix to extract principal motion characteristics, and generate model parameters to correlate the internal-external motion. The proposed model is evaluated on a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and 4DCT images from five lung cancer patients. For tumor tracking, the center of mass errors of the tracked tumor are 0.8(±0.5)mm/0.8(±0.4)mm for synthetic data, and 1.3(±1.0)mm/1.2(±1.2)mm for patient data in the intra-fraction/inter-fraction tracking, respectively. For lung tracking, the percent errors of the tracked contours are 0.06(±0.02)/0.07(±0.03) for synthetic data, and 0.06(±0.02)/0.06(±0.02) for patient data in the intra-fraction/inter-fraction tracking, respectively. The extensive validations have demonstrated the effectiveness and reliability of the proposed model in motion tracking for both the tumor and the lung in lung cancer radiotherapy.

  2. Electromagnetic radiation of charged particles in stochastic motion

    Energy Technology Data Exchange (ETDEWEB)

    Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom); Mocanu, Gabriela [Astronomical Institute of the Romanian Academy, Cluj-Napoca (Romania)

    2016-03-15

    The study of the Brownian motion of a charged particle in electric and magnetic fields has many important applications in plasma and heavy ions physics, as well as in astrophysics. In the present paper we consider the electromagnetic radiation properties of a charged non-relativistic particle in the presence of electric and magnetic fields, of an exterior non-electromagnetic potential, and of a friction and stochastic force, respectively. We describe the motion of the charged particle by a Langevin and generalized Langevin type stochastic differential equation. We investigate in detail the cases of the Brownian motion with or without memory in a constant electric field, in the presence of an external harmonic potential, and of a constant magnetic field. In all cases the corresponding Langevin equations are solved numerically, and a full description of the spectrum of the emitted radiation and of the physical properties of the motion is obtained. The power spectral density of the emitted power is also obtained for each case, and, for all considered oscillating systems, it shows the presence of peaks, corresponding to certain intervals of the frequency. (orig.)

  3. Implied motion because of instability in Hokusai Manga activates the human motion-sensitive extrastriate visual cortex: an fMRI study of the impact of visual art.

    Science.gov (United States)

    Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko

    2010-03-10

    The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.

  4. Impaired Velocity Processing Reveals an Agnosia for Motion in Depth.

    Science.gov (United States)

    Barendregt, Martijn; Dumoulin, Serge O; Rokers, Bas

    2016-11-01

    Many individuals with normal visual acuity are unable to discriminate the direction of 3-D motion in a portion of their visual field, a deficit previously referred to as a stereomotion scotoma. The origin of this visual deficit has remained unclear. We hypothesized that the impairment is due to a failure in the processing of one of the two binocular cues to motion in depth: changes in binocular disparity over time or interocular velocity differences. We isolated the contributions of these two cues and found that sensitivity to interocular velocity differences, but not changes in binocular disparity, varied systematically with observers' ability to judge motion direction. We therefore conclude that the inability to interpret motion in depth is due to a failure in the neural mechanisms that combine velocity signals from the two eyes. Given these results, we argue that the deficit should be considered a prevalent but previously unrecognized agnosia specific to the perception of visual motion. © The Author(s) 2016.

  5. 39 CFR 959.26 - Motion for reconsideration.

    Science.gov (United States)

    2010-07-01

    ... clearly setting forth the points of fact and of law relied upon in support of said motion. ... 39 Postal Service 1 2010-07-01 2010-07-01 false Motion for reconsideration. 959.26 Section 959.26... PRIVATE EXPRESS STATUTES § 959.26 Motion for reconsideration. A party may file a motion for...

  6. Motion Analysis Based on Invertible Rapid Transform

    Directory of Open Access Journals (Sweden)

    J. Turan

    1999-06-01

    Full Text Available This paper presents the results of a study on the use of invertible rapid transform (IRT for the motion estimation in a sequence of images. Motion estimation algorithms based on the analysis of the matrix of states (produced in the IRT calculation are described. The new method was used experimentally to estimate crowd and traffic motion from the image data sequences captured at railway stations and at high ways in large cities. The motion vectors may be used to devise a polar plot (showing velocity magnitude and direction for moving objects where the dominant motion tendency can be seen. The experimental results of comparison of the new motion estimation methods with other well known block matching methods (full search, 2D-log, method based on conventional (cross correlation (CC function or phase correlation (PC function for application of crowd motion estimation are also presented.

  7. SU-E-J-252: A Motion Algorithm to Extract Physical and Motion Parameters of a Mobile Target in Cone-Beam Computed Tomographic Imaging Retrospective to Image Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Ali, I; Ahmad, S [University of Oklahoma Health Sciences, Oklahoma City, OK (United States); Alsbou, N [Department of Electrical and Computer Engineering, Ada, OH (United States)

    2014-06-01

    Purpose: A motion algorithm was developed to extract actual length, CT-numbers and motion amplitude of a mobile target imaged with cone-beam-CT (CBCT) retrospective to image-reconstruction. Methods: The motion model considered a mobile target moving with a sinusoidal motion and employed three measurable parameters: apparent length, CT number level and gradient of a mobile target obtained from CBCT images to extract information about the actual length and CT number value of the stationary target and motion amplitude. The algorithm was verified experimentally with a mobile phantom setup that has three targets with different sizes manufactured from homogenous tissue-equivalent gel material embedded into a thorax phantom. The phantom moved sinusoidal in one-direction using eight amplitudes (0–20mm) and a frequency of 15-cycles-per-minute. The model required imaging parameters such as slice thickness, imaging time. Results: This motion algorithm extracted three unknown parameters: length of the target, CT-number-level, motion amplitude for a mobile target retrospective to CBCT image reconstruction. The algorithm relates three unknown parameters to measurable apparent length, CT-number-level and gradient for well-defined mobile targets obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on actual length of the target and motion amplitude. The cumulative CT-number for a mobile target was dependent on CT-number-level of the stationary target and motion amplitude. The gradient of the CT-distribution of mobile target is dependent on the stationary CT-number-level, actual target length along the direction of motion, and motion amplitude. Motion frequency and phase did not affect the elongation and CT-number distributions of mobile targets when imaging time included several motion cycles. Conclusion: The motion algorithm developed in this study has potential applications in diagnostic CT imaging and radiotherapy to extract

  8. Robotic motion compensation for applications in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Christian

    2013-07-22

    Radiation therapy today, on account of improvements in treatment procedures over the last 60 years, allows precise treatment of static tumors inside the human body. However, irradiation of moving tumors is still a challenging task as moving tumors often leave the treatment beam and the radiation dose delivered to the tumor reduces simultaneously increasing that on healthy tissue. This research work aims to push the frontiers of radiation therapy in order to enable precise treatment of moving tumors with focus on research and development of a unique real-time system enabling active motion compensation through robotic means to compensate tumor motion. During treatment, patients lie on a treatment couch which is normally used for static position corrections of patient set-up errors prior to radiation treatment. The treatment couch used, called HexaPOD, is a parallel manipulator with six degrees of freedom which can precisely position heavy loads inside a small region. Despite the HexaPOD not initially built with dynamics in mind, it is used in this work for sustained motion compensation by moving patients such that tumors stay precisely located at the center of the treatment beam during the complete course of treatment. In order to realize real-time tumor motion compensation by means of the HexaPOD, several challenges need to be addressed. Real-time aspects are covered by the adoption of a hard real-time operation system in combination with measurement and estimation of latencies of all physical quantities in the compensation system such as tumor or breathing position measurements. Accurate timing information is respected consistently in the whole system and all software-induced latencies are adaptively compensated for. This requires knowledge of future tumor positions from predictors. Several predictors for breathing and tumor motion predictions are proposed and evaluated in terms of a variety of different performance metrics. Extensions to prediction algorithms are

  9. Robotic motion compensation for applications in radiation oncology

    International Nuclear Information System (INIS)

    Herrmann, Christian

    2013-01-01

    Radiation therapy today, on account of improvements in treatment procedures over the last 60 years, allows precise treatment of static tumors inside the human body. However, irradiation of moving tumors is still a challenging task as moving tumors often leave the treatment beam and the radiation dose delivered to the tumor reduces simultaneously increasing that on healthy tissue. This research work aims to push the frontiers of radiation therapy in order to enable precise treatment of moving tumors with focus on research and development of a unique real-time system enabling active motion compensation through robotic means to compensate tumor motion. During treatment, patients lie on a treatment couch which is normally used for static position corrections of patient set-up errors prior to radiation treatment. The treatment couch used, called HexaPOD, is a parallel manipulator with six degrees of freedom which can precisely position heavy loads inside a small region. Despite the HexaPOD not initially built with dynamics in mind, it is used in this work for sustained motion compensation by moving patients such that tumors stay precisely located at the center of the treatment beam during the complete course of treatment. In order to realize real-time tumor motion compensation by means of the HexaPOD, several challenges need to be addressed. Real-time aspects are covered by the adoption of a hard real-time operation system in combination with measurement and estimation of latencies of all physical quantities in the compensation system such as tumor or breathing position measurements. Accurate timing information is respected consistently in the whole system and all software-induced latencies are adaptively compensated for. This requires knowledge of future tumor positions from predictors. Several predictors for breathing and tumor motion predictions are proposed and evaluated in terms of a variety of different performance metrics. Extensions to prediction algorithms are

  10. Tuning for temporal interval in human apparent motion detection.

    Science.gov (United States)

    Bours, Roger J E; Stuur, Sanne; Lankheet, Martin J M

    2007-01-08

    Detection of apparent motion in random dot patterns requires correlation across time and space. It has been difficult to study the temporal requirements for the correlation step because motion detection also depends on temporal filtering preceding correlation and on integration at the next levels. To specifically study tuning for temporal interval in the correlation step, we performed an experiment in which prefiltering and postintegration were held constant and in which we used a motion stimulus containing coherent motion for a single interval value only. The stimulus consisted of a sparse random dot pattern in which each dot was presented in two frames only, separated by a specified interval. On each frame, half of the dots were refreshed and the other half was a displaced reincarnation of the pattern generated one or several frames earlier. Motion energy statistics in such a stimulus do not vary from frame to frame, and the directional bias in spatiotemporal correlations is similar for different interval settings. We measured coherence thresholds for left-right direction discrimination by varying motion coherence levels in a Quest staircase procedure, as a function of both step size and interval. Results show that highest sensitivity was found for an interval of 17-42 ms, irrespective of viewing distance. The falloff at longer intervals was much sharper than previously described. Tuning for temporal interval was largely, but not completely, independent of step size. The optimal temporal interval slightly decreased with increasing step size. Similarly, the optimal step size decreased with increasing temporal interval.

  11. Action Recognition in Semi-synthetic Images using Motion Primitives

    DEFF Research Database (Denmark)

    Fihl, Preben; Holte, Michael Boelstoft; Moeslund, Thomas B.

    This technical report describes an action recognition approach based on motion primitives. A few characteristic time instances are found in a sequence containing an action and the action is classified from these instances. The characteristic instances are defined solely on the human motion, hence...... motion primitives. The motion primitives are extracted by double difference images and represented by four features. In each frame the primitive, if any, that best explains the observed data is identified. This leads to a discrete recognition problem since a video sequence will be converted into a string...... containing a sequence of symbols, each representing a primitive. After pruning the string a probabilistic Edit Distance classifier is applied to identify which action best describes the pruned string. The method is evaluated on five one-arm gestures. A test is performed with semi-synthetic input data...

  12. Residual motion compensation in ECG-gated interventional cardiac vasculature reconstruction

    Science.gov (United States)

    Schwemmer, C.; Rohkohl, C.; Lauritsch, G.; Müller, K.; Hornegger, J.

    2013-06-01

    Three-dimensional reconstruction of cardiac vasculature from angiographic C-arm CT (rotational angiography) data is a major challenge. Motion artefacts corrupt image quality, reducing usability for diagnosis and guidance. Many state-of-the-art approaches depend on retrospective ECG-gating of projection data for image reconstruction. A trade-off has to be made regarding the size of the ECG-gating window. A large temporal window is desirable to avoid undersampling. However, residual motion will occur in a large window, causing motion artefacts. We present an algorithm to correct for residual motion. Our approach is based on a deformable 2D-2D registration between the forward projection of an initial, ECG-gated reconstruction, and the original projection data. The approach is fully automatic and does not require any complex segmentation of vasculature, or landmarks. The estimated motion is compensated for during the backprojection step of a subsequent reconstruction. We evaluated the method using the publicly available CAVAREV platform and on six human clinical datasets. We found a better visibility of structure, reduced motion artefacts, and increased sharpness of the vessels in the compensated reconstructions compared to the initial reconstructions. At the time of writing, our algorithm outperforms the leading result of the CAVAREV ranking list. For the clinical datasets, we found an average reduction of motion artefacts by 13 ± 6%. Vessel sharpness was improved by 25 ± 12% on average.

  13. Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Rossi, M.; Marín, Á. G.

    2013-01-01

    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh...

  14. On balance: weighing harms and benefits in fundamental neurological research using nonhuman primates.

    Science.gov (United States)

    Arnason, Gardar; Clausen, Jens

    2016-06-01

    One of the most controversial areas of animal research is the use of nonhuman primates for fundamental research. At the centre of the controversy is the question of whether the benefits of research outweigh the harms. We argue that the evaluation of harms and benefits is highly problematic. We describe some common procedures in neurological research using nonhuman primates and the difficulties in evaluating the harm involved. Even if the harm could be quantified, it is unlikely that it could be meaningfully aggregated over different procedures, let alone different animals. A similar problem arises for evaluating benefits. It is not clear how benefits could be quantified, and even if they could be, values for different aspects of expected benefits cannot be simply added up. Sorting harms and benefits in three or four categories cannot avoid the charge of arbitrariness and runs the risk of imposing its structure on the moral decision. The metaphor of weighing or balancing harms and benefits is inappropriate for the moral decision about whether to use nonhuman primates for research. Arguing that the harms and benefits in this context are incommensurable, we suggest describing the moral consideration of harms and benefits as a coherent trade-off. Such a decision does not require commensurability. It must be well-informed about the suffering involved and the potential benefits, it must be consistent with the legal, regulatory and institutional framework within which it is made, and it must cohere with other judgments in relevant areas.

  15. A priori motion models for four-dimensional reconstruction in gated cardiac SPECT

    International Nuclear Information System (INIS)

    Lalush, D.S.; Tsui, B.M.W.; Cui, Lin

    1996-01-01

    We investigate the benefit of incorporating a priori assumptions about cardiac motion in a fully four-dimensional (4D) reconstruction algorithm for gated cardiac SPECT. Previous work has shown that non-motion-specific 4D Gibbs priors enforcing smoothing in time and space can control noise while preserving resolution. In this paper, we evaluate methods for incorporating known heart motion in the Gibbs prior model. The new model is derived by assigning motion vectors to each 4D voxel, defining the movement of that volume of activity into the neighboring time frames. Weights for the Gibbs cliques are computed based on these open-quotes most likelyclose quotes motion vectors. To evaluate, we employ the mathematical cardiac-torso (MCAT) phantom with a new dynamic heart model that simulates the beating and twisting motion of the heart. Sixteen realistically-simulated gated datasets were generated, with noise simulated to emulate a real Tl-201 gated SPECT study. Reconstructions were performed using several different reconstruction algorithms, all modeling nonuniform attenuation and three-dimensional detector response. These include ML-EM with 4D filtering, 4D MAP-EM without prior motion assumption, and 4D MAP-EM with prior motion assumptions. The prior motion assumptions included both the correct motion model and incorrect models. Results show that reconstructions using the 4D prior model can smooth noise and preserve time-domain resolution more effectively than 4D linear filters. We conclude that modeling of motion in 4D reconstruction algorithms can be a powerful tool for smoothing noise and preserving temporal resolution in gated cardiac studies

  16. The influence of sleep deprivation and oscillating motion on sleepiness, motion sickness, and cognitive and motor performance.

    Science.gov (United States)

    Kaplan, Janna; Ventura, Joel; Bakshi, Avijit; Pierobon, Alberto; Lackner, James R; DiZio, Paul

    2017-01-01

    Our goal was to determine how sleep deprivation, nauseogenic motion, and a combination of motion and sleep deprivation affect cognitive vigilance, visual-spatial perception, motor learning and retention, and balance. We exposed four groups of subjects to different combinations of normal 8h sleep or 4h sleep for two nights combined with testing under stationary conditions or during 0.28Hz horizontal linear oscillation. On the two days following controlled sleep, all subjects underwent four test sessions per day that included evaluations of fatigue, motion sickness, vigilance, perceptual discrimination, perceptual learning, motor performance and learning, and balance. Sleep loss and exposure to linear oscillation had additive or multiplicative relationships to sleepiness, motion sickness severity, decreases in vigilance and in perceptual discrimination and learning. Sleep loss also decelerated the rate of adaptation to motion sickness over repeated sessions. Sleep loss degraded the capacity to compensate for novel robotically induced perturbations of reaching movements but did not adversely affect adaptive recovery of accurate reaching. Overall, tasks requiring substantial attention to cognitive and motor demands were degraded more than tasks that were more automatic. Our findings indicate that predicting performance needs to take into account in addition to sleep loss, the attentional demands and novelty of tasks, the motion environment in which individuals will be performing and their prior susceptibility to motion sickness during exposure to provocative motion stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Representation of bidirectional ground motions for design spectra in building codes

    Science.gov (United States)

    Stewart, Jonathan P.; Abrahamson, Norman A.; Atkinson, Gail M.; Beker, Jack W.; Boore, David M.; Bozorgnia, Yousef; Campbell, Kenneth W.; Comartin, Craig D.; Idriss, I.M.; Lew, Marshall; Mehrain, Michael; Moehle, Jack P.; Naeim, Farzad; Sabol, Thomas A.

    2011-01-01

    The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.

  18. Self-similarity in the equation of motion of a ship

    Directory of Open Access Journals (Sweden)

    Gyeong Joong Lee

    2014-06-01

    Full Text Available If we want to analyze the motion of a body in fluid, we should use rigid-body dynamics and fluid dynamics together. Even if the rigid-body and fluid dynamics are each self-consistent, there arises the problem of self-similar structure in the equation of motion when the two dynamics are coupled with each other. When the added mass is greater than the mass of a body, the calculated motion is divergent because of its self-similar structure. This study showed that the above problem is an inherent problem. This problem of self-similar structure may arise in the equation of motion in which the fluid dynamic forces are treated as external forces on the right hand side of the equation. A reconfiguration technique for the equation of motion using pseudo-added-mass was proposed to resolve the self-similar structure problem; specifically for the case when the fluid force is expressed by integration of the fluid pressure.

  19. Vestibular nuclei and cerebellum put visual gravitational motion in context.

    Science.gov (United States)

    Miller, William L; Maffei, Vincenzo; Bosco, Gianfranco; Iosa, Marco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco

    2008-04-01

    Animal survival in the forest, and human success on the sports field, often depend on the ability to seize a target on the fly. All bodies fall at the same rate in the gravitational field, but the corresponding retinal motion varies with apparent viewing distance. How then does the brain predict time-to-collision under gravity? A perspective context from natural or pictorial settings might afford accurate predictions of gravity's effects via the recovery of an environmental reference from the scene structure. We report that embedding motion in a pictorial scene facilitates interception of gravitational acceleration over unnatural acceleration, whereas a blank scene eliminates such bias. Functional magnetic resonance imaging (fMRI) revealed blood-oxygen-level-dependent correlates of these visual context effects on gravitational motion processing in the vestibular nuclei and posterior cerebellar vermis. Our results suggest an early stage of integration of high-level visual analysis with gravity-related motion information, which may represent the substrate for perceptual constancy of ubiquitous gravitational motion.

  20. Spatial filtering precedes motion detection.

    Science.gov (United States)

    Morgan, M J

    1992-01-23

    When we perceive motion on a television or cinema screen, there must be some process that allows us to track moving objects over time: if not, the result would be a conflicting mass of motion signals in all directions. A possible mechanism, suggested by studies of motion displacement in spatially random patterns, is that low-level motion detectors have a limited spatial range, which ensures that they tend to be stimulated over time by the same object. This model predicts that the direction of displacement of random patterns cannot be detected reliably above a critical absolute displacement value (Dmax) that is independent of the size or density of elements in the display. It has been inferred that Dmax is a measure of the size of motion detectors in the visual pathway. Other studies, however, have shown that Dmax increases with element size, in which case the most likely interpretation is that Dmax depends on the probability of false matches between pattern elements following a displacement. These conflicting accounts are reconciled here by showing that Dmax is indeed determined by the spacing between the elements in the pattern, but only after fine detail has been removed by a physiological prefiltering stage: the filter required to explain the data has a similar size to the receptive field of neurons in the primate magnocellular pathway. The model explains why Dmax can be increased by removing high spatial frequencies from random patterns, and simplifies our view of early motion detection.