WorldWideScience

Sample records for weather events influence

  1. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  2. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event.

    Science.gov (United States)

    Lydersen, Jamie M; Collins, Brandon M; Brooks, Matthew L; Matchett, John R; Shive, Kristen L; Povak, Nicholas A; Kane, Van R; Smith, Douglas F

    2017-10-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western United States. Given this increase, there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation, and water balance on fire-severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate-severity wildfire reduced the prevalence of high-severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high-severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. The proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high-severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate-severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience. © 2017 by the Ecological Society of America.

  3. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events.

    Science.gov (United States)

    Mann, Michael E; Rahmstorf, Stefan; Kornhuber, Kai; Steinman, Byron A; Miller, Sonya K; Coumou, Dim

    2017-03-27

    Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6-8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art ("CMIP5") historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability.

  4. Influence of Mascarene High and Indian Ocean dipole on East African extreme weather events

    Directory of Open Access Journals (Sweden)

    Ogwang Bob Alex

    2015-01-01

    Full Text Available Extreme weather and climate events such as floods and droughts are common in East Africa, causing huge socio-economic losses. This study links the east African October-December (OND rainfall, Indian Ocean Dipole (IOD and Mascarene High (MH.Correlation analysis is applied to quantify the relationship between the index of IOD (Dipole Mode Index (DMI and OND rainfall. Results show that there exists a significant correlation between OND rainfall and DMI, with a correlation coefficient of 0.6. During dry years, MH is observed to intensify and align itself in the southeast-northwest orientation, stretching up to the continent, which in turn inhibits the influx of moisture from Indian Ocean into East Africa. During wet years, MH weakens, shifts to the east and aligns itself in the zonal orientation. Moisture from Indian Ocean is freely transported into east Africa during wet years. Analysis of the drought and flood years with respect to the different variables including wind, velocity potential and divergence/ convergence revealed that the drought (flood years were characterized by divergence (convergence in the lower troposphere and convergence (divergence at the upper level, implying sinking (rising motion, especially over the western Indian Ocean and the study area. Convergence at low level gives rise to vertical stretching, whereas divergence results in vertical shrinking, which suppresses convection due to subsidence. Positive IOD (Negative IOD event results into flood (drought in the region. The evolution of these phenomena can thus be keenly observed for utilization in the update of seasonal forecasts.

  5. Extreme Weather Events and Climate Change Attribution

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Katherine [National Academy of Sciences, Washington, DC (United States)

    2016-03-31

    A report from the National Academies of Sciences, Engineering, and Medicine concludes it is now possible to estimate the influence of climate change on some types of extreme events. The science of extreme event attribution has advanced rapidly in recent years, giving new insight to the ways that human-caused climate change can influence the magnitude or frequency of some extreme weather events. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities. Confidence is strongest in attributing types of extreme events that are influenced by climate change through a well-understood physical mechanism, such as, the more frequent heat waves that are closely connected to human-caused global temperature increases, the report finds. Confidence is lower for other types of events, such as hurricanes, whose relationship to climate change is more complex and less understood at present. For any extreme event, the results of attribution studies hinge on how questions about the event's causes are posed, and on the data, modeling approaches, and statistical tools chosen for the analysis.

  6. Spatially explicit modelling of extreme weather and climate events ...

    African Journals Online (AJOL)

    The reality of climate change continues to influence the intensity and frequency of extreme weather events such as heat waves, droughts, floods, and landslides. The impacts of the cumulative interplay of these extreme weather and climate events variation continue to perturb governments causing a scramble into formation ...

  7. Climate change and extreme events in weather

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    reported that the climate based extreme weather event is increasing throughout the world. One of the major chal- lenges before the scientists is to determine whether the ob- served change in extreme weather events exceeds the vari- ability expected through... was recorded in July 1943 on the hills of Mewar and Merwara. Unprecedent flood in Ajmer and Merwara devasted 50 villages and took a toll of 5000 lives (De et al., 2005). Severe Floods occurred to Godavari and Tungabhadra rivers in the last week of August...

  8. Dynamical Networks Characterization of Space Weather Events

    Science.gov (United States)

    Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.

    2017-12-01

    Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show

  9. Economics of extreme weather events: Terminology and regional impact models

    OpenAIRE

    Jahn, Malte

    2015-01-01

    Impacts of extreme weather events are relevant for regional (in the sense of subnational) economies and in particular cities in many aspects. Cities are the cores of economic activity and the amount of people and assets endangered by extreme weather events is large, even under the current climate. A changing climate with changing extreme weather patterns and the process of urbanization will make the whole issue even more relevant in the future. In this paper, definitions and terminology in th...

  10. Attribution of extreme weather and climate-related events.

    Science.gov (United States)

    Stott, Peter A; Christidis, Nikolaos; Otto, Friederike E L; Sun, Ying; Vanderlinden, Jean-Paul; van Oldenborgh, Geert Jan; Vautard, Robert; von Storch, Hans; Walton, Peter; Yiou, Pascal; Zwiers, Francis W

    2016-01-01

    Extreme weather and climate-related events occur in a particular place, by definition, infrequently. It is therefore challenging to detect systematic changes in their occurrence given the relative shortness of observational records. However, there is a clear interest from outside the climate science community in the extent to which recent damaging extreme events can be linked to human-induced climate change or natural climate variability. Event attribution studies seek to determine to what extent anthropogenic climate change has altered the probability or magnitude of particular events. They have shown clear evidence for human influence having increased the probability of many extremely warm seasonal temperatures and reduced the probability of extremely cold seasonal temperatures in many parts of the world. The evidence for human influence on the probability of extreme precipitation events, droughts, and storms is more mixed. Although the science of event attribution has developed rapidly in recent years, geographical coverage of events remains patchy and based on the interests and capabilities of individual research groups. The development of operational event attribution would allow a more timely and methodical production of attribution assessments than currently obtained on an ad hoc basis. For event attribution assessments to be most useful, remaining scientific uncertainties need to be robustly assessed and the results clearly communicated. This requires the continuing development of methodologies to assess the reliability of event attribution results and further work to understand the potential utility of event attribution for stakeholder groups and decision makers. WIREs Clim Change 2016, 7:23-41. doi: 10.1002/wcc.380 For further resources related to this article, please visit the WIREs website.

  11. Public perceptions of climate change and extreme weather events

    Science.gov (United States)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such

  12. NOAA Weather Radio - EAS Event Codes

    Science.gov (United States)

    Non-Zero All Hazards Logo Emergency Alert Description Event Codes Fact Sheet FAQ Organization Search Coding Using SAME SAME Non-Zero Codes DOCUMENTS NWR Poster NWR Brochure NWR Brochure Printing Notes

  13. The relationship between extreme weather events and crop losses in central Taiwan

    Science.gov (United States)

    Lai, Li-Wei

    2017-09-01

    The frequency of extreme weather events, which cause severe crop losses, is increasing. This study investigates the relationship between crop losses and extreme weather events in central Taiwan from 2003 to 2015 and determines the main factors influencing crop losses. Data regarding the crop loss area and meteorological information were obtained from government agencies. The crops were categorised into the following five groups: `grains', `vegetables', `fruits', `flowers' and `other crops'. The extreme weather events and their synoptic weather patterns were categorised into six and five groups, respectively. The data were analysed using the z score, correlation coefficient and stepwise regression model. The results show that typhoons had the highest frequency of all extreme weather events (58.3%). The largest crop loss area (4.09%) was caused by two typhoons and foehn wind in succession. Extreme wind speed coupled with heavy rainfall is an important factor affecting the losses in the grain and vegetable groups. Extreme wind speed is a common variable that affects the loss of `grains', `vegetables', `fruits' and `flowers'. Consecutive extreme weather events caused greater crop losses than individual events. Crops with long production times suffered greater losses than those with short production times. This suggests that crops with physical structures that can be easily damaged and long production times would benefit from protected cultivation to maintain food security.

  14. Extreme Space Weather Events: From Cradle to Grave

    Science.gov (United States)

    Riley, Pete; Baker, Dan; Liu, Ying D.; Verronen, Pekka; Singer, Howard; Güdel, Manuel

    2018-02-01

    Extreme space weather events, while rare, can have a substantial impact on our technologically-dependent society. And, although such events have only occasionally been observed, through careful analysis of a wealth of space-based and ground-based observations, historical records, and extrapolations from more moderate events, we have developed a basic picture of the components required to produce them. Several key issues, however, remain unresolved. For example, what limits are imposed on the maximum size of such events? What are the likely societal consequences of a so-called "100-year" solar storm? In this review, we summarize our current scientific understanding about extreme space weather events as we follow several examples from the Sun, through the solar corona and inner heliosphere, across the magnetospheric boundary, into the ionosphere and atmosphere, into the Earth's lithosphere, and, finally, its impact on man-made structures and activities, such as spacecraft, GPS signals, radio communication, and the electric power grid. We describe preliminary attempts to provide probabilistic forecasts of extreme space weather phenomena, and we conclude by identifying several key areas that must be addressed if we are better able to understand, and, ultimately, predict extreme space weather events.

  15. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis

    Science.gov (United States)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2015-04-01

    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations

  16. Protecting against natural hazards - Information seeking behaviour in anticipation of severe weather events

    NARCIS (Netherlands)

    Jeuring, Jelmer

    2011-01-01

    Protection against natural hazards - Information seeking behaviour in anticipation of severe weather events Severe weather events can have considerable impact on society, including tourism organisations and tourists. Providing accurate and timely information about possible risks due to environmental

  17. Event-adjusted evaluation of weather and climate extremes

    Czech Academy of Sciences Publication Activity Database

    Müller, Miloslav; Kašpar, Marek

    2014-01-01

    Roč. 14, č. 2 (2014), s. 473-483 ISSN 1561-8633 R&D Projects: GA ČR(CZ) GAP209/11/1990 Institutional support: RVO:68378289 Keywords : weather extreme * climate extreme * extremity evaluation * return period * generalized extreme value distribution * region of influence Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.735, year: 2014 http://www.nat-hazards- earth -syst-sci.net/14/473/2014/nhess-14-473-2014.pdf

  18. Impacts of extreme weather events on transport infrastructure in Norway

    Science.gov (United States)

    Frauenfelder, Regula; Solheim, Anders; Isaksen, Ketil; Romstad, Bård; Dyrrdal, Anita V.; Ekseth, Kristine H. H.; Gangstø Skaland, Reidun; Harbitz, Alf; Harbitz, Carl B.; Haugen, Jan E.; Hygen, Hans O.; Haakenstad, Hilde; Jaedicke, Christian; Jónsson, Árni; Klæboe, Ronny; Ludvigsen, Johanna; Meyer, Nele K.; Rauken, Trude; Sverdrup-Thygeson, Kjetil

    2016-04-01

    With the latest results on expected future increase in air temperature and precipitation changes reported by the Intergovernmental Panel on Climate Change (IPCC), the climate robustness of important infrastructure is of raising concern in Norway, as well as in the rest of Europe. Economic consequences of natural disasters have increased considerably since 1950. In addition to the effect of demographic changes such as population growth, urbanization and more and more concentration of valuable assets, this increase is also related to an augmenting frequency of extreme events, such as storms, flooding, drought, and landslides. This change is also observable in Norway, where the increased frequency of strong precipitation has led to frequent flooding and landslide events during the last 20 years. A number of studies show that climate change causes an increase in both frequency and intensity of several types of extreme weather, especially when it comes to precipitation. Such extreme weather events greatly affect the transport infrastructure, with numerous and long closures of roads and railroads, in addition to damage and repair costs. Frequent closures of railroad and roads lead to delay or failure in delivery of goods, which again may lead to a loss of customers and/or - eventually - markets. Much of the Norwegian transport infrastructure is more than 50 years old and therefore not adequately dimensioned, even for present climatic conditions. In order to assess these problems and challenges posed to the Norwegian transport infrastructure from present-day and future extreme weather events, the project "Impacts of extreme weather events on infrastructure in Norway (InfraRisk)" was performed under the research Council of Norway program 'NORKLIMA', between 2009 and 2013. The main results of the project are: - Moderate to strong precipitation events have become more frequent and more intense in Norway over the last 50 years, and this trend continues throughout the 21st

  19. Extreme weather and climate events with ecological relevance: a review.

    Science.gov (United States)

    Ummenhofer, Caroline C; Meehl, Gerald A

    2017-06-19

    Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events

  20. Aerosols and their Impact on Radiation, Clouds, Precipitation & Severe Weather Events

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing; Rosenfeld, Daniel; Fan, Jiwen

    2017-09-22

    Aerosols, the tiny particles suspended in the atmosphere, have been in the forefront of environmental and climate change sciences as the primary atmospheric pollutant and external force affecting Earth’s weather and climate. There are two dominant mechanisms by which aerosols affect weather and climate: aerosol-radiation interactions (ARI) and aerosol-cloud interactions (ACI). ARI arises from aerosol scattering and absorption, which alters the radiation budgets of the atmosphere and surface, while ACI is rooted to the fact that aerosols serve as cloud condensation nuclei and ice nuclei. Both ARI and ACI are coupled with atmospheric dynamics to produce a chain of complex interactions with a large range of meteorological variables that influence both weather and climate. Elaborated here are the impacts of aerosols on the radiation budget, clouds (microphysics, structure, and lifetime), precipitation, and severe weather events (lightning, thunderstorms, hail, and tornados). Depending on environmental variables and aerosol properties, the effects can be both positive and negative, posing the largest uncertainties in the external forcing of the climate system. This has considerably hindered our ability in projecting future climate changes and in doing accurate numerical weather predictions.

  1. Influence of Special Weather on Output of PV System

    Science.gov (United States)

    Zhang, Zele

    2018-01-01

    The output of PV system is affected by different environmental factors, therefore, it is important to study the output of PV system under different environmental conditions. Through collecting data on the spot, collecting the output of photovoltaic panels under special weather conditions, and comparing the collected data, the output characteristics of the photovoltaic panels under different weather conditions are obtained. The influence of weather factors such as temperature, humidity and irradiance on the output of photovoltaic panels was investigated.

  2. Tool for Constructing Data Albums for Significant Weather Events

    Science.gov (United States)

    Kulkarni, A.; Ramachandran, R.; Conover, H.; McEniry, M.; Goodman, H.; Zavodsky, B. T.; Braun, S. A.; Wilson, B. D.

    2012-12-01

    Case study analysis and climatology studies are common approaches used in Atmospheric Science research. Research based on case studies involves a detailed description of specific weather events using data from different sources, to characterize physical processes in play for a given event. Climatology-based research tends to focus on the representativeness of a given event, by studying the characteristics and distribution of a large number of events. To gather relevant data and information for case studies and climatology analysis is tedious and time consuming; current Earth Science data systems are not suited to assemble multi-instrument, multi mission datasets around specific events. For example, in hurricane science, finding airborne or satellite data relevant to a given storm requires searching through web pages and data archives. Background information related to damages, deaths, and injuries requires extensive online searches for news reports and official storm summaries. We will present a knowledge synthesis engine to create curated "Data Albums" to support case study analysis and climatology studies. The technological challenges in building such a reusable and scalable knowledge synthesis engine are several. First, how to encode domain knowledge in a machine usable form? This knowledge must capture what information and data resources are relevant and the semantic relationships between the various fragments of information and data. Second, how to extract semantic information from various heterogeneous sources including unstructured texts using the encoded knowledge? Finally, how to design a structured database from the encoded knowledge to store all information and to support querying? The structured database must allow both knowledge overviews of an event as well as drill down capability needed for detailed analysis. An application ontology driven framework is being used to design the knowledge synthesis engine. The knowledge synthesis engine is being

  3. Weather Support for the 2008 Olympic and Paralympic Sailing Events

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2013-01-01

    Full Text Available The Beijing 2008 Olympic and Paralympic Sailing Competitions (referred to as OPSC hereafter were held at Qingdao during August 9–23 and September 7–13 2008, respectively. The Qingdao Meteorological Bureau was the official provider of weather support for the OPSC. Three-dimensional real-time information with high spatial-temporal resolution was obtained by the comprehensive observation system during the OPSC, which included weather radars, wind profile radars, buoys, automated weather stations, and other conventional observations. The refined forecasting system based on MM5, WRF, and statistical modules provided point-specific hourly wind forecasts for the five venues, and the severe weather monitoring and forecasting system was used in short-term forecasts and nowcasts for rainstorms, gales, and hailstones. Moreover, latest forecasting products, warnings, and weather information were communicated conveniently and timely through a synthetic, speedy, and digitalized network system to different customers. Daily weather information briefings, notice boards, websites, and community short messages were the main approaches for regatta organizers, athletes, and coaches to receive weather service products at 8:00 PM of each day and whenever new updates were available. During the period of OPSC, almost one hundred people were involved in the weather service with innovative service concept, and the weather support was found to be successful and helpful to the OPSC.

  4. Extreme weather events in Iran under a changing climate

    Science.gov (United States)

    Alizadeh-Choobari, Omid; Najafi, M. S.

    2018-01-01

    Observations unequivocally show that Iran has been rapidly warming over recent decades, which in sequence has triggered a wide range of climatic impacts. Meteorological records of several ground stations across Iran with daily temporal resolution for the period 1951-2013 were analyzed to investigate the climate change and its impact on some weather extremes. Iran has warmed by nearly 1.3 °C during the period 1951-2013 (+0.2 °C per decade), with an increase of the minimum temperature at a rate two times that of the maximum. Consequently, an increase in the frequency of heat extremes and a decrease in the frequency of cold extremes have been observed. The annual precipitation has decreased by 8 mm per decade, causing an expansion of Iran's dry zones. Previous studies have pointed out that warming is generally associated with more frequent heavy precipitation because a warmer air can hold more moisture. Nevertheless, warming in Iran has been associated with more frequent light precipitation, but less frequent moderate, heavy and extremely heavy precipitation. This is because in the subtropical dry zones, a longer time is required to recharge the atmosphere with water vapour in a warmer climate, causing more water vapour to be transported from the subtropics to high latitudes before precipitations forms. In addition, the altitude of the condensation level increases in a warmer climate in subtropical regions, causing an overall decrease of precipitation. We argue that changing in the frequency of heavy precipitation in response to warming varies depending on the geographical location. Warming over the dry subtropical regions is associated with a decrease in the frequency of heavy precipitation, while an increase is expected over both subpolar and tropical regions. The warmer climate has also led to the increase in the frequency of both thunderstorms (driven by convective heating) and dust events over Iran.

  5. Influence of weather conditions on natural radioactivity

    International Nuclear Information System (INIS)

    Simion, Florin; Simion, Elena; Cuculeanu, Vasile; Mihalcea, Ion

    2011-01-01

    This paper presents the dependence of the natural radioactivity on atmospheric weather conditions: air temperature, atmospheric pressure, wind speed, atmospherical precipitations and relative humidity. The values used in the paper were taken from the environmental radioactivity monitoring in Botosani city, Romania, as measured by the Environmental Radioactivity Surveillance Station. Daily global measurements of atmospheric deposition beta and atmospheric aerosols as well were carried out, including the indirect determination of radon and thoron, and the absorbed gamma dose rate in air, as well. Sampling and measurement frequency depended on the type of sample analyzed as follows: atmospheric deposition were taken daily, atmospheric aerosols were collected 4 times/day, with a sampling interval of 5 hours while the air absorbed dose rate was determined at a hourly rate. The coefficient of multiple correlation between the type of analysis and weather conditions, was determined. By using multiple linear regression it was highlighted the natural radioactivity dependence on the atmospheric conditions and meteorological parameters by a mathematical expression that can be used to determine missing values in a time series of measured data. By predicting the measured values our procedure can be considered as a validation process of the measurement accuracy

  6. Cause and Properties of the Extreme Space Weather Event of 2012 July 23

    Science.gov (United States)

    Liu, Y. D.; Luhmann, J. G.; Kajdic, P.; Kilpua, E.; Lugaz, N.; Nitta, N.; Lavraud, B.; Bale, S. D.; Farrugia, C. J.; Galvin, A. B.

    2013-12-01

    Extreme space weather refers to extreme conditions in space driven by solar eruptions and subsequent disturbances in interplanetary space, or otherwise called solar superstorms. Understanding extreme space weather events is becoming ever more vital, as the vulnerability of our society and its technological infrastructure to space weather has increased dramatically. Instances of extreme space weather, however, are very rare by definition and therefore are difficult to study. Here we report and investigate an extreme event, which occurred on 2012 July 23 with a maximum speed of about 3050 km/s near the Sun. This event, with complete modern remote sensing and in situ observations from multiple vantage points, provides an unprecedented opportunity to study the cause and consequences of extreme space weather. It produced a superfast shock with a peak solar wind speed of 2246 km/s and a superstrong magnetic cloud with a peak magnetic field of 109 nT observed near 1 AU at STEREO A. The record solar wind speed and magnetic field would produce a record geomagnetic storm since the space era with a minimum Dst of -1200 - -600 nT, if this event hit the Earth. We demonstrate how successive coronal mass ejections (CMEs) can be enhanced into a solar superstorm as they interact en route from the Sun to 1 AU. These results not only provide a benchmark for studies of extreme space weather, but also present a new view of how an extreme space weather event can be generated from usual solar eruptions.

  7. Committed Vulnerability to Extreme Weather Events in the United States (Invited)

    Science.gov (United States)

    Preston, B. L.

    2013-12-01

    Despite improvements in disaster risk management in the United States, a trend toward increasing economic losses from extreme weather events has been observed. This trend has been attributed to growth in socioeconomic exposure to extremes driven by the concentration of population and wealth on hazardous landscapes. As geographic patterns of demography and economic development are associated with strong path dependence, the United States is ';locked-in' to future increases in exposure and associated economic losses in the decades ahead, irrespective of the influence of climate change. To understand the influence of path dependence on past and future losses, an index of potential socioeconomic exposure was developed at the U.S. county level based upon population size and inflation-adjusted wealth proxies. Since 1960, exposure has increased preferentially in the U.S. Southeast, particularly coastal and urban counties and Southwest relative to the Great Plains and Northeast. Projected changes in exposure from 2009 to 2054 based upon scenarios of future demographic and economic change suggest a long-term commitment to increasing, but spatially heterogeneous, exposure to extremes, independent of climate change. The implications of this path dependence are examined in the context of several natural hazards. Annualized county-level losses from 1960-2008 for five climate-related natural hazards were normalized to 2009 values and then scaled based upon projected changes in exposure and two different estimates of the exposure elasticity of losses. Results indicate that losses from extreme events will grow by a factor of 1.3-1.7 and 1.8-3.9 by 2025 and 2050, respectively, with the exposure elasticity representing a major source of uncertainty. At more local scales, however, such as rapidly growing metropolitan areas, losses are anticipated to grow more rapidly. As such, improving understanding of the societal implications of the extreme weather events of the future

  8. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    Science.gov (United States)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  9. Age of depositional and weathering events in Central Amazonia

    Science.gov (United States)

    Sant'Anna, Lucy Gomes; Soares, Emílio Alberto do Amaral; Riccomini, Claudio; Tatumi, Sonia Hatsue; Yee, Marcio

    2017-08-01

    In the last three decades, several studies have been devoted to understanding the role of Late Pleistocene-Holocene climate changes in the Amazonia lowlands environment. However, most of these studies used data obtained from sedimentary deposits (lakes, swamps, and colluvium) located away from the central plain or on the edges of the Amazonia region. This article integrates optically stimulated luminescence and accelerated mass spectrometry 14C ages with sedimentological and geomorphological data obtained during this study or compiled from the literature for fluvial and lacustrine deposits of the central alluvial plain of the Solimões-Amazon River. The age data allow us to present a chronological framework for the Late Pleistocene-Holocene deposits and conclude that (i) the dryness of the LGM in central Amazonia lowlands is recorded by the formation of fluvial terraces and their weathering to pedogenic hematite between 25.3 ka and 17.7 ka; (ii) floodplain deposition was contemporaneous with terrace weathering and occurred in a context of decreased water volume in fluvial channels, lowering of river base level and sea level, and isostatic rebound of the continent; and (iii) lateral and mid-channel fluvial bars in the Solimões-Amazon River have a minimum age of 11.5 ± 1.5 ka, and their deposition responded to increased precipitation at the beginning of the Holocene.

  10. Possible space weather influence on the Earth wheat prices

    Science.gov (United States)

    Pustil'Nik, L.; Yom Din, G.; Dorman, L.

    We present development of our study of possible influence of space weather modulated by cycle of solar activity on the price bursts in the Earth markets In our previous works 1 2 we showed that correspondent response may have place in the specific locations characterized by a high sensitivity of the weather cloudiness in particular to cosmic ray variation b risk zone agriculture c isolated wheat market with limited external supply of agriculture production We showed that in this situation we may wait specific price burst reaction on unfavorable phase of solar activity and space weather what lead to corresponding abnormalities in the local weather and next crop failure We showed that main types of manifestation of this connection are a Distribution of intervals between price bursts must be like to the distribution of intervals between correspondent extremes of solar activity minimums or maximums b price asymmetry between opposite states of solar activity price in the one type of activity state is systematically higher then in the opposite one We showed in our previous publications that this influence in interval distribution is detected with high reliability in Mediaeval England 1250-1700 both for wheat prices and price of consumables basket We showed that for period of Maunder Minimum price asymmetry of wheat prices observed all prices in minimum state of solar activity was higher the prices in the next maximum state We showed later that this price asymmetry had place in 20-th century in USA durum prices too In

  11. Modeling the influence of organic acids on soil weathering

    Science.gov (United States)

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  12. Impact of extreme weather events and climate change for health and social care systems.

    Science.gov (United States)

    Curtis, Sarah; Fair, Alistair; Wistow, Jonathan; Val, Dimitri V; Oven, Katie

    2017-12-05

    This review, commissioned by the Research Councils UK Living With Environmental Change (LWEC) programme, concerns research on the impacts on health and social care systems in the United Kingdom of extreme weather events, under conditions of climate change. Extreme weather events considered include heatwaves, coldwaves and flooding. Using a structured review method, we consider evidence regarding the currently observed and anticipated future impacts of extreme weather on health and social care systems and the potential of preparedness and adaptation measures that may enhance resilience. We highlight a number of general conclusions which are likely to be of international relevance, although the review focussed on the situation in the UK. Extreme weather events impact the operation of health services through the effects on built, social and institutional infrastructures which support health and health care, and also because of changes in service demand as extreme weather impacts on human health. Strategic planning for extreme weather and impacts on the care system should be sensitive to within country variations. Adaptation will require changes to built infrastructure systems (including transport and utilities as well as individual care facilities) and also to institutional and social infrastructure supporting the health care system. Care sector organisations, communities and individuals need to adapt their practices to improve resilience of health and health care to extreme weather. Preparedness and emergency response strategies call for action extending beyond the emergency response services, to include health and social care providers more generally.

  13. Classification of rainfall events for weather forecasting purposes in andean region of Colombia

    Science.gov (United States)

    Suárez Hincapié, Joan Nathalie; Romo Melo, Liliana; Vélez Upegui, Jorge Julian; Chang, Philippe

    2016-04-01

    This work presents a comparative analysis of the results of applying different methodologies for the identification and classification of rainfall events of different duration in meteorological records of the Colombian Andean region. In this study the work area is the urban and rural area of Manizales that counts with a monitoring hydro-meteorological network. This network is composed of forty-five (45) strategically located stations, this network is composed of forty-five (45) strategically located stations where automatic weather stations record seven climate variables: air temperature, relative humidity, wind speed and direction, rainfall, solar radiation and barometric pressure. All this information is sent wirelessly every five (5) minutes to a data warehouse located at the Institute of Environmental Studies-IDEA. With obtaining the series of rainfall recorded by the hydrometeorological station Palogrande operated by the National University of Colombia in Manizales (http://froac.manizales.unal.edu.co/bodegaIdea/); it is with this information that we proceed to perform behavior analysis of other meteorological variables, monitored at surface level and that influence the occurrence of such rainfall events. To classify rainfall events different methodologies were used: The first according to Monjo (2009) where the index n of the heavy rainfall was calculated through which various types of precipitation are defined according to the intensity variability. A second methodology that permitted to produce a classification in terms of a parameter β introduced by Rice and Holmberg (1973) and adapted by Llasat and Puigcerver, (1985, 1997) and the last one where a rainfall classification is performed according to the value of its intensity following the issues raised by Linsley (1977) where the rains can be considered light, moderate and strong fall rates to 2.5 mm / h; from 2.5 to 7.6 mm / h and above this value respectively for the previous classifications. The main

  14. Extreme weather events: Should drinking water quality management systems adapt to changing risk profiles?

    Science.gov (United States)

    Khan, Stuart J; Deere, Daniel; Leusch, Frederic D L; Humpage, Andrew; Jenkins, Madeleine; Cunliffe, David

    2015-11-15

    Among the most widely predicted and accepted consequences of global climate change are increases in both the frequency and severity of a variety of extreme weather events. Such weather events include heavy rainfall and floods, cyclones, droughts, heatwaves, extreme cold, and wildfires, each of which can potentially impact drinking water quality by affecting water catchments, storage reservoirs, the performance of water treatment processes or the integrity of distribution systems. Drinking water guidelines, such as the Australian Drinking Water Guidelines and the World Health Organization Guidelines for Drinking-water Quality, provide guidance for the safe management of drinking water. These documents present principles and strategies for managing risks that may be posed to drinking water quality. While these principles and strategies are applicable to all types of water quality risks, very little specific attention has been paid to the management of extreme weather events. We present a review of recent literature on water quality impacts of extreme weather events and consider practical opportunities for improved guidance for water managers. We conclude that there is a case for an enhanced focus on the management of water quality impacts from extreme weather events in future revisions of water quality guidance documents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Climate Change, Extreme Weather Events, and Human Health Implications in the Asia Pacific Region.

    Science.gov (United States)

    Hashim, Jamal Hisham; Hashim, Zailina

    2016-03-01

    The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter weather patterns on the regional scale, giving rise to extreme weather events. The impacts from extreme weather events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme weather events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. Globally, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme weather events, with losses of more than US$2.5 trillion in purchasing power parity. © 2015 APJPH.

  16. Vulnerability and adaptation to severe weather events in the American southwest

    OpenAIRE

    Boero, Riccardo; Bianchini, Laura; Pasqualini, Donatella

    2015-01-01

    Climate change can induce changes in the frequency of severe weather events representing a threat to socio-economic development. It is thus of uttermost importance to understand how the vulnerability to the weather of local communities is determined and how adaptation public policies can be effectively put in place. We focused our empirical analysis on the American Southwest. Results show that, consistently with the predictions of an investment model, economic characteristics signaling loc...

  17. Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection.

    Science.gov (United States)

    Nath, Debashis; Chen, Wen; Zelin, Cai; Pogoreltsev, Alexander Ivanovich; Wei, Ke

    2016-04-07

    In the present study, we investigate the impact of stratospheric planetary wave reflection on tropospheric weather over Central Eurasia during the 2013 Sudden Stratospheric Warming (SSW) event. We analyze EP fluxes and Plumb wave activity fluxes to study the two and three dimensional aspects of wave propagation, respectively. The 2013 SSW event is excited by the combined influence of wavenumber 1 (WN1) and wavenumber 2 (WN2) planetary waves, which makes the event an unusual one and seems to have significant impact on tropospheric weather regime. We observe an extraordinary development of a ridge over the Siberian Tundra and the North Pacific during first development stage (last week of December 2012) and later from the North Atlantic in the second development stage (first week of January 2013), and these waves appear to be responsible for the excitation of the WN2 pattern during the SSW. The wave packets propagated upward and were then reflected back down to central Eurasia due to strong negative wind shear in the upper stratospheric polar jet, caused by the SSW event. Waves that propagated downward led to the formation of a deep trough over Eurasia and brought extreme cold weather over Kazakhstan, the Southern part of Russia and the Northwestern part of China during mid-January 2013.

  18. Extreme weather and experience influence reproduction in an endangered bird

    Science.gov (United States)

    Reichert, Brian E.; Cattau, Christopher E.; Fletcher, Robert J.; Kendall, William L.; Kitchens, Wiley M.

    2012-01-01

    Extreme weather events, such as droughts and heat waves, are expected to become more severe and more frequent in the coming years, and understanding their impacts on demographic rates is of increasing interest to both evolutionary ecologists and conservation practitioners. An individual's breeding probability can be a sensitive indicator of the decision to initiate reproductive behavior under varying environmental conditions, has strong fitness consequences, and can be considered the first step in a life history trade-off between allocating resources for breeding activities or self-survival.

  19. Addressing the Influence of Space Weather on Airline Navigation

    Science.gov (United States)

    Sparks, Lawrence

    2012-01-01

    The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances

  20. Modeling extreme "Carrington-type" space weather events using three-dimensional global MHD simulations

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex

    2014-06-01

    There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al. (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst˜=-1600 nT.

  1. An impact of deforestation by extreme weather events on Sphagnum peatland ecosystem

    Science.gov (United States)

    Slowinski, M. M.; Łuców, D.; Kołaczek, P.; Tjallingii, R.; Lane, C. S.; Slowinska, S.; Tyszkowski, S.; Łokas, E.; Theuerkauf, M.; Brauer, A.; Lamentowicz, M.

    2017-12-01

    An increase in extreme weather phenomena has been observed over the last decades as a result of global climate warming. Terrestrial ecosystems are influenced by different types of disturbances such as e.g. deforestation, land-use, fragmentation, fire, floods or storms. Disturbance triggers may be natural or anthropogenic, but usually we observe negative feedback loops and interconnected causal factors. Here we investigate the effects of a tornado event on the peatland ecosystem of the Tuchola Pinewoods, Northern Poland. Deforestation by tornado events can cause severe perturbations of the hydrology and erosion that, in turn, affects adjacent lakes and peatlands. Martwe peatland provide an exceptional opportunity to study the impact of such extreme events, as it was struck by a tornado in 2012. Our research is focused on lake-peatland ecosystems that were directly affected by this tornado, and we consider the general transformation of the vegetation (mainly forests) over the last 150 years. Extensive clearing of the forest occurred in the nineteenth century due to human activity, and we compare this with the impact of the 2012 tornado. Accurate reconstructions will rely on a broad range of palaeoecological techniques such as pollen, macro-remains and testate amoebae, but also on geochemistry, i.e. μXRF scanning. The chronology of the records is based on 210Pb and radiocarbon dating and will incorporate correlations using (crypto)tephra markers of the Eyjafjöll (2010) and Askja (1875) eruptions. We expect to observe that disturbance (tornado-induced deforestation) affects the short-term changes in peatland productivity and biodiversity, through a cascading "top-down" effect. This research addresses the emerging issue of the impact of extreme phenomena and more general climate changes on peatland ecosystems, which will potentially help to inform adaptations to the environmental consequences of extreme events in the future. This project is funded by the Polish

  2. Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report - Extended Summary

    Science.gov (United States)

    2009-01-01

    The effects of space weather on modern technological systems are well documented in both the technical literature and popular accounts. Most often cited perhaps is the collapse within 90 seconds of northeastern Canada's Hydro-Quebec power grid during the great geomagnetic storm of March 1989, which left millions of people without electricity for up to 9 hours. This event exemplifies the dramatic impact that severe space weather can have on a technology upon which modern society critically depends. Nearly two decades have passed since the March 1989 event. During that time, awareness of the risks of severe space weather has increased among the affected industries, mitigation strategies have been developed, new sources of data have become available, new models of the space environment have been created, and a national space weather infrastructure has evolved to provide data, alerts, and forecasts to an increasing number of users. Now, 20 years later and approaching a new interval of increased solar activity, how well equipped are we to manage the effects of space weather? Have recent technological developments made our critical technologies more or less vulnerable? How well do we understand the broader societal and economic impacts of severe space weather events? Are our institutions prepared to cope with the effects of a 'space weather Katrina,' a rare, but according to the historical record, not inconceivable eventuality? On May 22 and 23, 2008, a one-and-a-half-day workshop held in Washington, D.C., under the auspices of the National Research Council's (NRC's) Space Studies Board brought together representatives of industry, the federal government, and the social science community to explore these and related questions. The key themes, ideas, and insights that emerged during the presentations and discussions are summarized in 'Severe Space Weather Events--Understanding Societal and Economic Impacts: A Workshop Report' (The National Academies Press, Washington, D

  3. Weather Regime-Dependent Predictability: Sequentially Linked High-Impact Weather Events over the United States during March 2016

    Science.gov (United States)

    Bosart, L. F.; Winters, A. C.; Keyser, D.

    2016-12-01

    High-impact weather events (HWEs), defined by episodes of excessive precipitation or periods of well above or well below normal temperatures, can pose important predictability challenges on medium-range (8-16 day) time scales. Furthermore, HWEs can contribute disproportionately to temperature and precipitation anomaly statistics for a particular season. This disproportionate contribution suggests that HWEs need to be considered in describing and understanding the dynamical and thermodynamic processes that operate at the weather-climate intersection. HWEs typically develop in conjunction with highly amplified flow patterns that permit an extensive latitudinal exchange of polar and tropical air masses. Highly amplified flow patterns over North America often occur in response to a reconfiguration of the large-scale upstream flow pattern over the North Pacific Ocean. The large-scale flow pattern over the North Pacific, North America, and western North Atlantic during the latter half of March 2016 was characterized by frequent cyclonic wave breaking (CWB). This large-scale flow pattern enabled three sequentially linked HWEs to develop over the continental United States. The first HWE was a challenging-to-predict cyclogenesis event on 23-24 March in the central Plains that resulted in both a major snowstorm along the Colorado Front Range and a severe weather outbreak over the central and southern Plains. The second HWE was a severe weather outbreak that occurred over the Tennessee and Ohio River Valleys on 27-28 March. The third HWE was the development of well below normal temperatures over the eastern United States that followed the formation of a high-latitude omega block over northwestern North America during 28 March-1 April. This study will examine (1) the role that CWB over the North Pacific and North America played in the evolution of the flow pattern during late-March 2016 and the development of the three HWEs and (2) the skill of GFS operational and ensemble

  4. Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event)

    Science.gov (United States)

    Lechler, Maria; Pogge von Strandmann, Philip A. E.; Jenkyns, Hugh C.; Prosser, Giacomo; Parente, Mariano

    2015-12-01

    An abrupt rise in temperature, forced by a massive input of CO2 into the atmosphere, is commonly invoked as the main trigger for Oceanic Anoxic Events (OAEs). Global warming initiated a cascade of palaeoenvironmental perturbations starting with increased continental weathering and an accelerated hydrological cycle that delivered higher loads of nutrients to coastal areas, stimulating biological productivity. The end-result was widespread anoxia and deposition of black shales: the hallmarks of OAEs. In order to assess the role of weathering as both an OAE initiator and terminator (via CO2 sequestration) during the Early Aptian OAE 1a (Selli Event, ∼120 Ma) the isotopic ratio of lithium isotopes was analysed in three sections of shallow-marine carbonates from the Pacific and Tethyan realms and one basinal pelagic section from the Tethyan domain. Because the isotopic composition of lithium in seawater is largely controlled by continental silicate weathering and high- and low-temperature alteration of basaltic material, a shift to lighter δ7Li values is expected to characterize OAEs. The studied sections illustrate this phenomenon: δ7Li values decrease to a minimum coincident with the negative carbon-isotope excursion that effectively records the onset of OAE 1a. A second negative δ7Li excursion occurs coeval with the minimum in strontium isotopes after the event. The striking similarity to the strontium-isotope record argues for a common driver. The formation and destruction (weathering) of an oceanic LIP could account for the parallel trend in both isotope systems. The double-spike in lithium isotopes is probably related to a change in weathering congruencies. Such a chemostratigraphy is consistent with the hypothesis that an increase in silicate weathering, in conjunction with organic-carbon burial, led to drawdown of atmospheric CO2 during the early Aptian OAE 1a.

  5. Development and Application of Syndromic Surveillance for Severe Weather Events Following Hurricane Sandy.

    Science.gov (United States)

    Tsai, Stella; Hamby, Teresa; Chu, Alvin; Gleason, Jessie A; Goodrow, Gabrielle M; Gu, Hui; Lifshitz, Edward; Fagliano, Jerald A

    2016-06-01

    Following Hurricane Superstorm Sandy, the New Jersey Department of Health (NJDOH) developed indicators to enhance syndromic surveillance for extreme weather events in EpiCenter, an online system that collects and analyzes real-time chief complaint emergency department (ED) data and classifies each visit by indicator or syndrome. These severe weather indicators were finalized by using 2 steps: (1) key word inclusion by review of chief complaints from cases where diagnostic codes met selection criteria and (2) key word exclusion by evaluating cases with key words of interest that lacked selected diagnostic codes. Graphs compared 1-month, 3-month, and 1-year periods of 8 Hurricane Sandy-related severe weather event indicators against the same period in the following year. Spikes in overall ED visits were observed immediately after the hurricane for carbon monoxide (CO) poisoning, the 3 disrupted outpatient medical care indicators, asthma, and methadone-related substance use. Zip code level scan statistics indicated clusters of CO poisoning and increased medicine refill needs during the 2 weeks after Hurricane Sandy. CO poisoning clusters were identified in areas with power outages of 4 days or longer. This endeavor gave the NJDOH a clearer picture of the effects of Hurricane Sandy and yielded valuable state preparation information to monitor the effects of future severe weather events. (Disaster Med Public Health Preparedness. 2016;10:463-471).

  6. Influences of rainfall variables and antecedent discharge on urban effluent concentrations and loads in wet weather.

    Science.gov (United States)

    Xu, Zuxin; Xiong, Lijun; Li, Huaizheng; Liao, Zhengliang; Yin, Hailong; Wu, Jun; Xu, Jin; Chen, Hao

    2017-04-01

    For storm drainages inappropriately connected with sewage, wet weather discharge is a major factor that adversely affects receiving waters. A study of the wet weather influences of rainfall-discharge variables on storm drainages connected with sewage was conducted in the downtown Shanghai area (374 ha). Two indicators, event mean concentration (EMC) and event pollutant load per unit area (EPL), were used to describe the pollution discharge during 20 rain events. The study showed that the total rainfall and discharge volume were important factors that affect the EMCs and EPLs of the chemical oxygen demand, total phosphorus, and especially those of NH 4 + -N. The pollutant concentrations at the beginning of the discharge and the discharge period were also major factors that influence the EMCs of these three pollutants. Regression relationships between the rainfall-discharge variables and discharge volume/ EPLs (R 2 = 0.824-0.981) were stronger than the relationships between the rainfall-discharge variables and EMCs. These regression equations can be considered reliable in the system, with a relative validation error of less than ±10% for the discharge volume, and less than ±20% for the EPLs. The results presented in this paper provide guidance for effectively controlling pollution in similar storm drainages.

  7. Risk of Fall-Related Injury due to Adverse Weather Events, Philadelphia, Pennsylvania, 2006-2011.

    Science.gov (United States)

    Gevitz, Kathryn; Madera, Robbie; Newbern, Claire; Lojo, José; Johnson, Caroline C

    Following a surge in fall-related visits to local hospital emergency departments (EDs) after a severe ice storm, the Philadelphia Department of Public Health examined the association between inclement winter weather events and fall-related ED visits during a 5-year period. Using a standardized set of keywords, we identified fall-related injuries in ED chief complaint logs submitted as part of Philadelphia Department of Public Health's syndromic surveillance from December 2006 through March 2011. We compared days when falls exceeded the winter fall threshold (ie, "high-fall days") with control days within the same winter season. We then conducted matched case-control analysis to identify weather and patient characteristics related to increased fall-related ED visits. Fifteen high-fall days occurred during winter months in the 5-year period. In multivariable analysis, 18- to 64-year-olds were twice as likely to receive ED care for fall-related injuries on high-fall days than on control days. The crude odds of ED visits occurring from 7:00 am to 10:59 am were 70% higher on high-fall days vs control days. Snow was a predictor of a high-fall day: the adjusted odds of snow before a high-fall day as compared with snow before a control day was 13.4. The association between the number of fall-related ED visits and weather-related fall injuries, age, and timing suggests that many events occurred en route to work in the morning. Promoting work closures or delaying openings after severe winter weather would allow time for better snow or ice removal, and including "fall risk" in winter weather advisories might effectively warn morning commuters. Both strategies could help reduce the number of weather-related fall injuries.

  8. Geostationary Communications Satellites as Sensors for the Space Weather Environment: Telemetry Event Identification Algorithms

    Science.gov (United States)

    Carlton, A.; Cahoy, K.

    2015-12-01

    Reliability of geostationary communication satellites (GEO ComSats) is critical to many industries worldwide. The space radiation environment poses a significant threat and manufacturers and operators expend considerable effort to maintain reliability for users. Knowledge of the space radiation environment at the orbital location of a satellite is of critical importance for diagnosing and resolving issues resulting from space weather, for optimizing cost and reliability, and for space situational awareness. For decades, operators and manufacturers have collected large amounts of telemetry from geostationary (GEO) communications satellites to monitor system health and performance, yet this data is rarely mined for scientific purposes. The goal of this work is to acquire and analyze archived data from commercial operators using new algorithms that can detect when a space weather (or non-space weather) event of interest has occurred or is in progress. We have developed algorithms, collectively called SEER (System Event Evaluation Routine), to statistically analyze power amplifier current and temperature telemetry by identifying deviations from nominal operations or other events and trends of interest. This paper focuses on our work in progress, which currently includes methods for detection of jumps ("spikes", outliers) and step changes (changes in the local mean) in the telemetry. We then examine available space weather data from the NOAA GOES and the NOAA-computed Kp index and sunspot numbers to see what role, if any, it might have played. By combining the results of the algorithm for many components, the spacecraft can be used as a "sensor" for the space radiation environment. Similar events occurring at one time across many component telemetry streams may be indicative of a space radiation event or system-wide health and safety concern. Using SEER on representative datasets of telemetry from Inmarsat and Intelsat, we find events that occur across all or many of

  9. Impacts of extreme weather events on highly eutrophic marine ecosystem (Rogoznica Lake, Adriatic coast)

    Science.gov (United States)

    Ciglenečki, I.; Janeković, I.; Marguš, M.; Bura-Nakić, E.; Carić, M.; Ljubešić, Z.; Batistić, M.; Hrustić, E.; Dupčić, I.; Garić, R.

    2015-10-01

    Rogoznica Lake is highly eutrophic marine system located on the Eastern Adriatic coast (43°32‧N, 15°58‧E). Because of the relatively small size (10,276 m2) and depth (15 m) it experiences strong natural and indirect anthropogenic influences. Dynamics within the lake is characterized by the extreme and highly variable environmental conditions (seasonal variations in salinity and temperature, water stratification and mixing, redox and euxinic conditions, concentrations of nutrients) which significantly influence the biology inside the lake. Due to the high phytoplankton activity, the upper part of the water column is well oxygenated, while hypoxia/anoxia usually occurs in the bottom layers. Anoxic part of the water column is characterized with high concentrations of sulfide (up to 5 mM) and nutrients (NH4+ up to 315 μM; PO43- up to 53 μM; SiO44- up to 680 μM) indicating the pronounced remineralization of the allochthonous organic matter, produced in the surface waters. The mixolimnion varies significantly within a season feeling effects of the Adriatic atmospheric and ocean dynamics (temperature, wind, heat fluxes, rainfall) which all affect the vertical stability and possibly induce vertical mixing and/or turnover. Seasonal vertical mixing usually occurs during the autumn/winter upon the breakdown of the stratification, injecting oxygen-rich water from the surface into the deeper layers. Depending on the intensity and duration of the vertical dynamics (slower diffusion and/or faster turnover of the water layers) anoxic conditions could developed within the whole water column. Extreme weather events such as abrupt change in the air temperature accompanied with a strong wind and consequently heat flux are found to be a key triggering mechanism for the fast turnover, introducing a large amount of nutrients and sulfur species from deeper parts to the surface. Increased concentration of nutrients, especially ammonium, phosphate, and silicates persisting for

  10. Semi-supervised tracking of extreme weather events in global spatio-temporal climate datasets

    Science.gov (United States)

    Kim, S. K.; Prabhat, M.; Williams, D. N.

    2017-12-01

    Deep neural networks have been successfully applied to solve problem to detect extreme weather events in large scale climate datasets and attend superior performance that overshadows all previous hand-crafted methods. Recent work has shown that multichannel spatiotemporal encoder-decoder CNN architecture is able to localize events in semi-supervised bounding box. Motivated by this work, we propose new learning metric based on Variational Auto-Encoders (VAE) and Long-Short-Term-Memory (LSTM) to track extreme weather events in spatio-temporal dataset. We consider spatio-temporal object tracking problems as learning probabilistic distribution of continuous latent features of auto-encoder using stochastic variational inference. For this, we assume that our datasets are i.i.d and latent features is able to be modeled by Gaussian distribution. In proposed metric, we first train VAE to generate approximate posterior given multichannel climate input with an extreme climate event at fixed time. Then, we predict bounding box, location and class of extreme climate events using convolutional layers given input concatenating three features including embedding, sampled mean and standard deviation. Lastly, we train LSTM with concatenated input to learn timely information of dataset by recurrently feeding output back to next time-step's input of VAE. Our contribution is two-fold. First, we show the first semi-supervised end-to-end architecture based on VAE to track extreme weather events which can apply to massive scaled unlabeled climate datasets. Second, the information of timely movement of events is considered for bounding box prediction using LSTM which can improve accuracy of localization. To our knowledge, this technique has not been explored neither in climate community or in Machine Learning community.

  11. Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia

    International Nuclear Information System (INIS)

    Zhang Xiangdong; Lu Chuhan; Guan Zhaoyong

    2012-01-01

    Extreme cold winter weather events over Eurasia have occurred more frequently in recent years in spite of a warming global climate. To gain further insight into this regional mismatch with the global mean warming trend, we analyzed winter cyclone and anticyclone activities, and their interplay with the regional atmospheric circulation pattern characterized by the semi-permanent Siberian high. We found a persistent weakening of both cyclones and anticyclones between the 1990s and early 2000s, and a pronounced intensification of anticyclone activity afterwards. It is suggested that this intensified anticyclone activity drives the substantially strengthening and northwestward shifting/expanding Siberian high, and explains the decreased midlatitude Eurasian surface air temperature and the increased frequency of cold weather events. The weakened tropospheric midlatitude westerlies in the context of the intensified anticyclones would reduce the eastward propagation speed of Rossby waves, favoring persistence and further intensification of surface anticyclone systems. (letter)

  12. Links between Synoptic Weather Types and Extreme Wet Events in the Arabian Peninsula (1960-2100)

    KAUST Repository

    El Kenawy, Ahmed M.

    2014-05-01

    In this work, an automated version of the Lamb weather type classification scheme was applied to classify daily weather types in the Arabian Peninsula. The output catalogue included ten basic weather types, which describe the direction and vorticity of airflow in the peninsula (i.e., cyclonic, anticyclonic and directional). These large-scale patterns were first defined for the observed climate (1960-2013), allowing for an assessment of the spatial and temporal variations in circulation-rainfall relationships over the peninsula using rainfall data from 209 weather observatories. The same methodology was then applied to assess how the defined weather types will be presented in future climate simulations (under RCP45 and RCP85 emission scenarios) and to explore their probable dependency with rainfall characteristics. In this regard, daily simulated SLP derived from an ensemble of 12 climate models within the CMIP5 project were used for two future time-slices (2035-2060 and 2075-2100). Our findings indicate that the cyclonic (C) type represented the most frequent classification with 69.2% of days, followed by SE directional flows (21%). It was also found that the main circulation features influencing winter (spring) rainfall across the peninsula are the strong influence of the anticyclonic (easterly and southeasterly) air masses. Generally, the role of airflows originating from the Indian Ocean is larger than those of the Mediterranean and the Red Seas. The trend results of defined weather types show that the cyclonic (anticyclonic) conditions tend to decrease (increase). This picture is likely to continue during the 21st century. The only exception corresponds to the summer season. Here, understanding the association between atmospheric circulation patterns and rainfall in the Arabian Peninsula can be important for the understanding of climatic variability and thus developing circulation-based downscaling methods in this region.

  13. Blood troponin levels in acute cardiac events depends on space weather activity components (a correlative study).

    Science.gov (United States)

    Stoupel, Eliiyahu; Radishauskas, Richardas; Bernotiene, Gailute; Tamoshiunas, Abdonas; Virvichiute, Daiva

    2018-02-05

    Many biological processes are influenced by space weather activity components such as solar activity (SA), geomagnetic activity (GMA) and cosmic ray activity (CRA). Examples are total mortality, acute myocardial infarction (AMI), stroke (cerebrovascular accident), sudden cardiac death, some congenital maladies (congenital heart disease and Down syndrome), many events in neonatology, ophtalmology, blood pressure regulation, blood coagulation, inflammation, etc. The aim of this study was to check if the level of blood troponins (Tns) - markers of myocardial damage and recognized components of modern description of AMI - is connected with the mentioned space weather parameters. Patients admitted to a 3000-bed tertiary university hospital in Kaunas, Lithuania, with suspected AMI were the object of the study. Data for the time between 2008 and 2013 - 72 consecutive months - were studied. Of the patients, 1896 (1398 male, 498 female) had elevated troponin I (Tn I) or troponin T (Tn T, sensitive Tn) levels. Normal values were 0.00-0.03 ng/mL for Tn I and 0.00-14.00 ng/mL for Tn T. Monthly means and standard deviation of Tn I and Tn T were compared with monthly markers of SA, GMA and CRA. Pearson correlation coefficients and their probabilities were established (in addition to the consecutive graphs of both comparing physical and biological data). The cosmophysical data came from space service institutions in the United States, Russia and Finland. AMI was diagnosed in 1188 patients (62.66%), and intermediate coronary syndrome in 698 patients (36.81%). There were significant links of the Tn blood levels with four SA indices and CRA (neutron activity in imp/min); there was no significant correlation with GMA indices Ap and Cp (p=0.27 and p=0.235). Tn T levels significantly correlated with the GMA indices and not with the SA and CRA levels (Ap: r=0.77, p=0.0021; Cp: r=0.729, p=0.0047). First, the monthly level of blood Tn I in ACS is significantly correlated with the indices

  14. Quantifying statistical uncertainty in the attribution of human influence on severe weather

    OpenAIRE

    Paciorek, CJ; Stone, DA; Wehner, MF

    2018-01-01

    © 2018 The Authors Event attribution in the context of climate change seeks to understand the role of anthropogenic greenhouse gas emissions on extreme weather events, either specific events or classes of events. A common approach to event attribution uses climate model output under factual (real-world) and counterfactual (world that might have been without anthropogenic greenhouse gas emissions) scenarios to estimate the probabilities of the event of interest under the two scenarios. Event a...

  15. Hydro-geomorphologic events in Portugal and its association with Circulation weather types

    Science.gov (United States)

    Pereira, Susana; Ramos, Alexandre M.; Rebelo, Luís; Trigo, Ricardo M.; Zêzere, José L.

    2017-04-01

    Floods and landslides correspond to the most hazardous weather driven natural disasters in Portugal. A recent improvement on their characterization has been achieved with the gathering of basic information on past floods and landslides that caused social consequences in Portugal for the period 1865-2015 through the DISASTER database (Zêzere et al., 2014). This database was built under the assumption that strong social impacts of floods and landslides are sufficient relevant to be reported consistently by national and regional newspapers. The DISASTER database contains detailed information on the location, date of occurrence and social impacts (fatalities, injuries, missing people, evacuated and homeless people) of each individual hydro-geomorphologic case (1677 flood cases and 292 landslide cases). These hydro-geomorphologic disaster cases are grouped in a restrict number of DISASTER events that were selected according to the following criteria: a set of at least 3 DISASTER cases sharing the same trigger in time (with no more than 3 days without cases), which have a widespread spatial extension related to the triggering mechanism and a certain magnitude. In total, the DISASTER database includes 134 events (3.7 average days of duration) that generated high social impacts in Portugal (962 fatalities and 40878 homeless people). Each DISASTER event was characterized with the following attributes: hydro-geomorphologic event type (e.g landslides, floods, flash floods, urban floods); date of occurrence (year, month and days); duration in days; spatial location in GIS; number of fatalities, injured, evacuated and homeless people; and weather type responsible for triggering the event. The atmospheric forcing at different time scales is the main trigger for the hydro-meteorological DISASTER events occurred in Portugal. In this regard there is an urge for a more systematic assessment of the weather types associated to flood and landslide damaging events to correctly

  16. Influence factor analysis of atmospheric electric field monitoring near ground under different weather conditions

    International Nuclear Information System (INIS)

    Wan, Haojiang; Wei, Guanghui; Cui, Yaozhong; Chen, Yazhou

    2013-01-01

    Monitoring of atmospheric electric field near ground plays a critical role in atmospheric environment detecting and lightning warning. Different environmental conditions (e.g. buildings, plants, weather, etc.) have different influences on the data's coherence in an atmospheric electric field detection network. In order to study the main influence factors of atmospheric electric field monitoring under different weather conditions, with the combination of theoretical analysis and experiments, the electric field monitoring data on the ground and on the top of a building are compared in fair weather and thunderstorm weather respectively in this paper. The results show that: In fair weather, the field distortion due to the buildings is the main influence factor on the electric field monitoring. In thunderstorm weather, the corona ions produced from the ground, besides the field distortion due to the buildings, can also influence the electric field monitoring results.

  17. Extreme weather events in developing countries and related injuries and mental health disorders - a systematic review

    Directory of Open Access Journals (Sweden)

    Elisabeth Rataj

    2016-09-01

    Full Text Available Abstract Background Due to climate change, extreme weather events have an incremental impact on human health. Injuries and mental health disorders are a particular burden of disease, which is broadly investigated in high income countries. Most distressed populations are, however, those in developing countries. Therefore, this study investigates mental and physical health impacts arising from extreme weather events in these populations. Method Post-traumatic Stress Disorder (PTSD, injury [primary outcomes], anxiety and depressive disorders [secondary outcomes], caused by weather extremes were systematically analyzed in people of developing countries. A systematic review of observational studies was conducted searching six databases, complemented by hand search, and utilizing two search engines. Review processing was done independently by two reviewers. Prevalence rates were analyzed in a pre/post design; an additional semi-structured search was conducted, to provide reference data for studies not incorporating reference values. Results All 17 identified studies (70,842 individuals indicate a disease increase, compared to the reference data. Increase ranges from 0.7–52.6 % for PTSD, and from 0.3–37.3 % for injury. No studies on droughts and heatwaves were identified. All studies were conducted in South America and Asia. Conclusion There is an increased burden of psychological diseases and injury. This finding needs to be incorporated into activities of prevention, preparedness and general health care of those developing countries increasingly experiencing extreme weather events. There is also a gap in research in Africa (in quantity and quality of studies in this field and a predominant heterogeneity of health assessment tools. PROSPERO registration no.: CRD42014009109

  18. Living with extreme weather events - perspectives from climatology, geomorphological analysis, chronicles and opinion polls

    Science.gov (United States)

    Auer, I.; Kirchengast, A.; Proske, H.

    2009-09-01

    The ongoing climate change debate focuses more and more on changing extreme events. Information on past events can be derived from a number of sources, such as instrumental data, residual impacts in the landscape, but also chronicles and people's memories. A project called "A Tale of Two Valleys” within the framework of the research program "proVision” allowed to study past extreme events in two inner-alpine valleys from the sources mentioned before. Instrumental climate time series provided information for the past 200 years, however great attention had to be given to the homogeneity of the series. To derive homogenized time series of selected climate change indices methods like HOCLIS and Vincent have been applied. Trend analyses of climate change indices inform about increase or decrease of extreme events. Traces of major geomorphodynamic processes of the past (e.g. rockfalls, landslides, debris flows) which were triggered or affected by extreme weather events are still apparent in the landscape and could be evaluated by geomorphological analysis using remote sensing and field data. Regional chronicles provided additional knowledge and covered longer periods back in time, however compared to meteorological time series they enclose a high degree of subjectivity and intermittent recordings cannot be obviated. Finally, questionnaires and oral history complemented our picture of past extreme weather events. People were differently affected and have different memories of it. The joint analyses of these four data sources showed agreement to some extent, however also showed some reasonable differences: meteorological data are point measurements only with a sometimes too coarse temporal resolution. Due to land-use changes and improved constructional measures the impact of an extreme meteorological event may be different today compared to earlier times.

  19. Space Weather at Mars: MAVEN and MSL/RAD Observations of CME and SEP Events

    Science.gov (United States)

    Lee, C. O.; Ehresmann, B.; Lillis, R. J.; Dunn, P.; Rahmati, A.; Larson, D. E.; Guo, J.; Zeitlin, C.; Luhmann, J. G.; Halekas, J. S.; Espley, J. R.; Thiemann, E.; Hassler, D.

    2017-12-01

    While MAVEN have been observing the space weather conditions driven by ICMEs and SEPs in orbit around Mars, MSL/RAD have been measuring the surface radiation environment due to E > 150 MeV/nuc SEPs and the higher-energy galactic cosmic rays. The suite of MAVEN instruments measuring the particles (SEP), plasma (SWIA) and fields (MAG) information provides detailed local space weather information regarding the solar activity-related fluctuations in the measured surface dose rates. At the same time, the related enhancements in the RAD surface dose rates indicate the degree to which the SEPs affect the lower atmosphere and surface. We will present an overview of the MAVEN observations together with the MSL/RAD measurements and focus our discussion on a number of space weather events driven by CMEs and SEPs. During the March 2015 solar storm period, a succession of CMEs produced intense SEP proton fluxes that were detected by MAVEN/SEP in the 20 keV to 6 MeV detected energy channels. At higher energies, MAVEN/SEP record `FTO' SEP events that were triggered by > 13 MeV energetic protons passing through all three silicon detector layers (Front, Thick, and Open). Using the detector response matrix for an FTO event (incident energy vs detected energy), the minimum incident energy of the SEP protons observed in March 2015 was inferred to be > 40 MeV. The lack of any notable enhancements in the surface dose rate by MSL/RAD suggests that the highest incident energies of the SEP protons were 150 MeV SEP protons impacted the Martian atmosphere and surface. The source of the October 2015 SEP event was probably the CME that erupted near the solar west limb with respect to the Sun-Mars line. As part of the discussion, we will also show solar-heliospheric observations from near-Earth assets together with WSA-Enlil-cone results for some global heliospheric context.

  20. Modernizing Distribution System Restoration to Achieve Grid Resiliency Against Extreme Weather Events: An Integrated Solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen; Wang, Jianhui; Ton, Dan

    2017-07-07

    Recent severe power outages caused by extreme weather hazards have highlighted the importance and urgency of improving the resilience of the electric power grid. As the distribution grids still remain vulnerable to natural disasters, the power industry has focused on methods of restoring distribution systems after disasters in an effective and quick manner. The current distribution system restoration practice for utilities is mainly based on predetermined priorities and tends to be inefficient and suboptimal, and the lack of situational awareness after the hazard significantly delays the restoration process. As a result, customers may experience an extended blackout, which causes large economic loss. On the other hand, the emerging advanced devices and technologies enabled through grid modernization efforts have the potential to improve the distribution system restoration strategy. However, utilizing these resources to aid the utilities in better distribution system restoration decision-making in response to extreme weather events is a challenging task. Therefore, this paper proposes an integrated solution: a distribution system restoration decision support tool designed by leveraging resources developed for grid modernization. We first review the current distribution restoration practice and discuss why it is inadequate in response to extreme weather events. Then we describe how the grid modernization efforts could benefit distribution system restoration, and we propose an integrated solution in the form of a decision support tool to achieve the goal. The advantages of the solution include improving situational awareness of the system damage status and facilitating survivability for customers. The paper provides a comprehensive review of how the existing methodologies in the literature could be leveraged to achieve the key advantages. The benefits of the developed system restoration decision support tool include the optimal and efficient allocation of repair crews

  1. Weather conditions influence the number of psychiatric emergency room patients

    Science.gov (United States)

    Brandl, Eva Janina; Lett, Tristram A.; Bakanidze, George; Heinz, Andreas; Bermpohl, Felix; Schouler-Ocak, Meryam

    2017-12-01

    The specific impact of weather factors on psychiatric disorders has been investigated only in few studies with inconsistent results. We hypothesized that meteorological conditions influence the number of cases presenting in a psychiatric emergency room as a measure of mental health conditions. We analyzed the number of patients consulting the emergency room (ER) of a psychiatric hospital in Berlin, Germany, between January 1, 2008, and December 31, 2014. A total of N = 22,672 cases were treated in the ER over the study period. Meteorological data were obtained from a publicly available data base. Due to collinearity among the meteorological variables, we performed a principal component (PC) analysis. Association of PCs with the daily number of patients was analyzed with autoregressive integrated moving average model. Delayed effects were investigated using Granger causal modeling. Daily number of patients in the ER was significantly higher in spring and summer compared to fall and winter (p psychiatric patients consulting the emergency room. In particular, our data indicate lower patient numbers during very cold temperatures.

  2. When Siberia came to the Netherlands: The response of continental black-tailed godwits to a rare spring weather event

    Science.gov (United States)

    Senner, Nathan R.; Verhoeven, Mo A.; Abad-Gómez, José M.; Gutiérrez, Jorge S.; Hooijmeijer, Jos C. E. W.; Kentie, Rosemarie; Masero, José A.; Tibbitts, T. Lee; Piersma, Theunis

    2015-01-01

    Summary Extreme weather events have the potential to alter both short- and long-term population dynamics as well as community- and ecosystem-level function. Such events are rare and stochastic, making it difficult to fully document how organisms respond to them and predict the repercussions of similar events in the future.

  3. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    International Nuclear Information System (INIS)

    Hansen, Brage B; Isaksen, Ketil; Benestad, Rasmus E; Kohler, Jack; Pedersen, Åshild Ø; Loe, Leif E; Coulson, Stephen J; Larsen, Jan Otto; Varpe, Øystein

    2014-01-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January–February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (∼5–20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties. (letter)

  4. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  5. Numerical Modeling of the Severe Cold Weather Event over Central Europe (January 2006

    Directory of Open Access Journals (Sweden)

    D. Hari Prasad

    2010-01-01

    Full Text Available Cold waves commonly occur in higher latitudes under prevailing high pressure systems especially during winter season which cause serious economical loss and cold related death. Accurate prediction of such severe weather events is important for decision making by administrators and for mitigation planning. An Advanced high resolution Weather Research and Forecasting mesoscale model is used to simulate a severe cold wave event occurred during January 2006 over Europe. The model is integrated for 31 days starting from 00UTC of 1 January 2006 with 30 km horizontal resolution. Comparison of the model derived area averaged daily mean temperatures at 2m height from different zones over the central Europe with observations indicates that the model is able to simulate the occurrence of the cold wave with the observed time lag of 1 to 3days but with lesser intensity. The temperature, winds, surface pressure and the geopential heights at 500 hPa reveal that the cold wave development associates with the southward progression of a high pressure system and cold air advection. The results have good agreement with the analysis fields indicates that the model has the ability to reproduce the time evolution of the cold wave event.

  6. A Synoptic Climatology of Combined Severe/Weather/Flash Flood Events

    Science.gov (United States)

    Pallozzi, Kyle J.

    Classical forms of severe weather such as tornadoes, damaging convective wind gusts, and large hail, as well as flash flooding events, all have potentially large societal impacts. This impact is further magnified when these hazards occur simultaneously in time and space. A major challenge for operational forecasters is how to accurately predict the occurrence of combined storm hazards, and how to communicate the associated multiple threat hazards to the public. A seven-year climatology (2009-2015) of combined severe weather/flash flooding (SVR/FF) events across the contiguous United States was developed in attempt to study the combined SVR/FF event hazards further. A total of 211 total cases were identified and sub-divided into seven subcategories based on their convective morphology and meteorological characteristics. Heatmaps of event report frequency were created to extract spatial, seasonal and interannual patterns in SVR/FF event activity. Diurnal trends were examined from time series plots of tornado, hail, wind and flash flood/flood reports. Event-centered composites of environmental variables were created for each subcategory from 13 km RUC/RAP analyses. Representative cases studies were conducted for each subcategory. A "ring of fire" with the highest levels of SVR/FF event activity was noted across the central United States. SVR/FF events were least common in the Southeast, High Plains, and Northern Plains. Enhanced SVR/FF activity reflected contributions from synoptic events during the cool and shoulder seasons over the Lower Mississippi, Arkansas and Tennessee Valleys, and MCS activity during the warm season over the lower Great Plains, and the Upper Mississippi, Missouri and Ohio River Valleys. Results from the composite analyses indicated that relatively high values of CAPE, surface-500 hPa shear and precipitable water were observed for all subcategories. Case studies show that many high-end SVR/FF events featured slow-moving, or quasi

  7. The use of normalized climatological anomalies to rank synoptic-scale events and their relation to Weather Types

    Science.gov (United States)

    Ramos, A. M.; Lorenzo, M. N.; Gimeno, L.; Nieto, R.; Añel, J. A.

    2009-09-01

    measures we can evaluate if there is any preferable WT responsible for high or low values of anomalies. Hart, R.E and R.H. Grumm (2001) Using normalized climatological anomalies to rank synoptic-scale events objectivily. Monthly Weather Review, 129, 2426-2442. Jones, P. D., M. Hulme, K. R. Briffa (1993) A comparison of Lamb circulation types with anobjective classification scheme. International Journal of Climatology, 13: 655- 663. Lorenzo M.N., J.J. Taboada and L.Gimeno (2008). Links between circulation weather types and teleconnection patterns and their influence on precipitation patterns in Galicia (NW Spain). International Journal of Climatology 28(11): 1493:1505 DOI: 10.1002/joc.1646.

  8. Future weather types and their influence on mean and extreme climate indices for precipitation and temperature in Central Europe

    Directory of Open Access Journals (Sweden)

    Ulf Riediger

    2014-09-01

    Full Text Available In Central Europe, the spatial and temporal distributions of precipitation and temperature are determined by the occurrence of major weather types. In this paper, we examine climate indices (i.e. mean values or hot, cold, wet and dry days for different weather types in a recent (1971–2000 and future climate (2070–2099. The weather types are classified objectively for the control run and for the A1B scenario with an ensemble of eight global climate simulations (GCM to be compared with different reanalyses. To derive climate indices, the high-resolution, regionalized reference dataset HYRAS and an ensemble of nine regional climate simulations (RCM are used. Firstly, the reliability of simulated weather patterns and their climate indices are tested in the control period. The reanalyses circulation climatology can be reproduced well by the GCM ensemble mean. For temperature and precipitation, each climate index is characterized and evaluated in terms of defined weather patterns. The comparison of HYRAS and RCM data show reliable mean temperature values with differences between weather classes by +2$+2$ to -6$-6$ °C during winter (13 to 19 °C in summer. The analysis of observed and simulated precipitation reveal that mean winter precipitation is significantly influenced by the direction of air flow, while in summer, mesoscale atmospheric patterns of cyclonic rotation play a larger role. Secondly, the analysis of potential future changes simulated by the RCM ensemble were able to demonstrate that weather type changes, superior climate trends (such as mean warming and their interaction lead to major changes for precipitation and temperature in Central Europe. While temperature differences between cold and warm weather types are nearly stable over time, the ensemble temperature changes (with a range of +2$+2$ to +4$+4$ °C reinforce warm/hot conditions in the future winter and summer. Milder, wetter winters can be explained by an increased

  9. Decision Making and Risk Evaluation Frameworks for Extreme Space Weather Events

    Science.gov (United States)

    Uritskaya, O.; Robinson, R. M.; Pulkkinen, A. A.

    2017-12-01

    Extreme Space Weather events (ESWE) are in the spotlight nowadays because they can produce a significant impact not only due to their intensity and broad geographical scope, but also because of the widespread levels and the multiple sectors of the economy that could be involved. In the task of evaluation of the ESWE consequences, the most problematic and vulnerable aspect is the determination and calculation of the probability of statistically infrequent events and the subsequent assessment of the economic risks. In this work, we conduct a detailed analysis of the available frameworks of the general Decision-Making Theory in the presence of uncertainty, in the context of their applicability for the numerical estimation of the risks and losses associated with ESWE. The results of our study demonstrate that, unlike the Multiple-criteria decision analysis or Minimax approach to modeling of the possible scenarios for the ESWE effects, which prevail in the literature, the most suitable concept is the Games Against Nature (GAN). It enables an evaluation of every economically relevant aspect of space weather conditions and obtain more detailed results. Choosing the appropriate methods for solving GAN models, i.e. determining the most optimal strategy with a given level of uncertainty, requires estimating the conditional probabilities of Space Weather events for each outcome of possible scenarios of this natural disaster. Due to the specifics of complex natural and economic systems, with which we are dealing in this case, this problem remains unsolved, mainly because of inevitable loss of information at every stage of the decision-making process. The analysis is illustrated by deregulated electricity markets of the USA and Canada, whose power grid systems are known to be perceptive to ESWE. The GAN model is more appropriate in identifying potential risks in economic systems. The proposed approach, when applied to the existing database of Space Weather observations and

  10. The CAULDRON game: Helping decision makers understand extreme weather event attribution

    Science.gov (United States)

    Walton, P.; Otto, F. E. L.

    2014-12-01

    There is a recognition from academics and stakeholders that climate science has a fundamental role to play in the decision making process, but too frequently there is still uncertainty about what, when, how and why to use it. Stakeholders suggest that it is because the science is presented in an inaccessible manner, while academics suggest it is because the stakeholders do not have the scientific knowledge to understand and apply the science appropriately. What is apparent is that stakeholders need support, and that there is an onus on academia to provide it. This support is even more important with recent developments in climate science, such as extreme weather event attribution. We are already seeing the impacts of extreme weather events around the world causing lost of life and damage to property and infrastructure with current research suggesting that these events could become more frequent and more intense. If this is to be the case then a better understanding of the science will be vital in developing robust adaptation and business planning. The use of games, role playing and simulations to aid learning has long been understood in education but less so as a tool to support stakeholder understanding of climate science. Providing a 'safe' space where participants can actively engage with concepts, ideas and often emotions, can lead to deep understanding that is not possible through more passive mechanisms such as papers and web sites. This paper reports on a game that was developed through a collaboration led by the Red Cross/Red Crescent, University of Oxford and University of Reading to help stakeholders understand the role of weather event attribution in the decision making process. The game has already been played successfully at a number of high profile events including COP 19 and the African Climate Conference. It has also been used with students as part of a postgraduate environmental management course. As well as describing the design principles of the

  11. Links between Synoptic Weather Types and Extreme Wet Events in the Arabian Peninsula (1960-2100)

    KAUST Repository

    El Kenawy, Ahmed M.; McCabe, Matthew; Stenchikov, Georgiy L.; Raj, Jerry

    2014-01-01

    In this work, an automated version of the Lamb weather type classification scheme was applied to classify daily weather types in the Arabian Peninsula. The output catalogue included ten basic weather types, which describe the direction and vorticity

  12. Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review

    Science.gov (United States)

    Schmitt, Laetitia H. M.; Graham, Hilary M.; White, Piran C. L.

    2016-01-01

    The frequency and severity of extreme events is expected to increase under climate change. There is a need to understand the economic consequences of human exposure to these extreme events, to underpin decisions on risk reduction. We undertook a scoping review of economic evaluations of the adverse health effects from exposure to weather-related extreme events. We searched PubMed, Embase and Web of Science databases with no restrictions to the type of evaluations. Twenty studies were included, most of which were recently published. Most studies have been undertaken in the U.S. (nine studies) or Asia (seven studies), whereas we found no studies in Africa, Central and Latin America nor the Middle East. Extreme temperatures accounted for more than a third of the pool of studies (seven studies), closely followed by flooding (six studies). No economic study was found on drought. Whilst studies were heterogeneous in terms of objectives and methodology, they clearly indicate that extreme events will become a pressing public health issue with strong welfare and distributional implications. The current body of evidence, however, provides little information to support decisions on the allocation of scarce resources between risk reduction options. In particular, the review highlights a significant lack of research attention to the potential cost-effectiveness of interventions that exploit the capacity of natural ecosystems to reduce our exposure to, or ameliorate the consequences of, extreme events. PMID:27834843

  13. Forecasting severe ice storms using numerical weather prediction: the March 2010 Newfoundland event

    Directory of Open Access Journals (Sweden)

    J. Hosek

    2011-02-01

    Full Text Available The northeast coast of North America is frequently hit by severe ice storms. These freezing rain events can produce large ice accretions that damage structures, frequently power transmission and distribution infrastructure. For this reason, it is highly desirable to model and forecast such icing events, so that the consequent damages can be prevented or mitigated. The case study presented in this paper focuses on the March 2010 ice storm event that took place in eastern Newfoundland. We apply a combination of a numerical weather prediction model and an ice accretion algorithm to simulate a forecast of this event.

    The main goals of this study are to compare the simulated meteorological variables to observations, and to assess the ability of the model to accurately predict the ice accretion load for different forecast horizons. The duration and timing of the freezing rain event that occurred between the night of 4 March and the morning of 6 March was simulated well in all model runs. The total precipitation amounts in the model, however, differed by up to a factor of two from the observations. The accuracy of the model air temperature strongly depended on the forecast horizon, but it was acceptable for all simulation runs. The simulated accretion loads were also compared to the design values for power delivery structures in the region. The results indicated that the simulated values exceeded design criteria in the areas of reported damage and power outages.

  14. Economic Evaluations of the Health Impacts of Weather-Related Extreme Events: A Scoping Review

    Directory of Open Access Journals (Sweden)

    Laetitia H. M. Schmitt

    2016-11-01

    Full Text Available The frequency and severity of extreme events is expected to increase under climate change. There is a need to understand the economic consequences of human exposure to these extreme events, to underpin decisions on risk reduction. We undertook a scoping review of economic evaluations of the adverse health effects from exposure to weather-related extreme events. We searched PubMed, Embase and Web of Science databases with no restrictions to the type of evaluations. Twenty studies were included, most of which were recently published. Most studies have been undertaken in the U.S. (nine studies or Asia (seven studies, whereas we found no studies in Africa, Central and Latin America nor the Middle East. Extreme temperatures accounted for more than a third of the pool of studies (seven studies, closely followed by flooding (six studies. No economic study was found on drought. Whilst studies were heterogeneous in terms of objectives and methodology, they clearly indicate that extreme events will become a pressing public health issue with strong welfare and distributional implications. The current body of evidence, however, provides little information to support decisions on the allocation of scarce resources between risk reduction options. In particular, the review highlights a significant lack of research attention to the potential cost-effectiveness of interventions that exploit the capacity of natural ecosystems to reduce our exposure to, or ameliorate the consequences of, extreme events.

  15. Ionospheric effects during severe space weather events seen in ionospheric service data products

    Science.gov (United States)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  16. The role and production of polar/subtropical jet superpositions in two high-impact weather events over North America

    Science.gov (United States)

    Winters, Andrew C.

    Careful observational work has demonstrated that the tropopause is typically characterized by a three-step pole-to-equator structure, with each break between steps in the tropopause height associated with a jet stream. While the two jet streams, the polar and subtropical jets, typically occupy different latitude bands, their separation can occasionally vanish, resulting in a vertical superposition of the two jets. A cursory examination of a number of historical and recent high-impact weather events over North America and the North Atlantic indicates that superposed jets can be an important component of their evolution. Consequently, this dissertation examines two recent jet superposition cases, the 18--20 December 2009 Mid-Atlantic Blizzard and the 1--3 May 2010 Nashville Flood, in an effort (1) to determine the specific influence that a superposed jet can have on the development of a high-impact weather event and (2) to illuminate the processes that facilitated the production of a superposition in each case. An examination of these cases from a basic-state variable and PV inversion perspective demonstrates that elements of both the remote and local synoptic environment are important to consider while diagnosing the development of a jet superposition. Specifically, the process of jet superposition begins with the remote production of a cyclonic (anticyclonic) tropopause disturbance at high (low) latitudes. The cyclonic circulation typically originates at polar latitudes, while organized tropical convection can encourage the development of an anticyclonic circulation anomaly within the tropical upper-troposphere. The concurrent advection of both anomalies towards middle latitudes subsequently allows their individual circulations to laterally displace the location of the individual tropopause breaks. Once the two circulation anomalies position the polar and subtropical tropopause breaks in close proximity to one another, elements within the local environment, such as

  17. Mitigation Efforts in Rural Communities after Extreme Weather Events - New Insights for Stakeholders

    Directory of Open Access Journals (Sweden)

    Vesela Radovic

    2016-09-01

    Full Text Available Global climate changes are undoubtedly course of the increasing frequency of extreme whether events all over the world. Rural communities belong to the “group of victims” which is greatly jeopardized by consequences of the extreme weather events. Having in mind limited capacities for the preparedness, response and recovery after any kind of emergency it is clear that the rural community mostly needs external help. That is the point of this paper: to make new insights about this important issue, and to discuss: “how to provide adequate help in the rural communities and build adequate adaptive and response capacities”. In many countries agriculture and rural tourism are main economic activities in the rural area and its interruption could be the obstacle for implementation of sustainable development. Various stakeholders omit to be aware of this issue. Emergency agencies and many others have to make the comprehensive plan for rural communities (having in mind all its limitations. In the Republic of Serbia rural communities do not have enough capacity for recovery and usually it takes many years after an event. A minimum of an economic recovery standard has to be created for the rural community. It also has to be a specific contingency plan in the future reorganizations of emergency services in Serbia and at the Western Balkan region. It should be one of the priority issues for stakeholders in the near future in disaster risk reduction. Providing equal access to resources to population in the rural community after the extreme weather event has to be the priority task for policy makers and all actors in emergency management.

  18. Influence of weather factors on population dynamics of two lagomorph species based on hunting bag records

    NARCIS (Netherlands)

    Rödel, H.; Dekker, J.J.A.

    2012-01-01

    Weather conditions can have a significant influence on short-term fluctuations of animal populations. In our study, which is based on time series of hunting bag records of up to 28 years from 26 counties of The Netherlands and Germany, we investigated the impact of different weather variables on

  19. Effect of weather and time on trauma events determined using emergency medical service registry data.

    Science.gov (United States)

    Lin, Li-Wei; Lin, Hsiao-Yu; Hsu, Chien-Yeh; Rau, Hsiao-Hsien; Chen, Ping-Ling

    2015-09-01

    Trauma admissions are associated with weather and temporal factors; however, previous study results regarding these factors are contradictory. We hypothesised that weather and temporal factors have different effects on specific trauma events in an emergency medical service (EMS) system. EMS data from January 1, 2009, to December 31, 2010, were obtained from the fire department of Taipei City and associated with the local weather data. EMS trauma events were categorised into total trauma, traffic accidents (TAs), motorbike accidents (MBAs), and falls. Hourly data on trauma patients were analysed using the zero-inflated Poisson model. The hourly incidence of total trauma increased with the magnitude of precipitation (incidence rate ratio [IRR]=1.06, 1.09, and 1.11 in light, moderate, and heavy rain, respectively), and this effect was more prominent in fall patients than in patients with other injuries (IRR=1.07, 1.21, and 1.32). However, the hourly incidence of TAs and MBAs was associated only with light rain (IRR=1.11 and 1.06, respectively). An hour of sunshine exposure was associated with an increase in the hourly incidence of all groups, and higher temperatures were associated with an increased hourly incidence of total trauma, TAs, and MBAs, but not falls. The hourly incidence of falls increased only in late fall and winter. Compared with the hourly incidence between 3 am and 7 am, the hourly incidence of all groups plateaued between 7 am and 11 pm and declined from 11 pm to 3 am. During the plateau period, 2 peaks in the incidence of TAs (IRR=5.03 and 5.07, respectively) and MBAs (IRR=5.81 and 5.51, respectively) were observed during 7-11 am and 3-7 pm. The hourly incidence of total trauma, TAs, and MBAs plateaued during workdays, peaked on Fridays, declined on Saturdays, and troughed on Sundays. The incidence of falls increased only on Mondays (IRR=1.09). Weather and temporal factors had different impacts on the incidence of traffic-related accidents and falls

  20. Weather influences feed intake and feed efficiency in a temperate climate.

    Science.gov (United States)

    Hill, Davina L; Wall, Eileen

    2017-03-01

    A key goal for livestock science is to ensure that food production meets the needs of an increasing global population. Climate change may heighten this challenge through increases in mean temperatures and in the intensity, duration, and spatial distribution of extreme weather events, such as heat waves. Under high ambient temperatures, livestock are expected to decrease dry matter intake (DMI) to reduce their metabolic heat production. High yielding dairy cows require high DMI to support their levels of milk production, but this may increase susceptibility to heat stress. Here, we tested how feed intake and the rate of converting dry matter to milk (feed efficiency, FE) vary in response to natural fluctuations in weather conditions in a housed experimental herd of lactating Holstein Friesians in the United Kingdom. Cows belonged to 2 lines: those selected for high genetic merit for milk traits (select) and those at the UK average (control). We predicted that (1) feed intake and FE would vary with an index of temperature and humidity (THI), wind speed, and the number of hours of sunshine, and that (2) the effects of (1) would depend on the cows' genetic merit. Animals received a mixed ration, available ad libitum, from automatic feed measurement gates. Using >73,000 daily feed intake and FE records from 328 cows over 8 yr, we found that select cows produced more fat- and protein-corrected milk, and had higher DMI and FE than controls. Cows of both lines decreased DMI and fat- and protein-corrected milk but, importantly, increased FE as THI increased. This suggests that improvements in the efficiency of converting feed to milk may partially offset the costs of reduced milk yield owing to a warmer climate, at least under conditions of mild heat stress. The rate of increase in FE with THI was steeper in select cows than in controls, which raises the possibility that select cows use more effective coping tactics. This is, to our knowledge, the first longitudinal study

  1. Prediction skill of rainstorm events over India in the TIGGE weather prediction models

    Science.gov (United States)

    Karuna Sagar, S.; Rajeevan, M.; Vijaya Bhaskara Rao, S.; Mitra, A. K.

    2017-12-01

    Extreme rainfall events pose a serious threat of leading to severe floods in many countries worldwide. Therefore, advance prediction of its occurrence and spatial distribution is very essential. In this paper, an analysis has been made to assess the skill of numerical weather prediction models in predicting rainstorms over India. Using gridded daily rainfall data set and objective criteria, 15 rainstorms were identified during the monsoon season (June to September). The analysis was made using three TIGGE (THe Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble) models. The models considered are the European Centre for Medium-Range Weather Forecasts (ECMWF), National Centre for Environmental Prediction (NCEP) and the UK Met Office (UKMO). Verification of the TIGGE models for 43 observed rainstorm days from 15 rainstorm events has been made for the period 2007-2015. The comparison reveals that rainstorm events are predictable up to 5 days in advance, however with a bias in spatial distribution and intensity. The statistical parameters like mean error (ME) or Bias, root mean square error (RMSE) and correlation coefficient (CC) have been computed over the rainstorm region using the multi-model ensemble (MME) mean. The study reveals that the spread is large in ECMWF and UKMO followed by the NCEP model. Though the ensemble spread is quite small in NCEP, the ensemble member averages are not well predicted. The rank histograms suggest that the forecasts are under prediction. The modified Contiguous Rain Area (CRA) technique was used to verify the spatial as well as the quantitative skill of the TIGGE models. Overall, the contribution from the displacement and pattern errors to the total RMSE is found to be more in magnitude. The volume error increases from 24 hr forecast to 48 hr forecast in all the three models.

  2. (ajst) the influence of weather on the insurance

    African Journals Online (AJOL)

    excessive rainfall, had a direct impact on the extent of damage on buildings and property. It also became clear ... KEY WORDS Weather Derivatives, Heating degree days, cooling degree days, Fire industrial and ... agricultural, water sectors, and horticultural and tourism ... humidity, precipitation, snow and solar radiation.

  3. Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin

    Science.gov (United States)

    Chawla, Ila; Osuri, Krishna K.; Mujumdar, Pradeep P.; Niyogi, Dev

    2018-02-01

    Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF) model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15-18 June 2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP), two cumulus (CU) parameterizations, two planetary boundary layers (PBLs) and two land surface physics options, as well as different resolutions (grid spacing) within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor-Yamada-Janjic PBL and Betts-Miller-Janjic CU scheme is found to perform best in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance improved through incorporation

  4. Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control

    Science.gov (United States)

    Prikryl, Paul; Bruntz, Robert; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel

    2018-06-01

    Occurrence of severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system is investigated. It is observed that significant snowfall, wind and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur within a few days after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., 2009, 2016) is corroborated for the southern hemisphere. Cases of severe weather events are examined in the context of the magnetosphere-ionosphere-atmosphere (MIA) coupling. Physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., 1990) reveal that propagating waves originating in the lower thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere and initiate convection to form cloud/precipitation bands. It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  5. Web processing service for climate impact and extreme weather event analyses. Flyingpigeon (Version 1.0)

    Science.gov (United States)

    Hempelmann, Nils; Ehbrecht, Carsten; Alvarez-Castro, Carmen; Brockmann, Patrick; Falk, Wolfgang; Hoffmann, Jörg; Kindermann, Stephan; Koziol, Ben; Nangini, Cathy; Radanovics, Sabine; Vautard, Robert; Yiou, Pascal

    2018-01-01

    Analyses of extreme weather events and their impacts often requires big data processing of ensembles of climate model simulations. Researchers generally proceed by downloading the data from the providers and processing the data files ;at home; with their own analysis processes. However, the growing amount of available climate model and observation data makes this procedure quite awkward. In addition, data processing knowledge is kept local, instead of being consolidated into a common resource of reusable code. These drawbacks can be mitigated by using a web processing service (WPS). A WPS hosts services such as data analysis processes that are accessible over the web, and can be installed close to the data archives. We developed a WPS named 'flyingpigeon' that communicates over an HTTP network protocol based on standards defined by the Open Geospatial Consortium (OGC), to be used by climatologists and impact modelers as a tool for analyzing large datasets remotely. Here, we present the current processes we developed in flyingpigeon relating to commonly-used processes (preprocessing steps, spatial subsets at continent, country or region level, and climate indices) as well as methods for specific climate data analysis (weather regimes, analogues of circulation, segetal flora distribution, and species distribution models). We also developed a novel, browser-based interactive data visualization for circulation analogues, illustrating the flexibility of WPS in designing custom outputs. Bringing the software to the data instead of transferring the data to the code is becoming increasingly necessary, especially with the upcoming massive climate datasets.

  6. A twenty-first century California observing network for monitoring extreme weather events

    Science.gov (United States)

    White, A.B.; Anderson, M.L.; Dettinger, M.D.; Ralph, F.M.; Hinojosa, A.; Cayan, D.R.; Hartman, R.K.; Reynolds, D.W.; Johnson, L.E.; Schneider, T.L.; Cifelli, R.; Toth, Z.; Gutman, S.I.; King, C.W.; Gehrke, F.; Johnston, P.E.; Walls, C.; Mann, Dorte; Gottas, D.J.; Coleman, T.

    2013-01-01

    During Northern Hemisphere winters, the West Coast of North America is battered by extratropical storms. The impact of these storms is of paramount concern to California, where aging water supply and flood protection infrastructures are challenged by increased standards for urban flood protection, an unusually variable weather regime, and projections of climate change. Additionally, there are inherent conflicts between releasing water to provide flood protection and storing water to meet requirements for water supply, water quality, hydropower generation, water temperature and flow for at-risk species, and recreation. In order to improve reservoir management and meet the increasing demands on water, improved forecasts of precipitation, especially during extreme events, is required. Here we describe how California is addressing their most important and costliest environmental issue – water management – in part, by installing a state-of-the-art observing system to better track the area’s most severe wintertime storms.

  7. The origin of SEP events: New research collaboration and network on space weather

    Science.gov (United States)

    Miteva, Rositsa; Kashapova, Larisa; Myagkova, Irina; Meshalkina, Nataliia; Petrov, Nikola; Bogomolov, Andrey; Myshyakov, Ivan; Tsvetkov, Tsvetan; Danov, Dimitar; Zdanov, Dmitriy

    2017-11-01

    A new project on the solar energetic particles (SEPs) and their solar origins (flares and coronal mass ejections) is described here. The main aim of this project is to answer the question - whether the SEPs observed in situ are driven by flares, by CMEs or both accelerators contribute to an extent which varies from event to event - by deducing a quantitative measure of the flare vs. CME contribution, duration and efficiency. New observations (SONG/Koronas-F, Relec/Vernov) and new approaches of analysis will be utilized (e.g., magnetic topology of active regions using 3D extrapolation techniques of detailed case studies together with statistical analysis of the phenomena). In addition, the identification of the uncertainty limits of SEP injection, onset time and testing the validity of assumptions often taken for granted (association procedures, solar activity longitudinal effects, correlation analysis, etc.) are planned. The project outcomes have the capacity to contribute to other research fields for improvement of modeling schemes and forecasting methods of space weather events.

  8. Aerosol climatology and planetary boundary influence at the Jungfraujoch analyzed by synoptic weather types

    Directory of Open Access Journals (Sweden)

    M. Collaud Coen

    2011-06-01

    Full Text Available Fourteen years of meteorological parameters, aerosol variables (absorption and scattering coefficients, aerosol number concentration and trace gases (CO, NOx, SO2 measured at the Jungfraujoch (JFJ, 3580 m a.s.l. have been analyzed as a function of different synoptic weather types. The Schüepp synoptic weather type of the Alps (SYNALP classification from the Alpine Weather Statistics (AWS was used to define the synoptic meteorology over the whole Swiss region. The seasonal contribution of each synoptic weather type to the aerosol concentration was deduced from the aerosol annual cycles while the planetary boundary layer (PBL influence was estimated by means of the diurnal cycles. Since aerosols are scavenged by precipitation, the diurnal cycle of the CO concentration was also used to identify polluted air masses. SO2 and NOx concentrations were used as precursor tracers for new particle formation and growth, respectively. The aerosol optical parameters and number concentration show elevated loadings during advective weather types during the December–March period and for the convective anticyclonic and convective indifferent weather types during the April–September period. This study confirms the consensus view that the JFJ is mainly influenced by the free troposphere during winter and by injection of air parcels from the PBL during summer. A more detailed picture is, however, drawn where the JFJ is completely influenced by free tropospheric air masses in winter during advective weather types and largely influenced by the PBL also during the night in summer during the subsidence weather type. Between these two extreme situations, the PBL influence at the JFJ depends on both the time of year and the synoptic weather type. The fraction of PBL air transported to the JFJ was estimated by the relative increase of the specific humidity and CO.

  9. Influence of Ionospheric Weather on GNSS Radio Occultation Signals

    Science.gov (United States)

    Yue, X.; Schreiner, W. S.; Pedatella, N. M.; Kuo, Y. H.

    2016-12-01

    Transient loss of lock (LOL) is one of the key space weather effects on the Global Navigation Satellite System (GNSS). Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) Global Positioning System (GPS) radio occultation (RO) observations during 2007-2011, we have analyzed the signal cycle slip (CS) occurrence comprehensively and its correlation to the ionospheric weather phenomena such as sporadic E (Es), equatorial F region irregularity (EFI), and the ionospheric equatorial ionization anomaly (EIA). The high vertical resolution of RO observations enables us to distinguish the CS resulting from different ionospheric layers clearly on a global scale. In the E layer, the CS is dominated by the Es occurrence, while in the F layer, the CS is mainly related to the EIA and EFI at low and equatorial latitudes. In the polar region, the CS is primarily related to polar cap electron density gradients. The overall average CS (> 6 cycles) occurrence is 23% per occultation, with the E (50-150 km) and F (150-600 km) layers contributing 8.3% and 14.7%, respectively. Awareness of the effect of the ionospheric weather on the CS of the low-Earth-orbit (LEO)-based GNSS signal could be beneficial to a variety of applications, including the LEO-based GNSS data processing and the corresponding hardware/firmware design.

  10. Water-Borne Diseases and Extreme Weather Events in Cambodia: Review of Impacts and Implications of Climate Change

    Directory of Open Access Journals (Sweden)

    Grace I. Davies

    2014-12-01

    Full Text Available Cambodia is prone to extreme weather events, especially floods, droughts and typhoons. Climate change is predicted to increase the frequency and intensity of such events. The Cambodian population is highly vulnerable to the impacts of these events due to poverty; malnutrition; agricultural dependence; settlements in flood-prone areas, and public health, governance and technological limitations. Yet little is known about the health impacts of extreme weather events in Cambodia. Given the extremely low adaptive capacity of the population, this is a crucial knowledge gap. A literature review of the health impacts of floods, droughts and typhoons in Cambodia was conducted, with regional and global information reviewed where Cambodia-specific literature was lacking. Water-borne diseases are of particular concern in Cambodia, in the face of extreme weather events and climate change, due to, inter alia, a high pre-existing burden of diseases such as diarrhoeal illness and a lack of improved sanitation infrastructure in rural areas. A time-series analysis under quasi-Poisson distribution was used to evaluate the association between floods and diarrhoeal disease incidence in Cambodian children between 2001 and 2012 in 16 Cambodian provinces. Floods were significantly associated with increased diarrhoeal disease in two provinces, while the analysis conducted suggested a possible protective effect from toilets and piped water. Addressing the specific, local pre-existing vulnerabilities is vital to promoting population health resilience and strengthening adaptive capacity to extreme weather events and climate change in Cambodia.

  11. Water-borne diseases and extreme weather events in Cambodia: review of impacts and implications of climate change.

    Science.gov (United States)

    Davies, Grace I; McIver, Lachlan; Kim, Yoonhee; Hashizume, Masahiro; Iddings, Steven; Chan, Vibol

    2014-12-23

    Cambodia is prone to extreme weather events, especially floods, droughts and typhoons. Climate change is predicted to increase the frequency and intensity of such events. The Cambodian population is highly vulnerable to the impacts of these events due to poverty; malnutrition; agricultural dependence; settlements in flood-prone areas, and public health, governance and technological limitations. Yet little is known about the health impacts of extreme weather events in Cambodia. Given the extremely low adaptive capacity of the population, this is a crucial knowledge gap. A literature review of the health impacts of floods, droughts and typhoons in Cambodia was conducted, with regional and global information reviewed where Cambodia-specific literature was lacking. Water-borne diseases are of particular concern in Cambodia, in the face of extreme weather events and climate change, due to, inter alia, a high pre-existing burden of diseases such as diarrhoeal illness and a lack of improved sanitation infrastructure in rural areas. A time-series analysis under quasi-Poisson distribution was used to evaluate the association between floods and diarrhoeal disease incidence in Cambodian children between 2001 and 2012 in 16 Cambodian provinces. Floods were significantly associated with increased diarrhoeal disease in two provinces, while the analysis conducted suggested a possible protective effect from toilets and piped water. Addressing the specific, local pre-existing vulnerabilities is vital to promoting population health resilience and strengthening adaptive capacity to extreme weather events and climate change in Cambodia.

  12. Impacts from urban water systems on receiving waters - How to account for severe wet-weather events in LCA?

    Science.gov (United States)

    Risch, Eva; Gasperi, Johnny; Gromaire, Marie-Christine; Chebbo, Ghassan; Azimi, Sam; Rocher, Vincent; Roux, Philippe; Rosenbaum, Ralph K; Sinfort, Carole

    2018-01-01

    Sewage systems are a vital part of the urban infrastructure in most cities. They provide drainage, which protects public health, prevents the flooding of property and protects the water environment around urban areas. On some occasions sewers will overflow into the water environment during heavy rain potentially causing unacceptable impacts from releases of untreated sewage into the environment. In typical Life Cycle Assessment (LCA) studies of urban wastewater systems (UWS), average dry-weather conditions are modelled while wet-weather flows from UWS, presenting a high temporal variability, are not currently accounted for. In this context, the loads from several storm events could be important contributors to the impact categories freshwater eutrophication and ecotoxicity. In this study we investigated the contributions of these wet-weather-induced discharges relative to average dry-weather conditions in the life cycle inventory for UWS. In collaboration with the Paris public sanitation service (SIAAP) and Observatory of Urban Pollutants (OPUR) program researchers, this work aimed at identifying and comparing contributing flows from the UWS in the Paris area by a selection of routine wastewater parameters and priority pollutants. This collected data is organized according to archetypal weather days during a reference year. Then, for each archetypal weather day and its associated flows to the receiving river waters (Seine), the parameters of pollutant loads (statistical distribution of concentrations and volumes) were determined. The resulting inventory flows (i.e. the potential loads from the UWS) were used as LCA input data to assess the associated impacts. This allowed investigating the relative importance of episodic wet-weather versus "continuous" dry-weather loads with a probabilistic approach to account for pollutant variability within the urban flows. The analysis at the scale of one year showed that storm events are significant contributors to the impacts

  13. Landslides in West Coast Metropolitan Areas: The Role of Extreme Weather Events

    Science.gov (United States)

    Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia B.

    2016-01-01

    Rainfall-induced landslides represent a pervasive issue in areas where extreme rainfall intersects complex terrain. A farsighted management of landslide risk requires assessing how landslide hazard will change in coming decades and thus requires, inter alia, that we understand what rainfall events are most likely to trigger landslides and how global warming will affect the frequency of such weather events. We take advantage of 9 years of landslide occurrence data compiled by collating Google news reports and of a high-resolution satellite-based daily rainfall data to investigate what weather triggers landslide along the West Coast US. We show that, while this landslide compilation cannot provide consistent and widespread monitoring everywhere, it captures enough of the events in the major urban areas that it can be used to identify the relevant relationships between landslides and rainfall events in Puget Sound, the Bay Area, and greater Los Angeles. In all these regions, days that recorded landslides have rainfall distributions that are skewed away from dry and low-rainfall accumulations and towards heavy intensities. However, large daily accumulation is the main driver of enhanced hazard of landslides only in Puget Sound. There, landslide are often clustered in space and time and major events are primarily driven by synoptic scale variability, namely "atmospheric rivers" of high humidity air hitting anywhere along the West Coast, and the interaction of frontal system with the coastal orography. The relationship between landslide occurrences and daily rainfall is less robust in California, where antecedent precipitation (in the case of the Bay area) and the peak intensity of localized downpours at sub-daily time scales (in the case of Los Angeles) are key factors not captured by the same-day accumulations. Accordingly, we suggest that the assessment of future changes in landslide hazard for the entire the West Coast requires consideration of future changes in the

  14. Predictability of extreme weather events for NE U.S.: improvement of the numerical prediction using a Bayesian regression approach

    Science.gov (United States)

    Yang, J.; Astitha, M.; Anagnostou, E. N.; Hartman, B.; Kallos, G. B.

    2015-12-01

    Weather prediction accuracy has become very important for the Northeast U.S. given the devastating effects of extreme weather events in the recent years. Weather forecasting systems are used towards building strategies to prevent catastrophic losses for human lives and the environment. Concurrently, weather forecast tools and techniques have evolved with improved forecast skill as numerical prediction techniques are strengthened by increased super-computing resources. In this study, we examine the combination of two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) by utilizing a Bayesian regression approach to improve the prediction of extreme weather events for NE U.S. The basic concept behind the Bayesian regression approach is to take advantage of the strengths of two atmospheric modeling systems and, similar to the multi-model ensemble approach, limit their weaknesses which are related to systematic and random errors in the numerical prediction of physical processes. The first part of this study is focused on retrospective simulations of seventeen storms that affected the region in the period 2004-2013. Optimal variances are estimated by minimizing the root mean square error and are applied to out-of-sample weather events. The applicability and usefulness of this approach are demonstrated by conducting an error analysis based on in-situ observations from meteorological stations of the National Weather Service (NWS) for wind speed and wind direction, and NCEP Stage IV radar data, mosaicked from the regional multi-sensor for precipitation. The preliminary results indicate a significant improvement in the statistical metrics of the modeled-observed pairs for meteorological variables using various combinations of the sixteen events as predictors of the seventeenth. This presentation will illustrate the implemented methodology and the obtained results for wind speed, wind direction and precipitation, as well as set the research steps that will be

  15. No evidence of the effect of extreme weather events on annual occurrence of four groups of ectothermic species.

    Directory of Open Access Journals (Sweden)

    Agnieszka H Malinowska

    Full Text Available Weather extremes may have strong effects on biodiversity, as known from theoretical and modelling studies. Predicted negative effects of increased weather variation are found only for a few species, mostly plants and birds in empirical studies. Therefore, we investigated correlations between weather variability and patterns in occupancy, local colonisations and local extinctions (metapopulation metrics across four groups of ectotherms: Odonata, Orthoptera, Lepidoptera, and Reptilia. We analysed data of 134 species on a 1×1 km-grid base, collected in the last 20 years from the Netherlands, combining standardised data and opportunistic data. We applied dynamic site-occupancy models and used the results as input for analyses of (i trends in distribution patterns, (ii the effect of temperature on colonisation and persistence probability, and (iii the effect of years with extreme weather on all the three metapopulation metrics. All groups, except butterflies, showed more positive than negative trends in metapopulation metrics. We did not find evidence that the probability of colonisation or persistence increases with temperature nor that extreme weather events are reflected in higher extinction risks. We could not prove that weather extremes have visible and consistent negative effects on ectothermic species in temperate northern hemisphere. These findings do not confirm the general prediction that increased weather variability imperils biodiversity. We conclude that weather extremes might not be ecologically relevant for the majority of species. Populations might be buffered against weather variation (e.g. by habitat heterogeneity, or other factors might be masking the effects (e.g. availability and quality of habitat. Consequently, we postulate that weather extremes have less, or different, impact in real world metapopulations than theory and models suggest.

  16. Insurance as an adaptation strategy for extreme weather events indeveloping countries and economies in transition

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2004-06-30

    The insurance industry can play a material role indecreasing the vulnerability of developing countries and economies intransition to weather-related natural disasters while simultaneouslysupporting both its own market-based objectives and the objectives ofsustainable development. Although insurance is not a "silver bullet" forthe problems posed by natural disasters in emerging markets,public-private partnerships can enhance insurance's ability to spread therisks and manage the costs of weather-related disasters as well as toincrease the pool of people who have access to coverage. (For simplicityin this report, the phrase "emerging markets" is intended to encompassdeveloping countries and economies in transition.) Promising strategiesfor emerging markets involve establishing innovative products and systemsfor delivering insurance and using technologies and practices that bothreduce vulnerability to disaster-related insurance losses and supportsustainable development (including reducing greenhouse gas emissions).These strategies can enhance sustainable development efforts and increasethe insurability of risks, making insurance markets in emerging marketsmore viable. Emerging markets are especially vulnerable to extremeweather events, which impede development by causing physical damage,compromising human and ecosystem health, diverting scarce resources todisaster relief and recovery, and deterring future investment andinsurance availability by amplifying the risks faced by foreigninterests. An average of 300 million people are affected or killed eachyear by weather-related disasters in emerging markets. Characteristics ofemerging markets contributing to their particular vulnerability incontrast to developed nations include: greater frequency of poverty;weaker lifelines (transportation, communication, utilities, emergencyresponse, and hospitals); poorer quality of construction and absence ofor deficiencies in building codes and other regulations; and

  17. A methodology to leverage cross-sectional accelerometry to capture weather's influence in active living research.

    Science.gov (United States)

    Katapally, Tarun R; Rainham, Daniel; Muhajarine, Nazeem

    2016-06-27

    While active living interventions focus on modifying urban design and built environment, weather variation, a phenomenon that perennially interacts with these environmental factors, is consistently underexplored. This study's objective is to develop a methodology to link weather data with existing cross-sectional accelerometry data in capturing weather variation. Saskatoon's neighbourhoods were classified into grid-pattern, fractured grid-pattern and curvilinear neighbourhoods. Thereafter, 137 Actical accelerometers were used to derive moderate to vigorous physical activity (MVPA) and sedentary behaviour (SB) data from 455 children in 25 sequential one-week cycles between April and June, 2010. This sequential deployment was necessary to overcome the difference in the ratio between the sample size and the number of accelerometers. A data linkage methodology was developed, where each accelerometry cycle was matched with localized (Saskatoon-specific) weather patterns derived from Environment Canada. Statistical analyses were conducted to depict the influence of urban design on MVPA and SB after factoring in localized weather patterns. Integration of cross-sectional accelerometry with localized weather patterns allowed the capture of weather variation during a single seasonal transition. Overall, during the transition from spring to summer in Saskatoon, MVPA increased and SB decreased during warmer days. After factoring in localized weather, a recurring observation was that children residing in fractured grid-pattern neighbourhoods accumulated significantly lower MVPA and higher SB. The proposed methodology could be utilized to link globally available cross-sectional accelerometry data with place-specific weather data to understand how built and social environmental factors interact with varying weather patterns in influencing active living.

  18. Does the weather influence public opinion about climate change?

    Science.gov (United States)

    Donner, S. D.; McDaniel, J.

    2010-12-01

    Public opinion in North America about the science of anthropogenic climate change and the motivation for policy action has been variable over the past twenty years. The trends in public opinion over time have been attributed the general lack of pressing public concern about climate change to a range of political, economic and psychological factors. One driving force behind the variability in polling data from year to year may be the weather itself. The difference between what we “expect” - the climate - and what we “get” - the weather - can be a major source of confusion and obfuscation in the public discourse about climate change. For example, reaction to moderate global temperatures in 2007 and 2008 may have helped prompt the spread of a “global cooling” meme in the public and the news media. At the same time, a decrease in the belief in the science of climate change and the need for action has been noted in opinion polls. This study analyzes the relationship between public opinion about climate change and the weather in the U.S. since the mid-1980s using historical polling data from several major organizations (e.g. Gallup, Pew, Harris Interactive, ABC News), historical monthly air temperature (NCDC) and a survey of opinion articles from major U.S. newspapers (Washington Post, New York Times, Wall Street Journal, Houston Chronicle, USA Today). Seasonal and annual monthly temperature anomalies for the northeastern U.S and the continental U.S are compared with available national opinion data for three general categories of questions: i) Is the climate warming?, ii) Is the observed warming due to human activity?, and iii) Are you concerned about climate change? The variability in temperature and public opinion over time is also compared with the variability in the fraction of opinion articles in the newspapers (n ~ 7000) which express general agreement or disagreement with IPCC Summary for Policymakers consensus statements on climate change (“most of

  19. Oxidative Weathering of Archean Sulfides: Implications for the Great Oxidation Event

    Science.gov (United States)

    Johnson, A.; Romaniello, S. J.; Reinhard, C.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2015-12-01

    The first widely accepted evidence for oxidation of Earth's atmosphere and oceans occurs ~2.45 Ga immediately prior to the Great Oxidation Event (GOE). A major line of evidence for this transition includes the abundances and isotopic variations of redox-sensitive transition metals in marine sediments (e.g., Fe, Mo, Re, Cr, and U). It is often assumed that oxidative weathering is required to liberate these redox-sensitive elements from sulfide minerals in the crust, and hence that their presence in early Archean marine sediments signifies that oxidative weathering was stimulated by small and/or transient "whiffs" of O2 in the environment.1 However, studies of crustal sulfide reactivity have not been conducted at O2 concentrations as low as those that would have prevailed when O2 began its rise during the late Archean (estimated at molybdenite oxidation kinetics at the nanomolar O2 concentrations that are relevant to late Archean environments. These measurements were made using recently developed, highly sensitive optical O2 sensors to monitor the rates at which the powdered minerals consumed dissolved O2 in a range of pH-buffered solutions.3Our data extend the range of experimental pyrite oxidation rates in the literature by three orders of magnitude from ~10-3 present atmospheric O2 to ~10-6. We find that molybdenite and pyrite oxidation continues to <1 nM O2 (4 x 10-6 present atmospheric O2). This implies that oxidative weathering of sulfides could occur under conditions which preserve MIF S fractionation. Furthermore, our results indicate that the rate law and reaction order of pyrite oxidation kinetics change significantly at nanomolar concentrations of O2 when compared to previous compilations.2 Our results provide new empirical data that should allow for more precise quantitative constraints on atmospheric pO2 based on the sedimentary rock record. 1Anbar, A.D. et al., 2007. Science, 317, i. 5846: 1903-1906. 2Williamson & Rimstidt, 1994. Geochim. et Cosmochim

  20. Communicating and managing change during extreme weather events: promising practices for responding to urgent and emergent climate threats.

    Science.gov (United States)

    Tinker, Tim L

    2013-01-01

    Large-scale weather events in the USA such as hurricanes Sandy, Isaac and Katrina challenge traditional approaches to change communication and management (CCM) before during and after crises. A major challenge (as well as opportunity) is addressing change from the 'whole-community' perspective affecting a spectrum of people, policies, processes, behaviours and outcomes. When CCM is used effectively, one of its fundamental advantages is creating a sense of urgency. This paper looks at optimising communication during extreme weather events, engaging stakeholders, harnessing the power of social media and change, and correlating organisational and individual behaviours and actions. The strategic blend of change management and crisis communication strategies and tactics in CCM is a central feature in the response to the full range of extreme weather scenarios.

  1. Spatial analysis and modeling to assess and map current vulnerability to extreme weather events in the Grijalva - Usumacinta watershed, Mexico

    International Nuclear Information System (INIS)

    Lopez L, D

    2009-01-01

    One of the major concerns over a potential change in climate is that it will cause an increase in extreme weather events. In Mexico, the exposure factors as well as the vulnerability to the extreme weather events have increased during the last three or four decades. In this study spatial analysis and modeling were used to assess and map settlement and crop systems vulnerability to extreme weather events in the Grijalva - Usumacinta watershed. Sensitivity and coping adaptive capacity maps were constructed using decision models; these maps were then combined to produce vulnerability maps. The most vulnerable area in terms of both settlement and crop systems is the highlands, where the sensitivity is high and the adaptive capacity is low. In lowlands, despite the very high sensitivity, the higher adaptive capacity produces only moderate vulnerability. I conclude that spatial analysis and modeling are powerful tools to assess and map vulnerability. These preliminary results can guide the formulation of adaptation policies to an increasing risk of extreme weather events.

  2. Spatial analysis and modeling to assess and map current vulnerability to extreme weather events in the Grijalva - Usumacinta watershed, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez L, D, E-mail: dlopez@centrogeo.org.m [Centro de Investigacion en GeografIa y Geomatica, Ing. Jorge L. Tamayo A.C., Contoy 137, col. Lomas de Padierna, del Tlalpan, Maxico D.F (Mexico)

    2009-11-01

    One of the major concerns over a potential change in climate is that it will cause an increase in extreme weather events. In Mexico, the exposure factors as well as the vulnerability to the extreme weather events have increased during the last three or four decades. In this study spatial analysis and modeling were used to assess and map settlement and crop systems vulnerability to extreme weather events in the Grijalva - Usumacinta watershed. Sensitivity and coping adaptive capacity maps were constructed using decision models; these maps were then combined to produce vulnerability maps. The most vulnerable area in terms of both settlement and crop systems is the highlands, where the sensitivity is high and the adaptive capacity is low. In lowlands, despite the very high sensitivity, the higher adaptive capacity produces only moderate vulnerability. I conclude that spatial analysis and modeling are powerful tools to assess and map vulnerability. These preliminary results can guide the formulation of adaptation policies to an increasing risk of extreme weather events.

  3. Simulation of Flash-Flood-Producing Storm Events in Saudi Arabia Using the Weather Research and Forecasting Model

    KAUST Repository

    Deng, Liping; McCabe, Matthew; Stenchikov, Georgiy L.; Evans, Jason P.; Kucera, Paul A.

    2015-01-01

    The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite

  4. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    Science.gov (United States)

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-05-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation.

  5. A Novel Ice Storm Experiment for Evaluating the Ecological Impacts of These Extreme Weather Events

    Science.gov (United States)

    Driscoll, C. T.; Campbell, J. L.; Rustad, L.; Fahey, T.; Fahey, R. T.; Garlick, S.; Groffman, P.; Hawley, G. J.; Schaberg, P. G.

    2017-12-01

    Ice storms are among the most destructive natural disturbances in some regions of the world, and are an example of an extreme weather event that can profoundly disrupt ecosystem function. Despite potential dire consequences of ice storms on ecosystems and society, we are poorly positioned to predict responses because severe ice storms are infrequent and understudied. Since it is difficult to determine when and where ice storms will occur, most previous research has consisted of ad hoc attempts to characterize impacts in the wake of major icing events. To evaluate ice storm effects in a more controlled manner, we conducted a novel ice storm manipulation experiment at the Hubbard Brook Experimental Forest in New Hampshire. Water was sprayed above the forest canopy in sub-freezing conditions to simulate a glaze ice event. Treatments included replicate plots that received three levels of radial ice thickness (6, 13, and 19 mm) and reference plots that were not sprayed. Additionally, two of the mid-level treatment plots received ice applications in back-to-back years to evaluate effects associated with ice storm frequency. Measures of the forest canopy, including hemispherical photography, photosynthetically active radiation, and ground-based LiDAR, indicated that the ice loads clearly damaged vegetation and opened up the canopy, allowing more light to penetrate. These changes in the canopy were reflected in measurements of fine and coarse woody debris that were commensurate with the level of icing. Soil respiration declined in the most heavily damaged plots, which we attribute to changes in root activity. Although soil solution nitrogen showed clear seasonal patterns, there was no treatment response. These results differ from the severe regional natural ice storm of 1998, which caused large leaching losses of nitrate in soil solutions and stream water during the growing season after the event, due to lack of uptake by damaged vegetation. It is not yet clear why there

  6. The Impact of Extreme Weather Events on Dissolved Organic Matter and Microbial Biomass of chernozem soils

    Science.gov (United States)

    Müller, Ann-Christin; Blagodatskaya, Evgenia

    2017-04-01

    The aim of this experiment was to study the impact of the extreme weather events freezing-thawing and drying-rewetting on C-, N- and P-dynamics in dissolved organic matter and microbial biomass. The three variants of a chernozem soil (Voronezh region, Russia) are (1) fertilized maize cropping, (2) unfertilized maize cropping and (3) a bare fallow. After both abiotic perturbations the respiration rates were generally lower in the freezing-thawing than in the drying-rewetting treatment, due to the lower temperature. The elevated respiration came along with the decay of organic matter, which was also manifested in increased mineralization of C, N and P immediately after rewetting. However, freezing-thawing had significantly less impact on C-, N- and P-mobilization. We conclude that drying-rewetting leads to an initially increased mobilization of C, N and P, which becomes obvious as increased amounts of DOM immediately after rewetting. Freezing-thawing does not affect mobilization in the same way. There, only an increased mobilization of C can be observed. Especially concerning N and P, the reaction is dependent on the form of use/cropping in both treatments.

  7. Synergistic effects of an extreme weather event and habitat fragmentation on a specialised insect herbivore.

    Science.gov (United States)

    Piessens, Katrien; Adriaens, Dries; Jacquemyn, Hans; Honnay, Olivier

    2009-02-01

    Habitat fragmentation is considered to be one of the main causes of population decline and species extinction worldwide. Furthermore, habitat fragmentation can decrease the ability of populations to resist and to recover from environmental disturbances such as extreme weather events, which are expected to occur at an increasing rate as a result of climate change. In this study, we investigated how calcareous grassland fragmentation affected the impact of the climatically extreme summer of 2003 on egg deposition rates, population size variation and survival of the blue butterfly Cupido minimus, a specialist herbivore of Anthyllis vulneraria. Immediately after the 2003 summer heat wave, populations of the host plant declined in size; this was paralleled with decreases in population size of the herbivore and altered egg deposition rates. In 2006 at the end of the monitoring period, however, most A. vulneraria populations had recovered and only one population went extinct. In contrast, several butterfly populations had gone extinct between 2003 and 2006. Extinction probability was significantly related to initial population size, with small populations having a higher risk of extinction than large populations. These results support the prediction that species of higher trophic levels are more susceptible to extinction due to habitat fragmentation and severe disturbances.

  8. Decision-support tools for Extreme Weather and Climate Events in the Northeast United States

    Science.gov (United States)

    Kumar, S.; Lowery, M.; Whelchel, A.

    2013-12-01

    Decision-support tools were assessed for the 2013 National Climate Assessment technical input document, "Climate Change in the Northeast, A Sourcebook". The assessment included tools designed to generate and deliver actionable information to assist states and highly populated urban and other communities in assessment of climate change vulnerability and risk, quantification of effects, and identification of adaptive strategies in the context of adaptation planning across inter-annual, seasonal and multi-decadal time scales. State-level adaptation planning in the Northeast has generally relied on qualitative vulnerability assessments by expert panels and stakeholders, although some states have undertaken initiatives to develop statewide databases to support vulnerability assessments by urban and local governments, and state agencies. The devastation caused by Superstorm Sandy in October 2012 has raised awareness of the potential for extreme weather events to unprecedented levels and created urgency for action, especially in coastal urban and suburban communities that experienced pronounced impacts - especially in New Jersey, New York and Connecticut. Planning approaches vary, but any adaptation and resiliency planning process must include the following: - Knowledge of the probable change in a climate variable (e.g., precipitation, temperature, sea-level rise) over time or that the climate variable will attain a certain threshold deemed to be significant; - Knowledge of intensity and frequency of climate hazards (past, current or future events or conditions with potential to cause harm) and their relationship with climate variables; - Assessment of climate vulnerabilities (sensitive resources, infrastructure or populations exposed to climate-related hazards); - Assessment of relative risks to vulnerable resources; - Identification and prioritization of adaptive strategies to address risks. Many organizations are developing decision-support tools to assist in the urban

  9. Identifying biologically meaningful hot-weather events using threshold temperatures that affect life-history.

    Directory of Open Access Journals (Sweden)

    Susan J Cunningham

    Full Text Available Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (T(thresh above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using T(thresh values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (T(thresh = 35.5 °C and the common fiscal Lanius collaris (T(thresh = 33 °C. We used these T(thresh values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > T(thresh, in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the T(thresh technique as a conservation tool.

  10. Extreme weather events in southern Germany - Climatological risk and development of a large-scale identification procedure

    Science.gov (United States)

    Matthies, A.; Leckebusch, G. C.; Rohlfing, G.; Ulbrich, U.

    2009-04-01

    Extreme weather events such as thunderstorms, hail and heavy rain or snowfall can pose a threat to human life and to considerable tangible assets. Yet there is a lack of knowledge about present day climatological risk and its economic effects, and its changes due to rising greenhouse gas concentrations. Therefore, parts of economy particularly sensitve to extreme weather events such as insurance companies and airports require regional risk-analyses, early warning and prediction systems to cope with such events. Such an attempt is made for southern Germany, in close cooperation with stakeholders. Comparing ERA40 and station data with impact records of Munich Re and Munich Airport, the 90th percentile was found to be a suitable threshold for extreme impact relevant precipitation events. Different methods for the classification of causing synoptic situations have been tested on ERA40 reanalyses. An objective scheme for the classification of Lamb's circulation weather types (CWT's) has proved to be most suitable for correct classification of the large-scale flow conditions. Certain CWT's have been turned out to be prone to heavy precipitation or on the other side to have a very low risk of such events. Other large-scale parameters are tested in connection with CWT's to find out a combination that has the highest skill to identify extreme precipitation events in climate model data (ECHAM5 and CLM). For example vorticity advection in 700 hPa shows good results, but assumes knowledge of regional orographic particularities. Therefore ongoing work is focused on additional testing of parameters that indicate deviations of a basic state of the atmosphere like the Eady Growth Rate or the newly developed Dynamic State Index. Evaluation results will be used to estimate the skill of the regional climate model CLM concerning the simulation of frequency and intensity of the extreme weather events. Data of the A1B scenario (2000-2050) will be examined for a possible climate change

  11. The influence of weather on the thermal performance of solar heating systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    . The investigation is based on calculations with validated models. Solar heating systems with different solar collector types, heat storage volumes and solar fractions are included in the investigation. The yearly solar radiation varies with approximately 20 % in the period from 1990 until 2002. The calculations......The influence of weather on the thermal performance of solar combi systems, solar domestic hot water systems and solar heating plants is investigated. The investigation is based on weather data from the Danish Design Reference Year, DRY and weather data measured for a period from 1990 until 2002...... show that the thermal performance of the investigated systems varies due to the weather variation. The variation of the yearly thermal performance of a solar heating plant is about 40 % while the variation of the yearly thermal performance of a solar domestic hot water system is about 30...

  12. Investigating Subjective Experience and the Influence of Weather Among Individuals With Fibromyalgia: A Content Analysis of Twitter.

    Science.gov (United States)

    Delir Haghighi, Pari; Kang, Yong-Bin; Buchbinder, Rachelle; Burstein, Frada; Whittle, Samuel

    2017-01-19

    Little is understood about the determinants of symptom expression in individuals with fibromyalgia syndrome (FMS). While individuals with FMS often report environmental influences, including weather events, on their symptom severity, a consistent effect of specific weather conditions on FMS symptoms has yet to be demonstrated. Content analysis of a large number of messages by individuals with FMS on Twitter can provide valuable insights into variation in the fibromyalgia experience from a first-person perspective. The objective of our study was to use content analysis of tweets to investigate the association between weather conditions and fibromyalgia symptoms among individuals who tweet about fibromyalgia. Our second objective was to gain insight into how Twitter is used as a form of communication and expression by individuals with fibromyalgia and to explore and uncover thematic clusters and communities related to weather. Computerized sentiment analysis was performed to measure the association between negative sentiment scores (indicative of severe symptoms such as pain) and coincident environmental variables. Date, time, and location data for each individual tweet were used to identify corresponding climate data (such as temperature). We used graph analysis to investigate the frequency and distribution of domain-related terms exchanged in Twitter and their association strengths. A community detection algorithm was applied to partition the graph and detect different communities. We analyzed 140,432 tweets related to fibromyalgia from 2008 to 2014. There was a very weak positive correlation between humidity and negative sentiment scores (r=.009, P=.001). There was no significant correlation between other environmental variables and negative sentiment scores. The graph analysis showed that "pain" and "chronicpain" were the most frequently used terms. The Louvain method identified 6 communities. Community 1 was related to feelings and symptoms at the time

  13. Space Weather Influence on the Earth wheat markets: past, present, and future.

    Science.gov (United States)

    Pustil'Nik, Lev

    We consider problem of a possible influence of unfavorable states of the space weather on agriculture market through chain of connections: "space weather"-"earth weather"-"agriculture crops"-"price reaction". We show that new manifestations of "space weather"-"earth weather" relations discovered in the last time allow to revise wide field of expected solar-terrestrial connections. In the previous works we proposed possible mechanisms of wheat market reaction in the form of price bursts on the specific unfavorable states of space weather. We show that implementation of considered "price reaction scenarios" is possible only for condition of simultaneous realization of several necessary conditions: high sensitivity of local earth weather in selected region to space weather; state of "high risk agriculture" in selected agriculture zone; high sensitivity of agricultural market to possible deficit of supply. Results of previous works (I, II) included application of this approach to wheat market in Medieval England and to modern USA durum market showed that real connection between wheat price bursts and space weather state is observed with high confidence level. The aim of present work is answer on the question, why wheat markets in one region are sensitive to space weather factor, while another regional wheat markets demonstrate absolute indifferent reaction on this factor. For this aim we consider distribution of sensitivity of wheat markets in Europe to space weather as function of localization in different climatic zones. We analyze giant database of 95 European wheat markets from 14 countries during about 600-year period (1260-1912). We show that observed sensitivity of wheat market to space weather effects controlled, first of all, by type of predominant climate in different zones of agriculture. Wheat markets in the North and part of Central Europe (England, Iceland, Holland) shows reliable sensitivity to space weather in minimum states of solar activity with low

  14. Influence of local calibration on the quality of online wet weather discharge monitoring: feedback from five international case studies.

    Science.gov (United States)

    Caradot, Nicolas; Sonnenberg, Hauke; Rouault, Pascale; Gruber, Günter; Hofer, Thomas; Torres, Andres; Pesci, Maria; Bertrand-Krajewski, Jean-Luc

    2015-01-01

    This paper reports about experiences gathered from five online monitoring campaigns in the sewer systems of Berlin (Germany), Graz (Austria), Lyon (France) and Bogota (Colombia) using ultraviolet-visible (UV-VIS) spectrometers and turbidimeters. Online probes are useful for the measurement of highly dynamic processes, e.g. combined sewer overflows (CSO), storm events, and river impacts. The influence of local calibration on the quality of online chemical oxygen demand (COD) measurements of wet weather discharges has been assessed. Results underline the need to establish local calibration functions for both UV-VIS spectrometers and turbidimeters. It is suggested that practitioners calibrate locally their probes using at least 15-20 samples. However, these samples should be collected over several events and cover most of the natural variability of the measured concentration. For this reason, the use of automatic peristaltic samplers in parallel to online monitoring is recommended with short representative sampling campaigns during wet weather discharges. Using reliable calibration functions, COD loads of CSO and storm events can be estimated with a relative uncertainty of approximately 20%. If no local calibration is established, concentrations and loads are estimated with a high error rate, questioning the reliability and meaning of the online measurement. Similar results have been obtained for total suspended solids measurements.

  15. The influence of weather on Golden Eagle migration in northwestern Montana

    Science.gov (United States)

    Yates, R.E.; McClelland, B.R.; Mcclelland, P.T.; Key, C.H.; Bennetts, R.E.

    2001-01-01

    We analyzed the influence of 17 weather factors on migrating Golden Eagles (Aquila chrysaetos) near the Continental Divide in Glacier National Park, Montana, U.S.A. Local weather measurements were recorded at automated stations on the flanks of two peaks within the migration path. During a total of 506 hr of observation, the yearly number of Golden Eagles in autumn counts (1994-96) averaged 1973; spring counts (1995 and 1996) averaged 605 eagles. Mean passage rates (eagles/hr) were 16.5 in autumn and 8.2 in spring. Maximum rates were 137 in autumn and 67 in spring. Using generalized linear modeling, we tested for the effects of weather factors on the number of eagles counted. In the autumn model, the number of eagles increased with increasing air temperature, rising barometric pressure, decreasing relative humidity, and interactions among those factors. In the spring model, the number of eagles increased with increasing wind speed, barometric pressure, and the interaction between these factors. Our data suggest that a complex interaction among weather factors influenced the number of eagles passing on a given day. We hypothesize that in complex landscapes with high topographic relief, such as Glacier National Park, numerous weather factors produce different daily combinations to which migrating eagles respond opportunistically. ?? 2001 The Raptor Research Foundation, Inc.

  16. Damaging events along roads during bad weather periods: a case study in Calabria (Italy

    Directory of Open Access Journals (Sweden)

    O. Petrucci

    2012-02-01

    Full Text Available The study focuses on circumstances that affect people during periods of bad weather conditions characterised by winds, rainfall, landslides, flooding, and storm surges. A methodological approach and its application to a study area in southern Italy are presented here. A 10-yr database was generated by mining data from a newspaper. Damaging agents were sorted into five types: flood, urban flooding, landslide, wind, and storm surge. Damage to people occurred in 126 cases, causing 13 victims, 129 injured and about 782 people involved but not injured.

    For cases of floods, urban flooding and landslides, the analysis does not highlight straightforward relationships between rainfall and damage to people, even if the events showed different features according to the months of occurrence. The events occurring between May and October were characterised by concentrated and intense rainfall, and between May and July, the highest values of hourly (103 mm on the average and monthly rainfall (114 mm on the average were recorded. Urban flooding and flash floods were the most common damaging agents: injured, involved people and more rarely, cases with victims were reported.

    Between November and April, the highest number of events was recorded. Rainfall presented longer durations and hourly and sub-hourly rainfall were lower than those recorded between May and October. Landslides were the most frequent damaging agents but the highest number of cases with victims, which occurred between November and January, were mainly related to floods and urban flooding.

    Motorists represent the totality of the victims; 84% of the people were injured and the whole of people involved. All victims were men, and the average age was 43 yr. The primary cause of death was drowning caused by floods, and the second was trauma suffered in car accidents caused by urban flooding. The high number of motorists rescued in submerged cars reveals an underestimation of

  17. Damaging events along roads during bad weather periods: a case study in Calabria (Italy)

    Science.gov (United States)

    Petrucci, O.; Pasqua, A. A.

    2012-02-01

    The study focuses on circumstances that affect people during periods of bad weather conditions characterised by winds, rainfall, landslides, flooding, and storm surges. A methodological approach and its application to a study area in southern Italy are presented here. A 10-yr database was generated by mining data from a newspaper. Damaging agents were sorted into five types: flood, urban flooding, landslide, wind, and storm surge. Damage to people occurred in 126 cases, causing 13 victims, 129 injured and about 782 people involved but not injured. For cases of floods, urban flooding and landslides, the analysis does not highlight straightforward relationships between rainfall and damage to people, even if the events showed different features according to the months of occurrence. The events occurring between May and October were characterised by concentrated and intense rainfall, and between May and July, the highest values of hourly (103 mm on the average) and monthly rainfall (114 mm on the average) were recorded. Urban flooding and flash floods were the most common damaging agents: injured, involved people and more rarely, cases with victims were reported. Between November and April, the highest number of events was recorded. Rainfall presented longer durations and hourly and sub-hourly rainfall were lower than those recorded between May and October. Landslides were the most frequent damaging agents but the highest number of cases with victims, which occurred between November and January, were mainly related to floods and urban flooding. Motorists represent the totality of the victims; 84% of the people were injured and the whole of people involved. All victims were men, and the average age was 43 yr. The primary cause of death was drowning caused by floods, and the second was trauma suffered in car accidents caused by urban flooding. The high number of motorists rescued in submerged cars reveals an underestimation of danger in the case of floods, often

  18. The Effect of Weather Events on Truck Traffic Patterns Using Fixed and Mobile Traffic Sensors

    Science.gov (United States)

    2017-12-20

    Connected vehicle applications related to road weather management and enabling systems are being designed to collect and take advantage of connected vehicle data and information transmissions to increase situational awareness, improve roadway levels ...

  19. Vulnerability and adaptation to severe weather events in the American southwest

    Directory of Open Access Journals (Sweden)

    Riccardo Boero

    2015-06-01

    In conclusion, our findings suggest that determinants of economic growth support lower vulnerability to the weather and increase options for financing adaptation and recovery policies, but also that only some communities are likely to benefit from those processes.

  20. Learning from today's extreme weather events to increase our resilience to climate change

    Science.gov (United States)

    Ruin, I.; Lutoff, C.; Borga, M.; Creutin, J.-D.; Anquetin, S.; Gruntfest, E.; Scolobig, A.

    2009-04-01

    reflecting individuals and community responses to the crisis. Most of the time this information is hard to gather as no methodology has been developed for it. Social impacts of extreme weather event are related by public media during and shortly after the event. The impacts are documented by public agencies such as rescue services, medical care facilities, insurance companies in the limit of their respective missions and of their means. It appears during exceptional crises, the reporting, routinely done by these institutions, is made very difficult because the pace of rescue operations is too great (for example, almost 3000 people were rescued in one night during the September 2002 event). Social consequences are also partially summarized in the framework of official investigations led by state institutions after the crisis (see, for instance the report of Huet et al. (2003) in French). All in all, the resulting information appears to be fragmented and too heterogeneous to be used for statistical analysis and for monitoring long-term evolution of social vulnerability and adaptive capacity. The behavioral data collection is only possible in the framework of an organized partnership between scientists from different disciplines and operational services as national and European civil protection structures. An opportunity for settling this type of collaboration maybe find through existing structures as research observatories like the "Cévennes-Vivarais Mediterranean Hydrometeorological Observatory" (OHM-CV) located in Southern France and the "North-eastern Italy Hydrometeorological Observatory", located in NE Italy. These natural observatories stem from a research initiative aiming to understand intense Mediterranean storms that lead to devastating flash floods. A primary objective is to bring together the skills of meteorologists and hydrologists, model designers and experimentalists, researchers and practitioners to cope with these events that are so difficult to predict

  1. Space Weather Influence on the Earth Climate: Possible Manifestations in Wheat Markets Reaction

    Science.gov (United States)

    Pustilnik, Lev; Yom Din, Gregory; Zagnetko, Alexander

    We consider problem of a possible influence of unfavorable states of the space weather on agri-culture market through chain of connections: "space weather"-"earth weather"-"agriculture crops"-"price reaction". We show that new manifestations of "space weather"-"earth weather" relations discovered in the last time allow to revise wide field of expected solar-terrestrial con-nections. In the previous works we proposed possible mechanisms of wheat market reaction in the form of price bursts on the specific unfavorable states of space weather. We show that implementation of considered "price reaction scenarios" is possible only for condition of simul-taneous realization of several necessary conditions: high sensitivity of local earth weather in selected region to space weather; state of "high risk agriculture" in selected agriculture zone; high sensitivity of agricultural market to possible deficit of supply. Results of previous works included application of this approach to wheat market in Medieval England and to modern USA durum market showed that real connection between wheat price bursts and space weather state is observed with high confidence level. The aim of present work is answer on the ques-tion, why wheat markets in one region are sensitive to space weather factor, while another regional wheat markets demonstrate absolute indifferent reaction on this factor. For this aim we consider distribution of sensitivity of wheat markets in Europe to space weather as function of localization in different climatic zones. We analyze giant database of 95 European wheat markets from 14 countries during about 600-year period (1260-1912). We show that observed sensitivity of wheat market to space weather effects controlled, first of all, by type of predomi-nant climate in different zones of agriculture. Wheat markets in the North and part of Central Europe (England, Iceland, Holland) shows reliable sensitivity to space weather in minimum states of solar activity with low

  2. Chance Events in Career Development: Influence, Control and Multiplicity

    Science.gov (United States)

    Bright, Jim E. H.; Pryor, Robert G. L.; Chan, Eva Wing Man; Rijanto, Jeniyanti

    2009-01-01

    This article reports three studies on the nature and impact of chance events. The first study investigated chance events in terms of the dimensions of influence and control. The second and third studies investigated the effects of multiplicity of chance events on career development are in terms of respondents' own careers and then in terms of…

  3. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    Science.gov (United States)

    Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-12-04

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.

  4. A classification of event sequences in the influence network

    Science.gov (United States)

    Walsh, James Lyons; Knuth, Kevin H.

    2017-06-01

    We build on the classification in [1] of event sequences in the influence network as respecting collinearity or not, so as to determine in future work what phenomena arise in each case. Collinearity enables each observer to uniquely associate each particle event of influencing with one of the observer's own events, even in the case of events of influencing the other observer. We further classify events as to whether they are spacetime events that obey in the fine-grained case the coarse-grained conditions of [2], finding that Newton's First and Second Laws of motion are obeyed at spacetime events. A proof of Newton's Third Law under particular circumstances is also presented.

  5. Short-Range prediction of a Mediterranean Severe weather event using EnKF: Configuration tests

    Science.gov (United States)

    Carrio Carrio, Diego Saul; Homar Santaner, Víctor

    2014-05-01

    The afternoon of 4th October 2007, severe damaging winds and torrential rainfall affected the Island of Mallorca. This storm produced F2-F3 tornadoes in the vicinity of Palma, with one person killed and estimated damages to property exceeding 10 M€. Several studies have analysed the meteorological context in which this episode unfolded, describing the formation of a train of multiple thunderstorms along a warm front and the evolution of a squall line organized from convective activity initiated offshore Murcia during that morning. Couhet et al. (2011) attributed the correct simulation of the convective system and particularly its organization as a squall line to the correct representation of a convergence line at low-levels over the Alboran Sea during the first hours of the day. The numerical prediction of mesoscale phenomena which initiates, organizes and evolves over the sea is an extremely demanding challenge of great importance for coastal regions. In this study, we investigate the skill of a mesoscale ensemble data assimilation system to predict the severe phenomena occurred on 4th October 2007. We use an Ensemble Kalman Filter which assimilates conventional (surface, radiosonde and AMDAR) data using the DART implementation from (NCAR). On the one hand, we analyse the potential of the assimilation cycle to advect critical observational data towards decisive data-void areas over the sea. Furthermore, we assess the sensitivity of the ensemble products to the ensemble size, grid resolution, assimilation period and physics diversity in the mesoscale model. In particular, we focus on the effect of these numerical configurations on the representation of the convective activity and the precipitation field, as valuable predictands of high impact weather. Results show that the 6-h EnKF assimilation period produces initial fields that successfully represent the environment in which initiation occurred and thus the derived numerical predictions render improved

  6. Equatorial secondary cosmic ray observatory to study space weather and terrestrial events

    Science.gov (United States)

    Vichare, Geeta; Bhaskar, Ankush; Datar, Gauri; Raghav, Anil; Nair, K. U.; Selvaraj, C.; Ananthi, M.; Sinha, A. K.; Paranjape, M.; Gawade, T.; Anil Kumar, C. P.; Panneerselvam, C.; Sathishkumar, S.; Gurubaran, S.

    2018-05-01

    Recently, equatorial secondary cosmic ray observatory has been established at Equatorial Geophysical Research Laboratory (EGRL), Tirunelveli, (Geographic Coordinates: 8.71°N, 77.76°E), to study secondary cosmic rays (SCR) produced due to the interaction of primary cosmic rays with the Earth's atmosphere. EGRL is a regional center of Indian Institute of Geomagnetism (IIG), located near the equator in the Southern part of India. Two NaI(Tl) scintillation detectors are installed inside the temperature controlled environment. One detector is cylindrical in shape of size 7.62 cm × 7.62 cm and another one is rectangular cuboid of 10.16 cm × 10.16 cm × 40.64 cm size. Besides NaI(Tl) detectors, various other research facilities such as the Geomagnetic observatory, Medium Frequency Radar System, Digital Ionosonde, All-sky airglow imager, Atmospheric electricity laboratory to measure the near-Earth atmospheric electric fields are also available at EGRL. With the accessibility of multi- instrument facilities, the objective is set to understand the relationship between SCR and various atmospheric and ionospheric processes, during space weather and terrestrial events. For gamma-ray spectroscopy, it is important to test the performance of the NaI(Tl) scintillation detectors and to calibrate the gamma-ray spectrum in terms of energy. The present article describes the details of the experimental setup installed near the equator to study cosmic rays, along with the performance testing and calibration of the detectors under various conditions. A systematic shift in the gain is observed with varying temperature of the detector system. It is found that the detector's response to the variations in the temperature is not just linear or non-linear type, but it depends on the history of the variation, indicating temperature hysteresis effects on NaI detector and PMT system. This signifies the importance of isothermal environment while studying SCR flux using NaI(Tl) detectors

  7. Designing Resilient and Productive Grasses with Plasticity to Extreme Weather Events

    Science.gov (United States)

    Loka, D.; Humphreys, M.; Gwyn Jones, D.; Scullion, J.; Doonan, J.; Gasior, D.; Harper, J.; Farrell, M.; Kingston-Smith, A.; Dodd, R.; Chadwick, D.; Hill, P.; Robinson, D.; Jones, D.

    2016-12-01

    Grasslands occupy more than 70% of the world's agricultural land and are major providers of healthy feed for livestock and for ecosystem services. Global warming is projected to increase the intensity and frequency of extreme weather events such as drought and flooding and will reduce persistency of currently productive but stress sensitive forage grass varieties, thereby challenging global food security and compromising on their existing ecosystem functionality. New perennial grass varieties, tolerant to the onsets of more than one abiotic stresses, are required in order to achieve sustainable grassland production and function over years under adverse environmental conditions. Identifying and selecting reliable morphological and physiological traits associated with increased resistance to multiple stress conditions is a prerequisite to ensure future grasslands resilience. The objectives of our study were to select from diverse and novel Festulolium (ryegrass spp. x fescue spp. hybrids) grass populations capable of providing optimal combinations of good forage production together with resilience to multiple stresses and to monitor morphological and physiological responses under multiple stress conditions. The grasses were: Festulolium variety Prior (L. perenne x F. pratensis), shown to alter soil structure and hydrology to mitigate run-off and flooding; two advanced breeding populations of diploid L. perenne with genes for drought tolerance derived from the Mediterranean fescue species F. arundinacea and F. glaucescens; two tetraploid hybrid populations involving L. perenne in combination with F. glaucescens and F. mairei (from North Africa), respectively. As controls, Festulolium variety AberNiche and L. perenne variety AberWolf varieties, were used. Treatments consisted of: A) Control; plants maintained at optimum conditions, B) Flood; plants were flooded for 6 weeks followed by a 4-week recovery, C) Drought; plants received limited quantity of water for 12 weeks

  8. Local Climate Experts: The Influence of Local TV Weather Information on Climate Change Perceptions.

    Science.gov (United States)

    Bloodhart, Brittany; Maibach, Edward; Myers, Teresa; Zhao, Xiaoquan

    2015-01-01

    Individuals who identify changes in their local climate are also more likely to report that they have personally experienced global climate change. One way that people may come to recognize that their local climate is changing is through information provided by local TV weather forecasters. Using random digit dialing, 2,000 adult local TV news viewers in Virginia were surveyed to determine whether routine exposure to local TV weather forecasts influences their perceptions of extreme weather in Virginia, and their perceptions about climate change more generally. Results indicate that paying attention to TV weather forecasts is associated with beliefs that extreme weather is becoming more frequent in Virginia, which in turn is associated with stronger beliefs and concerns about climate change. These associations were strongest for individuals who trust their local TV weathercaster as a source of information about climate change, and for those who identify as politically conservative or moderate. The findings add support to the literature suggesting that TV weathercasters can play an important role in educating the public about climate change.

  9. Local Climate Experts: The Influence of Local TV Weather Information on Climate Change Perceptions

    Science.gov (United States)

    Bloodhart, Brittany; Maibach, Edward; Myers, Teresa; Zhao, Xiaoquan

    2015-01-01

    Individuals who identify changes in their local climate are also more likely to report that they have personally experienced global climate change. One way that people may come to recognize that their local climate is changing is through information provided by local TV weather forecasters. Using random digit dialing, 2,000 adult local TV news viewers in Virginia were surveyed to determine whether routine exposure to local TV weather forecasts influences their perceptions of extreme weather in Virginia, and their perceptions about climate change more generally. Results indicate that paying attention to TV weather forecasts is associated with beliefs that extreme weather is becoming more frequent in Virginia, which in turn is associated with stronger beliefs and concerns about climate change. These associations were strongest for individuals who trust their local TV weathercaster as a source of information about climate change, and for those who identify as politically conservative or moderate. The findings add support to the literature suggesting that TV weathercasters can play an important role in educating the public about climate change. PMID:26551357

  10. Impacts of Extreme Hot Weather Events on Electricity Consumption in Baden-Wuerttemberg

    Science.gov (United States)

    Mimler, S.

    2009-04-01

    Changes in electricity consumption due to hot weather events were examined for the German federal state Baden-Württemberg. The analysis consists of three major steps: Firstly, an analysis of the media coverage on the hot summer of 2003 gives direct and indirect information about changes in electricity demand due to changes in consumption patterns. On the one hand there was an overall increase in electricity demand due to the more frequent use of air conditionings, fans, cooling devices and water pumps. On the other hand shifts in electricity consumption took place due to modifications in daily routines: if possible, core working times were scheduled earlier, visitor streams in gastronomy and at events shifted from noon to evening hours, a temporal shifting of purchases took place in early morning or evening hours, and an increased night-activity was documented by a higher number of police operations due to noise disturbances. In a second step, some of the findings of the media analysis were quantified for households in the city region of Karlsruhe. For the chosen electric device groups refrigerators, mini-coolers, air conditionings, fans and electric stoves the difference between the consumption on a hot summer day and a normal summer day was computed. For this purpose, assumptions had to be made on the share of affected households, affected devices or usage patterns. These assumptions were summarized into three scenarios on low, medium and high heat induced changes in electricity consumption. In total, the quantification resulted in a range of about 7.5 to 9.2 % of heat-induced over-consumption related to the average amount of electrical load that is normally provided to Karlsruhe households on a summer's day. A third analysis of summer load curves aimed at testing the following hypotheses derived from the media analysis regarding changes in every-day routines and their effects on shifts in load profiles. To test the hypotheses, correlation tests were applied. (1

  11. Influences of air pollutants on polymeric materials. Natural weathering of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, T.F.R. [Fraunhofer-Institut fuer Chemische Technologie, Pfinztal-Berghausen (Germany)

    1995-12-31

    Polymeric materials are affected during their entire service life by a number of environmental influences. These originate from both man made and natural sources. Such environmental influences include solar radiation, temperature, humidity and air pollutant effects. They all act together, some independently and some synergistically, to influence material properties, as well as functionality, service life, quality and reliability of the poly materials and systems. The main degradation process is chain scission with loss of molecular weight and oxidation, followed by fading of colours and loss of gloss and mechanical strength. Due to the large number of different types of polymers there are many types of degradation processes and it is difficult to generalise about the effects of the environment on organic materials. Materials, as opposed to organisms, have no self-repair mechanism which allows them to tolerate a certain level of stress. In principle, therefore, it is not possible to define critical levels for the effects of pollutants on materials below which no deterioration occurs. Material deterioration by weathering is normally a very slow process lasting some or more years. Therefore attempts have been made to produce deterioration in short-term experiments by using high stress levels. The limits for the high stress levels are given by the comparability of the obtained damage from artificially accelerated weathering with these from real natural weathering. To investigate the damage caused by air pollutants on polymeric materials, samples were natural weathered with some light exposed and some dark stored samples in different climatic and polluted areas of Germany. The weathering stations are closed to the continuously measuring stations for air quality

  12. Influences of air pollutants on polymeric materials. Natural weathering of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, T F.R. [Fraunhofer-Institut fuer Chemische Technologie, Pfinztal-Berghausen (Germany)

    1996-12-31

    Polymeric materials are affected during their entire service life by a number of environmental influences. These originate from both man made and natural sources. Such environmental influences include solar radiation, temperature, humidity and air pollutant effects. They all act together, some independently and some synergistically, to influence material properties, as well as functionality, service life, quality and reliability of the poly materials and systems. The main degradation process is chain scission with loss of molecular weight and oxidation, followed by fading of colours and loss of gloss and mechanical strength. Due to the large number of different types of polymers there are many types of degradation processes and it is difficult to generalise about the effects of the environment on organic materials. Materials, as opposed to organisms, have no self-repair mechanism which allows them to tolerate a certain level of stress. In principle, therefore, it is not possible to define critical levels for the effects of pollutants on materials below which no deterioration occurs. Material deterioration by weathering is normally a very slow process lasting some or more years. Therefore attempts have been made to produce deterioration in short-term experiments by using high stress levels. The limits for the high stress levels are given by the comparability of the obtained damage from artificially accelerated weathering with these from real natural weathering. To investigate the damage caused by air pollutants on polymeric materials, samples were natural weathered with some light exposed and some dark stored samples in different climatic and polluted areas of Germany. The weathering stations are closed to the continuously measuring stations for air quality

  13. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems

    Directory of Open Access Journals (Sweden)

    M. Wik

    2009-04-01

    Full Text Available In this paper, we analyse in detail two famous space weather events; a railway problem on 13–14 July 1982 and a power blackout on 30 October 2003. Both occurred in Sweden during very intensive space weather storms and each of them a few years after the sunspot maximum. This paper provides a description of the conditions on the Sun and in the solar wind leading to the two GIC events on the ground. By applying modelling techniques introduced and developed in our previous paper, we also calculate the horizontal geoelectric field at the Earth's surface in southern Sweden during the two storms as well as GIC flowing in the southern Swedish 400 kV power grid during the event in October 2003. The results from the calculations agree with all measured data available. In the July-1982 storm, the geomagnetic field variation, ΔBx, reached values up to ~2500 nT/min and the geoelectric field reached values in the order of several volts per kilometer. In the October-2003 storm, the geomagnetic field fluctuations were smaller. However, GIC of some hundreds of amperes flowed in the power grid during the October-2003 event. Technological issues related to the railway signalling in July 1982 and to the power network equipment in October 2003 are also discussed.

  14. Effect of severe weather events on the shedding of Shiga toxigenic Escherichia coli in slaughter cattle and phenotype of serogroup O157 isolates.

    Science.gov (United States)

    Stanford, Kim; Reuter, Tim; Bach, Susan J; Chui, Linda; Ma, Angela; Conrad, Cheyenne C; Tostes, Renata; McAllister, Tim A

    2017-09-01

    High-event periods (HEPs) occur sporadically when beef carcasses and meat have episodes of acute contamination with Shiga toxin-producing Escherichia coli (STEC). In this study, severe weather events were investigated as catalysts for HEPs based on PCR and isolate prevalence of seven E. coli serogroups in slaughter cattle feces. Winter ambient temperatures with daily means 10.5oC warmer or 12.3°C colder than seasonal norms (-10.4°C) most altered STEC shedding. Fecal samples yielded increased proportions (P  10 min and one also had strong biofilm-forming potential. However, this isolate lacked eae and stx genes. Severe weather can influence STEC shedding, particularly of O157, and could possibly trigger HEPs. However, our data suggest that it is unlikely for isolates to carry virulence genes and possess phenotypes capable of evading post-harvest microbiological interventions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years.

    Science.gov (United States)

    Ewald, Julie A; Wheatley, Christopher J; Aebischer, Nicholas J; Moreby, Stephen J; Duffield, Simon J; Crick, Humphrey Q P; Morecroft, Michael B

    2015-11-01

    Cereal fields are central to balancing food production and environmental health in the face of climate change. Within them, invertebrates provide key ecosystem services. Using 42 years of monitoring data collected in southern England, we investigated the sensitivity and resilience of invertebrates in cereal fields to extreme weather events and examined the effect of long-term changes in temperature, rainfall and pesticide use on invertebrate abundance. Of the 26 invertebrate groups examined, eleven proved sensitive to extreme weather events. Average abundance increased in hot/dry years and decreased in cold/wet years for Araneae, Cicadellidae, adult Heteroptera, Thysanoptera, Braconidae, Enicmus and Lathridiidae. The average abundance of Delphacidae, Cryptophagidae and Mycetophilidae increased in both hot/dry and cold/wet years relative to other years. The abundance of all 10 groups usually returned to their long-term trend within a year after the extreme event. For five of them, sensitivity to cold/wet events was lowest (translating into higher abundances) at locations with a westerly aspect. Some long-term trends in invertebrate abundance correlated with temperature and rainfall, indicating that climate change may affect them. However, pesticide use was more important in explaining the trends, suggesting that reduced pesticide use would mitigate the effects of climate change. © 2015 John Wiley & Sons Ltd.

  16. The More Extreme Nature of North American Monsoon Precipitation in the Southwestern United States as Revealed by a Historical Climatology of Simulated Severe Weather Events

    KAUST Repository

    Luong, Thang M.; Castro, Christopher L.; Chang, Hsin-I; Lahmers, Timothy; Adams, David K.; Ochoa-Moya, Carlos A.

    2017-01-01

    Long-term changes in North American monsoon (NAM) precipitation intensity in the southwestern United States are evaluated through the use of convective-permitting model simulations of objectively identified severe weather events during

  17. The More Extreme Nature of North American Monsoon Precipitation in the Southwestern United States as Revealed by a Historical Climatology of Simulated Severe Weather Events

    KAUST Repository

    Luong, Thang M.

    2017-07-03

    Long-term changes in North American monsoon (NAM) precipitation intensity in the southwestern United States are evaluated through the use of convective-permitting model simulations of objectively identified severe weather events during

  18. Transportation System Vulnerability and Resilience to Extreme Weather Events and Other Natural Hazards : Final Results of Vulnerability Assessment of National Highway System for All KYTC Districts

    Science.gov (United States)

    2018-05-01

    Recent federal legislation and the Federal Highway Administration (FHWA) have directed state transportation agencies to identify potential vulnerabilities associated with extreme weather events and climate change, develop a risk-based asset managemen...

  19. Defining Population Health Vulnerability Following an Extreme Weather Event in an Urban Pacific Island Environment: Honiara, Solomon Islands

    Science.gov (United States)

    Natuzzi, Eileen S.; Joshua, Cynthia; Shortus, Matthew; Reubin, Reginald; Dalipanda, Tenneth; Ferran, Karen; Aumua, Audrey; Brodine, Stephanie

    2016-01-01

    Extreme weather events are common and increasing in intensity in the southwestern Pacific region. Health impacts from cyclones and tropical storms cause acute injuries and infectious disease outbreaks. Defining population vulnerability to extreme weather events by examining a recent flood in Honiara, Solomon Islands, can help stakeholders and policymakers adapt development to reduce future threats. The acute and subacute health impacts following the April 2014 floods were defined using data obtained from hospitals and clinics, the Ministry of Health and in-country World Health Organization office in Honiara. Geographical information system (GIS) was used to assess morbidity and mortality, and vulnerability of the health system infrastructure and households in Honiara. The April flash floods were responsible for 21 acute deaths, 33 injuries, and a diarrhea outbreak that affected 8,584 people with 10 pediatric deaths. A GIS vulnerability assessment of the location of the health system infrastructure and households relative to rivers and the coastline identified 75% of the health infrastructure and over 29% of Honiara's population as vulnerable to future hydrological events. Honiara, Solomon Islands, is a rapidly growing, highly vulnerable urban Pacific Island environment. Evaluation of the mortality and morbidity from the April 2014 floods as well as the infectious disease outbreaks that followed allows public health specialists and policy makers to understand the health system and populations vulnerability to future shocks. Understanding the negative impacts natural disaster have on people living in urban Pacific environments will help the government as well as development partners in crafting resilient adaptation development. PMID:27091867

  20. Analysis of a severe weather event over Mecca, Kingdom of Saudi Arabia, using observations and high-resolution modelling

    KAUST Repository

    Dasari, Hari Prasad; Attada, Raju; Knio, Omar; Hoteit, Ibrahim

    2017-01-01

    The dynamic and thermodynamic characteristics of a severe weather event that caused heavy wind and rainfall over Mecca, Kingdom of Saudi Arabia, on 11 September 2015 were investigated using available observations and the Weather Research and Forecasting model configured at 1 km resolution. Analysis of surface, upper air observations and model outputs reveals that the event was initiated by synoptic scale conditions that intensified by interaction with the local topography, triggering strong winds and high convective rainfall. The model predicted the observed characteristics of both rainfall and winds well, accurately predicting the maximum wind speed of 20–25 m s−1 that was sustained for about 2 h. A time series analysis of various atmospheric variables suggests a sudden fall in pressure, temperature and outgoing long wave radiation before the development of the storm, followed by a significant increase in wind speed, latent and moisture fluxes and change in wind direction during the mature stage of the storm. The model outputs suggest that the heavy rainfall was induced by a low-level moisture supply from the Red Sea combined with orographic lifting. Latent heat release from microphysical processes increased the vertical velocities in the mid-troposphere, further increasing the low-level convergence that strengthened the event.

  1. A Simple Ensemble Simulation Technique for Assessment of Future Variations in Specific High-Impact Weather Events

    Science.gov (United States)

    Taniguchi, Kenji

    2018-04-01

    To investigate future variations in high-impact weather events, numerous samples are required. For the detailed assessment in a specific region, a high spatial resolution is also required. A simple ensemble simulation technique is proposed in this paper. In the proposed technique, new ensemble members were generated from one basic state vector and two perturbation vectors, which were obtained by lagged average forecasting simulations. Sensitivity experiments with different numbers of ensemble members, different simulation lengths, and different perturbation magnitudes were performed. Experimental application to a global warming study was also implemented for a typhoon event. Ensemble-mean results and ensemble spreads of total precipitation, atmospheric conditions showed similar characteristics across the sensitivity experiments. The frequencies of the maximum total and hourly precipitation also showed similar distributions. These results indicate the robustness of the proposed technique. On the other hand, considerable ensemble spread was found in each ensemble experiment. In addition, the results of the application to a global warming study showed possible variations in the future. These results indicate that the proposed technique is useful for investigating various meteorological phenomena and the impacts of global warming. The results of the ensemble simulations also enable the stochastic evaluation of differences in high-impact weather events. In addition, the impacts of a spectral nudging technique were also examined. The tracks of a typhoon were quite different between cases with and without spectral nudging; however, the ranges of the tracks among ensemble members were comparable. It indicates that spectral nudging does not necessarily suppress ensemble spread.

  2. Analysis of a severe weather event over Mecca, Kingdom of Saudi Arabia, using observations and high-resolution modelling

    KAUST Repository

    Dasari, Hari Prasad

    2017-08-10

    The dynamic and thermodynamic characteristics of a severe weather event that caused heavy wind and rainfall over Mecca, Kingdom of Saudi Arabia, on 11 September 2015 were investigated using available observations and the Weather Research and Forecasting model configured at 1 km resolution. Analysis of surface, upper air observations and model outputs reveals that the event was initiated by synoptic scale conditions that intensified by interaction with the local topography, triggering strong winds and high convective rainfall. The model predicted the observed characteristics of both rainfall and winds well, accurately predicting the maximum wind speed of 20–25 m s−1 that was sustained for about 2 h. A time series analysis of various atmospheric variables suggests a sudden fall in pressure, temperature and outgoing long wave radiation before the development of the storm, followed by a significant increase in wind speed, latent and moisture fluxes and change in wind direction during the mature stage of the storm. The model outputs suggest that the heavy rainfall was induced by a low-level moisture supply from the Red Sea combined with orographic lifting. Latent heat release from microphysical processes increased the vertical velocities in the mid-troposphere, further increasing the low-level convergence that strengthened the event.

  3. Climate change, extreme weather events, air pollution and respiratory health in Europe.

    Science.gov (United States)

    De Sario, M; Katsouyanni, K; Michelozzi, P

    2013-09-01

    Due to climate change and other factors, air pollution patterns are changing in several urbanised areas of the world, with a significant effect on respiratory health both independently and synergistically with weather conditions; climate scenarios show Europe as one of the most vulnerable regions. European studies on heatwave episodes have consistently shown a synergistic effect of air pollution and high temperatures, while the potential weather-air pollution interaction during wildfires and dust storms is unknown. Allergen patterns are also changing in response to climate change, and air pollution can modify the allergenic potential of pollens, especially in the presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known; the health consequences vary from decreases in lung function to allergic diseases, new onset of diseases, exacerbation of chronic respiratory diseases, and premature death. These multidimensional climate-pollution-allergen effects need to be taken into account in estimating both climate and air pollution-related respiratory effects, in order to set up adequate policy and public health actions to face both the current and future climate and pollution challenges.

  4. The influence of weather conditions on road safety : an assessment of the effect of precipitation and temperature.

    NARCIS (Netherlands)

    Bijleveld, F.D. & Churchill, T.

    2009-01-01

    The influence of changes in extreme weather conditions is often identified as a cause of fluctuations in road safety and the resulting numbers of crashes and casualties. This report focuses on an analysis of the aggregate, accumulated effect of weather conditions (precipitation and temperature) on

  5. [Process study on hysteresis of vegetation cover influencing sand-dust events].

    Science.gov (United States)

    Xu, Xing-Kui; Wang, Xiao-Tao; Zhang, Feng

    2009-02-15

    Data analysis from satellite and weather stations during 1982-2000 shows nonlinear relationship between vegetation cover and sand-dust events is present in most part of China. Vegetation cover ratio in summer can impact significantly on the frequency of sand-dust storms from winter to spring in the source regions of sand-dust events. It is not quite clear about the hysteresis that vegetation cover in summer influence sand-dust events during winter and spring. A quasi-geostrophic barotropic model is used under the condition of 3 magnitude of frictional coefficient to investigate the cause of the hysteresis. Wind velocity shows a greatest decline at 90% during 72 h as initial wind velocity is 10 m/s for magnitude of frictional coefficient between atmosphere and water surface, greatest decline at 100% during 18 h for magnitude of frictional coefficient between atmosphere and bare soil and a 100% reduction of wind speed during 1 h for magnitude of frictional coefficient between atmosphere and vegetation cover. Observation and simulation prove that residual root and stem from summervegetation are one of factors to influence sand-dust events happened during winter and spring. Air inhibition from residual root and stem is a most important reason for hysteresis that vegetation cover influence sand-dust events.

  6. Extreme weather events and related disasters in the Philippines, 2004-08: a sign of what climate change will mean?

    Science.gov (United States)

    Yumul, Graciano P; Cruz, Nathaniel A; Servando, Nathaniel T; Dimalanta, Carla B

    2011-04-01

    Being an archipelagic nation, the Philippines is susceptible and vulnerable to the ill-effects of weather-related hazards. Extreme weather events, which include tropical cyclones, monsoon rains and dry spells, have triggered hazards (such as floods and landslides) that have turned into disasters. Financial resources that were meant for development and social services have had to be diverted in response, addressing the destruction caused by calamities that beset different regions of the country. Changing climatic patterns and weather-related occurrences over the past five years (2004-08) may serve as an indicator of what climate change will mean for the country. Early recognition of this possibility and the implementation of appropriate action and measures, through disaster risk management, are important if loss of life and property is to be minimised, if not totally eradicated. This is a matter of urgent concern given the geographical location and geological characteristics of the Philippines. © 2011 The Author(s). Disasters © Overseas Development Institute, 2011.

  7. Using a Six Sigma Fishbone Analysis Approach To Evaluate the Effect of Extreme Weather Events on Salmonella Positives in Young Chicken Slaughter Establishments.

    Science.gov (United States)

    Linville, John W; Schumann, Douglas; Aston, Christopher; Defibaugh-Chavez, Stephanie; Seebohm, Scott; Touhey, Lucy

    2016-12-01

    A six sigma fishbone analysis approach was used to develop a machine learning model in SAS, Version 9.4, by using stepwise linear regression. The model evaluated the effect of a wide variety of variables, including slaughter establishment operational measures, normal (30-year average) weather, and extreme weather events on the rate of Salmonella -positive carcasses in young chicken slaughter establishments. Food Safety and Inspection Service (FSIS) verification carcass sampling data, as well as corresponding data from the National Oceanographic and Atmospheric Administration and the Federal Emergency Management Agency, from September 2011 through April 2015, were included in the model. The results of the modeling show that in addition to basic establishment operations, normal weather patterns, differences from normal and disaster events, including time lag weather and disaster variables, played a role in explaining the Salmonella percent positive that varied by slaughter volume quartile. Findings show that weather and disaster events should be considered as explanatory variables when assessing pathogen-related prevalence analysis or research and slaughter operational controls. The apparent significance of time lag weather variables suggested that at least some of the impact on Salmonella rates occurred after the weather events, which may offer opportunities for FSIS or the poultry industry to implement interventions to mitigate those effects.

  8. Forecasting severe ice storms using numerical weather prediction: the March 2010 Newfoundland event

    OpenAIRE

    J. Hosek; P. Musilek; E. Lozowski; P. Pytlak

    2011-01-01

    The northeast coast of North America is frequently hit by severe ice storms. These freezing rain events can produce large ice accretions that damage structures, frequently power transmission and distribution infrastructure. For this reason, it is highly desirable to model and forecast such icing events, so that the consequent damages can be prevented or mitigated. The case study presented in this paper focuses on the March 2010 ice storm event that took place in eastern Newfoundland. We apply...

  9. A Comparitive Analysis of the Influence of Weather on the Flight Altitudes of Birds.

    Science.gov (United States)

    Shamoun-Baranes, Judy; van Loon, Emiel; van Gasteren, Hans; van Belle, Jelmer; Bouten, Willem; Buurma, Luit

    2006-01-01

    Birds pose a serious risk to flight safety worldwide. A Bird Avoidance Model (BAM) is being developed in the Netherlands to reduce the risk of bird aircraft collisions. In order to develop a temporally and spatially dynamic model of bird densities, data are needed on the flight-altitude distribution of birds and how this is influenced by weather. This study focuses on the dynamics of flight altitudes of several species of birds during local flights over land in relation to meteorological conditions.We measured flight altitudes of several species in the southeastern Netherlands using tracking radar during spring and summer 2000. Representatives of different flight strategy groups included four species: a soaring species (buzzard ), an obligatory aerial forager (swift Apus apus), a flapping and gliding species (blackheaded gull Larus ridibundus), and a flapping species (starling Sturnus vulgaris).Maximum flight altitudes varied among species, during the day and among days. Weather significantly influenced the flight altitudes of all species studied. Factors such as temperature, relative humidity, atmospheric instability, cloud cover, and sea level pressure were related to flight altitudes. Different combinations of factors explained 40% 70% of the variance in maximum flight altitudes. Weather affected flight strategy groups differently. Compared to flapping species, buzzards and swifts showed stronger variations in maximum daily altitude and f lew higher under conditions reflecting stronger thermal convection. The dynamic vertical distributions of birds are important for risk assessment and mitigation measures in flight safety as well as wind turbine studies.

  10. Influence of cirrus clouds on weather and climate processes A global perspective

    Science.gov (United States)

    Liou, K.-N.

    1986-01-01

    Current understanding and knowledge of the composition and structure of cirrus clouds are reviewed and documented in this paper. In addition, the radiative properties of cirrus clouds as they relate to weather and climate processes are described in detail. To place the relevance and importance of cirrus composition, structure and radiative properties into a global perspective, pertinent results derived from simulation experiments utilizing models with varying degrees of complexity are presented; these have been carried out for the investigation of the influence of cirrus clouds on the thermodynamics and dynamics of the atmosphere. In light of these reviews, suggestions are outlined for cirrus-radiation research activities aimed toward the development and improvement of weather and climate models for a physical understanding of cause and effect relationships and for prediction purposes.

  11. Development of heat and drought related extreme weather events and their effect on winter wheat yields in Germany

    Science.gov (United States)

    Lüttger, Andrea B.; Feike, Til

    2018-04-01

    Climate change constitutes a major challenge for high productivity in wheat, the most widely grown crop in Germany. Extreme weather events including dry spells and heat waves, which negatively affect wheat yields, are expected to aggravate in the future. It is crucial to improve the understanding of the spatiotemporal development of such extreme weather events and the respective crop-climate relationships in Germany. Thus, the present study is a first attempt to evaluate the historic development of relevant drought and heat-related extreme weather events from 1901 to 2010 on county level (NUTS-3) in Germany. Three simple drought indices and two simple heat stress indices were used in the analysis. A continuous increase in dry spells over time was observed over the investigated periods from 1901-1930, 1931-1960, 1961-1990 to 2001-2010. Short and medium dry spells, i.e., precipitation-free periods longer than 5 and 8 days, respectively, increased more strongly compared to longer dry spells (longer than 11 days). The heat-related stress indices with maximum temperatures above 25 and 28 °C during critical wheat growth phases showed no significant increase over the first three periods but an especially sharp increase in the final 1991-2010 period with the increases being particularly pronounced in parts of Southwestern Germany. Trend analysis over the entire 110-year period using Mann-Kendall test revealed a significant positive trend for all investigated indices except for heat stress above 25 °C during flowering period. The analysis of county-level yield data from 1981 to 2010 revealed declining spatial yield variability and rather constant temporal yield variability over the three investigated (1981-1990, 1991-2000, and 2001-2010) decades. A clear spatial gradient manifested over time with variability in the West being much smaller than in the east of Germany. Correlating yield variability with the previously analyzed extreme weather indices revealed strong

  12. Projected Changes in Persistent Extreme Warm-Season Weather Events: The Role of Quasi-Resonant Amplification

    Science.gov (United States)

    Mann, M. E.; Rahmstorf, S.; Kornhuber, K.; Steinman, B. A.; Miller, S. K.; Coumou, D.

    2017-12-01

    Persistent episodes of extreme weather in the Northern Hemisphere summer are typically associated with high-amplitude quasi-stationary atmospheric Rossby waves with zonal wavenumbers. Such disturbances are favoured by the phenomenon of Quasi-Resonant Amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally-averaged surface temperature field. Examining future state-of-the-art (CMIP5) climate model projections we find that such events are likely to increase by 50% over the next century under business-as-usual carbon emissions, but there is considerable variation among climate models, with some models predicting a near tripling of QRA events by the end of the century. These results are strongly dependent on assumptions regarding the prominence of changes in radiative forcing associated with anthropogenic aerosols over the next century.

  13. Simulation of Flash-Flood-Producing Storm Events in Saudi Arabia Using the Weather Research and Forecasting Model

    KAUST Repository

    Deng, Liping

    2015-05-01

    The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite, in situ, and reanalysis data. Here, we focus on characterizing the initial synoptic features and examining the impact of model parameterization and resolution on the reproduction of a number of flood-producing rainfall events that occurred over the western Saudi Arabian city of Jeddah. Analysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data suggests that mesoscale convective systems associated with strong moisture convergence ahead of a trough were the major initial features for the occurrence of these intense rain events. The WRF Model was able to simulate the heavy rainfall, with driving convective processes well characterized by a high-resolution cloud-resolving model. The use of higher (1 km vs 5 km) resolution along the Jeddah coastline favors the simulation of local convective systems and adds value to the simulation of heavy rainfall, especially for deep-convection-related extreme values. At the 5-km resolution, corresponding to an intermediate study domain, simulation without a cumulus scheme led to the formation of deeper convective systems and enhanced rainfall around Jeddah, illustrating the need for careful model scheme selection in this transition resolution. In analysis of multiple nested WRF simulations (25, 5, and 1 km), localized volume and intensity of heavy rainfall together with the duration of rainstorms within the Jeddah catchment area were captured reasonably well, although there was evidence of some displacements of rainstorm events.

  14. Life events and hopelessness depression: The influence of affective experience.

    Directory of Open Access Journals (Sweden)

    Lihua Zhou

    Full Text Available This study explored the association of the affective experience (AE of life events on hopelessness depression (HD. Undergraduates (N = 301 participating in a 12-week prospective study completed measures of HD, cognitive style, and psychological stress. The results indicate AE is an underlying mechanism influencing the longitudinal link between life events and HD. Negative life events with clear negative AE directly promoted the development of HD. Positive life events with clear positive AE directly impeded the development of HD. Neutral life events with mixed AE directly and interacting with negative cognitive style promoted the development of HD. The results should increase understanding of the hopelessness theory of depression, and suggest that neutral life events should be important elements in depression therapy.

  15. Spring weather conditions influence breeding phenology and reproductive success in sympatric bat populations.

    Science.gov (United States)

    Linton, Danielle M; Macdonald, David W

    2018-04-10

    Climate is known to influence breeding phenology and reproductive success in temperate-zone bats, but long-term population level studies and interspecific comparisons are rare. Investigating the extent to which intrinsic (i.e. age), and extrinsic (i.e. spring weather conditions), factors influence such key demographic parameters as the proportion of females becoming pregnant, or completing lactation, each breeding season, is vital to understanding of bat population ecology and life-history traits. Using data from 12 breeding seasons (2006-2017), encompassing the reproductive histories of 623 Myotis daubentonii and 436 Myotis nattereri adult females, we compare rates of recruitment to the breeding population and show that these species differ in their relative sensitivity to environmental conditions and climatic variation, affecting annual reproductive success at the population level. We demonstrate that (1) spring weather conditions influence breeding phenology, with warm, dry and calm conditions leading to earlier parturition dates and advanced juvenile development, whilst cold, wet and windy weather delays birth timing and juvenile growth; (2) reproductive rates in first-year females are influenced by spring weather conditions in that breeding season and in the preceding breeding season when each cohort was born. Pregnancy and lactation rates were both higher when favourable spring foraging conditions were more prevalent; (3) reproductive success increases with age in both species, but at different rates; (4) reproductive rates were consistently higher, and showed less interannual variation, in second-year and older M. daubentonii (mean 91.55% ± 0.05 SD) than M. nattereri (mean 72.74% ± 0.15 SD); (5) estimates of reproductive success at the population level were highly correlated with the size of the juvenile cohort recorded each breeding season. Improving understanding of the influence of environmental conditions, especially extreme climatic

  16. Influence of Terrestrial Weathering on the Magnetic Record of a LL Chondrite

    Science.gov (United States)

    Kohout, T.; Kletetschka, G.; Wasilewski, P.

    2001-12-01

    The origin of our solar system may have been accompanied by transient energetic events capable of magnetizing the materials from which the solid bodies in the solar system formed. The magnetic field associated with some of some of these events should have been recorded by the magnetic mineralogy contained within meteorites. To extract this information from meteorites many noise components must be carefully eliminated. The fusion crust has long been established as restricted to a thin layer on the surface of meteorite. Magnetic screening of the fusion crust that relates to Murchison meteorite indicates that during the entry and landing at least 6 mm thick layer is affected by terrestrial TRM acquisition. Many of the meteorite finds have long term residence in the terrestrial oxidized environment. This weathering is the subject of this study. The meteorite in question landed in the Libya stony desert and has obvious surface weathering that can be referred to as desert varnish. The consequent iron oxide mineralization introduced very stable origin of very stable chemical remanent magnetization. The magnetic remanence in fragments without the desert varnish is between 20 - 50 % of the oxidized ones. The orientation of this CRM appears to be random indicating that the sample may have rotated during the long period of aeolian transport and varnish formation. Magnetization of the white matrix samples (20 - 50 % of weathered ones) is thermally more stable and also randomly oriented. The range of NRM/SIRM values for both mineralogies varies between 10-2 and 10-3. Acknowledgements: This work would not be possible without help of following people: Jakub Haloda, Petr Jakes, Marcela Bukovanska, Petr Pruner, Vladimir Kohout, Libuse Kohoutova, Vladimir Kohout, Olga Kohoutova.

  17. Exploring regional stakeholder needs and requirements in terms of Extreme Weather Event Attribution

    Science.gov (United States)

    Schwab, M.; Meinke, I.; Vanderlinden, J. P.; Touili, N.; Von Storch, H.

    2015-12-01

    Extreme event attribution has increasingly received attention in the scientific community. It may also serve decision-making at the regional level where much of the climate change impact mitigation takes place. Nevertheless, there is, to date, little known about the requirements of regional actors in terms of extreme event attribution. We have therefore analysed these at the example of regional decision-makers for climate change-related activities and/or concerned with storm surge risks at the German Baltic Sea and heat wave risks in the Greater Paris area. In order to explore if stakeholders find scientific knowledge from extreme event attribution useful and how this information might be relevant to their decision-making, we consulted a diverse set of actors engaged in the assessment, mitigation and communication of storm surge, heat wave, and climate change-related risks. Extreme event attribution knowledge was perceived to be most useful to public and political awareness-raising, but was of little or no relevance for the consulted stakeholders themselves. It was not acknowledged that it would support adaptation planning as sometimes argued in the literature. The consulted coastal protection, health, and urban adaptation planners rather needed reliable statements about possible future changes in extreme events than causal statements about past events. To enhance salience, a suitable product of event attribution should be linked to regional problems, vulnerabilities, and impacts of climate change. Given that the tolerance of uncertainty is rather low, most of the stakeholders also claimed that a suitable product of event attribution is to be received from a trusted "honest broker" and published rather later, but with smaller uncertainties than vice versa. Institutional mechanisms, like regional climate services, which enable and foster communication, translation and mediation across the boundaries between knowledge and action can help fulfill such requirements

  18. A real-time assessment of factors influencing medication events.

    Science.gov (United States)

    Dollarhide, Adrian W; Rutledge, Thomas; Weinger, Matthew B; Fisher, Erin Stucky; Jain, Sonia; Wolfson, Tanya; Dresselhaus, Timothy R

    2014-01-01

    Reducing medical error is critical to improving the safety and quality of healthcare. Physician stress, fatigue, and excessive workload are performance-shaping factors (PSFs) that may influence medical events (actual administration errors and near misses), but direct relationships between these factors and patient safety have not been clearly defined. This study assessed the real-time influence of emotional stress, workload, and sleep deprivation on self-reported medication events by physicians in academic hospitals. During an 18-month study period, 185 physician participants working at four university-affiliated teaching hospitals reported medication events using a confidential reporting application on handheld computers. Emotional stress scores, perceived workload, patient case volume, clinical experience, total sleep, and demographic variables were also captured via the handheld computers. Medication event reports (n = 11) were then correlated with these demographic and PSFs. Medication events were associated with 36.1% higher perceived workload (p sleep (p = .10). These results confirm the effect of factors influencing medication events, and support attention to both provider and hospital environmental characteristics for improving patient safety. © 2013 National Association for Healthcare Quality.

  19. Hydrogeological hazards and weather events: Triggering and evolution of shallow landslides

    Directory of Open Access Journals (Sweden)

    Salvatore Monteleone

    2014-06-01

    The complex nature of these instability events that affect anthropized areas does not allow specific approaches for the defence of single good, but it finds a more effective solution based on the extensive knowledge of territory, perhaps at the scale of individual or several watersheds.

  20. Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events.

    Science.gov (United States)

    Tinsley, Richard C; Stott, Lucy C; Viney, Mark E; Mable, Barbara K; Tinsley, Matthew C

    Invasive, non-native species represent a major threat to biodiversity worldwide. The African amphibian Xenopus laevis is widely regarded as an invasive species and a threat to local faunas. Populations originating at the Western Cape, South Africa, have been introduced on four continents, mostly in areas with a similar Mediterranean climate. Some introduced populations are also established in cooler environments where persistence for many decades suggests a capacity for long-term adaptation. In these cases, recent climate warming might enhance invasion ability, favouring range expansion, population growth and negative effects on native faunas. In the cool temperate UK, populations have been established for about 50 years in Wales and for an unknown period, probably >20 years, in England (Lincolnshire). Our field studies over 30 and 10 years, respectively, show that in favourable conditions there may be good recruitment, fast individual growth rates and large body size; maximum longevity exceeds 23 years. Nevertheless, areas of distribution remained limited, with numbers extinct. The winters of 2009-2010 and 2010-2011 experienced extreme cold and drought (December 2010 was the coldest in 120 years and the third driest in 100 years). The extinction of X. laevis in these areas indicates that even relatively long-established alien species remain vulnerable to rare extreme weather conditions.

  1. Developmental phenotypic plasticity helps bridge stochastic weather events associated with climate change.

    Science.gov (United States)

    Burggren, Warren

    2018-05-10

    The slow, inexorable rise in annual average global temperatures and acidification of the oceans are often advanced as consequences of global change. However, many environmental changes, especially those involving weather (as opposed to climate), are often stochastic, variable and extreme, particularly in temperate terrestrial or freshwater habitats. Moreover, few studies of animal and plant phenotypic plasticity employ realistic (i.e. short-term, stochastic) environmental change in their protocols. Here, I posit that the frequently abrupt environmental changes (days, weeks, months) accompanying much longer-term general climate change (e.g. global warming over decades or centuries) require consideration of the true nature of environmental change (as opposed to statistical means) coupled with an expansion of focus to consider developmental phenotypic plasticity. Such plasticity can be in multiple forms - obligatory/facultative, beneficial/deleterious - depending upon the degree and rate of environmental variability at specific points in organismal development. Essentially, adult phenotypic plasticity, as important as it is, will be irrelevant if developing offspring lack sufficient plasticity to create modified phenotypes necessary for survival. © 2018. Published by The Company of Biologists Ltd.

  2. Weather model performance on extreme rainfall events simulation's over Western Iberian Peninsula

    Science.gov (United States)

    Pereira, S. C.; Carvalho, A. C.; Ferreira, J.; Nunes, J. P.; Kaiser, J. J.; Rocha, A.

    2012-08-01

    This study evaluates the performance of the WRF-ARW numerical weather model in simulating the spatial and temporal patterns of an extreme rainfall period over a complex orographic region in north-central Portugal. The analysis was performed for the December month of 2009, during the Portugal Mainland rainy season. The heavy rainfall to extreme heavy rainfall periods were due to several low surface pressure's systems associated with frontal surfaces. The total amount of precipitation for December exceeded, in average, the climatological mean for the 1971-2000 time period in +89 mm, varying from 190 mm (south part of the country) to 1175 mm (north part of the country). Three model runs were conducted to assess possible improvements in model performance: (1) the WRF-ARW is forced with the initial fields from a global domain model (RunRef); (2) data assimilation for a specific location (RunObsN) is included; (3) nudging is used to adjust the analysis field (RunGridN). Model performance was evaluated against an observed hourly precipitation dataset of 15 rainfall stations using several statistical parameters. The WRF-ARW model reproduced well the temporal rainfall patterns but tended to overestimate precipitation amounts. The RunGridN simulation provided the best results but model performance of the other two runs was good too, so that the selected extreme rainfall episode was successfully reproduced.

  3. Influence of weather variables and plant communities on grasshopper density in the Southern Pampas, Argentina.

    Science.gov (United States)

    de Wysiecki, María Laura; Arturi, Marcelo; Torrusio, Sandra; Cigliano, María Marta

    2011-01-01

    A study was conducted to evaluate the influence of weather (precipitation and temperature) and plant communities on grasshopper density over a 14-year period (1996-2009) in Benito Juárez County, Southern Pampas, Argentina. Total density strongly varied among plant communities. Highest values were registered in 2001 and 2003 in highly disturbed pastures and in 2002 and 2009 in halophilous grasslands. Native grasslands had the lowest density values. Seasonal precipitation and temperature had no significant effect on total grasshopper density. Dichroplus elongatus (Giglio-Tos) (Orthoptera: Acridoidea), Covasacris pallidinota (Bruner), Dichroplus pratensis Bruner, Scotussa lemniscata Stål, Borellia bruneri (Rehn) and Dichroplus maculipennis (Blanchard) comprised, on average, 64% of the grasshopper assemblages during low density years and 79% during high density years. Dichroplus elongatus, S. lemniscata and C. pallidinota were the most abundant species in 2001, 2002 and 2003, while D. elongatus, B. brunneri and C. pallidinota in 2009. Dichroplus elongatus and D. pratensis, mixed feeders species, were positively affected by summer rainfall. This suggests that the increase in summer precipitation had a positive effect on the quantity and quality forage production, affecting these grasshopper populations. Scotussa lemniscata and C. pallidinota were negatively affected by winter and fall temperature, possibly affecting the embryonic development before diapause and hatching. Dichroplus elongatus and D. pratensis were associated with highly disturbed pastures, S. lemniscata with pastures and B. bruneri and D. maculipennis with halophilous grasslands. Covasacris pallidinota was closely associated with halophilous grasslands and moderately disturbed pastures. Weather conditions changed over the years, with 2001, 2002 and 2003 having excessive rainfall while 2008 and 2009 were the driest years since the study started. We suggest that although seasonal precipitation and

  4. Simulation of the 23 July 2012 Extreme Space Weather Event: What if This Extremely Rare CME Was Earth Directed?

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Mays, M. Leila; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex

    2013-01-01

    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.

  5. Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system

    International Nuclear Information System (INIS)

    Gao, Y; Fu, J S; Drake, J B; Liu, Y; Lamarque, J-F

    2012-01-01

    This study is the first evaluation of dynamical downscaling using the Weather Research and Forecasting (WRF) Model on a 4 km × 4 km high resolution scale in the eastern US driven by the new Community Earth System Model version 1.0 (CESM v1.0). First we examined the global and regional climate model results, and corrected an inconsistency in skin temperature during the downscaling process by modifying the land/sea mask. In comparison with observations, WRF shows statistically significant improvement over CESM in reproducing extreme weather events, with improvement for heat wave frequency estimation as high as 98%. The fossil fuel intensive scenario Representative Concentration Pathway (RCP) 8.5 was used to study a possible future mid-century climate extreme in 2057–9. Both the heat waves and the extreme precipitation in 2057–9 are more severe than the present climate in the Eastern US. The Northeastern US shows large increases in both heat wave intensity (3.05 °C higher) and annual extreme precipitation (107.3 mm more per year). (letter)

  6. URBAN VULNERABILITY AND ADAPTATION TO EXTREME WEATHER EVENTS: A CASE STUDY OF RAINSTORM VICTIMS IN ILORIN, NIGERIA

    Directory of Open Access Journals (Sweden)

    Usman Raheem

    2013-01-01

    Full Text Available Nigeria is a disaster prone country. The disasters which often result into environmental emergencies like flooding are worsened by the degradation of the country’s environment and natural resources. Floods, rainstorms and droughts affect households each year in Ilorin and contribute to endemic poverty in most parts of Kwara State. Anticipated increases in extreme weather events will exacerbate this. Using data from both primary and secondary sources the study examines the urban vulnerability and adaptation to climate change among flood and rainstorm victims in Ilorin, Nigeria. The primary data include questionnaire administration to victims in the affected areas of the city. The secondary data on the other hand, include data from the Kwara State Emergency Management Agency on flood victims in the State between 2002 and 2007. This study brings out the important issue of vulnerability, coping and adaptation to weather induced disasters among the urban poor. The study revealed that the indigenous coping mechanisms employed by the poor may become less effective as increasingly fragile livelihood systems struggle to withstand disaster shocks. Also, many of these long-term trends are rendering indigenous coping strategies less effective and thus are increasing the vulnerability of the poor.

  7. The influence of the weather on tourist experiences: Analysing travel blog narratives

    NARCIS (Netherlands)

    Jeuring, J.; Peters, K.B.M.

    2013-01-01

    As one of its main resources, weather is an integral part of tourism. Yet little is known about how individual tourists experience the weather and how it affects the subjective perception of their holidays. The weather appears to have a prominent place in language and the use of the weather in

  8. Public health and climate change. The example of extreme weather events

    International Nuclear Information System (INIS)

    Pascal, M.; Pirard, P.; Medina, S.; Viso, A.C.; Caserio-Schonemann, C.; Beaudeau, P.

    2013-01-01

    Climate change may be considered as a key factor for environmental change, exposure to health risks and pathogens, consequently impairing the state of health among populations. Health surveillance Systems can be used 1) to trigger early warning Systems, 2) to create databases which improve scientific knowledge about the health impacts of climate change, 3) to identify and prioritize needs for intervention and adaptation measures, and 4) to evaluate these measures. InVS proposed a method to identify possible health risks and to assess the needs for strengthened health surveillance Systems, taking into account environment, individual and social behaviors, demography and health state. Extreme climate events are illustrated here. These events have short, medium and long term impacts that could be reduced through efficient prevention. To better understand these impacts and orientate prevention, interdisciplinary studies will be needed. (authors)

  9. Conjunction Assessment Late-Notice High-Interest Event Investigation: Space Weather Aspects

    Science.gov (United States)

    Pachura, D.; Hejduk, M. D.

    2016-01-01

    Late-notice events usually driven by large changes in primary (protected) object or secondary object state. Main parameter to represent size of state change is component position difference divided by associated standard deviation (epsilon divided by sigma) from covariance. Investigation determined actual frequency of large state changes, in both individual and combined states. Compared them to theoretically expected frequencies. Found that large changes ( (epsilon divided by sigma) is greater than 3) in individual object states occur much more frequently than theory dictates. Effect is less pronounced in radial components and in events with probability of collision (Pc) greater than 1 (sup -5) (1e-5). Found combined state matched much closer to theoretical expectation, especially for radial and cross-track. In-track is expected to be the most vulnerable to modeling errors, so not surprising that non-compliance largest in this component.

  10. Great SEP events and space weather: 2. Automatic determination of the solar energetic particle spectrum

    Science.gov (United States)

    Applbaum, David; Dorman, Lev; Pustil'Nik, Lev; Sternlieb, Abraham; Zagnetko, Alexander; Zukerman, Igor

    In Applbaum et al. (2010) it was described how the "SEP-Search" program works automat-ically, determining on the basis of on-line one-minute NM data the beginning of a great SEP event. The "SEP-Search" next uses one-minute data in order to check whether or not the observed increase reflects the beginning of a real great SEP event. If yes, the program "SEP-Research/Spectrum" automatically starts to work on line. We consider two variants: 1) quiet period (no change in cut-off rigidity), 2) disturbed period (characterized with possible changing of cut-off rigidity). We describe the method of determining the spectrum of SEP in the 1st vari-ant (for this we need data for at least two components with different coupling functions). For the 2nd variant we need data for at least three components with different coupling functions. We show that for these purposes one can use data of the total intensity and some different mul-tiplicities, but that it is better to use data from two or three NM with different cut-off rigidities. We describe in detail the algorithms of the program "SEP-Research/Spectrum." We show how this program worked on examples of some historical great SEP events. The work of NM on Mt. Hermon is supported by Israel (Tel Aviv University and ISA) -Italian (UNIRoma-Tre and IFSI-CNR) collaboration.

  11. Severe Weather Events over Southeastern Brazil during the 2016 Dry Season

    Directory of Open Access Journals (Sweden)

    Amanda Rehbein

    2018-01-01

    Full Text Available Southeastern Brazil is the most populated and economically developed region of this country. Its climate consists of two distinct seasons: the dry season, extending from April to September, the precipitation is significantly reduced in comparison to that of the wet season, which extends from October to March. However, during nine days of the 2016 dry season, successive convective systems were associated with atypical precipitation events, tornadoes and at least one microburst over the southern part of this region. These events led to flooding, damages to buildings, shortages of electricity and water in several places, many injuries, and two documented deaths. The present study investigates the synoptic and dynamical features related to these anomalous events. The convective systems were embedded in an unstable environment with intense low-level jet flow and strong wind shear and were supported by a sequence of extratropical cyclones occurring over the Southwest Atlantic Ocean. These features were intensified by the Madden–Julian oscillation (MJO in its phase 8 and by intense negative values of the Pacific South America (PSA 2 mode.

  12. Physical activity levels of community-dwelling older adults are influenced by winter weather variables.

    Science.gov (United States)

    Jones, G R; Brandon, C; Gill, D P

    2017-07-01

    Winter weather conditions may negatively influence participation of older adults in daily physical activity (PA). Assess the influence of winter meteorological variables, day-time peak ambient temperature, windchill, humidity, and snow accumulation on the ground to accelerometer measured PA values in older adults. 50 community-dwelling older adults (77.4±4.7yrs; range 71-89; 12 females) living in Southwestern Ontario (Latitude 42.9°N Longitude 81.2° W) Canada, wore a waist-borne accelerometer during active waking hours (12h) for 7 consecutive days between February and April 2007. Hourly temperature, windchill, humidity, and snowfall accumulation were obtained from meteorological records and time locked to hourly accelerometer PA values. Regression analysis revealed significant relationships between time of day, ambient daytime high temperature and a humidity for participation in PA. Windchill temperature added no additional influence over PA acclamation already influenced by ambient day-time temperature and the observed variability in PA patterns relative to snow accumulation over the study period was too great to warrant its inclusion in the model. Most PA was completed in the morning hours and increased as the winter month's transitioned to spring (February through April). An equation was developed to adjust for winter weather conditions using temperature, humidity and time of day. Accurate PA assessment during the winter months must account for the ambient daytime high temperatures, humidity, and time of day. These older adults were more physically active during the morning hours and became more active as the winter season transitioned to spring. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Environmental processes and parameters influencing the consequences of an accidental release of radioactivity weather and season

    International Nuclear Information System (INIS)

    Boeri, G.C.

    1989-01-01

    Seasonal, climatic and meteorological conditions may have a substantial influence on the physical factors involved in transport and deposition of airborne contaminants, and on the transfer and accumulation of radionuclides in terrestrial and aquatic ecosystems. As well, these environmental conditions can also have a significant influence on living habits and practices, and thus on potential radiological and economical impacts. Moreover, these conditions may affect the features and the impact of countermeasures which are adopted for the protection of the public in case of an accidental release. During a Special Session that the Committee of Radiation Protection and Public Health (CRPPH) held on the 1st-2nd September 1986 to review the radiological aspects of the Chernobyl nuclear accident, it was agreed that a consultant should prepare a report reviewing different accident consequences in a radiation protection and public health perspective, and identify the influence of such parameters as time of the year, weather and environmental conditions on the overall impact and the determination of appropriate countermeasures. A Consultant Report on this issue was prepared, by Dr. G. Boeri, and submitted to the CRPPH for review and consideration at its meeting of 22nd-24th November 1987. The CRPPH subsequently agreed that the Consultant Report should be revised and completed, taking into account comments and suggestions sent to the Secretariat and focussing especially on the effect of seasonal and weather conditions in terms of their influence on the radiological impact of an accident and on the emergency countermeasures to be taken. It was decided that the Consultant Report should be developed into an Overview Paper for a workshop on this issue to be organised by the NEA in 1988

  14. Influence of short-term solar disturbances on the fair weather conduction current

    Directory of Open Access Journals (Sweden)

    Elhalel Gal

    2014-01-01

    Full Text Available The fair weather atmospheric electrical current (Jz couples the ionosphere to the lower atmosphere and thus provides a route by which changes in solar activity can modify processes in the lower troposphere. This paper examines the temporal variations and spectral characteristics of continuous measurements of Jz conducted at the Wise Observatory in Mitzpe-Ramon, Israel (30°35′ N, 34°45′ E, during two large CMEs, and during periods of increased solar wind density. Evidence is presented for the effects of geomagnetic storms and sub-storms on low latitude Jz during two coronal mass ejections (CMEs, on 24–25th October 2011 and 7–8th March 2012, when the variability in Jz increased by an order of magnitude compared to normal fair weather conditions. The dynamic spectrum of the increased Jz fluctuations exhibit peaks in the Pc5 frequency range. Similar low frequency characteristics occur during periods of enhanced solar wind proton density. During the October 2011 event, the periods of increased fluctuations in Jz lasted for 7 h and coincided with fluctuations of the inter-planetary magnetic field (IMF detected by the ACE satellite. We suggest downward mapping of ionospheric electric fields as a possible mechanism for the increased fluctuations.

  15. The Influence of Weather Variation, Urban Design and Built Environment on Objectively Measured Sedentary Behaviour in Children.

    Science.gov (United States)

    Katapally, Tarun Reddy; Rainham, Daniel; Muhajarine, Nazeem

    2016-01-01

    With emerging evidence indicating that independent of physical activity, sedentary behaviour (SB) can be detrimental to health, researchers are increasingly aiming to understand the influence of multiple contexts such as urban design and built environment on SB. However, weather variation, a factor that continuously interacts with all other environmental variables, has been consistently underexplored. This study investigated the influence of diverse environmental exposures (including weather variation, urban design and built environment) on SB in children. This cross-sectional observational study is part of an active living research initiative set in the Canadian prairie city of Saskatoon. Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive SB of 331 10-14 year old children in 25 one week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample. Accelerometer data were matched with localized weather patterns derived from Environment Canada weather data. Multilevel modeling using Hierarchical Linear and Non-linear Modeling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on SB. Both weather variation and urban design played a significant role in SB. After factoring in weather variation, it was observed that children living in grid-pattern neighbourhoods closer to the city centre (with higher diversity of destinations) were less likely to be sedentary. This study demonstrates a methodology that could be replicated to integrate geography-specific weather patterns with existing cross-sectional accelerometry data to

  16. Influence of coronal holes on CMEs in causing SEP events

    International Nuclear Information System (INIS)

    Shen Chenglong; Yao Jia; Wang Yuming; Ye Pinzhong; Wang Shui; Zhao Xuepu

    2010-01-01

    The issue of the influence of coronal holes (CHs) on coronal mass ejections (CMEs) in causing solar energetic particle (SEP) events is revisited. It is a continuation and extension of our previous work, in which no evident effects of CHs on CMEs in generating SEPs were found by statistically investigating 56 CME events. This result is consistent with the conclusion obtained by Kahler in 2004. We extrapolate the coronal magnetic field, define CHs as the regions consisting of only open magnetic field lines and perform a similar analysis on this issue for 76 events in total by extending the study interval to the end of 2008. Three key parameters, CH proximity, CH area and CH relative position, are involved in the analysis. The new result confirms the previous conclusion that CHs did not show any evident effect on CMEs in causing SEP events. (research papers)

  17. Influence of microclimate on the sustainability and reliability of weathering steel bridge

    Science.gov (United States)

    Kubzova, M.; Krivy, V.; Kreislova, K.

    2018-04-01

    Reliability and sustainability of bridge structures designed from weathering steel are influenced by the development of a sufficiently protective layer of corrosion products on its surface. The development of this protective layer is affected by several parameters such as air pollution around the bridge structure, the microclimate under the bridge, the location of surface within the bridge structure and the time of wetness. Design of structural details also significantly influences the development of the protective corrosion layer. The article deals with the results of the experimental tests carried out on the road bridge located in the city of Ostrava in the Czech Republic. The development of the protective corrosion layer on the surface of the bridge is significantly influenced by the intensive traffic under the bridge construction and the design solution of the bridge itself. Attention is focused mainly on the influence of chloride deposition on the protective function of the corrosion layer. Corrosion samples were placed on the bridge to evaluate the influence of the above-mentioned parameters. The deposition rate of chlorides spreading from the road to surfaces of the steel structure is also measured.

  18. Cosmic rays and other space weather effects influenced on satellite operation, technologies, biosphere and people health

    Science.gov (United States)

    Lev, Dorman

    2016-07-01

    Satellite anomalies (or malfunctions), including total distortion of electronics and loose of some satellites cost for Insurance Companies billions dollars per year. During especially active periods the probability of big satellite anomalies and their loosing increased very much. Now, when a great number of civil and military satellites are continuously worked for our practice life, the problem of satellite anomalies became very important. Many years ago about half of satellite anomalies were caused by technical reasons (for example, for Russian satellites Kosmos), but with time with increasing of production quality, this part became smaller and smaller. The other part, which now is dominated, caused by different space weather effects (energetic particles of CR and generated/trapped in the magnetosphere, and so on). We consider only satellite anomalies not caused by technical reasons: the total number of such anomalies about 6000 events, and separately for high and low altitude orbit satellites (5000 and about 800 events, correspondingly for high and low altitude satellites). No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and solar proton event onsets for high (>1500 km) and low (railway operation (possible, through induction currents), catastrophes in long-distance electric power lines and transformators, and in other ground technologies.

  19. Controlling Stormwater Quality with Filter Soil—Event and Dry Weather Testing

    Directory of Open Access Journals (Sweden)

    Karin Cederkvist

    2016-08-01

    Full Text Available The use of filter soil is increasing for control of quality of stormwater runoff prior to infiltration or discharge. This study aimed to gain knowledge about treatment efficacy of filter soils at field scale. Percolate samples from swale-trench systems with filter soil based on agricultural till with/without limestone were monitored for 15 and 9 rain events respectively. Further, two curb extensions with filter soil based on landfill soil were monitored for 10 and 8 events. Pollutant concentrations in percolate were compared to influent samples from the catchment area. Additionally one of the curb extensions was tested twice by adding high-dose synthetic influent containing runoff pollutants of concern. Despite generally low influent pollutant levels, phosphorus, copper, zinc, lead and some polyaromatic hydrocarbons exceeded guiding criteria for protection of groundwater and freshwater. Concentrations in the percolate were in most cases reduced, but phosphorus increased and despite reduced concentrations copper, lead and benzo(apyrene still exceeded guiding criteria. Pollutants from the synthetic influent were efficiently retained, except the pesticide MCPA. Filter soil based on landfill soil tended to perform better than agricultural till. No impact of limestone was observed. Overall the filter soils performed well in retaining pollutants, despite simultaneous processes of mobilization and immobilization.

  20. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes.

    Directory of Open Access Journals (Sweden)

    William J Platt

    Full Text Available Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature. We used nonparametric cluster analyses of a 17-year (1993-2009 data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires over a 13-year period with fire records (1997-2009. Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with

  1. Seasonality of Fire Weather Strongly Influences Fire Regimes in South Florida Savanna-Grassland Landscapes

    Science.gov (United States)

    Platt, William J.; Orzell, Steve L.; Slocum, Matthew G.

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of

  2. Evaluating the influence of chemical weathering on the composition of the continental crust using lithium and its isotopes

    Science.gov (United States)

    Rudnick, R. L.; Liu, X.

    2011-12-01

    The continental crust has an "intermediate" bulk composition that is distinct from primary melts of peridotitic mantle (basalt or picrite). This mismatch between the "building blocks" and the "edifice" of the continental crust points to the operation of processes that preferentially remove mafic to ultramafic material from the continents. Such processes include lower crustal recycling (via density foundering or lower crustal subduction - e.g., relamination, Hacker et al., 2011, EPSL), generation of evolved melts via slab melting, and/or chemical weathering. Stable isotope systems document the influence of chemical weathering on the bulk crust composition: the oxygen isotope composition of the bulk crust is distinctly heavier than that of primary, mantle-derived melts (Simon and Lecuyer, 2005, G-cubed) and the Li isotopic composition of the bulk crust is distinctly lighter than that of mantle-derive melts (Teng et al., 2004, GCA; 2008, Chem. Geol.). Both signatures mark the imprint of chemical weathering on the bulk crust composition. Here, we use a simple mass balance model for lithium inputs and outputs from the continental crust to quantify the mass lost due to chemical weathering. We find that a minimum of 15%, a maximum of 60%, and a best estimate of ~40% of the original juvenile rock mass may have been lost via chemical weathering. The accumulated percentage of mass loss due to chemical weathering leads to an average global chemical weathering rate (CWR) of ~ 8×10^9 to 2×10^10 t/yr since 3.5 Ga, which is about an order of magnitude higher than the minimum estimates based on modern rivers (Gaillardet et al., 1999, Chem. Geol.). While we cannot constrain the exact portion of crustal mass loss via chemical weathering, given the uncertainties of the calculation, we can demonstrate that the weathering flux is non-zero. Therefore, chemical weathering must play a role in the evolution of the composition and mass of the continental crust.

  3. Data-Model and Inter-Model Comparisons of the GEM Outflow Events Using the Space Weather Modeling Framework

    Science.gov (United States)

    Welling, D. T.; Eccles, J. V.; Barakat, A. R.; Kistler, L. M.; Haaland, S.; Schunk, R. W.; Chappell, C. R.

    2015-12-01

    Two storm periods were selected by the Geospace Environment Modeling Ionospheric Outflow focus group for community collaborative study because of its high magnetospheric activity and extensive data coverage: the September 27 - October 4, 2002 corotating interaction region event and the October 22 - 29 coronal mass ejection event. During both events, the FAST, Polar, Cluster, and other missions made key observations, creating prime periods for data-model comparison. The GEM community has come together to simulate this period using many different methods in order to evaluate models, compare results, and expand our knowledge of ionospheric outflow and its effects on global dynamics. This paper presents Space Weather Modeling Framework (SWMF) simulations of these important periods compared against observations from the Polar TIDE, Cluster CODIF and EFW instruments. Emphasis will be given to the second event. Density and velocity of oxygen and hydrogen throughout the lobes, plasma sheet, and inner magnetosphere will be the focus of these comparisons. For these simulations, the SWMF couples the multifluid version of BATS-R-US MHD to a variety of ionospheric outflow models of varying complexity. The simplest is outflow arising from constant MHD inner boundary conditions. Two first-principles-based models are also leveraged: the Polar Wind Outflow Model (PWOM), a fluid treatment of outflow dynamics, and the Generalized Polar Wind (GPW) model, which combines fluid and particle-in-cell approaches. Each model is capable of capturing a different set of energization mechanisms, yielding different outflow results. The data-model comparisons will illustrate how well each approach captures reality and which energization mechanisms are most important. Inter-model comparisons will illustrate how the different outflow specifications affect the magnetosphere. Specifically, it is found that the GPW provides increased heavy ion outflow over a broader spatial range than the alternative

  4. Regional decision-makers as potential users of Extreme Weather Event Attribution - Case studies from the German Baltic Sea coast and the Greater Paris area

    Directory of Open Access Journals (Sweden)

    Maria Schwab

    2017-12-01

    Full Text Available Extreme Event Attribution has raised increasing attention in climate science in the last years. It means to judge the extent to which certain weather-related extreme events have changed due to human influences on climate with probabilistic statements. Extreme Event Attribution is often anticipated to spur more than just scientific ambition. It is able to provide answers to a commonly asked questions after extreme events, namely, ‘can we blame it on climate change’ and is assumed to support decision-making of various actors engaged in climate change mitigation and adaptation. More in-depth research is widely lacking about who these actors are; in which context they can make use of it; and what requirements they have, to be able to actually apply Extreme Event Attribution. We have therefore addressed these questions with two empirical case studies looking at regional decision-makers who deal with storm surge risks in the German Baltic Sea region and heat waves in the Greater Paris area. Stakeholder interviews and workshops reveal that fields of application and requirements are diverse, difficult to explicitly identify, and often clearly associated with stakeholders' specific mandate, the hazard background, and the regional socio-economic setting. Among the considered stakeholders in the Baltic Sea region, Extreme Event Attribution is perceived to be most useful to awareness-raising, in particular for climate change mitigation. They emphasised the importance of receiving understandable information - and that, rather later, but with smaller uncertainties than faster, but with higher uncertainties. In the Paris case, we typically talked to people engaged in adaptation with expertise in terms of climate science, but narrowly defined mandates which is typical for the Paris-centred political system with highly specialised public experts. The interviewees claimed that Extreme Event Attribution is most useful to political leverage and public

  5. Large-scale weather dynamics during the 2015 haze event in Singapore

    Science.gov (United States)

    Djamil, Yudha; Lee, Wen-Chien; Tien Dat, Pham; Kuwata, Mikinori

    2017-04-01

    The 2015 haze event in South East Asia is widely considered as a period of the worst air quality in the region in more than a decade. The source of the haze was from forest and peatland fire in Sumatra and Kalimantan Islands, Indonesia. The fires were mostly came from the practice of forest clearance known as slash and burn, to be converted to palm oil plantation. Such practice of clearance although occurs seasonally but at 2015 it became worst by the impact of strong El Nino. The long period of dryer atmosphere over the region due to El Nino makes the fire easier to ignite, spread and difficult to stop. The biomass emission from the forest and peatland fire caused large-scale haze pollution problem in both Islands and further spread into the neighboring countries such as Singapore and Malaysia. In Singapore, for about two months (September-October, 2015) the air quality was in the unhealthy level. Such unfortunate condition caused some socioeconomic losses such as school closure, cancellation of outdoor events, health issues and many more with total losses estimated as S700 million. The unhealthy level of Singapore's air quality is based on the increasing pollutant standard index (PSI>120) due to the haze arrival, it even reached a hazardous level (PSI= 300) for several days. PSI is a metric of air quality in Singapore that aggregate six pollutants (SO2, PM10, PM2.5, NO2, CO and O3). In this study, we focused on PSI variability in weekly-biweekly time scales (periodicity < 30 days) since it is the least understood compare to their diurnal and seasonal scales. We have identified three dominant time scales of PSI ( 5, 10 and 20 days) using Wavelet method and investigated their large-scale atmospheric structures. The PSI associated large-scale column moisture horizontal structures over the Indo-Pacific basin are dominated by easterly propagating gyres in synoptic (macro) scale for the 5 days ( 10 and 20 days) time scales. The propagating gyres manifest as cyclical

  6. The Influence of Weather Conditions on Joint Pain in Older People with Osteoarthritis: Results from the European Project on OSteoArthritis

    NARCIS (Netherlands)

    Timmermans, E.J.; Schaap, L.A.; Herbolsheimer, F.; Dennison, E.M.; Maggi, S.; Pedersen, N.L.; Castell, M.V; Denkinger, M.D.; Edwards, M.H.; Limongi, F.; Sanchez-Martinez, M.; Siviero, P.; Queipo, R.; Peter, R.; van der Pas, S.; Deeg, D.J.H.

    2015-01-01

    Objective. This study examined whether daily weather conditions, 3-day average weather conditions, and changes in weather conditions influence joint pain in older people with osteoarthritis (OA) in 6 European countries. Methods. Data from the population-based European Project on OSteoArthritis were

  7. Review Pages: Planning for Livable and Safe Cities: Extreme Weather Events Caused by Climate Change

    Directory of Open Access Journals (Sweden)

    Gennaro Angiello

    2016-03-01

    Full Text Available Starting from the relationship between urban planning and mobility management, TeMA has gradually expanded the view of the covered topics, always remaining in the groove of rigorous scientific in-depth analysis. During the last two years a particular attention has been paid on the Smart Cities theme and on the different meanings that come with it. The last section of the journal is formed by the Review Pages. They have different aims: to inform on the problems, trends and evolutionary processes; to investigate on the paths by highlighting the advanced relationships among apparently distant disciplinary fields; to explore the interaction’s areas, experiences and potential applications; to underline interactions, disciplinary developments but also, if present, defeats and setbacks. Inside the journal the Review Pages have the task of stimulating as much as possible the circulation of ideas and the discovery of new points of view. For this reason the section is founded on a series of basic’s references, required for the identification of new and more advanced interactions. These references are the research, the planning acts, the actions and the applications, analysed and investigated both for their ability to give a systematic response to questions concerning the urban and territorial planning, and for their attention to aspects such as the environmental sustainability and the innovation in the practices. For this purpose the Review Pages are formed by five sections (Web Resources; Books; Laws; Urban Practices; News and Events, each of which examines a specific aspect of the broader information storage of interest for TeMA

  8. Factors influencing food choice of athletes at international competition events.

    Science.gov (United States)

    Pelly, Fiona E; Burkhart, Sarah J; Dunn, Peter

    2018-02-01

    Although the nutrient requirements and dietary intake of athletes have been thoroughly investigated, little is known about the influences on their food choice, particularly prior to and during competition. This study sought to investigate factors that influence food selection of athletes at two similar international competition events: the Melbourne 2006 and Delhi 2010 Commonwealth Games. A secondary aim was to explore differences in these factors between at each event given the culturally diverse locations. A survey developed for this study was distributed to athletes in the village dining hall at both events. Athletes scored a selection of factors influencing food choice on a scale of 1 (not important) to 5 (very important). A total of 769 individuals completed the questionnaire in total, with 351 (46%) from Delhi and 418 (54%) from Melbourne. Overall, athletes rated nutrient composition (M = 4.22), stage of competition (M = 4.09), time of day (M = 4.02) and familiarity of the food (M = 4.07) higher than sensory properties (smell M = 3.88; visual appearance M = 3.22) when making a food selection. Visual appearance (p = 0.01), stage of competition (p food (p motives for food section of athletes from a range of sports and cultures is warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Planning support system for climate adaptation: Composing effective sets of blue-green measures to reduce urban vulnerability to extreme weather events

    NARCIS (Netherlands)

    Voskamp, I.M.; Ven, Van de F.H.M.

    2015-01-01

    The risk of pluvial flooding, heat stress and drought is increasing due to climate change. To increase urban resilience to extreme weather events, it is essential to combine green and blue infrastructure and link enhanced storage capacity in periods of water surplus with moments of water shortage as

  10. Variability of extreme weather events over the equatorial East Africa, a case study of rainfall in Kenya and Uganda

    Science.gov (United States)

    Ongoma, Victor; Chen, Haishan; Omony, George William

    2018-01-01

    This study investigates the variability of extreme rainfall events over East Africa (EA), using indices from the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI). The analysis was based on observed daily rainfall from 23 weather stations, with length varying within 1961 and 2010. The indices considered are: wet days ( R ≥1 mm), annual total precipitation in wet days (PRCPTOT), simple daily intensity index (SDII), heavy precipitation days ( R ≥ 10 mm), very heavy precipitation days ( R ≥ 20 mm), and severe precipitation ( R ≥ 50 mm). The non-parametric Mann-Kendall statistical analysis was carried out to identify trends in the data. Temporal precipitation distribution was different from station to station. Almost all indices considered are decreasing with time. The analysis shows that the PRCPTOT, very heavy precipitation, and severe precipitation are generally declining insignificantly at 5 % significant level. The PRCPTOT is evidently decreasing over Arid and Semi-Arid Land (ASAL) as compared to other parts of EA. The number of days that recorded heavy rainfall is generally decreasing but starts to rise in the last decade although the changes are insignificant. Both PRCPTOT and heavy precipitation show a recovery in trend starting in the 1990s. The SDII shows a reduction in most areas, especially the in ASAL. The changes give a possible indication of the ongoing climate variability and change which modify the rainfall regime of EA. The results form a basis for further research, utilizing longer datasets over the entire region to reduce the generalizations made herein. Continuous monitoring of extreme events in EA is critical, given that rainfall is projected to increase in the twenty-first century.

  11. Mariners Weather Log

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mariners Weather Log (MWL) is a publication containing articles, news and information about marine weather events and phenomena, worldwide environmental impact...

  12. Space Weather in Operation

    Data.gov (United States)

    National Aeronautics and Space Administration — The “Space Weather in Operations” effort will provide on-demand and near-real time space weather event information to the Data Access Toolkit (DAT), which is the...

  13. Extreme weather Events

    Indian Academy of Sciences (India)

    Resulting in deaths, disease and injury due to drowning, lack of sanitation and safe drinking water and exposure to dangerous chemical contaminants. Floods and tropical cyclones have greatest impact in South Asia; and Latin America; Increased risk of diarrhoeal diseases, cholera, cryptosporidiosis,; campylobacter and ...

  14. Aerosol climatology and planetary boundary influence at the Jungfraujoch analyzed by synoptic weather types

    OpenAIRE

    M. Collaud Coen; E. Weingartner; M. Furger; S. Nyeki; A. S. H. Prévôt; M. Steinbacher; U. Baltensperger

    2011-01-01

    Fourteen years of meteorological parameters, aerosol variables (absorption and scattering coefficients, aerosol number concentration) and trace gases (CO, NOx, SO2) measured at the Jungfraujoch (JFJ, 3580 m a.s.l.) have been analyzed as a function of different synoptic weather types. The Schüepp synoptic weather type of the Alps (SYNALP) classification from the Alpine Weather Statistics (AWS) was used to define the synoptic meteorology over the wh...

  15. Influence of Met-Ocean Condition Forecasting Uncertainties on Weather Window Predictions for Offshore Operations

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    2017-01-01

    The article briefly presents a novel methodology of weather window estimation for offshore operations and mainly focuses on effects of met-ocean condition forecasting uncertainties on weather window predictions when using the proposed methodology. It is demonstrated that the proposed methodology...... to include stochastic variables, representing met-ocean forecasting uncertainties and the results of such modification are given in terms of predicted weather windows for a selected test case....

  16. Clay mineralogical constraints on weathering in response to early Eocene hyperthermal events in the Bighorn Basin, Wyoming (Western Interior, USA)

    NARCIS (Netherlands)

    Wang, Chaowen; Adriaens, Rieko; Hong, Hanlie; Elsen, Jan; Vandenberghe, Noël; Lourens, Lucas J.|info:eu-repo/dai/nl/125023103; Gingerich, Philip D.; Abels, Hemmo A.|info:eu-repo/dai/nl/304848018

    2017-01-01

    Series of transient greenhouse warming intervals in the early Eocene provide an opportunity to study the response of rock weathering and erosion to changes in temperature and precipitation. During greenhouse warming, chemical weathering is thought to increase the uptake of carbon from the

  17. The influence of weather and environment on pulmonary embolism: pollutants and fossil fuels.

    Science.gov (United States)

    Clauss, Ralf; Mayes, Julian; Hilton, Paul; Lawrenson, Ross

    2005-01-01

    Previous publications have highlighted seasonal variations in the incidence of thrombosis and pulmonary embolism, and that weather patterns can influence these. While medical risk factors for pulmonary thrombo-embolism such as age, obesity, hypercoagulable states, cancer, previous thrombo-embolism, immobility, limb paralysis, surgery, major illness, trauma, hypotension, tachypnoea and right ventricular hypokinesis are not directly implicated regarding environmental factors such as weather, they could be influenced indirectly by these. This would be especially relevant in polluted areas that are associated with a higher pulmonary embolism risk. Routine nuclear medicine lung ventilation/perfusion studies (V/Q scans) of 2071 adult patients referred to the nuclear medicine department of the Royal Surrey County Hospital in Guildford, UK, between January 1998 and October 2002 were reviewed and 316 of these patients were classified as positive for pulmonary embolism with high probability scan on PIOPED criteria. The occurrence of positive scans was compared to environmental factors such as temperature, humidity, vapour pressure, air pressure and rainfall. Multiple linear regression was used to establish the significance of these relations. The incidence of pulmonary embolism was positively related to vapour pressure and rainfall. The most significant relation was to vapour pressure (p=0.010) while rainfall was less significant (p=0.017). There was no significant relation between pulmonary embolism and air pressure, humidity or temperature. It is postulated that rainfall and water vapour may be contributary factors in thrombosis and pulmonary embolism by way of pollutants that are carried as condensation nuclei in micro-droplets of water. In particular, fossil fuel pollutants are implicated as these condensation nuclei. Pollutants may be inhaled by populations exposed to windborne vapour droplets in cities or airports. Polluted vapour droplets may be absorbed by the lung

  18. The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate

    Science.gov (United States)

    Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.

    2017-12-01

    Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan

  19. “It Was Raining All the Time!”: Ex Post Tourist Weather Perceptions

    Directory of Open Access Journals (Sweden)

    Stefan Gössling

    2016-01-01

    Full Text Available The importance of weather for tourism is now widely recognized. However, no research has so far addressed weather events from retrospective viewpoints, and, in particular, the role of “extreme” events in longer-term holiday memories. To better understand the character of ex post weather experiences and their importance in destination image perceptions and future travel planning behavior, this exploratory study addressed a sample of 50 tourists from three globally important source markets: Austria, Germany and Switzerland. Results indicate that weather events do not dominate long-term memories of tourist experiences. Yet, weather events are important in shaping destination image, with “rain” being the single most important weather variable negatively influencing perceptions. Results also suggest that weather events perceived as extreme can involve considerable emotions. The study of ex post traveler memories consequently makes a valuable contribution to the understanding of the complexity of “extreme weather” events for tourist demand responses.

  20. Insights from using influence diagrams to analyze precursor events

    International Nuclear Information System (INIS)

    Borgonovo, E.; Smith, C.L.; Apostolakis, G.E.; Deriot, S.; Dewailly, J.

    2000-01-01

    An approach for evaluating the decision-making process during precursor incidents was made in this study. This approach is the first step in the construction of a methodology, which is based on the incorporation of the insights and quantification of Probability Safety Assessment (PSA) analysis into decision-analysis tools such as influence diagrams. The methodology aims at enabling an on-line formal evaluation of the decisions that are to be taken during an off-normal event. It has been shown that PSA is well suited for determining decision alternatives and indicating where, in a sequence of unfavorable events, critical decisions are to be made. Moreover, it was found possible to account for the evolution of the risk during the incident through re-evaluation of the PSA model for relevant configurations. CCDP becomes an essential element in the evaluation of the best strategy and the bridge to the use of formal decision-analysis tools. These tools, in their turn, provide the formal framework for a strategy evaluation that is not solely based on engineering judgment. It is planned to further this research by looking at potential operational events, thus turning the analysis to a predictive mode. The final goal of the research is the construction of a prototype software tool for on-line decision making for the management of operational incidents. (M.N.)

  1. Influence of pH during chemical weathering of bricks: Long term exposure

    DEFF Research Database (Denmark)

    Rörig-Dalgaard, Inge; Charola, A. Elena

    2016-01-01

    Within the framework of environmental weathering of bricks in historical structures, this study focuses on new bricks currently employed for restoration projects. The bricks were subjected to an accelerated chemical weathering test by immersion in solutions with pH ranging from 3 to 13 for differ...

  2. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population.

    Science.gov (United States)

    Ozheredov, V A; Chibisov, S M; Blagonravov, M L; Khodorovich, N A; Demurov, E A; Goryachev, V A; Kharlitskaya, E V; Eremina, I S; Meladze, Z A

    2017-05-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  3. Influence of austenitisation temperature on the structure and properties of weather resistant steels

    International Nuclear Information System (INIS)

    Prasad, S.N.; Mediratta, S.R.; Sarma, D.S.

    2003-01-01

    The influence of austenitisation temperature on the structure and properties of three experimental weather resistant steels has been studied. All these steels contain 1% Mn, 0.3% Ni, 0.47% Cr and 0.47% Cu. In addition, steel no. 1 has 0.1% C, 0.1% P, steel no. 2 has 0.1% C, 0.05% P and 0.024% Nb while steel 3 has 0.2% C, 0.054% Nb and 0.046% V. It has been found that the hardness, yield strength and tensile strength do not change significantly with austenitisation temperature over the range 900-1200 deg. C for steel no. 1 but they increase considerably when austenitised above 1000 deg. C for steels 2 and 3. Similarly, the ductility decreases with increasing temperature of austenitisation. All the steels austenitised up to 1000 deg. C exhibit sharp yield points. None of these steels shows sharp yield point after 1200 deg. C. At 1100 deg. C, however, sharp yield points were observed in steels 1 and 2. There has been a noticeable change in optical microstructure. In steels 2 and 3 the pearlite is gradually replaced by granular bainite when austenitised above 1000 deg. C. The transmission electron microscopy study reveals that the granular bainite consists of acicular ferrite and martensite/austenite constituent

  4. Influence of weather and climate on subjective symptom intensity in atopic eczema

    Science.gov (United States)

    Vocks, E.; Busch, R.; Fröhlich, C.; Borelli, S.; Mayer, H.; Ring, J.

    The frequent clinical observation that the course of atopic eczema, a skin disease involving a disturbed cutaneous barrier function, is influenced by climate and weather motivated us to analyse these relationships biometrically. In the Swiss high-mountain area of Davos the intensity of itching experienced by patients with atopic eczema was evaluated and compared to 15 single meteorological variables recorded daily during an entire 7-year observation period. By means of univariate analyses and multiple regressions, itch intensity was found to be correlated with some meteorological variables. A clear-cut inverse correlation exists with air temperature (coefficient of correlation: -0.235, P<0.001), but the effects of water vapour pressure, air pressure and hours of sunshine are less pronounced. The results show that itching in atopic eczema is significantly dependent on meteorological conditions. The data suggest that, in patients with atopic eczema, a certain range of thermo-hygric atmospheric conditions with a balance of heat and water loss on the skin surface is essential for the skin to feel comfortable.

  5. Influence of weathering and pre-existing large scale fractures on gravitational slope failure: insights from 3-D physical modelling

    Directory of Open Access Journals (Sweden)

    D. Bachmann

    2004-01-01

    Full Text Available Using a new 3-D physical modelling technique we investigated the initiation and evolution of large scale landslides in presence of pre-existing large scale fractures and taking into account the slope material weakening due to the alteration/weathering. The modelling technique is based on the specially developed properly scaled analogue materials, as well as on the original vertical accelerator device enabling increases in the 'gravity acceleration' up to a factor 50. The weathering primarily affects the uppermost layers through the water circulation. We simulated the effect of this process by making models of two parts. The shallower one represents the zone subject to homogeneous weathering and is made of low strength material of compressive strength σl. The deeper (core part of the model is stronger and simulates intact rocks. Deformation of such a model subjected to the gravity force occurred only in its upper (low strength layer. In another set of experiments, low strength (σw narrow planar zones sub-parallel to the slope surface (σwl were introduced into the model's superficial low strength layer to simulate localized highly weathered zones. In this configuration landslides were initiated much easier (at lower 'gravity force', were shallower and had smaller horizontal size largely defined by the weak zone size. Pre-existing fractures were introduced into the model by cutting it along a given plan. They have proved to be of small influence on the slope stability, except when they were associated to highly weathered zones. In this latter case the fractures laterally limited the slides. Deep seated rockslides initiation is thus directly defined by the mechanical structure of the hillslope's uppermost levels and especially by the presence of the weak zones due to the weathering. The large scale fractures play a more passive role and can only influence the shape and the volume of the sliding units.

  6. Is tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control?

    Science.gov (United States)

    Prikryl, Paul; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Bruntz, Robert; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel; Pastirčák, Vladimír

    2017-04-01

    (Prikryl et al., Ann. Geophys., 27, 31-57, 2009). It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  7. The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone

    Directory of Open Access Journals (Sweden)

    Aly, N.

    2015-03-01

    Full Text Available Limestone is one of the most frequent building stones used in monuments in Egypt from ancient Egyptian times and salt weathering is one of the main threats to these monuments. During this work, cylindrical limestone samples (2 cm diameter and approx. 4 cm length from Mokattam group, one of the most frequent materials in historic Cairo, were subjected, in a purpose-made simulation chamber, to laboratory salt weathering tests with a 10% weight NaCl solution at different temperatures (20, 30, 40 °C. During each test, temperature was kept constant and salt solutions flowed continuously imbibing samples by capillary rise resembling the way they get into building stone in many real cases. Air temperature, relative humidity inside the simulation chamber and also samples weight were digitally monitored and recorded. Results show the influence of temperature and the ratio between imbibitions and evaporation on the dynamics of salt crystallization in the samples.Los monumentos egipcios se construyeron frecuentemente con caliza desde la antigüedad y uno de sus principales agentes de deterioro son las sales. Por ejemplo, en la zona histórica de El Cairo son frecuentes las calizas del grupo Mokattam. Cilindros (2 cm de diámetro y aproximadamente 4 cm de altura de esta caliza se sometieron a ensayos de deterioro por sales en una cámara experimental específicamente diseñada. Se utilizó una solución salina (10% en peso de NaCl a diferentes temperaturas (20 °C, 30 °C, 40 °C que se mantuvieron constantes en cada ensayo. La solución fluía constantemente embebiendo las muestras por capilaridad, simulando lo que ocurre en casos reales. La temperatura del aire, humedad relativa en la cámara y peso de las muestras se monitorizaron con sensores digitales. Los resultados muestran la influencia de la temperatura y del balance entre imbibición y evaporación en la dinámica de la cristalización de sales en las muestras.

  8. Optimizing Placement of Weather Stations: Exploring Objective Functions of Meaningful Combinations of Multiple Weather Variables

    Science.gov (United States)

    Snyder, A.; Dietterich, T.; Selker, J. S.

    2017-12-01

    Many regions of the world lack ground-based weather data due to inadequate or unreliable weather station networks. For example, most countries in Sub-Saharan Africa have unreliable, sparse networks of weather stations. The absence of these data can have consequences on weather forecasting, prediction of severe weather events, agricultural planning, and climate change monitoring. The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to place weather stations within each country. We should consider how we can create accurate spatio-temporal maps of weather data and how to balance the desired accuracy of each weather variable of interest (precipitation, temperature, relative humidity, etc.). We can express this problem as a joint optimization of multiple weather variables, given a fixed number of weather stations. We use reanalysis data as the best representation of the "true" weather patterns that occur in the region of interest. For each possible combination of sites, we interpolate the reanalysis data between selected locations and calculate the mean average error between the reanalysis ("true") data and the interpolated data. In order to formulate our multi-variate optimization problem, we explore different methods of weighting each weather variable in our objective function. These methods include systematic variation of weights to determine which weather variables have the strongest influence on the network design, as well as combinations targeted for specific purposes. For example, we can use computed evapotranspiration as a metric that combines many weather variables in a way that is meaningful for agricultural and hydrological applications. We compare the errors of the weather station networks produced by each optimization problem formulation. We also compare these

  9. Influence of Tidal Forces on the Triggering of Seismic Events

    Science.gov (United States)

    Varga, Péter; Grafarend, Erik

    2018-05-01

    Tidal stresses are generated in any three-dimensional body influenced by an external inhomogeneous gravity field of rotating planets or moons. In this paper, as a special case, stresses caused within the solid Earth by the body tides are discussed from viewpoint of their influence on seismic activity. The earthquake triggering effects of the Moon and Sun are usually investigated by statistical comparison of tidal variations and temporal distribution of earthquake activity, or with the use of mathematical or experimental modelling of physical processes in earthquake prone structures. In this study, the magnitude of the lunisolar stress tensor in terms of its components along the latitude of the spherical surface of the Earth as well as inside the Earth (up to the core-mantle boundary) were calculated for the PREM (Dziewonski and Anderson in Phys Earth Planet Inter 25(4):297-356, 1981). Results of calculations prove that stress increases as a function of depth reaching a value around some kPa at the depth of 900-1500 km, well below the zone of deep earthquakes. At the depth of the overwhelming part of seismic energy accumulation (around 50 km) the stresses of lunisolar origin are only (0.0-1.0)·103 Pa. Despite the fact that these values are much smaller than the earthquake stress drops (1-30 MPa) (Kanamori in Annu Rev Earth Planet Sci 22:207-237, 1994) this does not exclude the possibility of an impact of tidal forces on outbreak of seismic events. Since the tidal potential and its derivatives are coordinate dependent and the zonal, tesseral and sectorial tides have different distributions from the surface down to the CMB, the lunisolar stress cannot influence the break-out of every seismological event in the same degree. The influencing lunisolar effect of the solid earth tides on earthquake occurrences is connected first of all with stress components acting parallel to the surface of the Earth. The influence of load tides is limited to the loaded area and its

  10. Study of weather and thermal comfort influence on sport performance: prognostic analysis applied to Rio de Janeiro's city marathon

    Science.gov (United States)

    Pallotta, M.; Herdies, D. L.; Gonçalves, L. G.

    2013-05-01

    There is nowadays a growing interest in the influence and impacts of weather and climate in human life. The weather conditions analysis shows the utility of this type of tool when applied in sports. These conditions act as a differential in strategy and training, especially for outdoor sports. This study had as aim objective develop weather forecast and thermal comfort evaluation targeted to sports, and hoped that the results can be used to the development of products and weather service in the Olympic Games 2016 in Rio de Janeiro City. The use of weather forecast applied to the sport showed to be efficient for the case of Rio de Janeiro City Marathon, especially due to the high spatial resolution. The WRF simulations for the three marathons studied showed good results for temperature, atmospheric pressure, and relative humidity. On the other hand, the forecast of the wind showed a pattern of overestimation of the real situation in all cases. It was concluded that the WRF model provides, in general, more representative simulations from 36 hours in advance, and with 18 hours of integration they were even better, describing efficiently the synoptic situation that would be found. A review of weather conditions and thermal comfort at specific points of the marathon route showed that there are significant differences between the stages of the marathon, which makes possible to plan the competition strategy under the thermal comfort. It was concluded that a relationship between a situation more thermally comfortable (uncomfortable) and the best (worst) time in Rio de Janeiro City Marathon

  11. Planetary boundary influence at the Jungfraujoch analyzed by aerosol cycles and synoptic weather types

    OpenAIRE

    M. Collaud Coen; E. Weingartner; M. Furger; S. Nyeki; A. S. H. Prévôt; M. Steinbacher; U. Baltensperger

    2011-01-01

    Fourteen years of meteorological parameters, aerosol variables (absorption and scattering coefficients, aerosol number concentration) and trace gases (CO, NOx, SO2) measured at the Jungfraujoch (JFJ, 3580 m a.s.l.) have been analyzed as a function of different synoptic weather types. The Alpine Weather Statistics (AWS) classification was used to define the synoptic meteorology over the whole Swiss region. The seasonal contribution of each syn...

  12. Terrain and subsurface influences on runoff generation in a steep, deep, highly weathered system

    Science.gov (United States)

    Mallard, J. M.; McGlynn, B. L.; Richter, D. D., Jr.

    2017-12-01

    Our understanding of runoff generation in regions characterized by deep, highly weathered soils is incomplete, despite the prevalence occupation of these landscapes worldwide. To address this, we instrumented a first-order watershed in the Piedmont of South Carolina, USA, a region that extends east of the Appalachians from Maryland to Alabama, and home to some of the most rapid population growth in the country. Although regionally the relief is modest, the landscape is often highly dissected and local slopes can be steep and highly varied. The typical soils of the region are kaolinite dominated ultisols, with hydrologic properties controlled by argillic Bt horizons, often with >50% clay-size fraction. The humid subtropical climate creates relatively consistent precipitation intra-annually and seasonally variable energy availability. Consequently, the mixed deciduous and coniferous tree cover creates a strong evapotranspiration-mediated hydrologic dynamic. While moist soils and extended stream networks are typical from late fall through spring, relatively dry soils and contracting stream networks emerge in the summer and early fall. Here, we seek to elucidate the relative influence of the vertical soil and spatial terrain structure of this region on watershed hillslope hydrology and subsequent runoff generation. We installed a network of nested, shallow groundwater wells and soil water content probes within an ephemeral to first-order watershed to continuously measure soil and groundwater dynamics across soil horizons and landscape position. We also recorded local precipitation and discharge from this watershed. Most landscape positions exhibited minimal water table response to precipitation throughout dry summer periods, with infrequently observed responses rarely coincident with streamflow generation. In contrast, during the wetter late fall through early spring period, streamflow was driven by the interaction between transient perched water tables and

  13. The Influence of Weather Conditions on Joint Pain in Older People with Osteoarthritis: Results from the European Project on OSteoArthritis.

    Science.gov (United States)

    Timmermans, Erik J; Schaap, Laura A; Herbolsheimer, Florian; Dennison, Elaine M; Maggi, Stefania; Pedersen, Nancy L; Castell, Maria Victoria; Denkinger, Michael D; Edwards, Mark H; Limongi, Federica; Sánchez-Martínez, Mercedes; Siviero, Paola; Queipo, Rocio; Peter, Richard; van der Pas, Suzan; Deeg, Dorly J H

    2015-10-01

    This study examined whether daily weather conditions, 3-day average weather conditions, and changes in weather conditions influence joint pain in older people with osteoarthritis (OA) in 6 European countries. Data from the population-based European Project on OSteoArthritis were used. The American College of Rheumatology classification criteria were used to diagnose OA in older people (65-85 yrs). After the baseline interview, at 6 months, and after the 12-18 months followup interview, joint pain was assessed using 2-week pain calendars. Daily values for temperature, precipitation, atmospheric pressure, relative humidity, and wind speed were obtained from local weather stations. Multilevel regression modelling was used to examine the pain-weather associations, adjusted for several confounders. The study included 810 participants with OA in the knee, hand, and/or hip. After adjustment, there were significant associations of joint pain with daily average humidity (B = 0.004, p weather conditions. Changes in weather variables between 2 consecutive days were not significantly associated with reported joint pain. The associations between pain and daily average weather conditions suggest that a causal relationship exist between joint pain and weather variables, but the associations between day-to-day weather changes and pain do not confirm causation. Knowledge about the relationship between joint pain in OA and weather may help individuals with OA, physicians, and therapists to better understand and manage fluctuations in pain.

  14. The influence of gender and product design on farmers' preferences for weather-indexed crop insurance.

    Science.gov (United States)

    Akter, Sonia; Krupnik, Timothy J; Rossi, Frederick; Khanam, Fahmida

    2016-05-01

    Theoretically, weather-index insurance is an effective risk reduction option for small-scale farmers in low income countries. Renewed policy and donor emphasis on bridging gender gaps in development also emphasizes the potential social safety net benefits that weather-index insurance could bring to women farmers who are disproportionately vulnerable to climate change risk and have low adaptive capacity. To date, no quantitative studies have experimentally explored weather-index insurance preferences through a gender lens, and little information exists regarding gender-specific preferences for (and constraints to) smallholder investment in agricultural weather-index insurance. This study responds to this gap, and advances the understanding of preference heterogeneity for weather-index insurance by analysing data collected from 433 male and female farmers living on a climate change vulnerable coastal island in Bangladesh, where an increasing number of farmers are adopting maize as a potentially remunerative, but high-risk cash crop. We implemented a choice experiment designed to investigate farmers' valuations for, and trade-offs among, the key attributes of a hypothetical maize crop weather-index insurance program that offered different options for bundling insurance with financial saving mechanisms. Our results reveal significant insurance aversion among female farmers, irrespective of the attributes of the insurance scheme. Heterogeneity in insurance choices could however not be explained by differences in men's and women's risk and time preferences, or agency in making agriculturally related decisions. Rather, gendered differences in farmers' level of trust in insurance institutions and financial literacy were the key factors driving the heterogeneous preferences observed between men and women. Efforts to fulfill gender equity mandates in climate-smart agricultural development programs that rely on weather-index insurance as a risk-abatement tool are therefore

  15. Depth distribution of 137Cs adsorption property of clay minerals influenced by mineral weathering

    International Nuclear Information System (INIS)

    Nakao, Atsushi; Funakawa, Shinya; Kosaki, Takashi

    2007-01-01

    Radiocesium adsorption potential of mica clay mineral can increase as it is weathered, because K depletion in mica interlayer sites generates new Cs selective sites. However, in soils weathered under field conditions, the increase in 137 Cs adsorption potential associated with mineral weathering has not been observed extensively. We investigated four soil profiles from Japan and Thailand with different soil pH ranges (3.3-4.0, 4.2-4.3, 5.0-5.7, and 5.5-7.3). The solid/liquid distribution coefficients of Cs ( Cs Kd) in clay ( 137 Cs adsorption potential of mica clay minerals. In three soil profiles, Cs Kd value in clay was the largest at a surface horizon and was decreased with depth, whereas in the most acidic of Podzolic soil profile, it was the largest at B horizon. The large Cs Kd value in surface clays relative to deeper horizons were well associated with that of 2.0-1.0 μm clay fraction. We assumed that the 137 Cs adsorption potential increased at surface horizons mainly because coarser clay micas were weathered and generated Cs selective sites. The exceptional result obtained in Podzolic soil profile suggests that too intensive weathering destruct mica structure and may decrease in Cs adsorption potential of mica clay minerals. (author)

  16. Solar events and their influence on the interplanetary medium

    Science.gov (United States)

    Joselyn, Jo Ann

    The Workshop on Solar Events and Their Influence on the Interplanetary Medium very successfully met its goal “to foster interactions among colleagues, leading to an improved understanding of the unified relationship between solar events and interplanetary disturbances.” Organized by the National Oceanic and Atmospheric Administration Space Environment Laboratory and funded by the national Aeronautics and Space Administration (NASA) Solar Maximum Mission Principal Investigators and the Space Environment Laboratory, this meeting was held held September 8—11, 1986, in Estes Park, Colo. A total of 94 scientists, including representatives from Argentina, Germany, Japan, France, Scotland, England, Australia, Poland, Israel, Greece, China and the United States attended. A novel meeting schedule was adopted, with no formal presentations other than a keynote address by Rainer Schwenn of the Max Planck Institut fur Aeronomie (Federal republic of Germany), entitled “Transients on the Sun and Their Effects on the Interplanetary Medium: An Interdisciplinary Challenge” a Gordon A. Newkirk Memorial talk on “Early History of the Coronagraph” by John Eddy of the University Corporation for Atmospheric Research Office of Interdisciplinary Earth Studies (Boulder, Colo.); and introductory and summary statements by working group leaders. Instead, there were three working groups, which met either independently or with one of the other groups according to a prearranged plan. Suggested roundtable discussion topics were distributed in advance to the members of each group, but primarily, each group was expected to think of questions for the other groups and respond to requests for information from them. As may be expected, for some topics there was group consensus. Other topics were contentious.

  17. The Influence of Aerosol Hygroscopicity on Precipitation Intensity During a Mesoscale Convective Event

    Science.gov (United States)

    Kawecki, Stacey; Steiner, Allison L.

    2018-01-01

    We examine how aerosol composition affects precipitation intensity using the Weather and Research Forecasting Model with Chemistry (version 3.6). By changing the prescribed default hygroscopicity values to updated values from laboratory studies, we test model assumptions about individual component hygroscopicity values of ammonium, sulfate, nitrate, and organic species. We compare a baseline simulation (BASE, using default hygroscopicity values) with four sensitivity simulations (SULF, increasing the sulfate hygroscopicity; ORG, decreasing organic hygroscopicity; SWITCH, using a concentration-dependent hygroscopicity value for ammonium; and ALL, including all three changes) to understand the role of aerosol composition on precipitation during a mesoscale convective system (MCS). Overall, the hygroscopicity changes influence the spatial patterns of precipitation and the intensity. Focusing on the maximum precipitation in the model domain downwind of an urban area, we find that changing the individual component hygroscopicities leads to bulk hygroscopicity changes, especially in the ORG simulation. Reducing bulk hygroscopicity (e.g., ORG simulation) initially causes fewer activated drops, weakened updrafts in the midtroposphere, and increased precipitation from larger hydrometeors. Increasing bulk hygroscopicity (e.g., SULF simulation) simulates more numerous and smaller cloud drops and increases precipitation. In the ALL simulation, a stronger cold pool and downdrafts lead to precipitation suppression later in the MCS evolution. In this downwind region, the combined changes in hygroscopicity (ALL) reduces the overprediction of intense events (>70 mm d-1) and better captures the range of moderate intensity (30-60 mm d-1) events. The results of this single MCS analysis suggest that aerosol composition can play an important role in simulating high-intensity precipitation events.

  18. Future frequencies of extreme weather events in the National Wildlife Refuges of the conterminous U.S.

    Science.gov (United States)

    Martinuzzi, Sebastian; Allstadt, Andrew J.; Bateman, Brooke L.; Heglund, Patricia J.; Pidgeon, Anna M.; Thogmartin, Wayne E.; Vavrus, Stephen J.; Radeloff, Volker C.

    2016-01-01

    Climate change is a major challenge for managers of protected areas world-wide, and managers need information about future climate conditions within protected areas. Prior studies of climate change effects in protected areas have largely focused on average climatic conditions. However, extreme weather may have stronger effects on wildlife populations and habitats than changes in averages. Our goal was to quantify future changes in the frequency of extreme heat, drought, and false springs, during the avian breeding season, in 415 National Wildlife Refuges in the conterminous United States. We analyzed spatially detailed data on extreme weather frequencies during the historical period (1950–2005) and under different scenarios of future climate change by mid- and late-21st century. We found that all wildlife refuges will likely experience substantial changes in the frequencies of extreme weather, but the types of projected changes differed among refuges. Extreme heat is projected to increase dramatically in all wildlife refuges, whereas changes in droughts and false springs are projected to increase or decrease on a regional basis. Half of all wildlife refuges are projected to see increases in frequency (> 20% higher than the current rate) in at least two types of weather extremes by mid-century. Wildlife refuges in the Southwest and Pacific Southwest are projected to exhibit the fastest rates of change, and may deserve extra attention. Climate change adaptation strategies in protected areas, such as the U.S. wildlife refuges, may need to seriously consider future changes in extreme weather, including the considerable spatial variation of these changes.

  19. Factors Influencing Knowledge, Food Safety Practices and Food Preferences During Warm Weather of Salmonella and Campylobacter Cases in South Australia.

    Science.gov (United States)

    Milazzo, Adriana; Giles, Lynne C; Zhang, Ying; Koehler, Ann P; Hiller, Janet E; Bi, Peng

    2017-03-01

    To assess food safety practices, food shopping preferences, and eating behaviors of people diagnosed with Salmonella or Campylobacter infection in the warm seasons, and to identify socioeconomic factors associated with behavior and practices. A cross-sectional survey was conducted among Salmonella and Campylobacter cases with onset of illness from January 1 to March 31, 2013. Multivariable logistic regression analyses examined relationships between socioeconomic position and food safety knowledge and practices, shopping and food preferences, and preferences, perceptions, and knowledge about food safety information on warm days. Respondents in our study engaged in unsafe personal and food hygiene practices. They also carried out unsafe food preparation practices, and had poor knowledge of foods associated with an increased risk of foodborne illness. Socioeconomic position did not influence food safety practices. We found that people's reported eating behaviors and food preferences were influenced by warm weather. Our study has explored preferences and practices related to food safety in the warm season months. This is important given that warmer ambient temperatures are projected to rise, both globally and in Australia, and will have a substantial effect on the burden of infectious gastroenteritis including foodborne disease. Our results provide information about modifiable behaviors for the prevention of foodborne illness in the household in the warm weather and the need for information to be disseminated across the general population. An understanding of the knowledge and factors associated with human behavior during warmer weather is critical for public health interventions on foodborne prevention.

  20. The Influence of Prescribed Fire, Habitat, and Weather on Amblyomma americanum (Ixodida: Ixodidae in West-Central Illinois, USA

    Directory of Open Access Journals (Sweden)

    Mary E. Gilliam

    2018-03-01

    Full Text Available The distribution of Amblyomma americanum (L. is changing and reports of tick-borne disease transmitted by A. americanum are increasing in the USA. We used flagging to collect ticks, surveyed vegetation and collected weather data in 2015 and 2016. A. americanum dominated collections in both years (97%. Ticks did not differ among burn treatments; however, tick abundance differed between years among total, adult, and larval ticks. Habitat variables showed a weak negative correlation to total ticks in respect to: Shannon diversity index, percent bare ground, perennial cover, and coarse woody debris. Nymphal ticks showed a weak negative correlation to percent bare ground and fewer adults were collected in areas with more leaf litter and coarse woody debris. Conversely, we found larvae more often in areas with more total cover, biennials, vines, shrubs, and leaf litter, suggesting habitat is important for this life stage. We compared weather variables to tick presence and found, in 2015, temperature, precipitation, humidity, and sample period influenced tick collection and were life stage specific. In 2016, temperature, precipitation, humidity, wind, and sample period influenced tick collection and were also life stage specific. These results indicate that spring burns in an oak woodland do not reduce ticks; other variables such as habitat and weather are more influential on tick abundance or presence at different life stages.

  1. Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor

    Science.gov (United States)

    Hogan, Erik A.; Schaub, Hanspeter

    2016-09-01

    With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.

  2. The influence of the weather on recreational behaviour: a micro econometric approach

    NARCIS (Netherlands)

    Berkhout, P.H.G.; Brouwer, N.M.

    2005-01-01

    In this article the relationship between the weather and water-based recreational behavior is investigated at the microlevel. The relation is estimated by applying a zero-inflated negative binomial count model on a large dataset consisting of individually reported day-tripping behavior during a

  3. The influence of weather on fibrinolysis and fibrinogenolysis. [in human body

    Science.gov (United States)

    Marchenko, V. I.

    1974-01-01

    Analysis of fibrinolysis and fibrinogenolysis indices by month showed an increase in the activity of these processes from winter to summer (1967-1968). At all seasons of the year, fibrinolysis and fibrinogenolysis increase during weather of the cyclonic type with passage of fronts and sharp fluctuations in meteorological factors in the atmosphere.

  4. Influence of weather and climate variables on the basal area growth of individual shortleaf pine trees

    Science.gov (United States)

    Pradip Saud; Thomas B. Lynch; Duncan S. Wilson; John Stewart; James M. Guldin; Bob Heinemann; Randy Holeman; Dennis Wilson; Keith Anderson

    2015-01-01

    An individual-tree basal area growth model previously developed for even-aged naturally occurring shortleaf pine trees (Pinus echinata Mill.) in western Arkansas and southeastern Oklahoma did not include weather variables. Individual-tree growth and yield modeling of shortleaf pine has been carried out using the remeasurements of over 200 plots...

  5. Tales of future weather

    NARCIS (Netherlands)

    Hazeleger, W.; Van den Hurk, B.J.J.M.; Min, E.; Van Oldenborgh, G.J.; Petersen, A.C.; Stainforth, D.A.; Vasileiadou, E.; Smith, L.A.

    2015-01-01

    Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to avoid climate change and in adaptation to changes. The

  6. Evaluation of the HadGEM3-A simulations in view of detection and attribution of human influence on extreme events in Europe

    Science.gov (United States)

    Vautard, Robert; Christidis, Nikolaos; Ciavarella, Andrew; Alvarez-Castro, Carmen; Bellprat, Omar; Christiansen, Bo; Colfescu, Ioana; Cowan, Tim; Doblas-Reyes, Francisco; Eden, Jonathan; Hauser, Mathias; Hegerl, Gabriele; Hempelmann, Nils; Klehmet, Katharina; Lott, Fraser; Nangini, Cathy; Orth, René; Radanovics, Sabine; Seneviratne, Sonia I.; van Oldenborgh, Geert Jan; Stott, Peter; Tett, Simon; Wilcox, Laura; Yiou, Pascal

    2018-04-01

    A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations forced with observed sea surface temperature of the 54 year period 1960-2013. These simulations, together with dual simulations without human influence in the forcing, are intended to be used in weather and climate event attribution. The analysis investigates the main processes leading to extreme events, including atmospheric circulation patterns, their links with temperature extremes, land-atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated variability, trends and generalized extreme value theory parameters for temperature and precipitation. One of the most striking findings is the ability of the model to capture North-Atlantic atmospheric weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also reproduces the main observed weather patterns responsible for temperature and precipitation extreme events. However, biases are found in many physical processes. Slightly excessive drying may be the cause of an overestimated summer interannual variability and too intense heat waves, especially in central/northern Europe. However, this does not seem to hinder proper simulation of summer temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency and stratosphere-troposphere interactions. Extreme precipitation amounts are overestimated and too variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region. There, simulated weather conditions appear not to be leading to strong enough storm surges, but winds were found in very good agreement with reanalyses. The performance in reproducing atmospheric weather patterns

  7. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    Science.gov (United States)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  8. An evaluation of the impact of aerosol particles on weather forecasts from a biomass burning aerosol event over the Midwestern United States: observational-based analysis of surface temperature

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2016-05-01

    Full Text Available A major continental-scale biomass burning smoke event from 28–30 June 2015, spanning central Canada through the eastern seaboard of the United States, resulted in unforecasted drops in daytime high surface temperatures on the order of 2–5  °C in the upper Midwest. This event, with strong smoke gradients and largely cloud-free conditions, provides a natural laboratory to study how aerosol radiative effects may influence numerical weather prediction (NWP forecast outcomes. Here, we describe the nature of this smoke event and evaluate the differences in observed near-surface air temperatures between Bismarck (clear and Grand Forks (overcast smoke, to evaluate to what degree solar radiation forcing from a smoke plume introduces daytime surface cooling, and how this affects model bias in forecasts and analyses. For this event, mid-visible (550 nm smoke aerosol optical thickness (AOT, τ reached values above 5. A direct surface cooling efficiency of −1.5 °C per unit AOT (at 550 nm, τ550 was found. A further analysis of European Centre for Medium-Range Weather Forecasts (ECMWF, National Centers for Environmental Prediction (NCEP, United Kingdom Meteorological Office (UKMO near-surface air temperature forecasts for up to 54 h as a function of Moderate Resolution Imaging Spectroradiometer (MODIS Dark Target AOT data across more than 400 surface stations, also indicated the presence of the daytime aerosol direct cooling effect, but suggested a smaller aerosol direct surface cooling efficiency with magnitude on the order of −0.25 to −1.0 °C per unit τ550. In addition, using observations from the surface stations, uncertainties in near-surface air temperatures from ECMWF, NCEP, and UKMO model runs are estimated. This study further suggests that significant daily changes in τ550 above 1, at which the smoke-aerosol-induced direct surface cooling effect could be comparable in magnitude with model uncertainties, are rare events

  9. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks

    International Nuclear Information System (INIS)

    Bjerke, Jarle W; Jepsen, Jane U; Lovibond, Sarah; Tømmervik, Hans; Rune Karlsen, Stein; Arild Høgda, Kjell; Malnes, Eirik; Vikhamar-Schuler, Dagrun

    2014-01-01

    The release of cold temperature constraints on photosynthesis has led to increased productivity (greening) in significant parts (32–39%) of the Arctic, but much of the Arctic shows stable (57–64%) or reduced productivity (browning, <4%). Summer drought and wildfires are the best-documented drivers causing browning of continental areas, but factors dampening the greening effect of more maritime regions have remained elusive. Here we show how multiple anomalous weather events severely affected the terrestrial productivity during one water year (October 2011–September 2012) in a maritime region north of the Arctic Circle, the Nordic Arctic Region, and contributed to the lowest mean vegetation greenness (normalized difference vegetation index) recorded this century. Procedures for field data sampling were designed during or shortly after the events in order to assess both the variability in effects and the maximum effects of the stressors. Outbreaks of insect and fungal pests also contributed to low greenness. Vegetation greenness in 2012 was 6.8% lower than the 2000–11 average and 58% lower in the worst affected areas that were under multiple stressors. These results indicate the importance of events (some being mostly neglected in climate change effect studies and monitoring) for primary productivity in a high-latitude maritime region, and highlight the importance of monitoring plant damage in the field and including frequencies of stress events in models of carbon economy and ecosystem change in the Arctic. Fourteen weather events and anomalies and 32 hypothesized impacts on plant productivity are summarized as an aid for directing future research. (letter)

  10. [Influence of weather in the incidence of acute myocardial infarction in Galicia (Spain)].

    Science.gov (United States)

    Fernández-García, José Manuel; Dosil Díaz, Olga; Taboada Hidalgo, Juan José; Fernández, José Ramón; Sánchez-Santos, Luis

    2015-08-07

    To assess the interactions between weather and the impact of each individual meteorological parameters in the incidence of acute myocardial infarctions (AMI) in Galicia. Retrospective study analyzing the number of AMI diagnosed and transferred to the hospital by the Emergencies Sanitary System of Galicia between 2002 and 2009. We included patients with clinical and ECG findings of AMI. The correlation between 10-minute meteorological variables (temperature, humidity, pressure, accumulated rainfall and wind speed) recorded by MeteoGalicia and the incidence of AMI was assessed. A total of 4,717 AMI were registered (72.8% men, 27.2% women). No seasonal variations were found. No significant correlations were detected with regard to average daily temperature (P=.683) or wind speed (P=.895). Correlation between atmospheric pressure and incidence of AMI was significant (P<.005), as well as with the daily relative humidity average (P=.005). Our study showed a statistical significant association with atmospheric pressure and with the daily relative humidity average. Since the local conditions of weather are widely variable, future studies should establish the relationship between weather patterns (including combinations of meteorological parameters), rather than seasonal variations, and the incidence of AMI. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  11. Decoupling Weather Influence from User Habits for an Optimal Electric Load Forecast System

    Directory of Open Access Journals (Sweden)

    Luca Massidda

    2017-12-01

    Full Text Available The balance between production and consumption in a smart grid with high penetration of renewable sources and in the presence of energy storage systems benefits from an accurate load prediction. A general approach to load forecasting is not possible because of the additional complication due to the increasing presence of distributed and usually unmeasured photovoltaic production. Various methods are proposed in the literature that can be classified into two classes: those that predict by separating the portion of load due to consumption habits from the part of production due to local weather conditions, and those that attempt to predict the load as a whole. The characteristic that should lead to a preference for one approach over another is obviously the percentage of penetration of distributed production. The study site discussed in this document is the grid of Borkum, an island located in the North Sea. The advantages in terms of reducing forecasting errors for the electrical load, which can be obtained by using weather information, are explained. In particular, when comparing the results of different approaches gradually introducing weather forecasts, it is clear that the correct functional dependency of production has to be taken into account in order to obtain maximum yield from the available information. Where possible, this approach can significantly improve the quality of the forecasts, which in turn can improve the balance of a network—especially if energy storage systems are in place.

  12. Socio-economic and policy aspects of changes in incidence and intensity of extreme weather events. Preliminary results

    International Nuclear Information System (INIS)

    Dorland, C.; Maunder, W.J.; Olsthoorn, A.A.; Tol, R.S.J.; Van der Werff, P.E.; Vellinga, P.

    1995-01-01

    Climate change results in an alteration of spatial and temporal patterns of climate hazards. The trend in weather related disaster seems upward. Various socio-economic sectors are affected by these changes, e.g. the disaster reduction institutions and the insurance industry. We report about an ongoing project addressing the vulnerabilities of sectors affected and policy options in various sectors, notably 'Storms over NW-Europe', 'the insurance sector' (both as a sector impacted by change and as a mechanism to cope with risk) and 'cyclones in the South Pacific'. 5 refs

  13. Dynamical contibution of Mean Potential Vorticity pseudo-observations derived from MetOp/GOME2 Ozone data into weather forecast, a Mediterranean High Precipitation Event study.

    Science.gov (United States)

    Sbii, Siham; Zazoui, Mimoun; Semane, Noureddine

    2015-04-01

    In the absence of observations covering the upper troposphere - lower stratophere, headquarters of several disturbances, and knowing that satellites are uniquely capable of providing uniform data coverage globally, a methodology is followed [1] to convert Total Column Ozone, observed by MetOp/GOME2, into pseudo-observations of Mean Potential Vorticity (MPV). The aim is to study the dynamical impact of Ozone data in the prediction of a Mediterranean Heavy Precipitation Event observed during 28-29 September 2012 in the context of HYMEX1. This study builds on a previously described methodology [2] that generates numerical weather prediction model initial conditions from ozone data. Indeed, the assimilation of MPV in a 3D-var framework is based on a linear regression between observed Ozone and vertical integrated Ertel PV. The latter is calculated using dynamical fields from the moroccan operational limited area model ALADIN-MAROC according to [3]: δθ fp p0 -R δU δV P V = - gξaδp- g-R-(p )Cp [(δp-)2 + (δp-)2] (1) Where ξa is the vertical component of the absolute vorticity, U and V the horizontal wind components, θ the potential temperature, R gas constant, Cp specific heat at constant pressure, p the pressure, p0 a reference pressure, g the gravity and f is the Coriolis parameter. The MPV is estimated using the following expression: --1--∫ P2 M PV = P1 - P2 P P V.δp 1 (2) With P1 = 500hPa and P2 = 100hPa In the present study, the linear regression is performed over September 2012 with a correlation coefficient of 0.8265 and is described as follows: M P V = 5.314610- 2 *O3 - 13.445 (3) where O3 and MPV are given in Dobson Unit (DU) and PVU (1 PV U = 10-6 m2 K kg-1 s-1), respectively. It is found that the ozone-influenced upper-level initializing fields affect the precipitation forecast, as diagnosed by a comparison with the ECMWF model. References [1] S. Sbii, N. Semane, Y. Michel, P. Arbogast and M. Zazoui (2012). Using METOP/GOME-2 data and MSG ozone

  14. Spatiotemporal Variance of Global Horizontal Moisture Transport and the Influence of Strong ENSO Events Using ERA-Interim Reanalysis

    Science.gov (United States)

    Kutta, E. J.; Hubbart, J. A.; Svoma, B. M.; Eichler, T. P.; Lupo, A. R.

    2016-12-01

    El Nino-Southern Oscillation (ENSO) is well documented as a leading source of seasonal to inter-annual variations in global weather and climate. Strong ENSO events have been shown to alter the location and magnitude of Hadley and Walker circulations that maintain equilibrium at tropical latitudes and regulate moisture transport into mid-latitude storm tracks. Broad impacts associated with ENSO events include anomalous regional precipitation (ARP) and temperature patterns and subsequent impacts to socioeconomic and human health systems. Potential socioeconomic and human health impacts range from regional changes in water resources and agricultural productivity to local storm water management, particularly in rapidly urbanizing watersheds. Evidence is mounting to suggest that anthropogenic climate change will increase the frequency of heavy precipitation events, which compounds impacts of ARP patterns associated with strong El Nino events. Therefore, the need exists to identify common regional patterns of spatiotemporal variance of horizontal moisture flux (HMF) during months (Oct-Feb) associated with the peak intensity (Oceanic Nino Index [ONI]) of the three strongest El Nino (ONI > µ + 2σ) and La Nina (ONI hourly resolution before taking the density weighted vertical average. Long term means (LTM; 1979-2015) were quantified and the influence of strong ENSO events was assessed by quantifying deviations from the LTM for each respective covariance property during months associated with the selected ENSO events. Results reveal regions of statistically significant (CI = 0.05) differences from the LTM for the vertically integrated HMF and each covariance quantity. Broader implications of this work include potential for improved seasonal precipitation forecasts at regional scales and subsequent improvements to local water resource management. There is potential for future work objectively comparing these results with output from Earth System Models to improve

  15. Tectonic uplift and denudation rate influence soil chemical weathering intensity in a semi-arid environment, southeast Spain: physico-chemical and mineralogical evidence

    Science.gov (United States)

    Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Schoonejans, Jérôme; Vanacker, Veerle; Sonnet, Philippe; Delmelle, Pierre

    2015-04-01

    Tectonic uplift is known to influence denudation rates. Denudation, including chemical weathering and physical erosion, affects soil production rates and weathering intensities. At topographic steady state, weathering can be transport- or weathering-limited. In the transport-limited regime, low denudation rates should lead to comparatively high weathering intensities, while in the weathering-limited case high denudation rates are associated with lower weathering intensities. Here, we test if this relationship applies to semi-arid environments where chemical weathering is generally slow. Three catchments (EST, FIL and CAB) were studied in the Internal Zone of the Betic Cordillera in southeast Spain, spanning a range of increasing uplift rates (10-170 mm/kyr) and increasing denudation rates (20-250 mm/kyr) from EST to CAB. In each catchment, two ridgetop soil profiles were sampled down to the bedrock. The three catchments have similar vegetation and climatic conditions, with precipitation of 250- 315 mm/yr and mean annual temperature of 15-17 °C. The mineralogy of the bedrock, as determined by XRD, is similar across the three catchments and is characterized by the presence of quartz, muscovite, clinochlore, biotite and plagioclase. This primary mineral assemblage is also found in the catchment soils, indicating that the soils studied derive from the same parent material. The soil clay-size fraction is dominated by kaolinite, vermiculite and illite. However, the proportions of the soil primary and secondary minerals vary between the catchment sites. The abundance of biotite decreases from CAB (14%) to EST (4%), whereas the quartz and clay contents show an opposite tendency (from 30 to 69% and 9.9 to 14.3%, respectively). Further, the abundance of vermiculite increases from CAB to EST. The results are interpreted in terms of increasing weathering intensity from CAB to EST by weathering of biotite into vermiculite and enrichment of soils on more weathering resistant

  16. Application of rain scanner SANTANU and transportable weather radar in analyze of Mesoscale Convective System (MCS) events over Bandung, West Java

    Science.gov (United States)

    Nugroho, G. A.; Sinatra, T.; Trismidianto; Fathrio, I.

    2018-05-01

    Simultaneous observation of transportable weather radar LAPAN-GMR25SP and rain-scanner SANTANU were conducted in Bandung and vicinity. The objective is to observe and analyse the weather condition in this area during rainy and transition season from March until April 2017. From the observation result reported some heavy rainfall with hail and strong winds occurred on March 17th and April 19th 2017. This events were lasted within 1 to 2 hours damaged some properties and trees in Bandung. Mesoscale convective system (MCS) are assumed to be the cause of this heavy rainfall. From two radar data analysis showed a more local convective activity in around 11.00 until 13.00 LT. This local convective activity are showed from the SANTANU observation supported by the VSECT and CMAX of the Transportable radar data that signify the convective activity within those area. MCS activity were observed one hour after that. This event are confirm by the classification of convective-stratiform echoes from radar data and also from the high convective index from Tbb Himawari 8 satellite data. The different MCS activity from this two case study is that April 19 have much more MCS activity than in March 17, 2017.

  17. Response of Land-Sea Interface in Xiamen Bay to Extreme Weather Events Observed with the Ecological Dynamic Buoy Array, a Multifunctional Sensors System

    Science.gov (United States)

    Wu, J.; Hong, H.; Pan, W.; Zhang, C.

    2016-12-01

    Recent climate observations suggest that global climate change may result in an increase of extreme weather events (such as tropical cyclones, intense precipitation i.e. heavy rains) in frequency and/or intensity in certain world regions. Subtropical coastal regions are often densely populated areas experiencing rapid development and widespread changes to the aquatic environment. The biogeochemical and ecological responses of coastal systems to extreme weather events are of increasing concern. Enhanced river nutrients input following rain storms has been linked to the ecological responses at land-sea interface. These land-sea interactions can be studied using multifunctional sensors systems. In our study, the Ecological Dynamic Buoy Array, a monitoring system with multiple sensors, was deployed in Xiamen Bay for near real time measurements of different parameters. The Ecological Dynamic Buoy Array is a deep water net cage which functions in long-term synchronous observation of dynamic ecological characteristics with the support of an aerograph, water-watch, LOBO (Land/Ocean Biogeochemical Observatory), ADCP, CTD chain system, YSI vertical profiler, flow cytometer, sea surface camera, and "communication box". The study showed that rain storms during multiple typhoons resulted in greater fluctuations of salinity, N concentration, and other water environmental conditions, which might have been connected with algal blooms (so-called red tide) in Xiamen Bay.

  18. Weather Augmented Risk Determination (WARD) System

    Science.gov (United States)

    Niknejad, M.; Mazdiyasni, O.; Momtaz, F.; AghaKouchak, A.

    2017-12-01

    Extreme climatic events have direct and indirect impacts on society, economy and the environment. Based on the United States Bureau of Economic Analysis (BEA) data, over one third of the U.S. GDP can be considered as weather-sensitive involving some degree of weather risk. This expands from a local scale concrete foundation construction to large scale transportation systems. Extreme and unexpected weather conditions have always been considered as one of the probable risks to human health, productivity and activities. The construction industry is a large sector of the economy, and is also greatly influenced by weather-related risks including work stoppage and low labor productivity. Identification and quantification of these risks, and providing mitigation of their effects are always the concerns of construction project managers. In addition to severe weather conditions' destructive effects, seasonal changes in weather conditions can also have negative impacts on human health. Work stoppage and reduced labor productivity can be caused by precipitation, wind, temperature, relative humidity and other weather conditions. Historical and project-specific weather information can improve better project management and mitigation planning, and ultimately reduce the risk of weather-related conditions. This paper proposes new software for project-specific user-defined data analysis that offers (a) probability of work stoppage and the estimated project length considering weather conditions; (b) information on reduced labor productivity and its impacts on project duration; and (c) probabilistic information on the project timeline based on both weather-related work stoppage and labor productivity. The software (WARD System) is designed such that it can be integrated into the already available project management tools. While the system and presented application focuses on the construction industry, the developed software is general and can be used for any application that involves

  19. The influence of weather and lemmings on spatiotemporal variation in the abundance of multiple avian guilds in the arctic.

    Directory of Open Access Journals (Sweden)

    Barry G Robinson

    Full Text Available Climate change is occurring more rapidly in the Arctic than other places in the world, which is likely to alter the distribution and abundance of migratory birds breeding there. A warming climate can provide benefits to birds by decreasing spring snow cover, but increases in the frequency of summer rainstorms, another product of climate change, may reduce foraging opportunities for insectivorous birds. Cyclic lemming populations in the Arctic also influence bird abundance because Arctic foxes begin consuming bird eggs when lemmings decline. The complex interaction between summer temperature, precipitation, and the lemming cycle hinder our ability to predict how Arctic-breeding birds will respond to climate change. The main objective of this study was to investigate the relationship between annual variation in weather, spring snow cover, lemming abundance and spatiotemporal variation in the abundance of multiple avian guilds in a tundra ecosystem in central Nunavut, Canada: songbirds, shorebirds, gulls, loons, and geese. We spatially stratified our study area based on vegetation productivity, terrain ruggedness, and freshwater abundance, and conducted distance sampling to estimate strata-specific densities of each guild during the summers of 2010-2012. We also monitored temperature, rainfall, spring snow cover, and lemming abundance each year. Spatial variation in bird abundance matched what was expected based on previous ecological knowledge, but weather and lemming abundance also significantly influenced the abundance of some guilds. In particular, songbirds were less abundant during the cool, wet summer with moderate snow cover, and shorebirds and gulls declined with lemming abundance. The abundance of geese did not vary over time, possibly because benefits created by moderate spring snow cover were offset by increased fox predation when lemmings were scarce. Our study provides an example of a simple way to monitor the correlation between

  20. Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change

    Czech Academy of Sciences Publication Activity Database

    Trnka, Miroslav; Hlavinka, Petr; Semenov, M. A.

    2016-01-01

    Roč. 12, č. 12 (2016), s. 1-7 ISSN 1742-5689 Institutional support: RVO:67179843 Keywords : climate change * extreme events * food security * winter wheat Subject RIV: EH - Ecology, Behaviour Impact factor: 3.579, year: 2016

  1. Influence of weather and atmospheric pollution on physical activity in patients with COPD.

    Science.gov (United States)

    Alahmari, Ayedh D; Mackay, Alex J; Patel, Anant R C; Kowlessar, Beverly S; Singh, Richa; Brill, Simon E; Allinson, James P; Wedzicha, Jadwiga A; Donaldson, Gavin C

    2015-06-13

    Information concerning how climate and atmospheric pollutants affects physical activity in COPD patients is lacking and might be valuable in determining when physical activity should be encouraged. Seventy-three stable COPD patients recorded on daily diary cards worsening of respiratory symptoms, peak expiratory flow rate, hours spent outside the home and the number of steps taken per day. Pedometry data was recorded on 16,478 days, an average of 267 days per patient (range 29-658). Daily data for atmospheric PM10 and ozone (O3) were obtained for Bloomsbury Square, Central London from the Air Quality Information Archive databases. Daily weather data were obtained for London Heathrow from the British Atmospheric Data Archive. Colder weather below 22.5 °C, reduced daily step count by 43.3 steps day per °C (95% CI 2.14 to 84.4; p = 0.039) and activity was lower on rainy than dry days (p = 0.002) and on overcast compared to sunny days (p atmospheric pollution at high levels.

  2. Mildew growth on automotive coatings influencing the results of outdoor weathering

    Energy Technology Data Exchange (ETDEWEB)

    Wachtendorf, V.; Schulz, U.; Geburtig, A.; Stephan, I. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany)

    2012-02-15

    As the results of a 14 weeks outdoor exposure of a series of automotive coatings in South Florida, the panels were found to be overgrown with an almost closed layer of mildew. Pinholes remained as permanent surface damage after removing the mildew mycelium. The extent of the damage differed in dependence of the kind of the coating. By tracing the images and profiles of the coating surfaces systematically over all phases of weathering and the subsequent cleaning procedure, a connection between formation of pinholes and mildew growth could be found. Outdoor weathering tests in other regions of Florida as well as in Europe and Australia showed that pinholes caused by mildew attack could also be found in all other locations, but always to a lower extent than in South Florida. The standardised mildew tests EN ISO 846 and MIL-STD 810F for laboratory exposure failed to reproduce the formation of pinholes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Application of a COSMO Mesoscale Model to Assess the Influence of Forest Cover Changes on Regional Weather Conditions

    Science.gov (United States)

    Olchev, A.; Rozinkina, I.; Kuzmina, E.; Nikitin, M.; Rivin, G. S.

    2017-12-01

    Modern changes in land use and forest cover have a significant influence on local, regional, and global weather and climate conditions. In this study, the mesoscale model COSMO is used to estimate the possible influence of forest cover change in the central part of the East European Plain on regional weather conditions. The "model region" of the study is surrounded by geographical coordinates 55° and 59°N and 28° and 37°E and situated in the central part of a large modeling domain (50° - 70° N and 15° 55° E), covering almost the entire East European Plain in Northern Eurasia. The forests cover about 50% of the area of the "model region". The modeling study includes 3 main numerical experiments. The first assumes total deforestation of the "model region" and replacement of forests by grasslands. The second is represented by afforestation of the "model region." In the third, weather conditions are simulated with present land use and vegetation structures of the "model region." Output of numerical experiments is at 13.2 km grid resolution, and the ERA-Interim global atmospheric reanalysis (with 6-h resolution in time and 0.75°×0.75° in space) is used to quantify initial and boundary conditions. Numerical experiments for the warm period of 2010 taken as an example show that deforestation and afforestation processes in the selected region can lead to significant changes in weather conditions. Deforestation processes in summer conditions can result in increased air temperature and wind speed, reduction of precipitation, lower clouds, and relative humidity. The afforestation process can result in opposite effects (decreased air temperature, increased precipitation, higher air humidity and fog frequency, and strengthened storm winds). Maximum meteorological changes under forest cover changes are projected for the summer months (July and August). It was also shown that changes of some meteorological characteristics (e.g., air temperature) is observed in the

  4. Evaluation of stochastic weather generators for capturing the statistics of extreme precipitation events in the Catskill Mountain watersheds, New York State

    Science.gov (United States)

    Acharya, N.; Frei, A.; Owens, E. M.; Chen, J.

    2015-12-01

    Watersheds located in the Catskill Mountains area, part of the eastern plateau climate region of New York, contributes about 90% of New York City's municipal water supply, serving 9 million New Yorkers with about 1.2 billion gallons of clean drinking water each day. The New York City Department of Environmental Protection has an ongoing series of studies to assess the potential impacts of climate change on the availability of high quality water in this water supply system. Recent studies identify increasing trends in total precipitation and in the frequency of extreme precipitation events in this region. The objectives of the present study are: to analyze the proba­bilistic structure of extreme precipitation based on historical observations: and to evaluate the abilities of stochastic weather generators (WG), statistical models that produce synthetic weather time series based on observed statistical properties at a particular location, to simulate the statistical properties of extreme precipitation events over this region. The generalized extreme value distribution (GEV) has been applied to the annual block maxima of precipitation for 60 years (1950 to 2009) observed data in order to estimate the events with return periods of 50, 75, and 100 years. These results were then used to evaluate a total of 13 WGs were : 12 parametric WGs including all combinations of three different orders of Markov chain (MC) models (1st , 2nd and 3rd) and four different probability distributions (exponential, gamma, skewed normal and mixed exponential); and one semi parametric WG based on k-nearest neighbor bootstrapping. Preliminary results suggest that three-parameter (skewed normal and mixed exponential distribution) and semi-parametric (k-nearest neighbor bootstrapping) WGs are more consistent with observations. It is also found that first order MC models perform as well as second or third order MC models.

  5. Relative influence of human harvest, carnivores, and weather on adult female elk survival across western North America

    Science.gov (United States)

    Brodie, Jedediah; Johnson, Heather; Mitchell, Michael; Zager, Peter; Proffitt, Kelly; Hebblewhite, Mark; Kauffman, Matthew; Johnson, Bruce; Bissonette, John; Bishop, Chad; Gude, Justin; Herbert, Jeff; Hersey, Kent R.; Hurley, Mark; Lukacs, Paul M.; McCorquodale, Scott; McIntire, Eliot; Nowak, Josh; Sawyer, Hall; Smith, Douglas; White, P.J.

    2013-01-01

    Well-informed management of harvested species requires understanding how changing ecological conditions affect demography and population dynamics, information that is lacking for many species. We have limited understanding of the relative influence of carnivores, harvest, weather and forage availability on elk Cervus elaphus demography, despite the ecological and economic importance of this species. We assessed adult female survival, a key vital rate for population dynamics, from 2746 radio-collared elk in 45 populations across western North America that experience wide variation in carnivore assemblage, harvest, weather and habitat conditions. Proportional hazard analysis revealed that 'baseline' (i.e. not related to human factors) mortality was higher with very high winter precipitation, particularly in populations sympatric with wolves Canis lupus. Mortality may increase via nutritional stress and heightened vulnerability to predation in snowy winters. Baseline mortality was unrelated to puma Puma concolor presence, forest cover or summer forage productivity. Cause-specific mortality analyses showed that wolves and all carnivore species combined had additive effects on baseline elk mortality, but only reduced survival by baseline adult female elk mortality from wolves in years with high winter precipitation could affect elk abundance as winters across the western US become drier and wolves recolonize portions of the region. In the absence of human harvest, wolves had additive, although limited, effects on mortality. However, human harvest, and its apparent use by managers to offset predation, primarily controls overall variation in adult female mortality. Altering harvest quotas is thus a strong tool for offsetting impacts of carnivore recolonization and shifting weather patterns on elk across western North America.

  6. A diary after dinner: How the time of event recording influences later accessibility of diary events.

    Science.gov (United States)

    Szőllősi, Ágnes; Keresztes, Attila; Conway, Martin A; Racsmány, Mihály

    2015-01-01

    Recording the events of a day in a diary may help improve their later accessibility. An interesting question is whether improvements in long-term accessibility will be greater if the diary is completed at the end of the day, or after a period of sleep, the following morning. We investigated this question using an internet-based diary method. On each of five days, participants (n = 109) recorded autobiographical memories for that day or for the previous day. Recording took place either in the morning or in the evening. Following a 30-day retention interval, the diary events were free recalled. We found that participants who recorded their memories in the evening before sleep had best memory performance. These results suggest that the time of reactivation and recording of recent autobiographical events has a significant effect on the later accessibility of those diary events. We discuss our results in the light of related findings that show a beneficial effect of reduced interference during sleep on memory consolidation and reconsolidation.

  7. Mesoscale and Local Scale Evaluations of Quantitative Precipitation Estimates by Weather Radar Products during a Heavy Rainfall Event

    Directory of Open Access Journals (Sweden)

    Basile Pauthier

    2016-01-01

    Full Text Available A 24-hour heavy rainfall event occurred in northeastern France from November 3 to 4, 2014. The accuracy of the quantitative precipitation estimation (QPE by PANTHERE and ANTILOPE radar-based gridded products during this particular event, is examined at both mesoscale and local scale, in comparison with two reference rain-gauge networks. Mesoscale accuracy was assessed for the total rainfall accumulated during the 24-hour event, using the Météo France operational rain-gauge network. Local scale accuracy was assessed for both total event rainfall and hourly rainfall accumulations, using the recently developed HydraVitis high-resolution rain gauge network Evaluation shows that (1 PANTHERE radar-based QPE underestimates rainfall fields at mesoscale and local scale; (2 both PANTHERE and ANTILOPE successfully reproduced the spatial variability of rainfall at local scale; (3 PANTHERE underestimates can be significantly improved at local scale by merging these data with rain gauge data interpolation (i.e., ANTILOPE. This study provides a preliminary evaluation of radar-based QPE at local scale, suggesting that merged products are invaluable for applications at very high resolution. The results obtained underline the importance of using high-density rain-gauge networks to obtain information at high spatial and temporal resolution, for better understanding of local rainfall variation, to calibrate remotely sensed rainfall products.

  8. Weather Typing-Based Flood Frequency Analysis Verified for Exceptional Historical Events of Past 500 Years Along the Meuse River

    Science.gov (United States)

    De Niel, J.; Demarée, G.; Willems, P.

    2017-10-01

    Governments, policy makers, and water managers are pushed by recent socioeconomic developments such as population growth and increased urbanization inclusive of occupation of floodplains to impose very stringent regulations on the design of hydrological structures. These structures need to withstand storms with return periods typically ranging between 1,250 and 10,000 years. Such quantification involves extrapolations of systematically measured instrumental data, possibly complemented by quantitative and/or qualitative historical data and paleoflood data. The accuracy of the extrapolations is, however, highly unclear in practice. In order to evaluate extreme river peak flow extrapolation and accuracy, we studied historical and instrumental data of the past 500 years along the Meuse River. We moreover propose an alternative method for the estimation of the extreme value distribution of river peak flows, based on weather types derived by sea level pressure reconstructions. This approach results in a more accurate estimation of the tail of the distribution, where current methods are underestimating the design levels related to extreme high return periods. The design flood for a 1,250 year return period is estimated at 4,800 m3 s-1 for the proposed method, compared with 3,450 and 3,900 m3 s-1 for a traditional method and a previous study.

  9. Impacts of extreme weather events and climate variability on carbon exchanges in an age-sequence of managed temperate pine forests from 2003 to 201

    Science.gov (United States)

    Arain, M. A.

    2017-12-01

    North American temperate forests are a critical component of the global carbon cycle and regional water resources. A large portion of these forests has traditionally been managed for timber production and other uses. The response of these forests, which are in different stages of development, to extreme weather events such as drought and heat stresses, climate variability and management regimes is not fully understood. In this study, eddy covariance flux measurements in an age sequence (77-, 42-, and 14-years old as of 2016) of white pine (Pinus strobus L.) plantation forests in southern Ontario, Canada are examined to determine the impact of heat and drought stresses and climate variability over a 14 year period (2003 to 2016). The mean annual net ecosystem productivity (NEP) values were 195 ± 87, 512 ±161 and 103 ± 103 g C m-2 year-1 in 77-, 42- and 14-year-old forests respectively, over the study period. The youngest forest became a net carbon sink in the fifth year of its growth. Air temperature was a dominant control on carbon fluxes and heat stress reduced photosynthesis much more as compared to ecosystem respiration in the growing season. A large decrease in annual NEP was observed during years experiencing heat waves. Drought stress had the strongest impact on the middle age forest which had the largest carbon sink and water demand. In contrast, young forest was more sensitive to heat stress, than drought. Severity of heat and drought stress impacts was highly dependent on the timing of these events. Simultaneous occurrence of heat and drought stress in the early growing season such as in 2012 and 2016 had a drastic negative impact on carbon balance in these forests due to plant-soil-atmosphere feedbacks. Future research should consider the timing of the extreme events, the stage of forest development and effects of extreme events on component fluxes. This research helps to assess the vulnerability of managed forests and their ecological and hydrological

  10. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico.

    Directory of Open Access Journals (Sweden)

    Roberto Barrera

    2011-12-01

    Full Text Available Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence.

  11. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico.

    Science.gov (United States)

    Barrera, Roberto; Amador, Manuel; MacKay, Andrew J

    2011-12-01

    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence.

  12. The Response of Different Audiences to Place-based Communication about the Role of Climate Change in Extreme Weather Events

    Science.gov (United States)

    Halperin, A.; Walton, P.

    2015-12-01

    As the science of extreme event attribution grows, there is an increasing need to understand how the public responds to this type of climate change communication. Extreme event attribution has the unprecedented potential to locate the effects of climate change in the here and now, but there is little information about how different facets of the public might respond to these local framings of climate change. Drawing on theories of place attachment and psychological distance, this paper explores how people with different beliefs and values shift their willingness to mitigate and adapt to climate change in response to local or global communication of climate change impacts. Results will be presented from a recent survey of over 600 Californians who were each presented with one of three experimental conditions: 1) a local framing of the role of climate change in the California drought 2) a global framing of climate change and droughts worldwide, or 3) a control condition of no text. Participants were categorized into groups based on their prior beliefs about climate change according to the Six Americas classification scheme (Leiserowitz et al., 2011). The results from the survey in conjunction with qualitative results from follow-up interviews shed insight into the importance of place in communicating climate change for people in each of the Six Americas. Additional results examine the role of gender and political affiliation in mediating responses to climate change communication. Despite research that advocates unequivocally for local framing of climate change, this study offers a more nuanced perspective of under which circumstances extreme event attribution might be an effective tool for changing behaviors. These results could be useful for scientists who wish to gain a better understanding of how their event attribution research is perceived or for educators who want to target their message to audiences where it could have the most impact.

  13. Solar weather monitoring

    Directory of Open Access Journals (Sweden)

    J.-F. Hochedez

    2005-11-01

    Full Text Available Space Weather nowcasting and forecasting require solar observations because geoeffective disturbances can arise from three types of solar phenomena: coronal mass ejections (CMEs, flares and coronal holes. For each, we discuss their definition and review their precursors in terms of remote sensing and in-situ observations. The objectives of Space Weather require some specific instrumental features, which we list using the experience gained from the daily operations of the Solar Influences Data analysis Centre (SIDC at the Royal Observatory of Belgium. Nowcasting requires real-time monitoring to assess quickly and reliably the severity of any potentially geoeffective solar event. Both research and forecasting could incorporate more observations in order to feed case studies and data assimilation respectively. Numerical models will result in better predictions of geomagnetic storms and solar energetic particle (SEP events. We review the data types available to monitor solar activity and interplanetary conditions. They come from space missions and ground observatories and range from sequences of dopplergrams, magnetograms, white-light, chromospheric, coronal, coronagraphic and radio images, to irradiance and in-situ time-series. Their role is summarized together with indications about current and future solar monitoring instruments.

  14. The influence of forest management on vulnerability of forests to severe weather

    Science.gov (United States)

    Robert H. Beach; Erin O. Sills; Tzu-Ming Liu; Subhrendu. Pattanayak

    2010-01-01

    Excessive wind, ice, and snow regularly cause major disturbances to forests in many parts of the world, significantly impacting both ecological conditions and economic returns to forest landowners. These events cause immediate losses for landowners, and the broken and uprooted trees left in the wake of a storm increase the risk that wildfires, disease, and pest...

  15. The influence of regional urbanization and abnormal weather conditions on the processes of human climatic adaptation on mountain resorts

    Science.gov (United States)

    Artamonova, M.; Golitsyn, G.; Senik, I.; Safronov, A.; Babyakin, A.; Efimenko, N.; Povolotskaya, N.; Topuriya, D.; Chalaya, E.

    2012-04-01

    This work is a further development in the study of weather pathogenic index (WPI) and negative influence of urbanization processes on the state of people's health with adaptation disorder. This problem is socially significant. According to the data of the WHO, in the world there are from 20 to 45% of healthy people and from 40 to 80% of people with chronic diseases who suffer from the raised meteosensitivity. As a result of our researches of meteosensitivity of people during their short-duration on mountain resorts there were used negative adaptive reactions (NAR) under 26 routine tests, stress-reactions under L.H. Garkavi's hemogram, vegetative indices, tests of neuro-vascular reactivity, signs of imbalance of vegetative and neurohumoral regulation according to the data of biorhythm fractal analysis and sudden aggravations of diseases (SAD) as an indicator of negative climatic and urbanization influence. In 2010-2011 the Caucasian mountain resorts were having long periods of climatic anomalies, strengthening of anthropogenic emissions and forest fires when record-breaking high waves of NAR and SAD were noticed. There have also been specified indices ranks of weather pathogenicity from results of comparison of health characteristics with indicators of synoptico-dynamic processes according to Weather Research and Forecasting model (WRF); air ionization N+, N-, N+/N- spectra of aerosol particles (the size from 500 to 20000 nanometers) and concentrations of chemically active gases (O3, NO, NO2, ), volatile phytoorganic substances in the surface atmosphere, bactericidal characteristics of vegetation by criterion χ2 (not above 0,05). It has allowed us to develop new physiological optimum borders, norm and pessimum, to classify emergency ecologo-weather situations, to develop a new techniques of their forecasting and prevention of meteopathic reactions with meteosensitive patients (Method of treatment and the early (emergency) and planned prevention meteopatic reactions

  16. THE INFLUENCE OF INTERCROPS AND FARMYARD MANURE FERTILIZATION IN CHANGEABLE WEATHER CONDITIONS ON CONSUMPTION VALUE OF POTATO TUBERS

    Directory of Open Access Journals (Sweden)

    ANNA PŁAZA

    2010-10-01

    Full Text Available The paper presents the results of research carried out over 1999-2002 with the aims to determine the influence of intercrops and farmyard manure fertilization on consumption value of potato tubers in changeable weather conditions. The following combinations of intercrops fertilization were taken into account: the control plot (without intercrop fertilization, farmyard manure, undersown crop (birdsfoot trefoil, birdsfoot trefoil + Italian ryegrass, Italian ryegrass, stubble crop (oleiferous radish, oleiferous radish – mulch. The results pointed that, the conditions of vegetation period, significantly modified the consumption values of potato tubers. The consumption value of potato tubers which were fertilized with intercrops was formed on approximated level, as the potato which was fertilized with farmyard manure. The best consumption features, especially taste, had potatoes which were fertilized with birdsfoot trefoil and with the mixture of birdsfoot trefoil and Italian ryegrass.

  17. Exploring How Weathering Related Stresses and Subcritical Crack Growth May Influence the Size of Sediment Produced From Different Rock Types.

    Science.gov (United States)

    Eppes, M. C.; Hallet, B.; Hancock, G. S.; Mackenzie-Helnwein, P.; Keanini, R.

    2016-12-01

    The formation and diminution of rock debris, sediment and soil at and near Earth's surface is driven in large part by in situ, non-transport related, rock cracking. Given the relatively low magnitude stresses that arise in surface and near-surface settings, this production and diminution of granular material is likely strongly influenced and/or driven by subcritical crack growth (Eppes et al., 2016), cracking that occurs under stress loading conditions much lower than a rock's strength as typically measured in the laboratory under rapid loading. Despite a relatively sound understanding of subcritical crack growth through engineering and geophysical studies, its geomorphic and sedimentologic implications have only been minimally explored. Here, based on existing studies, we formulate several hypotheses to predict how weathering-induced stresses combined with the subcritical crack growth properties of rock may influence sediment size distribution. For example, subcritical crack growth velocity (v) can be described by v = CKIn where KI is the mode I (simple opening mode) stress intensity factor, a function of tensile stress at the crack tip and crack length; C is a rock- and environment-dependent constant; and n is material constant, the subcritical crack growth index. Fracture length and spacing in rock is strongly dependent on n, where higher n values result in fewer, more distally spaced cracks (e.g. Olsen, 1993). Thus, coarser sediment might be expected from rocks with higher n values. Weathering-related stresses such as thermal stresses and mineral hydration, however, can disproportionally stress boundaries between minerals with contrasting thermal or chemical properties and orientation, resulting in granular disintegration. Thus, rocks with properties favorable to inducing these stresses might produce sediment whose size is reflective of its constituent grains. We begin to test these hypotheses through a detailed examination of crack and rock characteristics in

  18. Relative influence of human harvest, carnivores, and weather on adult female elk survival across western North America

    Science.gov (United States)

    Brodie, Jedediah; Johnson, Heather; Mitchell, Michael; Zager, Peter; Proffitt, Kelly; Hebblewhite, Mark; Kauffman, Matthew; Johnson, Bruce; Bissonette, John; Bishop, Chad; Gude, Justin; Herbert, Jeff; Hersey, Kent R.; Hurley, Mark; Lukacs, Paul M.; McCorquodale, Scott; McIntire, Eliot; Nowak, Josh; Sawyer, Hall; Smith, Douglas; White, P.J.

    2013-01-01

    Well-informed management of harvested species requires understanding how changing ecological conditions affect demography and population dynamics, information that is lacking for many species. We have limited understanding of the relative influence of carnivores, harvest, weather and forage availability on elk Cervus elaphus demography, despite the ecological and economic importance of this species. We assessed adult female survival, a key vital rate for population dynamics, from 2746 radio-collared elk in 45 populations across western North America that experience wide variation in carnivore assemblage, harvest, weather and habitat conditions. Proportional hazard analysis revealed that 'baseline' (i.e. not related to human factors) mortality was higher with very high winter precipitation, particularly in populations sympatric with wolves Canis lupus. Mortality may increase via nutritional stress and heightened vulnerability to predation in snowy winters. Baseline mortality was unrelated to puma Puma concolor presence, forest cover or summer forage productivity. Cause-specific mortality analyses showed that wolves and all carnivore species combined had additive effects on baseline elk mortality, but only reduced survival by <2%. When human factors were included, ‘total’ adult mortality was solely related to harvest; the influence of native carnivores was compensatory. Annual total mortality rates were lowest in populations sympatric with both pumas and wolves because managers reduced female harvest in areas with abundant or diverse carnivores. Mortality from native carnivores peaked in late winter and early spring, while harvest-induced mortality peaked in autumn. The strong peak in harvest-induced mortality during the autumn hunting season decreased as the number of native carnivore species increased. Synthesis and applications. Elevated baseline adult female elk mortality from wolves in years with high winter precipitation could affect elk abundance as

  19. Impacts of human activity and extreme weather events on sedimentary organic matter in the Andong salt marsh, Hangzhou Bay, China

    Science.gov (United States)

    Loh, Pei Sun; Cheng, Long-Xiu; Yuan, Hong-Wei; Yang, Lin; Lou, Zhang-Hua; Jin, Ai-Min; Chen, Xue-Gang; Lin, Yu-Shih; Chen, Chen-Tung Arthur

    2018-02-01

    In this study, lignin-derived phenols, stable carbon isotopes and bulk elemental compositions were determined along the length of two sediment cores (C1 and C2) from the Andong salt marsh, which is located southwest of Hangzhou Bay, China. The purpose of this study was to determine the short-term changes and their implications along sediment profiles. The 1997 high tide had caused an increase in the terrestrial organic matter (OM) signal from 1996/1997 to 2000 in both cores, which was indicated by a high Λ (total lignin in mg/100 mg OC), TOC, C/N and more negative δ13C values. The slight increases in terrestrial OM along the length of the cores between 2003 and 2006 were most likely attributable to the construction of the Hangzhou Bay Bridge. Both events have likely caused an increase in erosion, and thus, these events have increased the input of terrestrial OM to nearby areas. The effects of the distinctively dry year of 2006 can be observed along C2 between 2006 and 2008 in the steadily declining terrestrial OM signal. The overall slight decrease in terrestrial OM and the distinct increase in TOC along the length of both cores toward the present were most likely because of the overall reduced sediment caused by the trapping of materials within reservoirs. These results show that the reduction in terrestrial OM in the Andong salt marsh for the past 30 years was due to reservoirs and the 2006 drought, but this was counterbalanced by the 1997 high tide event and construction of the Hangzhou Bay Bridge, which resulted in increased erosion and terrestrial OM input.

  20. Do Weather Phenomena Have Any Influence on the Occurrence of Spontaneous Pneumothorax?

    Science.gov (United States)

    Vodička, Josef; Vejvodová, Šárka; Šmíd, David; Fichtl, Jakub; Špidlen, Vladimír; Kormunda, Stanislav; Hostýnek, Jiří; Moláček, Jiří

    2016-05-01

    The objective of this study was to assess the impact of weather phenomena on the occurrence of spontaneous pneumothorax (SP) in the Plzeň region (Czech Republic). A retrospective analysis of 450 cases of SP in 394 patients between 1991 and 2013. We observed changes in average daily values of atmospheric pressure, air temperature and daily maximum wind gust for each day of that period and their effect on the development of SP. The risk of developing SP is 1.41 times higher (P=.0017) with air pressure changes of more than±6.1hPa. When the absolute value of the air temperature changes by more than±0.9°C, the risk of developing SP is 1.55 times higher (P=.0002). When the wind speed difference over the 5 days prior to onset of SP is less than 13m/sec, then the risk of SP is 2.16 times higher (P=.0004). If the pressure difference is greater than±6.1hPa and the temperature difference is greater than±0.9°C or the wind speed difference during the 5 days prior to onset of SP is less than 10.7m/s, the risk of SP is 2.04 times higher (P≤.0001). Changes in atmospheric pressure, air temperature and wind speed are undoubtedly involved in the development of SP, but don't seem to be the only factors causing rupture of blebs or emphysematous bullae. Copyright © 2015 SEPAR. Published by Elsevier Espana. All rights reserved.

  1. Influence of surface modified nano silica on alkyd binder before and after accelerated weathering

    DEFF Research Database (Denmark)

    Nikolic, Miroslav; Nguyen, Hiep Dinh; Daugaard, Anders Egede

    2016-01-01

    Introduction of nano fillers in exterior wood coatings is not straight forward. Influence on aging of polymer binder needs to be taken into account along with possible benefits that nano fillers can provide immediately after application. This study shows the influence of two differently modified...... hydrophobic nano silica on an alkyd binder for exterior wood coatings. One month after application, the highest strength and energy required to break the films was obtained with addition of 3% disilazane modified silica. Changes in tensile properties were accompanied with a small increase in glass transition...

  2. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, E. B.; Zavodsky, B. T.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), 32-km North American Regional Reanalysis (NARR) interpolated to a 12-km grid, and 13-km Rapid Refresh analyses.

  3. Impact of the Assimilation of Hyperspectral Infrared Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, Emily B.; Zavodsky, Bradley T; Jedlovec, Gary J.; Elmer, Nicholas J.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), North American Regional Reanalysis (NARR) reanalysis, and Rapid Refresh analyses.

  4. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  5. Persistence of DDT and parathion residues on a plant surface as influenced by weather factors

    NARCIS (Netherlands)

    Fahmy, H.S.M.

    1961-01-01

    The decay of DDT and parathion deposits under the influence of temperature, rain and ultraviolet radiation was described. Temperature and solar radiation were the main factors limiting the residual effect. High mean temperatures were more important than high maxima.

    DDT residues were more

  6. Vegetation, topography and daily weather influenced burn severity in central Idaho and western Montana forests

    Science.gov (United States)

    Donovan S. Birch; Penelope Morgan; Crystal A. Kolden; John T. Abatzoglou; Gregory K. Dillon; Andrew T. Hudak; Alistair M. S. Smith

    2015-01-01

    Burn severity as inferred from satellite-derived differenced Normalized Burn Ratio (dNBR) is useful for evaluating fire impacts on ecosystems but the environmental controls on burn severity across large forest fires are both poorly understood and likely to be different than those influencing fire extent. We related dNBR to environmental variables including vegetation,...

  7. WEATHER INDEX- THE BASIS OF WEATHER DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Botos Horia Mircea

    2011-07-01

    Full Text Available This paper approaches the subject of Weather Derivatives, more exactly their basic element the weather index. The weather index has two forms, the Heating Degree Day (HDD and the Cooling Degree Day (CDD. We will try to explain their origin, use and the relationship between the two forms of the index. In our research we started from the analysis of the weather derivatives and what they are based on. After finding out about weather index, we were interested in understanding exactly how they work and how they influence the value of the contract. On the national level the research in the field is scares, but foreign materials available. The study for this paper was based firstly on reading about Weather Derivative, and then going in the meteorogical field and determining the way by which the indices were determined. After this, we went to the field with interest in the indices, such as the energy and gas industries, and figured out how they determined the weather index. For the examples we obtained data from the weather index database, and calculated the value for the period. The study is made on a period of five years, in 8 cities of the European Union. The result of this research is that we can now understand better the importance of the way the indices work and how they influence the value of the Weather Derivatives. This research has an implication on the field of insurance, because of the fact that weather derivative are at the convergence point of the stock markets and the insurance market. The originality of the paper comes from the personal touch given to the theoretical aspect and through the analysis of the HDD and CDD index in order to show their general behaviour and relationship.

  8. Does Hazy Weather Influence Earnings Management of Heavy-Polluting Enterprises? A Chinese Empirical Study from the Perspective of Negative Social Concerns

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhu

    2017-12-01

    Full Text Available During the 2014 APEC Conference, there was a long presence of blue sky (APEC Blue after a long-time occurrence of hazy weather in Beijing, China, which prompted the public’s attention to heavy-polluting enterprises to reach a new peak. Will the public’s negative concern about the incident will affect the operation of heavy-polluting enterprises? In this paper, we analyzed the influence of the haze-related exogenous events before and after the “APEC Blue” on earnings management of heavy-polluting enterprises from a new perspective of negative social attention. We carry out research from three perspectives for further research, which involve the growth in the demand for accounting information disclosure, the increase of consumers’ low-carbon consciousness and differences in the amount of attention on enterprises with different properties and scales. Results indicate that heavy-polluting enterprises have stronger preference for downward earnings management, especially in those enterprises that are large in scale, non-state owned, or have a direct relationship with consumers.

  9. The influence of the importance of event factors on meeting planner ...

    African Journals Online (AJOL)

    The influence of the importance of event factors on meeting planner satisfaction: A case study of a theme park event business. ... future business. This was done by sending an online survey to 25 regularly visiting meeting planners. This survey ...

  10. The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-2006.

    Science.gov (United States)

    Podur, Justin J; Martell, David L

    2009-07-01

    Forest fires are influenced by weather, fuels, and topography, but the relative influence of these factors may vary in different forest types. Compositional analysis can be used to assess the relative importance of fuels and weather in the boreal forest. Do forest or wild land fires burn more flammable fuels preferentially or, because most large fires burn in extreme weather conditions, do fires burn fuels in the proportions they are available despite differences in flammability? In the Canadian boreal forest, aspen (Populus tremuloides) has been found to burn in less than the proportion in which it is available. We used the province of Ontario's Provincial Fuels Database and fire records provided by the Ontario Ministry of Natural Resources to compare the fuel composition of area burned by 594 large (>40 ha) fires that occurred in Ontario's boreal forest region, a study area some 430,000 km2 in size, between 1996 and 2006 with the fuel composition of the neighborhoods around the fires. We found that, over the range of fire weather conditions in which large fires burned and in a study area with 8% aspen, fires burn fuels in the proportions that they are available, results which are consistent with the dominance of weather in controlling large fires.

  11. Temporal occurrence of two morpho butterflies (Lepidoptera: Nymphalidae): influence of weather and food resources.

    Science.gov (United States)

    Freire, Geraldo; Nascimento, André Rangel; Malinov, Ivan Konstantinov; Diniz, Ivone R

    2014-04-01

    The seasonality of fruit-feeding butterflies is very well known. However, few studies have analyzed the influence of climatic variables and resource availability on the temporal distributions of butterflies. Morpho helenor achillides (C. Felder and R. Felder 1867) and Morpho menelaus coeruleus (Perry 1810) (Nymphalidae) were used as models to investigate the influences of climatic factors and food resources on the temporal distribution of these Morphinae butterflies. These butterflies were collected weekly from January 2005 to December 2006 in the Parque Nacional de Brasília (PNB). In total, 408 individuals were collected, including 274 of M. helenor and 134 of M. menelaus. The relative abundance of the two species was similar in 2005 (n = 220) and 2006 (n = 188). Of the variables considered, only the relative humidity and resource availability measured in terms of phenology of zoochorous fruits of herbaceous plants explained a large proportion of the variation in the abundance of these butterflies. Both of the explanatory variables were positively associated with the total abundance of individuals and with the abundances of M. helenor and M. menelaus considered separately. The phenology of anemochorous fruits was negatively associated with butterfly abundance. The temporal distribution of the butterflies was better predicted by the phenology of the zoochorous fruits of herbaceous plants than by the climatic predictors.

  12. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  13. To what extent does weather influence individuals’ financial decision-making behaviour? Evidence from the spread-trading market

    OpenAIRE

    Wang, Shaosong

    2016-01-01

    This thesis, which is divided into 3 papers, investigates the relationship between weather and individuals’ trading behaviour in the spread-trading market. The spread-trading market offers the opportunity of examining individuals’ trading records, and thus enables the exploration of the impact of weather on individuals’ financial decision-making behaviours. The first paper investigates the effect of a range of weather variables on individual spread traders’ hourly trading volumes and their pr...

  14. Negative Emotionality and Disconstraint Influence PTSD Symptom Course via Exposure to New Major Adverse Life Events

    Science.gov (United States)

    Sadeh, Naomi; Miller, Mark W.; Wolf, Erika J.; Harkness, Kate L.

    2015-01-01

    Identifying the factors that influence stability and change in chronic posttraumatic stress disorder (PTSD) is important for improving clinical outcomes. Using a cross-lagged design, we analyzed the reciprocal effects of personality and PTSD symptoms over time and their effects on stress exposure in a sample of 222 trauma-exposed veterans (ages 23 – 68; 90.5% male). Personality functioning and PTSD were measured approximately 4 years apart, and self-reported exposure to major adverse life events during the interim was also assessed. Negative emotionality positively predicted future PTSD symptoms, and this effect was partially mediated by exposure to new events. Constraint (negatively) indirectly affected PTSD via its association with exposure to new events. There were no significant effects of positive emotionality nor did PTSD symptom severity exert influences on personality over time. Results indicate that high negative affect and disconstraint influence the course of PTSD symptoms by increasing exposure to stressful life events. PMID:25659969

  15. Adverse event reporting in Slovenia - the influence of safety culture, supervisors and communication

    Directory of Open Access Journals (Sweden)

    Birk Karin

    2016-01-01

    Full Text Available Background/Aim. The provision of safe healthcare is considered a priority in European Union (EU member states. Along with other preventative measures in healthcare, the EU also strives to eliminate the “causes of harm to human health”. The aim of this survey was to determine whether safety culture, supervisors and communication between co-workers influence the number of adverse event reports submitted to the heads of clinical departments and to the management of an institution. Methods. This survey is based on cross-sectional analysis. It was carried out in the largest Slovenian university hospital. We received 235 completed questionnaires. Respondents included professionals in the fields of nursingcare, physiotherapy, occupational therapy and radiological technology. Results. Safety culture influences the number of adverse event reports submitted to the head of a clinical department from the organizational point of view. Supervisors and communication between co-workers do not influence the number of adverse event reports. Conclusion. It can be concluded that neither supervisors nor the level of communication between co-workers influence the frequency of adverse event reporting, while safety culture does influence it from an organizational point of view. The presumed factors only partly influence the number of submitted adverse event reports, thus other causes of under-reporting must be sought elsewhere.

  16. Detectability in Audio-Visual Surveys of Tropical Rainforest Birds: The Influence of Species, Weather and Habitat Characteristics

    Science.gov (United States)

    Anderson, Alexander S.; Marques, Tiago A.; Shoo, Luke P.; Williams, Stephen E.

    2015-01-01

    Indices of relative abundance do not control for variation in detectability, which can bias density estimates such that ecological processes are difficult to infer. Distance sampling methods can be used to correct for detectability, but in rainforest, where dense vegetation and diverse assemblages complicate sampling, information is lacking about factors affecting their application. Rare species present an additional challenge, as data may be too sparse to fit detection functions. We present analyses of distance sampling data collected for a diverse tropical rainforest bird assemblage across broad elevational and latitudinal gradients in North Queensland, Australia. Using audio and visual detections, we assessed the influence of various factors on Effective Strip Width (ESW), an intuitively useful parameter, since it can be used to calculate an estimate of density from count data. Body size and species exerted the most important influence on ESW, with larger species detectable over greater distances than smaller species. Secondarily, wet weather and high shrub density decreased ESW for most species. ESW for several species also differed between summer and winter, possibly due to seasonal differences in calling behavior. Distance sampling proved logistically intensive in these environments, but large differences in ESW between species confirmed the need to correct for detection probability to obtain accurate density estimates. Our results suggest an evidence-based approach to controlling for factors influencing detectability, and avenues for further work including modeling detectability as a function of species characteristics such as body size and call characteristics. Such models may be useful in developing a calibration for non-distance sampling data and for estimating detectability of rare species. PMID:26110433

  17. The influence of ship movements on the energy expenditure of fishermen. A study during a North Sea Voyage in calm weather

    DEFF Research Database (Denmark)

    Breidahl, Tomas; Christensen, Michael; Johansen, Jens Peter

    2015-01-01

    in the North Sea off the coast of Bergen. The data were analysed by linear regression. results: The exposure monitored in calm weather conditions was small for all meas- urements of heeling and pitch being less than 10o.for both vessels. However, the fish- ermen’s energy expenditure was influenced...... by these minor sea motions. Trends were seen in the individual graphs with increasing energy expenditure at higher exposures. Conclusion: Our data suggests that even the heel and pitch in calm weather have an impact on the fishermen by increasing their energy consumption. This study has demonstrated...

  18. The influence of percolation rate on the weathering rates of silicates in an E horizon of an Umbric Albaqualf

    NARCIS (Netherlands)

    Salm, van der C.; Verstraten, J.M.; Tiktak, A.

    1996-01-01

    Weathering rates from laboratory experiments are generally one or two orders of magnitude larger than field weathering rates. To obtain more information on this gap a large undisturbed soil column was percolated with a hydrochloric/sulphuric acid solution at rates of 0.15-0.89 cm/d. The percolate

  19. Influence of weather on daily symptoms of pain and fatigue in female patients with fibromyalgia: a multilevel regression analysis

    NARCIS (Netherlands)

    Bossema, E.R.; Middendorp, H. van; Jacobs, J.W.G.; Bijlsma, J.W.J.; Geenen, R.

    2013-01-01

    OBJECTIVE: Although patients with fibromyalgia often report that specific weather conditions aggravate their symptoms, empirical studies have not conclusively demonstrated such a relationship. Our aim was to examine the association between weather conditions and daily symptoms of pain and fatigue in

  20. Restructuring Big Data to Improve Data Access and Performance in Analytic Services Making Research More Efficient for the Study of Extreme Weather Events and Application User Communities

    Science.gov (United States)

    Ostrenga, D.; Shen, S.; Vollmer, B.; Meyer, D. L.

    2017-12-01

    NASA climate reanalysis dataset from MERRA-2 contains numerous data for atmosphere, land, and ocean, that are grouped into 95 products of archived volume over 300 TB. The data files are saved as hourly-file, day-file (hourly time interval) and month-file containing up to 125 parameters. Due to the large number of data files and the sheer data volumes, it is a challenging for users, especially those in the application research community, to handle dealing with the original data files. Most of these researchers prefer to focus on a small region or single location using the hourly data for long time periods to analyze extreme weather events or say winds for renewable energy applications. At the GES DISC, we have been working closely with the science teams and the application user community to create several new value added data products and high quality services to facilitate the use of the model data for various types of research. We have tested converting hourly data from one-day per file into different data cubes, such as one-month, one-year, or whole-mission and then continued to analyze the efficiency of the accessibility of this newly structured data through various services. Initial results have shown that compared to the original file structure, the new data has significantly improved the performance for accessing long time series. It is noticed that the performance is associated to the cube size and structure, the compression method, and how the data are accessed. The optimized data cube structure will not only improve the data access, but also enable better online analytic services for doing statistical analysis and extreme events mining. Two case studies will be presented using the newly structured data and value added services, the California drought and the extreme drought of the Northeastern states of Brazil. Furthermore, data access and analysis through cloud storage capabilities will be investigated.

  1. Fruit Set of Several Sour Cherry Cultivars in Latvia Influenced by Weather Conditions Before and During Flowering

    Directory of Open Access Journals (Sweden)

    Feldmane Daina

    2017-06-01

    Full Text Available Fruit set is a crucial stage in the process of yield formation, which is influenced by environmental factors, growing technologies and peculiarities of genotype. The aim of the study was to evaluate the quality of pollen (viability and germination capacity and the effect of weather before and during flowering on fruit set in sour cherry cultivars ‘Latvijas Zemais’, ‘Zentenes’, ‘Bulatnikovskaya’, and ‘Orlica’. The research was carried out in Institute of Horticulture (Latvia University of Agriculture in 2009-2016. Good pollen viability and germination was found for cultivars ‘Latvijas Zemais’ and ‘Bulatnikovskaya’. Negative effects of increasing air temperature (in the range of 7.7 to 17.5 °C and relative humidity (in the range of 51.4 to 88.5% was observed for all cultivars during flowering. The effects of diurnal temperature fluctuations, wind and the amount of days with precipitation differed depending on sour cherry cultivar.

  2. Evaluation Influence: The Evaluation Event and Capital Flow in International Development.

    Science.gov (United States)

    Bell, David A

    2017-12-01

    Assessing program effectiveness in human development is central to informing foreign aid policy-making and organizational learning. Foreign aid effectiveness discussions have increasingly given attention to the devaluing effects of aid flow volatility. This study reveals that the external evaluation event influences actor behavior, serving as a volatility-constraining tool. A case study of a multidonor aid development mechanism served examining the influence of an evaluation event when considering anticipatory effects. The qualitative component used text and focus group data combined with individual interview data (organizations n = 10, including 26 individuals). Quantitative data included financial information on all 75 capital investments. The integrated theory of influence and model of alternative mechanisms used these components to identify the linkage between the evaluation event and capital flow volatility. Aid approved in the year of the midterm evaluation was disbursed by the mechanism with low capital volatility. Anticipating the evaluation event influenced behavior resulting in an empirical record that program outcomes were enhanced and the mechanism was an improved organization. Formative evaluations in a development program can trigger activity as an interim process. That activity provides for a more robust assessment of ultimate consequence of interest. Anticipating an evaluation can stimulate donor reality testing. The findings inform and strengthen future research on the influence of anticipating an evaluation. Closely examining activities before, during, and shortly after the evaluation event can aid development of other systematic methods to improve understanding this phenomenon, as well as improve donor effectiveness strategies.

  3. Weathering a Dynamic Seascape: Influences of Wind and Rain on a Seabird's Year-Round Activity Budgets.

    Directory of Open Access Journals (Sweden)

    Pierre A Pistorius

    Full Text Available How animals respond to varying environmental conditions is fundamental to ecology and is a question that has gained impetus due to mounting evidence indicating negative effects of global change on biodiversity. Behavioural plasticity is one mechanism that enables individuals and species to deal with environmental changes, yet for many taxa information on behavioural parameters and their capacity to change are lacking or restricted to certain periods within the annual cycle. This is particularly true for seabirds where year-round behavioural information is intrinsically challenging to acquire due to their reliance on the marine environment where they are difficult to study. Using data from over 13,000 foraging trips throughout the annual cycle, acquired using new-generation automated VHF technology, we described sex-specific, year-round activity budgets in Cape gannets. Using these data we investigated the role of weather (wind and rain on foraging activity and time allocated to nest attendance. Foraging activity was clearly influenced by wind speed, wind direction and rainfall during and outside the breeding season. Generally, strong wind conditions throughout the year resulted in relatively short foraging trips. Birds spent longer periods foraging when rainfall was moderate. Nest attendance, which was sex-specific outside of the breeding season, was also influenced by meteorological conditions. Large amounts of rainfall (> 2.5 mm per hour and strong winds (> 13 m s-1 resulted in gannets spending shorter amounts of time at their nests. We discuss these findings in terms of life history strategies and implications for the use of seabirds as bio-indicators.

  4. The Influence of Weather and Lunar Phases on the Flight Activity of Paederus Rove Beetles (Coleoptera: Staphylinidae).

    Science.gov (United States)

    Silva, F S; Lobo, S E P D; Lima, D C B; Brito, J M; Costa-Neta, B M

    2015-06-01

    Despite the medical importance of Paederus beetles, no studies have studied the influence of the abiotic factors on the flight activity and nighttime dispersal of these insects in Brazil. Therefore, the influence of both climatic factors and moon phase on black-light catches of Paederus rove beetles was investigated. Paederus beetles were attracted to a black light source hourly from 1800 to 0600 hours, and data on weather conditions as well as moon phase data were taken for every sampling date. Overall, 543 individuals of Paederus beetles belonging to four species were captured: P. protensus, P. columbinus, P. brasiliensis, and P. mutans. Paederus beetles were mostly active in the warmest parts of the studied nights. Variations in nighttime temperature, relative humidity, wind speed, cloud cover, and moon phases appear not to affect Paederus flight. The diurnal temperature was observed to affect the night hourly dispersal of Paederus rove beetles as well as their distribution pattern during the entire period of study. The true environmental condition responsible for Paederus beetles seasonal pattern and daily night dispersal in northeastern Brazil were the annual moisture and drought cycles and the diurnal maximum temperatures, respectively. Significant trap catches were observed in the earliest hours after sunset (1800-2100), and people must be aware of this fact, as it can notably increase the risk of acquiring linearis dermatitis from the contact with large numbers of active Paederus. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Does Sport Event Involvement Influence Brand Recognition of Official Sponsors and Ambush Marketers?

    Directory of Open Access Journals (Sweden)

    Piątkowska Monika

    2016-12-01

    Full Text Available The main aim of the study is to verify how event involvement in the UEFA Euro 2012 influenced the recognition of both sponsors’ and ambushers’ brands. Computer-Assisted Personal Interviews were conducted on a representative sample of the Polish society (N = 1,000. On the basis of five groups of consumers regarding involvement in the event, authors examined brand recognition, using Top of Mind Awareness (TOMA tests of official sponsors and ambushers.

  6. Artificial changes of weather conditions

    International Nuclear Information System (INIS)

    Kozin, I.D.; Vasil'ev, I.V.; Fedulina, I.N.; Zakizhan, Z.Z.; Khalimov, R.A.

    2005-01-01

    Unfavorable weather conditions have undesirable ecological consequences, causes remarkable economical damage. In the paper authors consider physical factors and technical methods of influence on cloud formation. (author)

  7. Influence of a Cyclic Events Configuration on a Elevated Temperature Structural Integrity

    International Nuclear Information System (INIS)

    Park, Chang-Gyu; Koo, Gyeong-Hoi; Lee, Jae-Han

    2008-01-01

    A nuclear power plant generally undergoes the various types of operating events for a plant life time. The cyclic events for a life time may bring about a structural failure such as fatigue damage. The structures of the LMR(Liquid Metal Reactor) operated in a elevated temperature environment are seriously affected by a thermal deformation and strain. Therefore, the thermal transient condition is a key factor for ensuring the structural integrity for the LMR reactor structures. Since it is not easy to consider the entire operating events at the preliminary or conceptual design stage, the LMR structural integrity is evaluated with representative duty cycle events. In this study, the influence of the elevated temperature structural integrity evaluation per the combination and sequence of the duty cycle events is investigated

  8. Events

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2016-02-01

    Full Text Available The 9th ARRCN Symposium 2015 was held during 21st–25th October 2015 at the Novotel Hotel, Chumphon, Thailand, one of the most favored travel destinations in Asia. The 10th ARRCN Symposium 2017 will be held during October 2017 in the Davao, Philippines. International Symposium on the Montagu's Harrier (Circus pygargus «The Montagu's Harrier in Europe. Status. Threats. Protection», organized by the environmental organization «Landesbund für Vogelschutz in Bayern e.V.» (LBV was held on November 20-22, 2015 in Germany. The location of this event was the city of Wurzburg in Bavaria.

  9. The Long-term Middle Atmospheric Influence of Very Large Solar Proton Events

    Science.gov (United States)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Randall, Cora E.; Fleming, Eric L.; Frith, Stacey M.

    2008-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of these substances. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the long-term (> few months) influences of solar proton events from 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen-containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 2004, and caused increases in odd nitrogen which lasted for several months after individual events. Associated stratospheric ozone decreases of >lo% were calculated

  10. INFLUENCE OF WEATHER CONDITIONS ON GRAIN YIELD, OIL CONTENT AND OIL YIELD OF NEW OS SUNFLOWER HYBRIDS

    Directory of Open Access Journals (Sweden)

    Anto Mijić

    2017-01-01

    Full Text Available With the purpose of determining the influence of weather conditions on the yield components of sunflower, the results of three-year field trials are analysed in the paper. In the trials sown in Osijek in 2013, 2014 and 2015, there were 15 sunflower hybrids: two foreign hybrids and 13 hybrid combinations of the Agricultural Institute Osijek. In the period before sowing (January – March, the highest amount of precipitation was in 2013 (213.1 mm, then in 2015 (167.9 mm, and the lowest in 2014 (109.5 mm. In the growing period (April – September, the highest amount of precipitation (487.3 mm was in 2014, 475.7 mm in 2013, and in 2015 it was the lowest (251.6 mm. In 2013, during the growing period, the mean monthly air temperature was 19.1°C, in 2015 19.9°C, and in 2014 18.6°C. Of these years, statistically significant at the P=0.05, the highest value of the analysed traits was recorded in 2013: grain yield of 6.47 t ha-1, oil content 51.69% and oil yield 3.05 t ha-1. Grain yield, oil content and oil yield were lower in 2015, and the lowest in 2014. Matej, a newly recognized sunflower hybrid of the Agricultural Institute Osijek had the highest values of grain and oil yield (6.95 and 3.39 t ha-1, and by its oil content of 53.44%, it was in the third place. For high grain and oil yields of sunflower, in addition to the optimal air temperature, the amount and distribution of precipitation before and also during the growing season are very important.

  11. The influence of weather on health-related help-seeking behavior of senior citizens in Hong Kong

    Science.gov (United States)

    Wong, Ho Ting; Chiu, Marcus Yu Lung; Wu, Cynthia Sau Ting; Lee, Tsz Cheung

    2015-03-01

    It is believed that extreme hot and cold weather has a negative impact on general health conditions. Much research focuses on mortality, but there is relatively little community health research. This study is aimed at identifying high-risk groups who are sensitive to extreme weather conditions, in particular, very hot and cold days, through an analysis of the health-related help-seeking patterns of over 60,000 Personal Emergency Link (PE-link) users in Hong Kong relative to weather conditions. In the study, 1,659,716 PE-link calls to the help center were analyzed. Results showed that females, older elderly, people who did not live alone, non-subsidized (relatively high-income) users, and those without medical histories of heart disease, hypertension, stroke, and diabetes were more sensitive to extreme weather condition. The results suggest that using official government weather forecast reports to predict health-related help-seeking behavior is feasible. An evidence-based strategic plan could be formulated by using a method similar to that used in this study to identify high-risk groups. Preventive measures could be established for protecting the target groups when extreme weather conditions are forecasted.

  12. Great Historical Events that were Significantly Affected by the Weather: Part 9, the Year Leading to the Revolution of 1789 in France (II).

    Science.gov (United States)

    Neumann, J.; Dettwiller, J.

    1990-01-01

    This paper is an extension of an earlier paper (Neumann 1977) on historical events affected by the weather. More data are published herein on rainfall, pressure and temperature for spring-early summer 1788, when a severe drought struck France during anticyclonic conditions, leading to a crop failure. It is estimated that the grain harvest was 35%-40% below the mean for 1774-88. (The wine-grape harvest was even more catastrophic.) The shortfall led to increasingly high bread prices. The prices reached the highest level on 14 July 1789 (Bastille Day). Since workers spent about 55% of their income on bread and flour prior to 1788, bread riots had already broken out in August 1788. The number and violence of the riots tended to increase with time, causing a destabilization of public order.A meteorological factor of secondary importance was the harsh winter of 1788-89, which brought additional suffering to the lower classes. The price of heating materials rose, and water mills could not be operated because of the ice.Until April 1789 the numerous riots did not have, in most cases, anti-regime overtones. After May, however, the disturbances assumed political overtones, especially in Paris. This was due to agitation by the bourgeoisie who desired the abolition of the many privileges of the nobility and Church, and the lifting of restrictions on some economic activities. The bread riots, caused by the high bread prices (and, ultimately, by the drought), were used by the middle class for overthrowing the existing regime.In France of the 1700s, the number of poor depended on the price of bread which, first and foremost, was determined by the harvest.

  13. Weather and emotional state

    Science.gov (United States)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  14. A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Prasad Liyanage

    2016-11-01

    Full Text Available Dengue is the major public health burden in Sri Lanka. Kalutara is one of the highly affected districts. Understanding the drivers of dengue is vital in controlling and preventing the disease spread. This study focuses on quantifying the influence of weather variability on dengue incidence over 10 Medical Officer of Health (MOH divisions of Kalutara district. Weekly weather variables and data on dengue notifications, measured at 10 MOH divisions in Kalutara from 2009 to 2013, were retrieved and analysed. Distributed lag non-linear model and hierarchical-analysis was used to estimate division specific and overall relationships between weather and dengue. We incorporated lag times up to 12 weeks and evaluated models based on the Akaike Information Criterion. Consistent exposure-response patterns between different geographical locations were observed for rainfall, showing increasing relative risk of dengue with increasing rainfall from 50 mm per week. The strongest association with dengue risk centred around 6 to 10 weeks following rainfalls of more than 300 mm per week. With increasing temperature, the overall relative risk of dengue increased steadily starting from a lag of 4 weeks. We found similarly a strong link between the Oceanic Niño Index to weather patterns in the district in Sri Lanka and to dengue at a longer latency time confirming these relationships. Part of the influences of rainfall and temperature can be seen as mediator in the causal pathway of the Ocean Niño Index, which may allow a longer lead time for early warning signals. Our findings describe a strong association between weather, El Niño-Southern Oscillation and dengue in Sri Lanka.

  15. Event-based plausibility immediately influences on-line language comprehension.

    Science.gov (United States)

    Matsuki, Kazunaga; Chow, Tracy; Hare, Mary; Elman, Jeffrey L; Scheepers, Christoph; McRae, Ken

    2011-07-01

    In some theories of sentence comprehension, linguistically relevant lexical knowledge, such as selectional restrictions, is privileged in terms of the time-course of its access and influence. We examined whether event knowledge computed by combining multiple concepts can rapidly influence language understanding even in the absence of selectional restriction violations. Specifically, we investigated whether instruments can combine with actions to influence comprehension of ensuing patients of (as in Rayner, Warren, Juhuasz, & Liversedge, 2004; Warren & McConnell, 2007). Instrument-verb-patient triplets were created in a norming study designed to tap directly into event knowledge. In self-paced reading (Experiment 1), participants were faster to read patient nouns, such as hair, when they were typical of the instrument-action pair (Donna used the shampoo to wash vs. the hose to wash). Experiment 2 showed that these results were not due to direct instrument-patient relations. Experiment 3 replicated Experiment 1 using eyetracking, with effects of event typicality observed in first fixation and gaze durations on the patient noun. This research demonstrates that conceptual event-based expectations are computed and used rapidly and dynamically during on-line language comprehension. We discuss relationships among plausibility and predictability, as well as their implications. We conclude that selectional restrictions may be best considered as event-based conceptual knowledge rather than lexical-grammatical knowledge.

  16. Influences of the ENSO event on the rainfall of dry Sudan

    International Development Research Centre (IDRC) Digital Library (Canada)

    One third of the world's population live in places where medium to high water stress is compounded by pollution, climate change, inefficient management approaches and governance issues. This study detects the El Nino Southern Oscillation (ENSO) events and signals, and the influences of the different ENSO stages in the ...

  17. The Influence of Sponsor-Event Congruence in Sponsorship of Music Festivals

    Directory of Open Access Journals (Sweden)

    Penny Hutabarat

    2014-04-01

    Full Text Available This paper focuses the research on the Influence of Sponsor-Event Congruence toward Brand Image, Attitudes toward the Brand and Purchase Intention. Having reviewed the literatures and arranged the hypotheses, the data has been gathered by distributing the questionnaire to 155 audiences at the Java Jazz Music Festival, firstly with convenience sampling and then snowballing sampling approach. The analysis of data was executed with Structural Equation Modeling (SEM. The result shows the sponsor-event congruence variable has a positive impact toward brand image and attitudes toward the brand sponsor. Brand Image also has a positive impact toward purchase intention; in contrary attitudes toward the brand do not have a positive purchase intention. With those results, to increase the sponsorship effectiveness, the role of congruency is very significant in the sponsorship event. Congruency is a key influencer to trigger the sponsorship effectiveness. Congruency between the event and the sponsor is able to boost up the brand image and bring out favorable attitudes towards the brand for the success of marketing communication programs, particularly sponsorship. In addition to it, image transfer gets higher due to the congruency existence (fit between sponsor and event and directs the intention creation to buy sponsor brand product/service (purchase intention. In conclusion, sponsor-event congruence has effect on consumer responds toward sponsorship, either on the cognitive level, affective and also behavior.

  18. The Influence of Sponsor-Event Congruence in Sponsorship of Music Festivals

    Directory of Open Access Journals (Sweden)

    Penny Hutabarat

    2014-05-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE This paper focuses the research on the Influence of Sponsor-Event Congruence toward Brand Image, Attitudes toward the Brand and Purchase Intention. Having reviewed the literatures and arranged the hypotheses, the data has been gathered by distributing the questionnaire to 155 audiences at the Java Jazz Music Festival, firstly with convenience sampling and then snowballing sampling approach. The analysis of data was executed with Structural Equation Modeling (SEM. The result shows the sponsor-event congruence variable has a positive impact toward brand image and attitudes toward the brand sponsor. Brand Image also has a positive impact toward purchase intention; in contrary attitudes toward the brand do not have a positive purchase intention. With those results, to increase the sponsorship effectiveness, the role of congruency is very significant in the sponsorship event. Congruency is a key influencer to trigger the sponsorship effectiveness. Congruency between the event and the sponsor is able to boost up the brand image and bring out favorable attitudes towards the brand for the success of marketing communication programs, particularly sponsorship. In addition to it, image transfer gets higher due to the congruency existence (fit between sponsor and event and directs the intention creation to buy sponsor brand product/service (purchase intention. In conclusion, sponsor-event congruence has effect on consumer responds toward sponsorship, either on the cognitive level, affective and also behavior.

  19. Sun, weather, and climate

    International Nuclear Information System (INIS)

    Herman, J.R.; Goldberg, R.A.

    1985-01-01

    The general field of sun-weather/climate relationships that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown casual mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climate trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments. 300 references

  20. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events

    International Nuclear Information System (INIS)

    Illias, Hazlee A; Chen, George; Lewin, Paul L

    2011-01-01

    In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.

  1. The influence of spherical cavity surface charge distribution on the sequence of partial discharge events

    Energy Technology Data Exchange (ETDEWEB)

    Illias, Hazlee A [Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chen, George; Lewin, Paul L, E-mail: h.illias@um.edu.my [Tony Davies High Voltage Laboratory, School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2011-06-22

    In this work, a model representing partial discharge (PD) behaviour of a spherical cavity within a homogeneous dielectric material has been developed to study the influence of cavity surface charge distribution on the electric field distribution in both the cavity and the material itself. The charge accumulation on the cavity surface after a PD event and charge movement along the cavity wall under the influence of electric field magnitude and direction has been found to affect the electric field distribution in the whole cavity and in the material. This in turn affects the likelihood of any subsequent PD activity in the cavity and the whole sequence of PD events. The model parameters influencing cavity surface charge distribution can be readily identified; they are the cavity surface conductivity, the inception field and the extinction field. Comparison of measurement and simulation results has been undertaken to validate the model.

  2. Climate change & extreme weather vulnerability assessment framework.

    Science.gov (United States)

    2012-12-01

    The Federal Highway Administrations (FHWAs) Climate Change and Extreme Weather Vulnerability : Assessment Framework is a guide for transportation agencies interested in assessing their vulnerability : to climate change and extreme weather event...

  3. Presenting Critical Space Weather Information to Customers and Stakeholders (Invited)

    Science.gov (United States)

    Viereck, R. A.; Singer, H. J.; Murtagh, W. J.; Rutledge, B.

    2013-12-01

    weather and this influences our forecasts. In this presentation, I will discuss the unique challenges that space weather forecasters face when explaining what we know and what we don't know about space weather events to customers and policy makers.

  4. How do en route events around the Gulf of Mexico influence landbird populations

    Science.gov (United States)

    Cohen, Emily B.; Barrow, Wylie C.; Buler, Jeffrey J.; Deppe, Jill L.; Farnsworth, Andrew; Marra, Peter P.; McWilliams, Scott R.; Mehlman, David W; Wilson, R. Randy; Woodrey, Mark S; Moore, Frank R.

    2017-01-01

    Habitats around the Gulf of Mexico (GOM) provide critical resources for Nearctic–Neotropical migratory landbirds, the majority of which travel across or around the GOM every spring and fall as they migrate between temperate breeding grounds in North America and tropical wintering grounds in the Caribbean and Central and South America. At the same time, ecosystems in the GOM are changing rapidly, with unknown consequences for migratory landbird populations, many of which are experiencing population declines. In general, the extent to which events encountered en route limit migratory bird populations is not well understood. At the same time, information from weather surveillance radar, stable isotopes, tracking, eBird, and genetic datasets is increasingly available to address many of the unanswered questions about bird populations that migrate through stopover and airspace habitats in the GOM. We review the state of the science and identify key research needs to understand the impacts of en route events around the GOM region on populations of intercontinental landbird migrants that breed in North America, including: (1) distribution, timing, and habitat associations; (2) habitat characteristics and quality; (3) migratory connectivity; and (4) threats to and current conservation status of airspace and stopover habitats. Finally, we also call for the development of unified and comprehensive long-term monitoring guidelines and international partnerships to advance our understanding of the role of habitats around the GOM in supporting migratory landbird populations moving between temperate breeding grounds and wintering grounds in Mexico, Central and South America, and the Caribbean.

  5. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings.

    Science.gov (United States)

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities' preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities' capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change.

  6. The influence of context boundaries on memory for the sequential order of events.

    Science.gov (United States)

    DuBrow, Sarah; Davachi, Lila

    2013-11-01

    Episodic memory allows people to reexperience the past by recovering the sequences of events that characterize those prior experiences. Although experience is continuous, people are able to selectively retrieve and reexperience more discrete episodes from their past, raising the possibility that some elements become tightly related to each other in memory, whereas others do not. The current series of experiments was designed to ask how shifts in context during an experience influence how people remember the past. Specifically, we asked how context shifts influence the ability to remember the relative order of past events, a hallmark of episodic memory. We found that memory for the order of events was enhanced within, rather than across, context shifts, or boundaries (Experiment 1). Next, we showed that this relative enhancement in order memory was eliminated when across-item associative processing was disrupted (Experiment 2), suggesting that context shifts have a selective effect on sequential binding. Finally, we provide evidence that the act of making order memory judgments involves the reactivation of representations that bridged the tested items (Experiment 3). Together, these data suggest that boundaries may serve to parse continuous experience into sequences of contextually related events and that this organization facilitates remembering the temporal order of events that share the same context. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  7. Wacky Weather

    Science.gov (United States)

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  8. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  9. Factoring in weather variation to capture the influence of urban design and built environment on globally recommended levels of moderate to vigorous physical activity in children.

    Science.gov (United States)

    Katapally, Tarun Reddy; Rainham, Daniel; Muhajarine, Nazeem

    2015-11-30

    In curbing physical inactivity, as behavioural interventions directed at individuals have not produced a population-level change, an ecological perspective called active living research has gained prominence. However, active living research consistently underexplores the role played by a perennial phenomenon encompassing all other environmental exposures-variation in weather. After factoring in weather variation, this study investigated the influence of diverse environmental exposures (including urban design and built environment) on the accumulation of globally recommended moderate to vigorous physical activity levels (MVPA) in children. This cross-sectional observational study is part of an active living initiative set in the Canadian prairie city of Saskatoon. As part of this study, Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Moreover, diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive MVPA of 331 10-14-year-old children in 25 1-week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample and matched with weather data obtained from Environment Canada. Multilevel modelling using Hierarchical Linear and Non-linear Modelling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on the accumulation of recommended MVPA. Urban design, including diversity of destinations within neighbourhoods played a significant role in the accumulation of MVPA. After factoring in weather variation, it was observed that children living in neighbourhoods closer to the city centre (with higher diversity of destinations) were more likely to accumulate recommended MVPA. The findings

  10. Managed aquifer recharge in weathered crystalline basement aquifers in India: Monitoring of the effect of tank infiltration on water quality over several monsoon events

    Science.gov (United States)

    Alazard, Marina; Boisson, Alexandre; Maréchal, Jean-Christophe; Dewandel, Benoît; Perrin, Jérôme; Pettenati, Marie; Picot-Colbeaux, Géraldine; Ahmed, Shakeel; Thiéry, Dominique; Kloppmann, Wolfram

    2015-04-01

    Managed aquifer recharge (MAR) structures like percolation tanks are considered by the Indian national and regional governments as major option for tackling declining groundwater levels due to overexploitation for irrigation purposes (Boisson et al., 2014). Their main purpose is to restore groundwater availability under strong climatic and anthropogenic pressure. Furthermore, MAR-induced dilution with fresh surface water is generally expected to improve groundwater quality with respect to both anthropogenic and geogenic contaminants (total mineralisation, nitrates, chlorides, sulphates and fluoride contents). The impact of a percolation tank on groundwater quality was investigated in a context that is typical for hydro-climatic and geological settings in southern and eastern India: fractured crystalline basement aquifers overlain by a weathering zone under semi-arid climate. Water level data and geochemical indicators (stable isotopes and major ions) were monitored for both groundwater and surface water, over several successive monsoon events. In case of high to very high water levels, the groundwater quality is globally improved. However, in a few cases, the quality of the groundwater can be negatively impacted due to leaching of salts under the tank, particularly during the first rain events of the monsoon. Geogenic fluoride contents in groundwater, induced by water-rock interaction and enhanced by recycling of agricultural return flow under paddy fields, is found to be relatively stable over the year. This finding points out that the underlying processes, mainly dissolution of F-bearing phases like fluorapatites combined with Ca/Na cation exchange and calcite precipitation, both limiting the possibility of F-removal via fluorite precipitation (Pettenati et al., 2013, 2014), are not impacted by the hydrological conditions. This work highlights the complexity of the recharge processes in crystalline aquifers, enhanced by the variability of hydrological conditions

  11. Numerical simulation of heavy precipitation events using mesoscale weather forecast models. Validation with radar data and diagnosis of the atmospheric moisture budget; Numerische Simulation von Starkniederschlagsereignissen mit mesoskaligen Wettervorhersagemodellen. Ueberpruefung mit Radar-Daten und Diagnose der atmosphaerischen Wasserbilanz

    Energy Technology Data Exchange (ETDEWEB)

    Keil, C.

    2000-07-01

    Convective precipitation systems contribute substantially to the summertime rainfall maximum in the northern Alpine region. The capability of mesoscale weather forecast models in capturing such heavy precipitation events is investigated. The complementary application of so far hardly used areal radar data and conventional rain gauge observations enables a case-study-type evaluation of summertime precipitation episodes. Different rainfall episodes are simulated with the former operational model (DM, meshsize 14 km) of Deutscher Wetterdienst (DWD). The influence of the horizontal resolution and the parameterization of moist convection is subsequently studied with a higher resolution atmospheric model (MC2, meshsize 2 km). Diagnostic studies on the atmospheric water budget regarding the rainfall episode, which instigated the Oder-flood in summer 1997, allow an examination of the origin of the moisture and the genesis of the copious precipitation. (orig.) [German] Konvektive Niederschlagssysterne tragen im Nordalpenraum wesentlich zum sommerlichen Niederschlagsmaximum bei. Die Faehigkeit mesoskaliger Wettervorhersagemodelle, solche Starkniederschlagsereignisse zu erfassen, wird in dieser Arbeit untersucht. Durch den komplementaeren Gebrauch von, bisher kaum genutzten, flaechendeckenden Radardaten und konventionellen Niederschlagsmessungen des Bodenmessnetzes werden Modellergebnisse sommerlicher Niederschlagssysteme fallstudienhaft detailliert ueberprueft. Fuer verschiedene Starkniederschlagsereignisse werden dazu Modellsimulationen mit dem in den 90er Jahren operationellen Modell (DM, Maschenweite 14 km) des Deutschen Wetterdienstes (DWD) durchgefuehrt. Zur Untersuchung des Einflusses der horizontalen Maschenweite und der Niederschlagsparametrisierung werden ferner numerische Simulationen mit einem hoeher aufloesdenden Atmosphaerenmodell (MC2, Maschenweite 2 km) behandelt. Anhand diagnostischer Untersuchungen der atmosphaerischen Wasserbilanz laesst sich ausserdem die

  12. Peer influence strategies in collectively consumed products: (Events and Festivals): An exploratory study among university students.

    OpenAIRE

    Scully, K.; Moital, Miguel

    2016-01-01

    PURPOSE: The paper examines peer influence in the context of purchasing collectively consumed products. The particular focus of the paper is on strategies used by university students for persuasion and resistance when attending events & festivals. METHODOLOGY: Five females and three males studying for a degree in the UK were interviewed. Independent analysis of the interview transcripts was undertaken in order to identify persuasion and resistance strategies, as well as the factors influencin...

  13. Bad news: The influence of news coverage and Google searches on Gardasil adverse event reporting.

    Science.gov (United States)

    Faasse, Kate; Porsius, Jarry T; Faasse, Jonathan; Martin, Leslie R

    2017-12-14

    Human papilloma virus vaccines are a safe and effective tool for reducing HPV infections that can cause cervical cancer. However, uptake of these vaccines has been suboptimal, with many people holding negative beliefs and misconceptions. Such beliefs have been linked with the experience of unpleasant side effects following medical treatment, and media coverage may heighten such concerns. The present study sought to assess the influence of news coverage (number of news articles per month) on adverse event reporting in response to Gardasil vaccination in New Zealand over a 7.5-year period, and whether the influence of news coverage was mediated by internet search activity (Google search volumes). Multiple linear regression analyses and simple mediation analyses were used, controlling for year and number of vaccinations delivered. News coverage in the previous month, and Google search volumes in the same month, were significant predictors of adverse event reporting, after accounting for vaccination rates and year. Concurrent Google search volumes partially mediated the effect of prior news coverage. The results suggest that some of the adverse events reported were not related to the vaccination itself, but to news coverage and internet search volumes, which may have contributed to public concerns about potentially unpleasant or harmful outcomes. These findings have implications for the importance of psychological and social factors in adverse event reporting, and the role of the news media in disseminating health information. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The influence of pubertal timing and stressful life events on depression and delinquency among Chinese adolescents.

    Science.gov (United States)

    Chen, Jie; Yu, Jing; Wu, Yun; Zhang, Jianxin

    2015-06-01

    This study aimed to investigate the influences of pubertal timing and stressful life events on Chinese adolescents' depression and delinquency. Sex differences in these influences were also examined. A large sample with 4,228 participants aged 12-15 years (53% girls) was recruited in Beijing, China. Participants' pubertal development, stressful life events, depressive symptoms, and delinquency were measured using self-reported questionnaires. Both early maturing girls and boys displayed more delinquency than their same-sex on-time and late maturing peers. Early maturing girls displayed more depressive symptoms than on-time and late maturing girls, but boys in the three maturation groups showed similar levels of depressive symptoms. The interactive effects between early pubertal timing and stressful life events were significant in predicting depression and delinquency, particularly for girls. Early pubertal maturation is an important risk factor for Chinese adolescents' depression and delinquency. Stressful life events intensified the detrimental effects of early pubertal maturation on adolescents' depression and delinquency, particularly for girls. © 2015 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  15. Influence of a water regulation event on the age of Yellow River water in the Bohai

    Science.gov (United States)

    Li, Zhen; Wang, Haiyan; Guo, Xinyu; Liu, Zhe; Gao, Huiwang; Zhang, Guiling

    2017-10-01

    Abrupt changes in freshwater inputs from large rivers usually imply regime shifts in coastal water environments. The influence of a water regulation event on the age of the Yellow River water in the Bohai was modeled using constituent-oriented age and residence time theory to better understand the change in the environmental function of the hydrodynamic field owing to human activities. The water ages in Laizhou Bay, the central basin, and the Bohai strait are sensitive to water regulation. The surface ages in those areas can decrease by about 300 days, particularly in July, and the age stratification is also strengthened. A water regulation event can result in declines in the water age in early July ahead of declines in the water age under climatological conditions (without the regulation event) by about 1 and 5 months in the central basin and Laizhou Bay, respectively. The change in the coastal circulation due to the water regulation event is the primary reason for the change in the Yellow River water age. The high Yellow River flow rate can enhance the density flow and, therefore, reduce the age of the Yellow River water. The subsequent impact of a single water regulation event can last about 1.0 to 4.0 years in different subregions.

  16. Acts of God, human influence and litigation

    Science.gov (United States)

    Marjanac, Sophie; Patton, Lindene; Thornton, James

    2017-09-01

    Developments in attribution science are improving our ability to detect human influence on extreme weather events. By implication, the legal duties of government, business and others to manage foreseeable harms are broadening, and may lead to more climate change litigation.

  17. Evaluating the influence of feedbacks between erosion rate and weathering on the distribution of erodibility in bedrock river channels

    OpenAIRE

    Shobe, Charles; Hancock, Gregory; Eppes, Martha; Small, Eric

    2018-01-01

    This is a poster presented on November 3rd, 2015 at the Geological Society of America annual meeting in Baltimore, MD, USA. The poster presents rock strength and roughness data from tributaries to the Potomac River in Virginia. Our data support the idea that bedrock channel erodibility is greater on the channel margins than at the thalweg, which we hypothesize to be the result of weathering damage preferentially accumulated on the channel banks. This work was published in Shobe et al (2017; E...

  18. THE INFLUENCE OF WEATHER CONDITIONS OF EASTERN POLAND ON SWEET CORN YIELDS AND LENGTH OF GROWING SEASON

    Directory of Open Access Journals (Sweden)

    Robert Rosa

    2016-09-01

    Full Text Available The aim of the study was to determine the effect of weather components (air temperature, precipitation on the growth, yield and the length of the growing season of sweet corn cultivated in eastern Poland. The results come from a field experiment conducted in 2006–2011. Weather conditions in the successive years of the study significantly modified the yield of ears, weight and number of formatted ears, high of plants and the length of the growing season of sweet corn. Good yielding of sweet corn favoured years with moderate air temperatures in July and uniform distribution of precipitation during the growing season. The highest yield of ears was found in 2011, the lowest in the very difficult in terms of weather 2006. The shortest growing season was characterized corn grown in the years 2006 and 2010 with the high air temperatures in July and August, the longest in the years 2009 and 2011, in which the temperatures in the period June-August were the lowest of all the years of research. Irrespective of the year of study, cv ‘Sheba F1’ was formatted eras with higher weight than cv ‘Sweet Nugget F1’.

  19. Memory for Positive, Negative, and Neutral Events in Younger and Older Adults: Does Emotion Influence Binding in Event Memory?

    OpenAIRE

    Earles, Julie L.; Kersten, Alan W.; Vernon, Laura L.; Starkings, Rachel

    2015-01-01

    When remembering an event, it is important to remember both the features of the event (e.g., a person and an action), and the connections among features (e.g., who performed which action). Emotion often enhances memory for stimulus features, but the relationship between emotion and the binding of features in memory is unclear. Younger and older adults attempted to remember events in which a person performed a negative, positive, or neutral action. Memory for the action was enhanced by emotion...

  20. A szélsőséges időjárási jelenségek hatásai (Effects of the Extreme Weather Events

    Directory of Open Access Journals (Sweden)

    Tamás Molnár

    2015-04-01

    Full Text Available Economist Sir Nicholas Stern warned that the global warming could cause major blow to the world economy than the two world wars and the crisis in the 1930s. But where are we in this process now and what can be expected in the near future and what opportunities we are to curb the negative effects and to slow down the global warming. The world’s population is more than 7 billion people now and we will live more than 9 billion on the planet in 2050 according to the conservative estimation because daily the number of inhabitants increases by approximitaly a quarter of a million people (National Rural Strategy, 2020. The water and ecosystem resources are diminishing due to overuse and the values of ecological footprint are very high especially in the developed countries. The increase of extreme weather events and its effects associated with the global warming have also growing impact on agricultural production. This phenomenon is important because to solve the famine and the water shortage will be much bigger problem due to climate change than today. The VAHAVA reports (change-impact-response draw also attention to the issue which is also important for experts of climate change: Is it clearly climate change and if so than what the role of the human activity in it is? It seems clear that the assumption is almost poetic as the earth sends clear messages: the concentration of greenhouse gases increased suddenly in the atmosphere (carbon-dioxide, methan, nitrous oxide, etc, the average temperature continues to rise (increasing number of hot records, the sea temperature is also rising, the area of glaciers is shrinking dramatically and prolonged drought and flood waters in some places appear. The habitats of plans and animals, routes of bird migration change. The negative effects of extreme weather events thus represent a broad problem area. The effects can be devide into several groups. Some of them have impact already relatively short-term (for

  1. A laboratory evaluation of the influence of weighing gauges performance on extreme events statistics

    Science.gov (United States)

    Colli, Matteo; Lanza, Luca

    2014-05-01

    The effects of inaccurate ground based rainfall measurements on the information derived from rain records is yet not much documented in the literature. La Barbera et al. (2002) investigated the propagation of the systematic mechanic errors of tipping bucket type rain gauges (TBR) into the most common statistics of rainfall extremes, e.g. in the assessment of the return period T (or the related non-exceedance probability) of short-duration/high intensity events. Colli et al. (2012) and Lanza et al. (2012) extended the analysis to a 22-years long precipitation data set obtained from a virtual weighing type gauge (WG). The artificial WG time series was obtained basing on real precipitation data measured at the meteo-station of the University of Genova and modelling the weighing gauge output as a linear dynamic system. This approximation was previously validated with dedicated laboratory experiments and is based on the evidence that the accuracy of WG measurements under real world/time varying rainfall conditions is mainly affected by the dynamic response of the gauge (as revealed during the last WMO Field Intercomparison of Rainfall Intensity Gauges). The investigation is now completed by analyzing actual measurements performed by two common weighing gauges, the OTT Pluvio2 load-cell gauge and the GEONOR T-200 vibrating-wire gauge, since both these instruments demonstrated very good performance under previous constant flow rate calibration efforts. A laboratory dynamic rainfall generation system has been arranged and validated in order to simulate a number of precipitation events with variable reference intensities. Such artificial events were generated basing on real world rainfall intensity (RI) records obtained from the meteo-station of the University of Genova so that the statistical structure of the time series is preserved. The influence of the WG RI measurements accuracy on the associated extreme events statistics is analyzed by comparing the original intensity

  2. Quantifying the Influence of Global Warming on Unprecedented Extreme Climate Events

    Science.gov (United States)

    Diffenbaugh, Noah S.; Singh, Deepti; Mankin, Justin S.; Horton, Daniel E.; Swain, Daniel L.; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; hide

    2017-01-01

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  3. Quantifying the influence of global warming on unprecedented extreme climate events.

    Science.gov (United States)

    Diffenbaugh, Noah S; Singh, Deepti; Mankin, Justin S; Horton, Daniel E; Swain, Daniel L; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala

    2017-05-09

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  4. Considering Roads Taken and Not Taken: How Psychological Distance Influences the Framing of Choice Events.

    Science.gov (United States)

    Valenti, Greta; Libby, Lisa K

    2017-09-01

    After people make choices, they can frame the choice event in terms of what they chose, or in terms of what they did not choose. The current research proposes psychological distance as one factor influencing this framing and suggests implications. Three experiments manipulated dimensions of distance to demonstrate people's greater tendency to frame choice events in terms of chosen options at greater psychological distances. Additional findings demonstrate that these effects occur regardless of whether the decision turned out well or poorly. In a final experiment, framing a decision in terms of choosing (versus not choosing) a task made people more likely to believe their choice reflected their liking for the chosen task, which led to more favorable expectations for it. The discussion focuses on possible implications of these findings for understanding prior work on self-other differences in decision making, motivations for past decisions, reactions to decision outcomes, and counterfactual thinking.

  5. Urbanization Alters the Influence of Weather and an Index of Forest Productivity on Avian Community Richness and Guild Abundance in the Seattle Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Benjamin Shryock

    2017-05-01

    Full Text Available Fluctuations in weather and forest productivity influence the abundance and richness of bird populations, however in a rapidly urbanizing landscape the relative importance of each factor may vary. We assessed this possibility in the Seattle, WA, USA region by correlating 10 years of bird richness and relative abundance of nine guilds indicative of their tolerance of human development, migration, diet and use of human food subsidies with an annual index of forest productivity (vegetation greenness derived from a 250 m resolution Normalized Difference Vegetation Index (NDVI product from the MODIS satellite and weather (variation in the Oceanic Niño Index, which estimates the strength of the El Niño-Southern Oscillation, a major driver of local temperature and precipitation. We found that variation in NDVI exerted a strong influence on the richness of the avian community and the abundance of guilds in landscapes undergoing active development, but was less influential in areas of established housing development or forested reserves. Relative to NDVI, weather was much less influential on the abundance of guilds at actively changing sites, and slightly more influential in forest reserves and established developments. Following the warm winter and during the dry summer associated with a strong El Niño, migrants and herbivores declined in changing landscapes, insectivores declined in established developments, and herbivores declined while synanthropic species increased in reserves. These changes may presage the effects of climate change in the Pacific Northwest, which are expected to be similar to El Niño conditions. To buffer these changes in native bird communities, planners, developers, regulators, and home owners should minimize the loss of vegetation during development and attempt to quickly achieve mature landscaping that preferably provides food and shelter for birds.

  6. Weather conditions influencing phosphorus concentration in the growing period in the large shallow Lake Peipsi (Estonia/Russia

    Directory of Open Access Journals (Sweden)

    Olga Tammeorg

    2014-01-01

    Full Text Available The impact of water temperature (T, water level (L, photosynthetically active radiation (PAR, and wind speed (V on the total phosphorus concentration (TP in shallow eutrophic lake Peipsi, the fourth largest lake in Europe, was studied. We used a long-term dataset (1985-2010 of TP concentrations and weather factors. A Thin Plate Spline (TPS model was used to predict TP by year, by day of the year, and by geographical coordinates. Deviations between observed and predicted TP values (residuals, or TP anomalies were related to the weather variables to clarify how the weather anomalies in a year might correlate with the observed fluctuations in TP dynamics. Notable seasonal variations in TP, typical for many shallow lake systems, were found: TP was two to three times higher during late summer-early autumn than during winter. Patterns of TP variability were well predicted by using geographical coordinates, year and day of the year (R2=0.69; P<0.0001. However, TP anomalies were ascribed to the effects of T, L, PAR, and V, which were proved to play a significant additional role in TP dynamics. Moreover, L had consistently negative effects over the year, whereas the effects of T and PAR on TP change were seen to be dependent on the season. TP anomalies in lake Peipsi were most sensitive to wind anomalies. V was associated with frequent switches between increasing and decreasing TP values, though it appeared mainly as a negative driver of TP anomalies in the season prior to the 180th day, and as a positive driver in the subsequent season.

  7. Weather conditions influencing phosphorus concentration in the growing period in the large shallow Lake Peipsi (Estonia/Russia)

    OpenAIRE

    Tammeorg, Olga; Möls, Tonu; Kangur, Külli

    2014-01-01

    The impact of water temperature (T), water level (L), photosynthetically active radiation (PAR), and wind speed (V) on the total phosphorus concentration (TP) in shallow eutrophic lake Peipsi, the fourth largest lake in Europe, was studied. We used a long-term dataset (1985-2010) of TP concentrations and weather factors. A Thin Plate Spline (TPS) model was used to predict TP by year, by day of the year, and by geographical coordinates. Deviations between observed and predicted TP values (resi...

  8. Influence of climatological and meteorological events on the Cuban environmental gamma background

    International Nuclear Information System (INIS)

    Dominguez Ley, Orlando; Caveda Ramos, Celia; Ramos Viltre, Emma O.; Dominguez Garcia, Adriel; Alonso Abad, Dolores

    2008-01-01

    Full text: A network of environmental radiological surveillance can appropriately respond in case of any radiological anomaly, due to the suitable methodology employed, the equipment used, the automatized detection systems and the data processing. But it is also important to know how the measurements of the different radiological indicators vary with the action of any atmospheric phenomenon. In this work, an analysis of the effects produced on the environmental gamma background in Cuba when acting climatological and meteorological events, has been achieved. Events, such as seasons of severe precipitation, dry seasons, winter and summer, hurricanes and high and low pressures are studied. The measurements were carried out with a gamma probe which is equipped with two Geiger Muller detectors and a temperature sensor. This probe is located at the height of 3.5 m and is exposed to the direct sun rays. We have built hypothesis for explaining some behaviors related to meteorological events, such as hurricanes. However, our theories are not conclusive, since the data obtained from the presence of this kind of phenomena next to the sites of interest was very poor. In this work, we have given explanation to the fluctuation of the measurements achieved of the environmental gamma background, based on the occurrence of some meteorological and climatological events. All this was possible due to a previous study about the influence of the diurnal variation of the temperature over the measurements of the gamma dose rate. On the other hand, the results obtained and the study of the influence of another environmental parameters, will contribute to the alarm levels setting for this radiological indicator according to the season which the measurements are achieved in. (author)

  9. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  10. Producing Daily and Embedded Hourly Rainfall Data Using a Novel Weather Generator

    Directory of Open Access Journals (Sweden)

    Ching-Pin Tung

    2013-01-01

    Full Text Available The number of worldwide extreme drought and flood events has risen significantly in recent years. Many studies confer that climate change may cause more intensive and extreme events. Simulating the impact of climate change often requires weather data as inputs to assessment models. Stochastic weather generators have been developed to produce weather data with the same temporal resolution based on the outputs of GCMs. Reservoir simulation normally uses operational rules in daily and hourly time steps for water supply and flood reduction, respectively. Simulating consecutive drought and flood events simultaneously requires a weather generator to produce different temporal resolution data. This work develops a continuous weather generator to generate daily and hourly precipitation data for regular wet days and severe storms, respectively. Daily rainfall data is generated for regular wet days using Exponential distribution or Weibull distribution, while the total rainfall data for severe storms is generated using the Pearson type III or Log Pearson type III distribution. Moreover, hourly rainfall is determined based on generated hyetographs. Simulation results indicate that the proposed continuous weather generator can generate daily and hourly rainfall reasonably. The proposed weather generator is thus highly promising for use in evaluating how climate change impacts reservoir operations that are significantly influenced by more frequent and intensive consecutive drought and flood events.

  11. Memory for positive, negative and neutral events in younger and older adults: Does emotion influence binding in event memory?

    Science.gov (United States)

    Earles, Julie L; Kersten, Alan W; Vernon, Laura L; Starkings, Rachel

    2016-01-01

    When remembering an event, it is important to remember both the features of the event (e.g., a person and an action) and the connections among features (e.g., who performed which action). Emotion often enhances memory for stimulus features, but the relationship between emotion and the binding of features in memory is unclear. Younger and older adults attempted to remember events in which a person performed a negative, positive or neutral action. Memory for the action was enhanced by emotion, but emotion did not enhance the ability of participants to remember which person performed which action. Older adults were more likely than younger adults to make binding errors in which they incorrectly remembered a familiar actor performing a familiar action that had actually been performed by someone else, and this age-related associative deficit was found for both neutral and emotional actions. Emotion not only increased correct recognition of old events for older and younger adults but also increased false recognition of events in which a familiar actor performed a familiar action that had been performed by someone else. Thus, although emotion may enhance memory for the features of an event, it does not increase the accuracy of remembering who performed which action.

  12. The influence of thermal inertia on Mars' seasonal pressure variation and the effect of the weather component

    Science.gov (United States)

    Wood, S. E.; Paige, D. A.

    Using a Leighton-Murray type diurnal and seasonal Mars thermal model, we found that it is possible to reproduce the seasonal variation in daily-averaged pressures (approximately 680-890 Pa) measured by Viking Lander 1 (VL1), during years without global dust storms, with a standard deviation of less than 5 Pa. In this simple model, surface CO2, frost condensation, and sublimation rates at each latitude are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers. An inherent assumption of our model is that the seasonal pressure variation is due entirely to the exchange of mass between the atmosphere and polar caps. However, the results of recent Mars GCM modeling have made it clear that there is a significant dynamical contribution to the seasonal pressure variation. This 'weather' component is primarily due to large-scale changes in atmospheric circulation, and its magnitude depends somewhat on the dust content of the atmosphere. The overall form of the theoretical weather component at the location of VL1, as calculated by the AMES GCM, remains the same over the typical range of Mars dust opacities.

  13. Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils.

    Science.gov (United States)

    Sui, Hong; Hua, Zhengtao; Li, Xingang; Li, Hong; Wu, Guozhong

    2014-05-01

    Petroleum ether was used to extract petroleum hydrocarbons from soils collected from six oil fields with different history of exploratory and contamination. It was capable of fast removing 76-94 % of the total petroleum hydrocarbons including 25 alkanes (C11-C35) and 16 US EPA priority polycyclic aromatic hydrocarbons from soils at room temperature. The partial least squares analysis indicated that the solvent extraction efficiencies were positively correlated with soil organic matter, cation exchange capacity, moisture, pH, and sand content of soils, while negative effects were observed in the properties reflecting the molecular size (e.g., molecular weight and number of carbon atoms) and hydrophobicity (e.g., water solubility, octanol-water partition coefficient, soil organic carbon partition coefficient) of hydrocarbons. The high concentration of weathered crude oil at the order of 10(5) mg kg(-1) in this study was demonstrated adverse for solvent extraction by providing an obvious nonaqueous phase liquid phase for hydrocarbon sinking and increasing the sequestration of soluble hydrocarbons in the insoluble oil fractions during weathering. A full picture of the mass distribution and transport mechanism of petroleum contaminants in soils will ultimately require a variety of studies to gain insights into the dynamic interactions between environmental indicator hydrocarbons and their host oil matrix.

  14. Poly-Lactide/Exfoliated C30B Interactions and Influence on Thermo-Mechanical Properties Due to Artificial Weathering

    Directory of Open Access Journals (Sweden)

    Wendy Margarita Chávez-Montes

    2016-04-01

    Full Text Available Thermal stability as well as enhanced mechanical properties of poly-lactide (PLA can increase PLA applications for short-use products. The conjunction of adequate molecular weight (MW as well as satisfactory thermo-mechanical properties, together, can lead to the achievement of suitable properties. However, PLA is susceptible to thermal degradation and thus an undesired decay of MW and a decrease of its mechanical properties during processing. To avoid this PLA degradation, nanofiller is incorporated as reinforcement to increase its thermo-mechanical properties. There are many papers focusing on filler effects on the thermal stability and mechanical properties of PLA/nanocomposites; however, these investigations lack an explanation of polymer/filler interactions. We propose interactions between PLA and Cloisite30B (C30B as nanofiller. We also study the effects on the thermal and mechanical properties due to molecular weight decay after exposure to artificial weathering. PLA blank and nanocomposites were subjected to three time treatments (0, 176, and 360 h of exposure to artificial weathering in order to achieve comparable materials with different MW. MW was acquired by means of Gel Permeation Chromatography (GPC. Thermo-mechanical properties were investigated through Thermogravimetric Analysis (TGA, Differential Scanning Calorimetry (DSC, X-ray Diffraction (XRD, Dynamic Mechanical Thermal Analysis (DMTA and Fourier Transform Infrared Spectroscopy (FTIR.

  15. Remote Sensing of Clouds And Precipitation: Event-Based Characterization, Life Cycle Evolution, and Aerosol Influences

    Science.gov (United States)

    Esmaili, Rebekah Bradley

    Global climate models, numerical weather prediction, and flood models rely on accurate satellite precipitation products, which are the only datasets that are continuous in time and space across the globe. While there are more earth observing satellites than ever before, gaps in precipitation retrievals exist due to sensor and orbital limitations of low-earth (LEO) satellites, which are overcome by merging data from different sensors in satellite precipitation products (SPPs). Using cloud tracking at higher resolutions than the spatio-temporal scales of LEO satellites, this thesis examines how clouds typically form in the atmosphere, the rate that cloud size and temperature evolve over the life cycle, and the time of day that cloud development take place. This thesis found that cloud evolution was non-linear, which disagrees with the linear interpolation schemes used in SPPs. Longer lasting clouds tended to achieve their temperature and size maturity milestones at different times, while these stages often occurred simultaneously in shorter lasting clouds. Over the ocean, longer lasting clouds were found to occur more frequently at night, while shorter lasting clouds were more common during the daytime. This thesis also examines whether large-scale Saharan dust outbreaks can impact the trajectories and intensity of cloud clusters in the tropical Atlantic, which is predicted by modeling studies. The presented results show that proximity to Saharan dust outbreaks shifts Atlantic cloud development northward and intense storms becoming more common, whereas on days with low dust loading small-scale, warmer clouds are more common. A simplified view of cloud evolution in merged rainfall retrievals is a possible source of errors, which can propagate into higher level analysis. This thesis investigates the difference in the intensity, duration, and frequency of precipitation in IMERG, a next-generation satellite precipitation product with ground radar observations over the

  16. The influence of international and domestic events in the evolution of forest inventory and reporting consistency in the United States

    Science.gov (United States)

    W. Brad Smith

    2009-01-01

    This article takes a brief chronological look at resource inventory and reporting and links to international influences. It explores events as drivers of more consistent data within the United States and highlights key dates and events in the evolution of inventory policy and practice. From King George to L?Ecole nationale forestiere to the Food and Agriculture...

  17. NOAA Weather Radio - All Hazards

    Science.gov (United States)

    Non-Zero All Hazards Logo Emergency Alert Description Event Codes Fact Sheet FAQ Organization Search -event information for all types of hazards: weather (e.g., tornadoes, floods), natural (e.g Management or Preparedness, civil defense, police or mayor/commissioner sets up linkages to send messages on

  18. Marine traffic model based on cellular automaton: Considering the change of the ship's velocity under the influence of the weather and sea

    Science.gov (United States)

    Qi, Le; Zheng, Zhongyi; Gang, Longhui

    2017-10-01

    It was found that the ships' velocity change, which is impacted by the weather and sea, e.g., wind, sea wave, sea current, tide, etc., is significant and must be considered in the marine traffic model. Therefore, a new marine traffic model based on cellular automaton (CA) was proposed in this paper. The characteristics of the ship's velocity change are taken into account in the model. First, the acceleration of a ship was divided into two components: regular component and random component. Second, the mathematical functions and statistical distribution parameters of the two components were confirmed by spectral analysis, curve fitting and auto-correlation analysis methods. Third, by combining the two components, the acceleration was regenerated in the update rules for ships' movement. To test the performance of the model, the ship traffic flows in the Dover Strait, the Changshan Channel and the Qiongzhou Strait were studied and simulated. The results show that the characteristics of ships' velocities in the simulations are consistent with the measured data by Automatic Identification System (AIS). Although the characteristics of the traffic flow in different areas are different, the velocities of ships can be simulated correctly. It proves that the velocities of ships under the influence of weather and sea can be simulated successfully using the proposed model.

  19. Accelerated laboratory weathering of acrylic lens materials

    Science.gov (United States)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  20. Social environment and weather during early life influence gastro-intestinal parasite loads in a group-living mammal.

    Science.gov (United States)

    Rödel, Heiko G; Starkloff, Anett

    2014-10-01

    Conditions experienced during early life have been frequently shown to exert long-term consequences on an animal's fitness. In mammals and birds, the time around and shortly after weaning is one of the crucial periods early in life. However, little is known about how social and abiotic environmental conditions experienced around this time affect fitness-related traits such as endoparasite loads. We studied consequences of social interactions and rainy weather conditions around and after weaning on gastro-intestinal nematode loads in juvenile European rabbits Oryctolagus cuniculus. Infestations with the gastric nematode Graphidium strigosum and with the intestinal nematode Passalurus ambiguus were higher in animals experiencing more rain during early life. This might have been due to the higher persistence of nematodes' infective stages outside the host body together with the animals' lower energy allocation for immune defence under more humid and thus energetically challenging conditions. In contrast, infestations with P. ambiguus were lower in animals with more positive social interactions with mother and litter siblings. We propose that social support provided by familiar group members buffered negative stress effects on immune function, lowering endoparasite infestations. This is supported by the negative correlation between positive social behaviour and serum corticosterone concentrations, indicating lower stress in juveniles which integrated more successfully into the social network of their group. In conclusion, the findings offer a pathway showing how differences in the abiotic environment and social life conditions experienced early in life could translate into long-term fitness consequences via the effects on endoparasite loads.

  1. Influence of bulk microphysics schemes upon Weather Research and Forecasting (WRF) version 3.6.1 nor'easter simulations

    Science.gov (United States)

    Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen I.

    2017-03-01

    This study evaluated the impact of five single- or double-moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven intense wintertime cyclones impacting the mid-Atlantic United States; 5-day long WRF simulations were initialized roughly 24 h prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (five BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities led to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatiotemporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF simulations demonstrate low-to-moderate (0.217-0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude diagrams (CFADs) reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.

  2. Influence of forest and rangeland management on anadromous fish habitat in Western North America: impacts of natural events.

    Science.gov (United States)

    Douglas N. Swanston

    1980-01-01

    Natural events affecting vegetative cover and the hydrology and stability of a stream and its parent watershed are key factors influencing the quality of anadromous fish habitat. High intensity storms, drought, soil mass movement, and fire have the greatest impacts. Wind, stream icing, and the influence of insects and disease are important locally...

  3. Influence of edge effects on single event upset susceptibility of SOI SRAMs

    International Nuclear Information System (INIS)

    Gu, Song; Liu, Jie; Zhao, Fazhan; Zhang, Zhangang; Bi, Jinshun; Geng, Chao; Hou, Mingdong; Liu, Gang; Liu, Tianqi; Xi, Kai

    2015-01-01

    An experimental investigation of the single event upset (SEU) susceptibility for heavy ions at tilted incidence was performed. The differences of SEU cross-sections between tilted incidence and normal incidence at equivalent effective linear energy transfer were 21% and 57% for the silicon-on-insulator (SOI) static random access memories (SRAMs) of 0.5 μm and 0.18 μm feature size, respectively. The difference of SEU cross-section raised dramatically with increasing tilt angle for SOI SRAM of deep-submicron technology. The result of CRÈME-MC simulation for tilted irradiation of the sensitive volume indicates that the energy deposition spectrum has a substantial tail extending into the low energy region. The experimental results show that the influence of edge effects on SEU susceptibility cannot be ignored in particular with device scaling down

  4. On the influence of atmospheric super-saturation layer on China's heavy haze-fog events

    Science.gov (United States)

    Wang, Jizhi; Yang, Yuanqin; Zhang, Xiaoye; Liu, Hua; Che, Huizheng; Shen, Xiaojing; Wang, Yaqiang

    2017-12-01

    With the background of global change, the air quality in Earth's atmosphere has significantly decreased. The North China Plain (NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD) and Si-Chuan Basin (SCB) are the major areas suffering the decreasing air quality and frequent pollution events in recent years. Studying the effect of meteorological conditions on the concentration of pollution aerosols in these pollution sensitive regions is a hot focus now. This paper analyses the characteristics of atmospheric super-saturation and the corresponding H_PMLs (height of supersaturated pollution mixing layer), investigating their contribution to the frequently-seen heavy haze-fog weather. The results suggest that: (1) in the above-mentioned pollution sensitive regions in China, super-saturated layers repeatedly appear in the low altitude and the peak value of supersaturation S can reach 6-10%, which makes pollution particles into the wet adiabatic uplift process in the stable-static atmosphere. After low-level atmosphere reaches the super-saturation state below the H_PMLs, meteorological condition contributes to humidification and condensation of pollution particles. (2) Caculation of condensation function Fc, one of PLAM sensetive parameter, indicates that super-saturation state helps promote condensation, beneficial to the formation of Condensational Kink (CK) in the pollution sensitive areas. This favors the formation of new aerosol particles and intensities the cumulative growth of aerosol concentration. (3) By calculating the convective inhibition energy on average │CIN│ > 1.0 × 104 J kg-1, we found the value is about 100 times higher than the stable critical value. The uplifting diffusion of the particles is inhibited by the ambient airflow. So, this is the important reason for the aggravation and persistence of aerosol pollutants in local areas. (4) H_PMLs is negatively correlated to the pollution meteorological condition index PLAM which can describe the

  5. Disease activity and lifestyle influence comorbidities and cardiovascular events in patients with acromegaly.

    Science.gov (United States)

    Sardella, Chiara; Cappellani, Daniele; Urbani, Claudio; Manetti, Luca; Marconcini, Giulia; Tomisti, Luca; Lupi, Isabella; Rossi, Giuseppe; Scattina, Ilaria; Lombardi, Martina; Di Bello, Vitantonio; Marcocci, Claudio; Martino, Enio; Bogazzi, Fausto

    2016-11-01

    The primary objective of this study is to identify the predictors of comorbidities and major adverse cardiovascular events (MACE) that can develop after diagnosis of acromegaly. The role of therapy for acromegaly in the event of such complications was also evaluated. Retrospective cohort study was conducted on 200 consecutive acromegalic patients in a tertiary referral center. The following outcomes were evaluated: diabetes, hypertension and MACE. Each patient was included in the analysis of a specific outcome, unless they were affected when acromegaly was diagnosed, and further classified as follows: (i) in remission after adenomectomy (Hx), (ii) controlled by somatostatin analogues (SSA) (SSAc) or (iii) not controlled by SSA (SSAnc). Data were evaluated using Cox regression analysis. After diagnosis of acromegaly, diabetes occurred in 40.8% of patients. The SSAnc group had a three-fold higher risk of diabetes (HR: 3.32, P = 0.006), whereas the SSAc group had a 1.4-fold higher risk of diabetes (HR: 1.43, P = 0.38) compared with the Hx group. Hypertension occurred in 35.5% of patients, after diagnosis. The determinants of hypertension were age (HR: 1.06, P = 0.01) and BMI (HR: 1.05, P = 0.01). MACE occurred in 11.8% of patients, after diagnosis. Age (HR: 1.09, P = 0.005) and smoking habit (HR: 5.95, P = 0.01) were predictors of MACE. Conversely, therapy for acromegaly did not influence hypertension or MACE. After diagnosis of acromegaly, control of the disease (irrespective of the type of treatment) and lifestyle are predictors of comorbidities and major adverse cardiovascular events. © 2016 European Society of Endocrinology.

  6. Influence of negative emotion on the framing effect: evidence from event-related potentials.

    Science.gov (United States)

    Ma, Qingguo; Pei, Guanxiong; Wang, Kai

    2015-04-15

    The framing effect is the phenomenon in which different descriptions of an identical problem can result in different choices. The influence of negative emotions on the framing effect and its neurocognitive basis are important issues, especially in the domain of saving lives, which is essential and highly risky. In each trial of our experiment, the emotion stimulus is presented to the participants, followed by the decision-making stimulus, which comprises certain and risky options with the same expected value. Each pair of options is positively or negatively framed. The behavioral results indicate a significant interactive effect between negative emotion and frame; thus, the risk preference under the positive frame can be enhanced by negative emotions, whereas this finding is not true under the negative frame. The event-related potential analysis indicates that choosing certain options under the positive frame with negative emotion priming generates smaller P2 and P3 amplitudes and a larger N2 amplitude than with neutral emotion priming. The event-related potential findings indicate that individuals can detect risk faster and experience more conflict and increased decision difficulty if they choose certain options under the positive frame with negative priming compared with neutral priming.

  7. National Weather Service

    Science.gov (United States)

    ... GIS International Weather Cooperative Observers Storm Spotters Tsunami Facts and Figures National Water Center WEATHER SAFETY NOAA Weather Radio StormReady Heat Lightning Hurricanes Thunderstorms Tornadoes Rip Currents Floods Winter Weather ...

  8. The influence of caffeine on spatial-selective attention: an event-related potential study.

    Science.gov (United States)

    Ruijter, J; de Ruiter, M B; Snel, J; Lorist, M M

    2000-12-01

    Following the indications of previous studies that caffeine might have a specific effect on the processing of spatial information compared with other types of information, the present study investigated the influence of caffeine on an often used spatial-selective attention task. Event-related potentials (ERPs) were recorded from 11 participants under conditions of caffeine (250 mg) and placebo. Spatial-selective attention effects were reflected in the ERPs as more positive going occipital P1 and broadly distributed P2 components, and more negative going occipital-temporal N1 and broadly distributed N2 components. A treatment effect was found as a more positive going frontal P2 component in the caffeine condition, whereas interactions between treatment and attention were observed for P2 and N2 components, but not for P1 and N1 components. This pattern of results suggests that caffeine has no specific influence on spatial-selective attention, but rather, has a more general facilitating effect on perceptual processing, as well as a possible effect on the frontal control mechanisms, i.e. focusing attention and increasing selectivity.

  9. Social distance influences the outcome evaluation of cooperation and conflict: Evidence from event-related potentials.

    Science.gov (United States)

    Chen, Yezi; Lu, Jiamei; Wang, Yiwen; Feng, Zhouqi; Yuan, Bo

    2017-04-24

    Previous research shows that social distance plays an important role in promoting cooperation and that subtle cues that reduce social distance increase the tendency to cooperate. However, it is unclear how social distance influences our outcome evaluation of cooperative and conflict feedback. The present study investigated the influence of social distance on cooperative and conflict behavior and the evaluation process of the cooperative and conflict outcomes, using the event-related potentials (ERPs) technique. We recorded ERPs from 14 normal adults playing a social game task against a friend and a stranger. The results showed that the FRN (Feedback Related Negativity) and P300 were affected by the opponent's choice to cooperate or aggress; however, only the P300 was affected by social distance. Specifically, when the opponent chose to cooperate, the feedback elicited a smaller FRN and a larger P300 amplitude; and compared with playing against friends, the P300 had a larger amplitude when participants gaming with strangers. Our results indicate that at the early stage of the evaluation of cooperation and conflict outcomes, individuals may initially and quickly encode the valence of outcomes, judging whether an outcome is consistent with their expectations. However, at the late stage, which involves a top-down cognitive appraisal process, some social factors, such as social distance, may moderate processing of attention resource allocation of feedback about outcomes, and of higher-level motivation/affective appraisal. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Ionospheric Response to Extremes in the Space Environment: Establishing Benchmarks for the Space Weather Action Plan.

    Science.gov (United States)

    Viereck, R. A.; Azeem, S. I.

    2017-12-01

    One of the goals of the National Space Weather Action Plan is to establish extreme event benchmarks. These benchmarks are estimates of environmental parameters that impact technologies and systems during extreme space weather events. Quantitative assessment of anticipated conditions during these extreme space weather event will enable operators and users of affected technologies to develop plans for mitigating space weather risks and improve preparedness. The ionosphere is one of the most important regions of space because so many applications either depend on ionospheric space weather for their operation (HF communication, over-the-horizon radars), or can be deleteriously affected by ionospheric conditions (e.g. GNSS navigation and timing, UHF satellite communications, synthetic aperture radar, HF communications). Since the processes that influence the ionosphere vary over time scales from seconds to years, it continues to be a challenge to adequately predict its behavior in many circumstances. Estimates with large uncertainties, in excess of 100%, may result in operators of impacted technologies over or under preparing for such events. The goal of the next phase of the benchmarking activity is to reduce these uncertainties. In this presentation, we will focus on the sources of uncertainty in the ionospheric response to extreme geomagnetic storms. We will then discuss various research efforts required to better understand the underlying processes of ionospheric variability and how the uncertainties in ionospheric response to extreme space weather could be reduced and the estimates improved.

  11. Impact of weather variability on nitrate leaching

    Science.gov (United States)

    Richards, Karl; Premrov, Alina; Hackett, Richard; Coxon, Catherine

    2016-04-01

    The loss of nitrate (NO3 - N) to water via leaching and overland flow contributes to eutrophication of freshwaters, transitional and near coastal waters with agriculture contributing significantly to nitrogen (N) loading to these water. Environmental regulations, such as the Nitrates and Water Framework Directives, have increased constraints on farmers to improve N management in regions at risk of NO3--N loss to water. In addition, farmers also have to manage their systems within a changing climate as the imapcts of climate change begin to impact resulting in more frequent extreme events such as floods and droughts. The objective of this study was to investigate the link between weather volatility and the concentration of leached NO3--N spring barley. Leaching was quantified under spring barley grown on a well-drained, gravelly sandy soil using ceramic cup samplers over 6 drainage years under the same farming practices and treatments. Soil solution NO3--N concentrations under spring barley grown by conventional inversion ploughing and reduced tillage were compared to weather parameters over the period. Weather was recorded at a national Met Eireann weather station on site. Soil solution NO3--N varied significantly between years. Within individual years NO3--N concentrations varied over the drainage season, with peak concentrations generally observed in the autumn time, decreasing thereafter. Under both treatments there was a three-fold difference in mean annual soil solution NO3--N concentration over the 6 years with no change in the agronomic practices (crop type, tillage type and fertiliser input). Soil solution nitrate concentrations were significantly influenced by weather parameters such as rainfall, effective drainage and soil moisture deficit. The impact of climate change in Ireland could lead to increased NO3--N loss to water further exacerbating eutrophication of sensitive estuaries. The increased impact on eutrophication of waters, related to climatic

  12. Assessing the role of farm-level adaptation in limiting the local economic impacts of more frequent extreme weather events in Dutch arable farming systems

    NARCIS (Netherlands)

    Diogo, V.; Reidsma, P.; Schaap, B.; Koomen, E.; Fodor, Nándor

    2017-01-01

    The expected increase in extreme events frequency is likely to considerably affect future crop productivity. Appropriate adaptation measures in agricultural systems should be identified according to the main climate risks expected in a region and taking into account the role of decisions made at the

  13. The influence of weather variation on regional growth of Douglas-fir stands in the U.S. Pacific Northwest.

    Science.gov (United States)

    Charles E. Peterson; Linda S. Heath

    1991-01-01

    In this paper we examine the influence of precipitation and temperature deviations on regional volume growth rates in even aged, onnen.,ed second growth Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) stands. Between 1969 and 1986, average volume growth rates in natural stands of coast Douglas fix in western Washington and Oregon were negatively...

  14. Impacts of Extreme Space Weather Events on Power Grid Infrastructure: Physics-Based Modelling of Geomagnetically-Induced Currents (GICs) During Carrington-Class Geomagnetic Storms

    Science.gov (United States)

    Henderson, M. G.; Bent, R.; Chen, Y.; Delzanno, G. L.; Jeffery, C. A.; Jordanova, V. K.; Morley, S.; Rivera, M. K.; Toth, G.; Welling, D. T.; Woodroffe, J. R.; Engel, M.

    2017-12-01

    Large geomagnetic storms can have devastating effects on power grids. The largest geomagnetic storm ever recorded - called the Carrington Event - occurred in 1859 and produced Geomagnetically Induced Currents (GICs) strong enough to set fires in telegraph offices. It has been estimated that if such a storm occurred today, it would have devastating, long-lasting effects on the North American power transmission infrastructure. Acutely aware of this imminent threat, the North American Electric Reliability Corporation (NERC) was recently instructed to establish requirements for transmission system performance during geomagnetic disturbance (GMD) events and, although the benchmarks adopted were based on the best available data at the time, they suffer from a severely limited physical understanding of the behavior of GMDs and the resulting GICs for strong events. To rectify these deficiencies, we are developing a first-of-its-kind data-informed modelling capability that will provide transformational understanding of the underlying physical mechanisms responsible for the most harmful intense localized GMDs and their impacts on real power transmission networks. This work is being conducted in two separate modes of operation: (1) using historical, well-observed large storm intervals for which robust data-assimilation can be performed, and (2) extending the modelling into a predictive realm in order to assess impacts of poorly and/or never-before observed Carrington-class events. Results of this work are expected to include a potential replacement for the current NERC benchmarking methodology and the development of mitigation strategies in real power grid networks. We report on progress to date and show some preliminary results of modeling large (but not yet extreme) events.

  15. Reactions of Air Transport Flight Crews to Displays of Weather During Simulated Flight

    Science.gov (United States)

    Bliss, James P.; Fallon, Corey; Bustamante, Ernesto; Bailey, William R., III; Anderson, Brittany

    2005-01-01

    Display of information in the cockpit has long been a challenge for aircraft designers. Given the limited space in which to present information, designers have had to be extremely selective about the types and amount of flight related information to present to pilots. The general goal of cockpit display design and implementation is to ensure that displays present information that is timely, useful, and helpful. This suggests that displays should facilitate the management of perceived workload, and should allow maximal situation awareness. The formatting of current and projected weather displays represents a unique challenge. As technologies have been developed to increase the variety and capabilities of weather information available to flight crews, factors such as conflicting weather representations and increased decision importance have increased the likelihood for errors. However, if formatted optimally, it is possible that next generation weather displays could allow for clearer indications of weather trends such as developing or decaying weather patterns. Important issues to address include the integration of weather information sources, flight crew trust of displayed weather information, and the teamed reactivity of flight crews to displays of weather. Past studies of weather display reactivity and formatting have not adequately addressed these issues; in part because experimental stimuli have not approximated the complexity of modern weather displays, and in part because they have not used realistic experimental tasks or participants. The goal of the research reported here was to investigate the influence of onboard and NEXRAD agreement, range to the simulated potential weather event, and the pilot flying on flight crew deviation decisions, perceived workload, and perceived situation awareness. Fifteen pilot-copilot teams were required to fly a simulated route while reacting to weather events presented in two graphical formats on a separate visual display

  16. Study of atmospheric condition during the heavy rain event in Bojonegoro using weather research and forecasting (WRF) model: case study 9 February 2017

    Science.gov (United States)

    Saragih, I. J. A.; Meygatama, A. G.; Sugihartati, F. M.; Sidauruk, M.; Mulsandi, A.

    2018-03-01

    During 2016, there are frequent heavy rains in the Bojonegoro region, one of which is rain on 9 February 2016. The occurrence of heavy rainfall can cause the floods that inundate the settlements, rice fields, roads, and public facilities. This makes it important to analyze the atmospheric conditions during the heavy rainfall events in Bojonegoro. One of the analytical methods that can be used is using WRF-Advanced Research WRF (WRF-ARW) model. This study was conducted by comparing the rain analysis from WRF-ARW model with the Himawari-8 satellite imagery. The data used are Final Analysis (FNL) data for the WRF-ARW model and infrared (IR) channel for Himawari-8 satellite imagery. The data are processed into the time-series images and then analyzed descriptively. The meteorological parameters selected to be analyzed are relative humidity, vortices, divergences, air stability index, and precipitation. These parameters are expected to indicate the existence of a convective activity in Bojonegoro during the heavy rainfall event. The Himawari-8 satellite imagery shows that there is a cluster of convective clouds in Bojonegoro during the heavy rainfall event. The lowest value of the cloud top temperature indicates that the cluster of convective clouds is a cluster of Cumulonimbus cloud (CB).

  17. [The influence of weather conditions on the epidemiology of vector-borne diseases by the example of West Nile fever in Russia].

    Science.gov (United States)

    Platonov, A E

    2006-01-01

    Climate changes must influence the incidence of vector-borne infections, but their effects cannot be revealed due to lack of long-term observations. The impact of short-term weather changes may be used as a model. In Russia the biggest numbers of clinical cases of mosquito-borne West Nile infection were registered in 1999 in Volgograd and Astrakhan regions. The analysis of climatic dataset since 1900 shows that 1999 was the hottest year in Volgograd in the 20th century due to a very mild winter (December-March) and a rather hot summer (June-September). The author of the article puts forward a hypothesis that high winter temperatures favored the survival of over-wintering mosquito vectors, and high summer temperature facilitated the growth of the virus in the mosquitoes, as well as propagation of the mosquitoes themselves. The author assumes that conventional threshold temperatures for "beneficial for WNF conditions" in Russia are > or = 3 degrees C in winter, and > or = 22 degrees C in summer. These conditions coincided only in 1948 and 1999. In Astrakhan the "beneficial for WNF conditions" were registered in 30 out of 147 years of observation, and in 12 years between 1964 and 2003. This is not surprising that Astrakhan region is endemic for WNF in accordance with clinical and epidemiological data collected since the sixties. These findings give some hints on the WNF predisposing factors, as well as possibility of weather surveillance and prediction of WNF outbreaks in temperate climatic zones such as Southern Russia.

  18. The Influence of Weather Anomalies on Mercury Cycling in the Marine Coastal Zone of the Southern Baltic-Future Perspective.

    Science.gov (United States)

    Bełdowska, Magdalena

    2015-01-01

    Despite the decreased emission loads of mercury, historical deposits of this metal in various compartments of the environment may become an additional diffuse source in the future. Global climate change manifests itself in the temperate zone in several ways: warmer winters, shorter icing periods, increased precipitation and heightened frequency of extreme events such as strong gales and floods, all of which cause disturbances in the rate and direction of mercury biogeochemical cycling. The present study was conducted at two sites, Oslonino and Gdynia Orlowo (both in the coastal zone of the Gulf of Gdansk), from which samples were collected once a month between January 2012 and December 2012. In the Southern Baltic region, climate changes can certainly enhance coast to basin fluxes of mercury and the transfer of bioavailable forms of this metal to the food web. They may also, in the future, contribute to uncontrollable increases of mercury in the seawater.

  19. Terminal weather information management

    Science.gov (United States)

    Lee, Alfred T.

    1990-01-01

    Since the mid-1960's, microburst/windshear events have caused at least 30 aircraft accidents and incidents and have killed more than 600 people in the United States alone. This study evaluated alternative means of alerting an airline crew to the presence of microburst/windshear events in the terminal area. Of particular interest was the relative effectiveness of conventional and data link ground-to-air transmissions of ground-based radar and low-level windshear sensing information on microburst/windshear avoidance. The Advanced Concepts Flight Simulator located at Ames Research Center was employed in a line oriented simulation of a scheduled round-trip airline flight from Salt Lake City to Denver Stapleton Airport. Actual weather en route and in the terminal area was simulated using recorded data. The microburst/windshear incident of July 11, 1988 was re-created for the Denver area operations. Six experienced airline crews currently flying scheduled routes were employed as test subjects for each of three groups: (1) A baseline group which received alerts via conventional air traffic control (ATC) tower transmissions; (2) An experimental group which received alerts/events displayed visually and aurally in the cockpit six miles (approx. 2 min.) from the microburst event; and (3) An additional experimental group received displayed alerts/events 23 linear miles (approx. 7 min.) from the microburst event. Analyses of crew communications and decision times showed a marked improvement in both situation awareness and decision-making with visually displayed ground-based radar information. Substantial reductions in the variability of decision times among crews in the visual display groups were also found. These findings suggest that crew performance will be enhanced and individual differences among crews due to differences in training and prior experience are significantly reduced by providing real-time, graphic display of terminal weather hazards.

  20. How Social Ties Influence Consumer: Evidence from Event-Related Potentials.

    Directory of Open Access Journals (Sweden)

    Jing Luan

    Full Text Available A considerable amount of marketing research has reported that consumers are more saliently influenced by friends (strong social ties than by acquaintances and strangers (weak social ties. To shed light on the neural and psychological processes underlying such phenomenon, in this study we designed an amended S1-S2 paradigm (product-[reviewer-review] that is based on realistic consumer purchase experiences. After incoming all given information (product, reviewer, review, participants were required to state their purchase intentions. The neurocognitive and emotional processes related to friend and stranger stimuli were delineated to suggest how social ties influence consumers during their shopping processes. Larger P2 (fronto-central scalp areas and P3 (central and posterior-parietal scalp areas components under stranger condition were elicited successfully. These findings demonstrate that the cognitive and emotional processing of friend and stranger stimuli occurs at stages of neural activity, and can be indicated by the P2 and P3 components. Electrophysiological data also support the hypothesis that different neural and emotional processing magnitude and strength underlie friend and stranger effect in the context of consumer purchase. During this process, the perception of stimuli evoked P2, subsequently emotional processing and attention modulation were activated and indicated by P2 and P3. The friend dominated phenomenon can be interpreted as the result of distinctive neurocognitive and emotional processing magnitude, which suggests that psychological and emotional factors can guide consumer decision making. This study consolidates that event related potential (ERP methodology is likely to be a more sensitive method for investigating consumer behaviors. From the perspectives of management and marketing, our findings show that the P2 and P3 components can be employed as an indicator to probe the influential factors of consumer purchase

  1. How Social Ties Influence Consumer: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Luan, Jing; Yao, Zhong; Bai, Yan

    2017-01-01

    A considerable amount of marketing research has reported that consumers are more saliently influenced by friends (strong social ties) than by acquaintances and strangers (weak social ties). To shed light on the neural and psychological processes underlying such phenomenon, in this study we designed an amended S1-S2 paradigm (product-[reviewer-review]) that is based on realistic consumer purchase experiences. After incoming all given information (product, reviewer, review), participants were required to state their purchase intentions. The neurocognitive and emotional processes related to friend and stranger stimuli were delineated to suggest how social ties influence consumers during their shopping processes. Larger P2 (fronto-central scalp areas) and P3 (central and posterior-parietal scalp areas) components under stranger condition were elicited successfully. These findings demonstrate that the cognitive and emotional processing of friend and stranger stimuli occurs at stages of neural activity, and can be indicated by the P2 and P3 components. Electrophysiological data also support the hypothesis that different neural and emotional processing magnitude and strength underlie friend and stranger effect in the context of consumer purchase. During this process, the perception of stimuli evoked P2, subsequently emotional processing and attention modulation were activated and indicated by P2 and P3. The friend dominated phenomenon can be interpreted as the result of distinctive neurocognitive and emotional processing magnitude, which suggests that psychological and emotional factors can guide consumer decision making. This study consolidates that event related potential (ERP) methodology is likely to be a more sensitive method for investigating consumer behaviors. From the perspectives of management and marketing, our findings show that the P2 and P3 components can be employed as an indicator to probe the influential factors of consumer purchase intentions.

  2. Extreme weather is increasing flood-related damage along ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-08

    Jun 8, 2016 ... IDRC-supported researchers have found changes in weather patterns and in the intensity of extreme weather events are resulting in the ... the design of adaptation policies and risk management scenarios. ... Related articles ...

  3. The influence of gender and gender typicality on autobiographical memory across event types and age groups.

    Science.gov (United States)

    Grysman, Azriel; Fivush, Robyn; Merrill, Natalie A; Graci, Matthew

    2016-08-01

    Gender differences in autobiographical memory emerge in some data collection paradigms and not others. The present study included an extensive analysis of gender differences in autobiographical narratives. Data were collected from 196 participants, evenly split by gender and by age group (emerging adults, ages 18-29, and young adults, ages 30-40). Each participant reported four narratives, including an event that had occurred in the last 2 years, a high point, a low point, and a self-defining memory. Additionally, all participants completed self-report measures of masculine and feminine gender typicality. The narratives were coded along six dimensions-namely coherence, connectedness, agency, affect, factual elaboration, and interpretive elaboration. The results indicated that females expressed more affect, connection, and factual elaboration than males across all narratives, and that feminine typicality predicted increased connectedness in narratives. Masculine typicality predicted higher agency, lower connectedness, and lower affect, but only for some narratives and not others. These findings support an approach that views autobiographical reminiscing as a feminine-typed activity and that identifies gender differences as being linked to categorical gender, but also to one's feminine gender typicality, whereas the influences of masculine gender typicality were more context-dependent. We suggest that implicit gendered socialization and more explicit gender typicality each contribute to gendered autobiographies.

  4. Cooking and disgust sensitivity influence preference for attending insect-based food events.

    Science.gov (United States)

    Hamerman, Eric J

    2016-01-01

    Insects are energy-efficient and sustainable sources of animal protein in a world with insufficient food resources to feed an ever-increasing population. However, much of the western world refuses to eat insects because they perceive them as disgusting. This research finds that both animal reminder disgust and core disgust reduced people's willingness to attend a program called "Bug Appétit" in which insects were served as food. Additionally, people who were low in sensitivity to animal reminder disgust were more willing to attend this program after having been primed to think about cooking. Cooking is a process by which raw ingredients are transformed into finished products, reducing the "animalness" of meat products that renders them disgusting. Sensitivity to core disgust did not interact with cooking to influence willingness to attend the program. While prior research has emphasized that direct education campaigns about the benefits of entomophagy (the consumption of insects) can increase willingness to attend events at which insect-based food is served, this is the first demonstration that indirect priming can have a similar effect among a subset of the population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Available processing resources influence encoding-related brain activity before an event.

    Science.gov (United States)

    Galli, Giulia; Gebert, A Dorothea; Otten, Leun J

    2013-09-01

    Effective cognitive functioning not only relies on brain activity elicited by an event, but also on activity that precedes it. This has been demonstrated in a number of cognitive domains, including memory. Here, we show that brain activity that precedes the effective encoding of a word into long-term memory depends on the availability of sufficient processing resources. We recorded electrical brain activity from the scalps of healthy adult men and women while they memorized intermixed visual and auditory words for later recall. Each word was preceded by a cue that indicated the modality of the upcoming word. The degree to which processing resources were available before word onset was manipulated by asking participants to make an easy or difficult perceptual discrimination on the cue. Brain activity before word onset predicted later recall of the word, but only in the easy discrimination condition. These findings indicate that anticipatory influences on long-term memory are limited in capacity and sensitive to the degree to which attention is divided between tasks. Prestimulus activity that affects later encoding can only be engaged when the necessary cognitive resources can be allocated to the encoding process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Rainfall timing and runoff: The influence of the criterion for rain event separation

    OpenAIRE

    Molina-Sanchis, Isabel; Lázaro, Roberto; Arnau-Rosalén, Eva; Calvo-Cases, Adolfo

    2016-01-01

    Rain is not uniform in time and space in semiarid areas and its distribution is very important for the runoff process. Hydrological studies usually divide rainfall into events. However, defining rain events is complicated, and rain characteristics vary depending on how the events are delimited. Choosing a minimum inter-event time (MIT) is a commonly used criterion. Our hypothesis is that there will be an optimal MIT that explains the maximum part of the variance of the runoff, with time to ru...

  7. Does the Nature of the Experience Influence Suggestibility? A Study of Children's Event Memory.

    Science.gov (United States)

    Gobbo, Camilla; Mega, Carolina; Pipe, Margaret-Ellen

    2002-01-01

    Two experiments examined effects of event modality on young children's memory and suggestibility. Findings indicated that 5-year-olds were more accurate than 3-year-olds and those participating in the event were more accurate than those either observing or listening to a narrative. Assessment method, level of event learning, delay to testing, and…

  8. The influence of hydrologic residence time on lake carbon cycling dynamics following extreme precipitation events

    Science.gov (United States)

    Jacob A. Zwart; Stephen D. Sebestyen; Christopher T. Solomon; Stuart E. Jones

    2016-01-01

    The frequency and magnitude of extreme events are expected to increase in the future, yet little is known about effects of such events on ecosystem structure and function. We examined how extreme precipitation events affect exports of terrestrial dissolved organic carbon (t-DOC) from watersheds to lakes as well as in-lake heterotrophy in three north-temperate lakes....

  9. Relationships between Long-Term Demography and Weather in a Sub-Arctic Population of Common Eider.

    Directory of Open Access Journals (Sweden)

    Jón Einar Jónsson

    Full Text Available Effects of local weather on individuals and populations are key drivers of wildlife responses to climatic changes. However, studies often do not last long enough to identify weather conditions that influence demographic processes, or to capture rare but extreme weather events at appropriate scales. In Iceland, farmers collect nest down of wild common eider Somateria mollissima and many farmers count nests within colonies annually, which reflects annual variation in the number of breeding females. We collated these data for 17 colonies. Synchrony in breeding numbers was generally low between colonies. We evaluated 1 demographic relationships with weather in nesting colonies of common eider across Iceland during 1900-2007; and 2 impacts of episodic weather events (aberrantly cold seasons or years on subsequent breeding numbers. Except for episodic events, breeding numbers within a colony generally had no relationship to local weather conditions in the preceding year. However, common eider are sexually mature at 2-3 years of age and we found a 3-year time lag between summer weather and breeding numbers for three colonies, indicating a positive effect of higher pressure, drier summers for one colony, and a negative effect of warmer, calmer summers for two colonies. These findings may represent weather effects on duckling production and subsequent recruitment. Weather effects were mostly limited to a few aberrant years causing reductions in breeding numbers, i.e. declines in several colonies followed severe winters (1918 and some years with high NAO (1992, 1995. In terms of life history, adult survival generally is high and stable and probably only markedly affected by inclement weather or aberrantly bad years. Conversely, breeding propensity of adults and duckling production probably do respond more to annual weather variations; i.e. unfavorable winter conditions for adults increase probability of death or skipped breeding, whereas favorable summers

  10. Influence exerted by risk factors of space and erath weather on frequency of emergency calls from patients with acute cerebral circulation disorders

    Directory of Open Access Journals (Sweden)

    V.A. Belyaeva

    2017-12-01

    Full Text Available High morbidity with cardiovascular pathology increases loads on a public healthcare system and is not only social but also an economic problem. To optimize cardiovascular pathology prevention, it is necessary to thoroughly analyze risk factors which cause its occurrence. Our research goal was to examine a dynamics of acute cerebral circulation disorders depending on meteorological factors and heliofactors allowing for a seasonal component. We performed a retrospective analysis of morbidity with acute cerebral circulation disorders in winter, spring, and summer in 2012 on the basis of the archives obtained from an emergency station in Vladikavkaz. We analyzed 509 cases of the disease (294 women and 215 men. On the basis of our analysis results we assessed influence exerted by external factors on frequency of applications to emergency from patients with acute cerebral circulation disorders. We analyzed meteorological factors and heliofactors and their derivatives: average daily temperature, air pressure, relative humidity, wind speed, cloud coverage, weather pathogenicity, Sun radiation flux density at a wave length equal to 10.7, and a number of sunspots. We detected that in winter negative influence was exerted by temperature; there was also a multi-factor dependence between frequency of acute cerebral circulation disorders and such predictors as temperature pathogenicity index and speed of changes in Sun radiation flux density during a day (Rmulti = 0.50; R2 = 0.25. Drastic temperature fluctuations make for increase in morbidity in spring. Morbidity cases frequency in women in this period correlates not only with temperature pathogenicity index but also with pathogenicity index of air pressure changes. Morbidity increase in summer is caused by simultaneous drop both in air pressure and relative humidity (Rmulti = 0.59; R2 = 0.35. Overall, correlation between external factors and morbidity with acute cerebral circulation disorder has seasonal

  11. Influence of orthopedic reinforced gloves versus double standard gloves on contamination events during small animal orthopedic surgery.

    Science.gov (United States)

    Hayes, Galina; Singh, Ameet; Gibson, Tom; Moens, Noel; Oblak, Michelle; Ogilvie, Adam; Reynolds, Debbie

    2017-10-01

    To determine the influence of orthopedic reinforced gloves on contamination events during small animal orthopedic surgery. Prospective randomized controlled trial SAMPLE POPULATION: Two hundred and thirty-seven pairs of orthopedic gloves (474 gloves) and 203 pairs of double standard gloves (812 gloves) worn during 193 orthopedic procedures. Primary and assistant surgeons were randomized to wear either orthopedic reinforced gloves or double gloves. Gloves were leak tested to identify perforations at the end of procedures. Perforations detected intraoperatively or postoperatively were recorded. A contamination event was defined as at least one perforation on either hand for orthopedic reinforced gloves, or a perforation of both the inner and outer glove on the same hand for double gloves. Baseline characteristics between the 2 intervention groups were similar. There was no difference in contamination events between the double-gloved and orthopedic gloved groups (OR = 0.95, 95% CI = 0.49-1.87, P = .89). The same percentage of contamination events (8% glove pairs used) occurred in the double gloved group (17 contamination events) and in the orthopedic gloved group (19 contamination events). The odds of a contamination event increased by 1.02 (95% CI 1.01-1.03, P contamination events in small animal orthopedic procedures. Surgeons reluctant to double glove due to perceptions of decreased dexterity and discomfort may safely opt for wearing orthopedic gloves, which may improve their compliance. © 2017 The American College of Veterinary Surgeons.

  12. Influence of aerosol-cloud interaction on austral summer precipitation over Southern Africa during ENSO events

    Science.gov (United States)

    Ruchith, R. D.; Sivakumar, V.

    2018-04-01

    In the present study, we are investigating the role of aerosols-and clouds in modulating the austral summer precipitation (December-February) during ENSO events over southern Africa region for the period from 2002 to2012 by using satellite and complimentary data sets. Aerosol radiative forcing (ARF) and Cloud radiative forcing (CRF) shows distinct patterns for El-Nina and La-Nina years. Further analysis were carried out by selecting the four Southern Africa regions where the precipitation shows remarkable difference during El-Nino and La-Nina years. These regions are R1 (33°S-24°S, 18°E-30°E), R2 (17°S-10°S, 24°E-32°E), R3 (19°S-9°S, 33°E-41°E) and R4 (7°S-0°S, 27°E-36°E). Aerosol Optical depth (AOD) shows considerable differences during these events. In region R1, R2 and R3 AOD shows more abundance in El-Nino years as compared to La-Nina years where as in R4 the AOD shows more abundance in La-Nina years. Cloud Droplet Effective radius (CDER) shows higher values during La-Nina years over R1, R2 and R3 regions but in R4 region CDER shows higher values in El-Nino years. Aerosol indirect effect (AIE) is estimated both for fixed cloud liquid water path (CLWP) and for fixed cloud ice path (CIP) bins, ranging from 1 to 300 gm -2 at 25 gm -2 interval over all the selected regions for El-Nino and La-Nina years. The results indicate more influence of positive indirect effect (Twomey effect) over R1 and R3 region during El-Nino years as compared to La-Nina years. This analysis reveals the important role of aerosol on cloud-precipitation interaction mechanism illustrating the interlinkage between dynamics and microphysics during austral summer season over southern Africa.

  13. Pushing the Envelope of Extreme Space Weather

    Science.gov (United States)

    Pesnell, W. D.

    2014-12-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cost billions of dollars to recover from. We have few examples of such events; the Carrington Event (the solar superstorm) is one of the few that had superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing millions of times more energy than an X-class flare. These flares and the accompanying coronal mass ejections could strongly affect the atmosphere surrounding a planet. What level of solar activity would be necessary to strongly affect the atmosphere of the Earth? Can we map out the envelope of space weather along the evolution of the Sun? What would space weather look like if the Sun stopped producing a magnetic field? To what extreme should Space Weather go? These are the extremes of Space Weather explored in this talk.

  14. Did American social and economic events from 1865 to 1898 influence D.D. Palmer the chiropractor and entrepreneur?

    Science.gov (United States)

    Batinić, Josip; Skowron, Mirek; Hammerich, Karin

    2013-09-01

    This paper explores how the social landscape of the latter half of the nineteenth century influenced D. D. Palmer and the many occupations he pursued. It focuses on the geographical area where D. D. lived from 1865 to 1898. This paper will show how the American social and economic events of the time provided favourable circumstances for D.D.'s entrepreneurial successes.

  15. A decade of weather extremes

    NARCIS (Netherlands)

    Coumou, Dim; Rahmstorf, Stefan

    The ostensibly large number of recent extreme weather events has triggered intensive discussions, both in- and outside the scientific community, on whether they are related to global warming. Here, we review the evidence and argue that for some types of extreme - notably heatwaves, but also

  16. Bilateral theta-burst magnetic stimulation influence on event-related brain potentials.

    Science.gov (United States)

    Pinto, Nuno; Duarte, Marta; Gonçalves, Helena; Silva, Ricardo; Gama, Jorge; Pato, Maria Vaz

    2018-01-01

    Theta-burst stimulation (TBS) can be a non-invasive technique to modulate cognitive functions, with promising therapeutic potential, but with some contradictory results. Event related potentials are used as a marker of brain deterioration and can be used to evaluate TBS-related cognitive performance, but its use remains scant. This study aimed to study bilateral inhibitory and excitatory TBS effects upon neurocognitive performance of young healthy volunteers, using the auditory P300' results. Using a double-blind sham-controlled study, 51 healthy volunteers were randomly assigned to five different groups, two submitted to either excitatory (iTBS) or inhibitory (cTBS) stimulation over the left dorsolateral pre-frontal cortex (DLPFC), two other actively stimulated the right DLPFC and finally a sham stimulation group. An oddball based auditory P300 was performed just before a single session of iTBS, cTBS or sham stimulation and repeated immediately after. P300 mean latency comparison between the pre- and post-TBS stimulation stages revealed significantly faster post stimulation latencies only when iTBS was performed on the left hemisphere (p = 0.003). Right and left hemisphere cTBS significantly delayed P300 latency (right p = 0.026; left p = 0.000). Multiple comparisons for N200 showed slower latencies after iTBS over the right hemisphere. No significant difference was found in amplitude variation. TBS appears to effectively influence neural networking involved in P300 formation, but effects seem distinct for iTBS vs cTBS and for the right or the left hemisphere. P300 evoked potentials can be an effective and practical tool to evaluate transcranial magnetic stimulation related outcomes.

  17. Powernext weather, benchmark indices for effective weather risk management

    International Nuclear Information System (INIS)

    2006-01-01

    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the Powernext/Meteo France partnership for the elaboration of efficient weather-related risk management indices. (J.S.)

  18. Surface Weather, Signal Service and Weather Bureau

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather, Signal Service and Weather Bureau (SWSSWB) Records primarily created by the United States Army Signal Service from 1819 until the paid and voluntary...

  19. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  20. Influence and importance of daily weather conditions in the supply of chloride, sulfate, and other ions to fresh waters from atmospheric precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Gorham, E

    1958-01-01

    From the data presented here it seems clear that local weather conditions play a very large part in determining the atmospheric supply of ions to natural waters in the lake district. It is likewise evident that atmospheric precipitation is of the utmost importance as a source of many of the major dissolved ions, especially to bogs, to upland tarns on hard volcanic rocks, and to heavily leached soils and more humus layers. The dissolved ions in rain must therefore have considerable ecological significance, though little is known of this at present. On the one hand, appreciable amounts of plant nutrients, for example nitrogen, potassium, calcium, and sulphur (and perhaps certain heavy metals), are supplied to habitats deficient in these elements; but on the other hand sulphuric acid, and probably also some of the organic compounds in smoke, may be toxic to many plants. In addition, the large amounts of sulphuric acid provided by pollution of the atmosphere will presumably hasten deterioration of the already heavily leached lake district soils. Whether the effects of the industrial age upon air chemistry have as yet seriously influenced the ecology of the lake district is difficult to say, but such influence might best be sought in the high tarns, since they are the most dependent upon rain for nutrients, and other factors such as local sewage pollution, agriculture, forestry operations, etc., could be discounted. Bog and moorland peat profiles might also repay investigation. But while there are regretably few undisturbed peat deposits in the lake district nowadays, there are fortunately a great many tarns in the central hills where mud cores might easily be taken with the aid of light instruments developed in recent years, and it is hoped that these matters will receive some attention in the future.

  1. Influence of an extreme high water event on survival, reproduction, and distribution of snail kites in Florida, USA

    Science.gov (United States)

    Bennetts, R.E.; Kitchens, W.M.; Dreitz, V.J.

    2002-01-01

    Hydrology frequently has been reported as the environmental variable having the greatest influence on Florida snail kite (Rostrhamus sociabilis) populations. Although drought has received the most attention, high-water conditions also have been reported to affect kites. Years of high water generally have been reported to be favorable for nesting, although prolonged high water may be detrimental to sustaining suitable habitat. During 1994 and 1995, southern Florida experienced an extreme high water event. This event enabled us to compare survival, nesting success, number of young per successful nest, and spatial distribution of nesting before, during, and after the event. We found no evidence of an effect (either negative or positive) on survival of adult kites. In contrast, juvenile kites experienced the highest survival during the event, although our data suggest greater annual variability than can be explained by the event alone. We found no evidence of an effect of the high water event on nest success or number of young per successful nest. Nest success was highest during the event in the southern portion of the range but was quite similar to other years, both before and after the event. Our data do indicate a substantial shift in the spatial distribution of nesting birds. During the event, nesting activity shifted to higher elevations (i.e., shallower water) in the major nesting areas of the Everglades region. Nesting also occurred in Big Cypress National Preserve during the event, which is typically too dry to support nesting kites. Thus, our data indicate a potential short-term benefit of increased juvenile survival and an expansion of nesting habitat. However, the deterioration of habitat quality from prolonged high water precludes any recommendation for such conditions to be maintained for extended periods. ?? 2002, The Society of Wetland Scientists.

  2. Impacts of a weather event on shelf circulation and CO2 and O2 dynamics on the Louisiana shelf during summer 2009

    Science.gov (United States)

    Huang, W.-J.; Cai, W.-J.; Wang, Y.; Hopkinson, C. S.

    2013-12-01

    While much is known about the physics of coastal currents, much less is known about the biogeochemical effects of surface currents on shelf carbon dioxide (CO2) and oxygen distribution and dynamics. The Mississippi and Atchafalaya River plume is usually observed along the Louisiana shelf with easterly winds. Such a typical pattern was observed in August 2007, i.e. a plume of low salinity and low partial pressure of CO2 (pCO2), indicating high biological production on the inner shelf; and higher salinity and pCO2 on the outer shelf. This high biological production induced by riverine nitrogen flux thus provided major organic matter sources for the shelf-wide hypoxia (dissolved oxygen [DO] hypoxic area. Furthermore, DIC concentration in bottom waters was higher than those predicted by the Redfield ratio, most likely because of much rapid O2 compensation than CO2 loss during air-sea exchange. Numerical models indicate such relocation of plume was mostly affected by the shelf circulation dominated by southerly and southwesterly winds. Consequently, we conclude that wind-forcing and shelf circulation are critical factors that influence the plume trajectories and the associated biogeochemical properties in coastal waters.

  3. Weathering and landscape evolution

    Science.gov (United States)

    Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.

    2005-04-01

    In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.

  4. Reconstruction of Historical Weather by Assimilating Old Weather Diary Data

    Science.gov (United States)

    Neluwala, P.; Yoshimura, K.; Toride, K.; Hirano, J.; Ichino, M.; Okazaki, A.

    2017-12-01

    Climate can control not only human life style but also other living beings. It is important to investigate historical climate to understand the current and future climates. Information about daily weather can give a better understanding of past life on earth. Long-term weather influences crop calendar as well as the development of civilizations. Unfortunately, existing reconstructed daily weather data are limited to 1850s due to the availability of instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-ring width, ice core isotopes, etc.) which are either in annual or decadal scale. However, there are many historical documents which contain information about weather such as personal diaries. In Japan, around 20 diaries in average during the 16th - 19th centuries have been collected and converted into a digitized form. As such, diary data exist in many other countries. This study aims to reconstruct historical daily weather during the 18th and 19th centuries using personal daily diaries which have analogue weather descriptions such as `cloudy' or `sunny'. A recent study has shown the possibility of assimilating coarse weather data using idealized experiments. We further extend this study by assimilating modern weather descriptions similar to diary data in recent periods. The Global Spectral model (GSM) of National Centers for Environmental Prediction (NCEP) is used to reconstruct weather with the Local Ensemble Kalman filter (LETKF). Descriptive data are first converted to model variables such as total cloud cover (TCC), solar radiation and precipitation using empirical relationships. Those variables are then assimilated on a daily basis after adding random errors to consider the uncertainty of actual diary data. The assimilation of downward short wave solar radiation using weather descriptions improves RMSE from 64.3 w/m2 to 33.0 w/m2 and correlation coefficient (R) from 0.5 to 0.8 compared with the case without any

  5. Great Historical Events That Were Significantly Affected by the Weather: 7, "Protestant Wind"-"Popish Wind": The Revolusion of 1688 in England.

    Science.gov (United States)

    Lindgrén, S.; Neumann, J.

    1985-06-01

    James II, King of England from 1685 to 1688, increasingly antagonized his people by his forced attempts to restore the Catholic faith to a position of eminence in England; many of his actions were contrary to acts passed by earlier Parliaments (he ruled without Parliament most of his reign). Leading dignitaries of the Church of England, of the Protestant nobility, and some of the high officers of the Army and Navy came to the conclusion that the only remedy to the country's ills was to call in William, the Prince of Orange and Chief Magistrate ("Stadholder") of the Netherlands, whose spouse Mary, James' daughter, was, until July 1688, the heir-presumptive to the English crown; the prince himself had a position in the list of succession, bring a nephew of James.Over and above the prince's personal ambitions, it was his conviction and that of several other leading personalities in the Dutch Republic that it was in the vital interest of the Netherlands to influence England's policies, and, in particular, to prevent a line-up of England with the France of Louis XIV, who had hostile designs on the Republic. As long as the danger of a French assault on the Netherlands was imminent, the States-General of the Republic would not authorize the "descent" on England, but when late in September 1688 Louis decided to attack the German States on the Middle-Rhine first, the "descent" gained approval.The peak of the crisis about James' policies in England was reached in summer-early fall of 1688. In the meantime, William assembled a large fleet and force in the Netherlands to "descend" on England, but his sailing was hindered by winds that in September and October blew with nearly total persistence from the westerly quarter. People in England and in the Netherlands were daily watching for weeks the direction of wind. They called the easterly winds "Protestant winds" and the westerly winds "Popish winds." In addition to making possible the invasion, the "Protestant winds" made it

  6. Space weather effects and commerical airlines

    Science.gov (United States)

    Jones, J.; Bentley, R.; Hunter, R.; Taylor, G.; Thomas, D.

    Space Weather (SW) phenomena can effect many areas of commercial airline operations including avionics, communications and GPS navigation systems. Of particular importance at present is the recently introduced EU legislation requiring the monitoring of aircrew radiation exposure, including any variations at aircraft altitudes due to solar activity. The Mullard Space Science Laboratory is collaborating with Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory on a 3- year project to monitor the levels of cosmic radiation on long-haul flights. The study will determine whether computer models currently used to predict radiation exposure of aircrew are adequate. It also aims to determine whether solar or geomagnetic activity can cause significant modifications to the doses. This presentation will begin by showing some of the preliminary results obtained so far. As an example, we present a comparison of flight doses measured following the 14t h July 2000 X - class flare that was accompanied by a major Solar Particle Event (SPE). The results highlight the importance of a range of external factors that can strongly influence how SPEs may effect the measured dose at aircraft altitudes. At present, any SPE contributions in the airlines' dose records can only be poorly estimated retrospectively. Ideally, it would be better to try to avoid operating during these possibly significant radiation - enhancing events by utilising SW information (alerts, warnings, etc.). However, doing so poses many difficult operational problems for such a heavily regulated international industry, in terms of safety, security and procedures. Therefore, the use of timely SW information, which is still very unreliable, in a similar manner to terrestrial weather will require agreement from the International Civil Aviation Organisation (ICAO) and International Air Transport Association (IATA) to Air Traffic Control and Aviation Regulatory Authority's. This

  7. Reciprocal influences between negative life events and callous-unemotional traits.

    Science.gov (United States)

    Kimonis, Eva R; Centifanti, Luna C M; Allen, Jennifer L; Frick, Paul J

    2014-11-01

    Children with conduct problems and co-occurring callous-unemotional (CU) traits show more severe, stable, and aggressive antisocial behaviors than those without CU traits. Exposure to negative life events has been identified as an important contributing factor to the expression of CU traits across time, although the directionality of this effect has remained unknown due to a lack of longitudinal study. The present longitudinal study examined potential bidirectional effects of CU traits leading to experiencing more negative life events and negative life events leading to increases in CU traits across 3 years among a sample of community-based school-aged (M = 10.9, SD = 1.71 years) boys and girls (N = 98). Repeated rating measures of CU traits, negative life events and conduct problems completed by children and parents during annual assessments were moderately to highly stable across time. Cross-lagged models supported a reciprocal relationship of moderate magnitude between child-reported CU traits and "controllable" negative life events. Parent-reported CU traits predicted "uncontrollable" life events at the earlier time point and controllable life events at the later time point, but no reciprocal effect was evident. These findings have important implications for understanding developmental processes that contribute to the stability of CU traits in youth.

  8. The Influence of Major Life Events on Economic Attitudes in a World of Gene-Environment Interplay.

    Science.gov (United States)

    Hatemi, Peter K

    2013-10-01

    The role of "genes" on political attitudes has gained attention across disciplines. However, person-specific experiences have yet to be incorporated into models that consider genetic influences. Relying on a gene-environment interplay approach, this study explicates how life-events, such as losing one's job or suffering a financial loss, influence economic policy attitudes. The results indicate genetic and environmental variance on support for unions, immigration, capitalism, socialism and property tax is moderated by financial risks. Changes in the magnitude of genetic influences, however, are temporary. After two years, the phenotypic effects of the life events remain on most attitudes, but changes in the sources of individual differences do not. Univariate twin models that estimate the independent contributions of genes and environment on the variation of attitudes appear to provide robust baseline indicators of sources of individual differences. These estimates, however, are not event or day specific. In this way, genetic influences add stability, while environment cues change, and this process is continually updated.

  9. Priming psychic and conjuring abilities of a magic demonstration influences event interpretation and random number generation biases

    Science.gov (United States)

    Mohr, Christine; Koutrakis, Nikolaos; Kuhn, Gustav

    2015-01-01

    Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn skeptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgments of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals’ explicit traditional (religious) and non-traditional (e.g., paranormal) beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g., repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group) or a psychic (psychic group). The instruction influenced participants’ explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people’s interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events. PMID:25653626

  10. Priming psychic and conjuring abilities of a magic demonstration influences event interpretation and random number generation biases

    Directory of Open Access Journals (Sweden)

    Christine eMohr

    2015-01-01

    Full Text Available Magical ideation and belief in the paranormal is considered to represent a trait-like character; people either believe in it or not. Yet, anecdotes indicate that exposure to an anomalous event can turn sceptics into believers. This transformation is likely to be accompanied by altered cognitive functioning such as impaired judgements of event likelihood. Here, we investigated whether the exposure to an anomalous event changes individuals’ explicit traditional (religious and non-traditional (e.g. paranormal beliefs as well as cognitive biases that have previously been associated with non-traditional beliefs, e.g. repetition avoidance when producing random numbers in a mental dice task. In a classroom, 91 students saw a magic demonstration after their psychology lecture. Before the demonstration, half of the students were told that the performance was done respectively by a conjuror (magician group or a psychic (psychic group. The instruction influenced participants’ explanations of the anomalous event. Participants in the magician, as compared to the psychic group, were more likely to explain the event through conjuring abilities while the reverse was true for psychic abilities. Moreover, these explanations correlated positively with their prior traditional and non-traditional beliefs. Finally, we observed that the psychic group showed more repetition avoidance than the magician group, and this effect remained the same regardless of whether assessed before or after the magic demonstration. We conclude that pre-existing beliefs and contextual suggestions both influence people’s interpretations of anomalous events and associated cognitive biases. Beliefs and associated cognitive biases are likely flexible well into adulthood and change with actual life events.

  11. The influence of green areas and roof albedos on air temperatures during extreme heat events in Berlin, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Sebastian; Grossmann-Clarke, Susanne [Potsdam Institute for Climate Impact Research, Potsdam (Germany)

    2013-04-15

    The mesoscale atmospheric model COSMO-CLM (CCLM) with the Double Canyon Effect Parametrization Scheme (DCEP) is applied to investigate possible adaption measures to extreme heat events (EHEs) for the city of Berlin, Germany. The emphasis is on the effects of a modified urban vegetation cover and roof albedo on near-surface air temperatures. Five EHEs with a duration of 5 days or more are identified for the period 2000 to 2009. A reference simulation is carried out for each EHE with current vegetation cover, roof albedo and urban canopy parameters (UCPs), and is evaluated with temperature observations from weather stations in Berlin and its surroundings. The derivation of the UCPs from an impervious surface map and a 3-D building data set is detailed. Characteristics of the simulated urban heat island for each EHE are analysed in terms of these UCPs. In addition, six sensitivity runs are examined with a modified vegetation cover of each urban grid cell by -25%, 5% and 15%, with a roof albedo increased to 0.40 and 0.65, and with a combination of the largest vegetation cover and roof albedo, respectively. At the weather stations' grid cells, the results show a maximum of the average diurnal change in air temperature during each EHE of 0.82 K and -0.48 K for the -25% and 15% vegetation covers, -0.50 K for the roof albedos of 0.65, and -0.63 K for the combined vegetation and albedo case. The largest effects on the air temperature are detected during midday. (orig.)

  12. Space Weather: The Solar Perspective

    Directory of Open Access Journals (Sweden)

    Schwenn Rainer

    2006-08-01

    Full Text Available The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  13. Space Weather: The Solar Perspective

    Science.gov (United States)

    Schwenn, Rainer

    2006-08-01

    The term space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that can affect human life and health. Our modern hi-tech society has become increasingly vulnerable to disturbances from outside the Earth system, in particular to those initiated by explosive events on the Sun: Flares release flashes of radiation that can heat up the terrestrial atmosphere such that satellites are slowed down and drop into lower orbits, solar energetic particles accelerated to near-relativistic energies may endanger astronauts traveling through interplanetary space, and coronal mass ejections are gigantic clouds of ionized gas ejected into interplanetary space that after a few hours or days may hit the Earth and cause geomagnetic storms. In this review, I describe the several chains of actions originating in our parent star, the Sun, that affect Earth, with particular attention to the solar phenomena and the subsequent effects in interplanetary space.

  14. Examining the influence of major life events as drivers of residential mobility and neighbourhood transitions

    Directory of Open Access Journals (Sweden)

    Timothy Morris

    2017-03-01

    Full Text Available Background: Residential mobility and internal migration have long been key foci of research across a range of disciplines. However, the analytical strategies adopted in many studies are unable to unpick the drivers of mobility in sufficient detail because of two issues prevalent within the literature: a lack of detailed information on the individual context of people's lives and a failure to apply longitudinal methods. Methods: Using detailed data from a UK birth cohort study, the Avon Longitudinal Study of Parents and Children (ALSPAC, and a multilevel recurrent-event history analysis approach, this paper overcomes these two major limitations and presents a number of findings. Results: Most life events increase the likelihood of moving, even though there is little evidence that they precede upwards or downwards mobility into more or less deprived neighbourhoods. The findings also suggest that families living in poor homes and neighbourhoods are more likely to be stuck in place following certain negative life events than those in good environments. Conclusions: While broad demographic and socioeconomic characteristics reliably account for mobility patterns, the occurrence of life events and a person's attitudes towards their living environment are necessary for a full understanding of mobility patterns. Future studies should strive to account for such detailed data. Contribution: We demonstrate the important impact that a wide range of life events has on the mobility of families and provide evidence that studies unable to account for major life events likely do not suffer strong bias results through unobserved confounding.

  15. Influence of a large late summer precipitation event on food limitation and grasshopper population dynamics in a northern Great Plains grassland.

    Science.gov (United States)

    Branson, David H

    2008-06-01

    The complex interplay between grasshoppers, weather conditions, and plants that cause fluctuations in grasshopper populations remains poorly understood, and little is known about the ecological processes that generate grasshopper outbreaks. Grasshopper populations respond to interacting extrinsic and intrinsic factors, with yearly and decadal weather patterns and the timing of precipitation all potentially important. The effects of initial and increasing grasshopper densities on grasshopper survival and reproductive correlates were examined at a northern mixed-grass prairie site through manipulations of grasshopper densities inside 10-m2 cages. High-quality grass growth occurred after a 9.1-cm mid-August rain. Reduced proportional survival was apparent in the two higher density treatments before the rain, indicative of food-limited density-dependent mortality. However, the large late summer rainfall event mediated the effects of exploitative competition on demographic characteristics because of the high-quality vegetation growth. This led to weaker effects of food limitation on survival and reproduction at the end of the experiment. The results indicate a direct link between weather variation, resource quality and grasshopper population dynamics led to a severe grasshopper outbreak and show that infrequent large precipitation events can have significant effects on population dynamics. Additional research is needed to examine the importance of infrequent large precipitation events on grasshopper population dynamics in grassland ecosystems.

  16. Did American social and economic events from 1865 to 1898 influence D.D. Palmer the chiropractor and entrepreneur?

    Science.gov (United States)

    Batinić, Josip; Skowron, Mirek; Hammerich, Karin

    2013-01-01

    This paper explores how the social landscape of the latter half of the nineteenth century influenced D. D. Palmer and the many occupations he pursued. It focuses on the geographical area where D. D. lived from 1865 to 1898. This paper will show how the American social and economic events of the time provided favourable circumstances for D.D.’s entrepreneurial successes. PMID:23997248

  17. [Effect of antecedent dry weather period on urban storm runoff pollution load].

    Science.gov (United States)

    Li, Li-qing; Yin, Cheng-qing; Kong, Ling-li; He, Qing-ci

    2007-10-01

    Twelve storm events were surveyed at Shilipu catchment in Wuhan City through three-year monitoring regime. The flow discharges, total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in runoff were measured to study the mechanism of urban stormwater runoff pollution. The relationship between the event pollution load and the antecedent dry weather period was identified to discuss the influence of the urban surface sanitation management, operation of sewer pipe maintenance and rainfall characteristics on the urban stormwater runoff pollution. It was found that the antecedent dry weather period and runoff amount were the important determining factors in the generation of urban stormwater runoff pollution. The event pollution load was positively correlated to the antecedent dry weather period between two rainfall events (R2 = 0.95, p pollution loads. The best regression equation to estimate pollution load for storm events was developed based on the antecedent dry weather period and runoff depth. Source control including improving urban street sweeping activities and operation of sewer pipe maintenance should be made to reduce the amount of available pollutant over the dry days. It is important alternative to control urban stormwater runoff pollution for Hanyang District.

  18. International Practica Experiences as Events of Influence in a Teacher Candidates' Development

    Science.gov (United States)

    Maynes, Nancy; Allison, John; Julien-Schultz, Lynn

    2012-01-01

    Experience may influence beliefs and beliefs may influence practices. Following these premises, we investigated teacher candidates' post experience reflections nine months after an international practicum where they taught for three weeks in rural Kenya. Teacher candidates were placed in non-governmental organization (NGO) sponsored schools on the…

  19. Identification of the Sea-Land Breeze Event and Influence to the Convective Activities on the Coast of Deli Serdang

    Science.gov (United States)

    Saragih, I. J. A.; Putra, A. W.; Nugraheni, I. R.; Rinaldy, N.; Yonas, B. W.

    2017-12-01

    Located close to the sea indicates that there are influences of the sea-land breeze circulation on the weather condition in Deli Serdang. The purpose of this study is to simulate sea-land breeze occurrence and its influence on the convective activities in Deli Serdang. The research area covers the area of Deli Serdang Regency and the surrounding ocean region in the coordinates 02°57‧-03°16‧N & 98°33‧-99°27‧E where Kualanamu Meteorological Station is the centre of the research area at coordinate 03°34‧N & 98°44‧E and the elevation about 27MAMSL. The research time is a day with the highest rainfall in the highest peak rainy month. The raw data consist of the Himawari-8 satellite image from BMKG, FNL (Final Analysis) data from http://rda.ucar.edu, and meteorological observation data from Kualanamu Meteorology Station. This study indicates that WRF-ARW can simulate the sea-land breeze occurrence on the coast of Deli Serdang well. The existence of the convective index cover in the convergence area proves the sea-land breeze occurred in the coast of Deli Serdang can form the convergence area as the interacted result with the wind from other directions that support convective activities.

  20. Graphical tools for TV weather presentation

    Science.gov (United States)

    Najman, M.

    2010-09-01

    Contemporary meteorology and its media presentation faces in my opinion following key tasks: - Delivering the meteorological information to the end user/spectator in understandable and modern fashion, which follows industry standard of video output (HD, 16:9) - Besides weather icons show also the outputs of numerical weather prediction models, climatological data, satellite and radar images, observed weather as actual as possible. - Does not compromise the accuracy of presented data. - Ability to prepare and adjust the weather show according to actual synoptic situtation. - Ability to refocus and completely adjust the weather show to actual extreme weather events. - Ground map resolution weather data presentation need to be at least 20 m/pixel to be able to follow the numerical weather prediction model resolution. - Ability to switch between different numerical weather prediction models each day, each show or even in the middle of one weather show. - The graphical weather software need to be flexible and fast. The graphical changes nee to be implementable and airable within minutes before the show or even live. These tasks are so demanding and the usual original approach of custom graphics could not deal with it. It was not able to change the show every day, the shows were static and identical day after day. To change the content of the weather show daily was costly and most of the time impossible with the usual approach. The development in this area is fast though and there are several different options for weather predicting organisations such as national meteorological offices and private meteorological companies to solve this problem. What are the ways to solve it? What are the limitations and advantages of contemporary graphical tools for meteorologists? All these questions will be answered.

  1. Can animal habitat use patterns influence their vulnerability to extreme climate events? An estuarine sportfish case study.

    Science.gov (United States)

    Boucek, Ross E; Heithaus, Michael R; Santos, Rolando; Stevens, Philip; Rehage, Jennifer S

    2017-10-01

    Global climate forecasts predict changes in the frequency and intensity of extreme climate events (ECEs). The capacity for specific habitat patches within a landscape to modulate stressors from extreme climate events, and animal distribution throughout habitat matrices during events, could influence the degree of population level effects following the passage of ECEs. Here, we ask (i) does the intensity of stressors of an ECE vary across a landscape? And (ii) Do habitat use patterns of a mobile species influence their vulnerability to ECEs? Specifically, we measured how extreme cold spells might interact with temporal variability in habitat use to affect populations of a tropical, estuarine-dependent large-bodied fish Common Snook, within Everglades National Park estuaries (FL US). We examined temperature variation across the estuary during cold disturbances with different degrees of severity, including an extreme cold spell. Second, we quantified Snook distribution patterns when the passage of ECEs is most likely to occur from 2012 to 2016 using passive acoustic tracking. Our results revealed spatial heterogeneity in the intensity of temperature declines during cold disturbances, with some habitats being consistently 3-5°C colder than others. Surprisingly, Snook distributions during periods of greatest risk to experience an extreme cold event varied among years. During the winters of 2013-2014 and 2014-2015 a greater proportion of Snook occurred in the colder habitats, while the winters of 2012-2013 and 2015-2016 featured more Snook observed in the warmest habitats. This study shows that Snook habitat use patterns could influence vulnerability to extreme cold events, however, whether Snook habitat use increases or decreases their vulnerability to disturbance depends on the year, creating temporally dynamic vulnerability. Faunal global change research should address the spatially explicit nature of extreme climate events and animal habitat use patterns to identify

  2. Cytogenetics observation and radiation influence evaluation of exposed persons in a discontinuous radiation exposure event

    International Nuclear Information System (INIS)

    Chen Ying; Liu Xiulin; Yang Guoshan; Ge Shili; Jin Cuizhen; Yao Bo

    2003-01-01

    The cytogenetics results and dose estimation of exposed and related persons in an discontinuous radiation exposure event were reported in this paper. According to dicentrics + ring and micronucleus results combined with clinical data, slight (middle) degree of subacute radiation symptom of the victim was diagnosed. A part of 52 examined persons were exposed to radiation in a certain degree

  3. Proportionate Responses to Life Events Influence Clinicians' Judgments of Psychological Abnormality

    Science.gov (United States)

    Kim, Nancy S.; Paulus, Daniel J.; Gonzalez, Jeffrey S.; Khalife, Danielle

    2012-01-01

    Psychological abnormality is a fundamental concept in the "Diagnostic and Statistical Manual of Mental Disorders" ("DSM-IV-TR"; American Psychiatric Association, 2000) and in all clinical evaluations. How do practicing clinical psychologists use the context of life events to judge the abnormality of a person's current behaviors? The appropriate…

  4. Evaluation of PWR's operating experience. Significant events which influenced French nuclear power program

    International Nuclear Information System (INIS)

    Dupuis, M.C.

    1986-10-01

    This report discusses developments or changes in safety policy (whether statutory or otherwise) and in plant design and operation, which, in many cases, correlate. When considering these events, it is important to bear in mind the standardization policy characterizing the French nuclear power program, and implying central decision-making, both for the safety authorities and the operating utility [fr

  5. Change and Stability in Active and Passive Social Influence Dynamics during Natural Drinking Events: A Longitudinal Measurement-Burst Study

    Science.gov (United States)

    Cullum, Jerry; O’Grady, Megan; Armeli, Stephen; Tennen, Howard

    2011-01-01

    We examined the link between social norms and active social influences occurring during natural social drinking contexts. Across 4 yearly measurement-bursts, college students (N = 523) reported daily for 30-day periods on drinking norms, drinking offers, how many drinks they accepted, and personal drinking levels during social drinking events. In contexts where drinking norms were higher, students were more likely to both receive and comply with drinking offers. These acute social influences were highly stable throughout college, but affected men and women differently across time: Women received more drinking offers than men, especially at the beginning of college and when norms were higher, but men complied with more drinking offers per occasion. These effects were not attributable to between-person differences in social drinking motives or drinking levels, nor to within-person patterns of situation-selection. The present work suggests that context-specific drinking norms catalyze active social influence attempts, and further promote compliance drinking. PMID:22661826

  6. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    Science.gov (United States)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  7. Influence of limit-feeding and time of day of feed availability to growing calves on growth performance and feeding behavior in cold weather.

    Science.gov (United States)

    Prezotto, L D; Gilbery, T C; Bauer, M L; Islas, A; Swanson, K C

    2017-11-01

    Objective swere to determine the effects of limit-feeding and time of feed access in cold weather on growth performance and feeding behavior of growing calves fed a corn silage-based diet. Sixty-six steers (BW = 317 ± 5.3 kg) and 30 heifers (BW = 239 ± 7.6 kg) were assigned randomly to dietary treatment: 1) ad libitum feed intake (AL), 2) limit-fed to 80% of the average DMI of the AL group on a BW basis in the daytime (0601-1759 h; LF-D), 3) limit-fed to 80% of the average DMI of the AL group on a BW basis in the nighttime (1800-0559 h; LF-N), and 4) limit-fed to 80% of the average DMI of the AL group on a BW basis, split 1/2 in the daytime and 1/2 in the nighttime (LF-S). Feed intake and feeding behavior were monitored over 84 d using the Insentec feeding system. Average daily gain, DMI, and G:F were greater ( ≤ 0.002) in the AL group compared with others. Dry matter intake was not different ( = 0.17) when comparing the LF-D with the LF-N groups. Average daily gain and G:F were greater ( ≤ 0.05) when comparing the LF-N group to the LF-D group, and were not different ( ≥ 0.51) when comparing the LF-S group with the mean of the LF-D and LF-N groups. Number of visits and meals per d was greater ( ≤ 0.001) in the LF-N than the LF-D group. Feed intake per visit was not different ( = 0.55) when comparing the AL group and others, and tended to be greater ( = 0.06) in the LF-D than the LF-N group. Feed intake per meal was greater ( Feed intake per minute (eating rate) was not influenced by treatment. In conclusion, limit-feeding at 80% of ad libitum intake decreased ADG and G:F. Limit-feeding in the nighttime as compared to limit-feeding in the daytime improves growth performance and increases feeding activity (number of visits and meals per d) which could be because of increased heat production to help maintain body temperature and thus reduce maintenance energy requirements.

  8. Influence of Social Factors and Motives on Commitment of Sport Events Volunteers

    OpenAIRE

    Farideh Sharififar; Zahra Jamalian; Reza Nikbakhsh; Zahra Nobakht Ramezani

    2011-01-01

    In sport, human resources management gives special attention to method of applying volunteers, their maintenance, and participation of volunteers with each other and management approaches for better operation of events celebrants. The recognition of volunteers- characteristics and motives is important to notice, because it makes the basis of their participation and commitment at sport environment. The motivation and commitment of 281 volunteers were assessed using the org...

  9. Available processing resources influence encoding-related brain activity before an event

    OpenAIRE

    Galli, Giulia; Gebert, A. Dorothea; Otten, Leun J.

    2013-01-01

    Effective cognitive functioning not only relies on brain activity elicited by an event, but also on activity that precedes it. This has been demonstrated in a number of cognitive domains, including memory. Here, we show that brain activity that precedes the effective encoding of a word into long-term memory depends on the availability of sufficient processing resources. We recorded electrical brain activity from the scalps of healthy adult men and women while they memorized intermixed visual ...

  10. Space Weather, Environment and Societies

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  11. To what extent can global warming events influence scaling properties of climatic fluctuations in glacial periods?

    Science.gov (United States)

    Alberti, Tommaso; Lepreti, Fabio; Vecchio, Antonio; Carbone, Vincenzo

    2017-04-01

    The Earth's climate is an extremely unstable complex system consisting of nonlinear and still rather unknown interactions among atmosphere, land surface, ice and oceans. The system is mainly driven by solar irradiance, even if internal components as volcanic eruptions and human activities affect the atmospheric composition thus acting as a driver for climate changes. Since the extreme climate variability is the result of a set of phenomena operating from daily to multi-millennial timescales, with different correlation times, a study of the scaling properties of the system can evidence non-trivial persistent structures, internal or external physical processes. Recently, the scaling properties of the paleoclimate changes have been analyzed by distinguish between interglacial and glacial climates [Shao and Ditlevsen, 2016]. The results show that the last glacial record (20-120 kyr BP) presents some elements of multifractality, while the last interglacial period (0-10 kyr BP), say the Holocene period, seems to be characterized by a mono-fractal structure. This is associated to the absence of Dansgaard-Oeschger (DO) events in the interglacial climate that could be the cause for the absence of multifractality. This hypothesis is supported by the analysis of the period between 18 and 27 kyr BP, i.e. during the Last Glacial Period, in which a single DO event have been registred. Through the Empirical Mode Decomposition (EMD) we were able to detect a timescale separation within the Last Glacial Period (20-120 kyr BP) in two main components: a high-frequency component, related to the occurrence of DO events, and a low-frequency one, associated to the cooling/warming phase switch [Alberti et al., 2014]. Here, we investigate the scaling properties of the climate fluctuations within the Last Glacial Period, where abrupt climate changes, characterized by fast increase of temperature usually called Dansgaard-Oeschger (DO) events, have been particularly pronounced. By using the

  12. Respective influence of veterinarians and local institutional stakeholders on the event-driven surveillance system for bovine brucellosis in France.

    Science.gov (United States)

    Bronner, Anne; Morignat, Eric; Calavas, Didier

    2015-08-01

    The event-driven surveillance system for bovine brucellosis implemented in France aims to ensure the early detection of cases of bovine brucellosis, a disease of which the country has been declared free since 2005. It consists of mandatory notification of bovine abortions by farmers and veterinarians. However, as underlined by a previous qualitative study, several factors influence the decision-making process of actors in the field. This process is particularly influenced by the level of cooperation between institutional stakeholders in their département (a French département being an administrative and territorial unit), veterinarians and farmers. In this context, the objectives of this study were 1) to quantify the respective influence of veterinarians and all local institutional stakeholders on the proportion of notifying farmers and identify which actors have most influence on farmers' decisions; 2) to analyse whether the influence of veterinarians is correlated with that of local institutional stakeholders. In addition to factors relating to the farm itself (production type and herd size), the proportion of notifying farmers was influenced by the number of veterinarians per practice and the veterinary practice's membership of a technical association. This proportion was also influenced by unknown factors relating to the veterinary practice and, to a lesser extent, the département in which the farm was located. There was no correlation between variability in the proportion of notifying farmers among veterinary practices per département and the effect of the département itself. To our knowledge, this is the first study to quantify the influence of veterinarians and local institutional stakeholders on the notification process for a mandatory disease. In addition to carrying out regulatory interventions, veterinarians play a major role in encouraging farmers to participate in the surveillance systems. The results of this study, combined with a previous

  13. Space weather monitoring with neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian [Christian-Albrechts-Universitaet zu Kiel (Germany)

    2013-07-01

    Space Weather affects many areas of the modern society, advance knowledge about space weather events is important to protect personnel and infrastructure. Cosmic Rays (CR) measurements by ground-based Neutron Monitors are influenced by Coronal Mass Ejections (CME), the intensity of the ever present Cosmic Rays is reduced in a Forbush decrease (Fd). In the case of very energetic CMEs, the measured intensity can be significantly increased in a Ground Level Enhancement (GLE). By detecting the anisotropy of the CR environment, a CME can be detected hours before it arrives at Earth. During a GLE the high-energy particles from the Sun can be detected before the more abundant lower energy particles arrive at Earth, thus allowing to take protective measures. Since the beginning of the Neutron Monitor Database (NMDB) project, which has been started in 2008 with funding from the European Commission, real-time data from Neutron Monitors around the world has been made available through one web-portal. We have more than doubled the number of stations providing data since the start of the project to now over 30 stations. The effectiveness of the ALERT applications which are based on NMDB data has been shown by the recent GLE71. We present different applications through which the measurements and different data products are accessible.

  14. Weather and Tourism: Thermal Comfort and Zoological Park Visitor Attendance

    Directory of Open Access Journals (Sweden)

    David R. Perkins

    2016-03-01

    Full Text Available Weather events have the potential to greatly impact business operations and profitability, especially in outdoor-oriented economic sectors such as Tourism, Recreation, and Leisure (TRL. Although a substantive body of work focuses on the macroscale impacts of climate change, less is known about how daily weather events influence attendance decisions, particularly relating to the physiological thermal comfort levels of each visitor. To address this imbalance, this paper focuses on ambient thermal environments and visitor behavior at the Phoenix and Atlanta zoos. Daily visitor attendances at each zoo from September 2001 to June 2011, were paired with the Physiologically Equivalent Temperature (PET to help measure the thermal conditions most likely experienced by zoo visitors. PET was calculated using hourly atmospheric variables of temperature, humidity, wind speed, and cloud cover from 7 a.m. to 7 p.m. at each zoological park location and then classified based on thermal comfort categories established by the American Society of Heating and Air Conditioning Engineers (ASHRAE. The major findings suggested that in both Phoenix and Atlanta, optimal thermal regimes for peak attendance occurred within “slightly warm” and “warm” PET-based thermal categories. Additionally, visitors seemed to be averse to the most commonly occurring thermal extreme since visitors appeared to avoid the zoo on excessively hot days in Phoenix and excessively cold days in Atlanta. Finally, changes in the daily weather impacted visitor attendance as both zoos experienced peak attendance on days with dynamic changes in the thermal regimes and depressed attendances on days with stagnant thermal regimes. Building a better understanding of how weather events impact visitor demand can help improve our assessments of the potential impacts future climate change may have on tourism.

  15. Adverse Weather Evokes Nostalgia.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim

    2018-03-01

    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  16. To what extent does variability of historical rainfall series influence extreme event statistics of sewer system surcharge and overflows?

    DEFF Research Database (Denmark)

    Schaarup-Jensen, Kjeld; Rasmussen, Michael R.; Thorndahl, Søren

    2008-01-01

    In urban drainage modeling long term extreme statistics has become an important basis for decision-making e.g. in connection with renovation projects. Therefore it is of great importance to minimize the uncertainties concerning long term prediction of maximum water levels and combined sewer...... overflow (CSO) in drainage systems. These uncertainties originate from large uncertainties regarding rainfall inputs, parameters, and assessment of return periods. This paper investigates how the choice of rainfall time series influences the extreme events statistics of max water levels in manholes and CSO...... gauges are located at a distance of max 20 kilometers from the catchment. All gauges are included in the Danish national rain gauge system which was launched in 1976. The paper describes to what extent the extreme events statistics based on these 9 series diverge from each other and how this diversity...

  17. To what extent does variability of historical rainfall series influence extreme event statistics of sewer system surcharge and overflows?

    DEFF Research Database (Denmark)

    Schaarup-Jensen, Kjeld; Rasmussen, Michael R.; Thorndahl, Søren

    2009-01-01

    In urban drainage modelling long term extreme statistics has become an important basis for decision-making e.g. in connection with renovation projects. Therefore it is of great importance to minimize the uncertainties concerning long term prediction of maximum water levels and combined sewer...... overflow (CSO) in drainage systems. These uncertainties originate from large uncertainties regarding rainfall inputs, parameters, and assessment of return periods. This paper investigates how the choice of rainfall time series influences the extreme events statistics of max water levels in manholes and CSO...... gauges are located at a distance of max 20 kilometers from the catchment. All gauges are included in the Danish national rain gauge system which was launched in 1976. The paper describes to what extent the extreme events statistics based on these 9 series diverge from each other and how this diversity...

  18. Influence of 5-jet events on the measurement of the mass of the W boson in e+ e- collisions

    CERN Document Server

    Christiansen, Tim

    2000-01-01

    A measurement of the mass of the W boson in hadronic e+e -> W+W- decays was performed with 183 pb-1 of data recorded with the OPAL detector at a centre-of-mass energy of s = 189 GeV. Using a one-dimensional reweighting technique where the W width is fixed to its Standard Model prediction, the mass was determined to M4q W = 80.360+-0.105stat. +- 0.093syst.GeV Furthermore, the influence of a reconstruction of W+W- > qq¯qq¯ (g) events as five jets on both the statistical and the systematic uncertainty was studied and optimised. It was also shown the feasibility of a two-dimensional analysis, a simultaneous fit to the two W masses of each event.

  19. The influence of caffeine on spatial-selective attention : an event-related potential study

    NARCIS (Netherlands)

    de Ruiter, MB; Snel, J; Lorist, MM; Ruijter, J

    2000-01-01

    Objectives: Following the indications of previous studies that caffeine might have a specific effect on the processing of spatial information compared with other types of information, the present study investigated the influence of caffeine on an often used spatial-selective attention task. Methods:

  20. Early Top-Down Influences on Bistable Perception Revealed by Event-Related Potentials

    Science.gov (United States)

    Pitts, Michael A.; Gavin, William J.; Nerger, Janice L.

    2008-01-01

    A longstanding debate exists in the literature concerning bottom-up vs. top-down influences on bistable perception. Recently, a technique has been developed to measure early changes in brain activity (via ERPs) related to perceptual reversals (Kornmeier & Bach, 2004). An ERP component, the reversal negativity (RN) has been identified, and is…

  1. Detection and attribution of extreme weather disasters

    Science.gov (United States)

    Huggel, Christian; Stone, Dáithí; Hansen, Gerrit

    2014-05-01

    Single disasters related to extreme weather events have caused loss and damage on the order of up to tens of billions US dollars over the past years. Recent disasters fueled the debate about whether and to what extent these events are related to climate change. In international climate negotiations disaster loss and damage is now high on the agenda, and related policy mechanisms have been discussed or are being implemented. In view of funding allocation and effective risk reduction strategies detection and attribution to climate change of extreme weather events and disasters is a key issue. Different avenues have so far been taken to address detection and attribution in this context. Physical climate sciences have developed approaches, among others, where variables that are reasonably sampled over climatically relevant time periods and related to the meteorological characteristics of the extreme event are examined. Trends in these variables (e.g. air or sea surface temperatures) are compared between observations and climate simulations with and without anthropogenic forcing. Generally, progress has been made in recent years in attribution of changes in the chance of some single extreme weather events to anthropogenic climate change but there remain important challenges. A different line of research is primarily concerned with losses related to the extreme weather events over time, using disaster databases. A growing consensus is that the increase in asset values and in exposure are main drivers of the strong increase of economic losses over the past several decades, and only a limited number of studies have found trends consistent with expectations from climate change. Here we propose a better integration of existing lines of research in detection and attribution of extreme weather events and disasters by applying a risk framework. Risk is thereby defined as a function of the probability of occurrence of an extreme weather event, and the associated consequences

  2. Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Weather Observation Collection consists primarily of hourly, synoptic, daily, and monthly forms submitted to the archive by the National Weather Service...

  3. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  4. Pilot Weather Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviation weather reports relayed from pilots to FAA air traffic controllers or National Weather Service personnel. Elements include sky cover, turbulence, wind...

  5. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  6. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  7. Daily Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  8. Surface Weather Observations Hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard hourly observations taken at Weather Bureau/National Weather Service offices and airports throughout the United States. Hourly observations began during the...

  9. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  10. Land Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is the international standard code format for hourly surface weather observations. The acronym roughly translates from French as Aviation Routine Weather...

  11. Internet Weather Source

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (NWS) National Telecommunications Gateway provides weather, hydrologic, and climate forecasts and warnings for the United States, its...

  12. Natural Weathering Exposure Station

    Data.gov (United States)

    Federal Laboratory Consortium — The Corps of Engineers' Treat Island Natural Weathering Exposure Station is a long-term natural weathering facility used to study concrete durability. Located on the...

  13. Attribution of climate extreme events

    Science.gov (United States)

    Trenberth, Kevin E.; Fasullo, John T.; Shepherd, Theodore G.

    2015-08-01

    There is a tremendous desire to attribute causes to weather and climate events that is often challenging from a physical standpoint. Headlines attributing an event solely to either human-induced climate change or natural variability can be misleading when both are invariably in play. The conventional attribution framework struggles with dynamically driven extremes because of the small signal-to-noise ratios and often uncertain nature of the forced changes. Here, we suggest that a different framing is desirable, which asks why such extremes unfold the way they do. Specifically, we suggest that it is more useful to regard the extreme circulation regime or weather event as being largely unaffected by climate change, and question whether known changes in the climate system's thermodynamic state affected the impact of the particular event. Some examples briefly illustrated include 'snowmaggedon' in February 2010, superstorm Sandy in October 2012 and supertyphoon Haiyan in November 2013, and, in more detail, the Boulder floods of September 2013, all of which were influenced by high sea surface temperatures that had a discernible human component.

  14. Does the type of event influence how user interactions evolve on Twitter?

    Directory of Open Access Journals (Sweden)

    Elena del Val

    Full Text Available The number of people using on-line social networks as a new way of communication is continually increasing. The messages that a user writes in these networks and his/her interactions with other users leave a digital trace that is recorded. Thanks to this fact and the use of network theory, the analysis of messages, user interactions, and the complex structures that emerge is greatly facilitated. In addition, information generated in on-line social networks is labeled temporarily, which makes it possible to go a step further analyzing the dynamics of the interaction patterns. In this article, we present an analysis of the evolution of user interactions that take place in television, socio-political, conference, and keynote events on Twitter. Interactions have been modeled as networks that are annotated with the time markers. We study changes in the structural properties at both the network level and the node level. As a result of this analysis, we have detected patterns of network evolution and common structural features as well as differences among the events.

  15. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  16. Influence of Concussion History and Genetics on Event-Related Potentials in Athletes: Potential Use in Concussion Management

    Directory of Open Access Journals (Sweden)

    Taylor Guth

    2018-01-01

    Full Text Available Sports-related concussions are an increasing public health issue with much concern about the possible long-term decrements in cognitive function and quality of life that may occur in athletes. The measurement of cognitive function is a common component of concussion management protocols due to cognitive impairments that occur after sustaining a concussion; however, the tools that are often used may not be sensitive enough to expose long term problems with cognitive function. The current paper is a brief review, which suggests that measuring cognitive processing through the use of event related potentials (ERPs may provide a more sensitive assessment of cognitive function, as shown through recent research showing concussion history to influence ERPs components. The potential influence of genetics on cognitive function and ERPs components will also be discussed in relation to future concussion management.

  17. Information structure influences depth of syntactic processing: event-related potential evidence for the Chomsky illusion.

    Science.gov (United States)

    Wang, Lin; Bastiaansen, Marcel; Yang, Yufang; Hagoort, Peter

    2012-01-01

    Information structure facilitates communication between interlocutors by highlighting relevant information. It has previously been shown that information structure modulates the depth of semantic processing. Here we used event-related potentials to investigate whether information structure can modulate the depth of syntactic processing. In question-answer pairs, subtle (number agreement) or salient (phrase structure) syntactic violations were placed either in focus or out of focus through information structure marking. P600 effects to these violations reflect the depth of syntactic processing. For subtle violations, a P600 effect was observed in the focus condition, but not in the non-focus condition. For salient violations, comparable P600 effects were found in both conditions. These results indicate that information structure can modulate the depth of syntactic processing, but that this effect depends on the salience of the information. When subtle violations are not in focus, they are processed less elaborately. We label this phenomenon the Chomsky illusion.

  18. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  19. The Influence of Various Morphologic and Hemodynamic Carotid Plaque Characteristics on Neurological Events Onset and Deaths

    Directory of Open Access Journals (Sweden)

    Milan D. Brajovic

    2009-01-01

    Full Text Available A group of 72 patients with 111 asymptomatic carotid stenoses (ACS, mean age 65.42 ± 9.21, and a group of 36 patients with 58 symptomatic carotid stenoses (SCS, mean age 67.63 ± 8.79, were analyzed prospectively during a 3-year follow-up period. All patients underwent color duplex scan sonography (CDS, carotid arteriography, computed tomography (CT scan, and neurological examination. The aim of the study was to analyze the correlation between echo plaque morphology (degree and plaque quality, local hemodynamic plaque characteristics, ischemic CT findings, and onset of new neurological events and deaths. The results analysis showed significantly more ACS in the group of 30–49% stenosis (p < 0.001, but significantly more SCS in the group of 70–89% (p < 0.0001 and ≥90% stenosis (p < 0.05. Fibrous plaque was more frequent in the ACS group (p < 0.001, while ulcerated and mixed plaques were more frequent in the SCS group (both p < 0.0001. In the SCS group, a significantly higher frequency of increased peak systolic and end diastolic velocities was noted at the beginning and end of the study (both p < 0.01, as well as for contralateral common (CCA or internal carotid artery (ICA occlusion (p < 0.05 and p < 0.01, respectively, but reduced carotid blood flow volume (p < 0.05 only at the end of the study. In the ACS group, the best correlation with new neurological events and deaths was shown with positive CT findings, peak systolic flow velocity over 210 cm/sec, end diastolic flow velocity over 110 cm/sec, plaque stenosis ≥70%, plaque ulceration, mixed plaque (all p < 0.0001; stenosis ≥50% (p < 0.001; and reduced carotid blood flow volume (p < 0.05.

  20. Extreme Weather and Climate: Workshop Report

    Science.gov (United States)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; hide

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  1. How attitude strength and information influence moral decision making: Evidence from event-related potentials.

    Science.gov (United States)

    Hundrieser, Manuela; Stahl, Jutta

    2016-05-01

    Moral judgments are based on complex processing. This study aimed to investigate neural correlates of moral decisions. Participants (N = 32) were asked to express their opinion on various moral issues while ERPs were recorded. After reading texts containing either confirming or contradicting arguments regarding the issues, participants were asked to express their opinion again. A higher N400 amplitude and a higher amplitude of the late positive potential for value-incongruent words compared to value-congruent words could be observed. Furthermore, after participants had read conflicting arguments, slower responses and larger N400 differences (value-incongruent minus value-congruent) were observed. These results showed that language processing for a moral context is influenced by the subjective value system, and it can be assumed that a demanding cognitive elaboration contributed to the observed RT and N400 priming effects. This is the first ERP study comparing moral judgments before and after reading confirming or conflicting information; it revealed that evaluative reasoning can influence neural processing for moral decisions. © 2016 Society for Psychophysiological Research.

  2. The influence of a major sporting event upon emergency department attendances; A retrospective cross-national European study

    Science.gov (United States)

    Colón-González, Felipe J.; Fouillet, Anne; Elliot, Alex J.; Caserio-Schonemann, Céline; Hughes, Thomas C.; Gallagher, Naomh; Morbey, Roger A.; Smith, Gillian E.; Thomas, Daniel Rh.; Lake, Iain R.

    2018-01-01

    Major sporting events may influence attendance levels at hospital emergency departments (ED). Previous research has focussed on the impact of single games, or wins/losses for specific teams/countries, limiting wider generalisations. Here we explore the impact of the Euro 2016 football championships on ED attendances across four participating nations (England, France, Northern Ireland, Wales), using a single methodology. Match days were found to have no significant impact upon daily ED attendances levels. Focussing upon hourly attendances, ED attendances across all countries in the four hour pre-match period were statistically significantly lower than would be expected (OR 0.97, 95% CI 0.94–0.99) and further reduced during matches (OR 0.94, 95% CI 0.91–0.97). In the 4 hour post-match period there was no significant increase in attendances (OR 1.01, 95% CI 0.99–1.04). However, these impacts were highly variable between individual matches: for example in the 4 hour period following the final, involving France, the number of ED attendances in France increased significantly (OR 1.27, 95% CI 1.13–1.42). Overall our results indicate relatively small impacts of major sporting events upon ED attendances. The heterogeneity observed makes it difficult for health providers to predict how major sporting events may affect ED attendances but supports the future development of compatible systems in different countries to support cross-border public health surveillance. PMID:29898000

  3. To what extent does variability of historical rainfall series influence extreme event statistics of sewer system surcharge and overflows?

    Science.gov (United States)

    Schaarup-Jensen, K; Rasmussen, M R; Thorndahl, S

    2009-01-01

    In urban drainage modelling long-term extreme statistics has become an important basis for decision-making e.g. in connection with renovation projects. Therefore it is of great importance to minimize the uncertainties with regards to long-term prediction of maximum water levels and combined sewer overflow (CSO) in drainage systems. These uncertainties originate from large uncertainties regarding rainfall inputs, parameters, and assessment of return periods. This paper investigates how the choice of rainfall time series influences the extreme events statistics of max water levels in manholes and CSO volumes. Traditionally, long-term rainfall series, from a local rain gauge, are unavailable. In the present case study, however, long and local rain series are available. 2 rainfall gauges have recorded events for approximately 9 years at 2 locations within the catchment. Beside these 2 gauges another 7 gauges are located at a distance of max 20 kilometers from the catchment. All gauges are included in the Danish national rain gauge system which was launched in 1976. The paper describes to what extent the extreme events statistics based on these 9 series diverge from each other and how this diversity can be handled, e.g. by introducing an "averaging procedure" based on the variability within the set of statistics. All simulations are performed by means of the MOUSE LTS model.

  4. Influence of risk factors and past events on flood resilience in coastal megacities: Comparative analysis of NYC and Shanghai.

    Science.gov (United States)

    Xian, Siyuan; Yin, Jie; Lin, Ning; Oppenheimer, Michael

    2018-01-01

    Coastal flood protection measures have been widely implemented to improve flood resilience. However, protection levels vary among coastal megacities globally. This study compares the distinct flood protection standards for two coastal megacities, New York City and Shanghai, and investigates potential influences such as risk factors and past flood events. Extreme value analysis reveals that, compared to NYC, Shanghai faces a significantly higher flood hazard. Flood inundation analysis indicates that Shanghai has a higher exposure to extreme flooding. Meanwhile, Shanghai's urban development, population, and economy have increased much faster than NYC's over the last three decades. These risk factors provide part of the explanation for the implementation of a relatively high level of protection (e.g. reinforced concrete sea-wall designed for a 200-year flood return level) in Shanghai and low protection (e.g. vertical brick and stone walls and sand dunes) in NYC. However, individual extreme flood events (typhoons in 1962, 1974, and 1981) seem to have had a greater impact on flood protection decision-making in Shanghai, while NYC responded significantly less to past events (with the exception of Hurricane Sandy). Climate change, sea level rise, and ongoing coastal development are rapidly changing the hazard and risk calculus for both cities and both would benefit from a more systematic and dynamic approach to coastal protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The influence of a major sporting event upon emergency department attendances; A retrospective cross-national European study.

    Science.gov (United States)

    Hughes, Helen E; Colón-González, Felipe J; Fouillet, Anne; Elliot, Alex J; Caserio-Schonemann, Céline; Hughes, Thomas C; Gallagher, Naomh; Morbey, Roger A; Smith, Gillian E; Thomas, Daniel Rh; Lake, Iain R

    2018-01-01

    Major sporting events may influence attendance levels at hospital emergency departments (ED). Previous research has focussed on the impact of single games, or wins/losses for specific teams/countries, limiting wider generalisations. Here we explore the impact of the Euro 2016 football championships on ED attendances across four participating nations (England, France, Northern Ireland, Wales), using a single methodology. Match days were found to have no significant impact upon daily ED attendances levels. Focussing upon hourly attendances, ED attendances across all countries in the four hour pre-match period were statistically significantly lower than would be expected (OR 0.97, 95% CI 0.94-0.99) and further reduced during matches (OR 0.94, 95% CI 0.91-0.97). In the 4 hour post-match period there was no significant increase in attendances (OR 1.01, 95% CI 0.99-1.04). However, these impacts were highly variable between individual matches: for example in the 4 hour period following the final, involving France, the number of ED attendances in France increased significantly (OR 1.27, 95% CI 1.13-1.42). Overall our results indicate relatively small impacts of major sporting events upon ED attendances. The heterogeneity observed makes it difficult for health providers to predict how major sporting events may affect ED attendances but supports the future development of compatible systems in different countries to support cross-border public health surveillance.

  6. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  7. Sorption of Cu and Zn in low organic matter-soils as influenced by soil properties and by the degree of soil weathering.

    Science.gov (United States)

    Antoniadis, V; Golia, E E

    2015-11-01

    Copper and Zn sorption and desorption, among other factors, depend on soil pH, but in soils with different degree of weathering the role of other soil properties (e.g., oxides content and the level of their crystallinity) has not been thoroughly examined. We conducted batch sorption and desorption tests using 21 low-organic C soils that belonged to the soil orders of Entisols, newly developed soils, Inceptisols, and Alfisols, the most weathered soils. Zinc sorption was lower than that of Cu, and its desorption faster, confirming that it is a highly mobile metal. Alfisols had the weaker affinity for metals, due to the lower soil pH typical of this soil order, but also due to the low reactivity colloids they contained. Correlation analyses showed that Fe oxides in Alfisols increased metal release from soils, while they decreased metal desorption from Entisols. We conclude that in low organic matter-content soils, where the protective role of organic colloids is not to be expected, high soil pH alone is not sufficient to protect against metal contamination, but the degree of soil weathering is also important, due to the dominant role of other mineral phases (here, Fe oxides). Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Influence of novobiocin on mitotic events and radiation-induced G2-arrest

    International Nuclear Information System (INIS)

    Rowley, R.

    1987-01-01

    Novobiocin was used in CHO cells to test for an involvement of topoisomerase II activity in; 1) the induction of, and recovery from, radiation-induced G 2 -arrest and 2) progression through mitosis. Novobiocin blocked recovery from G 2 -arrest with a concentration dependency which suggested that this effect resulted from protein synthesis inhibition. Novobiocin alone, at concentrations above 500 μgml, blocked cell progression in early mitosis. The transition point was distinct from that of protein and RNA synthesis inhibitors and was the only arrest point in mitosis. A similar block was imposed by coumermycin. While this may indicate a requirement for topoisomerase II activity during chromosome condensation, it was also associated with inhibition of histone phosphorylation. Histone H3 phosphorylation is believed to be necessary for chromosome condensation and, when inhibited by novobiocin, correlates with a block in premature chromatin condensation in tsBN2 cells. The authors' data thus unite these two findings, provide an opportunity to analyse the temporal relationship between histone phosphorylation and mitotic events and suggest that topological reorganization of the chromatin is not involved in radiation-induced G 2 arrest

  9. Natural and anthropogenic events influence the soundscapes of four bays on Hawaii Island.

    Science.gov (United States)

    Heenehan, Heather L; Van Parijs, Sofie M; Bejder, Lars; Tyne, Julian A; Southall, Brandon L; Southall, Hugh; Johnston, David W

    2017-11-15

    The soundscapes of four bays along the Kona Coast of Hawaii Island were monitored between January 2011 and March 2013. Equivalent, unweighted sound pressure levels within standard 1/3rd-octave bands (dB re: 1μPa) were calculated for each recording. Sound levels increased at night and were lowest during the daytime when spinner dolphins use the bays to rest. A tsunami provided an opportunity to monitor the soundscape with little anthropogenic component. We detected a decrease in sound levels and variability in one of the busiest bays. During the daytime in the 3.15kHz 1/3rd octave band, we detected 92 loud outliers from vessels, aquaculture, and military mid-frequency active sonar. During one military mid-frequency active sonar event sound levels reached 45.8dB above median ambient noise levels. The differences found in the bays illustrate the importance of understanding soundscapes to effectively manage noise pollution in marine ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Tendencies in human factor influence on initiating events occurrence in NPP Kozloduy

    International Nuclear Information System (INIS)

    Hristova, R.

    2001-01-01

    Overview of the methods and documents concerning human factor in nuclear safety and selection of the most appropriate methods and concept for human factor assessment in the reported events in Kozloduy NPP are presented. List of human error types and statistical data (the mean time between similar errors, the human rate λ, the number of occurrences ect.) is given. Some general results from the human error behavior investigation for all units of Kozloduy NPP related to the 4 personnel categories: Management personnel, Designers, Operating personnel, Maintenance personnel are also shown. At the end the following conclusion are made:18 % operating personnel errors (for comparison for the same category personnel in similar NPPs abroad this value is between 10 % and 30%); Human errors in Kozloduy NPP tend to increase after year 1990; only for the operating personnel a maximum near year 1997 was observed, after which the error values was decreased; at the beginning of year 2000 the reliability characteristics for all units have similar values; it is necessary to be taken into account the observed tendencies to take measurements for reducing of the most important error types for Kozloduy NPP personnel

  11. GABAergic influences on ORX receptor-dependent abnormal motor behaviors and neurodegenerative events in fish

    International Nuclear Information System (INIS)

    Facciolo, Rosa Maria; Crudo, Michele; Giusi, Giuseppina; Canonaco, Marcello

    2010-01-01

    At date the major neuroreceptors i.e. γ-aminobutyric acid A (GABA A R) and orexin (ORXR) systems are beginning to be linked to homeostasis, neuroendocrine and emotional states. In this study, intraperitoneal treatment of the marine teleost Thalassoma pavo with the highly selective GABA A R agonist (muscimol, MUS; 0,1 μg/g body weight) and/or its antagonist bicuculline (BIC; 1 μg/g body weight) have corroborated a GABA A ergic role on motor behaviors. In particular, MUS induced moderate (p A R was very likely responsible for very strong and strong ORXR mRNA reductions in cerebellum valvula and torus longitudinalis, respectively. Moreover these effects were linked to evident ultra-structural changes such as shrunken cell membranes and loss of cytoplasmic architecture. In contrast, MUS supplied a very low, if any, argyrophilic reaction in hypothalamic and mesencephalic regions plus a scarce level of ultra-structural damages. Interestingly, combined administrations of MUS + BIC were not related to consistent damages, aside mild neuronal alterations in motor-related areas such as optic tectum. Overall it is tempting to suggest, for the first time, a neuroprotective role of GABA A R inhibitory actions against the overexcitatory ORXR-dependent neurodegeneration and consequently abnormal swimming events in fish.

  12. Researches regarding the influence of the weather on the flight of the white storks (Ciconia ciconia in the spring migration across the Doamnei River hydrographical basin (Argeş county, Romania

    Directory of Open Access Journals (Sweden)

    Adrian MESTECĂNEANU

    2011-05-01

    Full Text Available The authors show a preliminary study regarding the influence of the weather on the flight (soaring, gliding and flapping flight of the white storks (Ciconia ciconia in the spring migration across the Doamnei River hydrographical basin. The research is based on 289 observations and 3153 individuals observed during 1998 – 2010. The lapse of time, the temperature of the air, the atmospheric nebulosity, the type of clouds, and the wind intensity were considered. We stated that the presence of the ascendant air played a major role in the migratory flight, this rising air being used by birds in their economical flight that combine the soaring flight and the gliding one.

  13. Influence of particulates on phosphorus loading exported from farm drainage during a storm event in the Everglades Agricultural Area

    Science.gov (United States)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.

    2015-12-01

    The purpose of this study was to evaluate the influence of particulates on P loading captured during a single storm event. The Everglades Agricultural Area of Florida comprises 280,000 hectares of organic soil farmland artificially drained by ditches, canals and pumps. Phosphorus (P)-enriched suspended particulates in canals are susceptible to transport and can contribute significantly to the overall P loads in drainage water. A settling tank experiment was conducted to capture particulates during tropical storm Isaac in 2012 from three farms approximately 2.4 to 3.6 km2 in size. Farm canal discharge water was collected in a series of two 200 liter settling tanks over a seven-day drainage period, during tropical storm Isaac. Water from the settling tanks was siphoned through Imhoff settling cones, where the particulates were allowed to settle and collected for P-fractionation analyses, and compared to intact sediment cores collected from the bottom of the canals. The discharged particulates contained higher organic matter content (OM), total P, and labile P fractions compared to the canal bottom sediments. Based on the equilibrium P concentrations, surface sediments behave as a source of P to the water column. A seven-day continuous drainage event exported 4.7 to 11.1 metric tons of suspended solids per farm, corresponding to 32 to 63 kg of particulate P being lost to downstream ecosystems. Drainage associated to a single seven-day storm event exported up to 61% of the total annual farm P load. It is evident from this study that short-term, high-intensity storm events can skew annual P loads due to the export of significantly higher particulate matter from farm canals. Exported particulates rich in P can provide a supplemental source of nutrients if captured and replenished back into the farmlands, as a sustainable farming practice.

  14. Weather, Climate and Food Security

    Science.gov (United States)

    Beer, T.

    2016-12-01

    To climatologists food security is dominated by the impacts of weather and climate on food systems. But the link between the atmosphere and food security is more complex. Extreme weather events such as tropical cyclones impact directly on agriculture, but they also impact on the logistical distribution of food and can thus disrupt the food supply chain, especially in urban areas. Drought affects human life and health as well as impacting dramatically on the sustainable development of society. It represents a pending danger for vulnerable agricultural systems that depend on the rainfall, water supply and reservoirs. Developed countries are affected, but the impact is disproportionate within the developing world. Drought, especially when it results in famine, can change the life and economic development of developing nations and stifle their development for decades. A holistic approach is required to understand the phenomena, to forecast catastrophic events such as drought and famine and to predict their societal consequences. In the Food Security recommendations of the Rio+20 Forum on Science, Technology and Innovation for Sustainable Development it states that it is important "To understand fully how to measure, assess and reduce the impacts of production on the natural environment including climate change, recognizing that different measures of impact (e.g. water, land, biodiversity, carbon and other greenhouse gases, etc) may trade-off against each other..." This talk will review the historical link between weather, climate, drought and food supplies; examine the international situation; and summarise the response of the scientific community

  15. The influence of disturbance events on survival and dispersal rates of Florida box turtles

    Science.gov (United States)

    Dodd, C.K.; Ozgul, A.; Oli, M.K.

    2006-01-01

    Disturbances have the potential to cause long-term effects to ecosystem structure and function, and they may affect individual species in different ways. Long-lived vertebrates such as turtles may be at risk from such events, inasmuch as their life histories preclude rapid recovery should extensive mortality occur. We applied capture–mark–recapture models to assess disturbance effects on a population of Florida box turtles (Terrapene carolina bauri) on Egmont Key, Florida, USA. Near the midpoint of the study, a series of physical disturbances affected the island, from salt water overwash associated with several tropical storms to extensive removal of nonindigenous vegetation. These disturbances allowed us to examine demographic responses of the turtle population and to determine if they affected dispersal throughout the island. Adult survival rates did not vary significantly either between sexes or among years of the study. Survival rates did not vary significantly between juvenile and adult turtles, or among years of the study. Furthermore, neither adult nor juvenile survival rates differed significantly between pre- and post-disturbance. However, dispersal rates varied significantly among the four major study sites, and dispersal rates were higher during the pre-disturbance sampling periods compared to post-disturbance. Our results suggest few long-term effects on the demography of the turtle population. Florida box turtles responded to tropical storms and vegetation control by moving to favorable habitats minimally affected by the disturbances and remaining there. As long as turtles and perhaps other long-lived vertebrates can disperse to non-disturbed habitat, and high levels of mortality do not occur in a population, a long life span may allow them to wait out the impact of disturbance with potentially little effect on long-term population processes.

  16. Pleasant and unpleasant odors influence hedonic evaluations of human faces: an event-related potential study.

    Directory of Open Access Journals (Sweden)

    Stephanie Jane Cook

    2015-12-01

    Full Text Available Odors can alter hedonic evaluations of human faces, but the neural mechanisms of such effects are poorly understood. The present study aimed to analyze the neural underpinning of odor-induced changes in evaluations of human faces in an odor-priming paradigm, using event-related potentials (ERPs. Healthy, young participants (N = 20 rated neutral faces presented after a three second pulse of a pleasant odor (jasmine, unpleasant odor (methylmercaptan, or no-odor control (clean air. Neutral faces presented in the pleasant odor condition were rated more pleasant than the same faces presented in the no-odor control condition, which in turn were rated more pleasant than faces in the unpleasant odor condition. Analysis of face-related potentials revealed four clusters of electrodes significantly affected by odor condition at specific time points during long-latency epochs (600−950 ms. In the 620−640 ms interval, two scalp-time clusters showed greater negative potential in the right parietal electrodes in response to faces in the pleasant odor condition, compared to those in the no-odor and unpleasant odor conditions. At 926 ms, face-related potentials showed greater positivity in response to faces in the pleasant and unpleasant odor conditions at the left and right lateral frontal-temporal electrodes, respectively. Our data shows that odor-induced shifts in evaluations of faces were associated with amplitude changes in the late (> 600 and ultra-late (> 900 ms latency epochs. The observed amplitude changes during the ultra-late epoch are consistent with a left/right hemisphere bias towards pleasant/unpleasant odor effects. Odors alter evaluations of human faces, even when there is a temporal lag between presentation of odors and faces. Our results provide an initial understanding of the neural mechanisms underlying effects of odors on hedonic evaluations.

  17. Knowing what to respond in the future does not cancel the influence of past events.

    Science.gov (United States)

    Tubau, Elisabet; López-Moliner, Joan

    2009-05-29

    Everyday tasks seldom involve isolate actions but sequences of them. We can see whether previous actions influence the current one by exploring the response time to controlled sequences of stimuli. Specifically, depending on the response-stimulus temporal interval (RSI), different mechanisms have been proposed to explain sequential effects in two-choice serial response tasks. Whereas an automatic facilitation mechanism is thought to produce a benefit for response repetitions at short RSIs, subjective expectancies are considered to replace the automatic facilitation at longer RSIs, producing a cost-benefit pattern: repetitions are faster after other repetitions but they are slower after alternations. However, there is not direct evidence showing the impact of subjective expectancies on sequential effects. By using a fixed sequence, the results of the reported experiment showed that the repetition effect was enhanced in participants who acquired complete knowledge of the order. Nevertheless, a similar cost-benefit pattern was observed in all participants and in all learning blocks. Therefore, results of the experiment suggest that sequential effects, including the cost-benefit pattern, are the consequence of automatic mechanisms which operate independently of (and simultaneously with) explicit knowledge of the sequence or other subjective expectancies.

  18. Knowing what to respond in the future does not cancel the influence of past events.

    Directory of Open Access Journals (Sweden)

    Elisabet Tubau

    Full Text Available Everyday tasks seldom involve isolate actions but sequences of them. We can see whether previous actions influence the current one by exploring the response time to controlled sequences of stimuli. Specifically, depending on the response-stimulus temporal interval (RSI, different mechanisms have been proposed to explain sequential effects in two-choice serial response tasks. Whereas an automatic facilitation mechanism is thought to produce a benefit for response repetitions at short RSIs, subjective expectancies are considered to replace the automatic facilitation at longer RSIs, producing a cost-benefit pattern: repetitions are faster after other repetitions but they are slower after alternations. However, there is not direct evidence showing the impact of subjective expectancies on sequential effects. By using a fixed sequence, the results of the reported experiment showed that the repetition effect was enhanced in participants who acquired complete knowledge of the order. Nevertheless, a similar cost-benefit pattern was observed in all participants and in all learning blocks. Therefore, results of the experiment suggest that sequential effects, including the cost-benefit pattern, are the consequence of automatic mechanisms which operate independently of (and simultaneously with explicit knowledge of the sequence or other subjective expectancies.

  19. Does Discourse Congruence Influence Spoken Language Comprehension before Lexical Association? Evidence from Event-Related Potentials

    Science.gov (United States)

    Boudewyn, Megan A.; Gordon, Peter C.; Long, Debra; Polse, Lara; Swaab, Tamara Y.

    2011-01-01

    The goal of this study was to examine how lexical association and discourse congruence affect the time course of processing incoming words in spoken discourse. In an ERP norming study, we presented prime-target pairs in the absence of a sentence context to obtain a baseline measure of lexical priming. We observed a typical N400 effect when participants heard critical associated and unassociated target words in word pairs. In a subsequent experiment, we presented the same word pairs in spoken discourse contexts. Target words were always consistent with the local sentence context, but were congruent or not with the global discourse (e.g., “Luckily Ben had picked up some salt and pepper/basil”, preceded by a context in which Ben was preparing marinara sauce (congruent) or dealing with an icy walkway (incongruent). ERP effects of global discourse congruence preceded those of local lexical association, suggesting an early influence of the global discourse representation on lexical processing, even in locally congruent contexts. Furthermore, effects of lexical association occurred earlier in the congruent than incongruent condition. These results differ from those that have been obtained in studies of reading, suggesting that the effects may be unique to spoken word recognition. PMID:23002319

  20. Using Music to Communicate Weather and Climate

    Science.gov (United States)

    Williams, P.; Aplin, K. L.; Brown, S.

    2017-12-01

    Depictions of weather and other atmospheric phenomena are common throughout the arts. Unlike in the visual arts, however, there has been little study of meteorological inspiration in music. This presentation will discuss the frequencies with which different weather types have been depicted in music over time, covering the period from the seventeenth century to the present day. Beginning with classical orchestral music, we find that composers were generally influenced by their own country's climate in the type of weather they chose to represent. Depictions of weather vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. Pieces depicting stormy weather tend to be in minor keys, whereas pieces depicting fair weather tend to be in major keys. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Moving onto modern popular music, we have identified and analyzed over 750 songs referring to different weather types. We find that lyrical references to bad weather peaked in songs written during the stormy 1950s and 60s, when there were many hurricanes, before declining in the relatively calm 1970s and 80s. This finding again suggests a causal link between song-writers' meteorological environments and compositional outputs. Composers and song-writers have a unique ability to emotionally connect their listeners to the environment. This ability could be exploited to communicate environmental science to a broader audience. Our work provides a catalogue of cultural responses to weather before (and during the early stages of) climate change. The effects of global warming may influence musical expression in future, in which case our work will provide a baseline for comparison.

  1. Mechanisms for chemostatic behavior in catchments: implications for CO2 consumption by mineral weathering

    Science.gov (United States)

    Clow, David W.; Mast, M. Alisa

    2010-01-01

    Concentrations of weathering products in streams often show relatively little variation compared to changes in discharge, both at event and annual scales. In this study, several hypothesized mechanisms for this “chemostatic behavior” were evaluated, and the potential for those mechanisms to influence relations between climate, weathering fluxes, and CO2 consumption via mineral weathering was assessed. Data from Loch Vale, an alpine catchment in the Colorado Rocky Mountains, indicates that cation exchange and seasonal precipitation and dissolution of amorphous or poorly crystalline aluminosilicates are important processes that help regulate solute concentrations in the stream; however, those processes have no direct effect on CO2 consumption in catchments. Hydrograph separation analyses indicate that old water stored in the subsurface over the winter accounts for about one-quarter of annual streamflow, and almost one-half of annual fluxes of Na and SiO2 in the stream; thus, flushing of old water by new water (snowmelt) is an important component of chemostatic behavior. Hydrologic flushing of subsurface materials further induces chemostatic behavior by reducing mineral saturation indices and increasing reactive mineral surface area, which stimulate mineral weathering rates. CO2 consumption by carbonic acid mediated mineral weathering was quantified using mass-balance calculations; results indicated that silicate mineral weathering was responsible for approximately two-thirds of annual CO2 consumption, and carbonate weathering was responsible for the remaining one-third. CO2 consumption was strongly dependent on annual precipitation and temperature; these relations were captured in a simple statistical model that accounted for 71% of the annual variation in CO2 consumption via mineral weathering in Loch Vale.

  2. Northern Hemisphere Atmospheric Influence of the Solar Proton Events and Ground Level Enhancement in January 2005

    Science.gov (United States)

    Jackman, C. H.; Marsh, D. R.; Vitt, F. M.; Roble, R. G.; Randall, C. E.; Bernath, P. F.; Funke, B.; Lopez-Puertas, M.; Versick, S.; Stiller, G. P.; hide

    2011-01-01

    Solar eruptions in early 2005 led substantial barrage of charged particles on the Earth's atmosphere during the January 16-21 period. Proton fluxes were greatly increased during these several days and led to the production ofHO(x)(H, OH, BO2)and NO(x)(N, NO, NO2), which then caused the destruction of ozone. We focus on the Northern polar region, where satellite measurements and simulations with the Whole Atmosphere Community Climate Model (WACCM3) showed large enhancements in mesospheric HO(x) and NO(x) constituents, and associated ozone reductions, due 10 these solar proton events (SPEs). The WACCM3 simulations show enhanced short-lived OH throughout the mesosphere in the 60-82.5degN latitude band due to the SPEs for most days in the Jan.16-2l,2005 period, in reasonable agreement with the Aura Microwave Limb Sounder (MLS) measurements. Mesospheric HO2 is also predicted to be increased by the SPEs, however, the modeled HO2 results are somewhat larger than the MLS measurements. These HO(x) enhancements led to huge predicted and MLS-measured ozone decreases of greater than 40% throughout most of the Northern polar mesosphere during the SPE period. Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) measurements of hydrogen peroxide (H2O2) show increases throughout the stratosphere with highest enhancements of about 60 ppt y in the lowermost mesosphere over the Jan. 16-18, 2005 period due to the solar protons. WACCM3 predictions indicate H2O2 enhancements over the same time period of more than twice that amount. Measurements of nitric acid (HNO3) by both MLS and MIPAS show an increase of about 1 ppbv above background levels in the upper stratosphere during January 16-29, 2005. WACCM3 simulations show only minuscule HNO3 changes in the upper stratosphere during this time period. However due to the small loss rates during winter, polar mesospheric enhancements of NO(x) are computed to be greater than 50 ppbv during the SPE period. Computed NO

  3. Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005

    Directory of Open Access Journals (Sweden)

    C. H. Jackman

    2011-07-01

    Full Text Available Solar eruptions in early 2005 led to a substantial barrage of charged particles on the Earth's atmosphere during the 16–21 January period. Proton fluxes were greatly increased during these several days and led to the production of HOx (H, OH, HO2 and NOx (N, NO, NO2, which then caused the destruction of ozone. We focus on the Northern polar region, where satellite measurements and simulations with the Whole Atmosphere Community Climate Model (WACCM3 showed large enhancements in mesospheric HOx and NOx constituents, and associated ozone reductions, due to these solar proton events (SPEs. The WACCM3 simulations show enhanced short-lived OH and HO2 concentrations throughout the mesosphere in the 60–82.5° N latitude band due to the SPEs for most days in the 16–21 January 2005 period, somewhat higher in abundance than those observed by the Aura Microwave Limb Sounder (MLS. These HOx enhancements led to huge predicted and MLS-measured ozone decreases of greater than 40 % throughout most of the northern polar mesosphere during the SPE period. Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS measurements of hydrogen peroxide (H2O2 show increases throughout the stratosphere with highest enhancements of about 60 pptv in the lowermost mesosphere over the 16–18 January 2005 period due to the solar protons. WACCM3 predictions indicate H2O2 enhancements over the same time period of about three times that amount. Measurements of nitric acid (HNO3 by both MLS and MIPAS show an increase of about 1 ppbv above background levels in the upper stratosphere during 16–29 January 2005. WACCM3 simulations show only minuscule HNO3 increases (<0.05 ppbv in the upper stratosphere during this time period. Polar mesospheric enhancements of NOx are computed to be greater than 50

  4. Influence of extreme events on health-related aerosol particle deposition in an urban site during summer

    Science.gov (United States)

    Belmonte, Paula; Castro, Amaya; Calvo, Ana Isabel; Alves, Célia; Duarte, Márcio; Alonso-Blanco, Elisabeth; Fraile, Roberto

    2014-05-01

    Urban populations are exposed to aerosol particles that enter in the human respiratory track posing an important risk to human health. Particle sampling conventions have been established, expressed as curves describing "penetration" to the region of interest in terms of the particle aerodynamic diameter. The inhalable, thoracic, traqueo-bronchial and respirable fractions have been estimated according to the International Standard ISO 7708:1995. This study presents the analysis of aerosol size distributions and its deposition in the human respiratory tract according to ISO 7708. The influence of ambient conditions in an urban area affected by heat waves and wildfires in the summer months has been analyzed. A laser spectrometer PCASP-X was used to characterize the aerosol size distributions. This device registers particle sizes between 0.1 and 10 microns in 31 channels. The spectrometer was installed in the city of León (Spain), between June and September 2012, and 24 measurements were carried out daily to determine the size of the ambient particles in the urban area. The measurements were averaged over 15-minute intervals. A weather station was installed at 3 m above the ground to register automatically data on precipitation, pressure, temperature, relative humidity wind speed and direction. The refractive index of the particles was estimated for each value of relative humidity, as the relative humidity of the ambient atmosphere affects the size and the complex refractive index of aerosols. Afterwards, raw size bins were corrected from the estimated refractive indices using a program based on Mie Theory. The regional government provided data on the exact location of summer wildfires in the province of Leon, as well as data on the land area affected. A persistent and intense thermal inversion of subsidence caused an intense pollution episode in the city during the main wildfire, which broke out at a distance of about 60 km from the sampling point. Furthermore, the

  5. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  6. Cockpit weather information needs

    Science.gov (United States)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneo