WorldWideScience

Sample records for web-based 3d virtual

  1. Development of a web-based 3D virtual reality program for hydrogen station

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Younghee; Kim, Jinkyung; Kim, Junghwan; Moon, Il [Department of Chemical and Biomolecular Engineering, Yonsei University, 134 Shinchon-dong Seodaemun-ku, Seoul 120-749 (Korea); Kim, Eun Jung; Kim, Young Gyu [Institute of Gas Safety R and D, Korea Gas Safety Corporation, 322-1 Daeya-Dong Siheung-si, Kyonggi-do 429-712 (Korea)

    2010-03-15

    The hydrogen fueling station is an infrastructure of supplying fuel cell vehicles. It is necessary to guarantee the safety of hydrogen station equipment and operating procedure for decreasing intangible awareness of danger of hydrogen. Among many methods of securing the safety of the hydrogen stations, the virtual experience by dynamic simulation of operating the facilities and equipment is important. Thus, we have developed a virtual reality operator education system, and an interactive hydrogen safety training system. This paper focuses on the development of a virtual reality operator education of the hydrogen fueling station based on simulations of accident scenarios and hypothetical operating experience. The risks to equipment and personnel, associated with the manual operation of hydrogen fueling station demand rigorous personnel instruction. Trainees can practice how to use all necessary equipments and can experience twenty possible accident scenarios. This program also illustrates Emergency Response Plan and Standard Operating Procedure for both emergency and normal operations. (author)

  2. Web-based interactive visualization of 3D video mosaics using X3D standard

    Institute of Scientific and Technical Information of China (English)

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  3. A web-based 3D geological information visualization system

    Science.gov (United States)

    Song, Renbo; Jiang, Nan

    2013-03-01

    Construction of 3D geological visualization system has attracted much more concern in GIS, computer modeling, simulation and visualization fields. It not only can effectively help geological interpretation and analysis work, but also can it can help leveling up geosciences professional education. In this paper, an applet-based method was introduced for developing a web-based 3D geological information visualization system. The main aims of this paper are to explore a rapid and low-cost development method for constructing a web-based 3D geological system. First, the borehole data stored in Excel spreadsheets was extracted and then stored in SQLSERVER database of a web server. Second, the JDBC data access component was utilized for providing the capability of access the database. Third, the user interface was implemented with applet component embedded in JSP page and the 3D viewing and querying functions were implemented with PickCanvas of Java3D. Last, the borehole data acquired from geological survey were used for test the system, and the test results has shown that related methods of this paper have a certain application values.

  4. A web-based virtual lighting simulator

    Energy Technology Data Exchange (ETDEWEB)

    Papamichael, Konstantinos; Lai, Judy; Fuller, Daniel; Tariq, Tara

    2002-05-06

    This paper is about a web-based ''virtual lighting simulator,'' which is intended to allow architects and lighting designers to quickly assess the effect of key parameters on the daylighting and lighting performance in various space types. The virtual lighting simulator consists of a web-based interface that allows navigation through a large database of images and data, which were generated through parametric lighting simulations. At its current form, the virtual lighting simulator has two main modules, one for daylighting and one for electric lighting. The daylighting module includes images and data for a small office space, varying most key daylighting parameters, such as window size and orientation, glazing type, surface reflectance, sky conditions, time of the year, etc. The electric lighting module includes images and data for five space types (classroom, small office, large open office, warehouse and small retail), varying key lighting parameters, such as the electric lighting system, surface reflectance, dimming/switching, etc. The computed images include perspectives and plans and are displayed in various formats to support qualitative as well as quantitative assessment. The quantitative information is in the form of iso-contour lines superimposed on the images, as well as false color images and statistical information on work plane illuminance. The qualitative information includes images that are adjusted to account for the sensitivity and adaptation of the human eye. The paper also includes a section on the major technical issues and their resolution.

  5. IMAGO Visualization System: An Interactive Web-Based 3D Visualization System for Cultural Heritage Applications

    Directory of Open Access Journals (Sweden)

    Caroline M. Mendes

    2012-04-01

    Full Text Available Due to the evolution of technologies and methods for realistic 3D reconstruction of objects, in many projects it can be found efficient ways to make research results in digital preservation available on the Internet. 3D visualization of cultural heritage is highlighted in this scenario, helping to expand research activities in this field by providing proper tools to allow for example, remote access to historical artifacts. Thus, visualization systems must be able to handle important aspects in the context of digital preservation, such as user profiles, security and ease access to 3D models. This paper presents the development of an effective web-based 3D visualization system whose architecture offers an easy and fast interactivity with 3D models even when limited computer resources are available. The system has been successfully adopted in developing of 3D Virtual Museums in the Universidade Federal do Parana (UFPR in Brazil, providing an important tool to promote research, educational, social and cultural activities.

  6. 3D MODELLING AND INTERACTIVE WEB-BASED VISUALIZATION OF CULTURAL HERITAGE OBJECTS

    Directory of Open Access Journals (Sweden)

    M. N. Koeva

    2016-06-01

    comparative study discusses the advantages and disadvantages of these three approaches and their integration in multiple domains, such as web-based 3D city modelling, tourism and architectural 3D visualization. It was concluded that image-based modelling and panoramic visualisation are simple, fast and effective techniques suitable for simultaneous virtual representation of many objects. However, additional measurements or CAD information will be beneficial for obtaining higher accuracy.

  7. 3D Spatial Data Infrastructures for web-based Visualization

    OpenAIRE

    Schilling, Arne

    2014-01-01

    In this thesis, concepts for developing Spatial Data Infrastructures with an emphasis on visualizing 3D landscape and city models in distributed environments are discussed. Spatial Data Infrastructures are important for public authorities in order to perform tasks on a daily basis, and serve as research topic in geo-informatics. Joint initiatives at national and international level exist for harmonizing procedures and technologies. Interoperability is an important aspect in this context - as ...

  8. Networked 3D Virtual Museum System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.

  9. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  10. 3D Web-based HMI with WebGL Rendering Performance

    Directory of Open Access Journals (Sweden)

    Muennoi Atitayaporn

    2016-01-01

    Full Text Available An HMI, or Human-Machine Interface, is a software allowing users to communicate with a machine or automation system. It usually serves as a display section in SCADA (Supervisory Control and Data Acquisition system for device monitoring and control. In this papper, a 3D Web-based HMI with WebGL (Web-based Graphics Library rendering performance is presented. The main purpose of this work is to attempt to reduce the limitations of traditional 3D web HMI using the advantage of WebGL. To evaluate the performance, frame rate and frame time metrics were used. The results showed 3D Web-based HMI can maintain the frame rate 60FPS for #cube=0.5K/0.8K, 30FPS for #cube=1.1K/1.6K when it was run on Internet Explorer and Chrome respectively. Moreover, the study found that 3D Web-based HMI using WebGL contains similar frame time in each frame even though the numbers of cubes are up to 5K. This indicated stuttering incurred less in the proposed 3D Web-based HMI compared to the chosen commercial HMI product.

  11. Web-based applications for virtual laboratories

    NARCIS (Netherlands)

    Bier, H.H.

    2011-01-01

    Web-based applications for academic education facilitate, usually, exchange of multimedia files, while design-oriented domains such as architectural and urban design require additional support in collaborative real-time drafting and modeling. In this context, multi-user interactive interfaces employ

  12. The Idaho Virtualization Laboratory 3D Pipeline

    Directory of Open Access Journals (Sweden)

    Nicholas A. Holmer

    2014-05-01

    Full Text Available Three dimensional (3D virtualization and visualization is an important component of industry, art, museum curation and cultural heritage, yet the step by step process of 3D virtualization has been little discussed. Here we review the Idaho Virtualization Laboratory’s (IVL process of virtualizing a cultural heritage item (artifact from start to finish. Each step is thoroughly explained and illustrated including how the object and its metadata are digitally preserved and ultimately distributed to the world.

  13. Intelligent web agents for a 3D virtual community

    Science.gov (United States)

    Dave, T. M.; Zhang, Yanqing; Owen, G. S. S.; Sunderraman, Rajshekhar

    2003-08-01

    In this paper, we propose an Avatar-based intelligent agent technique for 3D Web based Virtual Communities based on distributed artificial intelligence, intelligent agent techniques, and databases and knowledge bases in a digital library. One of the goals of this joint NSF (IIS-9980130) and ACM SIGGRAPH Education Committee (ASEC) project is to create a virtual community of educators and students who have a common interest in comptuer graphics, visualization, and interactive techniqeus. In this virtual community (ASEC World) Avatars will represent the educators, students, and other visitors to the world. Intelligent agents represented as specially dressed Avatars will be available to assist the visitors to ASEC World. The basic Web client-server architecture of the intelligent knowledge-based avatars is given. Importantly, the intelligent Web agent software system for the 3D virtual community is implemented successfully.

  14. Web-based 3-D GIS and its applications for pipeline planning and construction

    Energy Technology Data Exchange (ETDEWEB)

    Tao, V.; Wang, T.Q.K. [Calgary Univ., Calgary, AB (Canada). Dept. of Geomatics Engineering

    2000-07-01

    The many benefits that web-based 3D geographical information system (GIS) technology can bring to pipeline planning and construction was discussed. GIS can effectively integrate and manage a variety of data sources including geological, geographical, environmental, engineering and socioeconomic data. The third dimension of geospatial data is also very significant for pipeline planning, construction and maintenance which explains the increased demand for the development of a 3D GIS for pipeline applications. The Internet has made it possible to integrate GIS, visualization and distributed object computing technologies for a web-based 3D GIS. While this offers many advantages, it also poses several technical challenges. The technology allows users to access, manipulate and analyze geospatial objects remotely. This has positive implications for pipeline operating companies in their collaborative decision making for large pipeline projects that cover large areas with multiple landowners and different government sections. The technology will enhance their capability and productivity by making it possible to run their operations more efficiently. The Department of Geomatics Engineering at the University of Calgary has developed a web-based 3D GIS, GeoEye 3D prototype using a pure Java solution. The system is based on an advanced client/server model for visualization, manipulation and analysis of spatial data such as 3D terrain, wells, linear objects such as roads or pipelines and solid objects such as buildings. The system can be linked to other databases for spatial inquiry. 7 refs., 3 figs.

  15. A web-based 3D medical image collaborative processing system with videoconference

    Science.gov (United States)

    Luo, Sanbi; Han, Jun; Huang, Yonggang

    2013-07-01

    Three dimension medical images have been playing an irreplaceable role in realms of medical treatment, teaching, and research. However, collaborative processing and visualization of 3D medical images on Internet is still one of the biggest challenges to support these activities. Consequently, we present a new application approach for web-based synchronized collaborative processing and visualization of 3D medical Images. Meanwhile, a web-based videoconference function is provided to enhance the performance of the whole system. All the functions of the system can be available with common Web-browsers conveniently, without any extra requirement of client installation. In the end, this paper evaluates the prototype system using 3D medical data sets, which demonstrates the good performance of our system.

  16. The National 3-D Geospatial Information Web-Based Service of Korea

    Science.gov (United States)

    Lee, D. T.; Kim, C. W.; Kang, I. G.

    2013-09-01

    3D geospatial information systems should provide efficient spatial analysis tools and able to use all capabilities of the third dimension, and a visualization. Currently, many human activities make steps toward the third dimension like land use, urban and landscape planning, cadastre, environmental monitoring, transportation monitoring, real estate market, military applications, etc. To reflect this trend, the Korean government has been started to construct the 3D geospatial data and service platform. Since the geospatial information was introduced in Korea, the construction of geospatial information (3D geospatial information, digital maps, aerial photographs, ortho photographs, etc.) has been led by the central government. The purpose of this study is to introduce the Korean government-lead 3D geospatial information web-based service for the people who interested in this industry and we would like to introduce not only the present conditions of constructed 3D geospatial data but methodologies and applications of 3D geospatial information. About 15% (about 3,278.74 km2) of the total urban area's 3D geospatial data have been constructed by the national geographic information institute (NGII) of Korea from 2005 to 2012. Especially in six metropolitan cities and Dokdo (island belongs to Korea) on level of detail (LOD) 4 which is photo-realistic textured 3D models including corresponding ortho photographs were constructed in 2012. In this paper, we represented web-based 3D map service system composition and infrastructure and comparison of V-world with Google Earth service will be presented. We also represented Open API based service cases and discussed about the protection of location privacy when we construct 3D indoor building models. In order to prevent an invasion of privacy, we processed image blurring, elimination and camouflage. The importance of public-private cooperation and advanced geospatial information policy is emphasized in Korea. Thus, the progress of

  17. A web-based solution for 3D medical image visualization

    Science.gov (United States)

    Hou, Xiaoshuai; Sun, Jianyong; Zhang, Jianguo

    2015-03-01

    In this presentation, we present a web-based 3D medical image visualization solution which enables interactive large medical image data processing and visualization over the web platform. To improve the efficiency of our solution, we adopt GPU accelerated techniques to process images on the server side while rapidly transferring images to the HTML5 supported web browser on the client side. Compared to traditional local visualization solution, our solution doesn't require the users to install extra software or download the whole volume dataset from PACS server. By designing this web-based solution, it is feasible for users to access the 3D medical image visualization service wherever the internet is available.

  18. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  19. 3D VISUALIZATION FOR VIRTUAL MUSEUM DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Skamantzari

    2016-06-01

    Full Text Available The interest in the development of virtual museums is nowadays rising rapidly. During the last decades there have been numerous efforts concerning the 3D digitization of cultural heritage and the development of virtual museums, digital libraries and serious games. The realistic result has always been the main concern and a real challenge when it comes to 3D modelling of monuments, artifacts and especially sculptures. This paper implements, investigates and evaluates the results of the photogrammetric methods and 3D surveys that were used for the development of a virtual museum. Moreover, the decisions, the actions, the methodology and the main elements that this kind of application should include and take into consideration are described and analysed. It is believed that the outcomes of this application will be useful to researchers who are planning to develop and further improve the attempts made on virtual museums and mass production of 3D models.

  20. SynMap2 and SynMap3D: web-based whole-genome synteny browsers.

    Science.gov (United States)

    Haug-Baltzell, Asher; Stephens, Sean A; Davey, Sean; Scheidegger, Carlos E; Lyons, Eric

    2017-07-15

    Current synteny visualization tools either focus on small regions of sequence and do not illustrate genome-wide trends, or are complicated to use and create visualizations that are difficult to interpret. To address this challenge, The Comparative Genomics Platform (CoGe) has developed two web-based tools to visualize synteny across whole genomes. SynMap2 and SynMap3D allow researchers to explore whole genome synteny patterns (across two or three genomes, respectively) in responsive, web-based visualization and virtual reality environments. Both tools have access to the extensive CoGe genome database (containing over 30 000 genomes) as well as the option for users to upload their own data. By leveraging modern web technologies there is no installation required, making the tools widely accessible and easy to use. Both tools are open source (MIT license) and freely available for use online through CoGe ( https://genomevolution.org ). SynMap2 and SynMap3D can be accessed at http://genomevolution.org/coge/SynMap.pl and http://genomevolution.org/coge/SynMap3D.pl , respectively. Source code is available: https://github.com/LyonsLab/coge . ericlyons@email.arizona.edu. Supplementary data are available at Bioinformatics online.

  1. Virtual Realization using 3D Password

    Directory of Open Access Journals (Sweden)

    A.B.Gadicha

    2012-03-01

    Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.

  2. Web-Based Interactive 3D Visualization as a Tool for Improved Anatomy Learning

    Science.gov (United States)

    Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan

    2009-01-01

    Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain…

  3. Web-Based Interactive 3D Visualization as a Tool for Improved Anatomy Learning

    Science.gov (United States)

    Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan

    2009-01-01

    Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain…

  4. Web-based volume slicer for 3D electron-microscopy data from EMDB.

    Science.gov (United States)

    Salavert-Torres, José; Iudin, Andrii; Lagerstedt, Ingvar; Sanz-García, Eduardo; Kleywegt, Gerard J; Patwardhan, Ardan

    2016-05-01

    We describe the functionality and design of the Volume slicer - a web-based slice viewer for EMDB entries. This tool uniquely provides the facility to view slices from 3D EM reconstructions along the three orthogonal axes and to rapidly switch between them and navigate through the volume. We have employed multiple rounds of user-experience testing with members of the EM community to ensure that the interface is easy and intuitive to use and the information provided is relevant. The impetus to develop the Volume slicer has been calls from the EM community to provide web-based interactive visualisation of 2D slice data. This would be useful for quick initial checks of the quality of a reconstruction. Again in response to calls from the community, we plan to further develop the Volume slicer into a fully-fledged Volume browser that provides integrated visualisation of EMDB and PDB entries from the molecular to the cellular scale.

  5. OB3D, a new set of 3D Objects available for research: a web-based study

    Directory of Open Access Journals (Sweden)

    Stéphane eBuffat

    2014-10-01

    Full Text Available Studying object recognition is central to fundamental and clinical research on cognitive functions but suffers from the limitations of the available sets that cannot always be modified and adapted to meet the specific goals of each study. We here present a new set of 3D scans of real objects available on-line as ASCII files, OB3D. These files are lists of dots, each defined by a triplet of spatial coordinates and their normal that allow simple and highly versatile transformations and adaptations. We performed a web-based experiment to evaluate the minimal number of dots required for the denomination and categorization of these objects, thus providing a reference threshold. We further analyze several other variables derived from this data set, such as the correlations with object complexity. This new stimulus set, which was found to activate the Lower Occipital Complex (LOC in another study, may be of interest for studies of cognitive functions in healthy participants and patients with cognitive impairments, including visual perception, language, memory, etc.

  6. A web-based 3D visualisation and assessment system for urban precinct scenario modelling

    Science.gov (United States)

    Trubka, Roman; Glackin, Stephen; Lade, Oliver; Pettit, Chris

    2016-07-01

    Recent years have seen an increasing number of spatial tools and technologies for enabling better decision-making in the urban environment. They have largely arisen because of the need for cities to be more efficiently planned to accommodate growing populations while mitigating urban sprawl, and also because of innovations in rendering data in 3D being well suited for visualising the urban built environment. In this paper we review a number of systems that are better known and more commonly used in the field of urban planning. We then introduce Envision Scenario Planner (ESP), a web-based 3D precinct geodesign, visualisation and assessment tool, developed using Agile and Co-design methods. We provide a comprehensive account of the tool, beginning with a discussion of its design and development process and concluding with an example use case and a discussion of the lessons learned in its development.

  7. 3D virtual table in anatomy education

    DEFF Research Database (Denmark)

    Dahl, Mads Ronald; Simonsen, Eivind Ortind

    The ‘Anatomage’ is a 3D virtual human anatomy table, with touchscreen functionality, where it is possible to upload CT-scans and digital. Learning the human anatomy terminology requires time, a very good memory, anatomy atlas, books and lectures. Learning the 3 dimensional structure, connections...

  8. 3-D GIS : Virtual London and beyond

    Directory of Open Access Journals (Sweden)

    Michael Batty

    2006-10-01

    Full Text Available In this paper, we outline how we have developed a series of technologies to enable detailed interactive 3-D Geographical Information Systems (GIS based models of cities to be created. Until relatively recently these models have been developed in Computer Aided Design (CAD software more often then in GIS. One of the main reasons was that ‘3-D GIS’ was often only 2.5-D under closer inspection. This is changing, and by straddling both technologies, and integrating others, we show how these models in turn enable planning information, statistics, pollution levels, sea level rises and much more to be visualised and analysed in the context of the 3-D city model. The client for ‘Virtual London’ is the Greater London Authority (GLA and their aim is to develop improved dissemination of planning information, which is explored. We then argue that virtual cities should go well beyond the traditional conceptions of 3-D GIS and CAD into virtual worlds and online design. But we also urge caution in pushing the digital message too far, showing how more conventional tangible media is always necessary in rooting such models in more realistic and familiar representations.

  9. Web-Based Learning and Training for Virtual Metrology Lab

    CERN Document Server

    Al-Zahrani, Fahad

    2010-01-01

    The use of World Web Wide for distance education has received increasing attention over the past decades. The real challenge of adapting this technology for engineering education and training is to facilitate the laboratory experiments via Internet. In the sciences, measurement plays an important role. The accuracy of the measurement, as well as the units, help scientists to better understand phenomena occurring in nature. This paper introduces Metrology educators to the use and adoption of Java-applets in order to create virtual, online Metrology laboratories for students. These techniques have been used to successfully form a laboratory course which augments the more conventional lectures in concepts of Metrology course at Faculty of Engineering, Albaha University, KSA. Improvements of the package are still undergoing to incorporate Web-based technologies (Internet home page, HTML, Java programming etc...). This Web-based education and training has been successfully class-tested within an undergraduate prel...

  10. Implementing Virtual Reality Technology as an Effective Web Based Kiosk: Darulaman's Teacher Training College Tour (Ipda Vr Tour)

    Science.gov (United States)

    Fadzil, Azman

    2006-01-01

    At present, the development of Virtual Reality (VR) technology is expanding due to the importance and needs to use the 3D elements and 360 degrees panorama in expressing a clearer picture to consumers in various fields such as education, military, medicine, entertainment and so on. The web based VR kiosk project in Darulaman's Teacher Training…

  11. A WEB-BASED VIRTUAL CLASSROOM SYSTEM MODEL

    Directory of Open Access Journals (Sweden)

    lumide S. ADEWALE

    2012-01-01

    Full Text Available The population of students all over the world is growing without a proportionate increase in teaching/learning resources/infrastructure. There is also much quest for learning in an environment that provides equal opportunities to all learners. The need to provide an equal opportunity learning environment that will hitherto improve the system of education globally has therefore become imperative. Based on our findings, a mathematical model Web-based Virtual Classroom system (WebVCS was developed to provide a viable medium through which sound education can be offered in tertiary institutions that can carter for varieties of learners irrespective of their abilities, dispositions and geographical locations. Our system model is developed based on active learning approach that adopts blended learning theory (Constructivist-Cognivist learning approach, incorporating e-pedagogy that supports collaboration among participants in the web-based Virtual learning environment. The key objects used in creating the WebVCS model are: Courses, Students, Instructors and Learning performances. Our system model sets a framework for developers of virtual classrooms and successful implementation of the model leads to students learning by interacting with their peers resulting in the construction of knowledge.

  12. 3D VIRTUAL RECONSTRUCTION OF ARCHAEOLOGICAL MONUMENTS

    OpenAIRE

    2014-01-01

    3D Virtual Models are the future of the representation of the existing and destroyed architectural heritage. The term reconstruction defines the re-building of a monument to its state at the time of its history chosen for that particular representation. In recent years the evolution of the technology, has contributed significantly in many aspects of the field of cultural heritage preservation and recording. Techniques like digital image processing, digital orthophoto production, terrestrial l...

  13. [Web-based education: learning surgical procedures step-by-step with 3D visualization].

    Science.gov (United States)

    van der Velde, Susanne; Maljers, Jaap; Wiggers, Theo

    2014-01-01

    There is a need for more uniform, structured education focused on surgical procedures. We offer a standardized, step-by-step, web-based procedural training method with which surgeons can train more interns efficiently. The basis of this learning method is formed by 3D films in which surgical procedures are performed in clearly defined steps and the anatomic structures behind the surgical operating planes are further dissected. This basis is supported by online modules in which, aside from the operation, preparation and postoperative care are also addressed. Registrars can test their knowledge with exams. Trainers can see what the registrars studied, how they scored and how they progressed with their clinical skills. With the online portfolio we offer building blocks for certification and accreditation. With this clearly structured research method of constant quality, registrars are less dependent on the local trainer. In addition, through better preparation, the operation capacity can be used more efficiently for the training.

  14. Virtual VMASC: A 3D Game Environment

    Science.gov (United States)

    Manepalli, Suchitra; Shen, Yuzhong; Garcia, Hector M.; Lawsure, Kaleen

    2010-01-01

    The advantages of creating interactive 3D simulations that allow viewing, exploring, and interacting with land improvements, such as buildings, in digital form are manifold and range from allowing individuals from anywhere in the world to explore those virtual land improvements online, to training military personnel in dealing with war-time environments, and to making those land improvements available in virtual worlds such as Second Life. While we haven't fully explored the true potential of such simulations, we have identified a requirement within our organization to use simulations like those to replace our front-desk personnel and allow visitors to query, naVigate, and communicate virtually with various entities within the building. We implemented the Virtual VMASC 3D simulation of the Virginia Modeling Analysis and Simulation Center (VMASC) office building to not only meet our front-desk requirement but also to evaluate the effort required in designing such a simulation and, thereby, leverage the experience we gained in future projects of this kind. This paper describes the goals we set for our implementation, the software approach taken, the modeling contribution made, and the technologies used such as XNA Game Studio, .NET framework, Autodesk software packages, and, finally, the applicability of our implementation on a variety of architectures including Xbox 360 and PC. This paper also summarizes the result of our evaluation and the lessons learned from our effort.

  15. Development of a Web-Based 3D Module for Enhanced Neuroanatomy Education.

    Science.gov (United States)

    Allen, Lauren K; Ren, He Zhen; Eagleson, Roy; de Ribaupierre, Sandrine

    2016-01-01

    Neuroanatomy is a challenging subject, with novice medical students often experiencing difficulty grasping the intricate 3D spatial relationships. Most of the anatomical teaching in undergraduate medicine utilizes conventional 2D resources. E-learning technologies facilitate the development of learner-centered educational tools that can be tailored to meet each student's educational needs, and may foster improved learning in neuroanatomy, however this has yet to be examined fully in the literature. An interactive 3D e-learning module was developed to complement gross anatomy laboratory instruction. Incorporating such 3D modules may provide additional support for students in areas of anatomy that are spatially challenging, such as neuroanatomy. Specific anatomical structures and their relative spatial positions to other structures can be clearly defined in the 3D virtual environment from viewpoints that may not readily be available using cadaveric or 2D image modalities. Providing an interactive user interface for the 3D module in which the student controls many factors may enable the student to develop an improved understanding of the spatial relationships. This work outlines the process for the development of a 3D interactive module of the cerebral structures included in the anatomy curriculum for undergraduate medical students in their second year of study.

  16. Development of Web-based Virtual Training Environment for Machining

    Science.gov (United States)

    Yang, Zhixin; Wong, S. F.

    2010-05-01

    With the booming in the manufacturing sector of shoe, garments and toy, etc. in pearl region, training the usage of various facilities and design the facility layout become crucial for the success of industry companies. There is evidence that the use of virtual training may provide benefits in improving the effect of learning and reducing risk in the physical work environment. This paper proposed an advanced web-based training environment that could demonstrate the usage of a CNC machine in terms of working condition and parameters selection. The developed virtual environment could provide training at junior level and advanced level. Junior level training is to explain machining knowledge including safety factors, machine parameters (ex. material, speed, feed rate). Advanced level training enables interactive programming of NG coding and effect simulation. Operation sequence was used to assist the user to choose the appropriate machining condition. Several case studies were also carried out with animation of milling and turning operations.

  17. 3D super-virtual refraction interferometry

    KAUST Repository

    Lu, Kai

    2014-08-05

    Super-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.

  18. Rendering of 3D Dynamic Virtual Environments

    CERN Document Server

    Catanese, Salvatore; Fiumara, Giacomo; Pagano, Francesco

    2011-01-01

    In this paper we present a framework for the rendering of dynamic 3D virtual environments which can be integrated in the development of videogames. It includes methods to manage sounds and particle effects, paged static geometries, the support of a physics engine and various input systems. It has been designed with a modular structure to allow future expansions. We exploited some open-source state-of-the-art components such as OGRE, PhysX, ParticleUniverse, etc.; all of them have been properly integrated to obtain peculiar physical and environmental effects. The stand-alone version of the application is fully compatible with Direct3D and OpenGL APIs and adopts OpenAL APIs to manage audio cards. Concluding, we devised a showcase demo which reproduces a dynamic 3D environment, including some particular effects: the alternation of day and night infuencing the lighting of the scene, the rendering of terrain, water and vegetation, the reproduction of sounds and atmospheric agents.

  19. 3D Virtual Reality Check: Learner Engagement and Constructivist Theory

    Science.gov (United States)

    Bair, Richard A.

    2013-01-01

    The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…

  20. 3D Virtual Reality Check: Learner Engagement and Constructivist Theory

    Science.gov (United States)

    Bair, Richard A.

    2013-01-01

    The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…

  1. A Parameterizable Framework for Replicated Experiments in Virtual 3D Environments

    Science.gov (United States)

    Biella, Daniel; Luther, Wolfram

    This paper reports on a parameterizable 3D framework that provides 3D content developers with an initial spatial starting configuration, metaphorical connectors for accessing exhibits or interactive 3D learning objects or experiments, and other optional 3D extensions, such as a multimedia room, a gallery, username identification tools and an avatar selection room. The framework is implemented in X3D and uses a Web-based content management system. It has been successfully used for an interactive virtual museum for key historical experiments and in two additional interactive e-learning implementations: an African arts museum and a virtual science centre. It can be shown that, by reusing the framework, the production costs for the latter two implementations can be significantly reduced and content designers can focus on developing educational content instead of producing cost-intensive out-of-focus 3D objects.

  2. Chemozart: a web-based 3D molecular structure editor and visualizer platform.

    Science.gov (United States)

    Mohebifar, Mohamad; Sajadi, Fatemehsadat

    2015-01-01

    Chemozart is a 3D Molecule editor and visualizer built on top of native web components. It offers an easy to access service, user-friendly graphical interface and modular design. It is a client centric web application which communicates with the server via a representational state transfer style web service. Both client-side and server-side application are written in JavaScript. A combination of JavaScript and HTML is used to draw three-dimensional structures of molecules. With the help of WebGL, three-dimensional visualization tool is provided. Using CSS3 and HTML5, a user-friendly interface is composed. More than 30 packages are used to compose this application which adds enough flexibility to it to be extended. Molecule structures can be drawn on all types of platforms and is compatible with mobile devices. No installation is required in order to use this application and it can be accessed through the internet. This application can be extended on both server-side and client-side by implementing modules in JavaScript. Molecular compounds are drawn on the HTML5 Canvas element using WebGL context. Chemozart is a chemical platform which is powerful, flexible, and easy to access. It provides an online web-based tool used for chemical visualization along with result oriented optimization for cloud based API (application programming interface). JavaScript libraries which allow creation of web pages containing interactive three-dimensional molecular structures has also been made available. The application has been released under Apache 2 License and is available from the project website https://chemozart.com.

  3. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  4. Novel Web-based Education Platforms for Information Communication utilizing Gamification, Virtual and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2015-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.

  5. Virtual Portfolios for Collaboration in Distributed Web-Based Learning.

    Science.gov (United States)

    Sorensen, Elsebeth Korsgaard; Tolsby, Haakon; Dirckinck-Holmfeld, Lone

    This paper addresses the problems of collaboration in distributed Web-based learning. It reviews, treats and discusses these problems from the learning theoretical perspective of "communities of practice" as presented by Etienne Wenger (1998), with reference to past and future Web-based designs. The paper suggests the concept and design of virtual…

  6. Architecture of web services in the enhancement of real-time 3D video virtualization in cloud environment

    Science.gov (United States)

    Bada, Adedayo; Wang, Qi; Alcaraz-Calero, Jose M.; Grecos, Christos

    2016-04-01

    This paper proposes a new approach to improving the application of 3D video rendering and streaming by jointly exploring and optimizing both cloud-based virtualization and web-based delivery. The proposed web service architecture firstly establishes a software virtualization layer based on QEMU (Quick Emulator), an open-source virtualization software that has been able to virtualize system components except for 3D rendering, which is still in its infancy. The architecture then explores the cloud environment to boost the speed of the rendering at the QEMU software virtualization layer. The capabilities and inherent limitations of Virgil 3D, which is one of the most advanced 3D virtual Graphics Processing Unit (GPU) available, are analyzed through benchmarking experiments and integrated into the architecture to further speed up the rendering. Experimental results are reported and analyzed to demonstrate the benefits of the proposed approach.

  7. 3D Vision in a Virtual Reality Robotics Environment

    OpenAIRE

    Schütz, Christian L.; Natonek, Emerico; Baur, Charles; Hügli, Heinz

    2009-01-01

    Virtual reality robotics (VRR) needs sensing feedback from the real environment. To show how advanced 3D vision provides new perspectives to fulfill these needs, this paper presents an architecture and system that integrates hybrid 3D vision and VRR and reports about experiments and results. The first section discusses the advantages of virtual reality in robotics, the potential of a 3D vision system in VRR and the contribution of a knowledge database, robust control and the combination of in...

  8. Embryonic staging using a 3D virtual reality system

    NARCIS (Netherlands)

    C.M. Verwoerd-Dikkeboom (Christine); A.H.J. Koning (Anton); P.J. van der Spek (Peter); N. Exalto (Niek); R.P.M. Steegers-Theunissen (Régine)

    2008-01-01

    textabstractBACKGROUND: The aim of this study was to demonstrate that Carnegie Stages could be assigned to embryos visualized with a 3D virtual reality system. METHODS: We analysed 48 3D ultrasound scans of 19 IVF/ICSI pregnancies at 7-10 weeks' gestation. These datasets were visualized as 3D 'holog

  9. Exploring the educational potential of 3D virtual environments

    OpenAIRE

    Esteve Mon, Francesc Marc; Mercè GISBERT CERVERA

    2013-01-01

    3D virtual environments are advanced technology systems, with some potentialities in the teaching and learning process.In recent years, different institutions have promoted the acquisition of XXI century skills. Competences such as initiative, teamwork, creativity, flexibility or digital literacy.Multi-user virtual environments, sometimes called virtual worlds or 3D simulators, are immersive, interactive, customizable, accessible and programmable systems. This kind of environments allow to de...

  10. Web based Interactive 3D Learning Objects for Learning Management Systems

    Directory of Open Access Journals (Sweden)

    Stefan Hesse

    2012-02-01

    Full Text Available In this paper, we present an approach to create and integrate interactive 3D learning objects of high quality for higher education into a learning management system. The use of these resources allows to visualize topics, such as electro-technical and physical processes in the interior of complex devices. This paper addresses the challenge of combining rich interactivity and adequate realism with 3D exercise material for distance elearning.

  11. Implementation of a 3D Virtual Drummer

    NARCIS (Netherlands)

    Magnenat-ThalmannThalmann, M.; Kragtwijk, M.; Nijholt, Antinus; Thalmann, D.; Zwiers, Jakob

    2001-01-01

    We describe a system for the automatic generation of a 3D animation of a drummer playing along with a given piece of music. The input, consisting of a sound wave, is analysed to determine which drums are struck at what moments. The Standard MIDI File format is used to store the recognised notes. Fro

  12. Dynamic 3D echocardiography in virtual reality.

    NARCIS (Netherlands)

    A.E. van den Bosch (Annemien); A.H.J. Koning (Anton); F.J. Meijboom (Folkert); J.S. McGhie (Jackie); M.L. Simoons (Maarten); P.J. van der Spek (Peter); A.J.J.C. Bogers (Ad)

    2005-01-01

    textabstractBACKGROUND: This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. METHODS: Three-dimensional echocardiographic d

  13. Semantic Web-based digital, field and virtual geological

    Science.gov (United States)

    Babaie, H. A.

    2012-12-01

    Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer

  14. [Development of a software for 3D virtual phantom design].

    Science.gov (United States)

    Zou, Lian; Xie, Zhao; Wu, Qi

    2014-02-01

    In this paper, we present a 3D virtual phantom design software, which was developed based on object-oriented programming methodology and dedicated to medical physics research. This software was named Magical Phan tom (MPhantom), which is composed of 3D visual builder module and virtual CT scanner. The users can conveniently construct any complex 3D phantom, and then export the phantom as DICOM 3.0 CT images. MPhantom is a user-friendly and powerful software for 3D phantom configuration, and has passed the real scene's application test. MPhantom will accelerate the Monte Carlo simulation for dose calculation in radiation therapy and X ray imaging reconstruction algorithm research.

  15. Development of visual 3D virtual environment for control software

    Science.gov (United States)

    Hirose, Michitaka; Myoi, Takeshi; Amari, Haruo; Inamura, Kohei; Stark, Lawrence

    1991-01-01

    Virtual environments for software visualization may enable complex programs to be created and maintained. A typical application might be for control of regional electric power systems. As these encompass broader computer networks than ever, construction of such systems becomes very difficult. Conventional text-oriented environments are useful in programming individual processors. However, they are obviously insufficient to program a large and complicated system, that includes large numbers of computers connected to each other; such programming is called 'programming in the large.' As a solution for this problem, the authors are developing a graphic programming environment wherein one can visualize complicated software in virtual 3D world. One of the major features of the environment is the 3D representation of concurrent process. 3D representation is used to supply both network-wide interprocess programming capability (capability for 'programming in the large') and real-time programming capability. The authors' idea is to fuse both the block diagram (which is useful to check relationship among large number of processes or processors) and the time chart (which is useful to check precise timing for synchronization) into a single 3D space. The 3D representation gives us a capability for direct and intuitive planning or understanding of complicated relationship among many concurrent processes. To realize the 3D representation, a technology to enable easy handling of virtual 3D object is a definite necessity. Using a stereo display system and a gesture input device (VPL DataGlove), our prototype of the virtual workstation has been implemented. The workstation can supply the 'sensation' of the virtual 3D space to a programmer. Software for the 3D programming environment is implemented on the workstation. According to preliminary assessments, a 50 percent reduction of programming effort is achieved by using the virtual 3D environment. The authors expect that the 3D

  16. Dynamic WIFI-Based Indoor Positioning in 3D Virtual World

    Science.gov (United States)

    Chan, S.; Sohn, G.; Wang, L.; Lee, W.

    2013-11-01

    A web-based system based on the 3DTown project was proposed using Google Earth plug-in that brings information from indoor positioning devices and real-time sensors into an integrated 3D indoor and outdoor virtual world to visualize the dynamics of urban life within the 3D context of a city. We addressed limitation of the 3DTown project with particular emphasis on video surveillance camera used for indoor tracking purposes. The proposed solution was to utilize wireless local area network (WLAN) WiFi as a replacement technology for localizing objects of interest due to the wide spread availability and large coverage area of WiFi in indoor building spaces. Indoor positioning was performed using WiFi without modifying existing building infrastructure or introducing additional access points (AP)s. A hybrid probabilistic approach was used for indoor positioning based on previously recorded WiFi fingerprint database in the Petrie Science and Engineering building at York University. In addition, we have developed a 3D building modeling module that allows for efficient reconstruction of outdoor building models to be integrated with indoor building models; a sensor module for receiving, distributing, and visualizing real-time sensor data; and a web-based visualization module for users to explore the dynamic urban life in a virtual world. In order to solve the problems in the implementation of the proposed system, we introduce approaches for integration of indoor building models with indoor positioning data, as well as real-time sensor information and visualization on the web-based system. In this paper we report the preliminary results of our prototype system, demonstrating the system's capability for implementing a dynamic 3D indoor and outdoor virtual world that is composed of discrete modules connected through pre-determined communication protocols.

  17. A web-based platform for simulating seismic wave propagation in 3D shallow Earth models with DEM surface topography

    Science.gov (United States)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    Realistic shallow seismic wave propagation simulation is an important tool for studying induced seismicity (e.g., during geothermal energy development). However over a long time, there is a significant problem which constrains computational seismologists from performing a successful simulation conveniently: pre-processing. Conventional pre-processing has often turned out to be inefficient and unrobust because of the miscellaneous operations, considerable complexity and insufficiency of available tools. An integrated web-based platform for shallow seismic wave propagation simulation has been built. It is aiming at providing a user-friendly pre-processing solution, and cloud-based simulation abilities. The main features of the platform for the user include: revised digital elevation model (DEM) retrieving and processing mechanism; generation of multi-layered 3D shallow Earth model geometry (the computational domain) with user specified surface topography based on the DEM; visualization of the geometry before the simulation; a pipeline from geometry to fully customizable hexahedral element mesh generation; customization and running the simulation on our HPC; post-processing and retrieval of the results over cloud. Regarding the computational aspect, currently the widely accepted specfem3D is chosen as the computational package; packages using different types of elements can be integrated as well in the future. According to our trial simulation experiments, this web-based platform has produced accurate waveforms while significantly simplifying and enhancing the pre-processing and improving the simulation success rate.

  18. Dynamic 3D echocardiography in virtual reality

    Directory of Open Access Journals (Sweden)

    Simoons Maarten L

    2005-12-01

    Full Text Available Abstract Background This pilot study was performed to evaluate whether virtual reality is applicable for three-dimensional echocardiography and if three-dimensional echocardiographic 'holograms' have the potential to become a clinically useful tool. Methods Three-dimensional echocardiographic data sets from 2 normal subjects and from 4 patients with a mitral valve pathological condition were included in the study. The three-dimensional data sets were acquired with the Philips Sonos 7500 echo-system and transferred to the BARCO (Barco N.V., Kortrijk, Belgium I-space. Ten independent observers assessed the 6 three-dimensional data sets with and without mitral valve pathology. After 10 minutes' instruction in the I-Space, all of the observers could use the virtual pointer that is necessary to create cut planes in the hologram. Results The 10 independent observers correctly assessed the normal and pathological mitral valve in the holograms (analysis time approximately 10 minutes. Conclusion this report shows that dynamic holographic imaging of three-dimensional echocardiographic data is feasible. However, the applicability and use-fullness of this technology in clinical practice is still limited.

  19. QueryArch3D: Querying and Visualising 3D Models of a Maya Archaeological Site in a Web-Based Interface

    Directory of Open Access Journals (Sweden)

    Giorgio Agugiaro

    2011-12-01

    Full Text Available Constant improvements in the field of surveying, computing and distribution of digital-content are reshaping the way Cultural Heritage can be digitised and virtually accessed, even remotely via web. A traditional 2D approach for data access, exploration, retrieval and exploration may generally suffice, however more complex analyses concerning spatial and temporal features require 3D tools, which, in some cases, have not yet been implemented or are not yet generally commercially available. Efficient organisation and integration strategies applicable to the wide array of heterogeneous data in the field of Cultural Heritage represent a hot research topic nowadays. This article presents a visualisation and query tool (QueryArch3D conceived to deal with multi-resolution 3D models. Geometric data are organised in successive levels of detail (LoD, provided with geometric and semantic hierarchies and enriched with attributes coming from external data sources. The visualisation and query front-end enables the 3D navigation of the models in a virtual environment, as well as the interaction with the objects by means of queries based on attributes or on geometries. The tool can be used as a standalone application, or served through the web. The characteristics of the research work, along with some implementation issues and the developed QueryArch3D tool will be discussed and presented.

  20. ESL Teacher Training in 3D Virtual Worlds

    Science.gov (United States)

    Kozlova, Iryna; Priven, Dmitri

    2015-01-01

    Although language learning in 3D Virtual Worlds (VWs) has become a focus of recent research, little is known about the knowledge and skills teachers need to acquire to provide effective task-based instruction in 3D VWs and the type of teacher training that best prepares instructors for such an endeavor. This study employs a situated learning…

  1. A web-based collaborative framework for facilitating decision making on a 3D design developing process

    Directory of Open Access Journals (Sweden)

    Purevdorj Nyamsuren

    2015-07-01

    Full Text Available Increased competitive challenges are forcing companies to find better ways to bring their applications to market faster. Distributed development environments can help companies improve their time-to-market by enabling parallel activities. Although, such environments still have their limitations in real-time communication and real-time collaboration during the product development process. This paper describes a web-based collaborative framework which has been developed to support the decision making on a 3D design developing process. The paper describes 3D design file for the discussion that contains all relevant annotations on its surface and their visualization on the user interface for design changing. The framework includes a native CAD data converting module, 3D data based real-time communication module, revision control module for 3D data and some sub-modules such as data storage and data management. We also discuss some raised issues in the project and the steps underway to address them.

  2. Virtual 3d City Modeling: Techniques and Applications

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  3. Game-Like Language Learning in 3-D Virtual Environments

    Science.gov (United States)

    Berns, Anke; Gonzalez-Pardo, Antonio; Camacho, David

    2013-01-01

    This paper presents our recent experiences with the design of game-like applications in 3-D virtual environments as well as its impact on student motivation and learning. Therefore our paper starts with a brief analysis of the motivational aspects of videogames and virtual worlds (VWs). We then go on to explore the possible benefits of both in the…

  4. Exploring the educational potential of 3D virtual environments

    Directory of Open Access Journals (Sweden)

    Francesc Marc ESTEVE MON

    2013-12-01

    Full Text Available 3D virtual environments are advanced technology systems, with some potentialities in the teaching and learning process.In recent years, different institutions have promoted the acquisition of XXI century skills. Competences such as initiative, teamwork, creativity, flexibility or digital literacy.Multi-user virtual environments, sometimes called virtual worlds or 3D simulators, are immersive, interactive, customizable, accessible and programmable systems. This kind of environments allow to design educational complex activities to develop these key competences. For this purpose it’s necessary to set an appropriate teaching strategy to put this knowledge and skills into action, and design suitable mechanisms for registration and systematization. This paper analyzes the potential of these environments and presents two experiences in 3D virtual environments: (1 to develop teamwork and self-management skills, and (2 to assess digital literacy in preservice teachers.

  5. 3D modeling for the generation of virtual heritage

    Directory of Open Access Journals (Sweden)

    Francisco Díaz Gómez

    2015-10-01

    Full Text Available The present article is focused on the generation of virtual 3D contents from cultural heritage. Its main structure is divided in two well-defined blocks: the first one focused in the generation of 3D models, analyzing the most used technologies of 3D measuring in the cultural heritage, the most important software applications for the management of the 3D models obtained and the generation of the target contents; and a second block for exposing two case studies showing potential of these technologies, previously shown, for approaching the cultural heritage to both the general public and researchers, due to the development of the information and communication technologies.

  6. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    Science.gov (United States)

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  7. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    Science.gov (United States)

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  8. 3D Virtual Dig: a 3D Application for Teaching Fieldwork in Archaeology

    Directory of Open Access Journals (Sweden)

    Paola Di Giuseppantonio Di Franco

    2012-12-01

    Full Text Available Archaeology is a material, embodied discipline; communicating this experience is critical to student success. In the context of lower-division archaeology courses, the present study examines the efficacy of 3D virtual and 2D archaeological representations of digs. This presentation aims to show a 3D application created to teach the archaeological excavation process to freshmen students. An archaeological environment was virtually re-created in 3D, and inserted in a virtual reality software application that allows users to work with the reconstructed excavation area. The software was tested in class for teaching the basics of archaeological fieldwork. The application interface is user-friendly and especially easy for 21st century students. The study employed a pre-survey, post-test, and post-survey design, used to understand the students' previous familiarity with archaeology, and test their awareness after the use of the application. Their level of knowledge was then compared with that of those students who had accessed written material only. This case-study demonstrates how a digital approach to laboratory work can positively affect student learning. Increased abilities to complete ill-defined problems (characteristic of the high-order thinking in the field, can, in fact, be demonstrated. 3D Virtual reconstruction serves, then, as an important bridge from traditional coursework to fieldwork.

  9. WEB-BASED VIRTUAL CNC MACHINE MODELING AND OPERATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A CNC simulation system based on internet for operation training of manufacturing facility and manufacturing process simulation is proposed. Firstly, the system framework and a rapid modeling method of CNC machine tool are studied under the virtual environment based on PolyTrans and CAD software. Then, a new method is proposed to enhance and expand the interactive ability of virtual reality modeling language(VRML) by attaining communication among VRML, JavaApplet, JavaScript and Html so as to realize the virtual operation for CNC machine tool. Moreover, the algorithm of material removed simulation based on VRML Z-map is presented. The advantages of this algorithm include less memory requirement and much higher computation. Lastly, the CNC milling machine is taken as an illustrative example for the prototype development in order to validate the feasibility of the proposed approach.

  10. Web-based Visualization and Query of semantically segmented multiresolution 3D Models in the Field of Cultural Heritage

    Science.gov (United States)

    Auer, M.; Agugiaro, G.; Billen, N.; Loos, L.; Zipf, A.

    2014-05-01

    Many important Cultural Heritage sites have been studied over long periods of time by different means of technical equipment, methods and intentions by different researchers. This has led to huge amounts of heterogeneous "traditional" datasets and formats. The rising popularity of 3D models in the field of Cultural Heritage in recent years has brought additional data formats and makes it even more necessary to find solutions to manage, publish and study these data in an integrated way. The MayaArch3D project aims to realize such an integrative approach by establishing a web-based research platform bringing spatial and non-spatial databases together and providing visualization and analysis tools. Especially the 3D components of the platform use hierarchical segmentation concepts to structure the data and to perform queries on semantic entities. This paper presents a database schema to organize not only segmented models but also different Levels-of-Details and other representations of the same entity. It is further implemented in a spatial database which allows the storing of georeferenced 3D data. This enables organization and queries by semantic, geometric and spatial properties. As service for the delivery of the segmented models a standardization candidate of the OpenGeospatialConsortium (OGC), the Web3DService (W3DS) has been extended to cope with the new database schema and deliver a web friendly format for WebGL rendering. Finally a generic user interface is presented which uses the segments as navigation metaphor to browse and query the semantic segmentation levels and retrieve information from an external database of the German Archaeological Institute (DAI).

  11. Learning in Virtual Forest: A Forest Ecosystem in the Web-Based Learning Environment

    Science.gov (United States)

    Jussila, Terttu; Virtanen, Viivi

    2014-01-01

    Virtual Forest is a web-based, open-access learning environment about forests designed for primary-school pupils between the ages of 10 and 13 years. It is pedagogically designed to develop an understanding of ecology, to enhance conceptual development and to give a holistic view of forest ecosystems. Various learning tools, such as concept maps,…

  12. Learning in Virtual Forest: A Forest Ecosystem in the Web-Based Learning Environment

    Science.gov (United States)

    Jussila, Terttu; Virtanen, Viivi

    2014-01-01

    Virtual Forest is a web-based, open-access learning environment about forests designed for primary-school pupils between the ages of 10 and 13 years. It is pedagogically designed to develop an understanding of ecology, to enhance conceptual development and to give a holistic view of forest ecosystems. Various learning tools, such as concept maps,…

  13. Patients' attitudes towards online dental information and a web-based virtual reality program for clinical dentistry: a pilot investigation in China.

    Science.gov (United States)

    Hu, Jian; Luo, En; Song, Enming; Xu, Xiangyang; Tan, Hongbao; Zhao, Yi; Wang, Yining; Li, Zhiyong

    2009-03-01

    This research investigated (1) the attitudes of dental patients toward searching online for dental information and (2) patients attitudes and expectations towards a web-based 3D virtual reality program for clinical dentistry. A questionnaire survey was conducted in six clinics across two cities in China. Dental patients visiting the six clinics were invited to participate in the study. All subjects browsed a webpage containing the 3D virtual reality dental program. The new media was supplemented as a consultive system for patients into the traditional pattern of seeking dental care procedure. Subjects then completed a questionnaire detailing their attitudes toward their experience with the software. The questionnaire responses were then collected and analyzed. 45% of respondents reported having searched information online before receiving dental care. Respondents held different attitudes towards the online dental information, with a majority reporting a reliance on it but with reservations. Over 50% of respondents held positive attitudes to the web-based virtual reality dental information program, while 21% reported negative views toward the new method. Most respondents reported that the web-based virtual reality program was superior to traditional static web pages, but only as a supplementary material. Respondents also indicated that internet speed may likely be a major determinant to their future usage of such a system. These findings indicate that a considerable portion of respondents conduct their own internet searches for related dental information before seeking professional advice on dental care. Most of the respondents reported positive attitudes towards a web-based virtual reality program for clinical dentistry. However, the current speed of internet connections in China is a major area of concern for the future application and uptake of web-based virtual reality dental software.

  14. A virtual reality 3D jigsaw for teaching anatomy.

    Science.gov (United States)

    Ruthenbeck, G S; Carati, C J; Gibbins, I L; Reynolds, K J

    2008-01-01

    Virtual Reality has some advantages over traditional teaching and learning media. Here we describe a VR Jigsaw which uses a novel interface to facilitate learning the anatomy of the skull. A small trial was performed which indicates that the software succeeds at engaging students and suggests that their comprehension of complex 3D structures was improved.

  15. COGNITIVE ASPECTS OF COLLABORATION IN 3D VIRTUAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    V. Juřík

    2016-06-01

    Full Text Available Human-computer interaction has entered the 3D era. The most important models representing spatial information — maps — are transferred into 3D versions regarding the specific content to be displayed. Virtual worlds (VW become promising area of interest because of possibility to dynamically modify content and multi-user cooperation when solving tasks regardless to physical presence. They can be used for sharing and elaborating information via virtual images or avatars. Attractiveness of VWs is emphasized also by possibility to measure operators’ actions and complex strategies. Collaboration in 3D environments is the crucial issue in many areas where the visualizations are important for the group cooperation. Within the specific 3D user interface the operators' ability to manipulate the displayed content is explored regarding such phenomena as situation awareness, cognitive workload and human error. For such purpose, the VWs offer a great number of tools for measuring the operators’ responses as recording virtual movement or spots of interest in the visual field. Study focuses on the methodological issues of measuring the usability of 3D VWs and comparing them with the existing principles of 2D maps. We explore operators’ strategies to reach and interpret information regarding the specific type of visualization and different level of immersion.

  16. Cognitive Aspects of Collaboration in 3d Virtual Environments

    Science.gov (United States)

    Juřík, V.; Herman, L.; Kubíček, P.; Stachoň, Z.; Šašinka, Č.

    2016-06-01

    Human-computer interaction has entered the 3D era. The most important models representing spatial information — maps — are transferred into 3D versions regarding the specific content to be displayed. Virtual worlds (VW) become promising area of interest because of possibility to dynamically modify content and multi-user cooperation when solving tasks regardless to physical presence. They can be used for sharing and elaborating information via virtual images or avatars. Attractiveness of VWs is emphasized also by possibility to measure operators' actions and complex strategies. Collaboration in 3D environments is the crucial issue in many areas where the visualizations are important for the group cooperation. Within the specific 3D user interface the operators' ability to manipulate the displayed content is explored regarding such phenomena as situation awareness, cognitive workload and human error. For such purpose, the VWs offer a great number of tools for measuring the operators' responses as recording virtual movement or spots of interest in the visual field. Study focuses on the methodological issues of measuring the usability of 3D VWs and comparing them with the existing principles of 2D maps. We explore operators' strategies to reach and interpret information regarding the specific type of visualization and different level of immersion.

  17. Web-based e-learning and virtual lab of human-artificial immune system.

    Science.gov (United States)

    Gong, Tao; Ding, Yongsheng; Xiong, Qin

    2014-05-01

    Human immune system is as important in keeping the body healthy as the brain in supporting the intelligence. However, the traditional models of the human immune system are built on the mathematics equations, which are not easy for students to understand. To help the students to understand the immune systems, a web-based e-learning approach with virtual lab is designed for the intelligent system control course by using new intelligent educational technology. Comparing the traditional graduate educational model within the classroom, the web-based e-learning with the virtual lab shows the higher inspiration in guiding the graduate students to think independently and innovatively, as the students said. It has been found that this web-based immune e-learning system with the online virtual lab is useful for teaching the graduate students to understand the immune systems in an easier way and design their simulations more creatively and cooperatively. The teaching practice shows that the optimum web-based e-learning system can be used to increase the learning effectiveness of the students.

  18. Shaping 3-D Volumes in Immersive Virtual Environments

    DEFF Research Database (Denmark)

    Stenholt, Rasmus

    Shaping 3-D volumes is an important part of many interactions in immersive virtual environments. The range of possible applications is wide. For instance, the ability to select objects in virtual environments is very often based on defin- ing and controlling a selection volume. This is especially...... true, if the intention is to select multiple objects. Another important application area is the manipula- tion of objects through the use of controllable handles, or widgets. Such widgets are often associated with a bounding volume around the object to be manipu- lated. Such techniques are both well...... of efficiently and precisely defining a 3-D box is a fundamental one to investigate. The first paper does this by analysing the practical task of defining a 3-D box as the equivalent task of defining its degrees- of-freedom. This analysis leads to the introduction of a new way of shaping a box from just three...

  19. Measuring Knowledge Acquisition in 3D Virtual Learning Environments.

    Science.gov (United States)

    Nunes, Eunice P dos Santos; Roque, Licínio G; Nunes, Fatima de Lourdes dos Santos

    2016-01-01

    Virtual environments can contribute to the effective learning of various subjects for people of all ages. Consequently, they assist in reducing the cost of maintaining physical structures of teaching, such as laboratories and classrooms. However, the measurement of how learners acquire knowledge in such environments is still incipient in the literature. This article presents a method to evaluate the knowledge acquisition in 3D virtual learning environments (3D VLEs) by using the learner's interactions in the VLE. Three experiments were conducted that demonstrate the viability of using this method and its computational implementation. The results suggest that it is possible to automatically assess learning in predetermined contexts and that some types of user interactions in 3D VLEs are correlated with the user's learning differential.

  20. 3D Servicescape Model: Atmospheric Qualities of Virtual Reality Retailing

    Directory of Open Access Journals (Sweden)

    Aasim Munir Dad

    2016-02-01

    Full Text Available The purpose of this paper is to provide a 3D servicescape conceptual model which explores the potential effect of 3D virtual reality retail stores’ environment on shoppers' behaviour. Extensive review of literature within two different domains, namely: servicescape models, and retail atmospherics, was carried out in order to propose a conceptual model. Further, eight detailed interviews were conducted to confirm the stimulus dimension of the conceptual model. A 3D servicescape conceptual model is offered on the basis of stimulus-organism-dimension, which proposes that a 3D virtual reality retail (VRR store environment consists of physical, social, socially symbolic and natural dimensions. These dimensions are proposed to affect shoppers’ behaviour through the mediating variables of emotions (pleasure and arousal. An interrelationship between pleasure and arousal, as mediating variables, is also proposed. This research opens a number of new avenues for further research through the proposed model of shoppers’ behaviour in a VRR store environment. Further, a systematic taxonomy development of VRR store environment is attempted through this proposed model that may prove to be an important step in theory building. A comprehensive 3D service scape model along with a large number of propositions is made to define a 3D VRR store environment.

  1. The concept of a clinical round as a virtual, interactive web-based, e-learning model for interdisciplinary teaching.

    Science.gov (United States)

    Schultze-Mosgau, S; Thorwarth, W M; Grabenbauer, G G; Amann, K; Zielinski, T; Lochner, J; Zenk, J

    2004-07-01

    The demonstration of patient case reports in the course of a clinical round is an essential part of teaching medicine and dentistry. However, suitable live patients with particular problems are not always available at a time when teaching is taking place. This project therefore had the objective of establishing a web-based, virtual e-learning concept for demonstrating case reports independent of time and place, with the possibility of an interactive examination, diagnosis, and interdisciplinary therapy decision making for medical and dental students. Anonymized case reports of diseases in the oral and maxillofacial region and the interdisciplinary treatment were digitized and prepared in a web-based format. The technical aspect was based on connecting flash modules with videos and animation, and monitoring through HTML and Javascript. Due to the modular concept and the programming used, the learning environment was independent of platform and open. Independent formats (.swf, .avi, .mpeg, etc.) were integrated into the individual modules. According to a hierarchic decision system, the user was guided interactively to the diagnosis through a differential diagnostic exclusion process. Sound was digitized and integrated in mp3 compressed form in the 3D models for lip-synchronous speech output. The speech output was connected with a virtual 3D tutor that acted in an advisory capacity in reaching a diagnosis and determining therapy. Further sources of information and literature with abstracts or pdf files of the subject-related publications were inserted to ensure that the teaching was objective. To conclude the virtual clinical round, a check on learning success was conducted in the form of a multimedia multiple choice test.

  2. Inertial Motion-Tracking Technology for Virtual 3-D

    Science.gov (United States)

    2005-01-01

    In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.

  3. 3D-Virtualization of a Conveyor Machine

    OpenAIRE

    Taipalus, Joonas

    2016-01-01

    The purpose of this thesis was to create a virtually working 3D-model of a conveyor machine. The topic and the machine were provided by Siemens. Siemens will use this virtual model to ease their education, as it is not necessary to have the real equipment nearby. The first model was made in Solid Edge, and then transported to Siemens NX and MCD –software. The PLC-program was made in Siemens TIA portal. The connection between TIA portal and MCD was made with an OPC-server. The theory part of t...

  4. The 3D virtual environment online for real shopping

    OpenAIRE

    Khalil, Nahla

    2015-01-01

    The development of information technology and Internet has led to rapidly progressed in e-commerce and online shopping, due to the convenience that they provide consumers. E-commerce and online shopping are still not able to fully replace onsite shopping. In contrast, conventional online shopping websites often cannot provide enough information about a product for the customer to make an informed decision before checkout. 3D virtual shopping environment show great potential for enhancing e-co...

  5. Multi-scale representations of virtual 3D city models

    OpenAIRE

    Glander, Tassilo

    2013-01-01

    Virtual 3D city and landscape models are the main subject investigated in this thesis. They digitally represent urban space and have many applications in different domains, e.g., simulation, cadastral management, and city planning. Visualization is an elementary component of these applications. Photo-realistic visualization with an increasingly high degree of detail leads to fundamental problems for comprehensible visualization. A large number of highly detailed and textured objects within a ...

  6. Training and Assessing Interprofessional Virtual Teams Using a Web-Based Case System.

    Science.gov (United States)

    Dow, Alan W; Boling, Peter A; Lockeman, Kelly S; Mazmanian, Paul E; Feldman, Moshe; DiazGranados, Deborah; Browning, Joel; Coe, Antoinette; Selby-Penczak, Rachel; Hobgood, Sarah; Abbey, Linda; Parsons, Pamela; Delafuente, Jeffrey; Taylor, Suzanne F

    2016-01-01

    Today, clinical care is often provided by interprofessional virtual teams-groups of practitioners who work asynchronously and use technology to communicate. Members of such teams must be competent in interprofessional practice and the use of information technology, two targets for health professions education reform. The authors created a Web-based case system to teach and assess these competencies in health professions students. They created a four-module, six-week geriatric learning experience using a Web-based case system. Health professions students were divided into interprofessional virtual teams. Team members received profession-specific information, entered a summary of this information into the case system's electronic health record, answered knowledge questions about the case individually, then collaborated asynchronously to answer the same questions as a team. Individual and team knowledge scores and case activity measures--number of logins, message board posts/replies, views of message board posts--were tracked. During academic year 2012-2013, 80 teams composed of 522 students from medicine, nursing, pharmacy, and social work participated. Knowledge scores varied by profession and within professions. Team scores were higher than individual scores (P Web-based case system provided a novel approach to teach and assess the competencies needed for virtual teams. This approach may be a valuable new tool for measuring competency in interprofessional practice.

  7. Dental impressions using 3D digital scanners: virtual becomes reality.

    Science.gov (United States)

    Birnbaum, Nathan S; Aaronson, Heidi B

    2008-10-01

    The technologies that have made the use of three-dimensional (3D) digital scanners an integral part of many industries for decades have been improved and refined for application to dentistry. Since the introduction of the first dental impressioning digital scanner in the 1980s, development engineers at a number of companies have enhanced the technologies and created in-office scanners that are increasingly user-friendly and able to produce precisely fitting dental restorations. These systems are capable of capturing 3D virtual images of tooth preparations, from which restorations may be fabricated directly (ie, CAD/CAM systems) or fabricated indirectly (ie, dedicated impression scanning systems for the creation of accurate master models). The use of these products is increasing rapidly around the world and presents a paradigm shift in the way in which dental impressions are made. Several of the leading 3D dental digital scanning systems are presented and discussed in this article.

  8. Augmented Reality vs Virtual Reality for 3D Object Manipulation.

    Science.gov (United States)

    Krichenbauer, Max; Yamamoto, Goshiro; Taketomi, Takafumi; Sandor, Christian; Kato, Hirokazu

    2017-01-25

    Virtual Reality (VR) Head-Mounted Displays (HMDs) are on the verge of becoming commodity hardware available to the average user and feasible to use as a tool for 3D work. Some HMDs include front-facing cameras, enabling Augmented Reality (AR) functionality. Apart from avoiding collisions with the environment, interaction with virtual objects may also be affected by seeing the real environment. However, whether these effects are positive or negative has not yet been studied extensively. For most tasks it is unknown whether AR has any advantage over VR. In this work we present the results of a user study in which we compared user performance measured in task completion time on a 9 degrees of freedom object selection and transformation task performed either in AR or VR, both with a 3D input device and a mouse. Our results show faster task completion time in AR over VR. When using a 3D input device, a purely VR environment increased task completion time by 22.5% on average compared to AR (p < 0:024). Surprisingly, a similar effect occurred when using a mouse: users were about 17.3% slower in VR than in AR (p < 0:04). Mouse and 3D input device produced similar task completion times in each condition (AR or VR) respectively. We further found no differences in reported comfort.

  9. Beyond Virtual Replicas: 3D Modeling and Maltese Prehistoric Architecture

    Directory of Open Access Journals (Sweden)

    Filippo Stanco

    2013-01-01

    Full Text Available In the past decade, computer graphics have become strategic for the development of projects aimed at the interpretation of archaeological evidence and the dissemination of scientific results to the public. Among all the solutions available, the use of 3D models is particularly relevant for the reconstruction of poorly preserved sites and monuments destroyed by natural causes or human actions. These digital replicas are, at the same time, a virtual environment that can be used as a tool for the interpretative hypotheses of archaeologists and as an effective medium for a visual description of the cultural heritage. In this paper, the innovative methodology and aims and outcomes of a virtual reconstruction of the Borg in-Nadur megalithic temple, carried out by Archeomatica Project of the University of Catania, are offered as a case study for a virtual archaeology of prehistoric Malta.

  10. Virtual environment interaction through 3D audio by blind children.

    Science.gov (United States)

    Sánchez, J; Lumbreras, M

    1999-01-01

    Interactive software is actively used for learning, cognition, and entertainment purposes. Educational entertainment software is not very popular among blind children because most computer games and electronic toys have interfaces that are only accessible through visual cues. This work applies the concept of interactive hyperstories to blind children. Hyperstories are implemented in a 3D acoustic virtual world. In past studies we have conceptualized a model to design hyperstories. This study illustrates the feasibility of the model. It also provides an introduction to researchers to the field of entertainment software for blind children. As a result, we have designed and field tested AudioDoom, a virtual environment interacted through 3D Audio by blind children. AudioDoom is also a software that enables testing nontrivial interfaces and cognitive tasks with blind children. We explored the construction of cognitive spatial structures in the minds of blind children through audio-based entertainment and spatial sound navigable experiences. Children playing AudioDoom were exposed to first person experiences by exploring highly interactive virtual worlds through the use of 3D aural representations of the space. This experience was structured in several cognitive tasks where they had to build concrete models of their spatial representations constructed through the interaction with AudioDoom by using Legotrade mark blocks. We analyze our preliminary results after testing AudioDoom with Chilean children from a school for blind children. We discuss issues such as interactivity in software without visual cues, the representation of spatial sound navigable experiences, and entertainment software such as computer games for blind children. We also evaluate the feasibility to construct virtual environments through the design of dynamic learning materials with audio cues.

  11. Interactive Scientific Visualization in 3D Virtual Reality Model

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2016-11-01

    Full Text Available Scientific visualization in technology of virtual reality is a graphical representation of virtual environment in the form of images or animation that can be displayed with various devices such as Head Mounted Display (HMD or monitors that can view threedimensional world. Research in real time is a desirable capability for scientific visualization and virtual reality in which we are immersed and make the research process easier. In this scientific paper the interaction between the user and objects in the virtual environment аrе in real time which gives a sense of reality to the user. Also, Quest3D VR software package is used and the movement of the user through the virtual environment, the impossibility to walk through solid objects, methods for grabbing objects and their displacement are programmed and all interactions between them will be possible. At the end some critical analysis were made on all of these techniques on various computer systems and excellent results were obtained.

  12. Comparing 3D virtual methods for hemimandibular body reconstruction.

    Science.gov (United States)

    Benazzi, Stefano; Fiorenza, Luca; Kozakowski, Stephanie; Kullmer, Ottmar

    2011-07-01

    Reconstruction of fractured, distorted, or missing parts in human skeleton presents an equal challenge in the fields of paleoanthropology, bioarcheology, forensics, and medicine. This is particularly important within the disciplines such as orthodontics and surgery, when dealing with mandibular defects due to tumors, developmental abnormalities, or trauma. In such cases, proper restorations of both form (for esthetic purposes) and function (restoration of articulation, occlusion, and mastication) are required. Several digital approaches based on three-dimensional (3D) digital modeling, computer-aided design (CAD)/computer-aided manufacturing techniques, and more recently geometric morphometric methods have been used to solve this problem. Nevertheless, comparisons among their outcomes are rarely provided. In this contribution, three methods for hemimandibular body reconstruction have been tested. Two bone defects were virtually simulated in a 3D digital model of a human hemimandible. Accordingly, 3D digital scaffolds were obtained using the mirror copy of the unaffected hemimandible (Method 1), the thin plate spline (TPS) interpolation (Method 2), and the combination between TPS and CAD techniques (Method 3). The mirror copy of the unaffected hemimandible does not provide a suitable solution for bone restoration. The combination between TPS interpolation and CAD techniques (Method 3) produces an almost perfect-fitting 3D digital model that can be used for biocompatible custom-made scaffolds generated by rapid prototyping technologies.

  13. Enhanced LOD Concepts for Virtual 3d City Models

    Science.gov (United States)

    Benner, J.; Geiger, A.; Gröger, G.; Häfele, K.-H.; Löwner, M.-O.

    2013-09-01

    Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and its exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model.

  14. Virtual reality 3D headset based on DMD light modulators

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-13

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.

  15. The Skin Deformation of a 3D Virtual Human

    Institute of Scientific and Technical Information of China (English)

    Xiao-Jing Zhou; Zheng-Xu Zhao

    2009-01-01

    This paper presents a skin deformation algorithm for creating 3D characters or virtual human models. The algorithm can be applied to rigid deformation, joint dependent localized deformation, skeleton driven deformation, cross contour deformation, and free-form deformation (FFD). These deformations are computed and demonstrated with examples and the algorithm is applied to overcome the difficulties in mechanically simulating the motion of the human body by club-shape models. The techniques described in this article enables the reconstruction of dynamic human models that can be used in defining and representing the geometrical and kinematical characteristics of human motion.

  16. Virtual experimentation in electromagnetism, mechanics and optics: web-based learning

    Science.gov (United States)

    Escobar, J. H.; Sánchez, H.; Beltrán, J. R.; De la Hoz, J.; González, J. D.

    2016-02-01

    This paper present novel virtual laboratories of electromagnetism, mechanics and optics to be used in the teaching of physic for the students as well as to the teacher in the classroom. The model used is friendly with the users and also is responsible for displaying data and its manipulation. The Vista/model, implements the behavior of the view to respond to user actions and expose model data in a way that is easy to use bindings, it is the mechanisms by which we can link the elements of the user interface objects containing the information to be displayed in the view. During the process of application of virtual laboratories the students shown a increasing ability to learn this specifics physics topics using a Web-based learning environment and a guide of work with the virtual laboratories framed in the meaningful learning pedagogical model.

  17. 3D for Geosciences: Interactive Tangibles and Virtual Models

    Science.gov (United States)

    Pippin, J. E.; Matheney, M.; Kitsch, N.; Rosado, G.; Thompson, Z.; Pierce, S. A.

    2016-12-01

    Point cloud processing provides a method of studying and modelling geologic features relevant to geoscience systems and processes. Here, software including Skanect, MeshLab, Blender, PDAL, and PCL are used in conjunction with 3D scanning hardware, including a Structure scanner and a Kinect camera, to create and analyze point cloud images of small scale topography, karst features, tunnels, and structures at high resolution. This project successfully scanned internal karst features ranging from small stalactites to large rooms, as well as an external waterfall feature. For comparison purposes, multiple scans of the same object were merged into single object files both automatically, using commercial software, and manually using open source libraries and code. Files with format .ply were manually converted into numeric data sets to be analyzed for similar regions between files in order to match them together. We can assume a numeric process would be more powerful and efficient than the manual method, however it could lack other useful features that GUI's may have. The digital models have applications in mining as efficient means of replacing topography functions such as measuring distances and areas. Additionally, it is possible to make simulation models such as drilling templates and calculations related to 3D spaces. Advantages of using methods described here for these procedures include the relatively quick time to obtain data and the easy transport of the equipment. With regard to openpit mining, obtaining 3D images of large surfaces and with precision would be a high value tool by georeferencing scan data to interactive maps. The digital 3D images obtained from scans may be saved as printable files to create physical 3D-printable models to create tangible objects based on scientific information, as well as digital "worlds" able to be navigated virtually. The data, models, and algorithms explored here can be used to convey complex scientific ideas to a range of

  18. Un generador aleatorio de microestructuras virtuales 3D

    Directory of Open Access Journals (Sweden)

    Martín, A.

    1998-05-01

    Full Text Available A computer model for the generation of 3D grain microstructures is described. The solid (usually a cube is discretised in voxels. Grain seeds are distributed at random in some voxels. These seeds can be placed beforehand or simultaneously with the grain growth process. There are two ways for assigning a voxel to a particular grain, which are described in detail. After completion of a 3D tessellation, the model identifies the voxels at the grain boundaries. This feature allows for an easy computation of stereological parameters or as a basis for simulating recrystallisation or phase transformations nucleated at grain boundaries.

    Se describe un programa de ordenador que genera microestructuras virtuales en 3D. El sólido (normalmente un cubo se descompone en vóxeles, en los que se distribuye al azar un número prescrito de semillas de "granos". El crecimiento de estas semillas puede activarse desde el principio de la simulación o, gradualmente, durante el proceso de crecimiento de los granos. El programa dispone de dos formas de asignar los vóxeles a un grano en concreto que se describen detalladamente. El programa reconoce los vóxeles situados en los límites de grano. Esto permite realizar fácilmente algunos cálculos estereológicos o resembrar semillas en los bordes de grano y simular posteriores recristalizaciones o transformaciones de fase nucleadas en intercaras.

  19. Sensorized Garment Augmented 3D Pervasive Virtual Reality System

    Science.gov (United States)

    Gulrez, Tauseef; Tognetti, Alessandro; de Rossi, Danilo

    Virtual reality (VR) technology has matured to a point where humans can navigate in virtual scenes; however, providing them with a comfortable fully immersive role in VR remains a challenge. Currently available sensing solutions do not provide ease of deployment, particularly in the seated position due to sensor placement restrictions over the body, and optic-sensing requires a restricted indoor environment to track body movements. Here we present a 52-sensor laden garment interfaced with VR, which offers both portability and unencumbered user movement in a VR environment. This chapter addresses the systems engineering aspects of our pervasive computing solution of the interactive sensorized 3D VR and presents the initial results and future research directions. Participants navigated in a virtual art gallery using natural body movements that were detected by their wearable sensor shirt and then mapped the signals to electrical control signals responsible for VR scene navigation. The initial results are positive, and offer many opportunities for use in computationally intelligentman-machine multimedia control.

  20. Virtual reality 3D headset based on DMD light modulators

    Science.gov (United States)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-01

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micromirror devices (DMD). Current methods for presenting information for virtual reality are focused on either polarizationbased modulators such as liquid crystal on silicon (LCoS) devices, or miniature LCD or LED displays often using lenses to place the image at infinity. LCoS modulators are an area of active research and development, and reduce the amount of viewing light by 50% due to the use of polarization. Viewable LCD or LED screens may suffer low resolution, cause eye fatigue, and exhibit a "screen door" or pixelation effect due to the low pixel fill factor. Our approach leverages a mature technology based on silicon micro mirrors delivering 720p resolution displays in a small form-factor with high fill factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high-definition resolution and low power consumption, and many of the design methods developed for DMD projector applications can be adapted to display use. Potential applications include night driving with natural depth perception, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design concept is described in which light from the DMD is imaged to infinity and the user's own eye lens forms a real image on the user's retina resulting in a virtual retinal display.

  1. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    Science.gov (United States)

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  2. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    Science.gov (United States)

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  3. Second Life, a 3-D Animated Virtual World: An Alternative Platform for (Art) Education

    Science.gov (United States)

    Han, Hsiao-Cheng

    2011-01-01

    3-D animated virtual worlds are no longer only for gaming. With the advance of technology, animated virtual worlds not only are found on every computer, but also connect users with the internet. Today, virtual worlds are created not only by companies, but also through the collaboration of users. Online 3-D animated virtual worlds provide a new…

  4. Second Life, a 3-D Animated Virtual World: An Alternative Platform for (Art) Education

    Science.gov (United States)

    Han, Hsiao-Cheng

    2011-01-01

    3-D animated virtual worlds are no longer only for gaming. With the advance of technology, animated virtual worlds not only are found on every computer, but also connect users with the internet. Today, virtual worlds are created not only by companies, but also through the collaboration of users. Online 3-D animated virtual worlds provide a new…

  5. Acoustic simulation in realistic 3D virtual scenes

    Science.gov (United States)

    Gozard, Patrick; Le Goff, Alain; Naz, Pierre; Cathala, Thierry; Latger, Jean

    2003-09-01

    The simulation workshop CHORALE developed in collaboration with OKTAL SE company for the French MoD is used by government services and industrial companies for weapon system validation and qualification trials in the infrared domain. The main operational reference for CHORALE is the assessment of the infrared guidance system of the Storm Shadow missile French version, called Scalp. The use of CHORALE workshop is now extended to the acoustic domain. The main objective is the simulation of the detection of moving vehicles in realistic 3D virtual scenes. This article briefly describes the acoustic model in CHORALE. The 3D scene is described by a set of polygons. Each polygon is characterized by its acoustic resistivity or its complex impedance. Sound sources are associated with moving vehicles and are characterized by their spectra and directivities. A microphone sensor is defined by its position, its frequency band and its sensitivity. The purpose of the acoustic simulation is to calculate the incoming acoustic pressure on microphone sensors. CHORALE is based on a generic ray tracing kernel. This kernel possesses original capabilities: computation time is nearly independent on the scene complexity, especially the number of polygons, databases are enhanced with precise physical data, special mechanisms of antialiasing have been developed that enable to manage very accurate details. The ray tracer takes into account the wave geometrical divergence and the atmospheric transmission. The sound wave refraction is simulated and rays cast in the 3D scene are curved according to air temperature gradient. Finally, sound diffraction by edges (hill, wall,...) is also taken into account.

  6. Ensenyament pràctic en 3D: judici virtual

    Directory of Open Access Journals (Sweden)

    Raquel Escutia Romero

    2011-06-01

    Full Text Available Aquest article descriu els resultats de l'aplicació de metaversos com a eina d'ensenyament en l'àmbit jurídic. L'activitat pedagògica realitzada s'ha dut a terme a través de la simulació d'un judici virtual a Second Life. L'enfocament donat a l'exercici del dret en un entorn virtual ha combinat les següents activitats: (1 l'anàlisi jurídica a través de fòrums de discussió, com una activitat obligatòria prèvia al judici. Aquesta tasca inicial es va dur a terme a través de la plataforma d'aprenentatge asincrònica en 2D Moodle (Aula Judicial; (2 el treball col.laboratiu a través de Google Docs per a preparar tots els documents legals pertinents (demanda, contestació i tramitació judicial; i (3 la immersió síncrona en una experiència 3D d'un judici a Second Life.

  7. Intelligent Open Data 3D Maps in a Collaborative Virtual World

    Directory of Open Access Journals (Sweden)

    Juho-Pekka Virtanen

    2015-05-01

    Full Text Available Three-dimensional (3D maps have many potential applications, such as navigation and urban planning. In this article, we present the use of a 3D virtual world platform Meshmoon to create intelligent open data 3D maps. A processing method is developed to enable the generation of 3D virtual environments from the open data of the National Land Survey of Finland. The article combines the elements needed in contemporary smart city concepts, such as the connection between attribute information and 3D objects, and the creation of collaborative virtual worlds from open data. By using our 3D virtual world platform, it is possible to create up-to-date, collaborative 3D virtual models, which are automatically updated on all viewers. In the scenes, all users are able to interact with the model, and with each other. With the developed processing methods, the creation of virtual world scenes was partially automated for collaboration activities.

  8. Participatory Gis: Experimentations for a 3d Social Virtual Globe

    Science.gov (United States)

    Brovelli, M. A.; Minghini, M.; Zamboni, G.

    2013-08-01

    The dawn of GeoWeb 2.0, the geographic extension of Web 2.0, has opened new possibilities in terms of online dissemination and sharing of geospatial contents, thus laying the foundations for a fruitful development of Participatory GIS (PGIS). The purpose of the study is to investigate the extension of PGIS applications, which are quite mature in the traditional bi-dimensional framework, up to the third dimension. More in detail, the system should couple a powerful 3D visualization with an increase of public participation by means of a tool allowing data collecting from mobile devices (e.g. smartphones and tablets). The PGIS application, built using the open source NASA World Wind virtual globe, is focussed on the cultural and tourism heritage of Como city, located in Northern Italy. An authentication mechanism was implemented, which allows users to create and manage customized projects through cartographic mash-ups of Web Map Service (WMS) layers. Saved projects populate a catalogue which is available to the entire community. Together with historical maps and the current cartography of the city, the system is also able to manage geo-tagged multimedia data, which come from user field-surveys performed through mobile devices and report POIs (Points Of Interest). Each logged user can then contribute to POIs characterization by adding textual and multimedia information (e.g. images, audios and videos) directly on the globe. All in all, the resulting application allows users to create and share contributions as it usually happens on social platforms, additionally providing a realistic 3D representation enhancing the expressive power of data.

  9. Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy.

    Science.gov (United States)

    Xia, J; Ip, H H; Samman, N; Wang, D; Kot, C S; Yeung, R W; Tideman, H

    2000-02-01

    A computer-assisted three-dimensional virtual osteotomy system for orthognathic surgery (CAVOS) is presented. The virtual reality workbench is used for surgical planning. The surgeon immerses in a virtual reality environment with stereo eyewear, holds a virtual "scalpel" (3D Mouse) and operates on a "real" patient (3D visualization) to obtain pre-surgical prediction (3D bony segment movements). Virtual surgery on a computer-generated 3D head model is simulated and can be visualized from any arbitrary viewing point in a personal computer system.

  10. Virtual Space Exploration: Let's Use Web-Based Computer Game Technology to Boost IYA 2009 Public Interest

    Science.gov (United States)

    Hussey, K.; Doronila, P.; Kulikov, A.; Lane, K.; Upchurch, P.; Howard, J.; Harvey, S.; Woodmansee, L.

    2008-09-01

    With the recent releases of both Google's "Sky" and Microsoft's "WorldWide Telescope" and the large and increasing popularity of video games, the time is now for using these tools, and those crafted at NASA's Jet Propulsion Laboratory, to engage the public in astronomy like never before. This presentation will use "Cassini at Saturn Interactive Explorer " (CASSIE) to demonstrate the power of web-based video-game engine technology in providing the public a "first-person" look at space exploration. The concept of virtual space exploration is to allow the public to "see" objects in space as if they were either riding aboard or "flying" next to an ESA/NASA spacecraft. Using this technology, people are able to immediately "look" in any direction from their virtual location in space and "zoom-in" at will. Users can position themselves near Saturn's moons and observe the Cassini Spacecraft's "encounters" as they happened. Whenever real data for their "view" exists it is incorporated into the scene. Where data is missing, a high-fidelity simulation of the view is generated to fill in the scene. The observer can also change the time of observation into the past or future. Our approach is to utilize and extend the Unity 3d game development tool, currently in use by the computer gaming industry, along with JPL mission specific telemetry and instrument data to build our virtual explorer. The potential of the application of game technology for the development of educational curricula and public engagement are huge. We believe this technology can revolutionize the way the general public and the planetary science community views ESA/NASA missions and provides an educational context that is attractive to the younger generation. This technology is currently under development and application at JPL to assist our missions in viewing their data, communicating with the public and visualizing future mission plans. Real-time demonstrations of CASSIE and other applications in development

  11. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    Science.gov (United States)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  12. APLIKASI VIRTUAL TOUR 3D PABRIK PT. X

    Directory of Open Access Journals (Sweden)

    Willy Nugraha Utomo

    2014-01-01

    Full Text Available Company X is a reputable company that has more than 1000 people employees. One of the routines that performed by company X is orientation for new employees, and there is an event that invites them to visit the factory. The location of the main office and the factory is far, so this activity lacks time efficiency. This application aims to facilitate company X in conducting new employee orientation so that the location can be seen in the virtual world. The first thing in the process of making the application is visiting the factory to determine the shape and position of the object, so that the expected results are shown to resemble its original condition. 3d object and its texture are created using Blender application that can be imported into the made application. Collision feature aims to prevent users from penetrating the objects.The position, shape and location of objects contained in the application already resemble the original plant site. The main obstacle in making this application is the creation time, so the detailed map of the plant cannot be completed. The main building, the production building and the warehouse have been made, only small objects contained in the main building have not been contained.

  13. The Effects of Web-Based Interactive Virtual Tours on the Development of Prospective Mathematics Teachers' Spatial Skills

    Science.gov (United States)

    Kurtulus, Aytac

    2013-01-01

    The aim of this study was to investigate the effects of web-based interactive virtual tours on the development of prospective mathematics teachers' spatial skills. The study was designed based on experimental method. The "one-group pre-test post-test design" of this method was taken as the research model. The study was conducted with 3rd year…

  14. 3D Virtual Learning Environments for working with young people. A handbook for Teen Educators

    OpenAIRE

    Jäger, Thomas; Stelter, Claudia; Stoyanov, Tinko; Beraducci, Alberto; Fiumana, Franca; Laplaca, Marilena; Barbieri, Marcello; Heiman, Tali; Olenik‐Shemesh, Dorit; Rabin, Eyal; Plichta, Piotr; Sabicka, Edyta; Pyżalski, Jacek; Samnøen, Øystein; Rasmussen, Rune

    2013-01-01

    3D Virtual Learning Environments for working with young people. A handbook for Teen Educators. In this handbook we will examine what 3D virtual worlds are, what evolutionary steps led to their development, what makes them unique and what social impact they have? We will outline what makes 3D virtual worlds interesting for educators, in which ways they can be used for education and where 3D virtual worlds have strengths and limits are. The experiences come are derived from The ABV...

  15. ETeach3D: Designing a 3D Virtual Environment for Evaluating the Digital Competence of Preservice Teachers

    Science.gov (United States)

    Esteve-Mon, Francesc M.; Cela-Ranilla, Jose María; Gisbert-Cervera, Mercè

    2016-01-01

    The acquisition of teacher digital competence is a key aspect in the initial training of teachers. However, most existing evaluation instruments do not provide sufficient evidence of this teaching competence. In this study, we describe the design and development process of a three-dimensional (3D) virtual environment for evaluating the teacher…

  16. ETeach3D: Designing a 3D Virtual Environment for Evaluating the Digital Competence of Preservice Teachers

    Science.gov (United States)

    Esteve-Mon, Francesc M.; Cela-Ranilla, Jose María; Gisbert-Cervera, Mercè

    2016-01-01

    The acquisition of teacher digital competence is a key aspect in the initial training of teachers. However, most existing evaluation instruments do not provide sufficient evidence of this teaching competence. In this study, we describe the design and development process of a three-dimensional (3D) virtual environment for evaluating the teacher…

  17. Virtual historical reconstitution of the main altarpiece of the Espírito Santo Church, in Évora: application of web-based infographics to Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Catarina Pereira

    2016-01-01

    Full Text Available As a part of a multidisciplinary and integrated research, including conservation sciences and history, a proposal is presented for the historical reconstitution and the virtual restoration of the mannerist altarpiece of the main altar at the Espírito Santo Church, in Évora. The collected data is abundant and the scientific information, because of its technicality, is less prone to be easily understood by the general public, thus becoming less accessible. Web-based infographics are explored as privileged forms of disseminating results and raising awareness to Cultural Heritage. The project materializes as an Internet platform where data and a reconstitution proposal are shared in a visual and interactive way. In addition to the digital virtual reconstitution (2D, some tridimensional models (3D are presented of various elements of the altarpiece, obtained using methods of computer graphics and digital photogrammetry.

  18. Virtual historical reconstitution of the main altarpiece of the Espírito Santo Church, in Évora: application of web-based infographics to Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Catarina Pereira

    2016-01-01

    Full Text Available As a part of a multidisciplinary and integrated research, including conservation sciences and history, a proposal is presented for the historical reconstitution and the virtual restoration of the mannerist altarpiece of the main altar at the Espírito Santo Church, in Évora. The collected data is abundant and the scientific information, because of its technicality, is less prone to be easily understood by the general public, thus becoming less accessible. Web-based infographics are explored as privileged forms of disseminating results and raising awareness to Cultural Heritage. The project materializes as an Internet platform where data and a reconstitution proposal are shared in a visual and interactive way. In addition to the digital virtual reconstitution (2D, some tridimensional models (3D are presented of various elements of the altarpiece, obtained using methods of computer graphics and digital photogrammetry.

  19. Integration of the virtual 3D model of a control system with the virtual controller

    Science.gov (United States)

    Herbuś, K.; Ociepka, P.

    2015-11-01

    Nowadays the design process includes simulation analysis of different components of a constructed object. It involves the need for integration of different virtual object to simulate the whole investigated technical system. The paper presents the issues related to the integration of a virtual 3D model of a chosen control system of with a virtual controller. The goal of integration is to verify the operation of an adopted object of in accordance with the established control program. The object of the simulation work is the drive system of a tunneling machine for trenchless work. In the first stage of work was created an interactive visualization of functioning of the 3D virtual model of a tunneling machine. For this purpose, the software of the VR (Virtual Reality) class was applied. In the elaborated interactive application were created adequate procedures allowing controlling the drive system of a translatory motion, a rotary motion and the drive system of a manipulator. Additionally was created the procedure of turning on and off the output crushing head, mounted on the last element of the manipulator. In the elaborated interactive application have been established procedures for receiving input data from external software, on the basis of the dynamic data exchange (DDE), which allow controlling actuators of particular control systems of the considered machine. In the next stage of work, the program on a virtual driver, in the ladder diagram (LD) language, was created. The control program was developed on the basis of the adopted work cycle of the tunneling machine. The element integrating the virtual model of the tunneling machine for trenchless work with the virtual controller is the application written in a high level language (Visual Basic). In the developed application was created procedures responsible for collecting data from the running, in a simulation mode, virtual controller and transferring them to the interactive application, in which is verified the

  20. "The Evolution of e-Learning in the Context of 3D Virtual Worlds"

    Science.gov (United States)

    Kotsilieris, Theodore; Dimopoulou, Nikoletta

    2013-01-01

    Information and Communication Technologies (ICT) offer new approaches towards knowledge acquisition and collaboration through distance learning processes. Web-based Learning Management Systems (LMS) have transformed the way that education is conducted nowadays. At the same time, the adoption of Virtual Worlds in the educational process is of great…

  1. 3D Procedural Reconstruction of Urban Landscapes for the Purposes of a Web-Based Historical Atlas

    Science.gov (United States)

    Cajthaml, J.; Tobiáš, P.

    2016-10-01

    The "Czech Historical Atlas" project is a part of the NAKI II programme of the Czech Ministry of Culture and aims to create the following two main outputs: a printed atlas of the Czech history in the 20th century and an electronic map portal on the Czech history. This paper is focused on the latter mentioned output and specifically on the design of 3D scenes which should supplement the 2D map content. Currently existing literature is briefly reviewed and the procedural modelling is found to be suitable for the needs of urban landscape reconstruction. Furthermore, available data sources in the Czech republic are discussed and important aspects of modelling are presented.

  2. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    Science.gov (United States)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  3. 3D Virtual Learning Environments in Education: A Meta-Review

    Science.gov (United States)

    Reisoglu, I.; Topu, B.; Yilmaz, R.; Karakus Yilmaz, T.; Göktas, Y.

    2017-01-01

    The aim of this study is to investigate recent empirical research studies about 3D virtual learning environments. A total of 167 empirical studies that involve the use of 3D virtual worlds in education were examined by meta-review. Our findings show that the "Second Life" platform has been frequently used in studies. Among the reviewed…

  4. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    Science.gov (United States)

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail

  5. Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds

    Science.gov (United States)

    Minocha, Shailey; Reeves, Ahmad John

    Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.

  6. Effectiveness of Collaborative Learning with 3D Virtual Worlds

    Science.gov (United States)

    Cho, Young Hoan; Lim, Kenneth Y. T.

    2017-01-01

    Virtual worlds have affordances to enhance collaborative learning in authentic contexts. Despite the potential of collaborative learning with a virtual world, few studies investigated whether it is more effective in student achievements than teacher-directed instruction. This study investigated the effectiveness of collaborative problem solving…

  7. Contextual EFL Learning in a 3D Virtual Environment

    Science.gov (United States)

    Lan, Yu-Ju

    2015-01-01

    The purposes of the current study are to develop virtually immersive EFL learning contexts for EFL learners in Taiwan to pre- and review English materials beyond the regular English class schedule. A 2-iteration action research lasting for one semester was conducted to evaluate the effects of virtual contexts on learners' EFL learning. 132…

  8. Contextual EFL Learning in a 3D Virtual Environment

    Science.gov (United States)

    Lan, Yu-Ju

    2015-01-01

    The purposes of the current study are to develop virtually immersive EFL learning contexts for EFL learners in Taiwan to pre- and review English materials beyond the regular English class schedule. A 2-iteration action research lasting for one semester was conducted to evaluate the effects of virtual contexts on learners' EFL learning. 132…

  9. Effectiveness of Collaborative Learning with 3D Virtual Worlds

    Science.gov (United States)

    Cho, Young Hoan; Lim, Kenneth Y. T.

    2017-01-01

    Virtual worlds have affordances to enhance collaborative learning in authentic contexts. Despite the potential of collaborative learning with a virtual world, few studies investigated whether it is more effective in student achievements than teacher-directed instruction. This study investigated the effectiveness of collaborative problem solving…

  10. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    Science.gov (United States)

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  11. Web-based, virtual course units as a didactic concept for medical teaching.

    Science.gov (United States)

    Schultze-Mosgau, Stefan; Zielinski, Thomas; Lochner, Jürgen

    2004-06-01

    The objective was to develop a web-based, virtual series of lectures for evidence-based, standardized knowledge transfer independent of location and time with possibilities for interactive participation and a concluding web-based online examination. Within the framework of a research project, specific Intranet and Internet capable course modules were developed together with a concluding examination. The concept of integrating digital and analogue course units supported by sound was based on FlashCam (Nexus Concepts), Flash MX (Macromedia), HTML and JavaScript. A Web server/SGI Indigo Unix server was used as a platform by the course provider. A variety of independent formats (swf, avi, mpeg, DivX, etc.) were integrated in the individual swf modules. An online examination was developed to monitor the learning effect. The examination papers are automatically forwarded by email after completion. The results are also returned to the user automatically after they have been processed by a key program and an evaluation program. The system requirements for the user PC have deliberately been kept low (Internet Explorer 5.0, Flash-Player 6, 56 kbit/s modem, 200 MHz PC). Navigation is intuitive. Users were provided with a technical online introduction and a FAQ list. Eighty-two students of dentistry in their 3rd to 5th years of study completed a questionnaire to assess the course content and the user friendliness (SPSS V11) with grades 1 to 6 (1 = 'excellent' and 6 = 'unsatisfactory'). The course units can be viewed under the URL: http://giga.rrze.uni-erlangen.de/movies/MKG/trailer and URL: http://giga.rrze.uni-erlangen.de/movies/MKG/demo/index. Some 89% of the students gave grades 1 (excellent) and 2 (good) for accessibility independent of time and 83% for access independent of location. Grades 1 and 2 were allocated for an objectivization of the knowledge transfer by 67% of the students and for the use of video sequences for demonstrating surgical techniques by 91% of the

  12. LIME: 3D visualisation and interpretation of virtual geoscience models

    Science.gov (United States)

    Buckley, Simon; Ringdal, Kari; Dolva, Benjamin; Naumann, Nicole; Kurz, Tobias

    2017-04-01

    Three-dimensional and photorealistic acquisition of surface topography, using methods such as laser scanning and photogrammetry, has become widespread across the geosciences over the last decade. With recent innovations in photogrammetric processing software, robust and automated data capture hardware, and novel sensor platforms, including unmanned aerial vehicles, obtaining 3D representations of exposed topography has never been easier. In addition to 3D datasets, fusion of surface geometry with imaging sensors, such as multi/hyperspectral, thermal and ground-based InSAR, and geophysical methods, create novel and highly visual datasets that provide a fundamental spatial framework to address open geoscience research questions. Although data capture and processing routines are becoming well-established and widely reported in the scientific literature, challenges remain related to the analysis, co-visualisation and presentation of 3D photorealistic models, especially for new users (e.g. students and scientists new to geomatics methods). Interpretation and measurement is essential for quantitative analysis of 3D datasets, and qualitative methods are valuable for presentation purposes, for planning and in education. Motivated by this background, the current contribution presents LIME, a lightweight and high performance 3D software for interpreting and co-visualising 3D models and related image data in geoscience applications. The software focuses on novel data integration and visualisation of 3D topography with image sources such as hyperspectral imagery, logs and interpretation panels, geophysical datasets and georeferenced maps and images. High quality visual output can be generated for dissemination purposes, to aid researchers with communication of their research results. The background of the software is described and case studies from outcrop geology, in hyperspectral mineral mapping and geophysical-geospatial data integration are used to showcase the novel

  13. PAST AND FUTURE APPLICATIONS OF 3-D (VIRTUAL REALITY TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Nigel Foreman

    2014-11-01

    Full Text Available Virtual Reality (virtual environment technology, VET has been widely available for twenty years. In that time, the benefits of using virtual environments (VEs have become clear in many areas of application, including assessment and training, education, rehabilitation and psychological research in spatial cognition. The flexibility, reproducibility and adaptability of VEs are especially important, particularly in the training and testing of navigational and way-finding skills. Transfer of training between real and virtual environments has been found to be reliable. However, input device usage can compromise spatial information acquisition from VEs, and distances in VEs are invariably underestimated. The present review traces the evolution of VET, anticipates future areas in which developments are likely to occur, and highlights areas in which research is needed to optimise usage.

  14. 3D multiplayer virtual pets game using Google Card Board

    Science.gov (United States)

    Herumurti, Darlis; Riskahadi, Dimas; Kuswardayan, Imam

    2017-08-01

    Virtual Reality (VR) is a technology which allows user to interact with the virtual environment. This virtual environment is generated and simulated by computer. This technology can make user feel the sensation when they are in the virtual environment. The VR technology provides real virtual environment view for user and it is not viewed from screen. But it needs another additional device to show the view of virtual environment. This device is known as Head Mounted Device (HMD). Oculust Rift and Microsoft Hololens are the most famous HMD devices used in VR. And in 2014, Google Card Board was introduced at Google I/O developers conference. Google Card Board is VR platform which allows user to enjoy the VR with simple and cheap way. In this research, we explore Google Card Board to develop simulation game of raising pet. The Google Card Board is used to create view for the VR environment. The view and control in VR environment is built using Unity game engine. And the simulation process is designed using Finite State Machine (FSM). This FSM can help to design the process clearly. So the simulation process can describe the simulation of raising pet well. Raising pet is fun activity. But sometimes, there are many conditions which cause raising pet become difficult to do, i.e. environment condition, disease, high cost, etc. this research aims to explore and implement Google Card Board in simulation of raising pet.

  15. Web-based virtual microscopy for parasitology: a novel tool for education and quality assurance.

    Directory of Open Access Journals (Sweden)

    Ewert Linder

    Full Text Available BACKGROUND: The basis for correctly assessing the burden of parasitic infections and the effects of interventions relies on a somewhat shaky foundation as long as we do not know how reliable the reported laboratory findings are. Thus virtual microscopy, successfully introduced as a histopathology tool, has been adapted for medical parasitology. METHODOLOGY/PRINCIPAL FINDINGS: Specimens containing parasites in tissues, stools, and blood have been digitized and made accessible as a "webmicroscope for parasitology" (WMP on the Internet (http://www.webmicroscope.net/parasitology.These digitized specimens can be viewed ("navigated" both in the x-axis and the y-axis at the desired magnification by an unrestricted number of individuals simultaneously. For virtual microscopy of specimens containing stool parasites, it was necessary to develop the technique further in order to enable navigation in the z plane (i.e., "focusing". Specimens were therefore scanned and photographed in two or more focal planes. The resulting digitized specimens consist of stacks of laterally "stiched" individual images covering the entire area of the sample photographed at high magnification. The digitized image information (approximately 10 GB uncompressed data per specimen is accessible at data transfer speeds from 2 to 10 Mb/s via a network of five image servers located in different parts of Europe. Image streaming and rapid data transfer to an ordinary personal computer makes web-based virtual microscopy similar to conventional microscopy. CONCLUSION/SIGNIFICANCE: The potential of this novel technique in the field of medical parasitology to share identical parasitological specimens means that we can provide a "gold standard", which can overcome several problems encountered in quality control of diagnostic parasitology. Thus, the WMP may have an impact on the reliability of data, which constitute the basis for our understanding of the vast problem of neglected tropical

  16. METHODOLOGY TO CREATE DIGITAL AND VIRTUAL 3D ARTEFACTS IN ARCHAEOLOGY

    Directory of Open Access Journals (Sweden)

    Calin Neamtu

    2016-12-01

    Full Text Available The paper presents a methodology to create 3D digital and virtual artefacts in the field of archaeology using CAD software solution. The methodology includes the following steps: the digitalization process, the digital restoration and the dissemination process within a virtual environment. The resulted 3D digital artefacts have to be created in files formats that are compatible with a large variety of operating systems and hardware configurations such as: computers, graphic tablets and smartphones. The compatibility and portability of these 3D file formats has led to a series of quality related compromises to the 3D models in order to integrate them on in a wide variety of application that are running on different hardware configurations. The paper illustrates multiple virtual reality and augmented reality application that make use of the virtual 3D artefacts that have been generated using this methodology.

  17. Virtual Reality, 3D Stereo Visualization, and Applications in Robotics

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2006-01-01

    The use of 3D stereoscopic visualization may provide a user with higher comprehension of remote environments in tele-operation when compared to 2D viewing. Works in the literature have demonstrated how stereo vision contributes to improve perception of some depth cues often for abstract tasks...

  18. Virtual reality and 3D animation in forensic visualization.

    Science.gov (United States)

    Ma, Minhua; Zheng, Huiru; Lallie, Harjinder

    2010-09-01

    Computer-generated three-dimensional (3D) animation is an ideal media to accurately visualize crime or accident scenes to the viewers and in the courtrooms. Based upon factual data, forensic animations can reproduce the scene and demonstrate the activity at various points in time. The use of computer animation techniques to reconstruct crime scenes is beginning to replace the traditional illustrations, photographs, and verbal descriptions, and is becoming popular in today's forensics. This article integrates work in the areas of 3D graphics, computer vision, motion tracking, natural language processing, and forensic computing, to investigate the state-of-the-art in forensic visualization. It identifies and reviews areas where new applications of 3D digital technologies and artificial intelligence could be used to enhance particular phases of forensic visualization to create 3D models and animations automatically and quickly. Having discussed the relationships between major crime types and level-of-detail in corresponding forensic animations, we recognized that high level-of-detail animation involving human characters, which is appropriate for many major crime types but has had limited use in courtrooms, could be useful for crime investigation.

  19. Orchestrating learning during implementation of a 3D virtual world

    Science.gov (United States)

    Karakus, Turkan; Baydas, Ozlem; Gunay, Fatma; Coban, Murat; Goktas, Yuksel

    2016-10-01

    There are many issues to be considered when designing virtual worlds for educational purposes. In this study, the term orchestration has acquired a new definition as the moderation of problems encountered during the activity of turning a virtual world into an educational setting for winter sports. A development case showed that community plays a key role in both the emergence of challenges and in the determination of their solutions. The implications of this study showed that activity theory was a useful tool for understanding contextual issues. Therefore, instructional designers first developed relevant tools and community-based solutions. This study attempts to use activity theory in a prescriptive way, though it is known as a descriptive theory. Finally, since virtual world projects have many aspects, the variety of challenges and practical solutions presented in this study will provide practitioners with suggestions on how to overcome problems in future.

  20. Mixed Structural Models for 3D Audio in Virtual Environments

    OpenAIRE

    Geronazzo, Michele

    2014-01-01

    In the world of ICT, strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusi...

  1. Mixed Structural Models for 3D Audio in Virtual Environments

    OpenAIRE

    Geronazzo, Michele

    2014-01-01

    In the world of ICT, strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusi...

  2. Communicating Archaeological Risk with Web-Based Virtual Reality: A Case Study

    Directory of Open Access Journals (Sweden)

    Giacomo Landeschi

    2011-12-01

    Full Text Available In the last decade 3D technologies have become very effective and are widely used for managing and interpreting archaeological data. A better way to perceive, understand and communicate Cultural Heritage has been achieved through VR applications, which have enabled archaeologists to make both reconstructions of original landscapes and to put artefacts in their original context. Furthermore, the exponential growth of the Web has led to a massive availability of digital content, even in the field of Cultural Heritage, that can be accessed in an easier and more intuitive manner by a broader audience. The case study presented here is designed to demonstrate the potential importance of Web3D technologies for communicating specific research aspects, such as the ones connected to the GIS-based spatial analysis applied to the archaeological landscape. To this end, a research project was undertaken in order to get a final predictive model for detecting archaeological presence in an area of the Pisa coastal plain, implemented in a Web-orientated Virtual Reality system. The end-user is able to navigate the model in real-time and observe different thematic layers, such as the distribution of the archaeological sites, maps of lithology, land use and, finally, the assessment of the archaeological risk.

  3. Assessing 3D Virtual World Disaster Training Through Adult Learning Theory

    Directory of Open Access Journals (Sweden)

    Lee Taylor-Nelms

    2014-10-01

    Full Text Available As role-play, virtual reality, and simulated environments gain popularity through virtual worlds such as Second Life, the importance of identifying best practices for education and emergency management training becomes necessary. Using a formal needs assessment approach, we examined the extent to which 3D virtual tornado simulation trainings follow the principles of adult learning theory employed by the Federal Emergency Management Agency's (FEMA National Training and Education Division. Through a three-fold methodology of observation, interviews, and reflection on action, 3D virtual world tornado trainings were analyzed for congruence to adult learning theory.

  4. Collaborative Virtual 3D Environment for Internet-Accessible Physics Experiments

    Directory of Open Access Journals (Sweden)

    Bettina Scheucher

    2009-08-01

    Full Text Available Abstract—Immersive 3D worlds have increasingly raised the interest of researchers and practitioners for various learning and training settings over the last decade. These virtual worlds can provide multiple communication channels between users and improve presence and awareness in the learning process. Consequently virtual 3D environments facilitate collaborative learning and training scenarios. In this paper we focus on the integration of internet-accessible physics experiments (iLabs combined with the TEALsim 3D simulation toolkit in Project Wonderland, Sun's toolkit for creating collaborative 3D virtual worlds. Within such a collaborative environment these tools provide the opportunity for teachers and students to work together as avatars as they control actual equipment, visualize physical phenomenon generated by the experiment, and discuss the results. In particular we will outline the steps of integration, future goals, as well as the value of a collaboration space in Wonderland's virtual world.

  5. COMBINATION OF VIRTUAL TOURS, 3D MODEL AND DIGITAL DATA IN A 3D ARCHAEOLOGICAL KNOWLEDGE AND INFORMATION SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Koehl

    2012-08-01

    Full Text Available The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS. With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc., digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.. The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic

  6. Combination of Virtual Tours, 3d Model and Digital Data in a 3d Archaeological Knowledge and Information System

    Science.gov (United States)

    Koehl, M.; Brigand, N.

    2012-08-01

    The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image

  7. Spilling the beans on java 3D: a tool for the virtual anatomist.

    Science.gov (United States)

    Guttmann, G D

    1999-04-15

    The computing world has just provided the anatomist with another tool: Java 3D, within the Java 2 platform. On December 9, 1998, Sun Microsystems released Java 2. Java 3D classes are now included in the jar (Java Archive) archives of the extensions directory of Java 2. Java 3D is also a part of the Java Media Suite of APIs (Application Programming Interfaces). But what is Java? How does Java 3D work? How do you view Java 3D objects? A brief introduction to the concepts of Java and object-oriented programming is provided. Also, there is a short description of the tools of Java 3D and of the Java 3D viewer. Thus, the virtual anatomist has another set of computer tools to use for modeling various aspects of anatomy, such as embryological development. Also, the virtual anatomist will be able to assist the surgeon with virtual surgery using the tools found in Java 3D. Java 3D will be able to fulfill gaps, such as the lack of platform independence, interactivity, and manipulability of 3D images, currently existing in many anatomical computer-aided learning programs.

  8. 顾及约束的网络道路三维模型简化方法%Web-based road 3D model simplification method considering constraints

    Institute of Scientific and Technical Information of China (English)

    蒲浩; 李伟; 赵海峰; 宋占峰

    2013-01-01

    针对道路三维模型数据呈海量,且包含大量约束边界的特点,提出顾及约束的网络道路三维模型简化方法.在服务器端已建立道路三维整体模型的基础上,首先提出顾及约束的半边折叠误差度量方法;然后,在服务器端采用半边折叠操作对初始道路模型进行整体简化,同时建立操作层次树;最后,建立远程视相关模型重构准则,在操作层次树上确定需传输至客户端的视相关结点数据,并结合约束边优先策略,在客户端实现道路三维模型的快速视相关重构.研究结果表明:该方法简化率高,远程动态浏览时保留必要的约束边界,需要传输的数据量小,满足道路远程实时交互式可视化要求.%Based on the fact that the road 3D model has massive data and a large number of constraints, a web-based road 3D model simplification method considering constraints was put forward. The road 3D integrated model was built on the server beforehand. First, a half-edge collapse error metric that considered a large number of road constrained edges was proposed. Then, original road model was integrated simplified on the server by half-edge collapse, and meanwhile operating hierarchical tree was built. Finally, remote view-dependent reconstruction criteria were established. According to these criteria, minimum nodes data that needed to be transferred to client were quickly selected in the operating hierarchical tree. Combined with constrained edges priority strategy, road 3D model quickly view-dependent reconstruction was realized on client. The results show that high simplification rate can be obtained, the necessary constrained edges can be retained, small scale of data transmitted through network is needed in the process of remote dynamic browsing, and the requirements of road remote real-time interactive visualization are met.

  9. Anesthesiology training using 3D imaging and virtual reality

    Science.gov (United States)

    Blezek, Daniel J.; Robb, Richard A.; Camp, Jon J.; Nauss, Lee A.

    1996-04-01

    Current training for regional nerve block procedures by anesthesiology residents requires expert supervision and the use of cadavers; both of which are relatively expensive commodities in today's cost-conscious medical environment. We are developing methods to augment and eventually replace these training procedures with real-time and realistic computer visualizations and manipulations of the anatomical structures involved in anesthesiology procedures, such as nerve plexus injections (e.g., celiac blocks). The initial work is focused on visualizations: both static images and rotational renderings. From the initial results, a coherent paradigm for virtual patient and scene representation will be developed.

  10. A standardized set of 3-D objects for virtual reality research and applications.

    Science.gov (United States)

    Peeters, David

    2017-06-23

    The use of immersive virtual reality as a research tool is rapidly increasing in numerous scientific disciplines. By combining ecological validity with strict experimental control, immersive virtual reality provides the potential to develop and test scientific theories in rich environments that closely resemble everyday settings. This article introduces the first standardized database of colored three-dimensional (3-D) objects that can be used in virtual reality and augmented reality research and applications. The 147 objects have been normed for name agreement, image agreement, familiarity, visual complexity, and corresponding lexical characteristics of the modal object names. The availability of standardized 3-D objects for virtual reality research is important, because reaching valid theoretical conclusions hinges critically on the use of well-controlled experimental stimuli. Sharing standardized 3-D objects across different virtual reality labs will allow for science to move forward more quickly.

  11. Tactile display for virtual 3D shape rendering

    CERN Document Server

    Mansutti, Alessandro; Bordegoni, Monica; Cugini, Umberto

    2017-01-01

    This book describes a novel system for the simultaneous visual and tactile rendering of product shapes which allows designers to simultaneously touch and see new product shapes during the conceptual phase of product development. This system offers important advantages, including potential cost and time savings, compared with the standard product design process in which digital 3D models and physical prototypes are often repeatedly modified until an optimal design is achieved. The system consists of a tactile display that is able to represent, within a real environment, the shape of a product. Designers can explore the rendered surface by touching curves lying on the product shape, selecting those curves that can be considered style features and evaluating their aesthetic quality. In order to physically represent these selected curves, a flexible surface is modeled by means of servo-actuated modules controlling a physical deforming strip. The tactile display is designed so as to be portable, low cost, modular,...

  12. Preoperative Planning Using 3D Reconstructions and Virtual Endoscopy for Location of the Frontal Sinus

    Directory of Open Access Journals (Sweden)

    Abreu, João Paulo Saraiva

    2011-01-01

    Full Text Available Introduction: Computed tomography (TC generated tridimensional (3D reconstructions allow the observation of cavities and anatomic structures of our body with detail. In our specialty there have been attempts to carry out virtual endoscopies and laryngoscopies. However, such application has been practically abandoned due to its complexity and need for computers with high power of graphic processing. Objective: To demonstrate the production of 3D reconstructions from CTs of patients in personal computers, with a free specific program and compare them to the surgery actual endoscopic images. Method: Prospective study in which the CTs proper files of 10 patients were reconstructed with the program Intage Realia, version 2009, 0, 0, 702 (KGT Inc., Japan. The reconstructions were carried out before the surgeries and a virtual endoscopy was made to assess the recess and frontal sinus region. After this study, the surgery was digitally performed and stored. The actual endoscopic images of the recess and frontal sinus region were compared to the virtual images. Results: The 3D reconstruction and virtual endoscopy were made in 10 patients submitted to the surgery. The virtual images had a large resemblance with the actual surgical images. Conclusion: With relatively simple tools and personal computer, we demonstrated the possibility to generate 3D reconstructions and virtual endoscopies. The preoperative knowledge of the frontal sinus natural draining path location may generate benefits during the performance of surgeries. However, more studies must be developed for the evaluation of the real roles of such 3D reconstructions and virtual endoscopies.

  13. The Arnolfini Portrait in 3d: Creating Virtual World of a Painting with Inconsistent Perspective

    NARCIS (Netherlands)

    Jansen, P.H.; Ruttkay, Z.M.; Arnold, D. B.; Ferko, A.

    We report on creating a 3d virtual reconstruction of the scene shown in "The Arnolfini Portrait" by Jan van Eyck. This early Renaissance painting, if painted faithfully, should confirm to one-point perspective, however it has several vanishing points instead of one. Hence our 3d reconstruction had

  14. The Arnolfini Portrait in 3d: Creating Virtual World of a Painting with Inconsistent Perspective

    NARCIS (Netherlands)

    Jansen, P.H.; Ruttkay, Z.M.; Arnold, D. B.; Ferko, A.

    2007-01-01

    We report on creating a 3d virtual reconstruction of the scene shown in "The Arnolfini Portrait" by Jan van Eyck. This early Renaissance painting, if painted faithfully, should confirm to one-point perspective, however it has several vanishing points instead of one. Hence our 3d reconstruction had t

  15. Spatial integration of boundaries in a 3D virtual environment.

    Science.gov (United States)

    Bouchekioua, Youcef; Miller, Holly C; Craddock, Paul; Blaisdell, Aaron P; Molet, Mikael

    2013-10-01

    Prior research, using two- and three-dimensional environments, has found that when both human and nonhuman animals independently acquire two associations between landmarks with a common landmark (e.g., LM1-LM2 and LM2-LM3), each with its own spatial relationship, they behave as if the two unique LMs have a known spatial relationship despite their never having been paired. Seemingly, they have integrated the two associations to create a third association with its own spatial relationship (LM1-LM3). Using sensory preconditioning (Experiment 1) and second-order conditioning (Experiment 2) procedures, we found that human participants integrated information about the boundaries of pathways to locate a goal within a three-dimensional virtual environment in the absence of any relevant landmarks. Spatial integration depended on the participant experiencing a common boundary feature with which to link the pathways. These results suggest that the principles of associative learning also apply to the boundaries of an environment.

  16. A Collaborative Virtual Environment for Situated Language Learning Using VEC3D

    Science.gov (United States)

    Shih, Ya-Chun; Yang, Mau-Tsuen

    2008-01-01

    A 3D virtually synchronous communication architecture for situated language learning has been designed to foster communicative competence among undergraduate students who have studied English as a foreign language (EFL). We present an innovative approach that offers better e-learning than the previous virtual reality educational applications. The…

  17. Computer-assisted three-dimensional surgical planning: 3D virtual articulator: technical note.

    Science.gov (United States)

    Ghanai, S; Marmulla, R; Wiechnik, J; Mühling, J; Kotrikova, B

    2010-01-01

    This study presents a computer-assisted planning system for dysgnathia treatment. It describes the process of information gathering using a virtual articulator and how the splints are constructed for orthognathic surgery. The deviation of the virtually planned splints is shown in six cases on the basis of conventionally planned cases. In all cases the plaster models were prepared and scanned using a 3D laser scanner. Successive lateral and posterior-anterior cephalometric images were used for reconstruction before surgery. By identifying specific points on the X-rays and marking them on the virtual models, it was possible to enhance the 2D images to create a realistic 3D environment and to perform virtual repositioning of the jaw. A hexapod was used to transfer the virtual planning to the real splints. Preliminary results showed that conventional repositioning could be replicated using the virtual articulator.

  18. Launching a virtual decision lab: development and field-testing of a web-based patient decision support research platform.

    Science.gov (United States)

    Hoffman, Aubri S; Llewellyn-Thomas, Hilary A; Tosteson, Anna N A; O'Connor, Annette M; Volk, Robert J; Tomek, Ivan M; Andrews, Steven B; Bartels, Stephen J

    2014-12-12

    Over 100 trials show that patient decision aids effectively improve patients' information comprehension and values-based decision making. However, gaps remain in our understanding of several fundamental and applied questions, particularly related to the design of interactive, personalized decision aids. This paper describes an interdisciplinary development process for, and early field testing of, a web-based patient decision support research platform, or virtual decision lab, to address these questions. An interdisciplinary stakeholder panel designed the web-based research platform with three components: a) an introduction to shared decision making, b) a web-based patient decision aid, and c) interactive data collection items. Iterative focus groups provided feedback on paper drafts and online prototypes. A field test assessed a) feasibility for using the research platform, in terms of recruitment, usage, and acceptability; and b) feasibility of using the web-based decision aid component, compared to performance of a videobooklet decision aid in clinical care. This interdisciplinary, theory-based, patient-centered design approach produced a prototype for field-testing in six months. Participants (n = 126) reported that: the decision aid component was easy to use (98%), information was clear (90%), the length was appropriate (100%), it was appropriately detailed (90%), and it held their interest (97%). They spent a mean of 36 minutes using the decision aid and 100% preferred using their home/library computer. Participants scored a mean of 75% correct on the Decision Quality, Knowledge Subscale, and 74 out of 100 on the Preparation for Decision Making Scale. Completing the web-based decision aid reduced mean Decisional Conflict scores from 31.1 to 19.5 (p platform that was feasible for use in research studies in terms of recruitment, acceptability, and usage. Within this platform, the web-based decision aid component performed comparably with the videobooklet

  19. Development and application of visual support module for remote operator in 3D virtual environment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyung Hyun; Cho, Soo Jeong; Yang, Kyung Boo [Cheju Nat. Univ., Jeju (Korea, Republic of); Bae, Chang Hyun [Pusan Nat. Univ., Busan (Korea, Republic of)

    2006-02-15

    In this research, the 3D graphic environment was developed for remote operation, and included the visual support module. The real operation environment was built by employing a experiment robot, and also the identical virtual model was developed. The well-designed virtual models can be used to retrieve the necessary conditions for developing the devices and processes. The integration of 3D virtual models, the experimental operation environment, and the visual support module was used for evaluating the operation efficiency and accuracy by applying different methods such as only monitor image and with visual support module.

  20. 3D virtual human rapid modeling method based on top-down modeling mechanism

    Directory of Open Access Journals (Sweden)

    LI Taotao

    2017-01-01

    Full Text Available Aiming to satisfy the vast custom-made character demand of 3D virtual human and the rapid modeling in the field of 3D virtual reality, a new virtual human top-down rapid modeling method is put for-ward in this paper based on the systematic analysis of the current situation and shortage of the virtual hu-man modeling technology. After the top-level realization of virtual human hierarchical structure frame de-sign, modular expression of the virtual human and parameter design for each module is achieved gradu-al-level downwards. While the relationship of connectors and mapping restraints among different modules is established, the definition of the size and texture parameter is also completed. Standardized process is meanwhile produced to support and adapt the virtual human top-down rapid modeling practice operation. Finally, the modeling application, which takes a Chinese captain character as an example, is carried out to validate the virtual human rapid modeling method based on top-down modeling mechanism. The result demonstrates high modelling efficiency and provides one new concept for 3D virtual human geometric mod-eling and texture modeling.

  1. From reality to virtual reality: 3D object imaging techniques and algorithms

    Science.gov (United States)

    Sitnik, Robert; Kujawinska, Malgorzata

    2003-10-01

    General concept of 3D data processing path, which enables to introduce information about shape and texture of real 3D objects into complex virtual worlds, is presented. Minimal requirements for input data, in the most common case coming in the form of cloud of (x,y,z) co-ordinate points from 3D shape measurement systems, are specified with special emphasis on implementation of multidirectional data and texture information. The algorithms for data pre-processing like filtering, smoothing and simplification are introduced. The techniques for merging of directional data into single virtual object are also employed. The algorithm for triangulation of merged cloud of points to form virtual object accepted by multimedia environments is presented. The various techniques of texture creation and mapping are introduced. All steps are illustrated by measurement and processing of a representative 3D object for art applications.

  2. Virtual Soil Monoliths: Blending Traditional and Web-Based Educational Approaches

    Science.gov (United States)

    Krzic, Maja; Strivelli, Rachel A.; Holmes, Emma; Grand, Stephanie; Dyanatkar, Saeed; Lavkulich, Les M.; Crowley, Chris

    2013-01-01

    Since soil plays a crucial role in all aspects of global environmental change, it is essential that post-secondary institutions provide students with a strong foundation in soil science concepts including soil classification. The onset of information technology (IT) and web-based multimedia have opened new avenues to better incorporate…

  3. A Role-Playing Virtual World for Web-Based Application Courses

    Science.gov (United States)

    Depradine, Colin

    2007-01-01

    With the rapid development of the information communication and technology (ICT) infrastructure in the Caribbean, there is an increasing demand for skilled software developers to meet the ICT needs of the region. Consequently, the web-based applications course offered at the University of the West Indies, has been redeveloped. One major part of…

  4. Understanding Human Perception of Building Categories in Virtual 3d Cities - a User Study

    Science.gov (United States)

    Tutzauer, P.; Becker, S.; Niese, T.; Deussen, O.; Fritsch, D.

    2016-06-01

    Virtual 3D cities are becoming increasingly important as a means of visually communicating diverse urban-related information. To get a deeper understanding of a human's cognitive experience of virtual 3D cities, this paper presents a user study on the human ability to perceive building categories (e.g. residential home, office building, building with shops etc.) from geometric 3D building representations. The study reveals various dependencies between geometric properties of the 3D representations and the perceptibility of the building categories. Knowledge about which geometries are relevant, helpful or obstructive for perceiving a specific building category is derived. The importance and usability of such knowledge is demonstrated based on a perception-guided 3D building abstraction process.

  5. Web-based virtual microscopy at the RWTH Aachen University: didactic concept, methods and analysis of acceptance by the students.

    Science.gov (United States)

    Merk, Magdalene; Knuechel, Ruth; Perez-Bouza, Alberto

    2010-12-20

    Fundamental knowledge of microscopic anatomy and pathology has always been an essential part in medical education. The traditional didactic concept comprises theoretical and practical lessons using a light microscope and glass slides. High-speed Internet connections and technical improvement in whole-slide digital microscopy (commonly termed "virtual microscopy") provide a new and attractive approach for both teachers and students. High picture quality and unlimited temporal and spatial availability of histology samples from different fields are key advantages of web-based digital microscopy. In this report we discuss the technical requirements, system efficiency, optical resolution and didactic concept. Furthermore, we present a review of the experience gained in the course of one year based on an analysis of student acceptance. Three groups with a total of 192 students between the 3rd and 5th year of medical studies attending the practical courses of general and advanced histopathology had access to both glass-mounted and digitalized slides. Prior to exams, students were asked to answer an anonymous questionnaire. The results of the study reflect the high acceptance and intensive use of the web-based digital histology by students, thus encouraging the development of further Web-based learning strategies for the teaching of histology and pathology.

  6. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  7. Math World: A Game-Based 3D Virtual Learning Environment (3D VLE for Second Graders

    Directory of Open Access Journals (Sweden)

    Jean Maitem

    2012-03-01

    Full Text Available This paper intends to introduce a game-based 3D Virtual Learning Environment (VLE to second graders. The impetus arose from the need to make learning in mathematics more effective and interesting through multimedia. Applied in a game, the basic mathematical operations such as addition, subtraction, multiplication, and division are expected to performed by learners as they represent themselves as avatars while they immerse in a quest of digital objects in the VLE called Math World. Educational attributes such as mentality change, emotional fulfillment, knowledge enhancement, thinking skills development, and bodily coordination are evaluated to ensure learning effectiveness. Also, game playability measured interms of game plays, story, mechanics and interface usability are examined for its educative design. With an aggregate of these enhanced indices, results attest that objectives were met while making mathematics an interesting, motivating and enjoyable subject, hence VLE a significant tool to complement the conventional approaches of teaching.

  8. Math world: A game-based 3D Virtual Learning Environment (3D VLE) for second graders

    CERN Document Server

    Maitem, Jean; Rabago, Lorena; Tanguilig, Bartolome

    2012-01-01

    This paper intends to introduce a game-based 3D Virtual Learning Environment (VLE) to second graders. The impetus arose from the need to make learning in mathematics more effective and interesting through multimedia. Applied in a game, the basic mathematical operations such as addition, subtraction, multiplication, and division are expected to performed by learners as they represent themselves as avatars while they immerse in a quest of digital objects in the VLE called Math World. Educational attributes such as mentality change, emotional fulfillment, knowledge enhancement, thinking skills development, and bodily coordination are evaluated to ensure learning effectiveness. Also, game playability measured in terms of game plays, story, mechanics and interface usability are examined for its educative design. With an aggregate of these enhanced indices, results attest that objectives were met while making mathematics an interesting, motivating and enjoyable subject, hence VLE a significant tool to complement th...

  9. Math World: A Game-Based 3D Virtual Learning Environment (3D VLE for Second Graders

    Directory of Open Access Journals (Sweden)

    Jean Maitem

    2012-02-01

    Full Text Available This paper intends to introduce a game-based 3D Virtual Learning Environment (VLE to second graders. The impetus arose from the need to make learning in mathematics more effective and interesting through multimedia. Applied in a game, the basic mathematical operations such as addition, subtraction, multiplication, and division are expected to performed by learners as they represent themselves as avatars while they immerse in a quest of digital objects in the VLE called Math World. Educational attributes such as mentality change, emotional fulfillment, knowledge enhancement, thinking skills development, and bodily coordination are evaluated to ensure learning effectiveness. Also, game playability measured in terms of game plays, story, mechanics and interface usability are examined for its educative design. With an aggregate of these enhanced indices, results attest that objectives were met while making mathematics an interesting, motivating and enjoyable subject, hence VLE a significant tool to complement the conventional approaches of teaching.

  10. Virtual communities of practice in web-based second language learning

    DEFF Research Database (Denmark)

    Petersen, Karen Bjerg

    2013-01-01

    Abstract The work of Lave and Wenger on learning in 'communities of practice' has evoked a considerable response in e-learning environments through-out the world including Denmark in the last few decades. Within the development of web-based second language learning, the ideas of learning...... on language interaction and case studies of e-learning language platforms within the area of teaching Danish as a second language for adult foreigners. The concepts of communities of practice are also discussed and developed....... in communities of practice and of situated and collaborative learning have deeply inspired educators and teachers and, to a certain degree, become the theoretical and practical framework for developing web-based learning platforms, while findings from this research indicate that students perceive e-learning...

  11. Optimizing Real-Time Performance of 3D Virtual Mining Environment with MultiGen Creator

    Institute of Scientific and Technical Information of China (English)

    WANGWei-chen; JIANGXiao-hong; HANKe-qi; HANWen-ji

    2004-01-01

    System optimization plays a crucial role in developing VR system after 3D modeling, affecting the system's Immersion and Interaction performance enormously. In this article, several key techniques of optimizing a virtual mining system were discussed: optimizing 3D models to keep the polygon number in VR system within target hardware's processing ability;optimizing texture database to save texture memory with perfect visual effect; optimizing database hierarchy structure to accelerate model retrieval; and optimizing LOD hierarchy structure to speed up rendering~

  12. Intelligent Virtual Agent: Creating a Multi-modal 3D Avatar Interface

    OpenAIRE

    Dunne, Mark; Mac Namee, Brian; Kelleher, John

    2009-01-01

    Human-computer interactions can be greatly enhanced by the use of 3D avatars, representing both human users and computer systems in 3D virtual spaces. This allows the human user to interface with the computer system in a natural and intuitive human-to-human dialog (human face-to-face conversation). Hence, continuing to blur the boundaries between the real and virtual worlds. This proposed avatar system will go a step further and will use a camera to track the user’s head and eye movements dur...

  13. 3D Ultrasound and Virtual Touch® in Breast Tumors - Two Clinical Cases.

    Science.gov (United States)

    Leonida, Claudiu V; Topciu, Alina

    2017-01-01

    Visualization of infraclinical malignant lesions using 3D breast ultrasound, and differentiation of benign and malignant lesions using ARFI Virtual Touch® technology in two patients. 3D ultrasound is useful in early detection of architectural distortions, even in the soft tissue of the breast, and Virtual Touch® ARFI differentiates more accurately malignant vs. benign lesions, allowing the patient to be regraded in the BiRADS score (increasing or decreasing the BiRADS score, depending on the situation). Celsius.

  14. Generation of 3D Virtual Geographic Environment Based on Laser Scanning Technique

    Institute of Scientific and Technical Information of China (English)

    DU Jie; CHEN Xiaoyong; FumioYamazaki

    2003-01-01

    This paper demonstrates an experiment on the generation of 3D virtual geographic environment on the basis of experimental flight laser scanning data by a set of algorithms and methods that were developed to automatically interpret range images for extracting geo-spatial features and then to reconstruct geo-objects. The algorithms and methods for the interpretation and modeling of laser scanner data include triangulated-irregular-network (TIN)-based range image interpolation ; mathematical-morphology(MM)-based range image filtering,feature extraction and range image segmentation, feature generalization and optimization, 3D objects reconstruction and modeling; computergraphics (CG)-based visualization and animation of geographic virtual reality environment.

  15. Navigation and wayfinding in learning spaces in 3D virtual worlds

    OpenAIRE

    Minocha, Shailey; Hardy, Christopher

    2016-01-01

    There is a lack of published research on the design guidelines of learning spaces in virtual worlds. Therefore, when institutions aspire to create learning spaces in Second Life, there are few studies or guidelines to inform them except for individual case studies. The Design of Learning Spaces in 3D Virtual Environments (DELVE) project, funded by the Joint Information Systems Committee in the UK, was one of the first initiatives that identified through empirical investigations the usability ...

  16. Virtual surgical planning and 3D printing in repeat calvarial vault reconstruction for craniosynostosis: technical note.

    Science.gov (United States)

    LoPresti, Melissa; Daniels, Bradley; Buchanan, Edward P; Monson, Laura; Lam, Sandi

    2017-04-01

    Repeat surgery for restenosis after initial nonsyndromic craniosynostosis intervention is sometimes needed. Calvarial vault reconstruction through a healed surgical bed adds a level of intraoperative complexity and may benefit from preoperative and intraoperative definitions of biometric and aesthetic norms. Computer-assisted design and manufacturing using 3D imaging allows the precise formulation of operative plans in anticipation of surgical intervention. 3D printing turns virtual plans into anatomical replicas, templates, or customized implants by using a variety of materials. The authors present a technical note illustrating the use of this technology: a repeat calvarial vault reconstruction that was planned and executed using computer-assisted design and 3D printed intraoperative guides.

  17. APPROACH TO CONSTRUCTING 3D VIRTUAL SCENE OF IRRIGATION AREA USING MULTI-SOURCE DATA

    Directory of Open Access Journals (Sweden)

    S. Cheng

    2015-10-01

    Full Text Available For an irrigation area that is often complicated by various 3D artificial ground features and natural environment, disadvantages of traditional 2D GIS in spatial data representation, management, query, analysis and visualization is becoming more and more evident. Building a more realistic 3D virtual scene is thus especially urgent for irrigation area managers and decision makers, so that they can carry out various irrigational operations lively and intuitively. Based on previous researchers' achievements, a simple, practical and cost-effective approach was proposed in this study, by adopting3D geographic information system (3D GIS, remote sensing (RS technology. Based on multi-source data such as Google Earth (GE high-resolution remote sensing image, ASTER G-DEM, hydrological facility maps and so on, 3D terrain model and ground feature models were created interactively. Both of the models were then rendered with texture data and integrated under ArcGIS platform. A vivid, realistic 3D virtual scene of irrigation area that has a good visual effect and possesses primary GIS functions about data query and analysis was constructed.Yet, there is still a long way to go for establishing a true 3D GIS for the irrigation are: issues of this study were deeply discussed and future research direction was pointed out in the end of the paper.

  18. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects

    OpenAIRE

    Tetsworth Kevin; Block Steve; Glatt Vaida

    2017-01-01

    3D printing technology has revolutionized and gradually transformed manufacturing across a broad spectrum of industries, including healthcare. Nowhere is this more apparent than in orthopaedics with many surgeons already incorporating aspects of 3D modelling and virtual procedures into their routine clinical practice. As a more extreme application, patient-specific 3D printed titanium truss cages represent a novel approach for managing the challenge of segmental bone defects. This review illu...

  19. Interaksi pada Museum Virtual Menggunakan Pengindera Tangan dengan Penyajian Stereoscopic 3D

    Directory of Open Access Journals (Sweden)

    Gary Almas Samaita

    2017-01-01

    Full Text Available Kemajuan teknologi menjadikan museum mengembangkan cara penyajian koleksinya. Salah satu teknologi yang diadaptasi dalam penyajian museum virtual adalah Virtual Reality (VR dengan stereoscopic 3D. Sayangnya, museum virtual dengan teknik penyajian stereoscopic masih menggunakan keyboard dan mouse sebagai perangkat interaksi. Penelitian ini bertujuan untuk merancang dan menerapkan interaksi dengan pengindera tangan pada museum virtual dengan penyajian stereoscopic 3D. Museum virtual divisualisasikan dengan teknik stereoscopic side-by-side melalui Head Mounting Display (HMD berbasis Android. HMD juga memiliki fungsi head tracking dengan membaca orientasi kepala. Interaksi tangan diterapkan dengan menggunakan pengindera tangan yang ditempatkan pada HMD. Karena pengindera tangan tidak didukung oleh HMD berbasis Android, maka digunakan server sebagai perantara HMD dan pengindera tangan. Setelah melalui pengujian, diketahui bahwa rata-rata confidence rate dari pembacaan pengindera tangan pada pola tangan untuk memicu interaksi adalah sebesar 99,92% dengan rata-rata efektifitas 92,61%. Uji ketergunaan juga dilakukan dengan pendasaran ISO/IEC 9126-4 untuk mengukur efektifitas, efisiensi, dan kepuasan pengguna dari sistem yang dirancang dengan meminta partisipan untuk melakukan 9 tugas yang mewakili interaksi tangan dalam museum virtual. Hasil pengujian menunjukkan bahwa semua pola tangan yang dirancang dapat dilakukan oleh partisipan meskipun pola tangan dinilai cukup sulit dilakukan. Melalui kuisioner diketahui bahwa total 86,67% partisipan setuju bahwa interaksi tangan memberikan pengalaman baru dalam menikmati museum virtual.

  20. Three Primary School Students' Cognition about 3D Rotation in a Virtual Reality Learning Environment

    Science.gov (United States)

    Yeh, Andy

    2010-01-01

    This paper reports on three primary school students' explorations of 3D rotation in a virtual reality learning environment (VRLE) named VRMath. When asked to investigate if you would face the same direction when you turn right 45 degrees first then roll up 45 degrees, or when you roll up 45 degrees first then turn right 45 degrees, the students…

  1. Student performance and appreciation using 3D vs. 2D vision in a virtual learning environment

    NARCIS (Netherlands)

    de Boer, I.R.; Wesselink, P.R.; Vervoorn, J.M.

    2016-01-01

    Aim The aim of this study was to investigate the differences in the performance and appreciation of students working in a virtual learning environment with two (2D)- or three (3D)-dimensional vision. Material and methods One hundred and twenty-four randomly divided first-year dental students

  2. Exploring 3-D Virtual Reality Technology for Spatial Ability and Chemistry Achievement

    Science.gov (United States)

    Merchant, Z.; Goetz, E. T.; Keeney-Kennicutt, W.; Cifuentes, L.; Kwok, O.; Davis, T. J.

    2013-01-01

    We investigated the potential of Second Life® (SL), a three-dimensional (3-D) virtual world, to enhance undergraduate students' learning of a vital chemistry concept. A quasi-experimental pre-posttest control group design was used to conduct the study. A total of 387 participants completed three assignment activities either in SL or using…

  3. Supporting Distributed Team Working in 3D Virtual Worlds: A Case Study in Second Life

    Science.gov (United States)

    Minocha, Shailey; Morse, David R.

    2010-01-01

    Purpose: The purpose of this paper is to report on a study into how a three-dimensional (3D) virtual world (Second Life) can facilitate socialisation and team working among students working on a team project at a distance. This models the situation in many commercial sectors where work is increasingly being conducted across time zones and between…

  4. Exploring 3-D Virtual Reality Technology for Spatial Ability and Chemistry Achievement

    Science.gov (United States)

    Merchant, Z.; Goetz, E. T.; Keeney-Kennicutt, W.; Cifuentes, L.; Kwok, O.; Davis, T. J.

    2013-01-01

    We investigated the potential of Second Life® (SL), a three-dimensional (3-D) virtual world, to enhance undergraduate students' learning of a vital chemistry concept. A quasi-experimental pre-posttest control group design was used to conduct the study. A total of 387 participants completed three assignment activities either in SL or using…

  5. Student performance and appreciation using 3D vs. 2D vision in a virtual learning environment

    NARCIS (Netherlands)

    de Boer, I.R.; Wesselink, P.R.; Vervoorn, J.M.

    2016-01-01

    Aim The aim of this study was to investigate the differences in the performance and appreciation of students working in a virtual learning environment with two (2D)- or three (3D)-dimensional vision. Material and methods One hundred and twenty-four randomly divided first-year dental students perform

  6. 3D Adaptive Virtual Exhibit for the University of Denver Digital Collections

    Directory of Open Access Journals (Sweden)

    Shea-Tinn Yeh

    2015-07-01

    Full Text Available While the gaming industry has taken the world by storm with its three-dimensional (3D user interfaces, current digital collection exhibits presented by museums, historical societies, and libraries are still limited to a two-dimensional (2D interface display. Why can’t digital collections take advantage of this 3D interface advancement? The prototype discussed in this paper presents to the visitor a 3D virtual exhibit containing a set of digital objects from the University of Denver Libraries’ digital image collections, giving visitors an immersive experience when viewing the collections. In particular, the interface is adaptive to the visitor’s browsing behaviors and alters the selection and display of the objects throughout the exhibit to encourage serendipitous discovery. Social media features were also integrated to allow visitors to share items of interest and to create a sense of virtual community.

  7. 3D virtual reconstruction of the Pleistocene cheetah skull from the Tangshan, Nanjing, China

    Institute of Scientific and Technical Information of China (English)

    DONG Wei; HOU Xinwen; LIU Jinyi; FANG Yingsan; JIN Changzhu; ZHU Qizhi

    2007-01-01

    The development of computer tomography and image processing has made it possible to establish virtual 3D reconstruction and non-invasive dissection of fossil specimens. We used these methods to reconstruct a virtual 3D skull of a Pleistocene cheetah skull from the Tuozi cave, Tangshan, Nanjing, and virtually dissected it for anatomic studies, and measured the volumes of different parts of the endocranium. The endocranium of the cheetah skull has showed that its frontal sinus is beehive-like, the frontal lobe of cerebra is relatively large but the temporal lobe is relatively small, its cerebral sulcus and gyrus are more complicated than those of the domestic cat, similar to those of the domestic dog, but simpler than those of giant panda, pig, cattle and horse. The technology of virtual 3D reconstruction and non-invasive dissection of fossil specimens can extend the morphological study from the exterior to the interior, and it can also help to study fragile specimens and virtually backup rare and precious specimens.

  8. Optometric Measurements Predict Performance but not Comfort on a Virtual Object Placement Task with a Stereoscopic 3D Display

    Science.gov (United States)

    2014-09-16

    with a Stereoscopic 3D Display John P. McIntire*, Steven T. Wright**, Lawrence K. Harrington***, Paul R. Havig*, Scott N. J. Watamaniuk****, and...SUBTITLE Optometric Measurements Predict Performance but not Comfort on a Virtual Object Placement Task with a Stereoscopic 3D Display 5a. CONTRACT...tested on a simple virtual object precision placement task while viewing a stereoscopic 3D (S3D) display. Inclusion criteria included uncorrected or

  9. Virtual communities of practice in web-based second language learning

    DEFF Research Database (Denmark)

    Petersen, Karen Bjerg

    2013-01-01

    in communities of practice and of situated and collaborative learning have deeply inspired educators and teachers and, to a certain degree, become the theoretical and practical framework for developing web-based learning platforms, while findings from this research indicate that students perceive e......-learning as a far more individual process. The aim of this paper is to investigate aspects of the Danish development of e-learning platforms and, especially students’ and teachers’ very differing perceptions of e-learning and the concepts behind it. The analysis is based on student and teacher interviews, research...... on language interaction and case studies of e-learning language platforms within the area of teaching Danish as a second language for adult foreigners. The concepts of communities of practice are also discussed and developed....

  10. Virtual cardiotomy based on 3-D MRI for preoperative planning in congenital heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Thomas Sangild [University of Aarhus, Department of Computer Science, Aarhus N (Denmark); University of Aarhus, Institute of Clinical Medicine, Aarhus (Denmark); Beerbaum, Philipp; Razavi, Reza; Greil, Gerald Franz [King' s College London School of Medicine, Division of Imaging Sciences, London (United Kingdom); Guy' s and St. Thomas' Hospital, Department of Paediatric Cardiology, London (United Kingdom); Mosegaard, Jesper [Alexandra Institute, Aarhus (Denmark); Rasmusson, Allan [University of Aarhus, Department of Computer Science, Aarhus N (Denmark); Schaeffter, Tobias [King' s College London School of Medicine, Division of Imaging Sciences, London (United Kingdom); Austin, Conal [Guy' s and St. Thomas' Hospital, Department of Cardiothoracic Surgery, London (United Kingdom)

    2008-12-15

    Patient-specific preoperative planning in complex congenital heart disease may be greatly facilitated by virtual cardiotomy. Surgeons can perform an unlimited number of surgical incisions on a virtual 3-D reconstruction to evaluate the feasibility of different surgical strategies. To quantitatively evaluate the quality of the underlying imaging data and the accuracy of the corresponding segmentation, and to qualitatively evaluate the feasibility of virtual cardiotomy. A whole-heart MRI sequence was applied in 42 children with congenital heart disease (age 3{+-}3 years, weight 13{+-}9 kg, heart rate 96{+-} 21 bpm). Image quality was graded 1-4 (diagnostic image quality {>=}2) by two independent blinded observers. In patients with diagnostic image quality the segmentation quality was also graded 1-4 (4 no discrepancies, 1 misleading error). The average image quality score was 2.7 - sufficient for virtual reconstruction in 35 of 38 patients (92%) older than 1 month. Segmentation time was 59{+-}10 min (average quality score 3.5). Virtual cardiotomy was performed in 19 patients. Accurate virtual reconstructions of patient-specific cardiac anatomy can be produced in less than 1 h from 3-D MRI. The presented work thus introduces a new, clinically feasible noninvasive technique for improved preoperative planning in complex cases of congenital heart disease. (orig.)

  11. Atom pair 2D-fingerprints perceive 3D-molecular shape and pharmacophores for very fast virtual screening of ZINC and GDB-17.

    Science.gov (United States)

    Awale, Mahendra; Reymond, Jean-Louis

    2014-07-28

    Three-dimensional (3D) molecular shape and pharmacophores are important determinants of the biological activity of organic molecules; however, a precise computation of 3D-shape is generally too slow for virtual screening of very large databases. A reinvestigation of the concept of atom pairs initially reported by Carhart et al. and extended by Schneider et al. showed that a simple atom pair fingerprint (APfp) counting atom pairs at increasing topological distances in 2D-structures without atom property assignment correlates with various representations of molecular shape extracted from the 3D-structures. A related 55-dimensional atom pair fingerprint extended with atom properties (Xfp) provided an efficient pharmacophore fingerprint with good performance for ligand-based virtual screening such as the recovery of active compounds from decoys in DUD, and overlap with the ROCS 3D-pharmacophore scoring function. The APfp and Xfp data were organized for web-based extremely fast nearest-neighbor searching in ZINC (13.5 M compounds) and GDB-17 (50 M random subset) freely accessible at www.gdb.unibe.ch .

  12. A Simplified Model for Generating 3D Realistic Sound in the Multimedia and Virtual Reality Systems

    Institute of Scientific and Technical Information of China (English)

    赵Yu; 何志均; 等

    1996-01-01

    It is a key feature to embed 3D realistic sound effect in the future multimedia and virtual reality systems.Recent research on acoustics and psychoacoustics reveals the important cues for sound localization and sound perception.One promising approach to generate 3D realistic sound effect uses two earphones by simulating the sound waveforms from sound source to eardrum.This paper summarizes two methods for generating 3D realistic sound and points out their inherent drawbacks.To overcome these drawbacks we propose a simplified model to generate 3D realistic sound at any positions in the horizontal plane based on the results of sound perception and localization.Experimental results show that the model is correct and efficient.

  13. Enseñanza práctica en 3D: Juicio virtual Practical Teaching in 3D: Virtual Mock Trials Ensenyament pràctic en 3D: judici virtual

    Directory of Open Access Journals (Sweden)

    Esther Monterroso Casado

    2011-06-01

    Full Text Available Este artículo describe los resultados de la aplicación de metaversos como herramienta de enseñanza en el ámbito jurídico. La actividad pedagógica realizada se ha llevado a cabo a través de la simulación de un juicio virtual en Second Life. El enfoque dado al ejercicio del derecho en un entorno virtual combinó las siguientes actividades: (1 el análisis jurídico a través de foros de discusión, como una actividad obligatoria previa al juicio. Esta tarea inicial se llevó a cabo a través de la plataforma de aprendizaje asincrónica en 2D Moodle (Aula Judicial, (2 el trabajo colaborativo a través de Google Docs para preparar todos los documentos legales pertinentes (demanda, contestación y tramitación judicial, y (3 la inmersión síncrona en una experiencia 3D de un juicio en Second Life.

    This article describes the results of implementing metaverses as teaching tools in the academic field of law. It is based upon a pedagogical activity that was made possible by the use of a virtual reality court session developed in Second Life. Our approach to virtual law practice combined the following set of activities: (1 legal analysis through discussion forums, as a required pre-trial activity. This initial task was implemented trough the asynchronous learning platform Moodle (Aula Judicial; (2 collaborative work through Google Docs as to prepare all the relevant legal paperwork (claim, statement of defense, judicial proceedings; (3 synchronous inmersion in a Second Life trial experience.

    Aquest article descriu els resultats de l'aplicació de metaversos com a eina d'ensenyament en l'àmbit jurídic. L'activitat pedagògica realitzada s'ha dut a terme a través de la simulació d'un judici virtual a Second Life. L'enfocament donat a l'exercici del dret en un entorn virtual ha combinat les següents activitats: (1 l'anàlisi jurídica a través de fòrums de discussió, com una activitat obligatòria prèvia al judici. Aquesta

  14. Comparative analysis of video processing and 3D rendering for cloud video games using different virtualization technologies

    Science.gov (United States)

    Bada, Adedayo; Alcaraz-Calero, Jose M.; Wang, Qi; Grecos, Christos

    2014-05-01

    This paper describes a comprehensive empirical performance evaluation of 3D video processing employing the physical/virtual architecture implemented in a cloud environment. Different virtualization technologies, virtual video cards and various 3D benchmarks tools have been utilized in order to analyse the optimal performance in the context of 3D online gaming applications. This study highlights 3D video rendering performance under each type of hypervisors, and other factors including network I/O, disk I/O and memory usage. Comparisons of these factors under well-known virtual display technologies such as VNC, Spice and Virtual 3D adaptors reveal the strengths and weaknesses of the various hypervisors with respect to 3D video rendering and streaming.

  15. vPresent: A cloud based 3D virtual presentation environment for interactive product customization

    Science.gov (United States)

    Nan, Xiaoming; Guo, Fei; He, Yifeng; Guan, Ling

    2013-09-01

    In modern society, many companies offer product customization services to their customers. There are two major issues in providing customized products. First, product manufacturers need to effectively present their products to the customers who may be located in any geographical area. Second, customers need to be able to provide their feedbacks on the product in real-time. However, the traditional presentation approaches cannot effectively convey sufficient information for the product or efficiently adjust product design according to customers' real-time feedbacks. In order to address these issues, we propose vPresent , a cloud based 3D virtual presentation environment, in this paper. In vPresent, the product expert can show the 3D virtual product to the remote customers and dynamically customize the product based on customers' feedbacks, while customers can provide their opinions in real time when they are viewing a vivid 3D visualization of the product. Since the proposed vPresent is a cloud based system, the customers are able to access the customized virtual products from anywhere at any time, via desktop, laptop, or even smart phone. The proposed vPresent is expected to effectively deliver 3D visual information to customers and provide an interactive design platform for the development of customized products.

  16. 3D Virtual Glove for Data Logging and Pick and Place Robot

    Directory of Open Access Journals (Sweden)

    Prasanna Muley

    2014-03-01

    Full Text Available Traditional interaction devices such as mouse and keyboard do not adapt very well to 3D environments, since they were not ergonomically designed for it [1]. The user may be standing or in movement and these devices were projected to work on desks. To solve such problems it has been designed a Accelerometer based 3D virtual glove which can be used in various robotic applications [1]. In this project it can be designed a Pick and Place robot which will follow the 3D glove worn by the user. User can design UP, DOWN, LEFT, RIGHT, PICK and PLACE actions via wireless glove. Moreover, in the current interaction model for immersive environments, which is based on wands and 3D mice, a change of context is necessary every time to execute a non-immersive task. These constant context changes from immersive to 2D desktops introduce a rupture in the user interaction with the application [3]. The objective of this work is to develop a device that maps a touch interface in a virtual reality immersive environment. In order to interact in3D virtual reality immersive environments a wireless glove (v-Glove was created, which has two main functionalities: tracking the position of the user’s index finger and vibrate the fingertip when it reaches an area mapped in the interaction space to simulate a touch feeling. Quantitative and qualitative analysis were performed with users to evaluate the v-Glove, comparing it with a gyroscopic 3D mouse [2]. This project is ideally suited for critical applications such as Gas plants, Chemical Plants, Nuclear reactors and for hazardous applications such as Coal mines, Sulphur mines, under sea tunnels Oil mints etc

  17. 3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine.

    Science.gov (United States)

    McGuire, Ross; Verhoeven, Stefan; Vass, Márton; Vriend, Gerrit; de Esch, Iwan J P; Lusher, Scott J; Leurs, Rob; Ridder, Lars; Kooistra, Albert J; Ritschel, Tina; de Graaf, Chris

    2017-02-14

    3D-e-Chem-VM is an open source, freely available Virtual Machine ( http://3d-e-chem.github.io/3D-e-Chem-VM/ ) that integrates cheminformatics and bioinformatics tools for the analysis of protein-ligand interaction data. 3D-e-Chem-VM consists of software libraries, and database and workflow tools that can analyze and combine small molecule and protein structural information in a graphical programming environment. New chemical and biological data analytics tools and workflows have been developed for the efficient exploitation of structural and pharmacological protein-ligand interaction data from proteomewide databases (e.g., ChEMBLdb and PDB), as well as customized information systems focused on, e.g., G protein-coupled receptors (GPCRdb) and protein kinases (KLIFS). The integrated structural cheminformatics research infrastructure compiled in the 3D-e-Chem-VM enables the design of new approaches in virtual ligand screening (Chemdb4VS), ligand-based metabolism prediction (SyGMa), and structure-based protein binding site comparison and bioisosteric replacement for ligand design (KRIPOdb).

  18. 3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine

    Science.gov (United States)

    2017-01-01

    3D-e-Chem-VM is an open source, freely available Virtual Machine (http://3d-e-chem.github.io/3D-e-Chem-VM/) that integrates cheminformatics and bioinformatics tools for the analysis of protein–ligand interaction data. 3D-e-Chem-VM consists of software libraries, and database and workflow tools that can analyze and combine small molecule and protein structural information in a graphical programming environment. New chemical and biological data analytics tools and workflows have been developed for the efficient exploitation of structural and pharmacological protein–ligand interaction data from proteomewide databases (e.g., ChEMBLdb and PDB), as well as customized information systems focused on, e.g., G protein-coupled receptors (GPCRdb) and protein kinases (KLIFS). The integrated structural cheminformatics research infrastructure compiled in the 3D-e-Chem-VM enables the design of new approaches in virtual ligand screening (Chemdb4VS), ligand-based metabolism prediction (SyGMa), and structure-based protein binding site comparison and bioisosteric replacement for ligand design (KRIPOdb). PMID:28125221

  19. Analysis of the Construction of Web-based Virtual Library%浅析Web资源虚拟图书馆的建设

    Institute of Scientific and Technical Information of China (English)

    贺亚锋

    2001-01-01

    With the development and popularity of the Internet, overseas libraries are taking an active part in the researches and practice on the development and utilization of Web resources. Some of them sueceeded in developing the Web-based virtual library. This article gives two examples in an attempt to provide useful examples for libraries in China in their participation in Web resources management.

  20. Training Language Teachers to Sustain Self-Directed Language Learning: An Exploration of Advisers' Experiences on a Web-Based Open Virtual Learning Environment

    Science.gov (United States)

    Bailly, Sophie; Ciekanski, Maud; Guély-Costa, Eglantine

    2013-01-01

    This article describes the rationale for pedagogical, technological and organizational choices in the design of a web-based and open virtual learning environment (VLE) promoting and sustaining self-directed language learning. Based on the last forty years of research on learner autonomy at the CRAPEL according to Holec's definition (1988), we…

  1. How 3D Interaction Metaphors Affect User Experience in Collaborative Virtual Environment

    Directory of Open Access Journals (Sweden)

    Hamid Hrimech

    2011-01-01

    Full Text Available In this paper we presents the results of our experimental study which aims to understand the impact of three interaction 3D metaphors (ray casting, GoGo, and virtual hand on the user experience in a semi-immersive collaborative virtual environment (the Braccetto System. For each session, participants are grouped in twos to reconstruct a puzzle by an assemblage of cubes. The puzzle to reconstruct corresponds to a gradient of colors. We found that there is a significant difference in the user experience by changing the interaction metaphor on the copresence, awareness, involvement, collaborative effort, satisfaction usability, and preference. These findings provide a basis for designing 3D navigation techniques in a CVE.

  2. Versatile, immersive, creative and dynamic virtual 3-D healthcare learning environments: a review of the literature.

    Science.gov (United States)

    Hansen, Margaret M

    2008-09-01

    The author provides a critical overview of three-dimensional (3-D) virtual worlds and "serious gaming" that are currently being developed and used in healthcare professional education and medicine. The relevance of this e-learning innovation for teaching students and professionals is debatable and variables influencing adoption, such as increased knowledge, self-directed learning, and peer collaboration, by academics, healthcare professionals, and business executives are examined while looking at various Web 2.0/3.0 applications. There is a need for more empirical research in order to unearth the pedagogical outcomes and advantages associated with this e-learning technology. A brief description of Roger's Diffusion of Innovations Theory and Siemens' Connectivism Theory for today's learners is presented as potential underlying pedagogical tenets to support the use of virtual 3-D learning environments in higher education and healthcare.

  3. Analysis of scalability of high-performance 3D image processing platform for virtual colonoscopy.

    Science.gov (United States)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli

    2014-03-19

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. For this purpose, we previously developed a software platform for high-performance 3D medical image processing, called HPC 3D-MIP platform, which employs increasingly available and affordable commodity computing systems such as the multicore, cluster, and cloud computing systems. To achieve scalable high-performance computing, the platform employed size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D-MIP algorithms, supported task scheduling for efficient load distribution and balancing, and consisted of a layered parallel software libraries that allow image processing applications to share the common functionalities. We evaluated the performance of the HPC 3D-MIP platform by applying it to computationally intensive processes in virtual colonoscopy. Experimental results showed a 12-fold performance improvement on a workstation with 12-core CPUs over the original sequential implementation of the processes, indicating the efficiency of the platform. Analysis of performance scalability based on the Amdahl's law for symmetric multicore chips showed the potential of a high performance scalability of the HPC 3D-MIP platform when a larger number of cores is available.

  4. New Algorithm for 3D Facial Model Reconstruction and Its Application in Virtual Reality

    Institute of Scientific and Technical Information of China (English)

    Rong-Hua Liang; Zhi-Geng Pan; Chun Chen

    2004-01-01

    3D human face model reconstruction is essential to the generation of facial animations that is widely used in the field of virtual reality(VR).The main issues of 3D facial model reconstruction based on images by vision technologies are in twofold: one is to select and match the corresponding features of face from two images with minimal interaction and the other is to generate the realistic-looking human face model.In this paper,a new algorithm for realistic-looking face reconstruction is presented based on stereo vision.Firstly,a pattern is printed and attached to a planar surface for camera calibration,and corners generation and corners matching between two images are performed by integrating modified image pyramid Lucas-Kanade(PLK)algorithm and local adjustment algorithm,and then 3D coordinates of corners are obtained by 3D reconstruction.Individual face model is generated by the deformation of general 3D model and interpolation of the features.Finally,realisticlooking human face model is obtained after texture mapping and eyes modeling.In addition,some application examples in the field of VR are given.Experimental result shows that the proposed algorithm is robust and the 3D model is photo-realistic.

  5. 3-D-eChem VM: Cheminformatics Research Infrastructure in a Downloadable Virtual Machine

    OpenAIRE

    Verhoeven, Stefan; Vass, Marton; de Esch, Iwan; Leurs, Rob; Lusher, Scott; Vriend, Gerrrit; Ritschel, Tina; de Graaf, Chris; McGuire, Ross

    2016-01-01

    3D-e-Chem VM is a freely available Virtual Machine (VM) encompassing tools, databases & workflows, including new resources developed for ligand binding site comparisons and GPCR research. The VM contains a fully functional cheminformatics infrastructure consisting of a chemistry enabled relational database system (PostgreSQL + RDKit) with a data analytics workflow tool (KNIME) and additional cheminformatics capabilities. Tools, workflows and reference data sets are made available. The wid...

  6. Prototyping Novel Instruments for Fetal Surgery through Virtual Reality Simulation and 3D Printing

    OpenAIRE

    2015-01-01

    Designing novel medical devices is a complex matter. Involving clinicians as early as possible into the development process is of crucial importance; it helps to shorten the development cycle and increases the likelihood of later acceptance by clinicians. In this paper we show how through a combination of 3D printing and Virtual Reality simulation it is possible to involve clinicians in a very early stage, yet receive concrete quantitative and qualitative information that can shift the design...

  7. The cognitive apprenticeship theory for the teaching of mathematics in an online 3D virtual environment

    Science.gov (United States)

    Bouta, Hara; Paraskeva, Fotini

    2013-03-01

    Research spanning two decades shows that there is a continuing development of 3D virtual worlds and investment in such environments for educational purposes. Research stresses the need for these environments to be well-designed and for suitable pedagogies to be implemented in the teaching practice in order for these worlds to be fully effective. To this end, we propose a pedagogical framework based on the cognitive apprenticeship for deriving principles and guidelines to inform the design, development and use of a 3D virtual environment. This study examines how the use of a 3D virtual world facilitates the teaching of mathematics in primary education by combining design principles and guidelines based on the Cognitive Apprenticeship Theory and the teaching methods that this theory introduces. We focus specifically on 5th and 6th grade students' engagement (behavioral, affective and cognitive) while learning fractional concepts over a period of two class sessions. Quantitative and qualitative analyses indicate considerable improvement in the engagement of the students who participated in the experiment. This paper presents the findings regarding students' cognitive engagement in the process of comprehending basic fractional concepts - notoriously hard for students to master. The findings are encouraging and suggestions are made for further research.

  8. Improving Pediatric Basic Life Support Performance Through Blended Learning With Web-Based Virtual Patients: Randomized Controlled Trial.

    Science.gov (United States)

    Lehmann, Ronny; Thiessen, Christiane; Frick, Barbara; Bosse, Hans Martin; Nikendei, Christoph; Hoffmann, Georg Friedrich; Tönshoff, Burkhard; Huwendiek, Sören

    2015-07-02

    E-learning and blended learning approaches gain more and more popularity in emergency medicine curricula. So far, little data is available on the impact of such approaches on procedural learning and skill acquisition and their comparison with traditional approaches. This study investigated the impact of a blended learning approach, including Web-based virtual patients (VPs) and standard pediatric basic life support (PBLS) training, on procedural knowledge, objective performance, and self-assessment. A total of 57 medical students were randomly assigned to an intervention group (n=30) and a control group (n=27). Both groups received paper handouts in preparation of simulation-based PBLS training. The intervention group additionally completed two Web-based VPs with embedded video clips. Measurements were taken at randomization (t0), after the preparation period (t1), and after hands-on training (t2). Clinical decision-making skills and procedural knowledge were assessed at t0 and t1. PBLS performance was scored regarding adherence to the correct algorithm, conformance to temporal demands, and the quality of procedural steps at t1 and t2. Participants' self-assessments were recorded in all three measurements. Procedural knowledge of the intervention group was significantly superior to that of the control group at t1. At t2, the intervention group showed significantly better adherence to the algorithm and temporal demands, and better procedural quality of PBLS in objective measures than did the control group. These aspects differed between the groups even at t1 (after VPs, prior to practical training). Self-assessments differed significantly only at t1 in favor of the intervention group. Training with VPs combined with hands-on training improves PBLS performance as judged by objective measures.

  9. The Application of the Technology of 3D Satellite Cloud Imaging in Virtual Reality Simulation

    Directory of Open Access Journals (Sweden)

    Xiao-fang Xie

    2007-05-01

    Full Text Available Using satellite cloud images to simulate clouds is one of the new visual simulation technologies in Virtual Reality (VR. Taking the original data of satellite cloud images as the source, this paper depicts specifically the technology of 3D satellite cloud imaging through the transforming of coordinates and projection, creating a DEM (Digital Elevation Model of cloud imaging and 3D simulation. A Mercator projection was introduced to create a cloud image DEM, while solutions for geodetic problems were introduced to calculate distances, and the outer-trajectory science of rockets was introduced to obtain the elevation of clouds. For demonstration, we report on a computer program to simulate the 3D satellite cloud images.

  10. 2D virtual texture on 3D real object with coded structured light

    Science.gov (United States)

    Molinier, Thierry; Fofi, David; Salvi, Joaquim; Gorria, Patrick

    2008-02-01

    Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automatic method to virtually texture a 3D real object.

  11. Mackay campus of environmental education and digital cultural construction: the application of 3D virtual reality

    Science.gov (United States)

    Chien, Shao-Chi; Chung, Yu-Wei; Lin, Yi-Hsuan; Huang, Jun-Yi; Chang, Jhih-Ting; He, Cai-Ying; Cheng, Yi-Wen

    2012-04-01

    This study uses 3D virtual reality technology to create the "Mackay campus of the environmental education and digital cultural 3D navigation system" for local historical sites in the Tamsui (Hoba) area, in hopes of providing tourism information and navigation through historical sites using a 3D navigation system. We used Auto CAD, Sketch Up, and SpaceEyes 3D software to construct the virtual reality scenes and create the school's historical sites, such as the House of Reverends, the House of Maidens, the Residence of Mackay, and the Education Hall. We used this technology to complete the environmental education and digital cultural Mackay campus . The platform we established can indeed achieve the desired function of providing tourism information and historical site navigation. The interactive multimedia style and the presentation of the information will allow users to obtain a direct information response. In addition to showing the external appearances of buildings, the navigation platform can also allow users to enter the buildings to view lifelike scenes and textual information related to the historical sites. The historical sites are designed according to their actual size, which gives users a more realistic feel. In terms of the navigation route, the navigation system does not force users along a fixed route, but instead allows users to freely control the route they would like to take to view the historical sites on the platform.

  12. Elderly Healthcare Monitoring Using an Avatar-Based 3D Virtual Environment

    Directory of Open Access Journals (Sweden)

    Matti Pouke

    2013-12-01

    Full Text Available Homecare systems for elderly people are becoming increasingly important due to both economic reasons as well as patients’ preferences. Sensor-based surveillance technologies are an expected future trend, but research so far has devoted little attention to the User Interface (UI design of such systems and the user-centric design approach. In this paper, we explore the possibilities of an avatar-based 3D visualization system, which exploits wearable sensors and human activity simulations. We present a technical prototype and the evaluation of alternative concept designs for UIs based on a 3D virtual world. The evaluation was conducted with homecare providers through focus groups and an online survey. Our results show firstly that systems taking advantage of 3D virtual world visualization techniques have potential especially due to the privacy preserving and simplified information presentation style, and secondly that simple representations and glancability should be emphasized in the design. The identified key use cases highlight that avatar-based 3D presentations can be helpful if they provide an overview as well as details on demand.

  13. Virtual 3D bladder reconstruction for augmented medical records from white light cystoscopy (Conference Presentation)

    Science.gov (United States)

    Lurie, Kristen L.; Zlatev, Dimitar V.; Angst, Roland; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Bladder cancer has a high recurrence rate that necessitates lifelong surveillance to detect mucosal lesions. Examination with white light cystoscopy (WLC), the standard of care, is inherently subjective and data storage limited to clinical notes, diagrams, and still images. A visual history of the bladder wall can enhance clinical and surgical management. To address this clinical need, we developed a tool to transform in vivo WLC videos into virtual 3-dimensional (3D) bladder models using advanced computer vision techniques. WLC videos from rigid cystoscopies (1280 x 720 pixels) were recorded at 30 Hz followed by immediate camera calibration to control for image distortions. Video data were fed into an automated structure-from-motion algorithm that generated a 3D point cloud followed by a 3D mesh to approximate the bladder surface. The highest quality cystoscopic images were projected onto the approximated bladder surface to generate a virtual 3D bladder reconstruction. In intraoperative WLC videos from 36 patients undergoing transurethral resection of suspected bladder tumors, optimal reconstruction was achieved from frames depicting well-focused vasculature, when the bladder was maintained at constant volume with minimal debris, and when regions of the bladder wall were imaged multiple times. A significant innovation of this work is the ability to perform the reconstruction using video from a clinical procedure collected with standard equipment, thereby facilitating rapid clinical translation, application to other forms of endoscopy and new opportunities for longitudinal studies of cancer recurrence.

  14. 3D virtual character reconstruction from projections: a NURBS-based approach

    Science.gov (United States)

    Triki, Olfa; Zaharia, Titus B.; Preteux, Francoise J.

    2004-05-01

    This work has been carried out within the framework of the industrial project, so-called TOON, supported by the French government. TOON aims at developing tools for automating the traditional 2D cartoon content production. This paper presents preliminary results of the TOON platform. The proposed methodology concerns the issues of 2D/3D reconstruction from a limited number of drawn projections, and 2D/3D manipulation/deformation/refinement of virtual characters. Specifically, we show that the NURBS-based modeling approach developed here offers a well-suited framework for generating deformable 3D virtual characters from incomplete 2D information. Furthermore, crucial functionalities such as animation and non-rigid deformation can be also efficiently handled and solved. Note that user interaction is enabled exclusively in 2D by achieving a multiview constraint specification method. This is fully consistent and compliant with the cartoon creator traditional practice and makes it possible to avoid the use of 3D modeling software packages which are generally complex to manipulate.

  15. 3D Visualization of Cultural Heritage Artefacts with Virtual Reality devices

    Science.gov (United States)

    Gonizzi Barsanti, S.; Caruso, G.; Micoli, L. L.; Covarrubias Rodriguez, M.; Guidi, G.

    2015-08-01

    Although 3D models are useful to preserve the information about historical artefacts, the potential of these digital contents are not fully accomplished until they are not used to interactively communicate their significance to non-specialists. Starting from this consideration, a new way to provide museum visitors with more information was investigated. The research is aimed at valorising and making more accessible the Egyptian funeral objects exhibited in the Sforza Castle in Milan. The results of the research will be used for the renewal of the current exhibition, at the Archaeological Museum in Milan, by making it more attractive. A 3D virtual interactive scenario regarding the "path of the dead", an important ritual in ancient Egypt, was realized to augment the experience and the comprehension of the public through interactivity. Four important artefacts were considered for this scope: two ushabty, a wooden sarcophagus and a heart scarab. The scenario was realized by integrating low-cost Virtual Reality technologies, as the Oculus Rift DK2 and the Leap Motion controller, and implementing a specific software by using Unity. The 3D models were implemented by adding responsive points of interest in relation to important symbols or features of the artefact. This allows highlighting single parts of the artefact in order to better identify the hieroglyphs and provide their translation. The paper describes the process for optimizing the 3D models, the implementation of the interactive scenario and the results of some test that have been carried out in the lab.

  16. Effects of Different Types of 3D Rest Frames on Reducing Cybersickness in a Virtual Environment

    Directory of Open Access Journals (Sweden)

    KyungHun Han

    2011-10-01

    Full Text Available A virtual environment (VE presents several kinds of sensory stimuli for creating a virtual reality. Some sensory stimuli presented in the VE have been reported to provoke cybersickness, which is caused by conflicts between sensory stimuli, especially conflicts between visual and vestibular sensations. Application of a rest frame has been known to be effective on reducing cybersickness by alleviating sensory conflict. The form and the way rest frames are presented in 3D VEs have different effects on reducing cybersickness. In this study, two different types of 3D rest frames were created. For verifying the rest frames' effects in reducing cybersickness, twenty subjects were exposed to two different rest frame conditions and a non-rest frame condition after an interval of three days in 3D VE. We observed the characteristic changes in the physiology of cybersickness in terms of autonomic regulation. Psychophysiological signals including EEG, EGG, and HRV were recorded and a simulator sickness questionnaire (SSQ was used for measuring the intensity of the sickness before and after the exposure to the different conditions. In the results, the SSQ was reduced significantly in the rest frame conditions. Psychophysiological responses changed significantly in the rest frame conditions compared to the non-rest frame condition. The results suggest that the rest frame conditions have condition-specific effects on reducing cybersickness by differentially alleviating aspects of visual and vestibular sensory conflicts in 3D VE.

  17. 3D Virtual Worlds as Art Media and Exhibition Arenas: Students' Responses and Challenges in Contemporary Art Education

    Science.gov (United States)

    Lu, Lilly

    2013-01-01

    3D virtual worlds (3D VWs) are considered one of the emerging learning spaces of the 21st century; however, few empirical studies have investigated educational applications and student learning aspects in art education. This study focused on students' responses to and challenges with 3D VWs in both aspects. The findings show that most…

  18. Effects of 3D Virtual Reality of Plate Tectonics on Fifth Grade Students' Achievement and Attitude toward Science

    Science.gov (United States)

    Kim, Paul

    2006-01-01

    This study examines the effects of a teaching method using 3D virtual reality simulations on achievement and attitude toward science. An experiment was conducted with fifth-grade students (N = 41) to examine the effects of 3D simulations, designed to support inquiry-based science curriculum. An ANOVA analysis revealed that the 3D group scored…

  19. 3D Virtual Worlds as Art Media and Exhibition Arenas: Students' Responses and Challenges in Contemporary Art Education

    Science.gov (United States)

    Lu, Lilly

    2013-01-01

    3D virtual worlds (3D VWs) are considered one of the emerging learning spaces of the 21st century; however, few empirical studies have investigated educational applications and student learning aspects in art education. This study focused on students' responses to and challenges with 3D VWs in both aspects. The findings show that most participants…

  20. Superquadric Based Hierarchical Reconstruction for Virtualizing Free Form Objects from 3D Data

    Institute of Scientific and Technical Information of China (English)

    LIU Weibin; YUAN Baozong

    2001-01-01

    The superquadric description is usedin modeling the virtual objects in AVR (from ActualReality to Virtual Reality).However,due to the in-trinsic property,the superquadric and its deforma-tion extensions (DSQ) are not flexible enough to de-scribe precisely the complex objects with asymmetryand free form surface.To solve the problem,a hierar-chical reconstruction approach in AVR for virtualizingthe objects with superquadric based models from 3Ddata is developed.Firstly,an initial approximation isproduced by a superquadric fit to the 3D data.Then,the crude superquadric fit is refined by fitting theresidue (distance map) with global and local DirectManipulation of Free-Form Deformation (DMFFD).The key elements of the hierarchical method,includ-ing superquadric fit to 3D data,mathematical detailsand the recursive-fitting algorithm for DMFFD,com-putation of distance maps,adaptive refinement anddecimation of polygon mesh under DMFFD,are pro-posed.An implementation example of hierarchicalreconstruction is presented.The proposed approachis shown competent and efficient for virtualizing thecomplex objects into virtual environment.

  1. Virtual Boutique: a 3D modeling and content-based management approach to e-commerce

    Science.gov (United States)

    Paquet, Eric; El-Hakim, Sabry F.

    2000-12-01

    The Virtual Boutique is made out of three modules: the decor, the market and the search engine. The decor is the physical space occupied by the Virtual Boutique. It can reproduce any existing boutique. For this purpose, photogrammetry is used. A set of pictures of a real boutique or space is taken and a virtual 3D representation of this space is calculated from them. Calculations are performed with software developed at NRC. This representation consists of meshes and texture maps. The camera used in the acquisition process determines the resolution of the texture maps. Decorative elements are added like painting, computer generated objects and scanned objects. The objects are scanned with laser scanner developed at NRC. This scanner allows simultaneous acquisition of range and color information based on white laser beam triangulation. The second module, the market, is made out of all the merchandises and the manipulators, which are used to manipulate and compare the objects. The third module, the search engine, can search the inventory based on an object shown by the customer in order to retrieve similar objects base don shape and color. The items of interest are displayed in the boutique by reconfiguring the market space, which mean that the boutique can be continuously customized according to the customer's needs. The Virtual Boutique is entirely written in Java 3D and can run in mono and stereo mode and has been optimized in order to allow high quality rendering.

  2. CT virtual endoscopy and 3D stereoscopic visualisation in the evaluation of coronary stenting.

    Science.gov (United States)

    Sun, Z; Lawrence-Brown

    2009-10-01

    The aim of this case report is to present the additional value provided by CT virtual endoscopy and 3D stereoscopic visualisation when compared with 2D visualisations in the assessment of coronary stenting. A 64-year old patient was treated with left coronary stenting 8 years ago and recently followed up with multidetector row CT angiography. An in-stent restenosis of the left coronary artery was suspected based on 2D axial and multiplanar reformatted images. 3D virtual endoscopy was generated to demonstrate the smooth intraluminal surface of coronary artery wall, and there was no evidence of restenosis or intraluminal irregularity. Virtual fly-through of the coronary artery was produced to examine the entire length of the coronary artery with the aim of demonstrating the intraluminal changes following placement of the coronary stent. In addition, stereoscopic views were generated to show the relationship between coronary artery branches and the coronary stent. In comparison with traditional 2D visualisations, virtual endoscopy was useful for assessment of the intraluminal appearance of the coronary artery wall following coronary stent implantation, while stereoscopic visualisation improved observers' understanding of the complex cardiac structures. Thus, both methods could be used as a complementary tool in cardiac imaging.

  3. iConnect CKD - Virtual Medical Consulting: a web-based Chronic Kidney Disease, Hypertension and Diabetes Integrated Care Program.

    Science.gov (United States)

    Katz, Ivor J; Pirabhahar, Saiyini; Williamson, Paula; Raghunath, Vishwas; Brennan, Frank; O'Sullivan, Anthony; Youssef, George; Lane, Cathie; Jacobson, Gary; Feldman, Peter; Kelly, John

    2017-05-04

    Chronic kidney disease (CKD) patients overwhelm specialist services and can potentially be managed in the primary care (PC). Opportunistic screening of high risk (HR) patients and follow-up in PC is the most sustainable model of care. A 'virtual consultation' (VC) model instead of traditional face to face (F2F) consultations was used, aiming to assess efficacy and safety of the model. Seventy patients were recruited from PC sites and hospital clinics, and followed for one year. The HR patients (eGFR 30 mg/mmol/L) were randomised to either VC or F2F. Patients were monitored 6 monthly by a Clinical Nurse Specialist (CNS). The specialist team provided virtual or clinical support and included a Nephrologist, Endocrinologist, Cardiologist and Renal 'Palliative' Supportive Care. Sixty one (87%) patients were virtually tracked or consulted with 14 (23%) being HR. At 12 months there was no difference in outcomes between VC and F2F patients. All patients were successfully monitored. GPs reported high level of satisfaction and supported the model, but found software integration challenging. Patients found the system attractive and felt well managed. Specialist consults occurred within a week and if a second specialist opinion was required it took another two weeks. The program demonstrated safe, expedited and efficient follow up with a clinical and web based program. Support from the GPs and patients was encouraging, despite logistical issues. Ongoing evaluation of VC services will continue and feasibility to larger networks and more chronic diseases remains the long term goal. This article is protected by copyright. All rights reserved.

  4. Holistic Web-based Virtual Micro Controller Framework for Research and Education

    Directory of Open Access Journals (Sweden)

    Sven Seiler

    2012-11-01

    Full Text Available Education in the field of embedded system programming became an even more important aspect in the qualification of young engineers during the last decade. This development is accompanied by a rapidly increasing complexity of the software environments used with such devices. Therefore a qualified and solid teaching methodology is necessary, accompanied by industry driven technological innovation with an emphasis on programming. As part of three European projects regarding lifelong-learning a comprehensive blended learning concept for teaching embedded systems and robotics was developed by paper authors. It comprises basic exercises in micro controller programming up to high-level student robotic challenges. These implemented measures are supported by a distance learning environment. The programming of embedded systems and microcontroller technology has to be seen as the precursor for more complex robotic systems in this context, but with a high importance for later successfully working with the technology for further professional utilization with these technologies. Current paper introduces the most novel part; the online accessible Virtual Micro Controller Platform (VMCU and its underlying simulation framework platform. This approach conquers the major existing problems in engineering education: outdated hardware and limited lab times. This paper answers the question about advantages of using virtual hardware in an educational environment.

  5. WashingtonOnline Virtual Campus: Infusing Culture in Dispersed Web-Based Higher Education

    Directory of Open Access Journals (Sweden)

    Shalin Hai-Jew

    2004-08-01

    Full Text Available Started in 1997, WashingtonOnline Virtual Campus (WAOL consists of a consortium of 34 community colleges around Washington State to provide asynchronous online learning. WAOL bears many of the features of a loosely coupled organization with its geographically dispersed frontline instructors, fragmented external environment, modularity of courses and supervision, and its use of enhanced leadership and technology to communicate a culture. Recent surveys of its administration, instructors, and staff found disparities in various constituencies’ perspectives on the organization’s culture, decision-making, values, brand or reputation, communications, and WAOL’s authorizing environment. Research suggests that WAOL benefits from some aspects of loose coupling: greater adaptive abilities and responsiveness to the State’s college system; “fast” course development and launching; and isolated breakdowns. There is, however, a persistent difficulty in conveying a cohesive culture. There is a perception of WAOL’s invisibility among its varied constituencies. This organization is at a crossroads, with the threat of colleges disconnecting from this consortium. WAOL should redefine its direction and purpose, such as coupling with local universities to provide not only associates degrees but full Baccalaureate and/ or Masters degrees. It may strengthen its position by improving learner supports, publicizing its decisions, creating a stronger sense of virtual community among the instructors (as in its recent creation of an online community for instructors, increased participative decision-making and use of line faculty and staff insights, and greater course varieties.

  6. Real decisions in virtual worlds : Team collaboration and decision making in 3D virtual environments

    NARCIS (Netherlands)

    Schouten, A.P.; van den Hooff, B.; Feldberg, F.

    2015-01-01

    This study investigates how three-dimensional virtual environments (3DVEs) support shared understanding and group decision making. Based on media synchronicity theory, we pose that the shared environment and avatar-based interaction allowed by 3DVEs aid convergence processes in teams working on a de

  7. Wikis, blogs and podcasts: a new generation of Web-based tools for virtual collaborative clinical practice and education.

    Science.gov (United States)

    Boulos, Maged N Kamel; Maramba, Inocencio; Wheeler, Steve

    2006-08-15

    We have witnessed a rapid increase in the use of Web-based 'collaborationware' in recent years. These Web 2.0 applications, particularly wikis, blogs and podcasts, have been increasingly adopted by many online health-related professional and educational services. Because of their ease of use and rapidity of deployment, they offer the opportunity for powerful information sharing and ease of collaboration. Wikis are Web sites that can be edited by anyone who has access to them. The word 'blog' is a contraction of 'Web Log' - an online Web journal that can offer a resource rich multimedia environment. Podcasts are repositories of audio and video materials that can be "pushed" to subscribers, even without user intervention. These audio and video files can be downloaded to portable media players that can be taken anywhere, providing the potential for "anytime, anywhere" learning experiences (mobile learning). Wikis, blogs and podcasts are all relatively easy to use, which partly accounts for their proliferation. The fact that there are many free and Open Source versions of these tools may also be responsible for their explosive growth. Thus it would be relatively easy to implement any or all within a Health Professions' Educational Environment. Paradoxically, some of their disadvantages also relate to their openness and ease of use. With virtually anybody able to alter, edit or otherwise contribute to the collaborative Web pages, it can be problematic to gauge the reliability and accuracy of such resources. While arguably, the very process of collaboration leads to a Darwinian type 'survival of the fittest' content within a Web page, the veracity of these resources can be assured through careful monitoring, moderation, and operation of the collaborationware in a closed and secure digital environment. Empirical research is still needed to build our pedagogic evidence base about the different aspects of these tools in the context of medical/health education. If

  8. Wikis, blogs and podcasts: a new generation of Web-based tools for virtual collaborative clinical practice and education

    Directory of Open Access Journals (Sweden)

    Maramba Inocencio

    2006-08-01

    Full Text Available Abstract Background We have witnessed a rapid increase in the use of Web-based 'collaborationware' in recent years. These Web 2.0 applications, particularly wikis, blogs and podcasts, have been increasingly adopted by many online health-related professional and educational services. Because of their ease of use and rapidity of deployment, they offer the opportunity for powerful information sharing and ease of collaboration. Wikis are Web sites that can be edited by anyone who has access to them. The word 'blog' is a contraction of 'Web Log' – an online Web journal that can offer a resource rich multimedia environment. Podcasts are repositories of audio and video materials that can be "pushed" to subscribers, even without user intervention. These audio and video files can be downloaded to portable media players that can be taken anywhere, providing the potential for "anytime, anywhere" learning experiences (mobile learning. Discussion Wikis, blogs and podcasts are all relatively easy to use, which partly accounts for their proliferation. The fact that there are many free and Open Source versions of these tools may also be responsible for their explosive growth. Thus it would be relatively easy to implement any or all within a Health Professions' Educational Environment. Paradoxically, some of their disadvantages also relate to their openness and ease of use. With virtually anybody able to alter, edit or otherwise contribute to the collaborative Web pages, it can be problematic to gauge the reliability and accuracy of such resources. While arguably, the very process of collaboration leads to a Darwinian type 'survival of the fittest' content within a Web page, the veracity of these resources can be assured through careful monitoring, moderation, and operation of the collaborationware in a closed and secure digital environment. Empirical research is still needed to build our pedagogic evidence base about the different aspects of these tools in

  9. Blood Pool Segmentation Results in Superior Virtual Cardiac Models than Myocardial Segmentation for 3D Printing.

    Science.gov (United States)

    Farooqi, Kanwal M; Lengua, Carlos Gonzalez; Weinberg, Alan D; Nielsen, James C; Sanz, Javier

    2016-08-01

    The method of cardiac magnetic resonance (CMR) three-dimensional (3D) image acquisition and post-processing which should be used to create optimal virtual models for 3D printing has not been studied systematically. Patients (n = 19) who had undergone CMR including both 3D balanced steady-state free precession (bSSFP) imaging and contrast-enhanced magnetic resonance angiography (MRA) were retrospectively identified. Post-processing for the creation of virtual 3D models involved using both myocardial (MS) and blood pool (BP) segmentation, resulting in four groups: Group 1-bSSFP/MS, Group 2-bSSFP/BP, Group 3-MRA/MS and Group 4-MRA/BP. The models created were assessed by two raters for overall quality (1-poor; 2-good; 3-excellent) and ability to identify predefined vessels (1-5: superior vena cava, inferior vena cava, main pulmonary artery, ascending aorta and at least one pulmonary vein). A total of 76 virtual models were created from 19 patient CMR datasets. The mean overall quality scores for Raters 1/2 were 1.63 ± 0.50/1.26 ± 0.45 for Group 1, 2.12 ± 0.50/2.26 ± 0.73 for Group 2, 1.74 ± 0.56/1.53 ± 0.61 for Group 3 and 2.26 ± 0.65/2.68 ± 0.48 for Group 4. The numbers of identified vessels for Raters 1/2 were 4.11 ± 1.32/4.05 ± 1.31 for Group 1, 4.90 ± 0.46/4.95 ± 0.23 for Group 2, 4.32 ± 1.00/4.47 ± 0.84 for Group 3 and 4.74 ± 0.56/4.63 ± 0.49 for Group 4. Models created using BP segmentation (Groups 2 and 4) received significantly higher ratings than those created using MS for both overall quality and number of vessels visualized (p printed on desktop 3D printers with good quality and accurate representation of the virtual 3D models. We recommend using BP segmentation with either MRA or bSSFP source datasets to create virtual 3D models for 3D printing. Desktop 3D printers can offer good quality printed models with accurate representation of anatomic detail.

  10. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    Directory of Open Access Journals (Sweden)

    Robinson Larry R

    2009-10-01

    Full Text Available Abstract Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis. However, when a person views a conventional 2-D (two-dimensional image representation of a 3-D (three-dimensional scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center in setting up a low-cost, full-colour stereoscopic 3-D system.

  11. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    Science.gov (United States)

    Boulos, Maged N.K.; Robinson, Larry R.

    2009-01-01

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system.

  12. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes.

    Science.gov (United States)

    Boulos, Maged N Kamel; Robinson, Larry R

    2009-10-22

    Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventional computer screen, each eye receives essentially the same information. Depth in such cases can only be approximately inferred from visual clues in the image, such as perspective, as only one image is offered to both eyes. The goal of stereoscopic 3-D displays is to project a slightly different image into each eye to achieve a much truer and realistic perception of depth, of different scene planes, and of object relief. This paper presents a brief review of a number of stereoscopic 3-D hardware and software solutions for creating and displaying online maps and virtual globes (such as Google Earth) in "true 3D", with costs ranging from almost free to multi-thousand pounds sterling. A practical account is also given of the experience of the USGS BRD UMESC (United States Geological Survey's Biological Resources Division, Upper Midwest Environmental Sciences Center) in setting up a low-cost, full-colour stereoscopic 3-D system.

  13. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects

    Science.gov (United States)

    Tetsworth, Kevin; Block, Steve; Glatt, Vaida

    2017-01-01

    3D printing technology has revolutionized and gradually transformed manufacturing across a broad spectrum of industries, including healthcare. Nowhere is this more apparent than in orthopaedics with many surgeons already incorporating aspects of 3D modelling and virtual procedures into their routine clinical practice. As a more extreme application, patient-specific 3D printed titanium truss cages represent a novel approach for managing the challenge of segmental bone defects. This review illustrates the potential indications of this innovative technique using 3D printed titanium truss cages in conjunction with the Masquelet technique. These implants are custom designed during a virtual surgical planning session with the combined input of an orthopaedic surgeon, an orthopaedic engineering professional and a biomedical design engineer. The ability to 3D model an identical replica of the original intact bone in a virtual procedure is of vital importance when attempting to precisely reconstruct normal anatomy during the actual procedure. Additionally, other important factors must be considered during the planning procedure, such as the three-dimensional configuration of the implant. Meticulous design is necessary to allow for successful implantation through the planned surgical exposure, while being aware of the constraints imposed by local anatomy and prior implants. This review will attempt to synthesize the current state of the art as well as discuss our personal experience using this promising technique. It will address implant design considerations including the mechanical, anatomical and functional aspects unique to each case. PMID:28220752

  14. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects

    Directory of Open Access Journals (Sweden)

    Tetsworth Kevin

    2017-01-01

    Full Text Available 3D printing technology has revolutionized and gradually transformed manufacturing across a broad spectrum of industries, including healthcare. Nowhere is this more apparent than in orthopaedics with many surgeons already incorporating aspects of 3D modelling and virtual procedures into their routine clinical practice. As a more extreme application, patient-specific 3D printed titanium truss cages represent a novel approach for managing the challenge of segmental bone defects. This review illustrates the potential indications of this innovative technique using 3D printed titanium truss cages in conjunction with the Masquelet technique. These implants are custom designed during a virtual surgical planning session with the combined input of an orthopaedic surgeon, an orthopaedic engineering professional and a biomedical design engineer. The ability to 3D model an identical replica of the original intact bone in a virtual procedure is of vital importance when attempting to precisely reconstruct normal anatomy during the actual procedure. Additionally, other important factors must be considered during the planning procedure, such as the three-dimensional configuration of the implant. Meticulous design is necessary to allow for successful implantation through the planned surgical exposure, while being aware of the constraints imposed by local anatomy and prior implants. This review will attempt to synthesize the current state of the art as well as discuss our personal experience using this promising technique. It will address implant design considerations including the mechanical, anatomical and functional aspects unique to each case.

  15. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects.

    Science.gov (United States)

    Tetsworth, Kevin; Block, Steve; Glatt, Vaida

    2017-01-01

    3D printing technology has revolutionized and gradually transformed manufacturing across a broad spectrum of industries, including healthcare. Nowhere is this more apparent than in orthopaedics with many surgeons already incorporating aspects of 3D modelling and virtual procedures into their routine clinical practice. As a more extreme application, patient-specific 3D printed titanium truss cages represent a novel approach for managing the challenge of segmental bone defects. This review illustrates the potential indications of this innovative technique using 3D printed titanium truss cages in conjunction with the Masquelet technique. These implants are custom designed during a virtual surgical planning session with the combined input of an orthopaedic surgeon, an orthopaedic engineering professional and a biomedical design engineer. The ability to 3D model an identical replica of the original intact bone in a virtual procedure is of vital importance when attempting to precisely reconstruct normal anatomy during the actual procedure. Additionally, other important factors must be considered during the planning procedure, such as the three-dimensional configuration of the implant. Meticulous design is necessary to allow for successful implantation through the planned surgical exposure, while being aware of the constraints imposed by local anatomy and prior implants. This review will attempt to synthesize the current state of the art as well as discuss our personal experience using this promising technique. It will address implant design considerations including the mechanical, anatomical and functional aspects unique to each case.

  16. Research on 3D virtual campus scene modeling based on 3ds Max and VRML

    Science.gov (United States)

    Kang, Chuanli; Zhou, Yanliu; Liang, Xianyue

    2015-12-01

    With the rapid development of modem technology, the digital information management and the virtual reality simulation technology has become a research hotspot. Virtual campus 3D model can not only express the real world objects of natural, real and vivid, and can expand the campus of the reality of time and space dimension, the combination of school environment and information. This paper mainly uses 3ds Max technology to create three-dimensional model of building and on campus buildings, special land etc. And then, the dynamic interactive function is realized by programming the object model in 3ds Max by VRML .This research focus on virtual campus scene modeling technology and VRML Scene Design, and the scene design process in a variety of real-time processing technology optimization strategy. This paper guarantees texture map image quality and improve the running speed of image texture mapping. According to the features and architecture of Guilin University of Technology, 3ds Max, AutoCAD and VRML were used to model the different objects of the virtual campus. Finally, the result of virtual campus scene is summarized.

  17. Load Assembly of the Ignitor Machine with 3D Interactive Virtual Reality

    Science.gov (United States)

    Migliori, S.; Pierattini, S.

    2003-10-01

    The main purpose of this work is to assist the Ignitor team in every phase of the project using the new Virtual Reality Technology (VR). Through the VR it is possible to see, plan and test the machine assembly sequence and the total layout. We are also planning to simulate in VR the remote handling systems. The complexity of the system requires a large and powerful graphical device. The ENEA?s "Advanced Visualization Technology" team has implemented a repository file data structure integrated with the CATIA drawing cams from the designer of Ignitor. The 3D virtual mockup software is used to view and analyze all objects that compose the mockup and also to analyze the correct assembly sequences. The ENEA?s 3D immersive system and software are fully integrated in the ENEA?s supercomputing GRID infrastructure. At any time all members of the Ignitor Project can view the status of the mockup in 3D (draft and/or final objects) through the net. During the conference examples of the assembly sequence and load assembly structure will be presented.

  18. Building virtual 3D bone fragment models to control diaphyseal fracture reduction

    Science.gov (United States)

    Leloup, Thierry; Schuind, Frederic; Lasudry, Nadine; Van Ham, Philippe

    1999-05-01

    Most fractures of the long bones are displaced and need to be surgically reduced. External fixation is often used but the crucial point of this technique is the control of reduction, which is effected with a brilliance amplifier. This system, giving instantly a x-ray image, has many disadvantages. It implies frequent irradiation to the patient and the surgical team, the visual field is limited, the supplied images are distorted and it only gives 2D information. Consequently, the reduction is occasionally imperfect although intraoperatively it appears acceptable. Using the pains inserted in each fragment as markers and an optical tracker, it is possible to build a virtual 3D model for each principal fragment and to follow its movement during the reduction. This system will supply a 3D image of the fracture in real time and without irradiation. The brilliance amplifier could then be replaced by such a virtual reality system to provide the surgeon with an accurate tool facilitating the reduction of the fracture. The purpose of this work is to show how to build the 3D model for each principal bone fragment.

  19. HERRAMIENTAS EN 3D PARA EL MODELADO DE ESCENARIOS VIRTUALES BASADOS EN LOGO. ESTADO DEL ARTE

    Directory of Open Access Journals (Sweden)

    Luz Santamaría Granados

    2009-01-01

    Full Text Available Este artículo revisa la comprobada fundamentación pedagógica de LOGO (Papert, 2003 que a su vez ofrece interesantes estrategias de motivación para los niños, en aspectos tales como el desarrollo de habilidades espaciales a través de su propia exploración de mundos virtuales. La metodología original fue propuesta por Seymour Papert para escenarios en dos dimensiones (2D. Por lo tanto, se analiza la posibilidad de integrar las ventajas pedagógicas de LOGO con una interfaz gráfica en tres dimensiones (3D, al aprovechar la tecnología contemplada en los estándares del consorcio Web3D. Además menciona los componentes X3D que permiten el uso de avatares (humanoides para facilitar la interacción de los usuarios en mundos virtuales dinámicos, al disponer de personajes adicionales al de la tortuga de LOGO.

  20. Visualization of large scale geologically related data in virtual 3D scenes with OpenGL

    Science.gov (United States)

    Seng, Dewen; Liang, Xi; Wang, Hongxia; Yue, Guoying

    2007-11-01

    This paper demonstrates a method for three-dimensional (3D) reconstruction and visualization of large scale multidimensional surficial, geological and mine planning data with the programmable visualization environment OpenGL. A simulation system developed by the authors is presented for importing, filtering and visualizing of multidimensional geologically related data. The approach for the visual simulation of complicated mining engineering environment implemented in the system is described in detail. Aspects like presentations of multidimensional data with spatial dependence, navigation in the surficial and geological frame of reference and in time, interaction techniques are presented. The system supports real 3D landscape representations. Furthermore, the system provides many visualization methods for rendering multidimensional data within virtual 3D scenes and combines them with several navigation techniques. Real data derived from an iron mine in Wuhan City of China demonstrates the effectiveness and efficiency of the system. A case study with the results and benefits achieved by using real 3D representations and navigations of the system is given.

  1. GE3D: A Virtual Campus for Technology-Enhanced Distance Learning

    Directory of Open Access Journals (Sweden)

    Jean Grieu

    2010-09-01

    Full Text Available A lot of learning systems platforms are used all over the world. But these conventional E-learning platforms aim at students who are used to work on their own. Our students are young (19 years old – 22 years old, and in their first year at the university. Following extensive interviews with our students, we have designed GE3D, an E-learning platform, according to their expectations and our criteria. In this paper, we describe the students’ demands, resulting from the interviews. Then, we describe our virtual campus. Even if our platform uses some elements coming from the 3D games world, it is always a pedagogical tool. Using this technology, we developed a 3D representation of the real world. GE3D is a multi-users tool, with a synchronous technology, an intuitive interface for end-users and an embedded Intelligent Tutoring System to support learners. We also describe the process of a lecture on the Programmable Logic Controllers (PLC’s in this new universe.

  2. 3D VIRTUAL RECONSTRUCTIONS OF MINOAN RURAL SITES: THE CASE OF LIVARI CHEROMYLIA

    Directory of Open Access Journals (Sweden)

    T. Alusik

    2012-09-01

    Full Text Available The use of 3D sophisticated visualizations and reconstructions is still not common during the process of reconstruction or recreation of the appearance of any preserved architecture of prehistoric (Bronze Age Crete. However, the author believes that in modern archaeology the use of the up-to-date computer technologies and sophisticated software is necessary. In their opinion, in case of presenting of sites with preserved architecture a creation of ideal 3D reconstruction should become a standard feature of final publications in the near future. The author deals with the study of Minoan architecture, settlement pattern and rural aspect of Minoan Crete in the last years. In this paper, the author – in cooperation with an architect and a specialist in technical modelling – is presenting an ideal 3D virtual reconstruction of the small rural site of Livari Cheromylia (consisting of 4 main structures and several terrace walls, situated on the southern coast in the Bay of Livari, between Goudouras and Aghia Irini. The 3D reconstruction of the individual structures and the site as a whole based on the up-to-date scholarship on Minoan architecture and the actual archaeological/architectural parallels in situ as well as on the iconographical sources, is presented below.

  3. Exploring 3D GPU-accelerated graph visualization with time-traveling virtual camera

    Directory of Open Access Journals (Sweden)

    Peter Kapec

    2013-04-01

    Full Text Available Graph visualization is an ongoing research area with many open problems. Graphs are often visualized in 2D space and recently also 3D visualizations emerge. However, the added third dimension adds additional problems that make the graph comprehension more difficult. In this paper we focus on navigating and exploring 3D graph visualizations. We present our approach for the automation of virtual camera movement for better graph exploration. This camera movement is enhanced with experimental exploration recording and play-back that allows to fork exploration paths at any time and to switch between them. We also present how graph layout can be accelerated with GPU in combination with scene graph structures. These features were added into our graph visualization system that we use for software visualization. We present several visualizations of the structure and the evolution of software systems.

  4. Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy

    Directory of Open Access Journals (Sweden)

    Essig Harald

    2011-11-01

    Full Text Available Abstract The quality of the interdisciplinary interface in oncological treatment between surgery, pathology and radiotherapy is mainly dependent on reliable anatomical three-dimensional (3D allocation of specimen and their context sensitive interpretation which defines further treatment protocols. Computer-assisted preoperative planning (CAPP allows for outlining macroscopical tumor size and margins. A new technique facilitates the 3D virtual marking and mapping of frozen sections and resection margins or important surgical intraoperative information. These data could be stored in DICOM format (Digital Imaging and Communication in Medicine in terms of augmented reality and transferred to communicate patient's specific tumor information (invasion to vessels and nerves, non-resectable tumor to oncologists, radiotherapists and pathologists.

  5. Encryption of digital hologram of 3-D object by virtual optics

    Science.gov (United States)

    Kim, Hyun; Kim, Do-Hyung; Lee, Yeon H.

    2004-10-01

    We present a simple technique to encrypt a digital hologram of a three-dimensional (3-D) object into a stationary white noise by use of virtual optics and then to decrypt it digitally. In this technique the digital hologram is encrypted by our attaching a computer-generated random phase key to it and then forcing them to Fresnel propagate to an arbitrary plane with an illuminating plane wave of a given wavelength. It is shown in experiments that the proposed system is robust to blind decryptions without knowing the correct propagation distance, wavelength, and phase key used in the encryption. Signal-to-noise ratio (SNR) and mean-square-error (MSE) of the reconstructed 3-D object are calculated for various decryption distances and wavelengths, and partial use of the correct phase key.

  6. Going Virtual… or Not: Development and Testing of a 3D Virtual Astronomy Environment

    Science.gov (United States)

    Ruzhitskaya, L.; Speck, A.; Ding, N.; Baldridge, S.; Witzig, S.; Laffey, J.

    2013-04-01

    We present our preliminary results of a pilot study of students' knowledge transfer of an astronomy concept into a new environment. We also share our discoveries on what aspects of a 3D environment students consider being motivational and discouraging for their learning. This study was conducted among 64 non-science major students enrolled in an astronomy laboratory course. During the course, students learned the concept and applications of Kepler's laws using a 2D interactive environment. Later in the semester, the students were placed in a 3D environment in which they were asked to conduct observations and to answers a set of questions pertaining to the Kepler's laws of planetary motion. In this study, we were interested in observing scrutinizing and assessing students' behavior: from choices that they made while creating their avatars (virtual representations) to tools they choose to use, to their navigational patterns, to their levels of discourse in the environment. These helped us to identify what features of the 3D environment our participants found to be helpful and interesting and what tools created unnecessary clutter and distraction. The students' social behavior patterns in the virtual environment together with their answers to the questions helped us to determine how well they understood Kepler's laws, how well they could transfer the concepts to a new situation, and at what point a motivational tool such as a 3D environment becomes a disruption to the constructive learning. Our founding confirmed that students construct deeper knowledge of a concept when they are fully immersed in the environment.

  7. Conceptualización proceso-producto de una bicicleta, en entornos virtuales 3D.

    OpenAIRE

    Juárez Pérez, Raquel

    2016-01-01

    Este proyecto consiste en la conceptualización proceso-producto de un cuadro de bicicleta, con un modelado 3D en entornos virtuales. Se pretende diseñar un cuadro de bicicleta con una serie de mejoras especificadas a continuación. Dicho diseño se estudiará ergonómicamente y se discutirá su viabilidad de acuerdo a los objetivos marcados y se propondrá un segundo diseño con todas las mejoras pertinentes. El diseño del cuadro se propondrá para una bicicleta de paseo enfocada a ...

  8. Spiroimidazolidinone NPC1L1 inhibitors. 1: Discovery by 3D-similarity-based virtual screening.

    Science.gov (United States)

    McMasters, Daniel R; Garcia-Calvo, Margarita; Maiorov, Vladimir; McCann, Margaret E; Meurer, Roger D; Bull, Herbert G; Lisnock, Jeanmarie; Howell, Kobporn L; Devita, Robert J

    2009-06-01

    A series of spiroimidazolidinone NPC1L1 inhibitors was discovered by virtual screening of the Merck corporate sample repository using 3D-similarity-based screening. Selection of 330 compounds for testing in an in vitro NPC1L1 binding assay yielded six hits in six distinct chemical series. Follow-up 2D similarity searching yielded several sub- to low-micromolar leads; among these was spiroimidazolidinone 10, with an IC(50) of 2.5 microM. Compound 10 provided a useful scaffold to initiate a medicinal chemistry campaign.

  9. RECOMMENDATIONS FOR USING THE 3D VIRTUAL ENVIRONMENTS FOR TEACHING: Why, How and Use cases

    Directory of Open Access Journals (Sweden)

    Maja PIVEC

    2011-08-01

    Full Text Available The AVATAR project included a global course for teachers, which was delivered remotely over a period of four months. The course had nine modules, distributed via e-learning and v-learning platforms. One module supports creation of new teaching material by course participants and its piloting with their students. The course was created in English language, however to support the learning curve of multilingual and international groups, several modules were moderated in national groups. This paper details the rational behind the course, documents two case studies of completed projects within a virtual world, highlights the challenges and notes the successes, and culminates with conclusions and recommendations of running courses and lessons within an online 3D virtual world.

  10. EEG-based asynchronous BCI control of a car in 3D virtual reality environments

    Institute of Scientific and Technical Information of China (English)

    ZHAO QiBin; ZHANG LiQing; CICHOCKI Andrzej

    2009-01-01

    Brain computer interface (BCl) aims at creating new communication channels without depending on brain's normal output channels of peripheral nerves and muscles.However,natural and sophisticated interactions manner between brain and computer still remain challenging.In this paper,we investigate how the duration of event-related desynchronization/synchronization (ERD/ERS) caused by motor im-agery (MI) can be modulated and used as an additional control parameter beyond simple binary deci-sions.Furthermore,using the non-time-locked properties of sustained (de)synchronization,we have developed an asynchronous BCl system for driving a car in 3D virtual reality environment (VRE) based on cumulative incremental control strategy.The extensive real time experiments confirmed that our new approach is able to drive smoothly a virtual car within challenging VRE only by the MI tasks with-out involving any muscular activities.

  11. 3D MODELLING AND MAPPING FOR VIRTUAL EXPLORATION OF UNDERWATER ARCHAEOLOGY ASSETS

    Directory of Open Access Journals (Sweden)

    F. Liarokapis

    2017-02-01

    Full Text Available This paper investigates immersive technologies to increase exploration time in an underwater archaeological site, both for the public, as well as, for researchers and scholars. Focus is on the Mazotos shipwreck site in Cyprus, which is located 44 meters underwater. The aim of this work is two-fold: (a realistic modelling and mapping of the site and (b an immersive virtual reality visit. For 3D modelling and mapping optical data were used. The underwater exploration is composed of a variety of sea elements including: plants, fish, stones, and artefacts, which are randomly positioned. Users can experience an immersive virtual underwater visit in Mazotos shipwreck site and get some information about the shipwreck and its contents for raising their archaeological knowledge and cultural awareness.

  12. Pre-clinical validation of virtual bronchoscopy using 3D Slicer.

    Science.gov (United States)

    Nardelli, Pietro; Jaeger, Alexander; O'Shea, Conor; Khan, Kashif A; Kennedy, Marcus P; Cantillon-Murphy, Pádraig

    2017-01-01

    Lung cancer still represents the leading cause of cancer-related death, and the long-term survival rate remains low. Computed tomography (CT) is currently the most common imaging modality for lung diseases recognition. The purpose of this work was to develop a simple and easily accessible virtual bronchoscopy system to be coupled with a customized electromagnetic (EM) tracking system for navigation in the lung and which requires as little user interaction as possible, while maintaining high usability. The proposed method has been implemented as an extension to the open-source platform, 3D Slicer. It creates a virtual reconstruction of the airways starting from CT images for virtual navigation. It provides tools for pre-procedural planning and virtual navigation, and it has been optimized for use in combination with a [Formula: see text] of freedom EM tracking sensor. Performance of the algorithm has been evaluated in ex vivo and in vivo testing. During ex vivo testing, nine volunteer physicians tested the implemented algorithm to navigate three separate targets placed inside a breathing pig lung model. In general, the system proved easy to use and accurate in replicating the clinical setting and seemed to help choose the correct path without any previous experience or image analysis. Two separate animal studies confirmed technical feasibility and usability of the system. This work describes an easily accessible virtual bronchoscopy system for navigation in the lung. The system provides the user with a complete set of tools that facilitate navigation towards user-selected regions of interest. Results from ex vivo and in vivo studies showed that the system opens the way for potential future work with virtual navigation for safe and reliable airway disease diagnosis.

  13. Fast generation of virtual X-ray images for reconstruction of 3D anatomy.

    Science.gov (United States)

    Ehlke, Moritz; Ramm, Heiko; Lamecker, Hans; Hege, Hans-Christian; Zachow, Stefan

    2013-12-01

    We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g. pelvic bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach will improve treatments in orthopedics, where 3D anatomical information is essential.

  14. The Use of 3d Virtual Learning Environments in Training Foreign Language Pre-Service Teachers

    Directory of Open Access Journals (Sweden)

    Tuncer CAN

    2015-10-01

    Full Text Available The recent developments in computer and Internet technologies and in three dimensional modelling necessitates the new approaches and methods in the education field and brings new opportunities to the higher education. The Internet and virtual learning environments have changed the learning opportunities by diversifying the learning options not only in general education but also in the field of foreign language for teachers, curriculum designers and students. Many higher education institutions are employing one of the most widely used virtual worlds the Second Life Platform and are conducting classes on their virtual campuses, and organize meetings, seminars and conferences. In this study, it has been aimed to devise and implement learning applications on the 3D Second Life Platform for the prospective foreign language preservice teachers of Istanbul University, Hasan Ali Yücel Faculty of Education, English Language Teaching Department. The study will report a research Project on Second Life aiming at introducing foreign language pre-service teachers with 3D Virtual Learning Environments and enabling them to use this environment for language teaching at Istanbul University, Hasan Ali Yucel Faculty of Education, English Language Teaching Department. In the scope of the Project, “Comparative Education” class has been conducted both face to face and in World. The method of the study is descriptive. Furthermore, a mixed model, where qualitative and quantitative research techniques have analyzed, has been used. Thus, triangulation of the data has been aimed. In the study, a description of the project, methodology, results and student work will be given.

  15. Image-Based Virtual Tours and 3d Modeling of Past and Current Ages for the Enhancement of Archaeological Parks: the Visualversilia 3d Project

    Science.gov (United States)

    Castagnetti, C.; Giannini, M.; Rivola, R.

    2017-05-01

    The research project VisualVersilia 3D aims at offering a new way to promote the territory and its heritage by matching the traditional reading of the document and the potential use of modern communication technologies for the cultural tourism. Recently, the research on the use of new technologies applied to cultural heritage have turned their attention mainly to technologies to reconstruct and narrate the complexity of the territory and its heritage, including 3D scanning, 3D printing and augmented reality. Some museums and archaeological sites already exploit the potential of digital tools to preserve and spread their heritage but interactive services involving tourists in an immersive and more modern experience are still rare. The innovation of the project consists in the development of a methodology for documenting current and past historical ages and integrating their 3D visualizations with rendering capable of returning an immersive virtual reality for a successful enhancement of the heritage. The project implements the methodology in the archaeological complex of Massaciuccoli, one of the best preserved roman site of the Versilia Area (Tuscany, Italy). The activities of the project briefly consist in developing: 1. the virtual tour of the site in its current configuration on the basis of spherical images then enhanced by texts, graphics and audio guides in order to enable both an immersive and remote tourist experience; 2. 3D reconstruction of the evidences and buildings in their current condition for documentation and conservation purposes on the basis of a complete metric survey carried out through laser scanning; 3. 3D virtual reconstructions through the main historical periods on the basis of historical investigation and the analysis of data acquired.

  16. IMAGE-BASED VIRTUAL TOURS AND 3D MODELING OF PAST AND CURRENT AGES FOR THE ENHANCEMENT OF ARCHAEOLOGICAL PARKS: THE VISUALVERSILIA 3D PROJECT

    Directory of Open Access Journals (Sweden)

    C. Castagnetti

    2017-05-01

    Full Text Available The research project VisualVersilia 3D aims at offering a new way to promote the territory and its heritage by matching the traditional reading of the document and the potential use of modern communication technologies for the cultural tourism. Recently, the research on the use of new technologies applied to cultural heritage have turned their attention mainly to technologies to reconstruct and narrate the complexity of the territory and its heritage, including 3D scanning, 3D printing and augmented reality. Some museums and archaeological sites already exploit the potential of digital tools to preserve and spread their heritage but interactive services involving tourists in an immersive and more modern experience are still rare. The innovation of the project consists in the development of a methodology for documenting current and past historical ages and integrating their 3D visualizations with rendering capable of returning an immersive virtual reality for a successful enhancement of the heritage. The project implements the methodology in the archaeological complex of Massaciuccoli, one of the best preserved roman site of the Versilia Area (Tuscany, Italy. The activities of the project briefly consist in developing: 1. the virtual tour of the site in its current configuration on the basis of spherical images then enhanced by texts, graphics and audio guides in order to enable both an immersive and remote tourist experience; 2. 3D reconstruction of the evidences and buildings in their current condition for documentation and conservation purposes on the basis of a complete metric survey carried out through laser scanning; 3. 3D virtual reconstructions through the main historical periods on the basis of historical investigation and the analysis of data acquired.

  17. [3D-TECHNOLOGIES AS A CORE ELEMENT OF PLANNING AND IMPLEMENTATION OF VIRTUAL AND ACTUAL RENAL SURGERY].

    Science.gov (United States)

    Glybochko, P V; Aljaev, Ju G; Bezrukov, E A; Sirota, E S; Proskura, A V

    2015-01-01

    The purpose of this article is to demonstrate the role of modern computer technologies in performing virtual and actual renal tumor surgery. Currently 3D modeling makes it possible to clearly define strategy and tactics of an individual patient treatment.

  18. E-learning en mundos virtuales 3D. Una experiencia educativa en Second Life

    Directory of Open Access Journals (Sweden)

    Teresa C. Rodríguez García

    2011-05-01

    Full Text Available Normal 0 21 El diseño de actividades educativas en entornos inmersivos (mundos virtuales 3D es una perspectiva emergente en el ámbito de la práctica y la investigación de la comunidad e-learning. Una de las propuestas que apoyan esta línea de trabajo es que el entorno inmersivo, con su capacidad de interacción en tiempo real y de sensación de presencialidad, aporta una dimensión social al proceso de enseñanza-aprendizaje on line similar al producido en la educación presencial lo que enriquece, dinamiza y mejora el conjunto de la propuesta educativa a distancia. En este trabajo presentamos el diseño y aplicación de una estrategia educativa on line, de nivel universitario, realizada en un mundo virtual 3D (Second Life con dos objetivos esenciales: explorar si una actividad de aprendizaje inmersiva era eficaz para mejorar la comunicación alumno-profesor y alumno-alumno y establecer la posible eficacia de este tipo de e-actividades como elemento de mejora de la experiencia educativa del estudiante on line.

  19. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation.

    Science.gov (United States)

    Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui

    2011-10-01

    Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi

  20. Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology

    Science.gov (United States)

    Töpperwien, Mareike; Krenkel, Martin; Quade, Felix; Salditt, Tim

    2016-09-01

    Due to the large penetration depth and small wavelength hard x-rays offer a unique potential for 3D biomedical and biological imaging, combining capabilities of high resolution and large sample volume. However, in classical absorption-based computed tomography, soft tissue only shows a weak contrast, limiting the actual resolution. With the advent of phase-contrast methods, the much stronger phase shift induced by the sample can now be exploited. For high resolution, free space propagation behind the sample is particularly well suited to make the phase shift visible. Contrast formation is based on the self-interference of the transmitted beam, resulting in object-induced intensity modulations in the detector plane. As this method requires a sufficiently high degree of spatial coherence, it was since long perceived as a synchrotron-based imaging technique. In this contribution we show that by combination of high brightness liquid-metal jet microfocus sources and suitable sample preparation techniques, as well as optimized geometry, detection and phase retrieval, excellent three-dimensional image quality can be obtained, revealing the anatomy of a cobweb spider in high detail. This opens up new opportunities for 3D virtual histology of small organisms. Importantly, the image quality is finally augmented to a level accessible to automatic 3D segmentation.

  1. Scalable, high-performance 3D imaging software platform: system architecture and application to virtual colonoscopy.

    Science.gov (United States)

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2012-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system.

  2. Utilising a Collaborative Macro-Script to Enhance Student Engagement: A Mixed Method Study in a 3D Virtual Environment

    Science.gov (United States)

    Bouta, Hara; Retalis, Symeon; Paraskeva, Fotini

    2012-01-01

    This study examines the effect of using an online 3D virtual environment in teaching Mathematics in Primary Education. In particular, it explores the extent to which student engagement--behavioral, affective and cognitive--is fostered by such tools in order to enhance collaborative learning. For the study we used a purpose-created 3D virtual…

  3. Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures

    Science.gov (United States)

    Rezania, Vahid; Tuszynski, Jack

    2016-01-01

    In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537

  4. Real time virtual reality 3D animation and control system for nuclear service robotics

    Energy Technology Data Exchange (ETDEWEB)

    Petrosky, L.J. [Westinghouse Electric Corporation (United States)

    1998-07-01

    The ROSACAD robotic control system developed by Westinghouse Electric Corporation provides a robot operator with real time 3D virtual reality animation of the robot in its environment and provides on-line look ahead collision avoidance. The operator interface is ideal for systems that use teleoperation, or those in which the robot's work envelope is congested with many obstacles. The operations software uses object-oriented coding, which allows easy extension to new applications and is specifically design to integrate teleoperation interpersed with autonomous sequences. Any robot and environment can he modeled through the use of the ROBCAD solid modeling software, including the presence of moving obstacles. ROSACAD is a generic interface and control system that has beer applied in many diverse robotic systems ranging from nuclear steam generator service arms to pipe crawlers. (authors)

  5. Image-based Virtual Exhibit and Its Extension to 3D

    Institute of Scientific and Technical Information of China (English)

    Ming-Min Zhang; Zhi-Geng Pan; Li-Feng Ren; Peng Wang

    2007-01-01

    In this paper we introduce an image-based virtual exhibition system especially for clothing product. It can provide a powerful material substitution function, which is very useful for customization clothing-built. A novel color substitution algorithm and two texture morphing methods are designed to ensure realistic substitution result. To extend it to 3D, we need to do the model reconstruction based on photos. Thus we present an improved method for modeling human body. It deforms a generic model with shape details extracted from pictures to generate a new model. Our method begins with model image generation followed by silhouette extraction and segmentation. Then it builds a mapping between pixels inside every pair of silhouette segments in the model image and in the picture. Our mapping algorithm is based on a slice space representation that conforms to the natural features of human body.

  6. Rehabilitation after Stroke using Immersive User Interfaces in 3D Virtual and Augmented Gaming Environments

    Directory of Open Access Journals (Sweden)

    E. Vogiatzaki

    2015-05-01

    Full Text Available Stroke is one of most common diseases of our modern societies with high socio-economic impact. Hence, rehabilitation approach involving patients in their rehabilitation process while lowering costly involvement of specialised human personnel is needed. This article describes a novel approach, offering an integrated rehabilitation training for stroke patients using a serious gaming approach based on a Unity3D virtual reality engine combined with a range of advanced technologies and immersive user interfaces. It puts patients and caretakers in control of the rehabilitation protocols, while leading physicians are enabled to supervise the progress of the rehabilitation via Personal Health Record. Possibility to perform training in a familiar home environment directly improves the effectiveness of the rehabilitation. The work presented herein has been conducted within the "StrokeBack" project co-funded by the European Commission under the Framework 7 Program in the ICT domain.

  7. Accuracy and reproducibility of virtual cutting guides and 3D-navigation for osteotomies of the mandible and maxilla

    Science.gov (United States)

    Bernstein, Jonathan M.; Daly, Michael J.; Chan, Harley; Qiu, Jimmy; Goldstein, David; Muhanna, Nidal; de Almeida, John R.; Irish, Jonathan C.

    2017-01-01

    Background We set out to determine the accuracy of 3D-navigated mandibular and maxillary osteotomies with the ultimate aim to integrate virtual cutting guides and 3D-navigation into ablative and reconstructive head and neck surgery. Methods Four surgeons (two attending, two clinical fellows) completed 224 unnavigated and 224 3D-navigated osteotomies on anatomical models according to preoperative 3D plans. The osteotomized bones were scanned and analyzed. Results Median distance from the virtual plan was 2.1 mm unnavigated (IQR 2.6 mm, ≥3 mm in 33%) and 1.2 mm 3D-navigated (IQR 1.1 mm, ≥3 mm in 6%) (Pfree bone flap reconstruction and clinical use. PMID:28249001

  8. Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors

    Directory of Open Access Journals (Sweden)

    Nannan Zhou

    2015-06-01

    Full Text Available The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson’s correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor. Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors.

  9. Virtual-reality-Based 3D navigation training for emergency egress from spacecraft.

    Science.gov (United States)

    Aoki, Hirofumi; Oman, Charles M; Natapoff, Alan

    2007-08-01

    Astronauts have reported spatial disorientation and navigation problems inside spacecraft whose interior visual vertical direction varies from module to module. If they had relevant preflight practice they might orient better. This experiment examined the influence of relative body orientation and individual spatial skills during VR training on a simulated emergency egress task. During training, 36 subjects were each led on 12 tours through a space station by a virtual tour guide. Subjects wore a head-mounted display and controlled their motion with a game-pad. Each tour traversed multiple modules and involved up to three changes in visual vertical direction. Each subject was assigned to one of three groups that maintained different postures: visually upright relative to the "local" module; constant orientation relative to the "station" irrespective of local visual vertical; and "mixed" (local, followed by station orientation). Groups were balanced on the basis of mental rotation and perspective-taking test scores. Subjects then performed 24 emergency egress testing trials without the tour guide. Smoke reduced visibility during the last 12 trials. Egress time, sense of direction (by pointing to origin and destination) and configuration knowledge were measured. Both individual 3D spatial abilities and orientation during training influence emergency egress performance, pointing, and configuration knowledge. Local training facilitates landmark and route learning, but station training enhances sense of direction relative to station, and, therefore, performance in low visibility. We recommend a sequence of local, followed by station, and then randomized orientation training, preferably customized to a trainee's 3D spatial ability.

  10. Enhanced Visual-Attention Model for Perceptually Improved 3D Object Modeling in Virtual Environments

    Science.gov (United States)

    Chagnon-Forget, Maude; Rouhafzay, Ghazal; Cretu, Ana-Maria; Bouchard, Stéphane

    2016-12-01

    Three-dimensional object modeling and interactive virtual environment applications require accurate, but compact object models that ensure real-time rendering capabilities. In this context, the paper proposes a 3D modeling framework employing visual attention characteristics in order to obtain compact models that are more adapted to human visual capabilities. An enhanced computational visual attention model with additional saliency channels, such as curvature, symmetry, contrast and entropy, is initially employed to detect points of interest over the surface of a 3D object. The impact of the use of these supplementary channels is experimentally evaluated. The regions identified as salient by the visual attention model are preserved in a selectively-simplified model obtained using an adapted version of the QSlim algorithm. The resulting model is characterized by a higher density of points in the salient regions, therefore ensuring a higher perceived quality, while at the same time ensuring a less complex and more compact representation for the object. The quality of the resulting models is compared with the performance of other interest point detectors incorporated in a similar manner in the simplification algorithm. The proposed solution results overall in higher quality models, especially at lower resolutions. As an example of application, the selectively-densified models are included in a continuous multiple level of detail (LOD) modeling framework, in which an original neural-network solution selects the appropriate size and resolution of an object.

  11. Design and fabrication of concave-convex lens for head mounted virtual reality 3D glasses

    Science.gov (United States)

    Deng, Zhaoyang; Cheng, Dewen; Hu, Yuan; Huang, Yifan; Wang, Yongtian

    2015-08-01

    As a kind of light-weighted and convenient tool to achieve stereoscopic vision, virtual reality glasses are gaining more popularity nowadays. For these glasses, molded plastic lenses are often adopted to handle both the imaging property and the cost of massive production. However, the as-built performance of the glass depends on both the optical design and the injection molding process, and maintaining the profile of the lens during injection molding process presents particular challenges. In this paper, optical design is combined with processing simulation analysis to obtain a design result suitable for injection molding. Based on the design and analysis results, different experiments are done using high-quality equipment to optimize the process parameters of injection molding. Finally, a single concave-convex lens is designed with a field-of-view of 90° for the virtual reality 3D glasses. The as-built profile error of the glass lens is controlled within 5μm, which indicates that the designed shape of the lens is fairly realized and the designed optical performance can thus be achieved.

  12. 3D VIRTUAL RECONSTRUCTION OF AN URBAN HISTORICAL SPACE: A CONSIDERATION ON THE METHOD

    Directory of Open Access Journals (Sweden)

    M. Galizia

    2012-09-01

    Full Text Available Urban historical spaces are often characterized by a variety of shapes, geometries, volumes, materials. Their virtual reconstruction requires a critical approach in terms of acquired data's density, timing optimization, final product's quality and slimness. The research team has focused its attention on the study on Francesco Neglia square (previously named Saint Thomas square in Enna. This square is an urban space fronted by architectures which present historical and stylistic differences. For example you can find the Saint Thomas'church belfry (in aragounese-catalan stile dated XIV century and the porch, the Anime Sante baroque's church (XVII century, Saint Mary of the Grace's nunnery (XVIII century and as well as some civil buildings of minor importance built in the mid twentieth century. The research has compared two different modeling tools approaches: the first one is based on the construction of triangulated surfaces which are segmented and simplified; the second one is based on the detection of surfaces geometrical features, the extraction of the more significant profiles by using a software dedicated to the elaboration of cloud points and the subsequent mathematical reconstruction by using a 3d modelling software. The following step was aimed to process the virtual reconstruction of urban scene by assembling the single optimized models. This work highlighted the importance of the image of the operator and of its cultural contribution, essential to recognize geometries which generates surfaces in order to create high quality semantic models.

  13. Tele-Immersive Interaction with Intelligent Virtual Agents Based on Real-Time 3D Modeling

    Directory of Open Access Journals (Sweden)

    Shujun Zhang

    2012-02-01

    Full Text Available To enable intelligent agents interacting smoothly with human users, researchers have been deploying novel interaction modalities (e.g. non-verbal cue, vision and touch in addition to agents’ conversational skills. Models of multi-modality interaction can enhance agents’ real-time perception, cognition and reaction towards the user. In this paper we report a novel tele-immersive interaction system developed using real-time 3D modelling techniques. In such system user’s full body is reconstructed using multi-view cameras and CUDA based visual hull reconstruction algorithm. User’s mesh model is then loaded into a virtual environment for interacting with an autonomous agent. Technical details and initial results of the system are illustrated in this paper. Following that a novel interaction scenario is proposed which links the virtual agent with a remote physical robot who takes the role of mediating interactions between two geographically separated users. Finally we discuss in depth the implications of such human-agent interaction and possible future improvements and directions.

  14. Design and implementation of a 3D ocean virtual reality and visualization engine

    Science.gov (United States)

    Chen, Ge; Li, Bo; Tian, Fenglin; Ji, Pengbo; Li, Wenqing

    2012-12-01

    In this study, a 3D virtual reality and visualization engine for rendering the ocean, named VV-Ocean, is designed for marine applications. The design goals of VV-Ocean aim at high fidelity simulation of ocean environment, visualization of massive and multidimensional marine data, and imitation of marine lives. VV-Ocean is composed of five modules, i.e. memory management module, resources management module, scene management module, rendering process management module and interaction management module. There are three core functions in VV-Ocean: reconstructing vivid virtual ocean scenes, visualizing real data dynamically in real time, imitating and simulating marine lives intuitively. Based on VV-Ocean, we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface. Environment factors such as ocean current and wind field have been considered in this simulation. On this platform oil spilling process can be abstracted as movements of abundant oil particles. The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering. VV-Ocean can be widely used in ocean applications such as demonstrating marine operations, facilitating maritime communications, developing ocean games, reducing marine hazards, forecasting the weather over oceans, serving marine tourism, and so on. Finally, further technological improvements of VV-Ocean are discussed.

  15. Design and Implementation of a 3D Ocean Virtual Reality and Visualization Engine

    Institute of Scientific and Technical Information of China (English)

    CHEN Ge; LI Bo; TIAN Fenglin; JI Pengbo; LI Wenqing

    2012-01-01

    In this study,a 3D virtual reality and visualization engine for rendering the ocean,named VV-Ocean,is designed for marine applications.The design goals of VV-Ocean aim at high fidelity simulation of ocean environment,visualization of massive and multidimensional marine data,and imitation of marine lives.VV-Ocean is composed of five modules,i.e.memory management module,resources management module,scene management module,rendering process management module and interaction management module.There are three core functions in VV-Ocean:reconstructing vivid virtual ocean scenes,visualizing real data dynamically in real time,imitating and simulating marine lives intuitively.Based on VV-Ocean,we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface.Environment factors such as ocean current and wind field have been considered in this simulation.On this platform oil spilling process can be abstracted as movements of abundant oil particles.The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering.VV-Ocean can be widely used in ocean applications such as demonstrating marine operations,facilitating maritime communications,developing ocean games,reducing marine hazards,forecasting the weather over oceans,serving marine tourism,and so on.Finally,further technological improvements of VV-Ocean are discussed.

  16. Clinical anatomy and 3D virtual reconstruction of the lumbar plexus with respect to lumbar surgery

    Directory of Open Access Journals (Sweden)

    Ding Zi-hai

    2011-04-01

    Full Text Available Abstract Background Exposure of the anterior or lateral lumbar via the retroperitoneal approach easily causes injuries to the lumbar plexus. Lumbar plexus injuries which occur during anterior or transpsoas lumbar spine exposure and placement of instruments have been reported. This study aims is to provide more anatomical data and surgical landmarks in operations concerning the lumbar plexus in order to prevent lumbar plexus injuries and to increase the possibility of safety in anterior approach lumbar surgery. Methods To study the applied anatomy related to the lumbar plexus of fifteen formaldehyde-preserved cadavers, Five sets of Virtual Human (VH data set were prepared and used in the study. Three-dimensional (3D computerized reconstructions of the lumbar plexus and their adjacent structures were conducted from the VH female data set. Results The order of lumbar nerves is regular. From the anterior view, lumbar plexus nerves are arranged from medial at L5 to lateral at L2. From the lateral view, lumbar nerves are arranged from ventral at L2 to dorsal at L5. The angle of each nerve root exiting outward to the corresponding intervertebral foramen increases from L1 to L5. The lumbar plexus nerves are observed to be in close contact with transverse processes (TP. All parts of the lumbar plexus were located by sectional anatomy in the dorsal third of the psoas muscle. Thus, access to the psoas major muscle at the ventral 2/3 region can safely prevent nerve injuries. 3D reconstruction of the lumbar plexus based on VCH data can clearly show the relationships between the lumbar plexus and the blood vessels, vertebral body, kidney, and psoas muscle. Conclusion The psoas muscle can be considered as a surgical landmark since incision at the ventral 2/3 of the region can prevent lumbar plexus injuries for procedures requiring exposure of the lateral anterior of the lumbar. The transverse process can be considered as a landmark and reference in surgical

  17. Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints.

    Science.gov (United States)

    Awale, Mahendra; Jin, Xian; Reymond, Jean-Louis

    2015-01-01

    Tools to explore large compound databases in search for analogs of query molecules provide a strategically important support in drug discovery to help identify available analogs of any given reference or hit compound by ligand based virtual screening (LBVS). We recently showed that large databases can be formatted for very fast searching with various 2D-fingerprints using the city-block distance as similarity measure, in particular a 2D-atom pair fingerprint (APfp) and the related category extended atom pair fingerprint (Xfp) which efficiently encode molecular shape and pharmacophores, but do not perceive stereochemistry. Here we investigated related 3D-atom pair fingerprints to enable rapid stereoselective searches in the ZINC database (23.2 million 3D structures). Molecular fingerprints counting atom pairs at increasing through-space distance intervals were designed using either all atoms (16-bit 3DAPfp) or different atom categories (80-bit 3DXfp). These 3D-fingerprints retrieved molecular shape and pharmacophore analogs (defined by OpenEye ROCS scoring functions) of 110,000 compounds from the Cambridge Structural Database with equal or better accuracy than the 2D-fingerprints APfp and Xfp, and showed comparable performance in recovering actives from decoys in the DUD database. LBVS by 3DXfp or 3DAPfp similarity was stereoselective and gave very different analogs when starting from different diastereomers of the same chiral drug. Results were also different from LBVS with the parent 2D-fingerprints Xfp or APfp. 3D- and 2D-fingerprints also gave very different results in LBVS of folded molecules where through-space distances between atom pairs are much shorter than topological distances. 3DAPfp and 3DXfp are suitable for stereoselective searches for shape and pharmacophore analogs of query molecules in large databases. Web-browsers for searching ZINC by 3DAPfp and 3DXfp similarity are accessible at www.gdb.unibe.ch and should provide useful assistance to drug

  18. Diseño de un Modelo 3D del Politécnico Colombiano Jaime Isaza Cadavid con Realidad Virtual Design of a 3D Model with Virtual Reality of the Colombian Polytechnic Institute Jaime Isaza Cadavid

    Directory of Open Access Journals (Sweden)

    Sandra P Mateus

    2012-01-01

    Full Text Available Este trabajo muestra el desarrollo de un Entorno Virtual de la Sede Poblado del Politécnico Colombiano Jaime Isaza Cadavid, utilizando técnicas de realidad virtual. Esto con el fin de obtener un modelo de la planta física de la Institución que proyecte su imagen, a través de una interfaz gráfica amigable basada en tecnología 3D. El trabajo fue realizado en las siguientes etapas: i caracterización de la planta física y diseño del modelo virtual, par lo que se seleccionaron 3DMax y Maya de Autodesk entre varias herramientas de modelado 3D y Unity como motor gráfico; ii creación de mapas UV; y iii proceso de texturización. Los resultados del entorno virtual desarrollado permiten al usuario navegar por la institución e interactuar con los diferentes espacios como si estuviera en un videojuego.This work shows the development of a Virtual Environment of the campus Poblado of the Colombian Polytechnic Jaime Isaza Cadavid, using virtual reality techniques. This with the aim of obtaining a model of the physical plant of the institution to project its image through a friendly graphical interface based on 3D technology. The work was developed following three main steps: i characterization of the physical and virtual design of the model, for which 3DMax and Maya of Autodesk were selected among the several tools for 3D modeling and Unity as graphics engine; ii creation of UV mapping; and iii texturing process. The results of the proposed virtual environment allow the user to navigate around the institution and interact with the different spaces as done with a video-game.

  19. A simplified 2D to 3D video conversion technology——taking virtual campus video production as an example

    Directory of Open Access Journals (Sweden)

    ZHUANG Huiyang

    2012-10-01

    Full Text Available This paper describes a simplified 2D to 3D Video Conversion Technology, taking virtual campus 3D video production as an example. First, it clarifies the meaning of the 2D to 3D Video Conversion Technology, and points out the disadvantages of traditional methods. Second, it forms an innovative and convenient method. A flow diagram, software and hardware configurations are presented. Finally, detailed description of the conversion steps and precautions are given in turn to the three processes, namely, preparing materials, modeling objects and baking landscapes, recording screen and converting videos .

  20. Assessing the precision of gaze following using a stereoscopic 3D virtual reality setting.

    Science.gov (United States)

    Atabaki, Artin; Marciniak, Karolina; Dicke, Peter W; Thier, Peter

    2015-07-01

    Despite the ecological importance of gaze following, little is known about the underlying neuronal processes, which allow us to extract gaze direction from the geometric features of the eye and head of a conspecific. In order to understand the neuronal mechanisms underlying this ability, a careful description of the capacity and the limitations of gaze following at the behavioral level is needed. Previous studies of gaze following, which relied on naturalistic settings have the disadvantage of allowing only very limited control of potentially relevant visual features guiding gaze following, such as the contrast of iris and sclera, the shape of the eyelids and--in the case of photographs--they lack depth. Hence, in order to get full control of potentially relevant features we decided to study gaze following of human observers guided by the gaze of a human avatar seen stereoscopically. To this end we established a stereoscopic 3D virtual reality setup, in which we tested human subjects' abilities to detect at which target a human avatar was looking at. Following the gaze of the avatar showed all the features of the gaze following of a natural person, namely a substantial degree of precision associated with a consistent pattern of systematic deviations from the target. Poor stereo vision affected performance surprisingly little (only in certain experimental conditions). Only gaze following guided by targets at larger downward eccentricities exhibited a differential effect of the presence or absence of accompanying movements of the avatar's eyelids and eyebrows.

  1. EFFECTIVE 3D DIGITIZATION OF ARCHAEOLOGICAL ARTIFACTS FOR INTERACTIVE VIRTUAL MUSEUM

    Directory of Open Access Journals (Sweden)

    G. Tucci

    2012-09-01

    Full Text Available This paper presents a set of results of an on-going research on digital 3D reproduction of medium and small size archaeological artifacts which is intended to support the elaboration of a virtual and interactive exhibition environment, and also to provide a scientific archive of highly accurate models for specialists. After a short illustration of the background project and its finalities, we present the data acquisition through triangulation-based laser scanning and the post-processing methods we used to face the challenge of obtaining a large number of reliable digital copies at reasonable costs and within a short time frame, giving an account of the most recurrent problematic issues of the established work-flow and how they were solved (the careful placing of the artifacts to be digitized so to achieve the best results, the cleaning operations in order to build a coherent single polygon mesh, how to deal with unavoidable missing parts or defected textures in the generated model, etc..

  2. Assessing endocranial variations in great apes and humans using 3D data from virtual endocasts.

    Science.gov (United States)

    Bienvenu, Thibaut; Guy, Franck; Coudyzer, Walter; Gilissen, Emmanuel; Roualdès, Georges; Vignaud, Patrick; Brunet, Michel

    2011-06-01

    Modern humans are characterized by their large, complex, and specialized brain. Human brain evolution can be addressed through direct evidence provided by fossil hominid endocasts (i.e. paleoneurology), or through indirect evidence of extant species comparative neurology. Here we use the second approach, providing an extant comparative framework for hominid paleoneurological studies. We explore endocranial size and shape differences among great apes and humans, as well as between sexes. We virtually extracted 72 endocasts, sampling all extant great ape species and modern humans, and digitized 37 landmarks on each for 3D generalized Procrustes analysis. All species can be differentiated by their endocranial shape. Among great apes, endocranial shapes vary from short (orangutans) to long (gorillas), perhaps in relation to different facial orientations. Endocranial shape differences among African apes are partly allometric. Major endocranial traits distinguishing humans from great apes are endocranial globularity, reflecting neurological reorganization, and features linked to structural responses to posture and bipedal locomotion. Human endocasts are also characterized by posterior location of foramina rotunda relative to optic canals, which could be correlated to lesser subnasal prognathism compared to living great apes. Species with larger brains (gorillas and humans) display greater sexual dimorphism in endocranial size, while sexual dimorphism in endocranial shape is restricted to gorillas, differences between males and females being at least partly due to allometry. Our study of endocranial variations in extant great apes and humans provides a new comparative dataset for studies of fossil hominid endocasts.

  3. A Fast Multipole Algorithm with Virtual Cube Partitioning for 3-D Capacitance Extraction

    Institute of Scientific and Technical Information of China (English)

    YANGZhaozhi; WANGZeyi

    2004-01-01

    In this paper a fast indirect boundaryelement method based on the multipole algorithm for capacitance extraction of three-dimensional (3-D) geometries, virtual cube multipole algorithm, is described. First,each 2-D boundary element is regarded as a set of particles with charge rather than a single particle, so the relations between the positions of elements themselves are considered instead of the relations between the center-points of the elements, and a new strategy for cube partitioning is introduced. This strategy overcomes the inadequacy of the methods that associating panels to particles, does not need to break up every panel contained in more than one cube, and has higher speed and precision. Next, a new method is proposed to accelerate the potential integration between the panels that are near to each other. Making good use of the similarity in the 2-D boundary integration,the fast potential integral approach decreases the burden of direct potential computing. Experiments confirm that the algorithm is accurate and has nearly linear computational growth as O(nm), where n is the number of panels and rn is the number of conductors. The new algorithm is implemented and the performance is compared with previous algorithms, such as Fastcap2 of MIT, for k×k bus examples.

  4. The Interactorium: visualising proteins, complexes and interaction networks in a virtual 3-D cell.

    Science.gov (United States)

    Widjaja, Yose Y; Pang, Chi Nam Ignatius; Li, Simone S; Wilkins, Marc R; Lambert, Tim D

    2009-12-01

    Here, we describe the Interactorium, a tool in which a Virtual Cell is used as the context for the seamless visualisation of the yeast protein interaction network, protein complexes and protein 3-D structures. The tool has been designed to display very complex networks of up to 40 000 proteins or 6000 multiprotein complexes and has a series of toolboxes and menus to allow real-time data manipulation and control the manner in which data are displayed. It incorporates new algorithms that reduce the complexity of the visualisation by the generation of putative new complexes from existing data and by the reduction of edges through the use of protein "twins" when they occur in multiple locations. Since the Interactorium permits multi-level viewing of the molecular biology of the cell, it is a considerable advance over existing approaches. We illustrate its use for Saccharomyces cerevisiae but note that it will also be useful for the analysis of data from simpler prokaryotes and higher eukaryotes, including humans. The Interactorium is available for download at http://www.interactorium.net.

  5. 虚拟现实模型语言在Web仿真中的应用%Virtual Reality Modeling Language Use for Web-Based Simulation

    Institute of Scientific and Technical Information of China (English)

    何敏; 吕崇德

    2001-01-01

    The Vhmal Reality Modeling Language (VRML), VRML programming and its application to Web-based simulation are introduced. And VRMl/Java future developments are also examined. VRML provides a standardized, portable and platform-independent way to render dynamic, interactive three-dimensional (3D) scenes across the Intemet. Integrating with Java, it provides interactive 3D graphics, completed programming capabilities, dstabase access, real-time, multi-lhreads and network access. These technologies are widely used in Web-based simulation.%介绍了虚拟现实模型语言(VRML)、VRML编程以及它在Web仿真中的应用,并分析了它未来的发展前景。VRML不仅为实现Internet上动态的、交互的三维场景提供了标准的、合适的、平台无关的描述方法,它和Java语言的集成,为实现交互的3D图形、强大的编程能力、VRML与数据库交互、实时性、多线程和网络访问等提供了可能。这些技术,正广泛地应用于Web仿真中。

  6. A 3-D Virtual Reality Model of the Sun and the Moon for E-Learning at Elementary Schools

    Science.gov (United States)

    Sun, Koun-Tem; Lin, Ching-Ling; Wang, Sheng-Min

    2010-01-01

    The relative positions of the sun, moon, and earth, their movements, and their relationships are abstract and difficult to understand astronomical concepts in elementary school science. This study proposes a three-dimensional (3-D) virtual reality (VR) model named the "Sun and Moon System." This e-learning resource was designed by…

  7. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    NARCIS (Netherlands)

    Swennen, G.R.; Mommaerts, M.Y.; Abeloos, J.V.S.; Clercq, C. De; Lamoral, P.; Neyt, N.; Casselman, J.W.; Schutyser, F.A.C.

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a mod

  8. Virtual reality 3D echocardiography in the assessment of tricuspid valve function after surgical closure of ventricular septal defect

    NARCIS (Netherlands)

    G. Bol-Raap (Goris); A.H.J. Koning (Anton); T.V. Scohy (Thierry); A.D.J. ten Harkel (Arend); F.J. Meijboom (Folkert); A.P. Kappetein (Arie Pieter); P.J. van der Spek (Peter); A.J.J.C. Bogers (Ad)

    2007-01-01

    textabstractBackground. This study was done to investigate the potential additional role of virtual reality, using three-dimensional (3D) echocardiographic holograms, in the postoperative assessment of tricuspid valve function after surgical closure of ventricular septal defect (VSD). Methods. 12 da

  9. Virtual surgical planning and 3D printing in prosthetic orbital reconstruction with percutaneous implants: a technical case report.

    Science.gov (United States)

    Huang, Yu-Hui; Seelaus, Rosemary; Zhao, Linping; Patel, Pravin K; Cohen, Mimis

    2016-01-01

    Osseointegrated titanium implants to the cranial skeleton for retention of facial prostheses have proven to be a reliable replacement for adhesive systems. However, improper placement of the implants can jeopardize prosthetic outcomes, and long-term success of an implant-retained prosthesis. Three-dimensional (3D) computer imaging, virtual planning, and 3D printing have become accepted components of the preoperative planning and design phase of treatment. Computer-aided design and computer-assisted manufacture that employ cone-beam computed tomography data offer benefits to patient treatment by contributing to greater predictability and improved treatment efficiencies with more reliable outcomes in surgical and prosthetic reconstruction. 3D printing enables transfer of the virtual surgical plan to the operating room by fabrication of surgical guides. Previous studies have shown that accuracy improves considerably with guided implantation when compared to conventional template or freehand implant placement. This clinical case report demonstrates the use of a 3D technological pathway for preoperative virtual planning through prosthesis fabrication, utilizing 3D printing, for a patient with an acquired orbital defect that was restored with an implant-retained silicone orbital prosthesis.

  10. Superimposing of virtual graphics and real image based on 3D CAD information

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Proposes methods of transforming 3D CAD models into 2D graphics and recognizing 3D objects by features and superimposing VE built in computer onto real image taken by a CCD camera, and presents computer simulation results.

  11. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    Science.gov (United States)

    Swennen, G R J; Mommaerts, M Y; Abeloos, J; De Clercq, C; Lamoral, P; Neyt, N; Casselman, J; Schutyser, F

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a modified wax bite wafer to augment the 3D virtual skull model with a detailed dental surface. The impressions of the dental arches and the wax bite wafer were scanned for ten patient separately using a high resolution standardized CBCT scanning protocol. Surface-based rigid registration using ICP (iterative closest points) was used to fit the virtual models on the wax bite wafer. Automatic rigid point-based registration of the wax bite wafer on the patient scan was performed to implement the digital virtual dental arches into the patient's skull model. Probability error histograms showed errors of wax bite wafer to set-up a 3D virtual augmented model of the skull with detailed dental surface.

  12. Development of real-time motion capture system for 3D on-line games linked with virtual character

    Science.gov (United States)

    Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck

    2004-10-01

    Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.

  13. Virtual surgical planning and 3D printing in prosthetic orbital reconstruction with percutaneous implants: a technical case report

    Directory of Open Access Journals (Sweden)

    Huang Y

    2016-10-01

    Full Text Available Yu-Hui Huang,1,2 Rosemary Seelaus,1,2 Linping Zhao,1,2 Pravin K Patel,1,2 Mimis Cohen1,2 1The Craniofacial Center, Department of Surgery, Division of Plastic & Reconstructive Surgery, University of Illinois Hospital & Health Sciences System, 2University of Illinois College of Medicine at Chicago, Chicago, IL, USA Abstract: Osseointegrated titanium implants to the cranial skeleton for retention of facial prostheses have proven to be a reliable replacement for adhesive systems. However, improper placement of the implants can jeopardize prosthetic outcomes, and long-term success of an implant-retained prosthesis. Three-dimensional (3D computer imaging, virtual planning, and 3D printing have become accepted components of the preoperative planning and design phase of treatment. Computer-aided design and computer-assisted manufacture that employ cone-beam computed tomography data offer benefits to patient treatment by contributing to greater predictability and improved treatment efficiencies with more reliable outcomes in surgical and prosthetic reconstruction. 3D printing enables transfer of the virtual surgical plan to the operating room by fabrication of surgical guides. Previous studies have shown that accuracy improves considerably with guided implantation when compared to conventional template or freehand implant placement. This clinical case report demonstrates the use of a 3D technological pathway for preoperative virtual planning through prosthesis fabrication, utilizing 3D printing, for a patient with an acquired orbital defect that was restored with an implant-retained silicone orbital prosthesis. Keywords: computer-assisted surgery, virtual surgical planning (VSP, 3D printing, orbital prosthetic reconstruction, craniofacial implants

  14. VIRTUAL ANTI-BULLYING VILLAGE PROJECT FOR COPING WITH BULLYING AND CYBERBULLYING WITHIN A 3D VIRTUAL LEARNING ENVIRONMENT: EVALUATION RESEARCH

    OpenAIRE

    Dorit Olenik Shemesh; Tali Heiman, Eyal Rabin

    2014-01-01

    The current study aims to evaluate the implementation of a unique educational project- The Virtual Anti-Bullying Village for Kids and Teens (ABV4KIDS) that was designed and operated by the European Commission. A 3D virtual environment as an innovative, international project for adolescents, focused on knowledge acquisition and new ways of coping with bullying and cyberbullying. Sixty seventh graders-Israeli adolescents-completed five questionnaires before and after the project to assess its i...

  15. Hsp90 inhibitors, part 1: definition of 3-D QSAutogrid/R models as a tool for virtual screening.

    Science.gov (United States)

    Ballante, Flavio; Caroli, Antonia; Wickersham, Richard B; Ragno, Rino

    2014-03-24

    The multichaperone heat shock protein (Hsp) 90 complex mediates the maturation and stability of a variety of oncogenic signaling proteins. For this reason, Hsp90 has emerged as a promising target for anticancer drug development. Herein, we describe a complete computational procedure for building several 3-D QSAR models used as a ligand-based (LB) component of a comprehensive ligand-based (LB) and structure-based (SB) virtual screening (VS) protocol to identify novel molecular scaffolds of Hsp90 inhibitors. By the application of the 3-D QSAutogrid/R method, eight SB PLS 3-D QSAR models were generated, leading to a final multiprobe (MP) 3-D QSAR pharmacophoric model capable of recognizing the most significant chemical features for Hsp90 inhibition. Both the monoprobe and multiprobe models were optimized, cross-validated, and tested against an external test set. The obtained statistical results confirmed the models as robust and predictive to be used in a subsequent VS.

  16. Toward real-time endoscopically-guided robotic navigation based on a 3D virtual surgical field model

    Science.gov (United States)

    Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.

    2015-03-01

    The challenge is to accurately guide the surgical tool within the three-dimensional (3D) surgical field for roboticallyassisted operations such as tumor margin removal from a debulked brain tumor cavity. The proposed technique is 3D image-guided surgical navigation based on matching intraoperative video frames to a 3D virtual model of the surgical field. A small laser-scanning endoscopic camera was attached to a mock minimally-invasive surgical tool that was manipulated toward a region of interest (residual tumor) within a phantom of a debulked brain tumor. Video frames from the endoscope provided features that were matched to the 3D virtual model, which were reconstructed earlier by raster scanning over the surgical field. Camera pose (position and orientation) is recovered by implementing a constrained bundle adjustment algorithm. Navigational error during the approach to fluorescence target (residual tumor) is determined by comparing the calculated camera pose to the measured camera pose using a micro-positioning stage. From these preliminary results, computation efficiency of the algorithm in MATLAB code is near real-time (2.5 sec for each estimation of pose), which can be improved by implementation in C++. Error analysis produced 3-mm distance error and 2.5 degree of orientation error on average. The sources of these errors come from 1) inaccuracy of the 3D virtual model, generated on a calibrated RAVEN robotic platform with stereo tracking; 2) inaccuracy of endoscope intrinsic parameters, such as focal length; and 3) any endoscopic image distortion from scanning irregularities. This work demonstrates feasibility of micro-camera 3D guidance of a robotic surgical tool.

  17. A Method for Teaching the Modeling of Manikins Suitable for Third-Person 3-D Virtual Worlds and Games

    Directory of Open Access Journals (Sweden)

    Nick V. Flor

    2012-08-01

    Full Text Available Virtual Worlds have the potential to transform the way people learn, work, and play. With the emerging fields of service science and design science, professors and students at universities are in a unique position to lead the research and development of innovative and value-adding virtual worlds. However, a key barrier in the development of virtual worlds—especially for business, technical, and non-artistic students—is the ability to model human figures in 3-D for use as avatars and automated characters in virtual worlds. There are no articles in either research or teaching journals which describe methods that non-artists can use to create 3-D human figures. This paper presents a repeatable and flexible method I have taught successfully to both artists and business students, which allows them to quickly model human-like figures (manikins that are sufficient for prototype purposes and that allows students and researchers alike to explore the development of new kinds of virtual worlds.

  18. A 3D model of SARS_CoV 3CL proteinase and its inhibitors design by virtual screening

    Institute of Scientific and Technical Information of China (English)

    LUOCheng; CHENJing; LUOHai-Bin; CHENLi-Li; LIGuo-Wei; SUNTao; YUChang-Ying; YUELi-Duo; SHENJian-Hua; JIANGHua-Liang; XIONGBin; GUIChun-Shan; XUXiao-Ying; DUANWen-Hu; SHENJing-Kang; QINLei; SHITi-Liu; LIYi-Xue; CHENKai-Xian; LUOXiao-Min; SHENXu

    2003-01-01

    AIM:To constructed a three-dimensional (3D) model for the 3C like (3CL) proteinase of SARS coronavirus (SARS_CoV), and to design inhibitors of the 3CL proteinase based on the 3D model. METHODS: Bioinformatics analyses were performed to search the homologous proteins of the SARS_CoV 3CL proteinase from the GenBank and PDB database. A 3D model of the proteinase was constructed by using homology modeling technique. Targeting to the 3D model and its X-ray crystal structure of the main proteinase (Mpro) of transmissible gastroenteritis virus(TGEV), virtual screening was performed employing molecular docking method to identify possible 3CL proteinase inhibitors from small molecular databases. RESULTS:Sequence alignment indicated that the SARS_CoV 3CL proteinase was extremely homologous to TGEV Mpro, especially the substrate-binding pocket (active site). Accordingly, a 3D model for the SARS_CoV 3CL proteinase was constructed based on the crystal structure of TGEV Mpro. The 3D model adopts a similar fold of the TGEV mpro, its structure and binding pocket feature are almost as same as that of TGEV Mpro. The tested virtual screening indicated that 73 available proteinase inhibitors in the MDDR database might dock into both the binding pockets of the TGEV Mpro and the SARS_CoV 3CL proteinase. CONCLUSIONS:Either the 3D model of the SARS_CoV 3CL proteinase or the X-ray crystal stucture of the TGEV Mpro may be used as a starting point for design anti-SARS drugs. Screening the known proteinase inhibitors may be an appreciated shortcut to discover anti-SARS drugs.

  19. Virtual animation of victim-specific 3D models obtained from CT scans for forensic reconstructions: Living and dead subjects.

    Science.gov (United States)

    Villa, C; Olsen, K B; Hansen, S H

    2017-09-01

    Post-mortem CT scanning (PMCT) has been introduced at several forensic medical institutions many years ago and has proved to be a useful tool. 3D models of bones, skin, internal organs and bullet paths can rapidly be generated using post-processing software. These 3D models reflect the individual physiognomics and can be used to create whole-body 3D virtual animations. In such way, virtual reconstructions of the probable ante-mortem postures of victims can be constructed and contribute to understand the sequence of events. This procedure is demonstrated in two victims of gunshot injuries. Case #1 was a man showing three perforating gunshot wounds, who died due to the injuries of the incident. Whole-body PMCT was performed and 3D reconstructions of bones, relevant internal organs and bullet paths were generated. Using 3ds Max software and a human anatomy 3D model, a virtual animated body was built and probable ante-mortem postures visualized. Case #2 was a man presenting three perforating gunshot wounds, who survived the incident: one in the left arm and two in the thorax. Only CT scans of the thorax, abdomen and the injured arm were provided by the hospital. Therefore, a whole-body 3D model reflecting the anatomical proportions of the patient was made combining the actual bones of the victim with those obtained from the human anatomy 3D model. The resulted 3D model was used for the animation process. Several probable postures were also visualized in this case. It has be shown that in Case #1 the lesions and the bullet path were not consistent with an upright standing position; instead, the victim was slightly bent forward, i.e. he was sitting or running when he was shot. In Case #2, one of the bullets could have passed through the arm and continued into the thorax. In conclusion, specialized 3D modelling and animation techniques allow for the reconstruction of ante-mortem postures based on both PMCT and clinical CT. Copyright © 2017 Elsevier B.V. All rights

  20. User requirements for geo-collaborative work with spatio-temporal data in a web-based virtual globe environment.

    Science.gov (United States)

    Yovcheva, Zornitza; van Elzakker, Corné P J M; Köbben, Barend

    2013-11-01

    Web-based tools developed in the last couple of years offer unique opportunities to effectively support scientists in their effort to collaborate. Communication among environmental researchers often involves not only work with geographical (spatial), but also with temporal data and information. Literature still provides limited documentation when it comes to user requirements for effective geo-collaborative work with spatio-temporal data. To start filling this gap, our study adopted a User-Centered Design approach and first explored the user requirements of environmental researchers working on distributed research projects for collaborative dissemination, exchange and work with spatio-temporal data. Our results show that system design will be mainly influenced by the nature and type of data users work with. From the end-users' perspective, optimal conversion of huge files of spatio-temporal data for further dissemination, accuracy of conversion, organization of content and security have a key role for effective geo-collaboration.

  1. OptiRad 3D, a tool for radioprotection optimization in virtual reality; OptiRad 3D outil d'optimisation de la radioprotection en realite virtuelle

    Energy Technology Data Exchange (ETDEWEB)

    Bindel, L. [Societe MILLENNIUM, groupe NUVI A, 15 avenue du Quebec, 91140 Villebon- sur-Yvette (France); Dougniaux, G. [Ecole Nationale Superieure de Physique de Strasbourg, Pole API Bd Sebastien Brant, 67400 Illkirch Graffenstaden (France)

    2010-07-01

    Brief presentation of OptiRad 3D, a virtual reality software for the assessment of occupational dose during maintenance, decontamination or dismantling operations in a basic nuclear installation. It comprises a 3D engine, the ability to introduce corrections by cumulative factors, and several functionalities organized in as many modes

  2. Using virtual reality technology and hand tracking technology to create software for training surgical skills in 3D game

    Science.gov (United States)

    Zakirova, A. A.; Ganiev, B. A.; Mullin, R. I.

    2015-11-01

    The lack of visible and approachable ways of training surgical skills is one of the main problems in medical education. Existing simulation training devices are not designed to teach students, and are not available due to the high cost of the equipment. Using modern technologies such as virtual reality and hands movements fixation technology we want to create innovative method of learning the technics of conducting operations in 3D game format, which can make education process interesting and effective. Creating of 3D format virtual simulator will allow to solve several conceptual problems at once: opportunity of practical skills improvement unlimited by the time without the risk for patient, high realism of environment in operational and anatomic body structures, using of game mechanics for information perception relief and memorization of methods acceleration, accessibility of this program.

  3. A Method of Calculating the 3D Coordinates on a Micro Object in a Virtual Micro-Operation System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simple method for calculating the 3D coordinates of points on a micro object in a multi-camera system is proposed. It simplifies the algorithms used in traditional computer vision system by eliminating the calculation of the CCD ( charge coupled device)camera parameters and the relative position between cameras, and using solid geometry in the calculation procedures instead of the calculation of the complex matrixes. The algorithm was used in the research of generating a virtual magnified 3D image of a micro object to be operated in a micro operation system, and the satisfactory results were obtained. The application in a virtual tele-operation system for a dexterous mechanical gripper is under test.

  4. Diseño de un Modelo 3D del Politécnico Colombiano Jaime Isaza Cadavid con Realidad Virtual Design of a 3D Model with Virtual Reality of the Colombian Polytechnic Institute Jaime Isaza Cadavid

    OpenAIRE

    Sandra P Mateus; Jorge E Giraldo

    2012-01-01

    Este trabajo muestra el desarrollo de un Entorno Virtual de la Sede Poblado del Politécnico Colombiano Jaime Isaza Cadavid, utilizando técnicas de realidad virtual. Esto con el fin de obtener un modelo de la planta física de la Institución que proyecte su imagen, a través de una interfaz gráfica amigable basada en tecnología 3D. El trabajo fue realizado en las siguientes etapas: i) caracterización de la planta física y diseño del modelo virtual, par lo que se seleccionaron 3DMax y Maya de Aut...

  5. Design of a 3D virtual geographic interface for access to geoinformatin in real time

    DEFF Research Database (Denmark)

    Bodum, Lars

    2004-01-01

    region struck this part of Denmark at it has struck many other places in Europe and around the world. At about the same time the first ideas about a virtual geographic interface was initiated and launched as one of the projects at the newly build Virtual Reality Centre of Aalborg University. Later named...

  6. Virtual animation of victim-specific 3D models obtained from CT scans for forensic reconstructions

    DEFF Research Database (Denmark)

    Villa, C; Olsen, K B; Hansen, S H

    2017-01-01

    the anatomical proportions of the patient was made combining the actual bones of the victim with those obtained from the human anatomy 3D model. The resulted 3D model was used for the animation process. Several probable postures were also visualized in this case. It has be shown that in Case #1 the lesions...... and the bullet path were not consistent with an upright standing position; instead, the victim was slightly bent forward, i.e. he was sitting or running when he was shot. In Case #2, one of the bullets could have passed through the arm and continued into the thorax. In conclusion, specialized 3D modelling...

  7. On the Usability and Usefulness of 3d (geo)visualizations - a Focus on Virtual Reality Environments

    Science.gov (United States)

    Çöltekin, A.; Lokka, I.; Zahner, M.

    2016-06-01

    Whether and when should we show data in 3D is an on-going debate in communities conducting visualization research. A strong opposition exists in the information visualization (Infovis) community, and seemingly unnecessary/unwarranted use of 3D, e.g., in plots, bar or pie charts, is heavily criticized. The scientific visualization (Scivis) community, on the other hand, is more supportive of the use of 3D as it allows `seeing' invisible phenomena, or designing and printing things that are used in e.g., surgeries, educational settings etc. Geographic visualization (Geovis) stands between the Infovis and Scivis communities. In geographic information science, most visuo-spatial analyses have been sufficiently conducted in 2D or 2.5D, including analyses related to terrain and much of the urban phenomena. On the other hand, there has always been a strong interest in 3D, with similar motivations as in Scivis community. Among many types of 3D visualizations, a popular one that is exploited both for visual analysis and visualization is the highly realistic (geo)virtual environments. Such environments may be engaging and memorable for the viewers because they offer highly immersive experiences. However, it is not yet well-established if we should opt to show the data in 3D; and if yes, a) what type of 3D we should use, b) for what task types, and c) for whom. In this paper, we identify some of the central arguments for and against the use of 3D visualizations around these three considerations in a concise interdisciplinary literature review.

  8. Dynamic, ecological, accessible and 3D Virtual Worlds-based Libraries using OpenSim and Sloodle along with mobile location and NFC for checking in

    Directory of Open Access Journals (Sweden)

    Ruben Gonzalez Crespo

    2012-12-01

    Full Text Available This paper proposes the implementation of a 3D virtual library, using open platforms such as OpenSimulator and Sloodle, applied to the integration of virtual learning environments. It also proposes their application to the creation of open libraries to share and disseminate the new dynamic nature of knowledge, in the understanding that 3D virtual worlds may contribute to the future of libraries as part of green initiatives to achieve an ecologic and sustainable planet.

  9. ASK4Labs: A Web-Based Repository for Supporting Learning Design Driven Remote and Virtual Labs Recommendations

    Science.gov (United States)

    Zervas, Panagiotis; Fiskilis, Stefanos; Sampson, Demetrios G.

    2014-01-01

    Over the past years, Remote and Virtual Labs (RVLs) have gained increased attention for their potential to support technology-enhanced science education by enabling science teachers to improve their day-to-day science teaching. Therefore, many educational institutions and scientific organizations have invested efforts for providing online access…

  10. 3D Interactions between Virtual Worlds and Real Life in an E-Learning Community

    Directory of Open Access Journals (Sweden)

    Ulrike Lucke

    2011-01-01

    Full Text Available Virtual worlds became an appealing and fascinating component of today's internet. In particular, the number of educational providers that see a potential for E-Learning in such new platforms increases. Unfortunately, most of the environments and processes implemented up to now do not exceed a virtual modelling of real-world scenarios. In particular, this paper shows that Second Life can be more than just another learning platform. A flexible and bidirectional link between the reality and the virtual world enables synchronous and seamless interaction between users and devices across both worlds. The primary advantages of this interconnection are a spatial extension of face-to-face and online learning scenarios and a closer relationship between virtual learners and the real world.

  11. Using a 3D Virtual Supermarket to Measure Food Purchase Behavior: A Validation Study

    Science.gov (United States)

    Jiang, Yannan; Steenhuis, Ingrid Hendrika Margaretha; Ni Mhurchu, Cliona

    2015-01-01

    Background There is increasing recognition that supermarkets are an important environment for health-promoting interventions such as fiscal food policies or front-of-pack nutrition labeling. However, due to the complexities of undertaking such research in the real world, well-designed randomized controlled trials on these kinds of interventions are lacking. The Virtual Supermarket is a 3-dimensional computerized research environment designed to enable experimental studies in a supermarket setting without the complexity or costs normally associated with undertaking such research. Objective The primary objective was to validate the Virtual Supermarket by comparing virtual and real-life food purchasing behavior. A secondary objective was to obtain participant feedback on perceived sense of “presence” (the subjective experience of being in one place or environment even if physically located in another) in the Virtual Supermarket. Methods Eligible main household shoppers (New Zealand adults aged ≥18 years) were asked to conduct 3 shopping occasions in the Virtual Supermarket over 3 consecutive weeks, complete the validated Presence Questionnaire Items Stems, and collect their real supermarket grocery till receipts for that same period. Proportional expenditure (NZ$) and the proportion of products purchased over 18 major food groups were compared between the virtual and real supermarkets. Data were analyzed using repeated measures mixed models. Results A total of 123 participants consented to take part in the study. In total, 69.9% (86/123) completed 1 shop in the Virtual Supermarket, 64.2% (79/123) completed 2 shops, 60.2% (74/123) completed 3 shops, and 48.8% (60/123) returned their real supermarket till receipts. The 4 food groups with the highest relative expenditures were the same for the virtual and real supermarkets: fresh fruit and vegetables (virtual estimate: 14.3%; real: 17.4%), bread and bakery (virtual: 10.0%; real: 8.2%), dairy (virtual: 19.1%; real

  12. A virtually imaged defocused array (VIDA) for high-speed 3D microscopy.

    Science.gov (United States)

    Schonbrun, Ethan; Di Caprio, Giuseppe

    2016-10-01

    We report a method to capture a multifocus image stack based on recording multiple reflections generated by imaging through a custom etalon. The focus stack is collected in a single camera exposure and consequently the information needed for 3D reconstruction is recorded in the camera integration time, which is only 100 µs. We have used the VIDA microscope to temporally resolve the multi-lobed 3D morphology of neutrophil nuclei as they rotate and deform through a microfluidic constriction. In addition, we have constructed a 3D imaging flow cytometer and quantified the nuclear morphology of nearly a thousand white blood cells flowing at a velocity of 3 mm per second. The VIDA microscope is compact and simple to construct, intrinsically achromatic, and the field-of-view and stack number can be easily reconfigured without redesigning diffraction gratings and prisms.

  13. Scalable, High-performance 3D Imaging Software Platform: System Architecture and Application to Virtual Colonoscopy

    OpenAIRE

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2012-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingl...

  14. Design of a 3D virtual geographic interface for access to geoinformatin in real time

    DEFF Research Database (Denmark)

    Bodum, Lars

    2004-01-01

    In 1999, the County of Northern Jutland in Denmark became a national project for implementation of Information & Communication Technology (ICT) in local government. It was supposed to become the Lighthouse for others in the implementation of ICT, elearning and e-democracy. The idea about a digital...... as VR Media Lab. The Centre for 3D GeoInformation was opened in 2001 and the main purpose of this facility is to extrude the region from 2D to 3D. Through the means of traditional geoinformation such as building footprints, geocoding, building and dwelling register and a DTM the region will be build...

  15. Expanding the Reach of Continuing Educational Offerings Through a Web-Based Virtual Network: The Experience of InspireNet.

    Science.gov (United States)

    Frisch, Noreen C; Atherton, Pat; Borycki, Elizabeth M; Mickelson, Grace; Black, Agnes; Novak Lauscher, Helen; Cordeiro, Jennifer

    2017-01-01

    Virtual platforms using webinars, e-posters, e-newsletters, wikis and blogs connect people who have common interests in new ways. When those individuals are healthcare providers, a professional network that operates on a virtual platform can support their needs for learning, professional development and information currency. The practice of e-learning for continuing professional development is emerging , particularly in nursing where shift work shift inhibits their ability to attend conferences and classes. This article reports the experience of the InspireNet network that provided e-learning models to: 1) provide opportunities for healthcare providers to organize themselves into learning communities through development of electronic communities of practice; 2) support learning on demand; and 3) dramatically increase the reach of educational offerings.

  16. Using a Web-Based Resource to Prepare Students for Fieldwork: Evaluating the Dark Peak Virtual Tour

    Science.gov (United States)

    McMorrow, Julia

    2005-01-01

    This paper reports on development of a Dark Peak website and its use to prepare first-year geography students for a one-day physical geography field course in the south Pennines. The Virtual Tour (VT) component of the website is the main focus of this paper. Pre- and post-fieldwork evaluations of the first version of the VT by 195 students are…

  17. Using a Web-Based Resource to Prepare Students for Fieldwork: Evaluating the Dark Peak Virtual Tour

    Science.gov (United States)

    McMorrow, Julia

    2005-01-01

    This paper reports on development of a Dark Peak website and its use to prepare first-year geography students for a one-day physical geography field course in the south Pennines. The Virtual Tour (VT) component of the website is the main focus of this paper. Pre- and post-fieldwork evaluations of the first version of the VT by 195 students are…

  18. High potency fish oil supplement improves omega-3 fatty acid status in healthy adults: an open-label study using a web-based, virtual platform.

    Science.gov (United States)

    Udani, Jay K; Ritz, Barry W

    2013-08-08

    The health benefits of omega-3 fatty acids from fish are well known, and fish oil supplements are used widely in a preventive manner to compensate the low intake in the general population. The aim of this open-label study was to determine if consumption of a high potency fish oil supplement could improve blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and impact SF-12 mental and physical health scores in healthy adults. A novel virtual clinical research organization was used along with the HS-Omega-3 Index, a measure of EPA and DHA in red blood cell membranes expressed as a percentage of total fatty acids that has been shown to correlate with a reduction in cardiovascular and other risk factors. Briefly, adult subjects (mean age 44 years) were recruited from among U.S. health food store employees and supplemented with 1.1 g/d of omega-3 from fish oil (756 mg EPA, 228 mg DHA, Minami Nutrition MorEPA Platinum) for 120 days (n = 157). Omega-3 status and mental health scores increased with supplementation (p virtual, web-based platform shows considerable potential for engaging in clinical research with normal, healthy subjects. A high potency fish oil supplement may further improve omega-3 status in a healthy population regularly consuming an omega-3 supplement.

  19. Source fields reconstruction with 3D mapping by means of the virtual acoustic volume concept

    Science.gov (United States)

    Forget, S.; Totaro, N.; Guyader, J. L.; Schaeffer, M.

    2016-10-01

    This paper presents the theoretical framework of the virtual acoustic volume concept and two related inverse Patch Transfer Functions (iPTF) identification methods (called u-iPTF and m-iPTF depending on the chosen boundary conditions for the virtual volume). They are based on the application of Green's identity on an arbitrary closed virtual volume defined around the source. The reconstruction of sound source fields combines discrete acoustic measurements performed at accessible positions around the source with the modal behavior of the chosen virtual acoustic volume. The mode shapes of the virtual volume can be computed by a Finite Element solver to handle the geometrical complexity of the source. As a result, it is possible to identify all the acoustic source fields at the real surface of an irregularly shaped structure and irrespective of its acoustic environment. The m-iPTF method is introduced for the first time in this paper. Conversely to the already published u-iPTF method, the m-iPTF method needs only acoustic pressure and avoids particle velocity measurements. This paper is focused on its validation, both with numerical computations and by experiments on a baffled oil pan.

  20. Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues

    KAUST Repository

    Cali, Corrado

    2015-07-14

    Advances for application of electron microscopy to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions (3D). From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis. Here, we review some currently available solutions and present our approach in detail. We use the fully immersive virtual reality (VR) environment CAVE (cave automatic virtual environment), a room where we are able to project a cellular reconstruction and visualize in 3D, to step into a world created with Blender, a free, fully customizable 3D modeling software with NeuroMorph plug-ins for visualization and analysis of electron microscopy (EM) preparations of brain tissue. Our workflow allows for full and fast reconstructions of volumes of brain neuropil using ilastik, a software tool for semiautomated segmentation of EM stacks. With this visualization environment, we can walk into the model containing neuronal and astrocytic processes to study the spatial distribution of glycogen granules, a major energy source that is selectively stored in astrocytes. The use of CAVE was key to observe a nonrandom distribution of glycogen, and led us to develop tools to quantitatively analyze glycogen clustering and proximity to other subcellular features. This article is protected by copyright. All rights reserved.

  1. Quality of Grasping and the Role of Haptics in a 3-D Immersive Virtual Reality Environment in Individuals With Stroke.

    Science.gov (United States)

    Levin, Mindy F; Magdalon, Eliane C; Michaelsen, Stella M; Quevedo, Antonio A F

    2015-11-01

    Reaching and grasping parameters with and without haptic feedback were characterized in people with chronic post-stroke behaviors. Twelve (67 ± 10 years) individuals with chronic stroke and arm/hand paresis (Fugl-Meyer Assessment-Arm: ≥ 46/66 pts) participated. Three dimensional (3-D) temporal and spatial kinematics of reaching and grasping movements to three objects (can: cylindrical grasp; screwdriver: power grasp; pen: precision grasp) in a physical environment (PE) with and without additional haptic feedback and a 3-D virtual environment (VE) with haptic feedback were recorded. Participants reached, grasped and transported physical and virtual objects using similar movement strategies in all conditions. Reaches made in VE were less smooth and slower compared to the PE. Arm and trunk kinematics were similar in both environments and glove conditions. For grasping, stroke subjects preserved aperture scaling to object size but used wider hand apertures with longer delays between times to maximal reaching velocity and maximal grasping aperture. Wearing the glove decreased reaching velocity. Our results in a small group of subjects suggest that providing haptic information in the VE did not affect the validity of reaching and grasping movement. Small disparities in movement parameters between environments may be due to differences in perception of object distance in VE. Reach-to-grasp kinematics to smaller objects may be improved by better 3-D rendering. Comparable kinematics between environments and conditions is encouraging for the incorporation of high quality VEs in rehabilitation programs aimed at improving upper limb recovery.

  2. Proteopedia: A Collaborative, Virtual 3D Web-Resource for Protein and Biomolecule Structure and Function

    Science.gov (United States)

    Hodis, Eran; Prilusky, Jaime, Sussman, Joel L.

    2010-01-01

    Protein structures are hard to represent on paper. They are large, complex, and three-dimensional (3D)--four-dimensional if conformational changes count! Unlike most of their substrates, which can easily be drawn out in full chemical formula, drawing every atom in a protein would usually be a mess. Simplifications like showing only the surface of…

  3. Virtual reality approach for 3D large model browsing on web site

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Using virtual reality for interactive design gives a designer an intuitive vision of a design and allows the designer to achieve a viable, optimal solution in a timely manner. The article discusses the process of making the Virtual Reality System of the Humble Administrator's Garden. Translating building data to the Virtual Reality Modeling Language (VRML) is by far unsatisfactory. This creates a challenge for computer designers to do optimization to meet requirements. Five different approaches to optimize models have been presented in this paper. The other methods are to optimize VRML and to reduce the file size. This is done by keeping polygon counts to a minimum and by applying such techniques as object culling and level-of-detail switching.

  4. 3DPublish: solución web para crear museos virtuales 3D dinámicos

    Directory of Open Access Journals (Sweden)

    P. Aguirrezabal

    2012-11-01

    aplicación 3DPublish que representa una alternativa a estas 2 soluciones estáticas ya que ofrece la posibilidad de gestionar dinámicamente un escenario 3D (real o virtual y las obras de arte que componen la exposición. 3DPublish proporciona además al usuario una experiencia realista a través de diferentes exposiciones, usando métodos que añaden valor como los visitas virtuales guiadas o la técnica de storytelling. 3DPublish facilitará las tareas diarias de los comisarios de los museos y mejorará el resultado final de las exposiciones de los muesos virtuales en 3D. Este artículo presentará también el caso de aplicación de la Sala Kubo en San Sebastián (ESPAÑA como ejemplo de un caso de uso de 3DPublish.

  5. The Input-Interface of Webcam Applied in 3D Virtual Reality Systems

    Science.gov (United States)

    Sun, Huey-Min; Cheng, Wen-Lin

    2009-01-01

    Our research explores a virtual reality application based on Web camera (Webcam) input-interface. The interface can replace with the mouse to control direction intention of a user by the method of frame difference. We divide a frame into nine grids from Webcam and make use of the background registration to compute the moving object. In order to…

  6. Special Section: New Ways to Detect Colon Cancer 3-D virtual screening now being used

    Science.gov (United States)

    ... organ, like the colon—and view it in virtual reality." Later, he and his team used it with anatomically detailed, three-dimensional representations of a cadaver (dead body) from the National Library of Medicine's Visible Human project (www.nlm.nih.gov). By ...

  7. The Input-Interface of Webcam Applied in 3D Virtual Reality Systems

    Science.gov (United States)

    Sun, Huey-Min; Cheng, Wen-Lin

    2009-01-01

    Our research explores a virtual reality application based on Web camera (Webcam) input-interface. The interface can replace with the mouse to control direction intention of a user by the method of frame difference. We divide a frame into nine grids from Webcam and make use of the background registration to compute the moving object. In order to…

  8. Collaboration and Knowledge Sharing Using 3D Virtual World on "Second Life"

    Science.gov (United States)

    Rahim, Noor Faridah A.

    2013-01-01

    A collaborative and knowledge sharing virtual activity on "Second Life" using a learner-centred teaching methodology was initiated between Temasek Polytechnic and The Hong Kong Polytechnic University (HK PolyU) in the October 2011 semester. This paper highlights the author's experience in designing and implementing this e-learning…

  9. An investigation of 3D images of the simultaneous-lightness-contrast illusion using a virtual-reality technique

    Directory of Open Access Journals (Sweden)

    Menshikova, G.Ya.

    2013-09-01

    Full Text Available This article investigates the problem of lightness perception. To clarify the role of depth in lightness perception two current models—the albedo hypothesis and the coplanar-ratio hypothesis—are discussed. To compare them the strength of the simultaneous-lightnesscontrast (SLC illusion was investigated as a function of three-dimensional (3D configurations of the test and background squares. In accordance with both hypotheses the changes in the depth arrangements of the test and background squares should result in changes in the illusory effect. However, the reasons for and the directions of these changes should be different. Five different types of 3D configurations were created in which the test squares were tilted at different angles to the background squares. A virtual-reality technique was used to present stereo pairs of different 3D configurations. Thirty-seven observers took part in the experiment. The method of constant stimuli was used to obtain psychometric functions. The displacements of these functions for 3D configurations in comparison with the 2D configuration allowed the estimation of illusion strength. The analysis of individual values of illusion strength revealed two groups of subjects. For the first group (38% of all participants the strength changed insignificantly depending on the 3D configurations. For the second group (62% of all participants significant differences were obtained for those configurations in which the test and background squares were perceived as differently illuminated. The changes in the SLC illusion strength for the second group were consistent with predictions made by the albedo hypothesis. Thus, it seems that the perceived illumination of a surface should be considered the main parameter for lightness estimations in 3D scenes.

  10. Towards a Transcription System of Sign Language for 3D Virtual Agents

    Science.gov (United States)

    Do Amaral, Wanessa Machado; de Martino, José Mario

    Accessibility is a growing concern in computer science. Since virtual information is mostly presented visually, it may seem that access for deaf people is not an issue. However, for prelingually deaf individuals, those who were deaf since before acquiring and formally learn a language, written information is often of limited accessibility than if presented in signing. Further, for this community, signing is their language of choice, and reading text in a spoken language is akin to using a foreign language. Sign language uses gestures and facial expressions and is widely used by deaf communities. To enabling efficient production of signed content on virtual environment, it is necessary to make written records of signs. Transcription systems have been developed to describe sign languages in written form, but these systems have limitations. Since they were not originally designed with computer animation in mind, in general, the recognition and reproduction of signs in these systems is an easy task only to those who deeply know the system. The aim of this work is to develop a transcription system to provide signed content in virtual environment. To animate a virtual avatar, a transcription system requires explicit enough information, such as movement speed, signs concatenation, sequence of each hold-and-movement and facial expressions, trying to articulate close to reality. Although many important studies in sign languages have been published, the transcription problem remains a challenge. Thus, a notation to describe, store and play signed content in virtual environments offers a multidisciplinary study and research tool, which may help linguistic studies to understand the sign languages structure and grammar.

  11. Identification of potential influenza virus endonuclease inhibitors through virtual screening based on the 3D-QSAR model.

    Science.gov (United States)

    Kim, J; Lee, C; Chong, Y

    2009-01-01

    Influenza endonucleases have appeared as an attractive target of antiviral therapy for influenza infection. With the purpose of designing a novel antiviral agent with enhanced biological activities against influenza endonuclease, a three-dimensional quantitative structure-activity relationships (3D-QSAR) model was generated based on 34 influenza endonuclease inhibitors. The comparative molecular similarity index analysis (CoMSIA) with a steric, electrostatic and hydrophobic (SEH) model showed the best correlative and predictive capability (q(2) = 0.763, r(2) = 0.969 and F = 174.785), which provided a pharmacophore composed of the electronegative moiety as well as the bulky hydrophobic group. The CoMSIA model was used as a pharmacophore query in the UNITY search of the ChemDiv compound library to give virtual active compounds. The 3D-QSAR model was then used to predict the activity of the selected compounds, which identified three compounds as the most likely inhibitor candidates.

  12. Between the Real and the Virtual: 3D visualization in the Cultural Heritage domain - expectations and prospects

    Directory of Open Access Journals (Sweden)

    Sorin Hermon

    2011-05-01

    Full Text Available The paper discusses two uses of 3D Visualization and Virtual Reality (hereafter VR of Cultural Heritage (CH assets: a less used one, in the archaeological / historical research and a more frequent one, as a communication medium in CH museums. While technological effort has been mainly invested in improving the “accuracy” of VR (determined as how truthfully it reproduces the “CH reality”, issues related to scientific requirements, (data transparency, separation between “real” and “virtual”, etc., are largely neglected, or at least not directly related to the 3D outcome, which may explain why, after more than twenty years of producing VR models, they are still rarely used in the archaeological research. The paper will present a proposal for developing VR tools as such as to be meaningful CH research tools as well as a methodology for designing VR outcomes to be used as a communication medium in CH museums.

  13. 3D virtual reconstruction and visualisation of the archaeological site Castellet de Bernabé (Llíria, Spain

    Directory of Open Access Journals (Sweden)

    Cristina Portalés

    2017-05-01

    Full Text Available 3D virtual reconstruction of cultural heritage is a useful tool to reach many goals: the accurate documentation of our tangible cultural legacy, the determination of mechanical alteration on the assets, or the mere shape acquisition prior to restoration and/or reconstruction works, etc. Among these goals, when planning and managing tourism enhancement of heritage sites, it demands setting up specific instruments and tools to guarantee both, the site conservation and the visitors’ satisfaction. Archaeological sites are physical witnesses of the past and an open window to research works and scientific discoveries, but usually, the major structures do no exist nowadays, and the general public takes long time and many efforts to elaborate a mental reconstruction of the volumetry and appearance from these remains. This mental reconstruction is essential to build up a storyline that communicates efficiently the archaeological and historic knowledge and awares the public about its conservation. To develop this process of awareness about conservation, heritage interpretation starts with the mental inmersion of the visitors in the archaeological site, what 3D reconstruction definitely helps to achieve. Different technologies exist nowadays for the3D reconstruction of assets, but when dealing with archaeological sites, the data acquisition requires alternative approaches to be used, as most part of the assets do not exist nowadays. In this work, we will deal with the virtual reconstruction and visualisation of the archaeological site Castellet de Bernabé by following a mixed approach (surveying techniques and archaeological research. We further give a methodology to process and merge the real and virtual data in order to create augmented views of the site.

  14. New Virtual Cutting Algorithms for 3D Surface Model Reconstructed from Medical Images

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-hong; QIN Xu-Jia

    2006-01-01

    This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model is cut by plane or polyhedron. Lists of edge and vertex in every cut plane are established. From these lists the boundary contours are created and their relationship of embrace is ascertained. The region closed by the contours is triangulated using Delaunay triangulation algorithm. Arbitrary cutting operation creates cutting curve interactively.The cut model still maintains its correct topology structure. With these operations,tissues inside can be observed easily and it can aid doctors to diagnose. The methods can also be used in surgery planning of radiotherapy.

  15. Virtual touch 3D interactive system for autostereoscopic display with embedded optical sensor

    Science.gov (United States)

    Huang, Yi-Pai; Wang, Guo-Zhen; Ma, Ming-Ching; Tung, Shang-Yu; Huang, Shu-Yi; Tseng, Hung-Wei; Kuo, Chung-Hong; Li, Chun-Huai

    2011-06-01

    The traidational 3D interactive sysetm which uses CCD camera to capture image is difficult to operate on near range for mobile applications.Therefore, 3D interactive display with embedded optical sensor was proposed. Based on optical sensor based system, we proposed four different methods to support differenct functions. T mark algorithm can obtain 5- axis information (x, y, z,θ, and φ)of LED no matter where LED was vertical or inclined to panel and whatever it rotated. Sequential mark algorithm and color filter based algorithm can support mulit-user. Finally, bare finger touch system with sequential illuminator can achieve to interact with auto-stereoscopic images by bare finger. Furthermore, the proposed methods were verified on a 4-inch panel with embedded optical sensors.

  16. An Interactive Tool for Analysis and Optimization of Texture Parameters in Photorealistic Virtual 3d Models

    Science.gov (United States)

    Sima, A. A.; Buckley, S. J.; Viola, I.

    2012-07-01

    Texture mapping is a common method for combining surface geometry with image data, with the resulting photorealistic 3D models being suitable not only for visualization purposes but also for interpretation and spatiameasurement, in many application fields, such as cultural heritage and the earth sciences. When acquiring images for creation of photorealistic models, it is usual to collect more data than is finally necessary for the texturing process. Images may be collected from multiple locations, sometimes with different cameras or lens configurations and large amounts of overlap may exist. Consequently, much redundancy may be present, requiring sorting to choose the most suitable images to texture the model triangles. This paper presents a framework for visualization and analysis of the geometric relations between triangles of the terrain model and covering image sets. The application provides decision support for selection of an image subset optimized for 3D model texturing purposes, for non-specialists. It aims to improve the communication of geometrical dependencies between model triangles and the available digital images, through the use of static and interactive information visualization methods. The tool was used for computer-aided selection of image subsets optimized for texturing of 3D geological outcrop models. The resulting textured models were of high quality and with a minimum of missing texture, and the time spent in time-consuming reprocessing was reduced. Anecdotal evidence indicated that an increased user confidence in the final textured model quality and completeness makes the framework highly beneficial.

  17. Amplified Head Rotation in Virtual Reality and the Effects on 3D Search, Training Transfer, and Spatial Orientation.

    Science.gov (United States)

    Ragan, Eric D; Scerbo, Siroberto; Bacim, Felipe; Bowman, Doug A

    2017-08-01

    Many types of virtual reality (VR) systems allow users to use natural, physical head movements to view a 3D environment. In some situations, such as when using systems that lack a fully surrounding display or when opting for convenient low-effort interaction, view control can be enabled through a combination of physical and virtual turns to view the environment, but the reduced realism could potentially interfere with the ability to maintain spatial orientation. One solution to this problem is to amplify head rotations such that smaller physical turns are mapped to larger virtual turns, allowing trainees to view the entire surrounding environment with small head movements. This solution is attractive because it allows semi-natural physical view control rather than requiring complete physical rotations or a fully-surrounding display. However, the effects of amplified head rotations on spatial orientation and many practical tasks are not well understood. In this paper, we present an experiment that evaluates the influence of amplified head rotation on 3D search, spatial orientation, and cybersickness. In the study, we varied the amount of amplification and also varied the type of display used (head-mounted display or surround-screen CAVE) for the VR search task. By evaluating participants first with amplification and then without, we were also able to study training transfer effects. The findings demonstrate the feasibility of using amplified head rotation to view 360 degrees of virtual space, but noticeable problems were identified when using high amplification with a head-mounted display. In addition, participants were able to more easily maintain a sense of spatial orientation when using the CAVE version of the application, which suggests that visibility of the user's body and awareness of the CAVE's physical environment may have contributed to the ability to use the amplification technique while keeping track of orientation.

  18. Rational drug design of antineoplastic agents using 3D-QSAR, cheminformatic, and virtual screening approaches.

    Science.gov (United States)

    Vucicevic, Jelica; Nikolic, Katarina; Mitchell, John B O

    2017-07-12

    Computer-Aided Drug Design has strongly accelerated the development of novel antineoplastic agents by helping in the hit identification, optimization, and evaluation. Computational approaches such as cheminformatic search, virtual screening, pharmacophore modeling, molecular docking and dynamics have been developed and applied to explain the activity of bioactive molecules, design novel agents, increase the success rate of drug research, and decrease the total costs of drug discovery. Similarity searches and virtual screening are used to identify molecules with an increased probability to interact with drug targets of interest, while the other computational approaches are applied for the design and evaluation of molecules with enhanced activity and improved safety profile. In this review are described the main in silico techniques used in rational drug design of antineoplastic agents and presented optimal combinations of computational methods for design of more efficient antineoplastic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Natural interaction in Virtual Environments for Cultural Heritage: Giotto in 3D and Etruscanning study cases

    Directory of Open Access Journals (Sweden)

    Eva Pietroni

    2012-11-01

    Full Text Available A basic limit of most of VR applications created by the scientific community and reproducing cultural sites or artefacts is that they do not fire up the attention of public, in comparison with the great potentialities of VR system for cultural transmission: they are often lacking in emotional storytelling and difficult to manage. An important factor is the need of more natural and simple interfaces, especially for applications hosted inside museums. Starting from our experience in this domain, we propose new metaphors of narration and paradigm of interaction based on natural interfaces (body movements, presenting three study cases: “The Rule confirmation: virtual experience among Giotto's characters”, “Etruscanning3D”, “Virtual Exploration of the ancient Pharmacy of S. Maria della Scaletta Hospital at Imola”.

  20. 3d virtual object tracking and registration based on marker tecnology for AR apps

    OpenAIRE

    Ibern Ortega, Lidia

    2017-01-01

    Augmented Reality is a technology based on image processing and computer graphics employed to merge a real world with virtual images. The system provides the user a real-time video feed with overlapped information generated by a computer based system taking into account the content of the video, the location and orientation of the user. This Master Thesis provides the background information and state of the art of AR systems. It focuses on the system composition and the difficulties found in ...

  1. Digital imaging and 3D virtual modeling of a block of travertine rock

    Directory of Open Access Journals (Sweden)

    Victor de Albuquerque Silva

    2014-09-01

    Full Text Available Methodological procedures adopted in the digital imagery process, in a non-conventional scale, of a block of travertine rock from the quaternary age were presented on this paper. The rock, named T-Block, weighting 21.2 ton and measuring 1.60 x 1.60 x 2.70 m, was stored in the courtyard of the Laboratório Experimental de Petróleo “Kelsen Valente” (LabPetro at the Universidade Estadual de Campinas (UNICAMP. Petrobras, the Brazilian Petroleum Company, had sponsored its shipment from Italy to Brazil in order to perform geological studies and petrophysical essays, mainly by research groups from universities and research centers of Brazil that work in the areas of reservoir characterization and 3D digital imaging. The purpose of this work was to develop a Digital Solid Model involving 3D digital imaging techniques of internal and external surfaces of the T-Block. Light Detection and Range technology and Ground Penetrating Radar were used to capture the imaging of the external and internal surfaces, respectively. Additionally, gamma ray profiles were generated by using a portable gamma-spectrometer. The use of Light Detection and Range technology combined with Ground Penetrating Radar enabled the identification and 3D mapping of three distinct radar facies, which were correlated to the three sedimentary facies already defined: “Travertine in Domes Radarfacies”, “Transitional Travertine Radarfacies” and “Laminated Travertine Radarfacies”. The gamma ray profiles revealed slight variation, in amplitude, of the radioactivity values. This is likely due to the fact that the sedimentary layers have the same mineralogical composition, which is mainly composed of carbonate sediments, with no siliciclastic clay and/or other radioactive mineral elements inside the more pelitic layers.

  2. Web-Based Interactive VR-CAD System for Conceptual Design and Analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To overcome the bottleneck of the one-way translation from VR (virtual reality) to CAD in VR-based CAD system, this paper proposes a Web-based VR-CAD system WVCD ( Web-based virtual conceptual designer) to support both customers'and design team members'involvement in the conceptual design and analysis activity over the Interbet. It provides users with both parametric and freehand methods to create and edit 3D conceptual models with different levels of complexity in a VR envixonment intuitively without the need of switching between the VR environment and CAD tools. As a simple and low-cost VR-CAD system, WVCD can help to popularize and improve the Web-based collaborative conceptual design.

  3. Web GIS in practice VII: stereoscopic 3-D solutions for online maps and virtual globes

    OpenAIRE

    Robinson Larry R; Boulos Maged

    2009-01-01

    Abstract Because our pupils are about 6.5 cm apart, each eye views a scene from a different angle and sends a unique image to the visual cortex, which then merges the images from both eyes into a single picture. The slight difference between the right and left images allows the brain to properly perceive the 'third dimension' or depth in a scene (stereopsis). However, when a person views a conventional 2-D (two-dimensional) image representation of a 3-D (three-dimensional) scene on a conventi...

  4. ARC+(Registered Trademark) and ARC PC Welding Simulators: Teach Welders with Virtual Interactive 3D Technologies

    Science.gov (United States)

    Choquet, Claude

    2011-01-01

    123 Certification Inc., a Montreal based company, has developed an innovative hands-on welding simulator solution to help build the welding workforce in the most simple way. The solution lies in virtual reality technology, which has been fully tested since the early 90's. President and founder of 123 Certification Inc., Mr. Claude Choquet Ing. Msc. IWE. acts as a bridge between the welding and the programming world. Working in these fields for more than 20 years. he has filed 12 patents world-wide for a gesture control platform with leading edge hardware related to simulation. In the summer of 2006. Mr Choquet was proud to be invited to the annual IIW International Weld ing Congress in Quebec City to launch the ARC+ welding simulator. A 100% virtual reality system and web based training center was developed to simulate multi process. multi-materiaL multi-position and multi pass welding. The simulator is intended to train welding students and apprentices in schools or industries. The welding simulator is composed of a real welding e[eetrode holder (SMAW-GTAW) and gun (GMAW-FCAW). a head mounted display (HMD), a 6 degrees of freedom tracking system for interaction between the user's hands and head. as well as external audio speakers. Both guns and HMD are interacting online and simultaneously. The welding simulation is based on the law of physics and empirical results from detailed analysis of a series of welding tests based on industrial applications tested over the last 20 years. The simulation runs in real-time, using a local logic network to determine the quality and shape of the created weld. These results are based on the orientation distance. and speed of the welding torch and depth of penetration. The welding process and resulting weld bc.1d are displayed in a virtual environment with screenplay interactive training modules. For review. weld quality and recorded process values can be displayed and diagnosed after welding. To help in the le.tming process, a

  5. The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull.

    Science.gov (United States)

    Swennen, G R J; Barth, E-L; Eulzer, C; Schutyser, F

    2007-02-01

    Three-dimensional (3D) virtual planning of orthognathic surgery requires detailed visualization of the interocclusal relationship. The purpose of this study was to introduce the modification of the double computed tomography (CT) scan procedure using a newly designed 3D splint in order to obtain a detailed anatomic 3D virtual augmented model of the skull. A total of 10 dry adult human cadaver skulls were used to evaluate the accuracy of the automatic rigid registration method for fusion of both CT datasets (Maxilim, version 1.3.0). The overall mean registration error was 0.1355+/-0.0323 mm (range 0.0760-0.1782 mm). Analysis of variance showed a registration method error of 0.0564 mm (P 3D splint with the double CT scan procedure allowed accurate registration and the set-up of an accurate anatomic 3D virtual augmented model of the skull with detailed dental surface.

  6. Comparative brain morphology of Neotropical parrots (Aves, Psittaciformes) inferred from virtual 3D endocasts.

    Science.gov (United States)

    Carril, Julieta; Tambussi, Claudia Patricia; Degrange, Federico Javier; Benitez Saldivar, María Juliana; Picasso, Mariana Beatriz Julieta

    2016-08-01

    Psittaciformes are a very diverse group of non-passerine birds, with advanced cognitive abilities and highly developed locomotor and feeding behaviours. Using computed tomography and three-dimensional (3D) visualization software, the endocasts of 14 extant Neotropical parrots were reconstructed, with the aim of analysing, comparing and exploring the morphology of the brain within the clade. A 3D geomorphometric analysis was performed, and the encephalization quotient (EQ) was calculated. Brain morphology character states were traced onto a Psittaciformes tree in order to facilitate interpretation of morphological traits in a phylogenetic context. Our results indicate that: (i) there are two conspicuously distinct brain morphologies, one considered walnut type (quadrangular and wider than long) and the other rounded (narrower and rostrally tapered); (ii) Psittaciformes possess a noticeable notch between hemisphaeria that divides the bulbus olfactorius; (iii) the plesiomorphic and most frequently observed characteristics of Neotropical parrots are a rostrally tapered telencephalon in dorsal view, distinctly enlarged dorsal expansion of the eminentia sagittalis and conspicuous fissura mediana; (iv) there is a positive correlation between body mass and brain volume; (v) psittacids are characterized by high EQ values that suggest high brain volumes in relation to their body masses; and (vi) the endocranial morphology of the Psittaciformes as a whole is distinctive relative to other birds. This new knowledge of brain morphology offers much potential for further insight in paleoneurological, phylogenetic and evolutionary studies. © 2015 Anatomical Society.

  7. Simulating Navigation with Virtual 3d Geovisualizations - a Focus on Memory Related Factors

    Science.gov (United States)

    Lokka, I.; Çöltekin, A.

    2016-06-01

    The use of virtual environments (VE) for navigation-related studies, such as spatial cognition and path retrieval has been widely adopted in cognitive psychology and related fields. What motivates the use of VEs for such studies is that, as opposed to real-world, we can control for the confounding variables in simulated VEs. When simulating a geographic environment as a virtual world with the intention to train navigational memory in humans, an effective and efficient visual design is important to facilitate the amount of recall. However, it is not yet clear what amount of information should be included in such visual designs intended to facilitate remembering: there can be too little or too much of it. Besides the amount of information or level of detail, the types of visual features (`elements' in a visual scene) that should be included in the representations to create memorable scenes and paths must be defined. We analyzed the literature in cognitive psychology, geovisualization and information visualization, and identified the key factors for studying and evaluating geovisualization designs for their function to support and strengthen human navigational memory. The key factors we identified are: i) the individual abilities and age of the users, ii) the level of realism (LOR) included in the representations and iii) the context in which the navigation is performed, thus specific tasks within a case scenario. Here we present a concise literature review and our conceptual development for follow-up experiments.

  8. Techniques for Revealing 3d Hidden Archeological Features: Morphological Residual Models as Virtual-Polynomial Texture Maps

    Science.gov (United States)

    Pires, H.; Martínez Rubio, J.; Elorza Arana, A.

    2015-02-01

    The recent developments in 3D scanning technologies are not been accompanied by visualization interfaces. We are still using the same types of visual codes as when maps and drawings were made by hand. The available information in 3D scanning data sets is not being fully exploited by current visualization techniques. In this paper we present recent developments regarding the use of 3D scanning data sets for revealing invisible information from archaeological sites. These sites are affected by a common problem, decay processes, such as erosion, that never ceases its action and endangers the persistence of last vestiges of some peoples and cultures. Rock art engravings, or epigraphical inscriptions, are among the most affected by these processes because they are, due to their one nature, carved at the surface of rocks often exposed to climatic agents. The study and interpretation of these motifs and texts is strongly conditioned by the degree of conservation of the imprints left by our ancestors. Every single detail in the remaining carvings can make a huge difference in the conclusions taken by specialists. We have selected two case-studies severely affected by erosion to present the results of the on-going work dedicated to explore in new ways the information contained in 3D scanning data sets. A new method for depicting subtle morphological features in the surface of objects or sites has been developed. It allows to contrast human patterns still present at the surface but invisible to naked eye or by any other archaeological inspection technique. It was called Morphological Residual Model (MRM) because of its ability to contrast the shallowest morphological details, to which we refer as residuals, contained in the wider forms of the backdrop. Afterwards, we have simulated the process of building Polynomial Texture Maps - a widespread technique that as been contributing to archaeological studies for some years - in a 3D virtual environment using the results of MRM

  9. 3D chromosome rendering from Hi-C data using virtual reality

    Science.gov (United States)

    Zhu, Yixin; Selvaraj, Siddarth; Weber, Philip; Fang, Jennifer; Schulze, Jürgen P.; Ren, Bing

    2015-01-01

    Most genome browsers display DNA linearly, using single-dimensional depictions that are useful to examine certain epigenetic mechanisms such as DNA methylation. However, these representations are insufficient to visualize intrachromosomal interactions and relationships between distal genome features. Relationships between DNA regions may be difficult to decipher or missed entirely if those regions are distant in one dimension but could be spatially proximal when mapped to three-dimensional space. For example, the visualization of enhancers folding over genes is only fully expressed in three-dimensional space. Thus, to accurately understand DNA behavior during gene expression, a means to model chromosomes is essential. Using coordinates generated from Hi-C interaction frequency data, we have created interactive 3D models of whole chromosome structures and its respective domains. We have also rendered information on genomic features such as genes, CTCF binding sites, and enhancers. The goal of this article is to present the procedure, findings, and conclusions of our models and renderings.

  10. Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-male (EMMS) model was used to simulate a semi-industry scale circulating fiuidized bed (CFB).Three-dimensional(3D), time-dependent simulation of a full-loop CFB revealed that the axial profiles of cross-sectionally averaged solid volume fraction,and the radial profiles of solid axial velocity and solid volume fraction were in reasonable agreement with experimental data.Based on this agreement,database derived from experiments not yet accomplished was replenished with such simulations, and fluid regime diagrams and pressure balance around the CFB loop were derived accordingly. This work presents an integrated viewpoint on CFB and unfolds a fresh paradigm fur CFB modeling, which can be expected to help resolve certain issues long in dispute but hard for experiments.

  11. The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull.

    NARCIS (Netherlands)

    Swennen, G.R.; Barth, E.L.; Eulzer, C.; Schutyser, F.A.C.

    2007-01-01

    Three-dimensional (3D) virtual planning of orthognathic surgery requires detailed visualization of the interocclusal relationship. The purpose of this study was to introduce the modification of the double computed tomography (CT) scan procedure using a newly designed 3D splint in order to obtain a d

  12. Virtual 3D camera' s modeling and roaming control%三维虚拟摄像机的建模及其漫游控制方法

    Institute of Scientific and Technical Information of China (English)

    闫志远; 吴冬梅; 鲍义东; 杜志江

    2013-01-01

    A monocular virtual camera model was described using the vector description method. Based on this, the parameters of a 3D binocular virtual camera and their constraining relations were determined according to the binocular vision theorem, and then a 3D virtual camera model which contains two monocular virtual cameras was proposed. According to the 3D virtual camera model,a roaming control method for binocular virtual cameras was proposed based on robot kinematics to solve problems of viewing angle limitations and 3D imaging distortion caused by the fact that 3D observation parameters are difficult to change in common virtual reality. The experimental results show that the 3D virtual camera model and the roaming control model can be effectively used to observe virtual reality environments and make the parameters adjusted in real time based upon observation demand, which means that the shift from passive virtual 3D to interactive virtual 3D is of great significance to the improvement of 3D observation in virtual reality.%利用矢量描述方法表达了虚拟现实(VR)中的虚拟单目摄像机模型,在此基础上,基于双目视差形成三维视觉的原理确定虚拟现实环境中双目三维摄像的控制参数及其约束关系,进而提出了包含两个单目虚拟摄像机的三维虚拟摄像机整体模型.针对该模型提出了一种基于机器人运动学方法的双目虚拟摄像机漫游控制方法,解决了虚拟现实三维观察参数难以实时改变而导致的视角局限和三维失真等问题.实验表明通过该三维虚拟摄像机可获取高质量三维效果,提出的漫游控制方法通过模型的自动运算和参数补偿可实时主动地获取任意方向的三维景深.这种由被动式虚拟三维向交互性虚拟三维的跨越对改进虚拟现实的沉浸感具有重要意义.

  13. Avatar (A’: Contrasting Lacan’s Theory and 3D Virtual Worlds.A Case Study In Second Life

    Directory of Open Access Journals (Sweden)

    Carlos Hernán González-Campo

    2013-01-01

    Full Text Available Lacan no propuso un sujeto totalizado, pero propuso uno dividido cuya representación se estructura en cada interacción con sus pares a través del lenguaje argumentativo de Saussure. Esto demuestra lo real, lo imaginario y lo simbólico como (a, (a ‘ o (A. Este estudio trata de proponer y discutir que es posible actualmente establecer cuestiones virtuales, teniendo en cuenta los efectos sociales y psicológicos del ci- berespacio y la capacidad de decidir y ejecutar acciones. Prácticamente, la representación es dada por el Avatar conocido como (A ‘, ya que es una evolución de las otras (A. Esta interacción se lleva a cabo mediante el uso del lenguaje, con la construcción de significados y significantes. Significados son concebidos en el mundo virtual y significantes en la real, pero el último podría permitir al primero materializar el Otro (A en el Avatar (A ‘. Second Life es un metaverso, un juego del rol multi- jugador masivo en línea (MMORPG, que muestra mundos virtuales en 3D en el que cada sujeto es capaz de crear sus avatares caracterizar su propia identidad a través de los deseos del sujeto.

  14. Inspiring Equal Contribution and Opportunity in a 3D Multi-User Virtual Environment: Bringing Together Men Gamers and Women Non-Gamers in Second Life[R

    Science.gov (United States)

    deNoyelles, Aimee; Seo, Kay Kyeong-Ju

    2012-01-01

    A 3D multi-user virtual environment holds promise to support and enhance student online learning communities due to its ability to promote global synchronous interaction and collaboration, rich multisensory experience and expression, and elaborate design capabilities. Second Life[R], a multi-user virtual environment intended for adult users 18 and…

  15. VIRTUAL ANTI-BULLYING VILLAGE PROJECT FOR COPING WITH BULLYING AND CYBERBULLYING WITHIN A 3D VIRTUAL LEARNING ENVIRONMENT: EVALUATION RESEARCH

    Directory of Open Access Journals (Sweden)

    Dorit Olenik Shemesh

    2014-12-01

    Full Text Available The current study aims to evaluate the implementation of a unique educational project- The Virtual Anti-Bullying Village for Kids and Teens (ABV4KIDS that was designed and operated by the European Commission. A 3D virtual environment as an innovative, international project for adolescents, focused on knowledge acquisition and new ways of coping with bullying and cyberbullying. Sixty seventh graders-Israeli adolescents-completed five questionnaires before and after the project to assess its impacts regarding cyberbullying and socio-emotional variables. They evaluated the project as important, enjoyable, and increasing their knowledge about cyberbullying, but expressed a need for more practical tools for coping. At the end of the project, the control group reported more cyberbullying experiences, as well as a decrease in social support, whereas the research group reported no changes in cyberbullying experiences and in socio-emotional aspects.

  16. Escaneado 3D e interpretación virtual del Teatro romano de Córdoba

    Directory of Open Access Journals (Sweden)

    José Luis Gómez Merino

    2012-11-01

    Full Text Available Del teatro romano de Córdoba se conserva una parte de la cimentación del graderío cuyos restos se conservan en el semisótano de la ampliación del Museo Arqueológico. Para el trabajo infográfico tomamos como punto de partida la nube de puntos obtenida tras una escanometría 3D de los restos. A partir de ahí tratamos de explicar al público visitante con qué se identifican esos restos concretos. El resultado son tres audiovisuales y varios paneles situados a lo largo de la pasarela que el público recorre para visitar los restos. Intentamos así desarrollar lenguajes gráficos en el entorno del dibujo científico en el que se desenvuelven habitualmente los arqueólogos. El reto es hacer que ese entorno sea atractivo para el público.

  17. 3D synthetic aperture imaging using a virtual source element in the elevation plane

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2000-01-01

    dynamic focusing in the elevation plane. A 0.1 mm point scatterer was mounted in an agar block and scanned in a water bath. The transducer is a 64 elements linear array with a pitch of 209 μm. The transducer height is 4 mm in the elevation plane and it is focused at 20 mm giving a F-number of 5. The point....... However, the resolution in the elevation plane is determined by the fixed mechanical elevation focus. This paper suggests to post-focus the RF lines from several adjacent planes in the elevation direction using the elevation focal point of the transducer as a virtual source element, in order to obtain...... scatterer was positioned 96 mm from the transducer surface. The transducer was translated in the elevation direction from -13 to +13 mm over the scatterer at steps of 0.375 mm. Each of the 70 planes is scanned using synthetic transmit aperture with 8 emissions. The beam-formed RF lines from the planes...

  18. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    Science.gov (United States)

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming.

  19. Language Learning in 3D Virtual World - Using Second Life as a Platform

    Directory of Open Access Journals (Sweden)

    Hiroki Ishizuka

    2012-06-01

    Full Text Available Second Life (SL is an ideal platform for language learning. It is called a Multi-User Virtual Environment, where users can have varieties of learning experiences in life-like environments. Numerous attempts have been made to use SL as a platform for language teaching and the possibility of SL as a means to promote conversational interactions has been reported. However, the research so far has largely focused on simply using SL without further augmentations for communication between learners or between teachers and learners in a school-like environment. Conversely, not enough attention has been paid to its controllability which builds on the embedded functions in SL. This study, based on the latest theories of second language acquisition, especially on the Task Based Language Teaching and the Interaction Hypothesis, proposes to design and implement an automatized interactive task space (AITS where robotic agents work as interlocutors of learners. This paper presents a design that incorporates the SLA theories into SL and the implementation method of the design to construct AITS, fulfilling the controllability of SL. It also presents the result of the evaluation experiment conducted on the constructed AITS.

  20. A Framework for Web-Based Interprofessional Education for Midwifery and Medical Students.

    Science.gov (United States)

    Reis, Pamela J; Faser, Karl; Davis, Marquietta

    2015-01-01

    Scheduling interprofessional team-based activities for health sciences students who are geographically dispersed, with divergent and often competing schedules, can be challenging. The use of Web-based technologies such as 3-dimensional (3D) virtual learning environments in interprofessional education is a relatively new phenomenon, which offers promise in helping students come together in online teams when face-to-face encounters are not possible. The purpose of this article is to present the experience of a nurse-midwifery education program in a Southeastern US university in delivering Web-based interprofessional education for nurse-midwifery and third-year medical students utilizing the Virtual Community Clinic Learning Environment (VCCLE). The VCCLE is a 3D, Web-based, asynchronous, immersive clinic environment into which students enter to meet and interact with instructor-controlled virtual patient and virtual preceptor avatars and then move through a classic diagnostic sequence in arriving at a plan of care for women throughout the lifespan. By participating in the problem-based management of virtual patients within the VCCLE, students learn both clinical competencies and competencies for interprofessional collaborative practice, as described by the Interprofessional Education Collaborative Core Competencies for Interprofessional Collaborative Practice. This article is part of a special series of articles that address midwifery innovations in clinical practice, education, interprofessional collaboration, health policy, and global health. © 2015 by the American College of Nurse-Midwives.

  1. Comparative Study of Web-based Virtual Library and Web Search Engine on Internet%Web资源虚拟图书馆与搜索引擎的比较研究

    Institute of Scientific and Technical Information of China (English)

    贺亚锋

    2000-01-01

    Particularly based on the comparative study of Web-based virtual library and Web search engine on the Internet, this paper discusses the similarities and differences in retrieval theory, retrieval performance and effect,in order to put forward suggestions for the development of Web-based virtual library and the promotion of Web search engine.%本文对Web上的主要信息检索工具-图书馆制作的Web资源虚拟图书馆和ICP研制的搜索引擎作分析比较,目的在于探讨两种检索工具之间的检索理论、检索性能和检索效果的异同,以期对Web资源虚拟图书馆的发展和搜索引擎的改进提供借鉴。

  2. Virtual reality 3D echocardiography in the assessment of tricuspid valve function after surgical closure of ventricular septal defect

    Directory of Open Access Journals (Sweden)

    Kappetein A Pieter

    2007-02-01

    Full Text Available Abstract Background This study was done to investigate the potential additional role of virtual reality, using three-dimensional (3D echocardiographic holograms, in the postoperative assessment of tricuspid valve function after surgical closure of ventricular septal defect (VSD. Methods 12 data sets from intraoperative epicardial echocardiographic studies in 5 operations (patient age at operation 3 weeks to 4 years and bodyweight at operation 3.8 to 17.2 kg after surgical closure of VSD were included in the study. The data sets were analysed as two-dimensional (2D images on the screen of the ultrasound system as well as holograms in an I-space virtual reality (VR system. The 2D images were assessed for tricuspid valve function. In the I-Space, a 6 degrees-of-freedom controller was used to create the necessary projectory positions and cutting planes in the hologram. The holograms were used for additional assessment of tricuspid valve leaflet mobility. Results All data sets could be used for 2D as well as holographic analysis. In all data sets the area of interest could be identified. The 2D analysis showed no tricuspid valve stenosis or regurgitation. Leaflet mobility was considered normal. In the virtual reality of the I-Space, all data sets allowed to assess the tricuspid leaflet level in a single holographic representation. In 3 holograms the septal leaflet showed restricted mobility that was not appreciated in the 2D echocardiogram. In 4 data sets the posterior leaflet and the tricuspid papillary apparatus were not completely included. Conclusion This report shows that dynamic holographic imaging of intraoperative postoperative echocardiographic data regarding tricuspid valve function after VSD closure is feasible. Holographic analysis allows for additional tricuspid valve leaflet mobility analysis. The large size of the probe, in relation to small size of the patient, may preclude a complete data set. At the moment the requirement of an I

  3. Spherical subjective refraction with a novel 3D virtual reality based system.

    Science.gov (United States)

    Pujol, Jaume; Ondategui-Parra, Juan Carlos; Badiella, Llorenç; Otero, Carles; Vilaseca, Meritxell; Aldaba, Mikel

    To conduct a clinical validation of a virtual reality-based experimental system that is able to assess the spherical subjective refraction simplifying the methodology of ocular refraction. For the agreement assessment, spherical refraction measurements were obtained from 104 eyes of 52 subjects using three different methods: subjectively with the experimental prototype (Subj.E) and the classical subjective refraction (Subj.C); and objectively with the WAM-5500 autorefractor (WAM). To evaluate precision (intra- and inter-observer variability) of each refractive tool independently, 26 eyes were measured in four occasions. With regard to agreement, the mean difference (±SD) for the spherical equivalent (M) between the new experimental subjective method (Subj.E) and the classical subjective refraction (Subj.C) was -0.034D (±0.454D). The corresponding 95% Limits of Agreement (LoA) were (-0.856D, 0.924D). In relation to precision, intra-observer mean difference for the M component was 0.034±0.195D for the Subj.C, 0.015±0.177D for the WAM and 0.072±0.197D for the Subj.E. Inter-observer variability showed worse precision values, although still clinically valid (below 0.25D) in all instruments. The spherical equivalent obtained with the new experimental system was precise and in good agreement with the classical subjective routine. The algorithm implemented in this new system and its optical configuration has been shown to be a first valid step for spherical error correction in a semiautomated way. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  4. Global Warming and the Arctic in 3D: A Virtual Globe for Outreach

    Science.gov (United States)

    Manley, W. F.

    2006-12-01

    Virtual Globes provide a new way to capture and inform the public's interest in environmental change. As an example, a recent Google Earth presentation conveyed 'key findings' from the Arctic Climate Impact Assessment (ACIA, 2004) to middle school students during the 2006 INSTAAR/NSIDC Open House at the University of Colorado. The 20-minute demonstration to 180 eighth graders began with an introduction and a view of the Arctic from space, zooming into the North American Arctic, then to a placemark for the first key finding, 'Arctic climate is now warming rapidly and much larger changes are projected'. An embedded link then opened a custom web page, with brief explanatory text, along with an ACIA graphic illustrating the rise in Arctic temperature, global CO2 concentrations, and carbon emissions for the last millennium. The demo continued with an interactive tour of other key findings (Reduced Sea Ice, Changes for Animals, Melting Glaciers, Coastal Erosion, Changes in Vegetation, Melting Permafrost, and others). Each placemark was located somewhat arbitrarily (which may be a concern for some audiences), but the points represented the messages in a geographic sense and enabled a smooth visual tour of the northern latitudes. Each placemark was linked to custom web pages with photos and concise take-home messages. The demo ended with navigation to Colorado, then Boulder, then the middle school that the students attended, all the while speaking to implications as they live their lives locally. The demo piqued the students' curiosity, and in this way better conveyed important messages about the Arctic and climate change. The use of geospatial visualizations for outreach and education appears to be in its infancy, with much potential.

  5. Single minimum incision endoscopic radical nephrectomy for renal tumors with preoperative virtual navigation using 3D-CT volume-rendering

    Directory of Open Access Journals (Sweden)

    Shioyama Yasukazu

    2010-04-01

    Full Text Available Abstract Background Single minimum incision endoscopic surgery (MIES involves the use of a flexible high-definition laparoscope to facilitate open surgery. We reviewed our method of radical nephrectomy for renal tumors, which is single MIES combined with preoperative virtual surgery employing three-dimensional CT images reconstructed by the volume rendering method (3D-CT images in order to safely and appropriately approach the renal hilar vessels. We also assessed the usefulness of 3D-CT images. Methods Radical nephrectomy was done by single MIES via the translumbar approach in 80 consecutive patients. We performed the initial 20 MIES nephrectomies without preoperative 3D-CT images and the subsequent 60 MIES nephrectomies with preoperative 3D-CT images for evaluation of the renal hilar vessels and the relation of each tumor to the surrounding structures. On the basis of the 3D information, preoperative virtual surgery was performed with a computer. Results Single MIES nephrectomy was successful in all patients. In the 60 patients who underwent 3D-CT, the number of renal arteries and veins corresponded exactly with the preoperative 3D-CT data (100% sensitivity and 100% specificity. These 60 nephrectomies were completed with a shorter operating time and smaller blood loss than the initial 20 nephrectomies. Conclusions Single MIES radical nephrectomy combined with 3D-CT and virtual surgery achieved a shorter operating time and less blood loss, possibly due to safer and easier handling of the renal hilar vessels.

  6. Development of a system based on 3D vision, interactive virtual environments, ergonometric signals and a humanoid for stroke rehabilitation.

    Science.gov (United States)

    Ibarra Zannatha, Juan Manuel; Tamayo, Alejandro Justo Malo; Sánchez, Angel David Gómez; Delgado, Jorge Enrique Lavín; Cheu, Luis Eduardo Rodríguez; Arévalo, Wilson Alexander Sierra

    2013-11-01

    This paper presents a stroke rehabilitation (SR) system for the upper limbs, developed as an interactive virtual environment (IVE) based on a commercial 3D vision system (a Microsoft Kinect), a humanoid robot (an Aldebaran's Nao), and devices producing ergonometric signals. In one environment, the rehabilitation routines, developed by specialists, are presented to the patient simultaneously by the humanoid and an avatar inside the IVE. The patient follows the rehabilitation task, while his avatar copies his gestures that are captured by the Kinect 3D vision system. The information of the patient movements, together with the signals obtained from the ergonometric measurement devices, is used also to supervise and to evaluate the rehabilitation progress. The IVE can also present an RGB image of the patient. In another environment, that uses the same base elements, four game routines--Touch the balls 1 and 2, Simon says, and Follow the point--are used for rehabilitation. These environments are designed to create a positive influence in the rehabilitation process, reduce costs, and engage the patient.

  7. 3D VIRTUAL ANASTYLOSIS AND RECONSTRUCTION OF SOME BUILDINGS IN THE SITE OF SAINT-SIMEON, SYRIA

    Directory of Open Access Journals (Sweden)

    M. Kurdy

    2012-09-01

    Full Text Available The site of Qal'at Sem'an, located in the north of Syria, was built in the honor of Saint Simeon around the column on the top of which he lived many years and died in 459. Since 2003, this site has been the object of digital surveys which covered the major part of the area. The sanctuary (Qal'at Sem'an and the village (Deir Sem'an are composed of different types of edifices; this variety gives us a large field of studies. Several surveying methods were applied on these sectors according to the morphology of the analyzed parts and to the analysis needs. This article presents a case study based on a combination of different digital measurement and modeling techniques for the virtual reconstruction of various parts of this complex site. As this work is conducted over several years, different acquisition tools have been experimented for image-based and range-based 3D modeling. In particular, we focus on the "Residence", a civil building of the 6th century which probably was an oil mill. We will describe the anastylosis process founded firstly on the digital surveying, secondly on the 3D model structuring and finally on the information interfacing by using NUBES, an integrated platform for describing, analyzing, documenting and sharing digital representations of heritage buildings. The final goal of our work is to evaluate the relevance of the survey / modeling / semantic structuring workflow for an effective analysis of a complex site.

  8. iSocial: delivering the Social Competence Intervention for Adolescents (SCI-A) in a 3D virtual learning environment for youth with high functioning autism.

    Science.gov (United States)

    Stichter, Janine P; Laffey, James; Galyen, Krista; Herzog, Melissa

    2014-02-01

    One consistent area of need for students with autism spectrum disorders is in the area of social competence. However, the increasing need to provide qualified teachers to deliver evidence-based practices in areas like social competence leave schools, such as those found in rural areas, in need of support. Distance education and in particular, 3D Virtual Learning, holds great promise for supporting schools and youth to gain social competence through knowledge and social practice in context. iSocial, a distance education, 3D virtual learning environment implemented the 31-lesson social competence intervention for adolescents across three small cohorts totaling 11 students over a period of 4 months. Results demonstrated that the social competence curriculum was delivered with fidelity in the 3D virtual learning environment. Moreover, learning outcomes suggest that the iSocial approach shows promise for social competence benefits for youth.

  9. 3D virtual planning in orthognathic surgery and CAD/CAM surgical splints generation in one patient with craniofacial microsomia: a case report

    Directory of Open Access Journals (Sweden)

    Francisco Vale

    2016-02-01

    Full Text Available Objective: In this case report, the feasibility and precision of tridimensional (3D virtual planning in one patient with craniofacial microsomia is tested using Nemoceph 3D-OS software (Software Nemotec SL, Madrid, Spain to predict postoperative outcomes on hard tissue and produce CAD/CAM (Computer Aided Design/Computer Aided Manufacturing surgical splints. Methods: The clinical protocol consists of 3D data acquisition of the craniofacial complex by cone-beam computed tomography (CBCT and surface scanning of the plaster dental casts. The ''virtual patient'' created underwent virtual surgery and a simulation of postoperative results on hard tissues. Surgical splints were manufactured using CAD/CAM technology in order to transfer the virtual surgical plan to the operating room. Intraoperatively, both CAD/CAM and conventional surgical splints are comparable. A second set of 3D images was obtained after surgery to acquire linear measurements and compare them with measurements obtained when predicting postoperative results virtually. Results: It was found a high similarity between both types of surgical splints with equal fitting on the dental arches. The linear measurements presented some discrepancies between the actual surgical outcomes and the predicted results from the 3D virtual simulation, but caution must be taken in the analysis of these results due to several variables. Conclusions: The reported case confirms the clinical feasibility of the described computer-assisted orthognathic surgical protocol. Further progress in the development of technologies for 3D image acquisition and improvements on software programs to simulate postoperative changes on soft tissue are required.

  10. 3D Virtual Reality Applied in Tectonic Geomorphic Study of the Gombori Range of Greater Caucasus Mountains

    Science.gov (United States)

    Sukhishvili, Lasha; Javakhishvili, Zurab

    2016-04-01

    Gombori Range represents the southern part of the young Greater Caucasus Mountains and stretches from NW to SE. The range separates Alazani and Iori basins within the eastern Georgian province of Kakheti. The active phase of Caucasian orogeny started in the Pliocene, but according to alluvial sediments of Gombori range (mapped in the Soviet geologic map), we observe its uplift process to be Quaternary event. The highest peak of the Gombori range has an absolute elevation of 1991 m, while its neighboring Alazani valley gains only 400 m. We assume the range has a very fast uplift rate and it could trigger streams flow direction course reverse in Quaternary. To check this preliminary assumptions we are going to use a tectonic and fluvial geomorphic and stratigraphic approaches including paleocurrent analyses and various affordable absolute dating techniques to detect the evidence of river course reverses and date them. For these purposes we have selected river Turdo outcrop. The river itself flows northwards from the Gombori range and nearby region`s main city of Telavi generates 30-40 m high continuous outcrop along 1 km section. Turdo outcrop has very steep walls and requires special climbing skills to work on it. The goal of this particularly study is to avoid time and resource consuming ground survey process of this steep, high and wide outcrop and test 3D aerial and ground base photogrammetric modelling and analyzing approaches in initial stage of the tectonic geomorphic study. Using this type of remote sensing and virtual lab analyses of 3D outcrop model, we roughly delineated stratigraphic layers, selected exact locations for applying various research techniques and planned safe and suitable climbing routes for getting to the investigation sites.

  11. The Monitoring of Urban Environments and Built-Up Structures in a Seismic Area: Web-Based GIS Mapping and 3D Visualization Tools for the Assessment of the Urban Resources

    Science.gov (United States)

    Montuori, Antonio; Costanzo, Antonio; Gaudiosi, Iolanda; Vecchio, Antonio; Pannaccione Apa, Maria Ilaria; Gervasi, Anna; Falcone, Sergio; La Piana, Carmelo; Minasi, Mario; Stramondo, Salvatore; Buongiorno, Maria Fabrizia; Doumaz, Fawzi; Musacchio, Massimo; Casula, Giuseppe; Caserta, Arrigo; Speranza, Fabio; Bianchi, Maria Giovanna; Guerra, Ignazio; Porco, Giacinto; Compagnone, Letizia; Cuomo, Massimo; De Marco, Michele

    2016-08-01

    In this paper, a non-invasive infrastructural system called MASSIMO is presented for the monitoring and the seismic vulnerability mitigation of cultural heritages. It integrates ground-based, airborne and space-borne remote sensing tools with geophysical and in situ surveys to provide a multi-spatial (regional, urban and building scales) and multi-temporal (long- term, short-term and near-real-time scales) monitoring of test areas and buildings. The measurements are integrated through web-based Geographic Information System (GIS) and 3-dimensional visual platforms to support decision-making stakeholders involved in urban and structural requalification planning. An application of this system is presented over the Calabria region for the town of Cosenza and a test historical complex.

  12. Support of Interactive 3D/4D Presentations by the Very First Ever Made Virtual Laboratories of Antennas

    CERN Document Server

    Yannopoulou, Nikolitsa

    2011-01-01

    Based on the experience we have gained so far, as independent reviewers of Radioengineering journal, we thought that may be proved useful to publicly share with the interested author, especially the young one, some practical implementations of our ideas for the interactive representation of data using 3D/4D movement and animation, in an attempt to motivate and support her/him in the development of similar dynamic presentations, when s/he is looking for a way to locate the stronger aspects of her/his research results in order to prepare a clear, most appropriate for publication, static presentation figure. For this purpose, we selected to demonstrate a number of presentations, from the simplest to the most complicated, concerning well-known antenna issues with rather hard to imagine details, as it happens perhaps in cases involving Spherical Coordinates and Polarization, which we created to enrich the very first ever made Virtual Laboratories of Antennas, that we distribute over the Open Internet through our w...

  13. Openwebglobe 2: Visualization of Complex 3D-GEODATA in the (mobile) Webbrowser

    Science.gov (United States)

    Christen, M.

    2016-06-01

    Providing worldwide high resolution data for virtual globes consists of compute and storage intense tasks for processing data. Furthermore, rendering complex 3D-Geodata, such as 3D-City models with an extremely high polygon count and a vast amount of textures at interactive framerates is still a very challenging task, especially on mobile devices. This paper presents an approach for processing, caching and serving massive geospatial data in a cloud-based environment for large scale, out-of-core, highly scalable 3D scene rendering on a web based virtual globe. Cloud computing is used for processing large amounts of geospatial data and also for providing 2D and 3D map data to a large amount of (mobile) web clients. In this paper the approach for processing, rendering and caching very large datasets in the currently developed virtual globe "OpenWebGlobe 2" is shown, which displays 3D-Geodata on nearly every device.

  14. Three Dimensional (3D) Printing: A Straightforward, User-Friendly Protocol to Convert Virtual Chemical Models to Real-Life Objects

    Science.gov (United States)

    Rossi, Sergio; Benaglia, Maurizio; Brenna, Davide; Porta, Riccardo; Orlandi, Manuel

    2015-01-01

    A simple procedure to convert protein data bank files (.pdb) into a stereolithography file (.stl) using VMD software (Virtual Molecular Dynamic) is reported. This tutorial allows generating, with a very simple protocol, three-dimensional customized structures that can be printed by a low-cost 3D-printer, and used for teaching chemical education…

  15. Cross-cultural discussions in a 3D virtual environment and their affordances for learners’ motivation and foreign language discussion skills

    NARCIS (Netherlands)

    Jauregi Ondarra, M.K.; Kuure, L.; Bastian, P.; Reinhardt, D.; Koivisto, T.

    2015-01-01

    Within the European TILA project a case study was carried out where pupils from schools in Finland and the Netherlands engaged in debating sessions using the 3D virtual world of OpenSim once a week in a period of 5 weeks. The case study had two main objectives: (1) to study the impact that the discu

  16. Three Dimensional (3D) Printing: A Straightforward, User-Friendly Protocol to Convert Virtual Chemical Models to Real-Life Objects

    Science.gov (United States)

    Rossi, Sergio; Benaglia, Maurizio; Brenna, Davide; Porta, Riccardo; Orlandi, Manuel

    2015-01-01

    A simple procedure to convert protein data bank files (.pdb) into a stereolithography file (.stl) using VMD software (Virtual Molecular Dynamic) is reported. This tutorial allows generating, with a very simple protocol, three-dimensional customized structures that can be printed by a low-cost 3D-printer, and used for teaching chemical education…

  17. Cross-cultural discussions in a 3D virtual environment and their affordances for learners’ motivation and foreign language discussion skills

    NARCIS (Netherlands)

    Jauregi Ondarra, M.K.|info:eu-repo/dai/nl/276318102; Kuure, L.; Bastian, P.; Reinhardt, D.; Koivisto, T.

    2015-01-01

    Within the European TILA project a case study was carried out where pupils from schools in Finland and the Netherlands engaged in debating sessions using the 3D virtual world of OpenSim once a week in a period of 5 weeks. The case study had two main objectives: (1) to study the impact that the

  18. Virtual patient 3D dose reconstruction using in air EPID measurements and a back-projection algorithm for IMRT and VMAT treatments.

    Science.gov (United States)

    Olaciregui-Ruiz, Igor; Rozendaal, Roel; van Oers, René F M; Mijnheer, Ben; Mans, Anton

    2017-05-01

    At our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct 'virtual' 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors. The virtual back-projection algorithm is described and verified against the transit algorithm with measurements made behind a slab phantom, against dose measurements made with an ionization chamber and with the OCTAVIUS 4D system, as well as against TPS patient data. Virtual and in vivo patient dose verification results are also compared. Virtual dose reconstructions agree within 1% with ionization chamber measurements. The average γ-pass rate values (3% global dose/3mm) in the 3D dose comparison with the OCTAVIUS 4D system and the TPS patient data are 98.5±1.9%(1SD) and 97.1±2.9%(1SD), respectively. For virtual patient dose reconstructions, the differences with the TPS in median dose to the PTV remain within 4%. Virtual patient dose reconstruction makes pre-treatment verification based on deviations of DVH parameters feasible and eliminates the need for phantom positioning and re-planning. Virtual patient dose reconstructions have additional value in the inspection of in vivo deviations, particularly in situations where CBCT data is not available (or not conclusive). Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Partial nephroureterectomy in duplex renal system: preoperative 3D virtual rendering and retroperitoneal laparoscopic approach in children

    Directory of Open Access Journals (Sweden)

    Molinaro F.

    2013-10-01

    Full Text Available Introduction: the aim of this study is to presents the results of our preliminary series of 8 partial nephroureterectomy performed by retroperitoneoscopy using harmonic scalpel with a preoperative 3D virtual reconstruction of bidimensional magnetic resonance images in children affected by duplication of the renal system. Materials and methods: We perform a retrospective study in our Pediatric Surgery Unit from January 2007 to January 2012 of all children affected by duplication of the renal system treated by retroperitoneal laparoscopic approach. Images collected were reconstructed using IRCAD VR render software. Data include: sex, age at surgery, clinical and radiological features, surgical procedure, follow-up and complications. Results: retroperitoneal laparoscopic partial nephroureterectomy was performed in 8 children (6 males and 2 females. All patients had a non-functioning moiety of a duplex kidney and in addition recurrent urinary tract infections. Two cases were associated with ureterocele; of them in one case we performed a previous endoscopic incision of the obstructing ureterocele. All patients underwent radiological evaluation prior to surgery, by ultrasound, voididng cystourethrography, renal scintigraphy and contrast-enhanced MRI evaluations. Images collected were reconstructed using IRCAD VR render software. Patients were treated by a 3-4 trocars technique and parenchymal section was performed using harmonic scalpel. The mean operative time was 180 minutes; no cases required open conversion. The mean hospital stay was 5 days. The mean follow-up was 38 months. No cases of secondary atrophy of the lower pole were observed. Discussion: Volume rendering gives high anatomical resolution and it can be useful to guide the surgical procedure. Laparoscopic retroperitoneal partial nephrectomy is a safe and feasible procedure in children for experienced pediatric laparoscopic surgeons.

  20. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  1. The use of a low-cost visible light 3D scanner to create virtual reality environment models of actors and objects

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    A low-cost 3D scanner has been developed with a parts cost of approximately USD $5,000. This scanner uses visible light sensing to capture both structural as well as texture and color data of a subject. This paper discusses the use of this type of scanner to create 3D models for incorporation into a virtual reality environment. It describes the basic scanning process (which takes under a minute for a single scan), which can be repeated to collect multiple positions, if needed for actor model creation. The efficacy of visible light versus other scanner types is also discussed.

  2. A Second Chance at Health: How a 3D Virtual World Can Improve Health Self-Efficacy for Weight Loss Management Among Adults.

    Science.gov (United States)

    Behm-Morawitz, Elizabeth; Lewallen, Jennifer; Choi, Grace

    2016-02-01

    Health self-efficacy, or the beliefs in one's capabilities to perform health behaviors, is a significant factor in eliciting health behavior change, such as weight loss. Research has demonstrated that virtual embodiment has the potential to alter one's psychology and physicality, particularly in health contexts; however, little is known about the impacts embodiment in a virtual world has on health self-efficacy. The present research is a randomized controlled trial (N = 90) examining the effectiveness of virtual embodiment and play in a social virtual world (Second Life [SL]) for increasing health self-efficacy (exercise and nutrition efficacy) among overweight adults. Participants were randomly assigned to a 3D social virtual world (avatar virtual interaction experimental condition), 2D social networking site (no avatar virtual interaction control condition), or no intervention (no virtual interaction control condition). The findings of this study provide initial evidence for the use of SL to improve exercise efficacy and to support weight loss. Results also suggest that individuals who have higher self-presence with their avatar reap more benefits. Finally, quantitative findings are triangulated with qualitative data to increase confidence in the results and provide richer insight into the perceived effectiveness and limitations of SL for meeting weight loss goals. Themes resulting from the qualitative analysis indicate that participation in SL can improve motivation and efficacy to try new physical activities; however, individuals who have a dislike for video games may not be benefitted by avatar-based virtual interventions. Implications for research on the transformative potential of virtual embodiment and self-presence in general are discussed.

  3. Research-Grade 3D Virtual Astromaterials Samples: Novel Visualization of NASA's Apollo Lunar Samples and Antarctic Meteorite Samples to Benefit Curation, Research, and Education

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K. R.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.

    2017-01-01

    NASA's vast and growing collections of astromaterials are both scientifically and culturally significant, requiring unique preservation strategies that need to be recurrently updated to contemporary technological capabilities and increasing accessibility demands. New technologies have made it possible to advance documentation and visualization practices that can enhance conservation and curation protocols for NASA's Astromaterials Collections. Our interdisciplinary team has developed a method to create 3D Virtual Astromaterials Samples (VAS) of the existing collections of Apollo Lunar Samples and Antarctic Meteorites. Research-grade 3D VAS will virtually put these samples in the hands of researchers and educators worldwide, increasing accessibility and visibility of these significant collections. With new sample return missions on the horizon, it is of primary importance to develop advanced curation standards for documentation and visualization methodologies.

  4. 3D virtual world remote laboratory to assist in designing advanced user defined DAQ systems based on FlexRIO and EPICS

    Energy Technology Data Exchange (ETDEWEB)

    Carpeño, A., E-mail: antonio.cruiz@upm.es [Universidad Politécnica de Madrid UPM, Madrid (Spain); Contreras, D.; López, S.; Ruiz, M.; Sanz, D.; Arcas, G. de; Esquembri, S. [Universidad Politécnica de Madrid UPM, Madrid (Spain); Vega, J.; Castro, R. [Laboratorio Nacional de Fusión CIEMAT, Madrid (Spain)

    2016-11-15

    Highlights: • Assist in the design of FPGA-based data acquisition systems using EPICS and FlexRIO. • Virtual Reality technologies are highly effective at creating rich training scenarios. • Virtual actions simulate the behavior of a real system to enhance the training process. • Virtual actions can make real changes remotely in the physical ITER’s Fast Controller. - Abstract: iRIO-3DLab is a platform devised to assist developers in the design and implementation of intelligent and reconfigurable FPGA-based data acquisition systems using EPICS and FlexRIO technologies. Although these architectures are very powerful in defining the behavior of DAQ systems, this advantage comes at the price of greater difficulty in understanding how the system works, and how it should be configured and built according to the hardware available and the processing demanded by the requirements of the diagnostics. In this regard, Virtual Reality technologies are highly effective at creating rich training scenarios due to their ability to provide immersive training experiences and collaborative environments. The designed remote laboratory is based on a 3D virtual world developed in Opensim, which is accessible through a standard free 3D viewer. Using a client-server architecture, the virtual world connects with a service running in a Linux-based computer executing EPICS. Through their avatars, users interact with virtual replicas of this equipment as they would in real-life situations. Some actions can be used to simulate the behavior of a real system to enhance the training process, while others can be used to make real changes remotely in the physical system.

  5. SkinExplorer: a new high-tech platform to interact inside the skin by immersive virtual 3D cutaneous environment.

    Science.gov (United States)

    Vazquez-Duchêne, M D; Kraemer, P; Saugnier, N; Levy, B; Mine, S; Jeanmaire, C; Freis, O; Pauly, G; Rathjens, A

    2013-02-01

    The confocal laser scanning microscope allows performing acquisition of several histological sections with precise visual morphological landmarks and their reconstruction. A powerful and modern confocal microscope enables to quickly reconstruct virtual 3D models. The main goal was to develop a new platform to reconstruct complex mosaic serial data, interact with it in an immersive 3D environment, and give to the observers a feeling of 'presence' inside the skin. We have developed novel methods that transform the data into alternative representation, well-suited to explore cutaneous structures in detail and to observe fields of data from different points of view. This new way of data reconstruction in volume requires optimization of intensities, automatic matching algorithms and depth alignment. The new platform - SkinExplorer evolves as a 3D exploration prototype. This technology provides an immersive virtual environment to explore cutaneous microstructures. Several serial histological sections can be matched by stacks, aligned in depth by sections and merged together to be visualized as a whole. All these time-consuming steps have been dramatically speed-up using rapid image processing. The advantages of using virtual reality technologies such as the ones used in the SkinExplorer platform are automatic matching, precise alignment, better data perception, lower memory requirement, and higher quantity of simultaneously displayed data. This platform can render volumetric data and isosurfaces, separately or both at the same time. Lighting and depth perception are enhanced using 'Sphere Mapping', 'Ambient Occlusion', and 'Halo' methods when displaying iso-surfacic volume models with high complexity depth. The assets of the platform are to interpret complex three-dimensional data, to observe and explore 3D virtual models, and to show effects of cosmetic treatments. © 2013 John Wiley & Sons A/S.

  6. Analogy between impact of architectural design characteristics of learning spaces on learners in the physical world and 3D virtual world

    OpenAIRE

    Saleeb, Noha; Dafoulas, George

    2010-01-01

    This research starts by establishing from literature the importance of architectural design elements of physical learning spaces on face-to-face learning, hence, after illustrating examples of different types of architecture in Second Life,\\ud delves into exploring the effect of individual architectural features of 3D virtual building design, such as color, shape of class, lighting and open spaces, height of space, textures and other aspects on higher education learners during online e-learni...

  7. IMPLEMENTING GAME ENGINE BASED 3D VIRTUAL WALKTHROUGH SYSTEM%基于游戏引擎的三维虚拟漫游系统实现

    Institute of Scientific and Technical Information of China (English)

    邓见光; 袁华强

    2012-01-01

    三维虚拟环境漫游是虚拟现实技术应用的基本方向之一,具有重要的研究意义与应用价值.基于成熟的游戏引擎技术,提出一个具有较强通用性和可扩展性的三维虚拟漫游系统开发框架,并从3D场景快速构建、3D场景实时绘制、高级视觉特效生成和基于物理的场景模拟等四个方面详细介绍了该框架的关键技术实现.通过对系统原型的测试表明,采用该开发框架所构建的三维虚拟漫游系统可在一般的普通主流PC机上达到较好的性能和表现效果.%3D virtual walkthrough system is a fundamental direction of the application of virtual reality technology, and has great importance in computer science research and application value. In this paper, we propose a development framework for 3D walkthrough systems based on mature game engine technique with high universality and scalability. We present a detailed introduction on the implementation of the framework's key techniques from four aspects; the 3D scene fast construction, the 3D scene real-time rendering, the generation of advanced special effects, as well as the physics-based scene simulation. Tests on the prototype of this system show that the 3D virtual walkthrough system constructed with this development framework is able to achieve preferable performance and representation effect in common mainstream PCs.

  8. Analyzing Visitors' Discourse, Attitudes, Perceptions, and Knowledge Acquisition in an Art Museum Tour after Using a 3D Virtual Environment

    Science.gov (United States)

    D'Alba, Adriana

    2012-01-01

    The main purpose of this mixed methods research was to explore and analyze visitors' overall experience while they attended a museum exhibition, and examine how this experience was affected by previously using a virtual 3dimensional representation of the museum itself. The research measured knowledge acquisition in a virtual museum, and compared…

  9. House Tour the World Analysis to Virtual Tourism of 3D%宅游天下——3D虚拟旅游发展探析

    Institute of Scientific and Technical Information of China (English)

    姚婷

    2011-01-01

    20世纪90年代中后期,Williamsand Hohson首次提出虚拟现实技术必然对旅游业产生影响,旅游业将步入一个新的信息时代——信息旅游时代,也称之为虚拟旅游时代。而随着技术与观念的逐步成熟,3D虚拟旅游发展迅速。本文意在通过分析3D虚拟旅游的现状、运营与盈利模式,来探讨3D虚拟旅游的今后发展方向。%In the late 1990s, Williams and Hohson first proposed the virtual reality technology will inevitably have an impact on tourism, Tourism industry will enter a new information agc - travel time information, also known as virtual travel times.With the gradual development of technology and ideas,3Dvirtual tourism is developing rapidly. This paper is intended to analyze the status of 3D virtual tour, operations and profit model, to explore the 3D virtual tour of the future direction of development.

  10. 3D workflow for HDR image capture of projection systems and objects for CAVE virtual environments authoring with wireless touch-sensitive devices

    Science.gov (United States)

    Prusten, Mark J.; McIntyre, Michelle; Landis, Marvin

    2006-02-01

    A 3D workflow pipeline is presented for High Dynamic Range (HDR) image capture of projected scenes or objects for presentation in CAVE virtual environments. The methods of HDR digital photography of environments vs. objects are reviewed. Samples of both types of virtual authoring being the actual CAVE environment and a sculpture are shown. A series of software tools are incorporated into a pipeline called CAVEPIPE, allowing for high-resolution objects and scenes to be composited together in natural illumination environments [1] and presented in our CAVE virtual reality environment. We also present a way to enhance the user interface for CAVE environments. The traditional methods of controlling the navigation through virtual environments include: glove, HUD's and 3D mouse devices. By integrating a wireless network that includes both WiFi (IEEE 802.11b/g) and Bluetooth (IEEE 802.15.1) protocols the non-graphical input control device can be eliminated. Therefore wireless devices can be added that would include: PDA's, Smart Phones, TabletPC's, Portable Gaming consoles, and PocketPC's.

  11. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients.

    Science.gov (United States)

    Lledó, Luis D; Díez, Jorge A; Bertomeu-Motos, Arturo; Ezquerro, Santiago; Badesa, Francisco J; Sabater-Navarro, José M; García-Aracil, Nicolás

    2016-01-01

    Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates

  12. A comparative analysis of 2D and 3D tasks for virtual reality therapies based on robotic-assisted neurorehabilitation for post-stroke patients

    Directory of Open Access Journals (Sweden)

    Luis Daniel Lledó

    2016-08-01

    Full Text Available Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding

  13. Research on Regulation of Perspective of 3D Virtual Camera%3D虚拟摄像机视角调节的研究

    Institute of Scientific and Technical Information of China (English)

    陈旭亮

    2012-01-01

    3D应用已经成为趋势,各种3D技术得到广泛的应用,许多3D应用都用到了3D虚拟摄像机.文中主要对3D虚拟摄像机进行了研究,通过调节3D摄像机来调节3D场景的渲染视角,这里主要研究的是通过3D摄像机的平移和旋转来调节渲染视角.由于对于不同的场景,场景的大小不同,场景中3D摄像机的位置和状态也不同,所以需要一种方法,能够对于用户的同一操作,根据不同场景,计算出相应的变换参数来操作3D摄像机.文中找到了一种调节3D摄像机的方法,该方法主要利用变换矩阵和几何关系来计算相应的变换参数,能够根据用户的操作自动计算相应参数来改变3D场景中虚拟摄像机的位置和状态,对3D摄像机进行调节,从而改变渲染视角,使交互更加方便.%3D applications have become the trend. A variety of 3D technology is widely used. And the 3D virtual camera are used in many 3D applications. It focuses on the research of 3D camera. Regulate the rendering perspective by regulating 3D camera and here are mainly through the 3D camera translation and rotation to regulate the rendering perspective. For different scenes,the sizes of scene are different, the position and status of 3D camera are also different. So need a method which can calculate the corresponding transformation parameters to operate 3D camera for different scenes. Find a method which uses the transformation matrix and geometry to calculate the corresponding transformation parameters to regulate the 3D camera. By this method,can calculate the 3D camera parameters automatically based on the user's operating. And then regulate the rendering perspective and make the interaction more convenient.

  14. The Effect of the Use of the 3-D Multi-User Virtual Environment "Second Life" on Student Motivation and Language Proficiency in Courses of Spanish as a Foreign Language

    Science.gov (United States)

    Pares-Toral, Maria T.

    2013-01-01

    The ever increasing popularity of virtual worlds, also known as 3-D multi-user virtual environments (MUVEs) or simply virtual worlds provides language instructors with a new tool they can exploit in their courses. For now, "Second Life" is one of the most popular MUVEs used for teaching and learning, and although "Second Life"…

  15. Implementation of Virtual 3D Video Conference Based on Kinect%基于Kinect的虚拟3D视频会议场景融合研究

    Institute of Scientific and Technical Information of China (English)

    程宏伟; 蒋乐天

    2013-01-01

    为了应用3D摄像头构建新型视频会议模式,将与会人物的3D信息提取出来,融合在虚拟会议场景中,来实现完整的3D会议效果.由Direct3D工具设计出固有的会议场景,采用微软发布的Kinect摄像头提取与会者的3D模型信息,发送到服务器端,完成融合后再返回终端显示.融合结果有较强现场感,人物模型真实准确.验证了系统的可行性和实用性.%To build a new type of video conference mode with 3D camera, the 3D model of participator is distracted and fused into virtual scene. The integrated system consists of the conference room, designed through Orect3D tooL and Kinect 3D camera proposed by Microsoft. 3D model from Kinect, is sent to the server and fused into conference environment. And then sent back to terminal PC display. The result feels real and accurate, and the system can be feasible.

  16. Design and Implementation of a Web-based 3D Visualized Management System for Laboratory Equipment%基于Web的实验室仪器设备三维可视化管理系统设计与实现

    Institute of Scientific and Technical Information of China (English)

    孙杰

    2013-01-01

    In order to realize scientific, web-based, three-dimensional and visualized management of equipment in university laboratories, this paper presented the design of a visualized 3D management system for laboratory equipment. It first introduced the functional structure, the systematic structure and the development process of the system. Then it elaborated on the use of CAXA in the construction of the model of lab equipment, the database storage technology of 3D model, and the key technology of displaying the model timely on the Web. It also introduced the strategies of using Java to strengthen the interactivity of VRML models.%为实现高校实验室仪器设备管理的网络化、直观化、三维化和科学化,提出了基于Web的实验室仪器设备三维可视化管理系统设计方案.介绍了系统的功能架构、体系架构和开发流程,详细阐述了使用CAXA快速构建实验室仪器设备模型的方法,叙述了三维模型的数据库存储技术和将模型适时显示在Web上的关键技术,论述了利用Java增强VRML模型交互性的策略.

  17. Stochastic 3D-road-surface modeling for virtual testing%虚拟试验三维随机路面的建模

    Institute of Scientific and Technical Information of China (English)

    薛劲橹; 王红岩; 迟宝山

    2012-01-01

    应用于车辆虚拟试验的路面需符合实际路面特性.利用MATLAB编程实现了用于车辆虚拟试验的三维随机路面模拟,并通过功率谱估计和相干系数进行验证.创建了适用于车辆动力学分析软件路面模型的三维路面节点编码通用算法,并利用MATLAB/GUI工具编制了三维随机路面生成软件,可直接生成适用于虚拟试验的路面文件.在随机路面上进行车辆直驶虚拟试验,分析结果表明,车辆在三维随机路面上的虚拟试验结果与在二维路面上有较大不同.%The road-surface for virtual testing should meet its actual features. Through MATLABTM programming, the stochastic 3D-road-surface simulation for vehicles is first conducted on virtually-tested vehicles. Meanwhile, power spectrum estimation and coherent coefficient are verified. Then,a generic algorithm for 3D road-surface node coding is constructed using the vehicle dynamical analysis software. Afterwards, the stochastic road-surface generation software is programmed based on MATLAB/GUI?to directly form the virtual testing files. Referring to the results from vehicle driving, it is found that the virtual testing on 3D-road-surface is quite different form that on 2D-road-surface.

  18. 基于X3D的虚拟场景设计方法%A design method of virtual scene based on X3D

    Institute of Scientific and Technical Information of China (English)

    杨帆; 兰岚

    2013-01-01

    X3D is a new generation of international standard Internet 3D graphics software,technology and product,making up the defect of which 2D plane is hard to meet the people need.It presents a 3DSMax modeling software,X3D markup language and specially a virtual 3D scene design method.The 3D scene data is divided into construction layer,vegetation layer,road layer and independent feature.By writing code X3D realizes the setting of background node,lighting node and viewpoint node.Finally,the establishment and browsing of the 3D scene are realized through the above method,which makes the viewers observe from all angles just like they are on the scene.%X3D是新一代国际标准的互联网3D图形软件规范、技术和产品,弥补2D平面世界很难满足人们需要的缺陷.文中应用3DSMax建模软件以及X3D三维图像标记语言,介绍一种虚拟三维场景设计方法.将三维场景的数据划分为建筑层、植被层、道路层和独立地物,利用X3D进行背景、灯光、视点等节点的设置以及用户交互方式,最终实现三维场景的建立与浏览,使浏览者身临其境地从各个角度进行全面观察.

  19. Design and implementation of 3D virtual campus based on GIS%基于GIS的三维虚拟校园设计与实现

    Institute of Scientific and Technical Information of China (English)

    於永东; 路明月; 许笛; 张翔

    2012-01-01

    三维GIS技术近来迅猛发展,受到了广泛关注.较二维GIS而言,三维GIS能更真实地表达客观世界,且对空间对象进行三维显示、分析和操作也是三维GIS特有的功能.以南京信息工程大学为例,介绍了利用三维GIS技术进行虚拟校园建设的过程,阐述了基于Google SketchUp和ArcGIS的三维可视化设计方法进行三维场景建模与优化、虚拟校园系统功能设计以及三维场景的浏览功能、建筑物属性的查询功能、路径分析和动画输出等功能的实现技术.最后指出了系统存在的问题,并提出了下一步的研究方向.%Technology of 3D GIS had developed rapidly and obtained widespread attention. Compared with two-di-mensional GIS,3D GIS represents natural world more vividly. Moreover,it has specific functions of 3D displaying, analyzing and operating on spatial objects under a 3D system. Taking Nanjing University of Information Science and Technology as an example,introduced the modelling simulation process of virtual campus based on 3D GIS. It also discussed the key issues which are the essential technology and method of virtual campus simulation about 3D visu-alization on 3D-scene modelling, modelling optimization and system development design based on Google SketchUp and ArcGIS. The development of functional modules consists of four sub modules, namely 3D scene viewing, attrib-utes query of buildings, path analysis and animation outputting. Finally, the paper addresses some problems involved in this system,and puts forward thoughts for further study.

  20. 基于Unity 3D的撒肥机虚拟仿真%Virtual Simulation for Fertilizer Applicator Based on Unity3 D

    Institute of Scientific and Technical Information of China (English)

    师翊; 刘桂阳; 刘金明

    2014-01-01

    选取2 FL-Ⅰ型撒肥机为研究对象,在对其机械结构和工作原理进行理论分析基础上,使用 Pro/E 对撒肥机进行三维建模,使用3 DS Max对模型附加材质,调整坐标轴等;将调整好的三维模型导入到 Unity 3 D 软件当中,建立虚拟场景,利用软件的物理引擎对撒肥机的机械传动过程进行虚拟仿真。该设计实现了机械零件的动态装配和三维透视观察、撒肥效果模拟,摄像机近景作业跟随和远景作业观察等功能,为农机的虚拟设计和垦区农场的农机教学、展示服务。%This article selected 2 FL-Ⅰ fertilizer applicator as the object of study .Basing on the analysis of mechanical structure and working principle of fertilizer applicator , this design used Pro/E to build 3 D models and used 3 DS Max to complete the operations of adding material and coordinating axis , then , imported 3 D models into Unity3 D software to build virtual scene and complete simulation of mechanical transmission process through physics engine .This article im-plemented the functions of dynamic assembly of mechanical parts , 3 D perspective view , simulation of fertilizing effect , camera ’ s far-range and close-range view , for the teaching , display and virtual design of agricultural machinery service .

  1. Virtual 3-D {sup 18}F-FDG PET/CT panendoscopy for assessment of the upper airways of head and neck cancer patients: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Buchbender, Christian; Heusner, Till A. [University Duesseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Duesseldorf (Germany); University Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Treffert, Jon [Siemens Health Care, Molecular Imaging, Knoxville, TN (United States); Lehnerdt, Goetz; Mattheis, Stefan [University Duisburg-Essen, Medical Faculty, Department of Otorhinolaryngology, Essen (Germany); Geiger, Bernhard [Siemens Corporate Research Inc., Princeton, NJ (United States); Bockisch, Andreas [University Duisburg-Essen, Medical Faculty, Department of Nuclear Medicine, Essen (Germany); Forsting, Michael [University Duisburg-Essen, Medical Faculty, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Antoch, Gerald [University Duesseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Duesseldorf (Germany)

    2012-09-15

    The aim of this study was to evaluate whether a virtual 3-D {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT panendoscopy is feasible and can be used for noninvasive imaging of the upper airways and pharyngeal/laryngeal tumours. From {sup 18}F-FDG PET/CT data sets of 40 patients (29 men, 11 women; age 61 {+-} 9 years) with pharyngeal or laryngeal malignancies virtual 3-D {sup 18}F-FDG PET/CT panendoscopies were reconstructed and the image processing time was measured. The feasibility of assessing the oral cavity, nasopharynx, tongue base, soft palate, pharyngeal tonsils, epiglottis, aryepiglottic folds, piriform sinus, postcricoid space, glottis, subglottis, trachea, bronchi and oesophagus and of detecting primary tumours was tested. Results of fibre-optic bronchoscopy and histology served as the reference standard. The nasopharynx, tongue base, soft palate, pharyngeal tonsils, epiglottis, subglottis and the tracheobronchial tree were accessible in all 40, and the aryepiglottic folds, posterior hypopharyngeal wall, postcricoid space, piriform sinus, glottis, oral cavity and oesophagus in 37, 37, 37, 37, 33, 16 and 0 patients, respectively. In all 12 patients with restricted fibre-optic evaluation due to being primarily intubated, the subglottis was accessible via virtual panendoscopy. The primary tumour was depicted in 36 of 40 patients (90 %). The mean processing time for virtual {sup 18}F-FDG PET/CT panendoscopies was 145 {+-} 98 s. Virtual {sup 18}F-FDG PET/CT panendoscopy of the upper airways is technically feasible and can detect pharyngeal and laryngeal malignancies. This new tool can aid in the complete evaluation of the subglottic space in intubated patients and may be used for planning optical panendoscopies, biopsies and surgery in the future. (orig.)

  2. 塔式起重机3D远程虚拟监控%Research on 3D Remote Virtual Monitoring for Tower Crane

    Institute of Scientific and Technical Information of China (English)

    李超; 李彦明; 刘成良

    2009-01-01

    为了向塔式起重机提供更为可靠、安全、完善的监控系统,基于虚拟现实技术研究了塔式起重机运行虚拟场景的参数化构建技术,分析了虚拟监控系统的3D裁剪算法和z缓冲算法,提出了利用DirectX技术开发虚拟场景渲染引擎,通过现场传感信息驱动塔机动作的虚拟监控系统.实验结果表明,本监控系统不仅提高了塔式起重机工作的安全性,并且具有较高的可扩展性、真实性、实时性与稳定性.%In order to achieve a more reliable and safe remote virtual monitoring system for tower crane, this paper, based on virtual reality technology, studied the method of creating the working scene with parameterized design, and analysed the algorithms of 3D clipping and buffering to optimize the performance of the system. The rendering engine of virtual scene was developed with DirectX, and the virtual tower cranes being driven with the data from on-site sensors. The experiments show that this virtual monitoring system not only enhances the security of tower crane, but also provides a more stable real-time system which is 3D, highly vivid and interactive.

  3. Interactive Virtual Community Based on Web3D%基于Web3D的交互式虚拟社区

    Institute of Scientific and Technical Information of China (English)

    李远鑫; 蒋海鸥; 徐亦飞; 徐芝琦

    2011-01-01

    当前主流的网络虚拟社区存在缺乏实时性、交互能力不强等问题.为此,结合混合现实教学环境的思想,以Wonderland项目为基础,构建具有Web3D交互能力的WonderSCUT三维虚拟社区平台.该平台能给用户提供强烈的沉浸感,并具有良好的双向交互性、可扩展性以及安全可靠性.实验结果表明,该平台符合Web3D交互方式的发展趋势,具有较强的研究和应用价值.%The major network virtual communities only provide limit means of interactions and cannot satisfy the real-time communication requirement. With the concept of mixed reality teaching and learning environment, a powerful 3D virtual reality community platform with Web3D interactivity, WonderSCUT, is developed, which is based on project Wonderland. WonderSCUT supports a rich family of communication methods,resulting strong immersion and effective interaction. WonderSCUT also provides good scalability and strong security. Experimental results show the advantage of this platform. WonderSCUT meets the trend of Web3D interactivity, and is promising for both research and application.

  4. Systematic Comparison of the Performance of Different 2D and 3D Ligand-Based Virtual Screening Methodologies to Discover Anticonvulsant Drugs.

    Science.gov (United States)

    Di Ianni, Mauricio E; Gantner, Melisa E; Ruiz, María E; Castro, Eduardo A; Bruno-Blanch, Luis E; Talevi, Alan

    2015-01-01

    Virtual screening encompasses a wide range of computational approaches aimed at the high-throughput, cost-efficient exploration of chemical libraries or databases to discover new bioactive compounds or novel medical indications of known drugs. Here, we have performed a systematic comparison of the performance of a large number of 2D and 3D ligand-based approaches (2D and 3D similarity, QSAR models, pharmacophoric hypothesis) in a simulated virtual campaign on a chemical library containing 50 known anticonvulsant drugs and 950 decoys with no previous reports of anticonvulsant effect. To perform such comparison, we resorted to Receiver Operating Characteristic curves. We also tested the relative performance of consensus methodologies. Our results indicate that the selective combination of the individual approaches (through voting and ranking combination schemes) significantly outperforms the individual algorithms and/or models. Among the best-performing individual approaches, 2D similarity search based on circular fingerprints and 3D similarity approaches should be highlighted. Combining the results from different query molecules also led to enhanced enrichment.

  5. 3D Modeling of branching vessels from anatomical sketches: towards a new interactive teaching of anatomy: Interactive virtual blackboard.

    Science.gov (United States)

    Palombi, O; Pihuit, A; Cani, M-P

    2011-09-01

    Sketching is an intuitive way to explain spatial relationships between complex objects. The French community of Anatomists are used to teaching didactic lectures on a blackboard with their colored chalks. The increasing complexity of the sketches affords to the students an opportunity to work out a mental representation of anatomical structures in 3D. To help students perform this labored step, we present a new interactive blackboard which constructs plausible 3D models of branching vessels from a single sketch. We exploit the sketching conventions used in anatomical drawings to infer depth and curvature. We then model the set of branching vessels as a convolution surface generated by a graph of skeleton curves. Classic situations, focused on arteries, have been analyzed to manage vessels' curvatures, subdivisions and overlaps. Original sketches and 3D models are presented for each case. No specific training is required to use the interface. The anatomists have begun to embrace a new generation of 3D digital modeling applications as tools for anatomical teaching. We discuss the future use of this system as a step towards the interactive teaching of anatomy.

  6. A New Approach to Improve Cognition, Muscle Strength, and Postural Balance in Community-Dwelling Elderly with a 3-D Virtual Reality Kayak Program.

    Science.gov (United States)

    Park, Junhyuck; Yim, JongEun

    2016-01-01

    Aging is usually accompanied with deterioration of physical abilities, such as muscular strength, sensory sensitivity, and functional capacity. Recently, intervention methods with virtual reality have been introduced, providing an enjoyable therapy for elderly. The aim of this study was to investigate whether a 3-D virtual reality kayak program could improve the cognitive function, muscle strength, and balance of community-dwelling elderly. Importantly, kayaking involves most of the upper body musculature and needs the balance control. Seventy-two participants were randomly allocated into the kayak program group (n = 36) and the control group (n = 36). The two groups were well matched with respect to general characteristics at baseline. The participants in both groups performed a conventional exercise program for 30 min, and then the 3-D virtual reality kayak program was performed in the kayak program group for 20 min, two times a week for 6 weeks. Cognitive function was measured using the Montreal Cognitive Assessment. Muscle strength was measured using the arm curl and handgrip strength tests. Standing and sitting balance was measured using the Good Balance system. The post-test was performed in the same manner as the pre-test; the overall outcomes such as cognitive function (p balance (standing and sitting balance, p balance of elderly.

  7. Server Technology – Web Based Service Oriented Architecture for Mobile Augmented Reality System

    Directory of Open Access Journals (Sweden)

    Jatin Dilipkumar Shah

    2012-11-01

    Full Text Available Server Technology stands for lots of technology in mind like Microsoft, Sun Java, IBM, Open Source and many more. In mobile augmentation, server plays very important role to augment the data. Responsibility of the server is to collect the data , mixed virtual data with real data and these data sent back to client on Remote device at Remote place In this paper we briefly discuss about the server technology for web based Service oriented, also the processing software required for augmentation, it’s software technology, how they accept input from various types of devices and generated output data of various types like audio, video, 3-D graphics.

  8. Investigating the Affective Learning in a 3D Virtual Learning Environment: The Case Study of the Chatterdale Mystery

    Science.gov (United States)

    Molka-Danielsen, Judith; Hadjistassou, Stella; Messl-Egghart, Gerhilde

    2016-01-01

    This research is motivated by the emergence of virtual technologies and their potential as engaging pedagogical tools for facilitating comprehension, interactions and collaborations for learning; and in particular as applied to learning second languages (L2). This paper provides a descriptive analysis of a case study that examines affective…

  9. Effects of 3D virtual haptics force feedback on brand personality perception: the mediating role of physical presence in advergames.

    Science.gov (United States)

    Jin, Seung-A Annie

    2010-06-01

    This study gauged the effects of force feedback in the Novint Falcon haptics system on the sensory and cognitive dimensions of a virtual test-driving experience. First, in order to explore the effects of tactile stimuli with force feedback on users' sensory experience, feelings of physical presence (the extent to which virtual physical objects are experienced as actual physical objects) were measured after participants used the haptics interface. Second, to evaluate the effects of force feedback on the cognitive dimension of consumers' virtual experience, this study investigated brand personality perception. The experiment utilized the Novint Falcon haptics controller to induce immersive virtual test-driving through tactile stimuli. The author designed a two-group (haptics stimuli with force feedback versus no force feedback) comparison experiment (N = 238) by manipulating the level of force feedback. Users in the force feedback condition were exposed to tactile stimuli involving various force feedback effects (e.g., terrain effects, acceleration, and lateral forces) while test-driving a rally car. In contrast, users in the control condition test-drove the rally car using the Novint Falcon but were not given any force feedback. Results of ANOVAs indicated that (a) users exposed to force feedback felt stronger physical presence than those in the no force feedback condition, and (b) users exposed to haptics stimuli with force feedback perceived the brand personality of the car to be more rugged than those in the control condition. Managerial implications of the study for product trial in the business world are discussed.

  10. Transforming Clinical Imaging and 3D Data for Virtual Reality Learning Objects: HTML5 and Mobile Devices Implementation

    Science.gov (United States)

    Trelease, Robert B.; Nieder, Gary L.

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…

  11. Transforming Clinical Imaging and 3D Data for Virtual Reality Learning Objects: HTML5 and Mobile Devices Implementation

    Science.gov (United States)

    Trelease, Robert B.; Nieder, Gary L.

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…

  12. Implementing Advanced Characteristics of X3D Collaborative Virtual Environments for Supporting e-Learning: The Case of EVE Platform

    Science.gov (United States)

    Bouras, Christos; Triglianos, Vasileios; Tsiatsos, Thrasyvoulos

    2014-01-01

    Three dimensional Collaborative Virtual Environments are a powerful form of collaborative telecommunication applications, enabling the users to share a common three-dimensional space and interact with each other as well as with the environment surrounding them, in order to collaboratively solve problems or aid learning processes. Such an…

  13. 3D-reconstructions and virtual 4D-visualization to study metamorphic brain development in the sphinx moth Manduca sexta

    Directory of Open Access Journals (Sweden)

    Wolf Huetteroth

    2010-03-01

    Full Text Available During metamorphosis, the transition from the larva to the adult, the insect brain undergoes considerable remodeling: New neurons are integrated while larval neurons are remodeled or eliminated. One well acknowledged model to study metamorphic brain development is the sphinx moth Manduca sexta. To further understand mechanisms involved in the metamorphic transition of the brain we generated a 3D standard brain based on selected brain areas of adult females and 3D reconstructed the same areas during defined stages of pupal development. Selected brain areas include for example mushroom bodies, central complex, antennal- and optic lobes. With this approach we eventually want to quantify developmental changes in neuropilar architecture, but also quantify changes in the neuronal complement and monitor the development of selected neuronal populations. Furthermore, we used a modeling software (Cinema 4D to create a virtual 4D brain, morphing through its developmental stages. Thus the didactical advantages of 3D visualization are expanded to better comprehend complex processes of neuropil formation and remodeling during development. To obtain datasets of the M. sexta brain areas, we stained whole brains with an antiserum against the synaptic vesicle protein synapsin. Such labeled brains were then scanned with a confocal laser scanning microscope and selected neuropils were reconstructed with the 3D software AMIRA 4.1.

  14. 3D-QSAR and virtual screening studies of thiazolidine-2,4-dione analogs: Validation of experimental inhibitory potencies towards PIM-1 kinase

    Science.gov (United States)

    Asati, Vivek; Bharti, Sanjay Kumar; Budhwani, Ashok Kumar

    2017-04-01

    The proviral insertion site in moloney murine leukemia virus (PIM) is a family of serine/threonine kinase of Ca2+-calmodulin-dependent protein kinase (CAMK) group which is responsible for the activation and regulation of cellular transcription and translation. The three isoforms of PIM kinase (PIM-1, PIM-2 and PIM-3) share high homology and functional idleness are widely expressed and involved in a variety of biological processes including cell survival, proliferation, differentiation and apoptosis. Altered expression of PIM-1 kinase correlated with hematologic malignancies and solid tumors. In the present study, atom-based 3D-QSAR, docking and virtual screening studies have been performed on a series of thiazolidine-2,4-dione derivatives as PIM-1 kinase inhibitors. 3D-QSAR and docking approach has shortlisted the most active thiazolidine-2,4-dione derivatives such as 28, 31, 33 and 35 with the incorporation of more than one structural feature in a single molecule. External validations by various parameters and molecular docking studies at the active site of PIM-1 kinase have proved the reliability of the developed 3D-QSAR model. The generated pharmacophore (AADHR.33) from 3D-QSAR study was used for screening of drug like compounds from ZINC database, where ZINC15056464 and ZINC83292944 showed potential binding affinities at the active site amino acid residues (LYS67, GLU171, ASP128 and ASP186) of PIM-1 kinase (PDB ID: "pdb:4DTK").

  15. The Virtual 3D Reconstruction of the East Pediment of the Temple of Zeus at Olympia – Presentation of an Interactive CD-ROM

    Directory of Open Access Journals (Sweden)

    András PATAY-HORVÁTH Patay-Horváth

    2011-12-01

    Full Text Available The paper gives an overview of a two-years project concerning a major monument of ancient Greek art and presents the interactive, bilingual (English/Hungarian CD-ROM, which is intended to summarize and visualize its final results. The presented project approaches a century-old controversy in a new way by producing a virtual 3D reconstruction of a monumental marble group. Digital models of the statues were produced by scanning the original fragments and by reconstructing them virtually. The virtual model of the pediment surrounding the sculptures was prepared on the basis of the latest architectural studies and afterwards the reconstructed models were inserted in this frame, in order to test the technical feasibility and aesthetic effects the four possible arrangements. The resulting models enable easy and very instructive experimentation, which would be otherwise impossible with the originals and/or very expensive and not very practicable with traditional tools (e.g. real-size plaster models. The complete model can effectively be used to verify the results of earlier or more recent reconstructions presented only in simple drawings. In addition, the 3D models of the individual fragments can be used for further research and for visualization.  The documentary CD-ROM presenting the full background, the methods and the conclusions of the project contains beside a comprehensive text various kinds of supporting documents (images, 3D models, papers, broadcasts, audiovisual material. It is addressed to a mixed audience: a picture gallery, a short documentary movie some other attachments including a selected bibliography is intended for the general public, but scholarly publications, presentations on related problems are also included for specialists interested in certain details.

  16. i-BRUSH: a gaze-contingent virtual paintbrush for dense 3D reconstruction in robotic assisted surgery.

    Science.gov (United States)

    Visentini-Scarzanella, Marco; Mylonas, George P; Stoyanov, Danail; Yang, Guang-Zhong

    2009-01-01

    With increasing demand on intra-operative navigation and motion compensation during robotic assisted minimally invasive surgery, real-time 3D deformation recovery remains a central problem. Currently the majority of existing methods rely on salient features, where the inherent paucity of distinctive landmarks implies either a semi-dense reconstruction or the use of strong geometrical constraints. In this study, we propose a gaze-contingent depth reconstruction scheme by integrating human perception with semi-dense stereo and p-q based shading information. Depth inference is carried out in real-time through a novel application of Bayesian chains without smoothness priors. The practical value of the scheme is highlighted by detailed validation using a beating heart phantom model with known geometry to verify the performance of gaze-contingent 3D surface reconstruction and deformation recovery.

  17. Historical Photogrammetry and Terrestrial Laser Scanning for the 3d Virtual Reconstruction of Destroyed Structures: a Case Study in Italy

    Science.gov (United States)

    Bitelli, G.; Dellapasqua, M.; Girelli, V. A.; Sbaraglia, S.; Tinia, M. A.

    2017-05-01

    The current dramatic episodes of destruction of archaeological sites have again highlighted the problem of the safeguarding the threatened heritage and, if possible, recovering those damaged by all the armed conflicts of the past. The historical photogrammetry offers the possibility to recover a posteriori the geometrical and material properties of destroyed structures, reconstructing their 3D model to document, study and maintain their memory, until to support their real anastylosis. The presented work is about the 3D reconstruction of the civic tower of the little town of Sant'Alberto, near the city of Ravenna, Italy. The tower, as a symbol of resistance and pride of the town's population, was destroyed in December 1944 by German troops in retaliation, when they were forced to leave the area. A city committee has subsequently collected all the historical evidence concerning the tower, including a series of photographic images that can be used for the photogrammetric reconstruction; the images calibration and orientation have been solved using the geometric information derived by a terrestrial laser scanner survey realized in the area where the tower was originally located. Despite the scarcity and very poor quality of the available images, the conducted photogrammetric procedure has allowed a complete and qualitatively satisfying object reconstruction, also thanks to the use of geometric constraint tools offered by the chosen software. The integration between the obtained model of the old tower and the 3D TLS survey of the square made it possible to reconstruct the ancient situation of the area.

  18. Virtual Experimental Learning Platform Based on Web3D%基于Web3D的虚拟实验教学平台

    Institute of Scientific and Technical Information of China (English)

    苏雪

    2011-01-01

    以SpiderGL项目为基础,构建了一个无需插件安装的、具有Web3D交互能力的三维虚拟实验教学平台。该平台能给用户提供强烈的沉浸感,并具有良好的双向交互性、可扩展性以及安全可靠性。%With the concept of mixing real teaching and virtual learning environment,a powerful virtual experimental learning platform with Web3D interactivity is proposed.It is based on project SpiderGL and free from plug-in installation.The platform will render users a strong sense of immersion,and has a good two-way interactivity,scalability,and secure reliability.

  19. Virtual environments in cancer care: Pilot-testing a three-dimensional web-based platform as a tool for support in young cancer patients

    DEFF Research Database (Denmark)

    Høybye, Mette Terp; Olsen, Pia Riis; Hansson, Helena Eva

    2016-01-01

    Bringing virtual environments into cancer support may offer a particular potential to engage patients and increase adherence to treatment. Developing and pilot-testing an online real-time multi-user three-dimensional platform, this study tested the use of an early prototype of the platform among...

  20. Full scope simulator of a nuclear power plant control room using 3D stereo virtual reality techniques for operators training

    Energy Technology Data Exchange (ETDEWEB)

    Aghina, Mauricio A.C.; Mol, Antonio Carlos A.; Almeida, Adino Americo A.; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN-CNEN/RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: mag@ien.gov.br; mol@ien.gov.br; adino@ien.gov.br; cmnap@ien.gov.br; Varela, Thiago F.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Eletrica]. E-mail: phillips.rj@terra.com.br; Cunha, Gerson G. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Metodos Computacionais em Engenharia (LAMCE)]. E-mail: gerson@lance.ufrj.br

    2007-07-01

    Practical training of nuclear power plants operators are partially performed by means of simulators. Usually these simulators are physical copies of the original control roam, needing a large space on a facility being also very expensive. In this way, the proposal of this paper is to implement the use of Virtual Reality techniques to design a full scope control room simulator, in a manner to reduce costs and physical space usage. (author)

  1. Building Analysis for Urban Energy Planning Using Key Indicators on Virtual 3d City Models - the Energy Atlas of Berlin

    Science.gov (United States)

    Krüger, A.; Kolbe, T. H.

    2012-07-01

    In the context of increasing greenhouse gas emission and global demographic change with the simultaneous trend to urbanization, it is a big challenge for cities around the world to perform modifications in energy supply chain and building characteristics resulting in reduced energy consumption and carbon dioxide mitigation. Sound knowledge of energy resource demand and supply including its spatial distribution within urban areas is of great importance for planning strategies addressing greater energy efficiency. The understanding of the city as a complex energy system affects several areas of the urban living, e.g. energy supply, urban texture, human lifestyle, and climate protection. With the growing availability of 3D city models around the world based on the standard language and format CityGML, energy system modelling, analysis and simulation can be incorporated into these models. Both domains will profit from that interaction by bringing together official and accurate building models including building geometries, semantics and locations forming a realistic image of the urban structure with systemic energy simulation models. A holistic view on the impacts of energy planning scenarios can be modelled and analyzed including side effects on urban texture and human lifestyle. This paper focuses on the identification, classification, and integration of energy-related key indicators of buildings and neighbourhoods within 3D building models. Consequent application of 3D city models conforming to CityGML serves the purpose of deriving indicators for this topic. These will be set into the context of urban energy planning within the Energy Atlas Berlin. The generation of indicator objects covering the indicator values and related processing information will be presented on the sample scenario estimation of heating energy consumption in buildings and neighbourhoods. In their entirety the key indicators will form an adequate image of the local energy situation for

  2. Workflows and the Role of Images for Virtual 3d Reconstruction of no Longer Extant Historic Objects

    Science.gov (United States)

    Münster, S.

    2013-07-01

    3D reconstruction technologies have gained importance as tools for the research and visualization of no longer extant historic objects during the last decade. Within such reconstruction processes, visual media assumes several important roles: as the most important sources especially for a reconstruction of no longer extant objects, as a tool for communication and cooperation within the production process, as well as for a communication and visualization of results. While there are many discourses about theoretical issues of depiction as sources and as visualization outcomes of such projects, there is no systematic research about the importance of depiction during a 3D reconstruction process and based on empirical findings. Moreover, from a methodological perspective, it would be necessary to understand which role visual media plays during the production process and how it is affected by disciplinary boundaries and challenges specific to historic topics. Research includes an analysis of published work and case studies investigating reconstruction projects. This study uses methods taken from social sciences to gain a grounded view of how production processes would take place in practice and which functions and roles images would play within them. For the investigation of these topics, a content analysis of 452 conference proceedings and journal articles related to 3D reconstruction modeling in the field of humanities has been completed. Most of the projects described in those publications dealt with data acquisition and model building for existing objects. Only a small number of projects focused on structures that no longer or never existed physically. Especially that type of project seems to be interesting for a study of the importance of pictures as sources and as tools for interdisciplinary cooperation during the production process. In the course of the examination the authors of this paper applied a qualitative content analysis for a sample of 26 previously

  3. Towards Building Web Based Augmented Reality Application for Pre-School Children

    Directory of Open Access Journals (Sweden)

    Sule Tekkesinoglu

    2013-06-01

    Full Text Available The goal of this work is to present a concept for web based Augmented Reality. We have many examples of Augmented Reality systems in different field from military applications to medical applications, from entertainment to manufacturing. In this paper we worked on how virtual environments can be combined with web based applications. Internet users need web sites for many reasons in daily life. On the other hand, Augmented Reality is one of the popular fields on virtual environment technologies that it would be useful to associate these two technologies. In this study JavaScript were used as main language to build Augmented Reality application supported by three different libraries each with a specific role. The libraries which are used through coding are Flartoolkit, Papervision3D, and Flex SDK. The outcome of this combined algorithms shows that the method is accomplished web based Augmented Reality for preschool children to provide educators a way to teach students with deeper, and more meaningful experiences in the academy.

  4. Virtual environments in cancer care: Pilot-testing a three-dimensional web-based platform as a tool for support in young cancer patients.

    Science.gov (United States)

    Høybye, Mette Terp; Olsen, Pia Riis; Hansson, Helena Eva; Spiegel, David; Bennetsen, Henrik; Cheslack-Postava, Ewen

    2016-11-28

    Bringing virtual environments into cancer support may offer a particular potential to engage patients and increase adherence to treatment. Developing and pilot-testing an online real-time multi-user three-dimensional platform, this study tested the use of an early prototype of the platform among adolescent and young adult cancer patients. Data were collected with an online questionnaire and using ethnographic methods of participant observation. The adolescent and young adult patients tested basic features of the virtual environment and some conducted brief in-world interactions with fellow patients during hospitalization. They had no reservations about using the technology and shared their ideas about its use. Our pilot test pointed to a number of areas of development for virtual environment applications as potential platforms for medical or behavioral interventions in cancer care. Overall, the results demonstrate the need for high user involvement in the development of such interventions and early testing of intervention designs. © The Author(s) 2016.

  5. 煤矿虚拟三维数据模型技术研究%Research on Coal Mine Virtual 3 d Data Model Technology

    Institute of Scientific and Technical Information of China (English)

    李琴; 王兴富

    2013-01-01

    煤矿信息化技术的发展对于煤矿各项工作的展开有着很大的价值和意义,在现代采煤业中,虚拟三维数据模型技术的发展,对于采煤定位、机械优化设计等都有很大的辅助作用,文章从虚拟三维数据模型的技术入手,对煤矿中该项技术的设计与应用进行了详细的分析。%The coal mine information technology development for coal mine each work expansion has great value and significance, in the modern coal mining industry, the virtual 3 d data model of the development of the technology for coal mining positioning, mechanical optimization design to wait to have a lot of auxiliary function, this article from the virtual 3 d data model technology of coal mine in the design and application of the technology to carry on the detailed analysis.

  6. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  7. High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: The viewpoint importance in structural geology

    Science.gov (United States)

    Tavani, Stefano; Corradetti, Amerigo; Billi, Andrea

    2016-05-01

    Image-based 3D modeling has recently opened the way to the use of virtual outcrop models in geology. An intriguing application of this method involves the production of orthorectified images of outcrops using almost any user-defined point of view, so that photorealistic cross-sections suitable for numerous geological purposes and measurements can be easily generated. These purposes include the accurate quantitative analysis of fault-fold relationships starting from imperfectly oriented and partly inaccessible real outcrops. We applied the method of image-based 3D modeling and orthorectification to a case study from the northern Apennines, Italy, where an incipient extensional fault affecting well-layered limestones is exposed on a 10-m-high barely accessible cliff. Through a few simple steps, we constructed a high-quality image-based 3D model of the outcrop. In the model, we made a series of measurements including fault and bedding attitudes, which allowed us to derive the bedding-fault intersection direction. We then used this direction as viewpoint to obtain a distortion-free photorealistic cross-section, on which we measured bed dips and thicknesses as well as fault stratigraphic separations. These measurements allowed us to identify a slight difference (i.e. only 0.5°) between the hangingwall and footwall cutoff angles. We show that the hangingwall strain required to compensate the upward-decreasing displacement of the fault was accommodated by this 0.5° rotation (i.e. folding) and coeval 0.8% thickening of strata in the hangingwall relatively to footwall strata. This evidence is consistent with trishear fault-propagation folding. Our results emphasize the viewpoint importance in structural geology and therefore the potential of using orthorectified virtual outcrops.

  8. In silico exploration of c-KIT inhibitors by pharmaco-informatics methodology: pharmacophore modeling, 3D QSAR, docking studies, and virtual screening.

    Science.gov (United States)

    Chaudhari, Prashant; Bari, Sanjay

    2016-02-01

    c-KIT is a component of the platelet-derived growth factor receptor family, classified as type-III receptor tyrosine kinase. c-KIT has been reported to be involved in, small cell lung cancer, other malignant human cancers, and inflammatory and autoimmune diseases associated with mast cells. Available c-KIT inhibitors suffer from tribulations of growing resistance or cardiac toxicity. A combined in silico pharmacophore and structure-based virtual screening was performed to identify novel potential c-KIT inhibitors. In the present study, five molecules from the ZINC database were retrieved as new potential c-KIT inhibitors, using Schrödinger's Maestro 9.0 molecular modeling suite. An atom-featured 3D QSAR model was built using previously reported c-KIT inhibitors containing the indolin-2-one scaffold. The developed 3D QSAR model ADHRR.24 was found to be significant (R2 = 0.9378, Q2 = 0.7832) and instituted to be sufficiently robust with good predictive accuracy, as confirmed through external validation approaches, Y-randomization and GH approach [GH score 0.84 and Enrichment factor (E) 4.964]. The present QSAR model was further validated for the OECD principle 3, in that the applicability domain was calculated using a "standardization approach." Molecular docking of the QSAR dataset molecules and final ZINC hits were performed on the c-KIT receptor (PDB ID: 3G0E). Docking interactions were in agreement with the developed 3D QSAR model. Model ADHRR.24 was explored for ligand-based virtual screening followed by in silico ADME prediction studies. Five molecules from the ZINC database were obtained as potential c-KIT inhibitors with high in -silico predicted activity and strong key binding interactions with the c-KIT receptor.

  9. 3D QSAR modeling of 4-nerolidylcatechol derivatives and virtual screening for identification of potent plasmodium inhibitor

    Directory of Open Access Journals (Sweden)

    Dhrubajyoti Gogoi

    2014-08-01

    Full Text Available The present study was aim to develop a three dimensional quantitative structure–activity relationships (3D QSAR model based on the structure of 4-nerolidylcatechol (IC50=0.67 µM, a novel plant derived Plasmodium inhibitor and its derivatives for identification of efficient antimalarial lead. A statisti-cally validated Partial Least-Squares (PLS based Molecular Field Analysis (MFA model was built up using the training set of eight 4-nerolidylcatechol derivatives and their diverse conformers. A statistically reliable model with good predictive power (cross-validated correlation coefficient q2=0.769 was obtained. Hence, the generated model was used to screen a library of 30,000 compounds of chembridge database (http://www.chembridge.com. Results of drug likeness prediction and ADMET study has suggested six compounds as potential antimalarial/plasmodial lead.

  10. Virtualizing ancient Rome: 3D acquisition and modeling of a large plaster-of-Paris model of imperial Rome

    Science.gov (United States)

    Guidi, Gabriele; Frischer, Bernard; De Simone, Monica; Cioci, Andrea; Spinetti, Alessandro; Carosso, Luca; Micoli, Laura L.; Russo, Michele; Grasso, Tommaso

    2005-01-01

    Computer modeling through digital range images has been used for many applications, including 3D modeling of objects belonging to our cultural heritage. The scales involved range from small objects (e.g. pottery), to middle-sized works of art (statues, architectural decorations), up to very large structures (architectural and archaeological monuments). For any of these applications, suitable sensors and methodologies have been explored by different authors. The object to be modeled within this project is the "Plastico di Roma antica," a large plaster-of-Paris model of imperial Rome (16x17 meters) created in the last century. Its overall size therefore demands an acquisition approach typical of large structures, but it also is characterized extremely tiny details typical of small objects (houses are a few centimeters high; their doors, windows, etc. are smaller than 1 centimeter). This paper gives an account of the procedures followed for solving this "contradiction" and describes how a huge 3D model was acquired and generated by using a special metrology Laser Radar. The procedures for reorienting in a single reference system the huge point clouds obtained after each acquisition phase, thanks to the measurement of fixed redundant references, are described. The data set was split in smaller sub-areas 2 x 2 meters each for purposes of mesh editing. This subdivision was necessary owing to the huge number of points in each individual scan (50-60 millions). The final merge of the edited parts made it possible to create a single mesh. All these processes were made with software specifically designed for this project since no commercial package could be found that was suitable for managing such a large number of points. Preliminary models are presented. Finally, the significance of the project is discussed in terms of the overall project known as "Rome Reborn," of which the present acquisition is an important component.

  11. Developing an Internet Oriented Platform for Earthquake Engineering Application and Web-based Virtual Reality Simulation System for Seismic hazards: Towards Disaster Mitigation in Metropolises

    Directory of Open Access Journals (Sweden)

    Ali Alaghehbandian

    2003-04-01

    Full Text Available This paper reviews the state of the art on risk communication to the public, with an emphasis on simulation of seismic hazards using VRML. Rapid growth computer technologies, especially the Internet provide human beings new measures to deal with engineering and social problems which were hard to solve in traditional ways. This paper presents a prototype of an application platform based on the Internet using VR (Virtual Reality for civil engineering considering building an information system of risk communication for seismic hazards and at the moment in the case of bridge structure.

  12. Service innovation in glaucoma management: using a Web-based electronic patient record to facilitate virtual specialist supervision of a shared care glaucoma programme.

    Science.gov (United States)

    Wright, Heathcote R; Diamond, Jeremy P

    2015-03-01

    To assess the importance of specialist supervision in a new model of glaucoma service delivery. An optometrist supported by three technicians managed each glaucoma clinic. Patients underwent testing and clinical examination before the optometrist triaged them into one of five groups: 'normal', 'stable', 'low risk', 'unstable' and 'high risk'. Patient data were uploaded to an electronic medical record to facilitate virtual review by a glaucoma specialist. 24 257 glaucoma reviews at three glaucoma clinics during a 31-month period were analysed. The clinic optometrists and glaucoma specialists had substantial agreement (κ 0.69). 13 patients were identified to be high risk by the glaucoma specialist that had not been identified as such by the optometrist. Glaucoma specialists amended 13% of the optometrists' interim decisions resulting in an overall reduction in review appointments by 2.4%. Employing technicians and optometrists to triage glaucoma patients into groups defined by risk of blindness allows higher risk patients to be directed to a glaucoma specialist. Virtual review allows the glaucoma specialist to remain in overall control while reducing the risk that patients are treated or followed-up unnecessarily. Demand for glaucoma appointments can be reduced allowing scarce medical resources to be directed to patients most in need. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Reorienting in virtual 3D environments: do adult humans use principal axes, medial axes or local geometry?

    Directory of Open Access Journals (Sweden)

    Althea H Ambosta

    Full Text Available Studies have shown that animals, including humans, use the geometric properties of environments to orient. It has been proposed that orientation is accomplished primarily by encoding the principal axes (i.e., global geometry of an environment. However, recent research has shown that animals use local information such as wall length and corner angles as well as local shape parameters (i.e., medial axes to orient. The goal of the current study was to determine whether adult humans reorient according to global geometry based on principal axes or whether reliance is on local geometry such as wall length and sense information or medial axes. Using a virtual environment task, participants were trained to select a response box located at one of two geometrically identical corners within a featureless rectangular-shaped environment. Participants were subsequently tested in a transformed L-shaped environment that allowed for a dissociation of strategies based on principal axes, medial axes and local geometry. Results showed that participants relied primarily on a medial axes strategy to reorient in the L-shaped test environment. Importantly, the search behaviour of participants could not be explained by a principal axes-based strategy.

  14. Transforming clinical imaging and 3D data for virtual reality learning objects: HTML5 and mobile devices implementation.

    Science.gov (United States)

    Trelease, Robert B; Nieder, Gary L

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android tablets. This article describes complementary methods for creating comparable, multiplatform VR learning objects in the new HTML5 standard format, circumventing platform-specific limitations imposed by the QuickTime VR multimedia file format. Multiple types or "dimensions" of anatomical information can be embedded in such learning objects, supporting different kinds of online learning applications, including interactive atlases, examination questions, and complex, multi-structure presentations. Such HTML5 VR learning objects are usable on new mobile devices that do not support QuickTime VR, as well as on personal computers. Furthermore, HTML5 VR learning objects can be embedded in "ebook" document files, supporting the development of new types of electronic textbooks on mobile devices that are increasingly popular and self-adopted for mobile learning. © 2012 American Association of Anatomists.

  15. Urban Archaeology: how to Communicate a Story of a Site, 3d Virtual Reconstruction but not Only

    Science.gov (United States)

    Capone, M.

    2011-09-01

    Over the past few years experimental systems have been developed to introduce new ways of enjoying cultural heritage using digital media. Technology had a lead role in this testing ground increasing the need to develop new way of communication according to contemporary iconography culture. Most applications are aimed at creating online databases that allow free access to information, that helps to spread the culture and simplify the study about cultural heritage. To this type of application are added others, which are aimed at defining new and different ways of cultural heritage enjoyment. Very interesting applications are those regarding to reconstruction of archaeological landscape. The target of these applications is to develop a new level of knowledge that increases the value of the archaeological find and the level of understanding. In fact, digital media can bridge the gap of communication associated to archaeological find: the virtual simulation offers the possibility to put it in the context and it defines a new way to enjoy the cultural heritage. In most of these cases the spectacular and recreational factor generally prevails. We believe that experimentation is needed in this area, particularly for the development of Urban Archaeology. In this case, another trouble to enjoy is added to the lack of communication, typical of archaeological finds, because it is "hidden" in an irreversible way: it is under water or under city. So, our research is mainly oriented to define a methodological path to elaborate a communication strategy to increase interest about Urban Archaeology.

  16. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  17. Three-dimensional modeling and virtual TRIGA reconfigure for specialized training; Modelado 3D y TRIGA virtual reconfigurable para entrenamiento especializado

    Energy Technology Data Exchange (ETDEWEB)

    Plata M, A. C.; Morales S, J. B.; Flores, M. [Facultad de Ingenieria, Division de Estudios de Posgrado, Campus Morelos, UNAM, Paseo Cuauhnahuac 8532, Col. Progreso, 62550 Jiutepec, Morelos (Mexico)], e-mail: yoyuclof@hotmail.com

    2009-10-15

    The news products that have been realized for the training virtual room which is developing in the Engineering Faculty of National Autonomous University of Mexico are presented. These improvements are mainly in modeling of virtual reality of the reactor building, as well as internal parts of reactor. It was modified the dynamic modeling of control rods of reaction in chain and included new elements to reactor. which exist not necessarily in all the TRIGA, but that, for educational purposes are highly useful. Such is the case of addition of valves, pumps, tanks, injection lines of light or borated water, as well as a heat exchanger, with it can recycle only pool water from side to other, or to extract energy toward a secondary controller from the operator console. The models of heat decay were included, of subcooled and nucleated boiling of coolant-moderator in the core, the dynamics of xenon and samarium. These last with independent multipliers of simulation time to allow variations very fast that real time. All these additions modify the coolant-moderator characteristics and consequently the answer of simulator. The controls are separated in: an operator console (student) very similar to the real systems, another of instructor that has additional access to parameters not directly measurement in the facilities but that allow to modify the system to illustrate another not easily possible effects in the real system. The traveling crane is also modeled and is controlled in a third console from where can to replacement to reactor as well as to add or to replacement: intakes and discharges of coolant circulators, measuring instruments, reflectors and neutron sources. The dynamic models have been tested in SCILAB and SCICOS. At present is working in the integration of the dynamic simulator and the virtual reality mainly with the design requirement of allowing functions of increased reality. (Author)

  18. Remote Sensing and GIS Applied to the Landscape for the Environmental Restoration of Urbanizations by Means of 3D Virtual Reconstruction and Visualization (Salamanca, Spain

    Directory of Open Access Journals (Sweden)

    Antonio Miguel Martínez-Graña

    2016-01-01

    Full Text Available The key focus of this paper is to establish a procedure that combines the use of Geographical Information Systems (GIS and remote sensing in order to achieve simulation and modeling of the landscape impact caused by construction. The procedure should be easily and inexpensively developed. With the aid of 3D virtual reconstruction and visualization, this paper proposes that the technologies of remote sensing and GIS can be applied to the landscape for post-urbanization environmental restoration. The goal is to create a rural zone in an urban development sector that integrates the residential areas and local infrastructure into the surrounding natural environment in order to measure the changes to the preliminary urban design. The units of the landscape are determined by means of two cartographic methods: (1 indirect, using the components of the landscape; and (2 direct methods, using the landscape’s elements. The visual basins are calculated for the most transited by the population points, while establishing the zones that present major impacts for the urbanization of their landscape. Based on this, the different construction types are distributed (one-family houses, blocks of houses, etc., selecting the types of plant masses either with ornamentals or integration depending on the zone; integrating water channels, creating a water channel in recirculation and green spaces and leisure time facilities. The techniques of remote sensing and GIS allow for the visualization and modeling of the urbanization in 3D, simulating the virtual reality of the infrastructure as well as the actions that need to be taken for restoration, thereby providing at a low cost an understanding of landscape integration before it takes place.

  19. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  20. Weapon identification using antemortem computed tomography with virtual 3D and rapid prototype modeling--a report in a case of blunt force head injury.

    Science.gov (United States)

    Woźniak, Krzysztof; Rzepecka-Woźniak, Ewa; Moskała, Artur; Pohl, Jerzy; Latacz, Katarzyna; Dybała, Bogdan

    2012-10-10

    A frequent request of a prosecutor referring to forensic autopsy is to determine the mechanism of an injury and to identify the weapons used to cause those injuries. This task could be problematic in many ways, including changes in the primary injury caused by medical intervention and the process of healing. To accomplish this task, the forensic pathologist has to gather all possible information during the post-mortem examination. The more data is collected, the easier it is to obtain an accurate answer to the prosecutor's question. The authors present a case of head injuries that the victim sustained under unknown circumstances. The patient underwent neurosurgical treatment which resulted in alteration of the bone fracture pattern. The only way to evaluate this injury was to analyze antemortem clinical data, especially CT scans, with virtual 3D reconstruction of the fractured skull. A physical model of a part of the broken skull was created with the use of 3D printing. These advanced techniques, applied for the first time in Poland for forensic purposes, allowed investigators to extract enough data to develop a hypothesis about the mechanism of injury and the weapon most likely used. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Modeling and Accuracy Assessment for 3D-VIRTUAL Reconstruction in Cultural Heritage Using Low-Cost Photogrammetry: Surveying of the "santa MARÍA Azogue" Church's Front

    Science.gov (United States)

    Robleda Prieto, G.; Pérez Ramos, A.

    2015-02-01

    Sometimes it could be difficult to represent "on paper" an architectural idea, a solution, a detail or a newly created element, depending on the complexity what it want be conveyed through its graphical representation but it may be even harder to represent the existing reality. (a building, a detail,...), at least with an acceptable degree of definition and accuracy. As a solution to this hypothetical problem, this paper try to show a methodology to collect measure data by combining different methods or techniques, to obtain the characteristic geometry of architectonic elements, especially in those highly decorated and/or complex geometry, as well as to assess the accuracy of the results obtained, but in an accuracy level enough and not very expensive costs. In addition, we can obtain a 3D recovery model that allows us a strong support, beyond point clouds obtained through another more expensive methods as using laser scanner, to obtain orthoimages. This methodology was used in the study case of the 3D-virtual reconstruction of a main medieval church façade because of the geometrical complexity in many elements as the existing main doorway with archivolts and many details, as well as the rose window located above it so it's inaccessible due to the height.

  2. Web-Based Training Applications in Safeguards and Security

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, R.L.

    1999-05-21

    The U.S. Department of Energy (DOE) requires all employees who hold a security clearance and have access to classified information and/or special nuclear material to be trained in the area of Safeguards and Security. Since the advent of the World Wide Web, personnel who are responsible for training have capitalized on this communication medium to develop and deliver Web-based training. Unlike traditional computer based training where the student was required to find a workstation where the training program resided, one of Web-based training strongest advantage is that the training can be delivered right to the workers desk top computer. This paper will address reasons for the driving forces behind the utilization of Web-based training at the Laboratory with a brief explanation of the different types of training conducted. Also discussed briefly is the different types of distance learning used in conjunction with Web-based training. The implementation strategy will be addressed and how the Laboratory utilized a Web-Based Standards Committee to develop standards for Web-based training applications. Web-based problems resulting from little or no communication between training personnel across the Laboratory will be touched on and how this was solved. Also discussed is the development of a ''Virtual Training Center'' where personnel can shop on-line for their training needs. Web-based training programs within the Safeguards and Security arena will be briefly discussed. Specifically, Web-based training in the area of Materials Control and Accountability will be explored. A Web-based example of what a student would experience during a training session is also discussed. A short closing statement of what the future of Web-based Training holds in the future is offered.

  3. 基于Web3D的产品虚拟展示与用户定制%Virtual exhibition and customization based on Web3D

    Institute of Scientific and Technical Information of China (English)

    武艳芳

    2012-01-01

    针对虚拟展示以及用户定制的特点,对相关技术以及设计工具进行了分析,提出了基于Web环境下动态交互浏览以及定制的一般方法.以cult3d为开发平台,运用相关动作、事件以及JAS实现三维模型的形态、色彩的定制以及动态浏览.为了提高用户操作的便利性,通过媒体合成对自定义事件进行驱动,对界面进行优化,并基于Web3D技术设计开发了一套汽车的在线定制与展示系统.%This paper aims at the specialties of virtual exhibition and customization. Some technologies and design tools are analyzed, and a general method for dynamic interactive browse and customization on Web is proposed. Based on development environment of cult3d, customizing color and form of 3D models and dynamic browse are realized by using interrelated actions, events and JAS. In order to improve the convenience of operation, the triggering manual events and optimizing interface are achieved by media mixing, in the meanwhile, a system of exhibition and customization about mobile is developed based on Web3D technology.

  4. The discovery of a novel and selective inhibitor of PTP1B over TCPTP: 3D QSAR pharmacophore modeling, virtual screening, synthesis, and biological evaluation.

    Science.gov (United States)

    Ma, Ying; Jin, Yuan-Yuan; Wang, Ye-Liu; Wang, Run-Ling; Lu, Xin-Hua; Kong, De-Xin; Xu, Wei-Ren

    2014-06-01

    Given the special role of insulin and leptin signaling in various biological responses, protein-tyrosine phosphatase-1B (PTP1B) was regarded as a novel therapeutic target for treating type 2 diabetes and obesity. However, owing to the highly conserved (sequence identity of about 74%) in active pocket, targeting PTP1B for drug discovery is a great challenge. In this study, we employed the software package Discovery Studio to develop 3D QSAR pharmacophore models for PTP1B and TCPTP inhibitors. It was further validated by three methods (cost analysis, test set prediction, and Fisher's test) to show that the models can be used to predict the biological activities of compounds without costly and time-consuming synthesis. The criteria for virtual screening were also validated by testing the selective PTP1B inhibitors. Virtual screening experiments and subsequent in vitro evaluation of promising hits revealed a novel and selective inhibitor of PTP1B over TCPTP. After that, a most likely binding mode was proposed. Thus, the findings reported here may provide a new strategy in discovering selective PTP1B inhibitors.

  5. INTERACTIVE 3D LANDSCAPES ON LINE

    Directory of Open Access Journals (Sweden)

    B. Fanini

    2012-09-01

    Full Text Available The paper describes challenges identified while developing browser embedded 3D landscape rendering applications, our current approach and work-flow and how recent development in browser technologies could affect. All the data, even if processed by optimization and decimation tools, result in very huge databases that require paging, streaming and Level-of-Detail techniques to be implemented to allow remote web based real time fruition. Our approach has been to select an open source scene-graph based visual simulation library with sufficient performance and flexibility and adapt it to the web by providing a browser plug-in. Within the current Montegrotto VR Project, content produced with new pipelines has been integrated. The whole Montegrotto Town has been generated procedurally by CityEngine. We used this procedural approach, based on algorithms and procedures because it is particularly functional to create extensive and credible urban reconstructions. To create the archaeological sites we used optimized mesh acquired with laser scanning and photogrammetry techniques whereas to realize the 3D reconstructions of the main historical buildings we adopted computer-graphic software like blender and 3ds Max. At the final stage, semi-automatic tools have been developed and used up to prepare and clusterise 3D models and scene graph routes for web publishing. Vegetation generators have also been used with the goal of populating the virtual scene to enhance the user perceived realism during the navigation experience. After the description of 3D modelling and optimization techniques, the paper will focus and discuss its results and expectations.

  6. Securing web-based exams

    NARCIS (Netherlands)

    Sessink, O.D.T.; Beeftink, H.H.; Tramper, J.; Hartog, R.J.M.

    2004-01-01

    Learning management systems may offer web-based exam facilities. Such facilities entail a higher risk to exams fraud than traditional paper-based exams. The article discusses security issues with web-based exams, and proposes precautionary measures to reduce the risks. A security model is presented

  7. Securing web-based exams

    NARCIS (Netherlands)

    Sessink, O.D.T.; Beeftink, H.H.; Tramper, J.; Hartog, R.J.M.

    2004-01-01

    Learning management systems may offer web-based exam facilities. Such facilities entail a higher risk to exams fraud than traditional paper-based exams. The article discusses security issues with web-based exams, and proposes precautionary measures to reduce the risks. A security model is presented

  8. Web Based VRML Modelling

    NARCIS (Netherlands)

    Kiss, S.

    2001-01-01

    Presents a method to connect VRML (Virtual Reality Modeling Language) and Java components in a Web page using EAI (External Authoring Interface), which makes it possible to interactively generate and edit VRML meshes. The meshes used are based on regular grids, to provide an interaction and modeling

  9. Advanced 3D Sensing and Visualization System for Unattended Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.J.; Little, C.Q.; Nelson, C.L.

    1999-01-01

    The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

  10. New weather depiction technology for night vision goggle (NVG) training: 3D virtual/augmented reality scene-weather-atmosphere-target simulation

    Science.gov (United States)

    Folaron, Michelle; Deacutis, Martin; Hegarty, Jennifer; Vollmerhausen, Richard; Schroeder, John; Colby, Frank P.

    2007-04-01

    US Navy and Marine Corps pilots receive Night Vision Goggle (NVG) training as part of their overall training to maintain the superiority of our forces. This training must incorporate realistic targets; backgrounds; and representative atmospheric and weather effects they may encounter under operational conditions. An approach for pilot NVG training is to use the Night Imaging and Threat Evaluation Laboratory (NITE Lab) concept. The NITE Labs utilize a 10' by 10' static terrain model equipped with both natural and cultural lighting that are used to demonstrate various illumination conditions, and visual phenomena which might be experienced when utilizing night vision goggles. With this technology, the military can safely, systematically, and reliably expose pilots to the large number of potentially dangerous environmental conditions that will be experienced in their NVG training flights. A previous SPIE presentation described our work for NAVAIR to add realistic atmospheric and weather effects to the NVG NITE Lab training facility using the NVG - WDT(Weather Depiction Technology) system (Colby, et al.). NVG -WDT consist of a high end multiprocessor server with weather simulation software, and several fixed and goggle mounted Heads Up Displays (HUDs). Atmospheric and weather effects are simulated using state-of-the-art computer codes such as the WRF (Weather Research μ Forecasting) model; and the US Air Force Research Laboratory MODTRAN radiative transport model. Imagery for a variety of natural and man-made obscurations (e.g. rain, clouds, snow, dust, smoke, chemical releases) are being calculated and injected into the scene observed through the NVG via the fixed and goggle mounted HUDs. This paper expands on the work described in the previous presentation and will describe the 3D Virtual/Augmented Reality Scene - Weather - Atmosphere - Target Simulation part of the NVG - WDT. The 3D virtual reality software is a complete simulation system to generate realistic

  11. Web-based VR training simulator for percutaneous rhizotomy.

    Science.gov (United States)

    Li, Y; Brodlie, K; Phillips, N

    2000-01-01

    Virtual Reality offers great potential for surgical training--yet is typically limited by the dedicated and expensive equipment required. Web-based VR has the potential to offer a much cheaper alternative, in which simulations of fundamental techniques are downloaded from a server to run within a web browser. The equipment requirement is modest--an Internet-connected PC or small workstation--and the simulation can be accessed worldwide. In a collaboration between computer scientists and neurosurgeons, we have studied the use of web-based VR to train neurosurgeons in Percutaneous Rhizotomy--a treatment for the intractable facial pain which occurs in trigeminal neuralgia. This involves the insertion of a needle so as to puncture the foramen ovale, and lesion the nerve. Our simulation uses VRML to provide a 3D visualization environment, but the work immediately exposes a key limitation of VRML for surgical simulation. VRML does not support collision detection between objects--only between viewpoint and object. Thus collision between needle and skull cannot be detected and fed back to the trainee. We have developed a novel solution in which the training simulation has linked views: a normal view, plus a view as seen from the tip of the needle. Collision detection is captured in the needle view, and fed back to the viewer. A happy consequence of this approach has been the chance to aid the trainee with this additional view from needle tip, which helps locate the foramen ovale. The technology to achieve this is Java software communicating with the VRML worlds through the External Authoring Interface (EAI). The training simulator is available on the Web, with accompanying tutorial on its use. A major advantage of web-based VR is that the techniques generalize to a whole range of surgical simulations. Thus we have been able to use exactly the same approach as described above for neurosurgery, to develop a shoulder arthroscopy simulator--where again collision detection, and

  12. Auditory and visual 3D virtual reality therapy as a new treatment for chronic subjective tinnitus: Results of a randomized controlled trial.

    Science.gov (United States)

    Malinvaud, D; Londero, A; Niarra, R; Peignard, Ph; Warusfel, O; Viaud-Delmon, I; Chatellier, G; Bonfils, P

    2016-03-01

    Subjective tinnitus (ST) is a frequent audiologic condition that still requires effective treatment. This study aimed at evaluating two therapeutic approaches: Virtual Reality (VR) immersion in auditory and visual 3D environments and Cognitive Behaviour Therapy (CBT). This open, randomized and therapeutic equivalence trial used bilateral testing of VR versus CBT. Adult patients displaying unilateral or predominantly unilateral ST, and fulfilling inclusion criteria were included after giving their written informed consent. We measured the different therapeutic effect by comparing the mean scores of validated questionnaires and visual analog scales, pre and post protocol. Equivalence was established if both strategies did not differ for more than a predetermined limit. We used univariate and multivariate analysis adjusted on baseline values to assess treatment efficacy. In addition of this trial, purely exploratory comparison to a waiting list group (WL) was provided. Between August, 2009 and November, 2011, 148 of 162 screened patients were enrolled (VR n = 61, CBT n = 58, WL n = 29). These groups did not differ at baseline for demographic data. Three month after the end of the treatment, we didn't find any difference between VR and CBT groups either for tinnitus severity (p = 0.99) or tinnitus handicap (p = 0.36). VR appears to be at least as effective as CBT in unilateral ST patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. 2.5D/3D Models for the enhancement of architectural-urban heritage. An Virtual Tour of design of the Fascist headquarters in Littoria

    Science.gov (United States)

    Ippoliti, E.; Calvano, M.; Mores, L.

    2014-05-01

    Enhancement of cultural heritage is not simply a matter of preserving material objects but comes full circle only when the heritage can be enjoyed and used by the community. This is the rationale behind this presentation: an urban Virtual Tour to explore the 1937 design of the Fascist Headquarters in Littoria, now part of Latina, by the architect Oriolo Frezzotti. Although the application is deliberately "simple", it was part of a much broader framework of goals. One such goal was to create "friendly and perceptively meaningful" interfaces by integrating different "3D models" and so enriching. In fact, by exploiting the activation of natural mechanisms of visual perception and the ensuing emotional emphasis associated with vision, the illusionistic simulation of the scene facilitates access to the data even for "amateur" users. A second goal was to "contextualise the information" on which the concept of cultural heritage is based. In the application, communication of the heritage is linked to its physical and linguistic context; the latter is then used as a basis from which to set out to explore and understand the historical evidence. A third goal was to foster the widespread dissemination and sharing of this heritage of knowledge. On the one hand we worked to make the application usable from the Web, on the other, we established a reliable, rapid operational procedure with high quality processed data and ensuing contents. The procedure was also repeatable on a large scale.

  14. Eye-tracking and EMG supported 3D Virtual Reality - an integrated tool for perceptual and motor development of children with severe physical disabilities: a research concept.

    Science.gov (United States)

    Pulay, Márk Ágoston

    2015-01-01

    Letting children with severe physical disabilities (like Tetraparesis spastica) to get relevant motional experiences of appropriate quality and quantity is now the greatest challenge for us in the field of neurorehabilitation. These motional experiences may establish many cognitive processes, but may also cause additional secondary cognitive dysfunctions such as disorders in body image, figure invariance, visual perception, auditory differentiation, concentration, analytic and synthetic ways of thinking, visual memory etc. Virtual Reality is a technology that provides a sense of presence in a real environment with the help of 3D pictures and animations formed in a computer environment and enable the person to interact with the objects in that environment. One of our biggest challenges is to find a well suited input device (hardware) to let the children with severe physical disabilities to interact with the computer. Based on our own experiences and a thorough literature review we have come to the conclusion that an effective combination of eye-tracking and EMG devices should work well.

  15. Web-based support systems

    CERN Document Server

    Yao, JingTao

    2010-01-01

    The emerging interdisciplinary study of Web-based support systems focuses on the theories, technologies and tools for the design and implementation of Web-based systems that support various human activities. This book presents the state-of-the-art in Web-based support systems (WSS). The research on WSS is multidisciplinary and focuses on supporting various human activities in different domains/fields based on computer science, information technology, and Web technology. The main goal is to take the opportunities of the Web, to meet the challenges of the Web, to extend the human physical limita

  16. Web-based training of metacognitive strategies for text comprehension: Focus on poor comprehenders

    NARCIS (Netherlands)

    Johnson, M.C.

    2005-01-01

    Metacognitive reading strategies were trained and practiced using interactive Web-based tools. Twenty middle school poor reading comprehenders were trained in two metacognitive strategies using a Web-based application called 3D-Readers. The training texts were science-oriented and merged the narrati

  17. Generating Orthorectified Multi-Perspective 2.5D Maps to Facilitate Web GIS-Based Visualization and Exploitation of Massive 3D City Models

    Directory of Open Access Journals (Sweden)

    Jianming Liang

    2016-11-01

    Full Text Available 2.5D map is a convenient and efficient approach to exploiting a massive three-dimensional (3D city model in web GIS. With the rapid development of oblique airborne photogrammetry and photo-based 3D reconstruction, 3D city models are becoming more and more accessible. 3D Geographic Information System (GIS can support the interactive visualization of massive 3D city models on various platforms and devices. However, the value and accessibility of existing 3D city models can be augmented by integrating them into web-based two-dimensional (2D GIS applications. In this paper, we present a step-by-step workflow for generating orthorectified oblique images (2.5D maps from massive 3D city models. The proposed framework can produce 2.5D maps from an arbitrary perspective, defined by the elevation angle and azimuth angle of a virtual orthographic camera. We demonstrate how 2.5D maps can benefit web-based visualization and exploitation of massive 3D city models. We conclude that a 2.5D map is a compact data representation optimized for web data streaming of 3D city models and that geometric analysis of buildings can be effectively conducted on 2.5D maps.

  18. D Modelling and Interactive Web-Based Visualization of Cultural Heritage Objects

    Science.gov (United States)

    Koeva, M. N.

    2016-06-01

    discusses the advantages and disadvantages of these three approaches and their integration in multiple domains, such as web-based 3D city modelling, tourism and architectural 3D visualization. It was concluded that image-based modelling and panoramic visualisation are simple, fast and effective techniques suitable for simultaneous virtual representation of many objects. However, additional measurements or CAD information will be beneficial for obtaining higher accuracy.

  19. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  20. Use of web-based simulators and YouTube for teaching of Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Hanson, Lars G.

    Interactive web-based software for teaching of 3D vector dynamics involved in Magnetic Resonance Imaging (MRI) was developed. The software is briefly discussed along with the background, design, implementation, dissemination and educational value....

  1. Development of Web3 D virtual reality platform and its application in shipping industry%Web3 D虚拟现实平台的开发及在船舶行业中的应用

    Institute of Scientific and Technical Information of China (English)

    王成睿; 万隆君; 徐轶群

    2014-01-01

    This paper compared various implement action methods of Web3D virtual reality technology, then used Java's Swing and I/O programming to develop a software platform which can build a Java 3D virtual reality scene through importing OBJ models. This platform has a simple graphical user interface and can build Web3D virtual reality scene conveniently and quickly. This paper also took ship superstructure as an example and used the platform to build a virtual roaming scene of ship superstructure.%对实现Web3D虚拟现实技术的各种方法进行了比较,然后利用Java的Swing和I/O编程,实现了通过导入OBJ模型生成Java 3D虚拟现实场景的软件平台。该平台具有简易的图形化操作界面,能方便快速地搭建Web3D虚拟现实场景。以某船舶上层建筑为例,利用该平台创建了基于Web的船舶上层建筑虚拟漫游场景。

  2. Design Research of 3D Virtual Campus in Hunan University of ;Arts and Science%湖南文理学院3D虚拟校园的设计研究

    Institute of Scientific and Technical Information of China (English)

    吴淑娟; 肖芳

    2015-01-01

    虚拟校园作为虚拟现实技术在数字校园中的具体应用,综合运用虚拟现实技术和计算机技术等技术,将校园地理信息和其他信息相结合,以虚拟现实的场景实现校园景观及信息的浏览和查询。%Virtual campus is a speciifc application of virtual reality technology in digital campus. The virtual campus reproduction of the real campus landscape, make people through virtual reality equipment, can be roaming in the computer, the planning and design of campus scene, can also be based on 3D Virtual University, offering corresponding online education.

  3. 3D presentatie van geluid in de cockpit [3D sound presentation in the cockpit

    NARCIS (Netherlands)

    Bronkhorst, A.W.

    2003-01-01

    A.W. Bronkhorst, 3D-presentatie van geluid in de cockpit 1 Using virtual acoustics, sound can be presented from virtual sources located in the 3D space around the listener. This 3D sound has interesting applications in the cockpit. Sounds can be used to convey directional information, and interferen

  4. Research of interactive virtual photography system based on Unity 3D%基于Unity 3D的交互式虚拟摄影系统的设计与实现

    Institute of Scientific and Technical Information of China (English)

    张枝; 白利

    2015-01-01

    以单反相机的操作和虚拟摄影棚的拍摄为开发依据,围绕着摄影知识、摄影常规技术和室内摄影棚这三个方面设计虚拟摄影系统。分析了三维建模技术、Flash动画和交互技术以及Unity 3D虚拟仿真技术在虚拟现实中的应用,提出了一种便捷实用的调用swf文件的方法,重点分析了曝光、对焦、测光、景深和虚拟摄影棚的设计思路并最终实现这些功能。%This paper describes the design and development of the interactive virtual photography system based on Unity 3D which can solve the problems existing in the curriculum of photograph. The virtual photography system designs these three aspects including basic knowledge of photography, photography and virtual photostudio according to the opration of DSLR camera and photography of virtual photostudio. In addition, the key technology in the application of virtual reality such as three-dimensional modeling technology, Flash animation and interactive technology, the Unity 3D virtual simulation technology are analyzed in this paper, and it introduces a convenient and practical method to load SWF file in Unity 3D. At last, this paper analyzes the design ideas of exposure, focus, measurement, depth of field of which these functions has been realized in the system.

  5. Software for Building Models of 3D Objects via the Internet

    Science.gov (United States)

    Schramer, Tim; Jensen, Jeff

    2003-01-01

    The Virtual EDF Builder (where EDF signifies Electronic Development Fixture) is a computer program that facilitates the use of the Internet for building and displaying digital models of three-dimensional (3D) objects that ordinarily comprise assemblies of solid models created previously by use of computer-aided-design (CAD) programs. The Virtual EDF Builder resides on a Unix-based server computer. It is used in conjunction with a commercially available Web-based plug-in viewer program that runs on a client computer. The Virtual EDF Builder acts as a translator between the viewer program and a database stored on the server. The translation function includes the provision of uniform resource locator (URL) links to other Web-based computer systems and databases. The Virtual EDF builder can be used in two ways: (1) If the client computer is Unix-based, then it can assemble a model locally; the computational load is transferred from the server to the client computer. (2) Alternatively, the server can be made to build the model, in which case the server bears the computational load and the results are downloaded to the client computer or workstation upon completion.

  6. Construction of 3D Digital Community Based on Virtual Reality Technique%基于虚拟现实技术的3维数字社区建设

    Institute of Scientific and Technical Information of China (English)

    王金平; 王克峰

    2012-01-01

    数字社区是虚拟现实技术与地理信息技术相结合的具体应用。文章结合3维数字社区建设的实例,探讨了基于虚拟实现技术的3维数字社区建设的具体方法和关键技术。%Digital community is a practical application of virtual reality technique combined with geographic information technique. This paper probes into the pivotal techniques and practical methods of constructing 3D digital community based on virtual reality utilizing 3D digital community construction as a practical example.

  7. Research and application of drilling teaching system based on Quest3D virtual simulation%基于Quest3D的钻床加工虚拟教学系统的研究

    Institute of Scientific and Technical Information of China (English)

    罗求顺; 张其; 郭建; 汪广扩

    2015-01-01

    According to the requirements such as good human-computer interaction interface and strong sense of immersion and other characteristics of the training system, the real-time 3D construction tools Quest 3D is applied in the develop-ment of drilling machine learning system. A development program is put forward for the machine tool virtual simulation training system. The virtual system consists of 3D display module, motion control module, voice module, scene interac-tive module and sound module. The development cycle of system is shorten and the efficiency of the system is improved through the Quest3D graphics programming. The 3D scene virtual interactive technology is successfully applied in drilling training system.%针对培训系统要求人机交互界面好以及沉浸感强等特点,在钻床教学系统开发中采用实时3D建构工具Quest3D,提出了一种针对钻床教学培训的虚拟现实系统的开发方案,将虚拟现实系统分为三维显示模块,运动控制模块,场景交互模块和场景声控模块等,通过Quest3D的图形编程使得整个系统开发周期缩短,运行效率提高。成功将三维场景虚拟交互技术运用于钻床教学培训系统中。

  8. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  9. A Web-based E-learning Platform for Physical Education

    Directory of Open Access Journals (Sweden)

    Chun-Hong Huang

    2011-05-01

    Full Text Available The major purpose of this paper is to develop a Web-based E-learning Platform for physical education. The Platform provides sports related courseware which includes physical motions, exercise rules and first-aid treatment. The courseware is represented using digital multimedia materials which include video, 2D animation and 3D virtual reality. Courseware within digital multimedia materials not only can increase the learning efficient but also inspires students’ strong interest in learning, especially in the area of Physical Education. The design concept of our project is based on ADDIE model with the five basic phases of analysis, design, development, implementation, and evaluation. Via the usage of this Web-based E-learning platform, user can learn the relative knowledge about sports at anytime and in everyplace. We hope to let players perform efficient self learning for sports skills, indirectly foster mutual help, cooperation, nice norms of law-abiding via the learning of exercise rules, and become skilled at accurate recreation knowledge and first-aid expertise. Moreover, coaches can use the system as a teaching facility to mitigate loading on teaching.

  10. 3-D reconstruction and virtual ductoscopy of high-grade ductal carcinoma in situ of the breast with casting type calcifications using refraction-based X-ray CT.

    Science.gov (United States)

    Ichihara, Shu; Ando, Masami; Maksimenko, Anton; Yuasa, Tetsuya; Sugiyama, Hiroshi; Hashimoto, Eiko; Yamasaki, Katsuhito; Mori, Kensaku; Arai, Yoshinori; Endo, Tokiko

    2008-01-01

    Stereomicroscopic observations of thick sections, or three-dimensional (3-D) reconstructions from serial sections, have provided insights into histopathology. However, they generally require time-consuming and laborious procedures. Recently, we have developed a new algorithm for refraction-based X-ray computed tomography (CT). The aim of this study is to apply this emerging technology to visualize the 3-D structure of a high-grade ductal carcinomas in situ (DCIS) of the breast. The high-resolution two-dimensional images of the refraction-based CT were validated by comparing them with the sequential histological sections. Without adding any contrast medium, the new CT showed strong contrast and was able to depict the non-calcified fine structures such as duct walls and intraductal carcinoma itself, both of which were barely visible in a conventional absorption-based CT. 3-D reconstruction and virtual endoscopy revealed that the high-grade DCIS was located within the dichotomatous branches of the ducts. Multiple calcifications occurred in the necrotic core of the continuous DCIS, resulting in linear and branching (casting type) calcifications, a hallmark of high-grade DCIS on mammograms. In conclusion, refraction-based X-ray CT approaches the low-power light microscopic view of the histological sections. It provides high quality slice data for 3-D reconstruction and virtual ductosocpy.

  11. 基于虚拟现实的3D演出场馆漫游系统的设计与实现%Design and Implementation on 3D Performance Venues Roaming System Based on Virtual Reality

    Institute of Scientific and Technical Information of China (English)

    胡春花; 陈晓梅

    2014-01-01

    利用3DS Max三维模型软件进行建模,以虚拟现实引擎Virtools为平台进行3D虚拟演出场馆的漫游设计,重点介绍3D建模和Virtools交互功能的实现,通过虚拟角色漫游和摄像机自主路径漫游两种方式在虚拟场馆中漫游,使用户在虚拟世界中即可一览演出场馆的风貌。%By using the 3DS Max modeling software to build the models, based on virtual reality engine Virtools platform. a 3D virtual venues system was designed, mainly introduces the building of 3D model and the realization of Virtools interactive func⁃tion, users can view the feature of the venues in the virtual world through two ways:virtual character roaming and camera inde⁃pendent path roaming.

  12. 基于Google SketchUp与Google Earth的校园3维实现%Realization of 3D Virtual Campus Based on Google SketchUp and Google Earth

    Institute of Scientific and Technical Information of China (English)

    黄皖毅; 林紫峰; 章皖秋; 周靖菲; 齐超

    2011-01-01

    A virtual campus was realized based on the Southwest Forest University. The 3D models of the campus infrastructure were constructed and optimized by using Google SketchUp, and the virtual campus was deployed on the platform of Google Earth. Two examples were also given in the end to demonstrate the applications of the virtual campus.%以西南林学院为例,采用Google SketchUp创建3维建筑模型,介绍了建模方法和优化技术,并在GoogleEarth平台上发布了西南林学院校园3维全景,利用两个生活实例初步探讨了校园3维的应用功能.

  13. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  14. Development and implementation of product interaction design platform based on 3D virtual vision%基于三维虚拟视觉的产品交互设计平台的开发与实现

    Institute of Scientific and Technical Information of China (English)

    张璐琪

    2016-01-01

    当前产品交互平台建模大都采用二维显示的方式,存在交互性低、工作量过大以及难更新等缺陷,因此将三维虚拟视觉融入产品交互设计平台中,依据三维虚拟视觉技术塑造产品交互场景,通过三维数字建模模拟产品信息,实现基于三维虚拟视觉的产品交互设计平台开发。该平台包括交互设计模块、三维虚拟视觉展示模块以及交互展示模块。分析了产品交互功能的实现过程,主要包括三维虚拟视觉建模、动画展示过程、虚拟交互设计和平台发布。给出产品交互平台的人机交互界面设计过程,以及实现产品外形三维虚拟视觉展示的主要代码。实验结果表明,所设计产品交互平台,具有较高的认可度和可用性。%The mode of two⁃dimensional display is adopted in modeling of the most current product interactive platforms, which has the defects of low interaction,excessive workload and difficult update. Therefore,3D virtual vision is integrated into the product interaction design platform to mould the product interaction scene according to 3D virtual visual technology,simu⁃late the product information by means of 3D digital modeling technology,and then realize the development of the product interac⁃tion design platform based on 3D virtual vision. The platform includes interaction design module,3D virtual visual display mod⁃ule and interactive display module. The realization process of the interaction function is analyzed,mainly including 3D virtual vi⁃sual modeling,animation display process,virtual interaction design and platform release. The human⁃computer interaction inter⁃face design process of product interaction platform and the main code of 3D virtual visual display to realize the product appear⁃ance are given. The experimental results indicate that the designed product interactive platform has high recognition degree and availability.

  15. 3D VIRTUALIZATION BY CLOSE RANGE PHOTOGRAMMETRY INDOOR GOTHIC CHURCH APSES. THE CASE STUDY OF CHURCH OF SAN FRANCISCO IN BETANZOS (LA CORUÑA, SPAIN)

    OpenAIRE

    Pérez Ramos, A.; G. Robleda Prieto

    2015-01-01

    Virtualization using low cost photogrammetric techniques, is often replaced by Terrestial Laser Scanning inside churches. Especially in the case of Gothic churches where light penetrates the interior of the building difficulting shooting in proper condition to perform their restitution. The need to use Terrestial Laser Scaning for indoor virtualization is a significant increase in the final surveying cost. In these cases, the Terrestial Laser Scanning is used to generate dense point ...

  16. The Use of 3d Scanning and Photogrammetry Techniques in the Case Study of the Roman Theatre of Nikopolis. Surveying, Virtual Reconstruction and Restoration Study.

    Science.gov (United States)

    Bilis, T.; Kouimtzoglou, T.; Magnisali, M.; Tokmakidis, P.

    2017-02-01

    The aim of this paper is to present the specific methods by which 3D scanning and photogrammetric techniques were incorporated into the architectural study, the documentation and the graphic restoration study of the monument of the ancient theatre of Nikopolis. Traditional methods of surveying were enhanced by the use of 3D scanning and image-based 3D reconstruction and 3D remodelling and renderings. For this reason, a team of specialists from different scientific fields has been organized. This presented the opportunity to observe every change of the restoration design process, not only by the use of common elevations and ground plans, but also in 3D space. It has been also very liberating to know how the monument will look like in this unique site after the restoration, so as to obtain at the study stage the best intervention decisions possible. Moreover, these modern work tools helped of course to convince the authorities for the accuracy of the restoration actions and finally to make the proposal clear to the public.

  17. International Journal of Web Based Communities

    DEFF Research Database (Denmark)

    2006-01-01

    Special Issue on Knowledge Communication, culture and communities of practice in web based communities. ......Special Issue on Knowledge Communication, culture and communities of practice in web based communities. ...

  18. Age and gestural differences in the ease of rotating a virtual 3D image on a large, multi-touch screen.

    Science.gov (United States)

    Ku, Chao-Jen; Chen, Li-Chieh

    2013-04-01

    Providing a natural mapping between multi-touch gestures and manipulations of digital content is important for user-friendly interfaces. Although there are some guidelines for 2D digital content available in the literature, a guideline for manipulation of 3D content has yet to be developed. In this research, two sets of gestures were developed for experiments in the ease of manipulating 3D content on a touchscreen. As there typically are large differences between age groups in the ease of learning new interfaces, we compared a group of adults with a group of children. Each person carried out three tasks linked to rotating the digital model of a green turtle to inspect major characteristics of its body. Task completion time, subjective evaluations, and gesture changing frequency were measured. Results showed that using the conventional gestures for 2D object rotation was not appropriate in the 3D environment. Gestures that required multiple touch points hampered the real-time visibility of rotational effects on a large screen. While the cumulative effects of 3D rotations became complicated after intensive operations, simpler gestures facilitated the mapping between 2D control movements and 3D content displays. For rotation in Cartesian coordinates, moving one fingertip horizontally or vertically on a 2D touchscreen corresponded to the rotation angles of two axes for 3D content, while the relative movement between two fingertips was used to control the rotation angleof the third axis. Based on behavior analysis, adults and children differed in the diversity of gesture types and in the touch points with respect to the object's contours. Offering a robust mechanism for gestural inputs is necessary for universal control of such a system.

  19. 仿真三维虚拟支架技术在脑动脉狭窄介入治疗中的作用%Value of 3D virtual stenting in the interventional therapy of cerebral artery stenosis

    Institute of Scientific and Technical Information of China (English)

    罗杰; 杨振九; 王皓; 廖煜君; 吴剑煌; 张朋

    2015-01-01

    目的:探讨仿真三维虚拟支架技术在脑动脉狭窄介入治疗中的作用。方法选取脑动脉狭窄支架介入治疗患者34例,分为2组。三维数字减影脑血管造影(3D-DSA)组22例,其中男性13例,女性9例;年龄48~74岁,平均年龄62.5岁;通过3D-DSA重建方法,确定脑动脉狭窄的程度和部位,运用虚拟支架血管分析程序,得到脑动脉狭窄的虚拟支架数据参数,并指导血管内治疗。对照组12例,其中男性8例,女性4例;年龄52~76岁,平均年龄64.3岁;采用普通脑血管造影指导血管内治疗。结果与普通DSA相比,3D-DSA重建图像能够多角度清晰地观察和显示脑动脉狭窄的部位、形态、狭窄程度;以虚拟支架技术的数据参数为依据,选择相应型号的支架行介入治疗效果更满意。结论3D-DSA虚拟支架技术对脑动脉狭窄支架成形术有指导价值,便于施术者正确地选择合适的支架。%Objective To investigate the interventional treatment role of three-dimensional (3D) virtual stenting in cerebral artery stenosis. Methods A total of 34 cases of cerebral artery stenosis with interventional treatment were enrolled, which were divided into 2 groups, 3D digital subtraction angiography(3D-DSA) group and control group. In 3D-DSA group, which included 13 males and 9 females, aged 48-74 years old with mean age of 62.5 years old, the location and degree of stenosis were determined by 3D-DSA reconstruction. Virtual stent analysis technology was applied to obtain data parameters of virtual cerebral stent and guide the endovascular therapy. In control group, which included 8 males and 4 females, aged 52-76 years old with mean age of 64.3 years old, the common cerebrovascular angiography was used to guide endovascular treatment. Results Compared with control group, the site, shape and degree of stenosis in 3D-DSA group were clearly demonstrated in 3D reconstruction images

  20. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  1. Applying microCT and 3D Visualization to Jurassic Silicified Conifer Seed Cones: A Virtual Advantage Over Thin-Sectioning

    Directory of Open Access Journals (Sweden)

    Carole T. Gee

    2013-11-01

    Full Text Available Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT integrated with scientific visualization, three-dimensional (3D image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.

  2. Auto-adaptative Robot-aided Therapy based in 3D Virtual Tasks controlled by a Supervised and Dynamic Neuro-Fuzzy System

    Directory of Open Access Journals (Sweden)

    Luis Daniel Lledó

    2015-03-01

    Full Text Available This paper presents an application formed by a classification method based on the architecture of ART neural network (Adaptive Resonance Theory and the Fuzzy Set Theory to classify physiological reactions in order to automatically and dynamically adapt a robot-assisted rehabilitation therapy to the patient needs, using a three-dimensional task in a virtual reality system. Firstly, the mathematical and structural model of the neuro-fuzzy classification method is described together with the signal and training data acquisition. Then, the virtual designed task with physics behavior and its development procedure are explained. Finally, the general architecture of the experimentation for the auto-adaptive therapy is presented using the classification method with the virtual reality exercise.

  3. The software of the 3D simulation system of a robot based on the virtual reality modeling language%基于虚拟现实语言的机器人三维仿真系统软件

    Institute of Scientific and Technical Information of China (English)

    孙怀安; 杨广平

    2001-01-01

    The application of virtual reality technology (VR) in robotics is in its infant period. Adapted to the characteristics of the virtual reality modeling language (VRML), a 3D simulation model of a robot is analyzed and modeled. Based on the virtual reality modeling language and Java language a 3D robot simulation system is realized which is focused on the simulation of robot kinematics and the continuous track of robot move. Finally, the system is tested to accept data from other terminals on the Internet. A reasonable result of remote control robot simulation is achieved.%结合虚拟现实技术的软件平台VRML语言,对机器人三维仿真模型进行了分析和建模;用VRML语言和JAVA语言编写了一个三维机器人仿真系统,对机器人运动学正问题、运动学逆问题、轨迹规划以及环境状况进行了三维仿真;对遥操作机器人的仿真进行了网络传输模拟,并对遥操作机器人与虚拟现实技术结合的前景进行了展望.

  4. Application of X3D-based virtual reality technology in the education of organic chemistry%基于X3D的虚拟现实技术在有机化学教学中的应用

    Institute of Scientific and Technical Information of China (English)

    吴占凯; 张力

    2011-01-01

    The article analyzes the concept features and classification of the technology of virtual reality, mainly introduces the animation system and interaction mechanism of virtual reality technology based on X3D specification. In this paper, with an instance of electronic transition in organic chemistry,the article describes the methods and procedures for the development of virtual scene with X3D specification in the hope to provide reference for the follow-up development.%分析了虚拟现实技术的概念特征及分类,重点介绍了基于X3D标准的虚拟现实技术中的动画机制及交互机制.结合有机化学中电子跃迁实例,阐述了运用X3D标准开发虚拟场景的方法与步骤,以期对后续的开发工作起到借鉴作用.

  5. Objects' 3D Modeling in Virtual Cockpit System%虚拟座舱系统中的三维建模方法

    Institute of Scientific and Technical Information of China (English)

    翟正军; 秦晓红; 李宗明

    2001-01-01

    According to the peculiarity of virtual models in the virtual cockpit system, this paper expatiates on the methods of regular and irregular objects' geometric modeling and the model reduction.%本文针对虚拟座舱系统中虚拟模型的特点,分别对规则模型和非规则模型的建模算法进行了深入研究,实现了三维真实感模型的生成与简化。

  6. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  7. Discovery of novel PPAR ligands by a virtual screening approach based on pharmacophore modeling, 3D shape, and electrostatic similarity screening

    DEFF Research Database (Denmark)

    Markt, Patrick; Petersen, Rasmus K; Flindt, Esben N;

    2008-01-01

    Peroxisome proliferator-activated receptors (PPARs) are important targets for drugs used in the treatment of atherosclerosis, dyslipidaemia, obesity, type 2 diabetes, and other diseases caused by abnormal regulation of the glucose and lipid metabolism. We applied a virtual screening workflow base...

  8. Perception of 3D spatial relations for 3D displays

    Science.gov (United States)

    Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.

    2004-05-01

    We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.

  9. The consuming time of 3D virtual treatment planning in orthognathic surgery%3D模拟手术计划性治疗在正颌外科手术的应用研究

    Institute of Scientific and Technical Information of China (English)

    黄圣元; 吴小玮; 张力; 杨涛

    2015-01-01

    目的:通过临床病例评估3D模拟手术计划性治疗在正颌外科手术中的应用。方法:对51例需要正颌矫正畸形的临床病例进行完整3D模拟手术计划性治疗,将流程中每步所耗费的时间进行精确记录,最后得出不同种类正颌手术所需的平均时间;并通过实际临床病例分析3D模拟手术计划性治疗的优缺点。结果:双侧矢状劈开截骨术耗时平均为29:29 min;双侧矢状劈开截骨术和颏部截骨术耗时平均为29:56 min;Le-FortⅠ型截骨术和双侧矢状劈开截骨术耗时平均为39:17 min;Le-FortⅠ型截骨术、双侧矢状劈开截骨术和颏部截骨术耗时平均为40:57 min。结论:将3D模拟治疗计划作为一种新的工具应用在正颌外科正颌畸形手术中,可以使临床医生的手术方案同时兼顾功能和美学的设计。通过标准的设计流程(3D-VPS1-5),3D模拟治疗计划可以作为一种更高效的工具应用在正颌外科手术中。%Objevtive:To assess the timing of 3D virtual treatment planning of orthognathic surgery. Method:51 con-secutive orthognathic patients were included in this study. Each step of 3D virtual treatmrnt planning was recorded with a digital chronometer,recording the overall results of 3D virtual treatmrnt planning and made a strength and weakness analyse 3D virtual treatment planning based on the clinical patients. Result:The overall mean orthognathic treatment planning time (VPS1-5) was 29:29min for BSSO;29:56min for BSSO and chin osteotomy surgical procedures;39:17min for Le FortⅠand BSSO;40:57min for combined Le FortⅠ,BSSO,and chin osteotomy surgical procedures. Conclusion:3D virtual treat-ment planning of orthognathic surgery provides a potential new routine tool toward the clinician to improve both functional and aesthetic treatment outcomes in patients with maxillofacial deformity. By standardizing the different virtual planning steps(VPS1-5),the

  10. Developing a 3-D Digital Heritage Ecosystem: from object to representation and the role of a virtual museum in the 21st century

    Directory of Open Access Journals (Sweden)

    Fred Limp

    2011-07-01

    Full Text Available This article addresses the application of high-precision 3-D recording methods to heritage materials (portable objects, the technical processes involved, the various digital products and the role of 3-D recording in larger questions of scholarship and public interpretation. It argues that the acquisition and creation of digital representations of heritage must be part of a comprehensive research infrastructure (a digital ecosystem that focuses on all of the elements involved, including (a recording methods and metadata, (b digital object discovery and access, (c citation of digital objects, (d analysis and study, (e digital object reuse and repurposing, and (f the critical role of a national/international digital archive. The article illustrates these elements and their relationships using two case studies that involve similar approaches to the high-precision 3-D digital recording of portable archaeological objects, from a number of late pre-Columbian villages and towns in the mid-central US (c. 1400 CE and from the Egyptian site of Amarna, the Egyptian Pharaoh Akhenaten's capital (c. 1300 BCE.

  11. Design and Interaction of 3D Digital Campus based on Virtual Simulation Technology%基于虚拟现实技术的3D智慧校园设计与实现

    Institute of Scientific and Technical Information of China (English)

    王宇琛; 黄盖先; 艾鸿

    2015-01-01

    以上海海洋大学为例,基于虚拟现实技术设计出与现实校园相近逼真的虚拟环境,用户通过计算机的操控与该虚拟环境进行交互,实现对智慧校园的控制。利用Auto Maya、Photoshop、Illustrator等建模、美化软件,进行校园建筑数据获取、3D模型的建立以及贴图纹理的映射等;利用Unity 3D引擎进行用户交互设计,建立起大学实际仿真景观的3D智慧校园。在此基础上,还实现了小地图的展示、界面多参数的调控、界面定位等个性化功能。%Taking Shanghai Ocean University as a studying project, an intelligent 3D campus which is very close to the re-ality, is designed based on Virtual Reality Technology. Users can interact with this virtual environment by computer, and realize the control of this intelligent campus. Using some modeling, picture processing and engine software such as Maya, unity3D, Photoshop and the Illustrator, the functions of this intelligent 3D campus and the interaction between users and the environment are implemented through a series of steps including collecting data of the building , establishing the 3D model, texture mapping and the design of the interaction. In the meantime, the paper also achieves some personalized func-tions, such as showing the map, controlling multiparameter and locating of the interface.

  12. 基于Unity 3D的虚拟楼盘漫游和碰撞检测研究%Research of the Virtual Community Cruise and Collision Detection Based on Unity3d

    Institute of Scientific and Technical Information of China (English)

    韩蕾

    2016-01-01

    为了应用虚拟现实技术将楼盘销售从传统的图纸宣传方式变成三维空间漫游方式,该文重点对虚拟三维空间漫游常用的漫游技术和碰撞检测方法进行研究,并对漫游和碰撞检测在Unity3d平台的实现过程做了介绍。%In order to use virtual reality technology to real estate sales from the traditional way into cruise mode based on three-dimension, this article studied the roaming technology and collision detection methods based on the virtual three-dimensional space , and the collision detection and roaming platform in Unity3d the implementation process is introduced.

  13. 3D Virtual Itinerary for Education Using Google Earth as a Tool for the Recovery of the Geological Heritage of Natural Areas: Application in the “Las Batuecas Valley” Nature Park (Salamanca, Spain

    Directory of Open Access Journals (Sweden)

    Antonio Miguel Martínez-Graña

    2014-11-01

    Full Text Available The objective of this study is to develop a methodology that enhances the value and position of the geological heritage of any natural area in the world using a 3D virtual itinerary. Field applications of this geological itinerary enable students to participate actively in teaching and learning theoretical concepts in the earth sciences and engineering. The educational resources, which include a virtual itinerary, a flight simulator, a field notebook with questionnaires, videos, and an augmented reality developed with Google Earth, provide a familiar and effective learning environment that can be implemented by students daily using new technologies (smartphones, tablets, and iPods and can leverage the power of computer games to achieve the objectives of a specific curriculum. The implementation of geological content in an interactive, educational game has been employed in compulsory levels of secondary education, high school, and college in Batuecas Valley. The geomatic applications are free as they can be accessed from existing computer labs.

  14. Digital Geology from field to 3D modelling and Google Earth virtual environment: methods and goals from the Furlo Gorge (Northern Apennines - Italy)

    Science.gov (United States)

    De Donatis, Mauro; Susini, Sara

    2014-05-01

    A new map of the Furlo Gorge was surveyed and elaborated in a digital way. In every step of work we used digital tools as mobile GIS and 3D modelling software. Phase 1st Starting in the lab, planning the field project development, base cartography, forms and data base were designed in the way we thought was the best for collecting and store data in order of producing a digital n­-dimensional map. Bedding attitudes, outcrops sketches and description, stratigraphic logs, structural features and other informations were collected and organised in a structured database using rugged tablet PC, GPS receiver, digital cameras and later also an Android smartphone with some survey apps in-­house developed. A new mobile GIS (BeeGIS) was developed starting from an open source GIS (uDig): a number of tools like GPS connection, pen drawing annotations, geonotes, fieldbook, photo synchronization and geotagging were originally designed. Phase 2nd After some month of digital field work, all the informations were elaborated for drawing a geologic map in GIS environment. For that we use both commercial (ArcGIS) and open source (gvSig, QGIS, uDig) without big technical problems. Phase 3rd When we get to the step of building a 3D model (using 3DMove), passing trough the assisted drawing of cross-­sections (2DMove), we discovered a number of problems in the interpretation of geological structures (thrusts, normal faults) and more in the interpretation of stratigraphic thickness and boundaries and their relationships with topography. Phase 4th Before an "on­-armchair" redrawing of map, we decide to go back to the field and check directly what was wrong. Two main vantages came from this: (1) the mistakes we found could be reinterpreted and corrected directly in the field having all digital tools we need; (2) previous interpretations could be stored in GIS layers keeping memory of the previous work (also mistakes). Phase 5th A 3D model built with 3D Move is already almost self

  15. 三维可视化建模技术在虚拟现实中的应用%Application of 3D Visualization Modeling Technology in Virtual Reality

    Institute of Scientific and Technical Information of China (English)

    陈芬

    2015-01-01

    3D visualization modeling technology is a new technology, with the development of computer and network informa-tion technology, this technology has been widely used in education, industry, scientific research and other fields. Virtual reality tech-nology, which is based on computer and network, will generate and display a very vivid image of three-dimensional vision, hearing and touch. Users can browse and interact in this virtual world. 3D visualization modeling technology paly an important role in the virtual world. Here we will explore the specific analysis of the technology in the application of virtual reality.%三维可视化建模技术是一种新型技术,随着计算机及网络信息技术等的发展,这项技术已经广泛地应用在教育、工业、科研等多个领域。虚拟现实技术借助了计算机及网络等技术特点,将非常生动形象的三维视觉、听觉及触觉等生成并展现了出来,用户能够在这个虚拟的世界中进行浏览与交互,其中的三维可视化建模技术在此起着重要作用,下面我们将具体分析探讨这项技术在虚拟现实中的应用。

  16. Web-based data acquisition

    Institute of Scientific and Technical Information of China (English)

    胡旭东; 俞红; 陈鹰

    2002-01-01

    The research work on Web-based long-distance data acquisition (DAQ) is valuable for application to tele-detection machine faults. With an expert system for machine fault detection, faults in a distantly located machine can be diagnosed through the internet. The distant user logs on to the expert system Web page, fills in the requirements, and starts-up the diagnose process. The system then connects to the DAQ server that is installed in the machine, samples data required for diagnoses through the internet, and sends back diagnose results. In such a long-distance system, Web-based DAQ plays an important role by automatic sampling and transferring of data through the internet. We have built an experimental data acquisition system using a National Instruments AT-MIO-16E-10 board running under Ch language environment. In this experimental example, the user can acquire data online. The principle of this experimental method is introduced in this paper. A detailed programming technique is described with an example.

  17. Oculus Rift Control of a Mobile Robot : Providing a 3D Virtual Reality Visualization for TeleoperationorHow to Enter a Robots Mind

    OpenAIRE

    2014-01-01

    Robots are about to make their way into society. Whether one speaksabout robots as co-workers in industry, as support in hospitals, in elderlycare, selfdriving cars, or smart toys, the number of robots is growing continuously.Scaled somewhere between remote control and full-autonomy,all robots require supervision in some form. This thesis connects theOculus Rift virtual reality goggles to a mobile robot, aiming at a powerfulvisualization and teleoperation tool for supervision or teleassistanc...

  18. 3-D Audio in Mobile Communication Devices: Effects of Self-Created and External Sounds on Presence in Auditory Virtual Environments

    Directory of Open Access Journals (Sweden)

    Renato S. Pellegrini

    2010-12-01

    Full Text Available This article describes a series of experiments which were carried out to measure the sense of presence in auditory virtual environments.Within the study a comparison of self-created signals to signals created by the surrounding environment is drawn. Furthermore, it is investigated if the room characteristics of the simulated environment have consequences on the perception of presence during vocalization or when listening to speech. Finally the experiments give information about the influence of background signals on the sense of presence.In the experiments subjects rated the degree of perceived presence in an auditory virtual environment on a perceptual scale. It is described which parameters have the most influence on the perception of presence and which ones are of minor influence. The results show that on the one hand an external speaker has more influence on the sense of presence than an adequate presentation of one's own voice. On the other hand both room reflections and adequately presented background signals significantly increase the perceived presence in the virtual environment.

  19. Reconstruction and Implementation of 3D Virtual Road Speed Control Humps for Vehicle%车辆三维虚拟道路减速带重构与实现

    Institute of Scientific and Technical Information of China (English)

    蒋荣超; 陈焕明; 刘大维; 王松

    2012-01-01

    为实现三维虚拟道路减速带与三维随机路面的同构,对道路减速带断面轮廓和路面不平度模拟方法进行研究.基于三角网格法的基本理论,利用Delaunay算法规则重构 了3种道路减速带,并采用谐波叠加法建立了三维随机路面数学模型.在三维路面的基础上,确定了道路减速带的安装位置.根据减速带的宽度,将三维随机路面中相应的路面节点和单元数据去除,并把减速带的节点和单元数据添加到相应的位置,实现了三维虚拟道路减速带与随机路面的同构.该结果为采用相关应用软件研究车辆-道路减速带耦合作用提供了参考依据.%In order to implement the isomorphism of 3D virtual road speed control hump and 3D random road surface, the cross-section profile of road speed control hump and the simulation method of road roughness were researched and analyzed. Three types of speed control humps were reconstructed using Delaunay based on the basic theory of triangular mesh method. Simultaneously, a mathematical model of 3D random road surface was established based on the basic principles of harmonic superposition. On the basis of 3D road surface, the installation site of road speed control hump was determined. According to the width of speed control hump, the nodes and elements were removed from the appropriate location and the speed control hump's nodes and elements were added to the appropriate location. Then the isomorphism of 3D virtual road speed control hump and 3D random road surface was implemented. This study provided a reference for the research of vehicle-road coupling effect using relevant application software.

  20. Sharing on Web 3d Models of Ancient Theatres. a Methodological Workflow

    Science.gov (United States)

    Scianna, A.; La Guardia, M.; Scaduto, M. L.

    2016-06-01

    In the last few years, the need to share on the Web the knowledge of Cultural Heritage (CH) through navigable 3D models has increased. This need requires the availability of Web-based virtual reality systems and 3D WEBGIS. In order to make the information available to all stakeholders, these instruments should be powerful and at the same time very user-friendly. However, research and experiments carried out so far show that a standardized methodology doesn't exist. All this is due both to complexity and dimensions of geometric models to be published, on the one hand, and to excessive costs of hardware and software tools, on the other. In light of this background, the paper describes a methodological approach for creating 3D models of CH, freely exportable on the Web, based on HTML5 and free and open source software. HTML5, supporting the WebGL standard, allows the exploration of 3D spatial models using most used Web browsers like Chrome, Firefox, Safari, Internet Explorer. The methodological workflow here described has been tested for the construction of a multimedia geo-spatial platform developed for three-dimensional exploration and documentation of the ancient theatres of Segesta and of Carthage, and the surrounding landscapes. The experimental application has allowed us to explore the potential and limitations of sharing on the Web of 3D CH models based on WebGL standard. Sharing capabilities could be extended defining suitable geospatial Web-services based on capabilities of HTML5 and WebGL technology.