WorldWideScience

Sample records for wearable system-on-a-chip pulse

  1. Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring

    Directory of Open Access Journals (Sweden)

    Domenico Zito

    2008-01-01

    Full Text Available A new system-on-a-chip radar sensor for next-generation wearable wireless interface applied to the human health care and safeguard is presented. The system overview is provided and the feasibility study of the radar sensor is presented. In detail, the overall system consists of a radar sensor for detecting the heart and breath rates and a low-power IEEE 802.15.4 ZigBee radio interface, which provides a wireless data link with remote data acquisition and control units. In particular, the pulse radar exploits 3.1–10.6 GHz ultra-wideband signals which allow a significant reduction of the transceiver complexity and then of its power consumption. The operating principle of the radar for the cardiopulmonary monitoring is highlighted and the results of the system analysis are reported. Moreover, the results obtained from the building-blocks design, the channel measurement, and the ultra-wideband antenna realization are reported.

  2. Wearable system-on-a-chip radiometer for remote temperature sensing and its application to the safeguard of emergency operators.

    Science.gov (United States)

    Fonte, A; Alimenti, F; Zito, D; Neri, B; De Rossi, D; Lanatà, A; Tognetti, A

    2007-01-01

    The remote sensing and the detection of events that may represent a danger for human beings have become more and more important thanks to the latest advances of the technology. A microwave radiometer is a sensor capable to detect a fire or an abnormal increase of the internal temperature of the human body (hyperthermia), or an onset of a cancer, or even meteorological phenomena (forest fires, pollution release, ice formation on road pavement). In this paper, the overview of a wearable low-cost low-power system-on-a-chip (SoaC) 13 GHz passive microwave radiometer in CMOS 90 nm technology is presented. In particular, we focused on its application to the fire detection for civil safeguard. In detail, this sensor has been thought to be inserted into the fireman jacket in order to help the fireman in the detection of a hidden fire behind a door or a wall. The simulation results obtained by Ptolemy system simulation have confirmed the feasibility of such a SoaC microwave radiometer in a low-cost standard silicon technology for temperature remote sensing and, in particular, for its application to the safeguard of emergency operators.

  3. Multisensor smart system on a chip.

    Science.gov (United States)

    Sellami, Louiza; Newcomb, Robert W

    2010-01-01

    Sensors are becoming of considerable importance in several areas, particularly in health care. Therefore, the development of inexpensive and miniaturized sensors that are highly selective and sensitive, and for which control and analysis is present all on one chip is very desirable. These types of sensors can be implemented with microelectromechanical systems (MEMS), and because they are fabricated on a semiconductor substrate, additional signal processing circuitry can easily be integrated into the chip, thereby readily providing additional functions, such as multiplexing and analog-to-digital conversion. Here, we present a general framework for the design of a multisensor system on a chip, which includes intelligent signal processing, as well as a built-in self-test and parameter adjustment units. Specifically, we outline the system architecture and develop a transistorized bridge biosensor for monitoring changes in the dielectric constant of a fluid, which could be used for in-home monitoring of kidney function of patients with renal failure.

  4. Synchronization of Integrated Systems on a Chip

    Directory of Open Access Journals (Sweden)

    González-Díaz O.

    2012-04-01

    Full Text Available In the present paper, the non-conventional interconnected and coupled ring oscillators approach working as clock distribution networks to synchronize electronic systems on a chip (SoC is proposed. Typical CMOS (Complementary Metal-Oxide Semiconductor N-well 0.35 µm Austria Micro Systems process parameters were used for conventional and non-conventional clock distribution nets design and simulation. Experimental results from local and global clock distribution networks fabricated using a CMOS 0.35 µm process show that the use of interconnected rings arrays, as globally asynchronous locally synchronous (GALS clock distribution networks, represent an appropriate approach due to good performance regarding scalability, low clock-skew, high-speed, faults tolerant and robust under process variations, regularity, and modularity.

  5. Micromachined systems-on-a-chip: Technology and applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachine Dept.; Lemkin, M.A. [Univ. of California, Berkeley, CA (United States). Berkeley Sensor and Actuator Center

    1997-04-01

    Sacrificial polysilicon surface micromachining is emerging as a technology that enables the mass production of complex microelectromechanical systems by themselves or integrated with microelectronic systems. Early versions of these micromachined systems-on-a-chip have already found application in the commercial world as acceleration sensors for airbag deployment (for example, ADI`s ADXL50). Two technologies described here, enable systems with increasing degrees of complexity to be fabricated. The first is a three-level polysilicon micromachining process which includes a fourth polysilicon electrical interconnect level, while the other is a single-level (+ second electrical interconnect level) polysilicon surface micromachining process integrated with 1.25 micron CMOS. Samples of systems-on-a-chip built in these processes such as combination locks, pop-up mirrors, and multi-axis accelerometers are also given.

  6. 3D printed nervous system on a chip.

    Science.gov (United States)

    Johnson, Blake N; Lancaster, Karen Z; Hogue, Ian B; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W; McAlpine, Michael C

    2016-04-21

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology.

  7. Analysis of Minimal LDPC Decoder System on a Chip Implementation

    Directory of Open Access Journals (Sweden)

    T. Palenik

    2015-09-01

    Full Text Available This paper presents a practical method of potential replacement of several different Quasi-Cyclic Low-Density Parity-Check (QC-LDPC codes with one, with the intention of saving as much memory as required to implement the LDPC encoder and decoder in a memory-constrained System on a Chip (SoC. The presented method requires only a very small modification of the existing encoder and decoder, making it suitable for utilization in a Software Defined Radio (SDR platform. Besides the analysis of the effects of necessary variable-node value fixation during the Belief Propagation (BP decoding algorithm, practical standard-defined code parameters are scrutinized in order to evaluate the feasibility of the proposed LDPC setup simplification. Finally, the error performance of the modified system structure is evaluated and compared with the original system structure by means of simulation.

  8. System on a Chip (SoC) Overview

    Science.gov (United States)

    LaBel, Kenneth A.

    2010-01-01

    System-on-a-chip or system on chip (SoC or SOC) refers to integrating all components of a computer or other electronic system into a single integrated circuit (chip). It may contain digital, analog, mixed-signal, and often radio-frequency functions all on a single chip substrate. Complexity drives it all: Radiation tolerance and testability are challenges for fault isolation, propagation, and validation. Bigger single silicon die than flown before and technology is scaling below 90nm (new qual methods). Packages have changed and are bigger and more difficult to inspect, test, and understand. Add in embedded passives. Material interfaces are more complex (underfills, processing). New rules for board layouts. Mechanical and thermal designs, etc.

  9. Ultra-Low Power Extreme Environment Capable Avionics System-on-a-Chip Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop ultra-low-power, wide-temperature (-150° C to +250 ° C), digital System-on-a-Chip (SOC) ASIC technology in a high resolution, inherently rad-hard IBM...

  10. Heart-pulse Biofeedback in Playful Exercise using a Wearable device and Modular Interactive Tiles

    DEFF Research Database (Denmark)

    Shimokakimoto, Tomoya; Lund, Henrik Hautop; Suzuki, Kenji

    2014-01-01

    interactive tiles. The system consists of a wearable device that measures heart-pulse via ear-mounted sensor, and modular interactive tiles which are used for physical rehabilitation exercise through playing a game. The wearable devise enables detection of heart pulse in real-time and therefore provides heart...... beat rate during playful activities, even if the heart pulse wave have motion artifacts. The tiles are designed to build flexible structures and to provide immediate feedback based on the users’ physical interaction with the tiles. We combine the two systems to provide users with heart pulse...... biofeedback in playful exercise. We show that using the developed system it is possible for the users to regulate the exercise intensity on their own with biofeedback, and also possible to analyze exercise activity using number of steps on the tiles and heart beat rate....

  11. Novel wearable and wireless ring-type pulse oximeter with multi-detectors.

    Science.gov (United States)

    Huang, Cheng-Yang; Chan, Ming-Che; Chen, Chien-Yue; Lin, Bor-Shyh

    2014-01-01

    The pulse oximeter is a popular instrument to monitor the arterial oxygen saturation (SPO2). Although a fingertip-type pulse oximeter is the mainstream one on the market at present, it is still inconvenient for long-term monitoring, in particular, with respect to motion. Therefore, the development of a wearable pulse oximeter, such as a finger base-type pulse oximeter, can effectively solve the above issue. However, the tissue structure of the finger base is complex, and there is lack of detailed information on the effect of the light source and detector placement on measuring SPO2. In this study, the practicability of a ring-type pulse oximeter with a multi-detector was investigated by optical human tissue simulation. The optimal design of a ring-type pulse oximeter that can provide the best efficiency of measuring SPO2 was discussed. The efficiency of ring-type pulse oximeters with a single detector and a multi-detector was also discussed. Finally, a wearable and wireless ring-type pulse oximeter was also implemented to validate the simulation results and was compared with the commercial fingertip-type pulse oximeter.

  12. Novel Wearable and Wireless Ring-Type Pulse Oximeter with Multi-Detectors

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Huang

    2014-09-01

    Full Text Available The pulse oximeter is a popular instrument to monitor the arterial oxygen saturation (SPO2. Although a fingertip-type pulse oximeter is the mainstream one on the market at present, it is still inconvenient for long-term monitoring, in particular, with respect to motion. Therefore, the development of a wearable pulse oximeter, such as a finger base-type pulse oximeter, can effectively solve the above issue. However, the tissue structure of the finger base is complex, and there is lack of detailed information on the effect of the light source and detector placement on measuring SPO2. In this study, the practicability of a ring-type pulse oximeter with a multi-detector was investigated by optical human tissue simulation. The optimal design of a ring-type pulse oximeter that can provide the best efficiency of measuring SPO2 was discussed. The efficiency of ring-type pulse oximeters with a single detector and a multi-detector was also discussed. Finally, a wearable and wireless ring-type pulse oximeter was also implemented to validate the simulation results and was compared with the commercial fingertip-type pulse oximeter.

  13. Investigation of signal processing algorithms for an embedded microcontroller-based wearable pulse oximeter.

    Science.gov (United States)

    Johnston, W S; Mendelson, Y

    2006-01-01

    Despite steady progress in the miniaturization of pulse oximeters over the years, significant challenges remain since advanced signal processing must be implemented efficiently in real-time by a relatively small size wearable device. The goal of this study was to investigate several potential digital signal processing algorithms for computing arterial oxygen saturation (SpO(2)) and heart rate (HR) in a battery-operated wearable reflectance pulse oximeter that is being developed in our laboratory for use by medics and first responders in the field. We found that a differential measurement approach, combined with a low-pass filter (LPF), yielded the most suitable signal processing technique for estimating SpO(2), while a signal derivative approach produced the most accurate HR measurements.

  14. High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors

    DEFF Research Database (Denmark)

    Duun, Sune Bro; Haahr, Rasmus Grønbek; Hansen, Ole;

    2010-01-01

    The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized....../2) cm(-1) are achieved. The photodiodes are incorporated into a wireless pulse oximetry sensor system embedded in an adhesive patch presented elsewhere as 'The Electronic Patch'. The annular photodiodes are fabricated using two masked diffusions of first boron and subsequently phosphor. The surface...

  15. An Electronic Patch for Wearable Health Monitoring by Reflectance Pulse Oximetry

    DEFF Research Database (Denmark)

    Haahr, Rasmus Grønbek; Duun, Sune Bro; Toft, Mette H.;

    2012-01-01

    We report the development of an Electronic Patch for wearable health monitoring. The Electronic Patch is a new health monitoring system incorporating biomedical sensors, microelectronics, radio frequency (RF) communication, and a battery embedded in a 3-dimensional hydrocolloid polymer...... photodiode to enable low power consumption by the light emitting components. The Electronic Patch has a disposable part of soft adhesive hydrocolloid polymer and a reusable part of hard polylaurinlactam. The disposable part contains the battery. The reusable part contains the reflectance pulse oximetry....... In this paper the Electronic Patch is demonstrated with a new optical biomedical sensor for reflectance pulse oximetry so that the Electronic Patch in this case can measure the pulse and the oxygen saturation. The reflectance pulse oximetry solution is based on a recently developed annular backside silicon...

  16. A Resolution for Shared Memory Conflict in Multiprocessor System-on-a-Chip

    CERN Document Server

    Mittal, Shaily

    2012-01-01

    Now days, manufacturers are focusing on increasing the concurrency in multiprocessor system-on-a-chip (MPSoC) architecture instead of increasing clock speed, for embedded systems. Traditionally lock-based synchronization is provided to support concurrency; as managing locks can be very difficult and error prone. Transactional memories and lock based systems have been extensively used to provide synchronization between multiple processors [1] in general-purpose systems. It has been shown that locks have numerous shortcomings over transactional memory in terms of power consumption, ease of programming and performance. In this paper, we propose a new semaphore scheme for synchronization in shared cache memory in an MPSoC. Moreover, we have evaluated and compared our scheme with locks and transactions in terms of energy consumption and cache miss rate using SimpleScalar functional simulator.

  17. High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors

    Science.gov (United States)

    Duun, Sune; Haahr, Rasmus G.; Hansen, Ole; Birkelund, Karen; Thomsen, Erik V.

    2010-07-01

    The development of annular photodiodes for use in a reflectance pulse oximetry sensor is presented. Wearable and wireless body sensor systems for long-term monitoring require sensors that minimize power consumption. We have fabricated large area 2D ring-shaped silicon photodiodes optimized for minimizing the optical power needed in reflectance pulse oximetry. To simplify packaging, backside photodiodes are made which are compatible with assembly using surface mounting technology without pre-packaging. Quantum efficiencies up to 95% and area-specific noise equivalent powers down to 30 fW Hz-1/2 cm-1 are achieved. The photodiodes are incorporated into a wireless pulse oximetry sensor system embedded in an adhesive patch presented elsewhere as 'The Electronic Patch'. The annular photodiodes are fabricated using two masked diffusions of first boron and subsequently phosphor. The surface is passivated with a layer of silicon nitride also serving as an optical filter. As the final process, after metallization, a hole in the center of the photodiode is etched using deep reactive ion etch.

  18. Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor/System-on-a-Chip

    Science.gov (United States)

    Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei

    2015-01-01

    Hardness assurance test results of Intel state-of-the-art 14nm “Broadwell” U-series processor / System-on-a-Chip (SoC) for total ionizing dose (TID) are presented, along with exploratory results from trials at a medical proton facility. Test method builds upon previous efforts [1] by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).

  19. Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor - System-on-a-Chip

    Science.gov (United States)

    Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei

    2015-01-01

    Hardness assurance test results of Intel state-of-the-art 14nm Broadwell U-series processor System-on-a-Chip (SoC) for total dose are presented, along with first-look exploratory results from trials at a medical proton facility. Test method builds upon previous efforts by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).

  20. A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture.

    Science.gov (United States)

    Ghovanloo, Maysam; Najafi, Khalil

    2007-09-01

    A 64-site wireless current microstimulator chip (Interestim-2B) and a prototype implant based on the same chip have been developed for neural prosthetic applications. Modular standalone architecture allows up to 32 chips to be individually addressed and operated in parallel to drive up to 2048 stimulating sites. The only off-chip components are a receiver inductive-capacitive (LC) tank, a capacitive low-pass filter for ripple rejection, and arrays of microelectrodes for interfacing with the neural tissue. The implant receives inductive power up to 50 mW and data at 2.5 Mb/s from a frequency shift keyed (FSK) 5/10 MHZ carrier to generate up to 65,800 stimulus pulses/s. Each Interestim-2B chip contains 16 current drivers with 270 microA full-scale current, 5-bit (32-steps) digital-to-analog converter (DAC) resolution, 100 M omega output impedance, and a voltage compliance that extends within 150 and 250 mV of the 5 V supply and ground rails, respectively. It can generate any arbitrary current waveform and supports a variety of monopolar and bipolar stimulation protocols. A common analog line provides access to each site potential, and exhausts residual stimulus charges for charge balancing. The chip has site potential measurement and in situ site impedance measurement capabilities, which help its users indicate defective sites or characteristic shifts in chronic stimulations. Interestim-2B chip is fabricated in the AMI 1.5 microm standard complementary metal-oxide-semiconductor (CMOS) process and measures 4.6 x 4.6 x 0.5 mm. The prototype implant size including test connectors is 19 x 14 x 6 mm, which can be shrunk down to < 0.5 CC. This paper also summarizes some of the in vitro and in vivo experiments performed using the Interestim-2B prototype implant.

  1. Pulse Arrival Time Based Cuff-Less and 24-H Wearable Blood Pressure Monitoring and its Diagnostic Value in Hypertension.

    Science.gov (United States)

    Zheng, Yali; Poon, Carmen C Y; Yan, Bryan P; Lau, James Y W

    2016-09-01

    Ambulatory blood pressure monitoring (ABPM) has become an essential tool in the diagnosis and management of hypertension. Current standard ABPM devices use an oscillometric cuff-based method which can cause physical discomfort to the patients with repeated inflations and deflations, especially during nighttime leading to sleep disturbance. The ability to measure ambulatory BP accurately and comfortably without a cuff would be attractive. This study validated the accuracy of a cuff-less approach for ABPM using pulse arrival time (PAT) measurements on both healthy and hypertensive subjects for potential use in hypertensive management, which is the first of its kind. The wearable cuff-less device was evaluated against a standard cuff-based device on 24 subjects of which 15 have known hypertension. BP measurements were taken from each subject over a 24-h period by the cuff-less and cuff-based devices every 15 to 30 minutes during daily activities. Mean BP of each subject during daytime, nighttime and over 24-h were calculated. Agreement between mean nighttime systolic BP (SBP) and diastolic (DBP) measured by the two devices evaluated using Bland-Altman plot were -1.4 ± 6.6 and 0.4 ± 6.7 mmHg, respectively. Receiver operator characteristics (ROC) statistics was used to assess the diagnostic accuracy of the cuff-less approach in the detection of BP above the hypertension threshold during nighttime (>120/70 mmHg). The area under ROC curves were 0.975/0.79 for nighttime. The results suggest that PAT-based approach is accurate and promising for ABPM without the issue of sleep disturbances associated with cuff-based devices.

  2. Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices

    Science.gov (United States)

    Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla

    2017-08-01

    We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (˜100 ps, ˜0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades.

  3. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph

    Directory of Open Access Journals (Sweden)

    Kristen M. Warren

    2016-03-01

    Full Text Available Photoplethysmographic (PPG waveforms are used to acquire pulse rate (PR measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA, limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data.

  4. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph.

    Science.gov (United States)

    Warren, Kristen M; Harvey, Joshua R; Chon, Ki H; Mendelson, Yitzhak

    2016-03-07

    Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data.

  5. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph

    Science.gov (United States)

    Warren, Kristen M.; Harvey, Joshua R.; Chon, Ki H.; Mendelson, Yitzhak

    2016-01-01

    Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data. PMID:26959034

  6. Wearable Photoplethysmographic Sensors—Past and Present

    Directory of Open Access Journals (Sweden)

    Toshiyo Tamura

    2014-04-01

    Full Text Available Photoplethysmography (PPG technology has been used to develop small, wearable, pulse rate sensors. These devices, consisting of infrared light-emitting diodes (LEDs and photodetectors, offer a simple, reliable, low-cost means of monitoring the pulse rate noninvasively. Recent advances in optical technology have facilitated the use of high-intensity green LEDs for PPG, increasing the adoption of this measurement technique. In this review, we briefly present the history of PPG and recent developments in wearable pulse rate sensors with green LEDs. The application of wearable pulse rate monitors is discussed.

  7. Microphysiological Human Brain and Neural Systems-on-a-Chip: Potential Alternatives to Small Animal Models and Emerging Platforms for Drug Discovery and Personalized Medicine.

    Science.gov (United States)

    Haring, Alexander P; Sontheimer, Harald; Johnson, Blake N

    2017-06-01

    Translational challenges associated with reductionist modeling approaches, as well as ethical concerns and economic implications of small animal testing, drive the need for developing microphysiological neural systems for modeling human neurological diseases, disorders, and injuries. Here, we provide a comprehensive review of microphysiological brain and neural systems-on-a-chip (NSCs) for modeling higher order trajectories in the human nervous system. Societal, economic, and national security impacts of neurological diseases, disorders, and injuries are highlighted to identify critical NSC application spaces. Hierarchical design and manufacturing of NSCs are discussed with distinction for surface- and bulk-based systems. Three broad NSC classes are identified and reviewed: microfluidic NSCs, compartmentalized NSCs, and hydrogel NSCs. Emerging areas and future directions are highlighted, including the application of 3D printing to design and manufacturing of next-generation NSCs, the use of stem cells for constructing patient-specific NSCs, and the application of human NSCs to 'personalized neurology'. Technical hurdles and remaining challenges are discussed. This review identifies the state-of-the-art design methodologies, manufacturing approaches, and performance capabilities of NSCs. This work suggests NSCs appear poised to revolutionize the modeling of human neurological diseases, disorders, and injuries.

  8. Wearable wireless photoplethysmography sensors

    Science.gov (United States)

    Spigulis, Janis; Erts, Renars; Nikiforovs, Vladimirs; Kviesis-Kipge, Edgars

    2008-04-01

    Wearable health monitoring sensors may support early detection of abnormal conditions and prevention of their consequences. Recent designs of three wireless photoplethysmography monitoring devices embedded in hat, glove and sock, and connected to PC or mobile phone by means of the Bluetooth technology, are described. First results of distant monitoring of heart rate and pulse wave transit time using the newly developed devices are presented.

  9. Wearable Playware

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2011-01-01

    In this paper we define and trace the contours of a new approach to robotic systems, composed of interactive robotic modules that can be worn on the body, as for an ordinary suit. We label the field as Modular Robotic Wearable (MRW). Further, we describe how the use of modular robotics in creating...... wearable, besides being possible, is a path to obtain a flexible wearable processing system, where freely inter-changeable input/output modules can be positioned on the body suit in accordance with the task at hand. In this concept paper we describe the initial prototypes and show, as an example......, an artistic application. We then show drawing of future works and projects. Finally, by focusing on the intersection of the combination of modular robotic systems, wearability, and body-mind we attempt to explore the theoretical characteristics of such an approach and exploit the possible playware application...

  10. A Fast Multimodal Ectopic Beat Detection Method Applied for Blood Pressure Estimation Based on Pulse Wave Velocity Measurements in Wearable Sensors

    Science.gov (United States)

    Pflugradt, Maik; Geissdoerfer, Kai; Goernig, Matthias; Orglmeister, Reinhold

    2017-01-01

    Automatic detection of ectopic beats has become a thoroughly researched topic, with literature providing manifold proposals typically incorporating morphological analysis of the electrocardiogram (ECG). Although being well understood, its utilization is often neglected, especially in practical monitoring situations like online evaluation of signals acquired in wearable sensors. Continuous blood pressure estimation based on pulse wave velocity considerations is a prominent example, which depends on careful fiducial point extraction and is therefore seriously affected during periods of increased occurring extrasystoles. In the scope of this work, a novel ectopic beat discriminator with low computational complexity has been developed, which takes advantage of multimodal features derived from ECG and pulse wave relating measurements, thereby providing additional information on the underlying cardiac activity. Moreover, the blood pressure estimations’ vulnerability towards ectopic beats is closely examined on records drawn from the Physionet database as well as signals recorded in a small field study conducted in a geriatric facility for the elderly. It turns out that a reliable extrasystole identification is essential to unsupervised blood pressure estimation, having a significant impact on the overall accuracy. The proposed method further convinces by its applicability to battery driven hardware systems with limited processing power and is a favorable choice when access to multimodal signal features is given anyway. PMID:28098831

  11. Learning Pulse: Using Wearable Biosensors and Learning Analytics to Investigate and Predict Learning Success in Self-regulated Learning

    NARCIS (Netherlands)

    Di Mitri, Daniele; Scheffel, Maren; Drachsler, Hendrik; Börner, Dirk; Ternier, Stefaan; Specht, Marcus

    2017-01-01

    The Learning Pulse study aims to explore whether physiological data such as heart rate and step count correlate with learning activity data and whether they are good predictors for learning success during self-regulated learning. To verify this hypothesis an experiment was set up involving eight

  12. Wearable Technology

    Science.gov (United States)

    Watson, Amanda

    2013-01-01

    Wearable technology projects, to be useful, in the future, must be seamlessly integrated with the Flight Deck of the Future (F.F). The lab contains mockups of space vehicle cockpits, habitat living quarters, and workstations equipped with novel user interfaces. The Flight Deck of the Future is one element of the Integrated Power, Avionics, and Software (IPAS) facility, which, to a large extent, manages the F.F network and data systems. To date, integration with the Flight Deck of the Future has been limited by a lack of tools and understanding of the Flight Deck of the Future data handling systems. To remedy this problem it will be necessary to learn how data is managed in the Flight Deck of the Future and to develop tools or interfaces that enable easy integration of WEAR Lab and EV3 products into the Flight Deck of the Future mockups. This capability is critical to future prototype integration, evaluation, and demonstration. This will provide the ability for WEAR Lab products, EV3 human interface prototypes, and technologies from other JSC organizations to be evaluated and tested while in the Flight Deck of the Future. All WEAR Lab products must be integrated with the interface that will connect them to the Flight Deck of the Future. The WEAR Lab products will primarily be programmed in Arduino. Arduino will be used for the development of wearable controls and a tactile communication garment. Arduino will also be used in creating wearable methane detection and warning system.

  13. Dry Electrodes for ECG and Pulse Transit Time for Blood Pressure: A Wearable Sensor and Smartphone Communication Approach

    Science.gov (United States)

    Shyamkumar, Prashanth

    -invasive, cuff-less Blood pressure estimation based on Pulse Transit Time with multiple synchronized sensor nodes, is implemented with e-nanoflex and the results are discussed.

  14. Development of a Wearable Pulse Monitoring Module Based on Zigbee Technology%基于Zigbee技术的穿戴式脉搏波检测模块的研制

    Institute of Scientific and Technical Information of China (English)

    杨易华; 吴效明; 岑人经

    2009-01-01

    This paper introduces a new wearable pulse detection module based on Zigbee technology. Pulse signal was detected using pressure sensor, then preprocessed and sent to CC2430 for analog-to-digital conversion, after that the data were judged and processed. Then, the data were transmitted to PC by using wireless sensor network formed by Zigbee technology,and received,displayed,analyzed with a care-software. The module realized the wireless real-time detection for pulse with miniaturization, low-power and portable for family care.%介绍了一种新型的基于Zigbee技术的穿戴式脉搏波检测模块.利用压力传感器提取出脉搏波信号,经过预处理后,送至CC2430进行模数转换,对数据进行判断和处理,再利用Zigbee技术组成的无线传感器网络把数据打包发送到PC机,然后由监护软件对数据进行处理、分析和显示.该模块实现了脉搏波的无线实时检测,具有微型化、低功耗等特点,适用于家庭的便携式移动监护.

  15. Modular Robotic Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2009-01-01

    In this concept paper we trace the contours and define a new approach to robotic systems, composed of interactive robotic modules which are somehow worn on the body. We label such a field as Modular Robotic Wearable (MRW). We describe how, by using modular robotics for creating wearable....... Finally, by focusing on the intersection of the combination modular robotic systems, wearability, and bodymind we attempt to explore the theoretical characteristics of such approach and exploit the possible playware application fields....

  16. Communications for Wearable Devices

    OpenAIRE

    Tabibu, Shivram

    2017-01-01

    Wearable devices are transforming computing and the human-computer interaction and they are a primary means for motion recognition of reflexive systems. We review basic wearable deployments and their open wireless communications. An algorithm that uses accelerometer data to provide a control and communication signal is described. Challenges in the further deployment of wearable device in the field of body area network and biometric verification are discussed.

  17. Robotic Art for Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2010-01-01

    on “simple” plug-and-play circuits, ranging from pure sensors-actuators schemes to artefacts with a smaller level of elaboration complexity. Indeed, modular robotic wearable focuses on enhancing the body perception and proprioperception by trying to substitute all of the traditional exoskeletons perceptive......We present the robot art and how it may inspire to create a new type of wearable termed modular robotic wearable. Differently from the related works, modular robotic wearable aims at making no use of mechatronic devices (as, for example, in Cyberpunk and related research branches) and mostly relies...

  18. Embodying Soft Wearables Research

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2016-01-01

    of soft wearables. Throughout, we will experiment with how embodied design research techniques might be shared, developed, and used as direct and unmediated vehicles for their own reporting. Rather than engage in oral presentations, participants will lead each other through a proven embodied method...... and knowledge transfer in the context of soft wearables....

  19. Professional Android wearables

    CERN Document Server

    Cuartielles Ruiz, David

    2015-01-01

    The fast and easy way to get up and running on Androidwearables Written by an expert author team with years of hands-onexperience in designing and building wearables, ProfessionalAndroid Wearables covers how to use the Android Wear platformand other techniques to build real-world apps for a variety ofwearables including smartbands, smartwatches, and smart glasses. Inno time, you'll grasp how wearables can connect us to the Internetin more pervasive ways than with PCs, tablets, or mobile devices;how to build code using Google's Wear SDK for Android-enabledhardware devices; how Android Wear and

  20. Robotic Art for Wearable

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2010-01-01

    We present the robot art and how it may inspire to create a new type of wearable termed modular robotic wearable. Differently from the related works, modular robotic wearable aims at making no use of mechatronic devices (as, for example, in Cyberpunk and related research branches) and mostly relies...... on “simple” plug-and-play circuits, ranging from pure sensors-actuators schemes to artefacts with a smaller level of elaboration complexity. Indeed, modular robotic wearable focuses on enhancing the body perception and proprioperception by trying to substitute all of the traditional exoskeletons perceptive...... functions - in most of the cases strongly rigid, cabled and centralized - through the use of local sensing circuits. It is exemplified here with the early prototype art work called Fatherboard, and the concept is believed to be applicable to different application fields, such as sport, health...

  1. Pulse

    Science.gov (United States)

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the person's heart is pumping. Pulse ... rate gives information about your fitness level and health.

  2. Wearable biosensors for medical applications

    OpenAIRE

    Crean, C; Mcgeough, C; O'Kennedy, R

    2012-01-01

    Over the past decade, the design and development of wearable sensors for biomedical applications has garnered considerable attention in the scientifi c community and in industry. This chapter aims to review research conducted into wearable sensors for healthcare monitoring. Acceptance of this approach in observation of physiological data depends strongly on the cost, wearability, usability and performance of such devices. An outline of body sensor network systems (and applications of wearable...

  3. Wearable Optical Sensors

    KAUST Repository

    Ballard, Zachary S.

    2017-07-12

    The market for wearable sensors is predicted to grow to $5.5 billion by 2025, impacting global health in unprecedented ways. Optics and photonics will play a key role in the future of these wearable technologies, enabling highly sensitive measurements of otherwise invisible information and parameters about our health and surrounding environment. Through the implementation of optical wearable technologies, such as heart rate, blood pressure, and glucose monitors, among others, individuals are becoming more empowered to generate a wealth of rich, multifaceted physiological and environmental data, making personalized medicine a reality. Furthermore, these technologies can also be implemented in hospitals, clinics, point-of-care offices, assisted living facilities or even in patients’ homes for real-time, remote patient monitoring, creating more expeditious as well as resource-efficient systems. Several key optical technologies make such sensors possible, including e.g., optical fiber textiles, colorimetric, plasmonic, and fluorometric sensors, as well as Organic Light Emitting Diode (OLED) and Organic Photo-Diode (OPD) technologies. These emerging technologies and platforms show great promise as basic sensing elements in future wearable devices and will be reviewed in this chapter along-side currently existing fully integrated wearable optical sensors.

  4. Design of an Anti-Noise Wearable Pulse Oximetry%一种抗干扰穿戴式血氧饱和度监测仪的研制

    Institute of Scientific and Technical Information of China (English)

    龚渝顺; 吴宝明; 高丹丹; 闫庆广; 冯正权

    2012-01-01

    为实现动态环境下人体血氧饱和度的实时监测,研制了一种穿戴式血氧监测仪.采用D/A数模转换控制LED双光源交替发光,以光频转换接收头作为传感器,将光强信号转换为频率信号,直接送入单片机采集;根据反射式原理计算得到结果,通过无线方式发送数据.针对动态环境下获取的光电容积脉搏波中掺杂的运动干扰,提出了血氧干扰分离自适应对消算法,以消除运动干扰对计算结果的影响.设计实现了设备的小型化,提高了其可穿戴性,具有抗运动干扰的能力,能准确的获取血氧信息,适合在日常动态环境下的实时监测.%A wearable pulse oximetry was designed for real time measuring of oxygen saturation in motion condition. Digital-to-Analog converter was used to control LED which gives out light of different color alternately. The light reflected from body was collected by Optical-to-Frequency converter whose output was sent to MCU directly, and then the calculation result was transmitted wirelessly. An algorithm aiming at removing motion artifact mixed in PPG signal was designed to get accurate result. This device is suitable for real time monitoring in daily motion condition for its miniature design and anti-motion artifact ability.

  5. Augmented reality som wearable

    DEFF Research Database (Denmark)

    Buhl, Mie; Rahn, Annette

    2015-01-01

    Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR-applikat......Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR...

  6. Gait analysis using wearable sensors.

    Science.gov (United States)

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  7. Gait Analysis Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Hutian Feng

    2012-02-01

    Full Text Available Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  8. 脉率变异性分析在穿戴式智能设备中的应用%Analysis of Pulse Rate Variability and Its Application to Wearable Smart Devices

    Institute of Scientific and Technical Information of China (English)

    石波; 陈法圣; 陈建方; 曹阳

    2015-01-01

    In this paper, a reflection type photoelectric pulse wave sensor was designed for short-term pulse rate variability analysis. Photoplethysmography (PPG) signals and ECG signals (obtained with the Dimetek MicroECG recorder Dicare-m1CP) were recorded synchronously from 20 healthy subjects. The analytical results show a significant correlation (correlation coefficient r > 0.99) between the PPG-derived peak-to-peak (PP) intervals and the ECG-derived RR intervals. Besides, there are no significant differences (P > 0.05) between the HRV measured by ECG and the PRV quantified by the PPG whether in time domain, frequency domain, or the Poincaré plot parameters. The experimental results suggest that the PPG-based short-term PRV analysis can be consistent with the ECG-based HRV measurement in wearable smart devices.%基于光电容积脉搏波(PPG)原理设计了一种反射式脉搏传感器,通过Arduino uno开发板将采集的人体指端PPG信号传输至PC进行脉率变异性(PRV)分析。选择20名健康受试者为对象进行系统测试,同时同步记录心电图(ECG)信号(迪美泰Dicare-m1CP微型心电记录仪)并进行心率变异性(HRV)分析作为参考。研究发现,脉搏波PP间期序列与心电图RR间期序列高度相关(r >0.99),PRV的时域、频域和Poincaré散点图指标与对应的HRV各指标差异无统计学意义(P>0.05)。结果表明,穿戴式智能设备中基于PPG的短时PRV分析与基于ECG的短时HRV分析是等价的。

  9. Towards Wearable Cognitive Assistance

    Science.gov (United States)

    2013-12-01

    Nokia -Siemens Networks announced the availability of a “mobile edge computing platform” [1]. Wearable cognitive assistance can be viewed as a “killer...first step, providing an open-source foundation for exploring this exciting new domain. References [1] IBM and Nokia Siemens Networks Announce World’s

  10. Augmented reality som wearable

    DEFF Research Database (Denmark)

    Buhl, Mie; Rahn, Annette

    2015-01-01

    Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR...

  11. Wearable Learning Tools.

    Science.gov (United States)

    Bowskill, Jerry; Dyer, Nick

    1999-01-01

    Describes wearable computers, or information and communication technology devices that are designed to be mobile. Discusses how such technologies can enhance computer-mediated communications, focusing on collaborative working for learning. Describes an experimental system, MetaPark, which explores communications, data retrieval and recording, and…

  12. Augmented reality som wearable

    DEFF Research Database (Denmark)

    Buhl, Mie; Rahn, Annette

    2015-01-01

    Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR...

  13. Pointing Devices for Wearable Computers

    OpenAIRE

    Andrés A. Calvo; Saverio Perugini

    2014-01-01

    We present a survey of pointing devices for wearable computers, which are body-mounted devices that users can access at any time. Since traditional pointing devices (i.e., mouse, touchpad, and trackpoint) were designed to be used on a steady and flat surface they are inappropriate for wearable computers. Just as the advent of laptops resulted in the development of the touchpad and trackpoint, the emergence of wearable computers is leading to the development of pointing devices designed for th...

  14. Wearable sensors in syncope management

    National Research Council Canada - National Science Library

    Meyer, Christian; Carvalho, Paulo; Brinkmeyer, Christoph; Kelm, Malte; Couceiro, Ricardo; Mühlsteff, Jens

    2015-01-01

    .... Wearable sensors might overcome some limitations, including misdiagnosis and inappropriate defibrillator shocks, because a variety of physiological measures can now be easily acquired by a single non...

  15. Wearable CO2 sensor

    OpenAIRE

    Radu, Tanja; Fay, Cormac; Lau, King-Tong; Waite, Rhys; Diamond, Dermot

    2009-01-01

    High concentrations of CO2 may develop particularly in the closed spaces during fires and can endanger the health of emergency personnel by causing serious physiological effects. The proposed prototype provides real-time continuous monitoring of CO2 in a wearable configuration sensing platform. A commercially available electrochemical CO2 sensor was selected due to its selectivity, sensitivity and low power demand. This was integrated onto an electronics platform that performed signal capture...

  16. Monitoring of Vital Signs with Flexible and Wearable Medical Devices.

    Science.gov (United States)

    Khan, Yasser; Ostfeld, Aminy E; Lochner, Claire M; Pierre, Adrien; Arias, Ana C

    2016-06-01

    Advances in wireless technologies, low-power electronics, the internet of things, and in the domain of connected health are driving innovations in wearable medical devices at a tremendous pace. Wearable sensor systems composed of flexible and stretchable materials have the potential to better interface to the human skin, whereas silicon-based electronics are extremely efficient in sensor data processing and transmission. Therefore, flexible and stretchable sensors combined with low-power silicon-based electronics are a viable and efficient approach for medical monitoring. Flexible medical devices designed for monitoring human vital signs, such as body temperature, heart rate, respiration rate, blood pressure, pulse oxygenation, and blood glucose have applications in both fitness monitoring and medical diagnostics. As a review of the latest development in flexible and wearable human vitals sensors, the essential components required for vitals sensors are outlined and discussed here, including the reported sensor systems, sensing mechanisms, sensor fabrication, power, and data processing requirements.

  17. A wireless sensor network compatible wearable u-healthcare monitoring system using integrated ECG, accelerometer and SpO2.

    Science.gov (United States)

    Chung, Wan-Young; Lee, Young-Dong; Jung, Sang-Joong

    2008-01-01

    This paper presents the design and development of a wearable ubiquitous healthcare monitoring system using integrated electrocardiogram (ECG), accelerometer and oxygen saturation (SpO(2)) sensors. In this design, non-intrusive healthcare system was designed based on wireless sensor network (WSN) for wide area coverage with minimum battery power to support RF transmission. We have developed various devices such as wearable ubiquitous sensor network (USN) node, wearable chest sensor belt and wrist pulse oximeter for this system. Low power ECG, accelerometer and SpO(2) sensors board was integrated to the wearable USN node for user's health monitoring. The wearable ubiquitous healthcare monitoring system allows physiological data to be transmitted in wireless sensor network using IEEE 802.15.4 from on-body wearable sensor devices to a base-station which is connected to a server PC. Physiological data can be displayed and stored in the server PC continuously.

  18. Wearable Optical Chemical Sensors

    Science.gov (United States)

    Lobnik, Aleksandra

    Wearable sensors can be used to provide valuable information about the wearer's health and/or monitor the wearer's surroundings, identify safety concerns and detect threats, during the wearer's daily routine within his or her natural environment. The "sensor on a textile", an integrated sensor capable of analyzing data, would enable early many forms of detection. Moreover, a sensor connected with a smart delivery system could simultaneously provide comfort and monitoring (for safety and/or health), non-invasive measurements, no laboratory sampling, continuous monitoring during the daily activity of the person, and possible multi-parameter analysis and monitoring. However, in order for the technology to be accessible, it must remain innocuous and impose a minimal intrusion on the daily activities of the wearer. Therefore, such wearable technologies should be soft, flexible, and washable in order to meet the expectations of normal clothing. Optical chemical sensors (OCSs) could be used as wearable technology since they can be embedded into textile structures by using conventional dyeing, printing processes and coatings, while fiber-optic chemical sensors (FOCSs) as well as nanofiber sensors (NFSs) can be incorporated by weaving, knitting or laminating. The interest in small, robust and sensitive sensors that can be embedded into textile structures is increasing and the research activity on this topic is an important issue.

  19. Wearable sensors for health monitoring

    Science.gov (United States)

    Suciu, George; Butca, Cristina; Ochian, Adelina; Halunga, Simona

    2015-02-01

    In this paper we describe several wearable sensors, designed for monitoring the health condition of the patients, based on an experimental model. Wearable sensors enable long-term continuous physiological monitoring, which is important for the treatment and management of many chronic illnesses, neurological disorders, and mental health issues. The system is based on a wearable sensors network, which is connected to a computer or smartphone. The wearable sensor network integrates several wearable sensors that can measure different parameters such as body temperature, heart rate and carbon monoxide quantity from the air. After the portable sensors measuring parameter values, they are transmitted by microprocessor through the Bluetooth to the application developed on computer or smartphone, to be interpreted.

  20. Stretchable and wearable electrochromic devices.

    Science.gov (United States)

    Yan, Chaoyi; Kang, Wenbin; Wang, Jiangxin; Cui, Mengqi; Wang, Xu; Foo, Ce Yao; Chee, Kenji Jianzhi; Lee, Pooi See

    2014-01-28

    Stretchable and wearable WO3 electrochromic devices on silver nanowire (AgNW) elastic conductors are reported. The stretchable devices are mechanically robust and can be stretched, twisted, folded, and crumpled without performance failure. Fast coloration (1 s) and bleaching (4 s) time and good cyclic stability (81% retention after 100 cycles) were achieved at relaxed state. Proper functioning at stretched state (50% strain) was also demonstrated. The electrochromic devices were successfully implanted onto textile substrates for potential wearable applications. As most existing electrochromic devices are based on rigid technologies, the innovative devices in their soft form hold the promise for next-generation electronics such as stretchable, wearable, and implantable display applications.

  1. Interoperability of wearable cuffless BP measuring devices.

    Science.gov (United States)

    Liu, Jing; Zhang, Yuan-Ting

    2014-01-01

    While a traditional cuff-based Blood Pressure (BP) measuring device can only take a snap shot of BP, real-time and continuous measurement of BP without an occluding cuff is preferred which usually use the pulse transit time (PTT) in combination with other physiological parameters to estimate or track BP over a certain period of time after an initial calibration. This article discusses some perspectives of interoperability of wearable medical devices, based on IEEE P1708 draft standard that focuses on the objective performance evaluation of wearable cuffless BP measuring devices. The ISO/IEEE 11073 family of standards, supporting the plug-and play feature, is intended to enable medical devices to interconnect and interoperate with other medical devices and with computerized healthcare information systems in a manner suitable for the clinical environment. In this paper, the possible adoption of ISO/IEEE 11073 for the interoperability of wearable cuffless BP devices is proposed. In the consideration of the difference of the continuous and cuffless BP measuring methods from the conventional ones, the existing device specialization standards of ISO/IEEE 11073 cannot be directly followed when designing the cuffless BP device. Specifically, this paper discusses how the domain information model (DIM), in which vital sign information is abstracted as objects, is used to structure the information about the device and that generated from the device. Though attention should also be paid to adopt the communication standards for other parts for the communication system, applying communication standards that enable plug-and-play feature allows achieving the interoperability of different cuffless BP measuring devices with possible different configurations.

  2. Wearable Health Monitoring Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing a wearable health monitoring system for the human body that is functional, comfortable,...

  3. Wearable Health Monitoring Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing a wearable health monitoring system for the human body that is functional, comfortable,...

  4. Wearable feedback systems for rehabilitation

    OpenAIRE

    Marci Carl; Sung Michael; Pentland Alex

    2005-01-01

    Abstract In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communicat...

  5. Wearable Sensor Systems for Infants

    OpenAIRE

    Zhihua Zhu; Tao Liu; Guangyi Li; Tong Li; Yoshio Inoue

    2015-01-01

    Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant’s body to clinicians or parents. Moreover, such sys...

  6. Wearable Health Monitoring Systems

    Science.gov (United States)

    Bell, John

    2015-01-01

    The shrinking size and weight of electronic circuitry has given rise to a new generation of smart clothing that enables biological data to be measured and transmitted. As the variation in the number and type of deployable devices and sensors increases, technology must allow their seamless integration so they can be electrically powered, operated, and recharged over a digital pathway. Nyx Illuminated Clothing Company has developed a lightweight health monitoring system that integrates medical sensors, electrodes, electrical connections, circuits, and a power supply into a single wearable assembly. The system is comfortable, bendable in three dimensions, durable, waterproof, and washable. The innovation will allow astronaut health monitoring in a variety of real-time scenarios, with data stored in digital memory for later use in a medical database. Potential commercial uses are numerous, as the technology enables medical personnel to noninvasively monitor patient vital signs in a multitude of health care settings and applications.

  7. Software for Wearable Devices: Challenges and Opportunities

    OpenAIRE

    Jiang, He; Chen, Xin; Zhang, Shuwei; ZHANG Xin; Kong, Weiqiang; Zhang, Tao

    2015-01-01

    Wearable devices are a new form of mobile computer system that provides exclusive and user-personalized services. Wearable devices bring new issues and challenges to computer science and technology. This paper summarizes the development process and the categories of wearable devices. In addition, we present new key issues arising in aspects of wearable devices, including operating systems, database management system, network communication protocol, application development platform, privacy an...

  8. Wearable sensor systems for infants.

    Science.gov (United States)

    Zhu, Zhihua; Liu, Tao; Li, Guangyi; Li, Tong; Inoue, Yoshio

    2015-02-05

    Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant's body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.

  9. Wearable Sensor Systems for Infants

    Directory of Open Access Journals (Sweden)

    Zhihua Zhu

    2015-02-01

    Full Text Available Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant’s body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.

  10. Wearable Sensor Systems for Infants

    Science.gov (United States)

    Zhu, Zhihua; Liu, Tao; Li, Guangyi; Li, Tong; Inoue, Yoshio

    2015-01-01

    Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant's body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future. PMID:25664432

  11. A wearable sensor based on CLYC scintillators

    Science.gov (United States)

    McDonald, Benjamin S.; Myjak, Mitchell J.; Zalavadia, Mital A.; Smart, John E.; Willett, Jesse A.; Landgren, Peter C.; Greulich, Christopher R.

    2016-06-01

    We have developed a wearable radiation sensor using Cs2LiYCl6:Ce (CLYC) for simultaneous gamma-ray and neutron detection. The system includes two ∅ 2.5 × 2.5cm3 crystals coupled to small, metal-body photomultiplier tubes. A custom, low-power electronics base digitizes the output signal at three time points and enables both pulse height and pulse shape discrimination of gamma rays and neutrons. The total counts, anomaly detection metrics, and identified isotopes are displayed on a small screen. Users may leave the device in unattended mode to collect long-dwell energy spectra. The system stores up to 18 h of one-second data, including energy spectra, and may transfer the data to a remote computer via a wired or wireless connection. The prototype is 18 × 13 × 7.5cm3, weighs 1.3 kg, not including the protective pouch, and runs on six AA alkaline batteries for 29 h with the wireless link active, or 41 h with the wireless link disabled. In this paper, we summarize the system design and present characterization results from the detector modules. The energy resolution is about 6.5% full width at half maximum at 662 keV due to the small photomultiplier tube selected, and the linearity and pulse shape discrimination performance are very good.

  12. A wearable sensor based on CLYC scintillators

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Benjamin S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Myjak, Mitchell J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zalavadia, Mital A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smart, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Willett, Jesse A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Landgren, Peter C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greulich, Christopher R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-01

    We developed a wearable radiation sensor using Cs2LiYCl6:Ce (CLYC) for simultaneous gamma-ray and neutron detection. The system includes two ø2.5×2.5 cm3 crystals coupled to small, metal-body photomultiplier tubes. A custom, low-power electronics base digitizes the output signal at three time points and enables both pulse height and pulse shape discrimination of neutrons and gamma-rays. Data, including spectra, can be transferred via a wired or wireless connection. The total gamma-ray and neutron counts, anomaly detection metrics, and identified isotopes are displayed on a small screen on the device. Users may leave the system in unattended mode to collect long-dwell energy spectra. The prototype system has overall dimensions of 13×7.5×18 cm3 and weight of 1.3 kg, not including the protective pouch, and runs on six AA alkaline batteries for 29 hours with a 1% wireless transmission duty cycle and 41 hours with the wireless turned off . In this paper, we summarize the system design and present characterization results from the detector modules. The energy resolution is about 6.5% full width at half maximum at 662 keV due to the small photomultiplier tube selected, and the linearity and pulse shape discrimination performance are very good.

  13. Clinical applications of wearable technology.

    Science.gov (United States)

    Bonato, Paolo

    2009-01-01

    An important factor contributing to the process involved in choosing a rehabilitation intervention is the assessment of its impact on the real life of patients. Therapists and physicians have to infer the effectiveness of rehabilitation approaches from observations performed in the clinical setting and from patients' feedback. Recent advances in wearable technology have provided means to supplement the information gathered using tools based on patient's direct observation as well as interviews and questionnaires. A new generation of wearable sensors and systems has recently become available thus providing clinical personnel with a "window of observation" in the home and community settings. These tools allow one to capture patients' activity level and exercise compliance, facilitate titration of medications in chronic patients, and provide means to assess the ability of patients to perform specific motor activities. In this paper, we review recent advances in the field of wearable technology and provide examples of application of this technology in rehabilitation.

  14. Wearable Flexible Sensors: A Review

    KAUST Repository

    Nag, Anindya

    2017-05-18

    The paper provides a review on some of the significant research work done on wearable flexible sensors (WFS). Sensors fabricated with flexible materials have been attached to a person along with the embedded system to monitor a parameter and transfer the significant data to the monitoring unit for further analyses. The use of wearable sensors has played a quite important role to monitor physiological parameters of a person to minimize any malfunctioning happening in the body. The paper categorizes the work according to the materials used for designing the system, the network protocols and different types of activities that were being monitored. The challenges faced by the current sensing systems and future opportunities for the wearable flexible sensors regarding its market values are also briefly explained in the paper.

  15. Wearable sensors fundamentals, implementation and applications

    CERN Document Server

    Sazonov, Edward

    2014-01-01

    Written by industry experts, this book aims to provide you with an understanding of how to design and work with wearable sensors. Together these insights provide the first single source of information on wearable sensors that would be a valuable addition to the library of any engineer interested in this field. Wearable Sensors covers a wide variety of topics associated with the development and application of various wearable sensors. It also provides an overview and coherent summary of many aspects of current wearable sensor technology. Both industry professionals and academic researcher

  16. Application Design for Wearable Computing

    CERN Document Server

    Siewiorek, Dan; Starner, Thad

    2008-01-01

    This lecture describes application design for wearable computing, providing a blend of experience based insights, learning in application development, and guidelines on how to frame problems and address a specific design context, followed by more detailed issues and solution approaches at the next level of the application development. The lecture takes the viewpoint of a potential designer or researcher in this field and aims to present such an integrated material in one place. Designing wearable computer interfaces requires attention to many different factors because of the computer's closene

  17. Mobile Collocated Interactions With Wearables

    DEFF Research Database (Denmark)

    Lucero, Andrés; Wilde, Danielle; Robinson, Simon

    2015-01-01

    powerful, and closer to our bodies. Therefore, mobile collocated interactions research, which originally looked at smartphones and tablets, will inevitably move towards fully integrated wearable technologies. The focus of this workshop is to bring together a community of researchers, designers...... and practitioners to explore the potential of extending mobile collocated interactions from, through and around the body using wearable technologies.......Research on mobile collocated interactions has been looking at situations in which collocated users engage in collaborative activities using their mobile devices, thus going from personal/individual toward shared/multiuser experiences and interactions. However, computers are getting smaller, more...

  18. Wearable oximetry for harsh environments

    Science.gov (United States)

    2017-02-23

    a wearable monitor is required. Related to this, commercial oximetry sensors (e.g., from Masimo, BSX Insight, Cercacor) are now being marketed for...Schmid, C. Fulco, S. Muza, “Predictive models of acute mountain sickness after rapid ascent to various altitudes,” Med & Sci in Sports & Exercise, 792

  19. Sustainable Wearables: Wearable Technology for Enhancing the Quality of Human Life

    Directory of Open Access Journals (Sweden)

    Jaewoon Lee

    2016-05-01

    Full Text Available This paper aims to elicit insights about sustainable wearables by investigating recent advancements in wearable technology and their applications. Wearable technology has advanced considerably from a technical perspective, but it has stagnated due to barriers without penetrating wider society despite early positive expectations. This situation is the motivation behind the focus on studies by many research groups in recent years into wearable applications that can provide the best value from a human-oriented perspective. The expectation is that a new means to resolve the issue can be found from a viewpoint of sustainability; this is the main point of this paper. This paper first focuses on the trend of wearable technology like bodily status monitoring, multi-wearable device control, and smart networking between wearable sensors. Second, the development intention of such technology is investigated. Finally, this paper discusses about the applications of current wearable technology from the sustainable perspective, rather than detailed description of the component technologies employed in wearables. In this paper, the definition of sustainable wearables is discussed in the context of improving the quality of individual life, social impact, and social public interest; those wearable applications include the areas of wellness, healthcare, assistance for the visually impaired, disaster relief, and public safety. In the future, wearables will not be simple data trackers or fun accessories but will gain extended objectives and meanings that play a valuable role for individuals and societies. Successful and sustainable wearables will lead to positive changes for both individuals and societies overall.

  20. Micromachined Systems-on-a-Chip: Infrastructure, Technology and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J. J.; Krygowski, T. W.; Miller, S. L.; Montague, S.; Rodgers, M. S.; Schriner, H.; Smith, J. H.; Sniegowski, J. J.

    1998-10-09

    A review is made of the infrastructure, technology and capabilities of Sandia National Laboratories for the development of micromechanical systems that have potential space applications. By incorporating advanced fabrication processes, such as chemical mechanical polishing, and several mechanical polysilicon levels, the range' of rrticromechanical systems that can be fabricated in these technologies is virtually limitless. Representative applications include a micro- engine driven mirror, and a micromachined lock. Using a novel integrated MEM!YCMOS technology, a six degree-of-freedom accelerometer/gyroscope system has been designed by researchers at U.C. Berkeley and fabricated on the same silicon chip as the CMOS control circuits to produce an integrated micro-navigational unit.

  1. System on a Chip Real-Time Emulation (SOCRE)

    Science.gov (United States)

    2006-09-01

    Xilinx System Generator library components. The edge detection emulation system takes advantage of a video test bench environment developed for the... System Generator , and synthesized to target libraries using Insecta. The resulting design contained fully compiled and synthesized subsystems for key

  2. CMOS active pixel sensor type imaging system on a chip

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Nixon, Robert (Inventor)

    2011-01-01

    A single chip camera which includes an .[.intergrated.]. .Iadd.integrated .Iaddend.image acquisition portion and control portion and which has double sampling/noise reduction capabilities thereon. Part of the .[.intergrated.]. .Iadd.integrated .Iaddend.structure reduces the noise that is picked up during imaging.

  3. Wearable Android Android wear and Google Fit app development

    CERN Document Server

    Mishra, Sanjay M

    2015-01-01

    Software Development/Mobile/Android/Wearable/Fitness Build ""Wearable"" Applications on the Android Wear and Google Fit Platforms This book covers wearable computing and wearable application development particularly for Android Wear (smartwatches) and Google Fit (fitness sensors). It provides relevant history, background and core concepts of wearable computing and ubiquitous computing, as a foundation for designing/developing applications for the Android Wear and Google Fit platforms. This book is intended for Android wearable enthusiasts, technologists and software developers. Gain ins

  4. Woven structured triboelectric nanogenerator for wearable devices.

    Science.gov (United States)

    Zhou, Tao; Zhang, Chi; Han, Chang Bao; Fan, Feng Ru; Tang, Wei; Wang, Zhong Lin

    2014-08-27

    To date, quite a few wearable electronics have entered the market, which are changing the life pattern of consumers. However, the limited lifetime and energy storage capacity have made rechargeable batteries the bottleneck in wearable technology, especially with the increase of number of wearable devices and their large distribution. To solve this problem, we demonstrate a woven-structured triboelectric nanogenerator (W-TENG) using commodity nylon fabric, polyester fabric, and conductive silver fiber fabric. With the advantage of being flexible, washable, breathable, wearable, and able to be triggered by a freestanding triboelectric layer, this W-TENG can move freely without any constraint and is suitable for wearable electronics. To demonstrate the potential applications of the W-TENG, the W-TENG is integrated into shoes, coats, and trousers to harvest different kinds of mechanical energy from human motion. This work presents a new approach in applying triboelectric nanogenerator to wearable devices.

  5. Developing Accessibility Design Guidelines for Wearables: Accessibility Standards for Multimodal Wearable Devices

    NARCIS (Netherlands)

    Wentzel, Jobke; Velleman, Eric M.; Geest, van der Thea; Antona, Margherita; Stephanidis, Constantine

    2016-01-01

    Smart wearable devices are integrated our everyday lives. Such wearable technology is worn on or near the body, while leaving both hands free. This enables users to receive and send information in a non-obtrusive way. Because of the ability to continuously assist and support activities, wearables co

  6. Wireless Sensor Network for Wearable Physiological Monitoring

    OpenAIRE

    P. S. Pandian; K. P. Safeer; Pragati Gupta; D. T. Shakunthala; B. S. Sundersheshu; V. C. Padaki

    2008-01-01

    Wearable physiological monitoring system consists of an array of sensors embedded into the fabric of the wearer to continuously monitor the physiological parameters and transmit wireless to a remote monitoring station. At the remote monitoring station the data is correlated to study the overall health status of the wearer. In the conventional wearable physiological monitoring system, the sensors are integrated at specific locations on the vest and are interconnected to the wearable data acqui...

  7. Wearable electrochemical sensors for monitoring performance athletes

    Science.gov (United States)

    Fraser, Kevin J.; Curto, Vincenzo F.; Coyle, Shirley; Schazmann, Benjamin; Byrne, Robert; Benito-Lopez, Fernando; Owens, Róisín M.; Malliaras, George G.; Diamond, Dermot

    2011-10-01

    Nowadays, wearable sensors such as heart rate monitors and pedometers are in common use. The use of wearable systems such as these for personalized exercise regimes for health and rehabilitation is particularly interesting. In particular, the true potential of wearable chemical sensors, which for the real-time ambulatory monitoring of bodily fluids such as tears, sweat, urine and blood has not been realized. Here we present a brief introduction into the fields of ionogels and organic electrochemical transistors, and in particular, the concept of an OECT transistor incorporated into a sticking-plaster, along with a printable "ionogel" to provide a wearable biosensor platform.

  8. Wearable device implications in the healthcare industry.

    Science.gov (United States)

    Erdmier, Casey; Hatcher, Jason; Lee, Michael

    2016-01-01

    This manuscript analyses the impact of wearable device technology in the healthcare industry. The authors provide an exploration of the different types of wearable technology that are becoming popular or are emerging into the consumer market and the personal health information and other user data these devices collect. The applications of wearable technology to healthcare and wellness are discussed, along with the impact of these devices on the industry. Finally, an analysis is provided, describing the current regulations in the US and UK that govern wearable devices and the impact of these device regulations on users and healthcare professionals.

  9. Wearable Computing in E-education

    Directory of Open Access Journals (Sweden)

    Aleksandra Labus

    2015-03-01

    Full Text Available Emerging technologies such as mobile computing, sensors and sensor networks, and augmented reality have led to innovations in the field of wearable computing. Devices such as smart watches and smart glasses allow users to interact with devices worn under, with, or on top of clothing. This paper analyzes the possibilities of application of wearable computing in e-education. The focus is on integration of wearables into e-learning systems, in order to support ubiquitous learning, interaction and collaborative work. We present a model for integration of wearable technology in an e-education system and discuss technical, pedagogical and social aspects.

  10. Wearables Find Easy Fit With Police, Troops

    National Research Council Canada - National Science Library

    Sandra Jontz

    2016-01-01

      With wearables tracking heart rate, measuring respiration and perspiration, approximating blood pressure, pinpointing the wearer's location via GPS and even assessing ultraviolet levels to determine...

  11. The social comfort of wearable technology and gestural interaction.

    Science.gov (United States)

    Dunne, Lucy E; Profita, Halley; Zeagler, Clint; Clawson, James; Gilliland, Scott; Do, Ellen Yi-Luen; Budd, Jim

    2014-01-01

    The "wearability" of wearable technology addresses the factors that affect the degree of comfort the wearer experiences while wearing a device, including physical, psychological, and social aspects. While the physical and psychological aspects of wearing technology have been investigated since early in the development of the field of wearable computing, the social aspects of wearability have been less fully-explored. As wearable technology becomes increasingly common on the commercial market, social wearability is becoming an ever-more-important variable contributing to the success or failure of new products. Here we present an analysis of social aspects of wearability within the context of the greater understanding of wearability in wearable technology, and focus on selected theoretical frameworks for understanding how wearable products are perceived and evaluated in a social context. Qualitative results from a study of social acceptability of on-body interactions are presented as a case study of social wearability.

  12. Flexible heartbeat sensor for wearable device.

    Science.gov (United States)

    Kwak, Yeon Hwa; Kim, Wonhyo; Park, Kwang Bum; Kim, Kunnyun; Seo, Sungkyu

    2017-03-08

    We demonstrate a flexible strain-gauge sensor and its use in a wearable application for heart rate detection. This polymer-based strain-gauge sensor was fabricated using a double-sided fabrication method with polymer and metal, i.e., polyimide and nickel-chrome. The fabrication process for this strain-gauge sensor is compatible with the conventional flexible printed circuit board (FPCB) processes facilitating its commercialization. The fabricated sensor showed a linear relation for an applied normal force of more than 930 kPa, with a minimum detectable force of 6.25Pa. This sensor can also linearly detect a bending radius from 5mm to 100mm. It is a thin, flexible, compact, and inexpensive (for mass production) heart rate detection sensor that is highly sensitive compared to the established optical photoplethysmography (PPG) sensors. It can detect not only the timing of heart pulsation, but also the amplitude or shape of the pulse signal. The proposed strain-gauge sensor can be applicable to various applications for smart devices requiring heartbeat detection.

  13. Renewable-emodin-based wearable supercapacitors.

    Science.gov (United States)

    Hu, Pengfei; Chen, Tinghan; Yang, Yun; Wang, Hua; Luo, Zihao; Yang, Jie; Fu, Haoran; Guo, Lin

    2017-01-26

    With the increasing dependency of human life on wearable electronics, the development of corresponding energy-storage devices is being insensitively pursued. Considering the special usage locations of wearable energy-storage devices, the safety and non-toxicity of electrode materials adopted should be of concern. In this work, a novel all-solid-state wearable supercapacitor based on the renewable-biomolecule emodin, naturally derivable from traditional Chinese herbal rhubarb or Polygonum cuspidatum, was successfully fabricated. Such supercapacitors exhibited excellent charge storage and rate capability with great flexibility and could be integrated into wearable electronics. As a proof of concept, a strap-shaped supercapacitor was fabricated, and it was capable of powering an electronic watch. Our work will promote the development of safe wearable electronics.

  14. Wearable Technology Devices Security and Privacy Vulnerability Analysis

    OpenAIRE

    Ke Wan Ching; Manmeet Mahinderjit Singh

    2016-01-01

    Wearable Technology also called wearable gadget, is acategory of technology devices with low processing capabilities that can be worn by a user with the aim to provide information and ease of access to the master devices its pairing with. Such examples are Google Glass and Smart watch. The impact of wearable technology becomes significant when people start their invention in wearable computing, where their mobile devices become one of the computation sources. However, wearable tec...

  15. Wearable EEG via lossless compression.

    Science.gov (United States)

    Dufort, Guillermo; Favaro, Federico; Lecumberry, Federico; Martin, Alvaro; Oliver, Juan P; Oreggioni, Julian; Ramirez, Ignacio; Seroussi, Gadiel; Steinfeld, Leonardo

    2016-08-01

    This work presents a wearable multi-channel EEG recording system featuring a lossless compression algorithm. The algorithm, based in a previously reported algorithm by the authors, exploits the existing temporal correlation between samples at different sampling times, and the spatial correlation between different electrodes across the scalp. The low-power platform is able to compress, by a factor between 2.3 and 3.6, up to 300sps from 64 channels with a power consumption of 176μW/ch. The performance of the algorithm compares favorably with the best compression rates reported up to date in the literature.

  16. Augmented reality som wearable technology

    DEFF Research Database (Denmark)

    Rahn, Annette

    2016-01-01

    “How Augmented reality can facilitate learning in visualizing human anatomy “ At this station I demonstrate how Augmented reality can be used to visualize the human lungs in situ and as a wearable technology which establish connection between body, image and technology in education. I will show...... the potential of Augmented reality increasing students level of understanding, interaction and engagement with the object. I will demonstrate the technology and show you the human lungs in your body and the future perspectives of the technology. Organization: developed in collaboration with Mie Buhl, Professor...

  17. UI Design for Wearable Devices

    OpenAIRE

    Vítor Manuel Mota Cardoso da Silva

    2016-01-01

    Smartwatches já existem há algum tempo (ranger de 2015), mas 2015 é o ano que estes wearables vão finalmente obter o seu "boom" em termos de popularidade e crescimento. Grandes nomes da tecnologia como a Apple, Google e Samsung estão a apostar na sua própria linha de produtos como o Apple Watch, Android Wear e Tizen respetivamente (Apple Inc 2015a; 2015b Google Inc; SAMSUNG 2015). Todos estes dispositivos são dotados de ecrãs táteis muito pequenos, um número limitado de botões de hardware, di...

  18. Stability of Enzymatic Biosensors for Wearable Applications.

    Science.gov (United States)

    Sonawane, Apurva; Manickam, Pandiaraj; Bhansali, Shekhar

    2017-05-19

    Technological evolution in wearable sensors is accounting for major growth and transformation in multitude of industries ranging from healthcare to computing & informatics to communication and biomedical sciences. The major driver for this transformation is the new-found ability to continuously monitor and analyze the patients' physiology in patients' natural setting. Numerous wearable sensors are already on the market and are summarized. Most of the current technologies have focused on electro-physiological, electro-mechanical or acoustic measurements. Wearable bio-chemical sensing devices are in their infancy. Traditional challenges in biochemical sensing such as reliability, repeatability, stability, and drift are amplified in wearable sensing systems due to variabilities in operating environment, sample/sensor handling and motion artifacts. Enzymatic sensing technologies, due to reduced fluidic challenges continue to be forerunners for translation into wearable sensors. This paper reviews the recent developments in wearable enzymatic sensors. The wearable sensors have been classified in three major groups based on sensor embodiment and placement relative to the human body: (i) On-body, (ii) Clothing/textile-based biosensors and (iii) Biosensor accessories. The sensors, which come in the forms of stickers, tattoos are categorized as on-body biosensors. The fabric-based biosensor comes in different models such as smart-shirts, socks, gloves and smart undergarments with printed sensors for continuous monitoring.

  19. Design guidelines for wearable pointing devices

    Directory of Open Access Journals (Sweden)

    Joanne E. Zucco

    2016-07-01

    Full Text Available This paper presents design guidelines and recommendations for developing cursor manipulation interaction devices to be employed in a wearable context. The work presented in this paper is the culmination three usability studies designed to understand commercially available pointing (cursor manipulation devices suitable for use in a wearable context. The set of guidelines and recommendations presented are grounded on experimental and qualitative evidence derived from three usability studies and are intended to be used in order to inform the design of future wearable input devices. In addition to guiding the design process, the guidelines and recommendations may also be used to inform users of wearable computing devices by guiding towards the selection of a suitable wearable input device. The synthesis of results derived from a series of usability studies provide insights pertaining to the choice and usability of the devices in a wearable context. That is, the guidelines form a checklist that may be utilized as a point of comparison when choosing between the different input devices available for wearable interaction.

  20. Wireless Sensor Network for Wearable Physiological Monitoring

    Directory of Open Access Journals (Sweden)

    P. S. Pandian

    2008-05-01

    Full Text Available Wearable physiological monitoring system consists of an array of sensors embedded into the fabric of the wearer to continuously monitor the physiological parameters and transmit wireless to a remote monitoring station. At the remote monitoring station the data is correlated to study the overall health status of the wearer. In the conventional wearable physiological monitoring system, the sensors are integrated at specific locations on the vest and are interconnected to the wearable data acquisition hardware by wires woven into the fabric. The drawbacks associated with these systems are the cables woven in the fabric pickup noise such as power line interference and signals from nearby radiating sources and thereby corrupting the physiological signals. Also repositioning the sensors in the fabric is difficult once integrated. The problems can be overcome by the use of physiological sensors with miniaturized electronics to condition, process, digitize and wireless transmission integrated into the single module. These sensors are strategically placed at various locations on the vest. Number of sensors integrated into the fabric form a network (Personal Area Network and interacts with the human system to acquire and transmit the physiological data to a wearable data acquisition system. The wearable data acquisition hardware collects the data from various sensors and transmits the processed data to the remote monitoring station. The paper discusses wireless sensor network and its application to wearable physiological monitoring and its applications. Also the problems associated with conventional wearable physiological monitoring are discussed.

  1. Wearable feedback systems for rehabilitation

    Directory of Open Access Journals (Sweden)

    Marci Carl

    2005-06-01

    Full Text Available Abstract In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communications software architecture to facilitate the development of distributed real-time multi-modal and context-aware applications. LiveNet is able to continuously monitor a wide range of physiological signals together with the user's activity and context, to develop a personalized, data-rich health profile of a user over time. We demonstrate the power and functionality of this platform by describing a number of health monitoring applications using the LiveNet system in a variety of clinical studies that are underway. Initial evaluations of these pilot experiments demonstrate the potential of using the LiveNet system for real-world applications in rehabilitation medicine.

  2. Wearable feedback systems for rehabilitation.

    Science.gov (United States)

    Sung, Michael; Marci, Carl; Pentland, Alex

    2005-06-29

    In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communications software architecture to facilitate the development of distributed real-time multi-modal and context-aware applications. LiveNet is able to continuously monitor a wide range of physiological signals together with the user's activity and context, to develop a personalized, data-rich health profile of a user over time. We demonstrate the power and functionality of this platform by describing a number of health monitoring applications using the LiveNet system in a variety of clinical studies that are underway. Initial evaluations of these pilot experiments demonstrate the potential of using the LiveNet system for real-world applications in rehabilitation medicine.

  3. Detecting gunshots using wearable accelerometers.

    Science.gov (United States)

    Loeffler, Charles E

    2014-01-01

    Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges.

  4. Detecting gunshots using wearable accelerometers.

    Directory of Open Access Journals (Sweden)

    Charles E Loeffler

    Full Text Available Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm discharges.

  5. Wearable Technology Devices Security and Privacy Vulnerability Analysis

    Directory of Open Access Journals (Sweden)

    Ke Wan Ching

    2016-05-01

    Full Text Available Wearable Technology also called wearable gadget, is acategory of technology devices with low processing capabilities that can be worn by a user with the aim to provide information and ease of access to the master devices its pairing with. Such examples are Google Glass and Smart watch. The impact of wearable technology becomes significant when people start their invention in wearable computing, where their mobile devices become one of the computation sources. However, wearable technology is not mature yet in term of device security and privacy acceptance of the public. There exists some security weakness that prompts such wearable devices vulnerable to attack. One of the critical attack on wearable technology is authentication issue. The low processing due to less computing power of wearable device causethe developer's inability to equip some complicated security mechanisms and algorithm on the device.In this study, an overview of security and privacy vulnerabilities on wearable devices is presented.

  6. Wearable sensors network for health monitoring using e-Health platform

    OpenAIRE

    I. Orha; S. Oniga

    2015-01-01

    In this paper we have proposed to present a wearable system for automatic recording of the main physiological parameters of the human body: body temperature, galvanic skin response, respiration rate, blood pressure, pulse, blood oxygen content, blood glucose content, electrocardiogram (ECG), electromyography(EMG), and patient position. To realize this system, we have developed a program that can read and automatically save in a file, the data from specialized sensors. ...

  7. Wearable Device for Objective Sleep Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a critical requirement for a wearable device that can provide objective measures of sleep and activity for its crew during long duration spaceflight. In the...

  8. Wearable PPG Sensor Matrix for Cardiovascular Assessment

    OpenAIRE

    Mečņika, V; Kviesis-Kipge, E; Krieviņš, I; Marcikevics, Z; Schwarz, A.

    2014-01-01

    Wearable biomonitoring systems and smart textiles for healthcare are gaining more importance and significance in the R&D sphere due to their potentials in healthcare and sports. Such biomonitoring systems offer a number of advantages in comparison to the conventional equipment proving mobility of the wearer during a long-term monitoring of vital parameters. There are different options to set up the physiological monitoring using wireless and wearable technologies. One of ...

  9. Wearable Sensor System for Human Dynamics Analysis

    OpenAIRE

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko; Zheng, Rencheng

    2010-01-01

    A new wearable sensor system was developed for measuring tri-directional ground reaction force (GRF) and segment orientations. A stationary force plate can not measure more than one stride; moreover, in studies of stair ascent and descent measurements, a complex system consisting of many stationary force plates and a data fusion method must be constructed (Stacoff et al., 2005; Della and Bonato, 2007). The wearable sensor system proposed in this chapter can be applied to successive walking tr...

  10. Towards a Wearable Inertial Sensor Network

    OpenAIRE

    Van Laerhoven, Kristof; Gellersen, Hans; Kern, Nicky; Schiele, Bernt

    2003-01-01

    Abstract. Wearable inertial sensors have become an inexpensive option to measure the movements and positions of a person. Other techniques that use environmental sensors such as ultrasound trackers or vision-based methods need full line of sight or a local setup, and it is complicated to access this data from a wearable computer’s perspective. However, a body-centric approach where sensor data is acquired and processed locally, has a need for appropriate algorithms that have to operate under ...

  11. Wearable probes for service design

    DEFF Research Database (Denmark)

    Mullane, Aaron; Laaksolahti, Jarmo Matti; Svanæs, Dag

    2014-01-01

    by service employees in reflecting on the delivery of a service. In this paper, we present the ‘wearable probe’, a probe concept that captures sensor data without distracting service employees. Data captured by the probe can be used by the service employees to reflect and co-reflect on the service journey......Probes are used as a design method in user-centred design to allow end-users to inform design by collecting data from their lives. Probes are potentially useful in service innovation, but current probing methods require users to interrupt their activity and are consequently not ideal for use......, helping to identify opportunities for service evolution and innovation....

  12. Stretchable antenna for wearable electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-04-13

    Various examples are provided for stretchable antennas that can be used for applications such as wearable electronics. In one example, a stretchable antenna includes a flexible support structure including a lateral spring section having a proximal end and at a distal end; a metallic antenna disposed on at least a portion of the lateral spring section, the metallic antenna extending along the lateral spring section from the proximal end; and a metallic feed coupled to the metallic antenna at the proximal end of the lateral spring section. In another example, a method includes patterning a polymer layer disposed on a substrate to define a lateral spring section; disposing a metal layer on at least a portion of the lateral spring section, the metal layer forming an antenna extending along the portion of the lateral spring section; and releasing the polymer layer and the metal layer from the substrate.

  13. Wearables for all: development of guidelines to stimulate accessible wearable technology design

    NARCIS (Netherlands)

    Wentzel, Jobke; Velleman, Eric M.; Geest, van der Thea

    2016-01-01

    In this paper, we present the rationale and approach for establishing guidelines for the development of accessible wearables. Wearable technology is increasingly integrated in our everyday lives. Therefore, ensuring accessibility is pivotal to prevent a digital divide between persons who have and pe

  14. Wireless wearable network and wireless body-centric network for future wearable computer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The wireless wearable network and wireless body-centric network can assistant to the user anywhere at anytime communicating with wireless components seamlessly. In this paper, the wireless wearable network and wireless body-centric network have been discussed, and the frequency band and human body effect has been estimated. The bluetooth and UWB technology can be used to construct the narrow band and the broad band wireless wearable network and wireless body-centric network separately. Further, the narrow band wireless wearable network and wireless body-centric network based on bluetooth technology has been constructed by integrated planar inverted-F antenna and the communication channel character has been studied by measurement. The results can provide the possibility of producing a prototype radio system that can be integrated with the wearable computers by suitable wireless technologies developed and applied to facilitate a reliable and continuous connectivity between the system units.

  15. Design of a finger base-type pulse oximeter

    Science.gov (United States)

    Lin, Bor-Shyh; Huang, Cheng-Yang; Chen, Chien-Yue; Lin, Jiun-Hung

    2016-01-01

    A pulse oximeter is a common medical instrument used for noninvasively monitoring arterial oxygen saturation (SpO2). Currently, the fingertip-type pulse oximeter is the prevalent type of pulse oximeter used. However, it is inconvenient for long-term monitoring, such as that under motion. In this study, a wearable and wireless finger base-type pulse oximeter was designed and implemented using the tissue optical simulation technique and the Monte Carlo method. The results revealed that a design involving placing the light source at 135°-165° and placing the detector at 75°-90° or 90°-105° yields the optimal conditions for measuring SpO2. Finally, the wearable and wireless finger base-type pulse oximeter was implemented and compared with the commercial fingertip-type pulse oximeter. The experimental results showed that the proposed optimal finger base-type pulse oximeter design can facilitate precise SpO2 measurement.

  16. [The research and expectation on wearable health monitoring system].

    Science.gov (United States)

    Chang, Feiba; Yin, Jun; Zhang, Hehua; Yan, Lexian; Li, Shuying; Zhou, Deqiang

    2015-01-01

    Wearable health monitoring systems that use wearable biosensors capturing human motion and physiological parameters, to achieve the wearer's movement and health management needs. Wearable health monitoring system is a noninvasive continuous detection of human physiological information, data wireless transmission and real-time processing capabilities of integrated system, can satisfy physiological condition monitoring under the condition of low physiological and psychological load. This paper first describes the wearable health monitoring system structure and the relevant technology applied to wearable health monitoring system, and focuses on the current research work what we have done associated with wearable monitoring that wearable respiration and ECG acquisition and construction of electric multi-parameter body area network. Finally, the wearable monitoring system for the future development direction is put forward a simple expectation.

  17. Using Biometrics in Evaluating Ritual Gestures in Wearable Device

    Institute of Scientific and Technical Information of China (English)

    Li Wei

    2015-01-01

    The article emphasized on the versatility of designing interactions with considerations of wearable technology under the principle of slow technology. It also proposed a new way of evaluating the emotional effect of wearable devices by using the biometric approach.

  18. Quantitative wearable sensors for objective assessment of Parkinson's disease

    NARCIS (Netherlands)

    Maetzler, W.; Domingos, J.; Srulijes, K.; Ferreira, J.J.; Bloem, B.R.

    2013-01-01

    There is a rapidly growing interest in the quantitative assessment of Parkinson's disease (PD)-associated signs and disability using wearable technology. Both persons with PD and their clinicians see advantages in such developments. Specifically, quantitative assessments using wearable technology

  19. Wearable Sensors May Spot Illness Before Symptoms Start

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_163021.html Wearable Sensors May Spot Illness Before Symptoms Start New technology ... 12, 2017 THURSDAY, Jan. 12, 2017 (HealthDay News) -- Wearable sensors to track things such as heart rate, activity ...

  20. Flexible, wearable, and functional graphene-textile composites

    Science.gov (United States)

    Liu, Ying; Zhang, Kun-Ning; Zhang, Ying; Tao, Lu-Qi; Li, Yu-Xing; Wang, Dan-Yang; Yang, Yi; Ren, Tian-Ling

    2017-06-01

    In this paper, a flexible, wearable, and functional graphene-textile composite is demonstrated. Laser scribing technology is applied to fabricate a graphene film. The thin layer of polydimethylsiloxane is covered on the surface of the graphene-textile film evenly, which would improve the abrasive resistance of the film, enhance the ability to adapt to environmental changes, and extend the service life, while maintaining the device's excellent flexibility and comfort. The graphene-textile composite can achieve constant temperature heating by controlling the input voltage, detect the human movement, and perceive the human pulse signal. The composite presents great commercial prospects and a large value in the medical, daily wear, and other areas that are closely related to human lives.

  1. WEARABLE ELECTRONICS IN THE NEXT YEARS

    Directory of Open Access Journals (Sweden)

    PRINIOTAKIS George

    2015-05-01

    Full Text Available The term ‘Wearable Technologies’, ‘Wearable Electronics’, or ‘Smart Garments’, is associated to those clothing and soft or hard accessories which integrate electronic components, or which are made of smart textiles. Smart textiles research represents a new model for generating creative and novel solutions for integrating electronics into unusual environments and will result in new discoveries that push the boundaries of science forward. Last few years there are several hundreds or maybe thousands of research teams that works and develop such materials and products. But the key driver of the success of the wearable electronics is the acceptance from the end user. It is estimates that only for the next three years the sales in the wearable will be almost multiply by ten times. The flexible wearable computer industry's patent applications arrived at 429 in the second quarter of 2014, up 27.7% year on year, and witnessed a record high in the report's tracking period starting from the first quarter of 2012. The market has already in the shelf commercial products as wristbands (Fitness/well-being/sports devices, smart jewels, smart watches, mobile health devices, tech clothing, and augmented reality glasses. The recently developed enabling technologies eliminates the barriers and help the scientists and developers to launch new types of "wearable". The life style of a large share of population, the low cost of 3D printing for rapid prototyping locally, the large available platforms, the lower cost of sensors and components give a an impetus for large scale of products. In the same time the direct ordering channels to manufacturers of components facilitates the small producers and the scientists for prototype development. In this article we identify key challenges for the success of the wearable and we provide an outlook over the field and a prediction for the near future.

  2. The acceptance of wearable devices for personal healthcare in China

    OpenAIRE

    Weng, M

    2016-01-01

    Context: In recent years, health and fitness have drawn greater attention to consumers in China. The demand of wearable devices has risen and the number of potential customers is large. This study would like to explore if the wearable devices match customers’ desire and expectation, and what influence users’ behavioral intention to use wearable devices. Aim: This thesis aims to examine the acceptance of wearable devices, in particular, smart bands and dedicated healthcare applications, in...

  3. Fabric-based integrated energy devices for wearable activity monitors.

    Science.gov (United States)

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics.

  4. Towards wearability in fingertip haptics: a 3-DoF wearable device for cutaneous force feedback.

    Science.gov (United States)

    Prattichizzo, Domenico; Chinello, Francesco; Pacchierotti, Claudio; Malvezzi, Monica

    2013-01-01

    Wearability will significantly increase the use of haptics in everyday life, as has already happened for audio and video technologies. The literature on wearable haptics is mainly focused on vibrotactile stimulation, and only recently, wearable devices conveying richer stimuli, like force vectors, have been proposed. This paper introduces design guidelines for wearable haptics and presents a novel 3-DoF wearable haptic interface able to apply force vectors directly to the fingertip. It consists of two platforms: a static one, placed on the back of the finger, and a mobile one, responsible for applying forces at the finger pad. The structure of the device resembles that of parallel robots, where the fingertip is placed in between the static and the moving platforms. This work presents the design of the wearable display, along with the quasi-static modeling of the relationship between the applied forces and the platform's orientation and displacement. The device can exert up to 1.5 N, with a maximum platform inclination of 30 degree. To validate the device and verify its effectiveness, a curvature discrimination experiment was carried out: employing the wearable device together with a popular haptic interface improved the performance with respect of employing the haptic interface alone.

  5. Wearable Sensor Networks for Motion Capture

    Directory of Open Access Journals (Sweden)

    Dennis Arsenault

    2015-08-01

    Full Text Available This work presents the development of a full body sensor-based motion tracking system that functions through wearable inertial sensors. The system is comprised of a total of ten wearable sensors and maps the player's motions to an on-screen character in real-time. A hierarchical skeletal model was implemented that allows players to navigate and interact with the virtual world without the need of a hand-held controller. To demonstrate the capabilities of the system, a simple virtual reality game was created. As a wearable system, the ability for the users to engage in activities while not being tied to a camera system, or being forced indoors presents a significant opportunity for mobile entertainment, augmented reality and interactive systems that use the body as a significant form of input. This paper outlines the key developments necessary to implement such a system.

  6. Military display market segment: wearable and portable

    Science.gov (United States)

    Desjardins, Daniel D.; Hopper, Darrel G.

    2003-09-01

    The military display market (MDM) is analyzed in terms of one of its segments, wearable and portable displays. Wearable and portable displays are those embedded in gear worn or carried by warfighters. Categories include hand-mobile (direct-view and monocular/binocular), palm-held, head/helmet-mounted, body-strapped, knee-attached, lap-born, neck-lanyard, and pocket/backpack-stowed. Some 62 fielded and developmental display sizes are identified in this wearable/portable MDM segment. Parameters requiring special consideration, such as weight, luminance ranges, light emission, viewing angles, and chromaticity coordinates, are summarized and compared. Ruggedized commercial versus commercial off-the-shelf designs are contrasted; and a number of custom displays are also found in this MDM category. Display sizes having aggregate quantities of 5,000 units or greater or having 2 or more program applications are identified. Wearable and portable displays are also analyzed by technology (LCD, LED, CRT, OLED and plasma). The technical specifications and program history of several high-profile military programs are discussed to provide a systems context for some representative displays and their function. As of August 2002 our defense-wide military display market study has documented 438,882 total display units distributed across 1,163 display sizes and 438 weapon systems. Wearable and portable displays account for 202,593 displays (46% of total DoD) yet comprise just 62 sizes (5% of total DoD) in 120 weapons systems (27% of total DoD). Some 66% of these wearable and portable applications involve low information content displays comprising just a few characters in one color; however, there is an accelerating trend towards higher information content units capable of showing changeable graphics, color and video.

  7. Towards Wearable Gaze Supported Augmented Cognition

    DEFF Research Database (Denmark)

    Toshiaki Kurauchi, Andrew; Hitoshi Morimoto, Carlos; Mardanbeigi, Diako;

    to reduce the amount of information and provide an appropriate mechanism for low and divided attention interaction. We claim that most current gaze interaction paradigms are not appropriate for wearable computing because they are not designed for divided attention. We have used principles suggested...... by the wearable computing community to develop a gaze supported augmented cognition application with three interaction modes. The application provides information of the person being looked at. The continuous mode updates information every time the user looks at a different face. The key activated discrete mode...

  8. Wearable Sensor Networks for Motion Capture

    OpenAIRE

    Dennis Arsenault; Anthony Whitehead

    2015-01-01

    This work presents the development of a full body sensor-based motion tracking system that functions through wearable inertial sensors. The system is comprised of a total of ten wearable sensors and maps the player's motions to an on-screen character in real-time. A hierarchical skeletal model was implemented that allows players to navigate and interact with the virtual world without the need of a hand-held controller. To demonstrate the capabilities of the system, a simple virtual reality ga...

  9. The Application of Wearable Technology in Surgery: Ensuring the Positive Impact of the Wearable Revolution on Surgical Patients

    Directory of Open Access Journals (Sweden)

    Jesse Alan Slade Shantz

    2014-09-01

    Full Text Available Wearable technology has become an important trend in consumer electronics in the past year. The miniaturization and mass production of myriad sensors has made possible the integration of sensors and output devices in wearable platforms. Despite the consumer focus of the wearable revolution some surgical applications are being developed. These fall into augmentative, assistive and assessment functions and primarily layer onto current surgical workflows. Some challenges to the adoption of wearable technologies are discussed and a conceptual framework for understanding the potential of wearable technology to revolutionize surgical practice are presented.

  10. The application of wearable technology in surgery: ensuring the positive impact of the wearable revolution on surgical patients.

    Science.gov (United States)

    Slade Shantz, Jesse Alan; Veillette, Christian J H

    2014-01-01

    Wearable technology has become an important trend in consumer electronics in the past year. The miniaturization and mass production of myriad sensors have made possible the integration of sensors and output devices in wearable platforms. Despite the consumer focus of the wearable revolution some surgical applications are being developed. These fall into augmentative, assistive, and assessment functions and primarily layer onto current surgical workflows. Some challenges to the adoption of wearable technologies are discussed and a conceptual framework for understanding the potential of wearable technology to revolutionize surgical practice are presented.

  11. Digital architecture, wearable computers and providing affinity

    DEFF Research Database (Denmark)

    Guglielmi, Michel; Johannesen, Hanne Louise

    2005-01-01

    will, through research, a workshop and participation in a cumulus competition, focus on the exploration of boundaries between digital architecture, performative space and wearable computers. Our design method in general focuses on the interplay between the performing body and the environment – between...

  12. Wearable Sensors for Chemical & Biological Detection

    Energy Technology Data Exchange (ETDEWEB)

    Ozanich, Richard M.

    2017-08-31

    One of PNNL’s strengths is the ability to conduct comprehensive technology foraging and objective assessments of various technology areas. The following examples highlight leading research by others in the area of chemical and biological (chem/bio) detection that could be further developed into a robust, highly integrated wearables to aid preparedness, response and recovery.

  13. A Wearable All-Solid Photovoltaic Textile.

    Science.gov (United States)

    Zhang, Nannan; Chen, Jun; Huang, Yi; Guo, Wanwan; Yang, Jin; Du, Jun; Fan, Xing; Tao, Changyuan

    2016-01-13

    A solution is developed to power portable electronics in a wearable manner by fabricating an all-solid photovoltaic textile. In a similar way to plants absorbing solar energy for photosynthesis, humans can wear the as-fabricated photovoltaic textile to harness solar energy for powering small electronic devices.

  14. A wearable “electronic patch” for wireless continuous monitoring of chronically diseased patients

    DEFF Research Database (Denmark)

    Haahr, Rasmus Grønbek; Duun, Sune; Thomsen, Erik Vilain

    2008-01-01

    We present a wearable health system (WHS) for non-invasive and wireless monitoring of physiological signals. The system is made as an electronic patch where sensors, low power electronics, and radio communication are integrated in an adhesive material of hydrocolloid polymer making it a sticking...... patch. The patch is made with a reusable part and a disposable part which contains the adhesive material and the battery. This part is changed once every week. The patch has a size of 88 mm by 60 mm and a thickness of 5 mm. It is made for attachment on truncus or the greater muscle groups. The patch...... is demonstrated in two applications: Monitoring of electromyography (EMG) and arterial oxygen saturation by pulse oximetry (SpO2). The pulse oximetry sensor is made of a concentric backside Silicon photodiode with a hole in the middle for the two light sources. This makes it suitable for reflectance pulse...

  15. [Classification and Correlative Technology Development of Wearable Devices].

    Science.gov (United States)

    Jiang, Xiaomei; Zhang, Junran; Zhao, Bin; Chen Fuqin

    2016-02-01

    Wearable devices bring us an innovative human-computer interaction which plays an irreplaceable role in enhancing the users' ability in environmental awareness, acquirements of their own state and "ubiquitous" computing power. Since 2013, wearable devices have quickly appeared around us. In this article we classify most of the wearable devices which have been appeared in the markets or reported in the literature according to their functions and the positions where they are worn. Furthermore, we review the technologies related to wearable devices, such as sensing technology, wireless communication, power manager, display technology and big data. At last, we analyze the challenges which the wearable devices will face in near future, and look forward to development trends of wearable devices.

  16. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, an anthropomorfized archive of a past intimacy and an all-encompassing immersive environment modulating continuously in real space-time....

  17. Wearable technology smart watches to Google Glass for libraries

    CERN Document Server

    Bruno, Tom

    2015-01-01

    Emerging devices are placing powerful computing abilities into the wardrobes of consumers through wearable technology which combines fashion and function in new and exciting ways. The most recognizable of these emerging gadgets is Google Glass. Wearable Technology: Smart Watches to Google Glass for Libraries provides a comprehensive overview of the current wearable technology landscape, the types of devices and functionality available, the benefits and limitations of this type of technology, and how you can make use of it in yo

  18. Soft, Embodied, Situated & Connected: enriching interactions with soft wearables

    DEFF Research Database (Denmark)

    Tomico, Oscar; Wilde, Danielle

    2016-01-01

    Soft wearables include clothing and textile-based accessories that incorporate smart textiles and soft electronic interfaces to enable responsive and interactive experiences. When designed well, soft wearables leverage the cultural, sociological and material qualities of textiles, fashion and dress...... approaches impact use. Finally, we reflect on how embodied and collocated interactions might extend understanding of how to frame wearables research and development to arrive at rich interactions that are soft, embodied, situated and connected....

  19. Monitoring and detecting atrial fibrillation using wearable technology.

    Science.gov (United States)

    Nemati, Shamim; Ghassemi, Mohammad M; Ambai, Vaidehi; Isakadze, Nino; Levantsevych, Oleksiy; Shah, Amit; Clifford, Gari D

    2016-08-01

    Atrial fibrillation (AFib) is diagnosed by analysis of the morphological and rhythmic properties of the electrocardiogram. It was recently shown that accurate detection of AFib is possible using beat-to-beat interval variations. This raises the question of whether AFib detection can be performed using a pulsatile waveform such as the Photoplethysmogram (PPG). The recent explosion in use of recreational and professional ambulatory wrist-based pulse monitoring devices means that an accurate pulse-based AFib screening algorithm would enable large scale screening for silent or undiagnosed AFib, a significant risk factor for multiple diseases. We propose a noise-resistant machine learning approach to detecting AFib from noisy ambulatory PPG recorded from the wrist using a modern research watch-based wearable device (the Samsung Simband). Ambulatory pulsatile and movement data were recorded from 46 subjects, 15 with AFib and 31 non symptomatic. Single channel electrocardiogram (ECG), multi-wavelength PPG and tri-axial accelerometry were recorded simultaneously at 128 Hz from the non-dominant wrist using the Simband. Recording lengths varied from 3.5 to 8.5 minutes. Pulse (beat) detection was performed on the PPG waveforms, and eleven features were extracted based on beat-to-beat variability and waveform signal quality. Using 10-fold cross validation, an accuracy of 95 % on out-of-sample data was achieved, with a sensitivity of 97%, specificity of 94%, and an area under the receiver operating curve (AUROC) of 0.99. The described approach provides a noise-resistant, accurate screening tool for AFib from PPG sensors located in an ambulatory wrist watch. To our knowledge this is the first study to demonstrate an algorithm with a high enough accuracy to be used in general population studies that does not require an ambulatory Holter electrocardiographic monitor.

  20. The Application of Wearable Technology in Surgery: Ensuring the Positive Impact of the Wearable Revolution on Surgical Patients

    OpenAIRE

    Slade Shantz, Jesse Alan; Veillette, Christian J. H.

    2014-01-01

    Wearable technology has become an important trend in consumer electronics in the past year. The miniaturization and mass production of myriad sensors have made possible the integration of sensors and output devices in wearable platforms. Despite the consumer focus of the wearable revolution some surgical applications are being developed. These fall into augmentative, assistive, and assessment functions and primarily layer onto current surgical workflows. Some challenges to the adoption of wea...

  1. The Application of Wearable Technology in Surgery: Ensuring the Positive Impact of the Wearable Revolution on Surgical Patients

    OpenAIRE

    Jesse Alan Slade Shantz; Christian Henri Veillette

    2014-01-01

    Wearable technology has become an important trend in consumer electronics in the past year. The miniaturization and mass production of myriad sensors has made possible the integration of sensors and output devices in wearable platforms. Despite the consumer focus of the wearable revolution some surgical applications are being developed. These fall into augmentative, assistive and assessment functions and primarily layer onto current surgical workflows. Some challenges to the adoption of w...

  2. Detecting vital signs with wearable wireless sensors.

    Science.gov (United States)

    Yilmaz, Tuba; Foster, Robert; Hao, Yang

    2010-01-01

    The emergence of wireless technologies and advancements in on-body sensor design can enable change in the conventional health-care system, replacing it with wearable health-care systems, centred on the individual. Wearable monitoring systems can provide continuous physiological data, as well as better information regarding the general health of individuals. Thus, such vital-sign monitoring systems will reduce health-care costs by disease prevention and enhance the quality of life with disease management. In this paper, recent progress in non-invasive monitoring technologies for chronic disease management is reviewed. In particular, devices and techniques for monitoring blood pressure, blood glucose levels, cardiac activity and respiratory activity are discussed; in addition, on-body propagation issues for multiple sensors are presented.

  3. Wearable Textile Electrodes for ECG Measurement

    Directory of Open Access Journals (Sweden)

    Lukas Vojtech

    2013-01-01

    Full Text Available The electrocardiogram (ECG is one of the most important parameters for monitoring of the physiological state of a person. Currently available systems for ECG monitoring are both stationary and wearable, but the comfort of the monitored person is not at a satisfactory level because these systems are not part of standard clothing. This article is therefore devoted to the development and measurement of wearable textile electrodes for ECG measurement device with high comfort for the user. The electrode material is made of electrically conductive textile. This creates a textile composite that guarantees high comfort for the user while ensuring good quality of ECG measurements. The composite is implemented by a carrier (a T-shirt with flame retardant and sensing electrodes embroidered with yarn based on a mixture of polyester coated with silver nanoparticles and cotton. The electrodes not only provide great comfort but are also antibacterial and antiallergic due to silver nanoparticles.

  4. Optimization-Based Wearable Tactile Rendering.

    Science.gov (United States)

    Perez, Alvaro G; Lobo, Daniel; Chinello, Francesco; Cirio, Gabriel; Malvezzi, Monica; San Martin, Jose; Prattichizzo, Domenico; Otaduy, Miguel A

    2016-10-20

    Novel wearable tactile interfaces offer the possibility to simulate tactile interactions with virtual environments directly on our skin. But, unlike kinesthetic interfaces, for which haptic rendering is a well explored problem, they pose new questions about the formulation of the rendering problem. In this work, we propose a formulation of tactile rendering as an optimization problem, which is general for a large family of tactile interfaces. Based on an accurate simulation of contact between a finger model and the virtual environment, we pose tactile rendering as the optimization of the device configuration, such that the contact surface between the device and the actual finger matches as close as possible the contact surface in the virtual environment. We describe the optimization formulation in general terms, and we also demonstrate its implementation on a thimble-like wearable device. We validate the tactile rendering formulation by analyzing its force error, and we show that it outperforms other approaches.

  5. Detecting Vital Signs with Wearable Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Yang Hao

    2010-12-01

    Full Text Available The emergence of wireless technologies and advancements in on-body sensor design can enable change in the conventional health-care system, replacing it with wearable health-care systems, centred on the individual. Wearable monitoring systems can provide continuous physiological data, as well as better information regarding the general health of individuals. Thus, such vital-sign monitoring systems will reduce health-care costs by disease prevention and enhance the quality of life with disease management. In this paper, recent progress in non-invasive monitoring technologies for chronic disease management is reviewed. In particular, devices and techniques for monitoring blood pressure, blood glucose levels, cardiac activity and respiratory activity are discussed; in addition, on-body propagation issues for multiple sensors are presented.

  6. Assessment of Wearable Sensor Technologies for Biosurveillance

    Science.gov (United States)

    2014-11-01

    intelligence (AI) and biometric data, the device captures electrodermal activity in real time to assess emotional states. Using the technique of...Biometric smartwear Hexoskin Breathing rate, volume, cadence, ECG, sleep position, heart rate, and other physiological data Wearable Wellnes...watches. Google Fit’s fitness tracking will display data such as heart rate, or detect whether its wearer has been physically active . Google’s

  7. Medical Wearable Technologies: Applications, Problems and Solutions

    OpenAIRE

    Bostanci, Erkan

    2015-01-01

    The focus of this paper is on wearable technologies which are increasingly being employed in the medical field. From smart watches to smart glasses, from electronic textile to data gloves; several gadgets are playing important roles in diagnosis and treatment of various medical conditions. The threats posed by these technologies are another matter of concern that must be seriously taken into account. Numerous threats ranging from data privacy to big data problems are facing us as adverse effe...

  8. Quantifiable fitness tracking using wearable devices.

    Science.gov (United States)

    Bajpai, Anurag; Jilla, Vivek; Tiwari, Vijay N; Venkatesan, Shankar M; Narayanan, Rangavittal

    2015-08-01

    Monitoring health and fitness is emerging as an important benefit that smartphone users could expect from their mobile devices today. Rule of thumb calorie tracking and recommendation based on selective activity monitoring is widely available today, as both on-device and server based solutions. What is surprisingly not available to the users is a simple application geared towards quantitative fitness tracking. Such an application potentially can be a direct indicator of one's cardio-vascular performance and associated long term health risks. Since wearable devices with various inbuilt sensors like accelerometer, gyroscope, SPO2 and heart rate are increasingly becoming available, it is vital that the enormous data coming from these sensors be used to perform analytics to uncover hidden health and fitness associated facts. A continuous estimation of fitness level employing these wearable devices can potentially help users in setting personalized short and long-term exercise goals leading to positive impact on one's overall health. The present work describes a step in this direction. This work involves an unobtrusive method to track an individual's physical activity seamlessly, estimate calorie consumption during a day by mapping the activity to the calories spent and assess fitness level using heart rate data from wearable sensors. We employ a heart rate based parameter called Endurance to quantitatively estimate cardio-respiratory fitness of a person. This opens up avenues for personalization and adaptiveness by dynamically using individual's personal fitness data towards building robust modeling based on analytical principles.

  9. A review of wearable technology in medicine.

    Science.gov (United States)

    Iqbal, Mohammed H; Aydin, Abdullatif; Brunckhorst, Oliver; Dasgupta, Prokar; Ahmed, Kamran

    2016-10-01

    With rapid advances in technology, wearable devices have evolved and been adopted for various uses, ranging from simple devices used in aiding fitness to more complex devices used in assisting surgery. Wearable technology is broadly divided into head-mounted displays and body sensors. A broad search of the current literature revealed a total of 13 different body sensors and 11 head-mounted display devices. The latter have been reported for use in surgery (n = 7), imaging (n = 3), simulation and education (n = 2) and as navigation tools (n = 1). Body sensors have been used as vital signs monitors (n = 9) and for posture-related devices for posture and fitness (n = 4). Body sensors were found to have excellent functionality in aiding patient posture and rehabilitation while head-mounted displays can provide information to surgeons to while maintaining sterility during operative procedures. There is a potential role for head-mounted wearable technology and body sensors in medicine and patient care. However, there is little scientific evidence available proving that the application of such technologies improves patient satisfaction or care. Further studies need to be conducted prior to a clear conclusion. © The Royal Society of Medicine.

  10. Wearable textile battery rechargeable by solar energy.

    Science.gov (United States)

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities.

  11. Advances in wearable technology for rehabilitation.

    Science.gov (United States)

    Bonato, Paolo

    2009-01-01

    Assessing the impact of rehabilitation interventions on the real life of individuals is a key element of the decision-making process required to choose a rehabilitation strategy. In the past, therapists and physicians inferred the effectiveness of a given rehabilitation approach from observations performed in a clinical setting and self-reports by patients. Recent developments in wearable technology have provided tools to complement the information gathered by rehabilitation personnel via patient's direct observation and via interviews and questionnaires. A new generation of wearable sensors and systems has emerged that allows clinicians to gather measures in the home and community settings that capture patients' activity level and exercise compliance, the effectiveness of pharmacological interventions, and the ability of patients to perform efficiently specific motor tasks. Available unobtrusive sensors allow clinical personnel to monitor patients' movement and physiological data such as heart rate, respiratory rate, and oxygen saturation. Cell phone technology and the widespread access to the Internet provide means to implement systems designed to remotely monitor patients' status and optimize interventions based on individual responses to different rehabilitation approaches. This chapter summarizes recent advances in the field of wearable technology and presents examples of application of this technology in rehabilitation.

  12. Wearable ear EEG for brain interfacing

    Science.gov (United States)

    Schroeder, Eric D.; Walker, Nicholas; Danko, Amanda S.

    2017-02-01

    Brain-computer interfaces (BCIs) measuring electrical activity via electroencephalogram (EEG) have evolved beyond clinical applications to become wireless consumer products. Typically marketed for meditation and neu- rotherapy, these devices are limited in scope and currently too obtrusive to be a ubiquitous wearable. Stemming from recent advancements made in hearing aid technology, wearables have been shrinking to the point that the necessary sensors, circuitry, and batteries can be fit into a small in-ear wearable device. In this work, an ear-EEG device is created with a novel system for artifact removal and signal interpretation. The small, compact, cost-effective, and discreet device is demonstrated against existing consumer electronics in this space for its signal quality, comfort, and usability. A custom mobile application is developed to process raw EEG from each device and display interpreted data to the user. Artifact removal and signal classification is accomplished via a combination of support matrix machines (SMMs) and soft thresholding of relevant statistical properties.

  13. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality......“Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...

  14. Wearable thermoelectric generators for body-powered devices

    NARCIS (Netherlands)

    Leonov, V.; Vullers, R.J.M.

    2009-01-01

    This paper presents a discussion on energy scavenging for wearable devices in conjunction with human body properties. Motivation, analysis of the relevant properties of the human body, and results of optimization of a thermopile and a thermoelectric generator for wearable and portable devices are

  15. Low-power wearable sensing for preventive healthcare

    NARCIS (Netherlands)

    Penders, Julien; Altini, Marco; Wijsman, Jacqueline; Vullers, Rudolf; Van Hoof, C.

    2013-01-01

    Low-power wearable sensing will soon allow the quantitative and continuous measurement of health parameters. In this paper we illustrate how wearable sensors can be used to track activity and energy expenditure, and measure stress. Soon such information may empower people in managing their own healt

  16. Wearable thermoelectric generators for body-powered devices

    NARCIS (Netherlands)

    Leonov, V.; Vullers, R.J.M.

    2009-01-01

    This paper presents a discussion on energy scavenging for wearable devices in conjunction with human body properties. Motivation, analysis of the relevant properties of the human body, and results of optimization of a thermopile and a thermoelectric generator for wearable and portable devices are pr

  17. Quantitative wearable sensors for objective assessment of Parkinson's disease

    NARCIS (Netherlands)

    Maetzler, W.; Domingos, J.; Srulijes, K.; Ferreira, J.J.; Bloem, B.R.

    2013-01-01

    There is a rapidly growing interest in the quantitative assessment of Parkinson's disease (PD)-associated signs and disability using wearable technology. Both persons with PD and their clinicians see advantages in such developments. Specifically, quantitative assessments using wearable technology ma

  18. Special Article Personal Wearable Technologies in Education: Value or Villain?

    Science.gov (United States)

    Borthwick, Arlene C.; Anderson, Cindy L.; Finsness, Elizabeth S.; Foulger, Teresa S.

    2015-01-01

    Wearable personal learning technologies can gather data from the person wearing the device or from the surrounding environment and enable that data to be transferred to another device or shared via the cloud. Wearable technologies can serve as a valuable asset in the classroom enhancing differentiation of instruction and student engagement. They…

  19. Wearable Keyboard Using Conducting Polymer Electrodes on Textiles.

    Science.gov (United States)

    Takamatsu, Seiichi; Lonjaret, Thomas; Ismailova, Esma; Masuda, Atsuji; Itoh, Toshihiro; Malliaras, George G

    2016-06-01

    A wearable keyboard is demonstrated in which conducting polymer electrodes on a knitted textile sense tactile input as changes in capacitance. The use of a knitted textile as a substrate endows stretchability and compatibility to large-area formats, paving the way for a new type of wearable human-machine interface.

  20. Solar fashion: An embodied approach to wearable technology

    NARCIS (Netherlands)

    Smelik, A.M.; Toussaint, L.; Dongen, P. van

    2016-01-01

    Using Pauline van Dongen’s ‘Wearable Solar’ project as a case study, the authors argue that materiality and embodiment should be taken into account both in the design of and the theoretical reflection on wearable technology. Bringing together a fashion designer and scholars from cultural studies, th

  1. What Does Big Data Mean for Wearable Sensor Systems?

    Science.gov (United States)

    Lovell, N. H.; Yang, G. Z.; Horsch, A.; Lukowicz, P.; Murrugarra, L.; Marschollek, M.

    2014-01-01

    Summary Objectives The aim of this paper is to discuss how recent developments in the field of big data may potentially impact the future use of wearable sensor systems in healthcare. Methods The article draws on the scientific literature to support the opinions presented by the IMIA Wearable Sensors in Healthcare Working Group. Results The following is discussed: the potential for wearable sensors to generate big data; how complementary technologies, such as a smartphone, will augment the concept of a wearable sensor and alter the nature of the monitoring data created; how standards would enable sharing of data and advance scientific progress. Importantly, attention is drawn to statistical inference problems for which big datasets provide little assistance, or may hinder the identification of a useful solution. Finally, a discussion is presented on risks to privacy and possible negative consequences arising from intensive wearable sensor monitoring. Conclusions Wearable sensors systems have the potential to generate datasets which are currently beyond our capabilities to easily organize and interpret. In order to successfully utilize wearable sensor data to infer wellbeing, and enable proactive health management, standards and ontologies must be developed which allow for data to be shared between research groups and between commercial systems, promoting the integration of these data into health information systems. However, policy and regulation will be required to ensure that the detailed nature of wearable sensor data is not misused to invade privacies or prejudice against individuals. PMID:25123733

  2. A Flexible and Wearable Human Stress Monitoring Patch

    Science.gov (United States)

    Yoon, Sunghyun; Sim, Jai Kyoung; Cho, Young-Ho

    2016-03-01

    A human stress monitoring patch integrates three sensors of skin temperature, skin conductance, and pulsewave in the size of stamp (25 mm × 15 mm × 72 μm) in order to enhance wearing comfort with small skin contact area and high flexibility. The skin contact area is minimized through the invention of an integrated multi-layer structure and the associated microfabrication process; thus being reduced to 1/125 of that of the conventional single-layer multiple sensors. The patch flexibility is increased mainly by the development of flexible pulsewave sensor, made of a flexible piezoelectric membrane supported by a perforated polyimide membrane. In the human physiological range, the fabricated stress patch measures skin temperature with the sensitivity of 0.31 Ω/°C, skin conductance with the sensitivity of 0.28 μV/0.02 μS, and pulse wave with the response time of 70 msec. The skin-attachable stress patch, capable to detect multimodal bio-signals, shows potential for application to wearable emotion monitoring.

  3. Detection-gap-independent optical sensor design using divergence-beam-controlled slit lasers for wearable devices

    Science.gov (United States)

    Yoon, Young Zoon; Kim, Hyochul; Park, Yeonsang; Kim, Jineun; Lee, Min Kyung; Kim, Un Jeong; Roh, Young-Geun; Hwang, Sung Woo

    2016-09-01

    Wearable devices often employ optical sensors, such as photoplethysmography sensors, for detecting heart rates or other biochemical factors. Pulse waveforms, rather than simply detecting heartbeats, can clarify arterial conditions. However, most optical sensor designs require close skin contact to reduce power consumption while obtaining good quality signals without distortion. We have designed a detection-gap-independent optical sensor array using divergence-beam-controlled slit lasers and distributed photodiodes in a pulse-detection device wearable over the wrist's radial artery. It achieves high biosignal quality and low power consumption. The top surface of a vertical-cavity surface-emitting laser of 850 nm wavelength was covered by Au film with an open slit of width between 500 nm and 1500 nm, which generated laser emissions across a large divergence angle along an axis orthogonal to the slit direction. The sensing coverage of the slit laser diode (LD) marks a 50% improvement over nonslit LD sensor coverage. The slit LD sensor consumes 100% more input power than the nonslit LD sensor to obtain similar optical output power. The slit laser sensor showed intermediate performance between LD and light-emitting diode sensors. Thus, designing sensors with multiple-slit LD arrays can provide useful and convenient ways for incorporating optical sensors in wrist-wearable devices.

  4. From Mobile to Wearable System: A Wearable RFID System to Enhance Teaching and Learning Conditions

    Directory of Open Access Journals (Sweden)

    Souad Larabi Marie-Sainte

    2016-01-01

    Full Text Available Over the last decade, wearable technology has seen significant developments, making it possible to enhance our lives. One of the areas in which wearable technology can cause large changes is education, where it can be used to make educational experiences intrinsically motivating and more relevant to youth culture. In this paper, we focus on the use of wearable technology to improve the educational environment. The quantity of electronic assets used in the learning environment is rising, which presents a managerial problem when these devices are nonfunctioning. Therefore, we present a mobile application to solve this problem. The suggested approach consists of creating a mobile application named classroom clinic (CRC to help faculty members and students locate the closest maintenance technician via wearable radio frequency identification (RFID technology and to provide fast responses to the problems alerted to in the classroom, thereby avoiding any disturbances or delays during the lecture. Moreover, this application allows the maintenance service to efficiently manage any malfunctions of classroom electronic devices. To evaluate the CRC application, a pilot study was conducted at the College of Computer and Information Sciences, female campus of King Saud University, with 15 faculty members and students and 5 clinic members. The results showed high usability rates and generally positive attitudes towards using the app.

  5. Influence on Calculated Blood Pressure of Measurement Posture for the Development of Wearable Vital Sign Sensors

    Directory of Open Access Journals (Sweden)

    Shouhei Koyama

    2017-01-01

    Full Text Available We studied a wearable blood pressure sensor using a fiber Bragg grating (FBG sensor, which is a highly accurate strain sensor. This sensor is installed at the pulsation point of the human body to measure the pulse wave signal. A calibration curve is built that calculates the blood pressure by multivariate analysis using the pulse wave signal and a reference blood pressure measurement. However, if the measurement height of the FBG sensor is different from the reference measurement height, an error is included in the reference blood pressure. We verified the accuracy of the blood pressure calculation with respect to the measurement height difference and the posture of the subject. As the difference between the measurement height of the FBG sensor and the reference blood pressure measurement increased, the accuracy of the blood pressure calculation decreased. When the measurement height was identical and only posture was changed, good accuracy was achieved. In addition, when calibration curves were built using data measured in multiple postures, the blood pressure of each posture could be calculated from a single calibration curve. This will allow miniaturization of the necessary electronics of the sensor system, which is important for a wearable sensor.

  6. How valid are wearable physical activity trackers for measuring steps?

    Science.gov (United States)

    An, Hyun-Sung; Jones, Gregory C; Kang, Seoung-Ki; Welk, Gregory J; Lee, Jung-Min

    2017-04-01

    Wearable activity trackers have become popular for tracking individual's daily physical activity, but little information is available to substantiate the validity of these devices in step counts. Thirty-five healthy individuals completed three conditions of activity tracker measurement: walking/jogging on a treadmill, walking over-ground on an indoor track, and a 24-hour free-living condition. Participants wore 10 activity trackers at the same time for both treadmill and over-ground protocol. Of these 10 activity trackers three were randomly given for 24-hour free-living condition. Correlations of steps measured to steps observed were r = 0.84 and r = 0.67 on a treadmill and over-ground protocol, respectively. The mean MAPE (mean absolute percentage error) score for all devices and speeds on a treadmill was 8.2% against manually counted steps. The MAPE value was higher for over-ground walking (9.9%) and even higher for the 24-hour free-living period (18.48%) on step counts. Equivalence testing for step count measurement resulted in a significant level within ±5% for the Fitbit Zip, Withings Pulse, and Jawbone UP24 and within ±10% for the Basis B1 band, Garmin VivoFit, and SenseWear Armband Mini. The results show that the Fitbit Zip and Withings Pulse provided the most accurate measures of step count under all three different conditions (i.e. treadmill, over-ground, and 24-hour condition), and considerable variability in accuracy across monitors and also by speeds and conditions.

  7. Wearable wireless cerebral oximeter (Conference Presentation)

    Science.gov (United States)

    Zhang, Xin; Jiang, Tianzi

    2016-03-01

    Cerebral oximeters measure continuous cerebral oxygen saturation using near-infrared spectroscopy (NIRS) technology noninvasively. It has been involved into operating room setting to monitor oxygenation within patient's brain when surgeons are concerned that a patient's levels might drop. Recently, cerebral oxygen saturation has also been related with chronic cerebral vascular insufficiency (CCVI). Patients with CCVI would be benefited if there would be a wearable system to measure their cerebral oxygen saturation in need. However, there has yet to be a wearable wireless cerebral oximeter to measure the saturation in 24 hours. So we proposed to develop the wearable wireless cerebral oximeter. The mechanism of the system follows the NIRS technology. Emitted light at wavelengths of 740nm and 860nm are sent from the light source penetrating the skull and cerebrum, and the light detector(s) receives the light not absorbed during the light pathway through the skull and cerebrum. The amount of oxygen absorbed within the brain is the difference between the amount of light sent out and received by the probe, which can be used to calculate the percentage of oxygen saturation. In the system, it has one source and four detectors. The source, located in the middle of forehead, can emit two near infrared light, 740nm and 860nm. Two detectors are arranged in one side in 2 centimeters and 3 centimeters from the source. Their measurements are used to calculate the saturation in the cerebral cortex. The system has included the rechargeable lithium battery and Bluetooth smart wireless micro-computer unit.

  8. A hybrid piezoelectric structure for wearable nanogenerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minbaek; Wang, Sihong; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Chen, Chih-Yen [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013 (China); Cha, Seung Nam; Park, Yong Jun; Kim, Jong Min [Frontier Research Lab, Samsung Advanced Institute of Technology, Samsung Electronics, Gyeonggi-Do 446-712 (Korea, Republic of); Chou, Li-Jen [Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30013 (China)

    2012-04-03

    A hybrid-fiber nanogenerator comprising a ZnO nanowire array, PVDF polymer and two electrodes is presented. Depending on the bending or spreading action of the human arm, at an angle of {proportional_to}90 , the hybrid fiber reaches electrical outputs of {proportional_to}0.1 V and {proportional_to}10 nA cm{sup -2}. The unique structure of the hybrid fiber may inspire future research in wearable energy-harvesting technology. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Innovation in wearable and flexible antennas

    CERN Document Server

    Khaleel, Haider

    2014-01-01

    This book deals with the design, numerical simulation, state of the art fabrication processes and methods, qualitative and quantitative tests, and measurement techniques of wearable and flexible antennas of different topologies, such as: Planar Inverted F, Printed Monopoles, Micropoles and Microstrips. Novel trends, materials, and fabrication and measurement techniques used in this vital field of antenna systems are also discussed.To the best of the editor's knowledge, at the time of publication, there are no published books targeting the vital topic of flexible antennas specifically and/or se

  10. Wearable impedance monitoring system for dialysis patients.

    Science.gov (United States)

    Bonnet, S; Bourgerette, A; Gharbi, S; Rubeck, C; Arkouche, W; Massot, B; McAdams, E; Montalibet, A; Jallon, P

    2016-08-01

    This paper describes the development and the validation of a prototype wearable miniaturized impedance monitoring system for remote monitoring in home-based dialysis patients. This device is intended to assess the hydration status of dialysis patients using calf impedance measurements. The system is based on the low-power AD8302 component. The impedance calibration procedure is described together with the Cole parameter estimation and the hydric volume estimation. Results are given on a test cell to validate the design and on preliminary calf measurements showing Cole parameter variations during hemodialysis.

  11. Personal customizing exercise with a wearable measurement and control unit

    Directory of Open Access Journals (Sweden)

    Tamura Naoki

    2005-06-01

    Full Text Available Abstract Background Recently, wearable technology has been used in various health-related fields to develop advanced monitoring solutions. However, the monitoring function alone cannot meet all the requirements of customizing machine-based exercise on an individual basis by relying on biosignal-based controls. We propose a new wearable unit design equipped with measurement and control functions to support the customization process. Methods The wearable unit can measure the heart rate and electromyogram signals during exercise performance and output workload control commands to the exercise machines. The workload is continuously tracked with exercise programs set according to personally customized workload patterns and estimation results from the measured biosignals by a fuzzy control method. Exercise programs are adapted by relying on a computer workstation, which communicates with the wearable unit via wireless connections. A prototype of the wearable unit was tested together with an Internet-based cycle ergometer system to demonstrate that it is possible to customize exercise on an individual basis. Results We tested the wearable unit in nine people to assess its suitability to control cycle ergometer exercise. The results confirmed that the unit could successfully control the ergometer workload and continuously support gradual changes in physical activities. Conclusion The design of wearable units equipped with measurement and control functions is an important step towards establishing a convenient and continuously supported wellness environment.

  12. Physical Human Activity Recognition Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Ferhat Attal

    2015-12-01

    Full Text Available This paper presents a review of different classification techniques used to recognize human activities from wearable inertial sensor data. Three inertial sensor units were used in this study and were worn by healthy subjects at key points of upper/lower body limbs (chest, right thigh and left ankle. Three main steps describe the activity recognition process: sensors’ placement, data pre-processing and data classification. Four supervised classification techniques namely, k-Nearest Neighbor (k-NN, Support Vector Machines (SVM, Gaussian Mixture Models (GMM, and Random Forest (RF as well as three unsupervised classification techniques namely, k-Means, Gaussian mixture models (GMM and Hidden Markov Model (HMM, are compared in terms of correct classification rate, F-measure, recall, precision, and specificity. Raw data and extracted features are used separately as inputs of each classifier. The feature selection is performed using a wrapper approach based on the RF algorithm. Based on our experiments, the results obtained show that the k-NN classifier provides the best performance compared to other supervised classification algorithms, whereas the HMM classifier is the one that gives the best results among unsupervised classification algorithms. This comparison highlights which approach gives better performance in both supervised and unsupervised contexts. It should be noted that the obtained results are limited to the context of this study, which concerns the classification of the main daily living human activities using three wearable accelerometers placed at the chest, right shank and left ankle of the subject.

  13. Wearable Sensors for Remote Health Monitoring.

    Science.gov (United States)

    Majumder, Sumit; Mondal, Tapas; Deen, M Jamal

    2017-01-12

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  14. Optimization of a wearable power system

    Energy Technology Data Exchange (ETDEWEB)

    Kovacevic, I.; Round, S. D.; Kolar, J. W.; Boulouchos, K.

    2008-07-01

    In this paper the optimization of wearable power system comprising of an internal combustion engine, motor/generator, inverter/rectifier, Li-battery pack, DC/DC converters, and controller is performed. The Wearable Power System must have the capability to supply an average 20 W for 4 days with peak power of 200 W and have a system weight less then 4 kg. The main objectives are to select the engine, fuel and battery type, to match the weight of fuel and the number of battery cells, to find the optimal working point of engine and minimizing the system weight. The minimization problem is defined in Matlab as a nonlinear constrained optimization task. The optimization procedure returns the optimal system design parameters: the Li-polymer battery with eight cells connected in series for a 28 V DC output voltage, the selection of gasoline/oil fuel mixture and the optimal engine working point of 12 krpm for a 4.5 cm{sup 3} 4-stroke engine. (author)

  15. Wearable Sensors for Remote Health Monitoring

    Directory of Open Access Journals (Sweden)

    Sumit Majumder

    2017-01-01

    Full Text Available Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  16. Wearable Sensors for Remote Health Monitoring

    Science.gov (United States)

    Majumder, Sumit; Mondal, Tapas; Deen, M. Jamal

    2017-01-01

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed. PMID:28085085

  17. Recognition of human activities with wearable sensors

    Science.gov (United States)

    He, Weihua; Guo, Yongcai; Gao, Chao; Li, Xinke

    2012-12-01

    A novel approach for recognizing human activities with wearable sensors is investigated in this article. The key techniques of this approach include the generalized discriminant analysis (GDA) and the relevance vector machines (RVM). The feature vectors extracted from the measured signal are processed by GDA, with its dimension remarkably reduced from 350 to 12 while fully maintaining the most discriminative information. The reduced feature vectors are then classified by the RVM technique according to an extended multiclass model, which shows good convergence characteristic. Experimental results on the Wearable Action Recognition Dataset demonstrate that our approach achieves an encouraging recognition rate of 99.2%, true positive rate of 99.18% and false positive rate of 0.07%. Although in most cases, the support vector machines model has more than 70 support vectors, the number of relevance vectors related to different activities is always not more than 4, which implies a great simplicity in the classifier structure. Our approach is expected to have potential in real-time applications or solving problems with large-scale datasets, due to its perfect recognition performance, strong ability in feature reduction, and simple classifier structure.

  18. Wearable electronics sensors for safe and healthy living

    CERN Document Server

    2015-01-01

    This edited book contains invited papers from renowned experts working in the field of Wearable Electronics Sensors. It includes 14 chapters describing recent advancements in the area of Wearable Sensors, Wireless Sensors and Sensor Networks, Protocols, Topologies, Instrumentation architectures, Measurement techniques, Energy harvesting and scavenging, Signal processing, Design and Prototyping. The book will be useful for engineers, scientist and post-graduate students as a reference book for their research on wearable sensors, devices and technologies which is experiencing a period of rapid growth driven by new applications such as heart rate monitors, smart watches, tracking devices and smart glasses.  .

  19. Axial Permanent Magnet Generator for Wearable Energy Harvesting

    DEFF Research Database (Denmark)

    Högberg, Stig; Sødahl, Jakob Wagner; Mijatovic, Nenad

    2016-01-01

    An increasing demand for battery-free electronics is evident by the rapid increase of wearable devices, and the design of wearable energy harvesters follows accordingly. An axial permanent magnet generator was designed to harvest energy from human body motion and supplying it to a wearable...... in order to reduce the rotor inertia and to reduce losses. Analytical models and finite element simulations were employed for the analyses of both generator types, and verified experimentally by prototypes. The results suggested that a generator of this size and power rating (20 mm radius, and 5 m...

  20. Wearable Beat to Beat Blood Pressure Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A key component of NASA's human exploration programs is a system that monitors the health of the crew during the space missions. The wearable physiological monitor...

  1. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors

    National Research Council Canada - National Science Library

    Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio

    2015-01-01

    .... The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors...

  2. Efficient Wearable Antennas for Astronaut EVA Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA SBIR Subtopic O1.02 (Antenna Technology), Pharad proposes to create a new class of highly efficient body wearable antennas suitable for astronaut...

  3. Multiobjective Design of Wearable Sensor Systems for Electrocardiogram Monitoring

    Directory of Open Access Journals (Sweden)

    F. J. Martinez-Tabares

    2016-01-01

    Full Text Available Wearable sensor systems will soon become part of the available medical tools for remote and long term physiological monitoring. However, the set of variables involved in the performance of these systems are usually antagonistic, and therefore the design of usable wearable systems in real clinical applications entails a number of challenges that have to be addressed first. This paper describes a method to optimise the design of these systems for the specific application of cardiac monitoring. The method proposed is based on the selection of a subset of 5 design variables, sensor contact, location, and rotation, signal correlation, and patient comfort, and 2 objective functions, functionality and wearability. These variables are optimised using linear and nonlinear models to maximise those objective functions simultaneously. The methodology described and the results achieved demonstrate that it is possible to find an optimal solution and therefore overcome most of the design barriers that prevent wearable sensor systems from being used in normal clinical practice.

  4. Pneumatic Feedback for Wearable Lower Limb Exoskeletons Further Explored

    NARCIS (Netherlands)

    Muijzer-Witteveen, Heidi; Guerra, Francisco; Sluiter, Victor; Kooij, van der Herman; Bello, Fernando; Kajimoto, Hiroyuki; Visell, Yon

    2016-01-01

    For optimal control of wearable lower limb exoskeletons the sensory information flow should also be (partly) restored, especially when the users are Spinal Cord Injury subjects. Several methods, like electrotactile or electromechanical vibrotactile stimulation, to provide artificial sensory feedback

  5. Assessing physical activity using wearable monitors: measures of physical activity

    National Research Council Canada - National Science Library

    Butte, Nancy F; Ekelund, Ulf; Westerterp, Klaas R

    2012-01-01

    .... Six main categories of wearable monitors are currently available to investigators: pedometers, load transducers/foot-contact monitors, accelerometers, HR monitors, combined accelerometer and HR monitors, and multiple sensor systems...

  6. Pneumatic Feedback for Wearable Lower Limb Exoskeletons Further Explored

    NARCIS (Netherlands)

    Muijzer-Witteveen, Heintje Johanna Berendina; Guerra, Francisco; Sluiter, Victor IJzebrand; van der Kooij, Herman; Bello, Fernando; Kajimoto, Hiroyuki; Visell, Yon

    2016-01-01

    For optimal control of wearable lower limb exoskeletons the sensory information flow should also be (partly) restored, especially when the users are Spinal Cord Injury subjects. Several methods, like electrotactile or electromechanical vibrotactile stimulation, to provide artificial sensory feedback

  7. Wearable and augmented reality displays using MEMS and SLMs

    OpenAIRE

    Ürey, Hakan; Ulusoy, Erdem; Akşit, Kaan; Hossein, Amir; Niaki, Ghanbari

    2016-01-01

    In this talk, we present the various types of 3D displays, head-mounted projection displays and wearable displays developed in our group using MEMS scanners, compact RGB laser light sources, and spatial light modulators.

  8. Activity recognition with wearable sensors on loose clothing

    National Research Council Canada - National Science Library

    Brendan Michael; Matthew Howard

    2017-01-01

    .... However, wearable sensors suffer from motion artefacts introduced by the non-rigid attachment of sensors to the body, and the prevailing view is that it is necessary to eliminate these artefacts...

  9. Wearable Beat to Beat Blood Pressure Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A key component of NASA's human exploration programs is a system that monitors the health of the crew during space missions. The wearable beat-to-beat blood pressure...

  10. Wearable and augmented reality displays using MEMS and SLMs

    Science.gov (United States)

    Urey, Hakan; Ulusoy, Erdem; Kazempourradi, Seyedmahdi M. K.; Mengu, Deniz; Olcer, Selim; Holmstrom, Sven T.

    2016-03-01

    In this talk, we present the various types of 3D displays, head-mounted projection displays and wearable displays developed in our group using MEMS scanners, compact RGB laser light sources, and spatial light modulators.

  11. Detection of Site-Specific Blood Flow Variation in Humans during Running by a Wearable Laser Doppler Flowmeter

    Directory of Open Access Journals (Sweden)

    Wataru Iwasaki

    2015-10-01

    Full Text Available Wearable wireless physiological sensors are helpful for monitoring and maintaining human health. Blood flow contains abundant physiological information but it is hard to measure blood flow during exercise using conventional blood flowmeters because of their size, weight, and use of optic fibers. To resolve these disadvantages, we previously developed a micro integrated laser Doppler blood flowmeter using microelectromechanical systems technology. This micro blood flowmeter is wearable and capable of stable measurement signals even during movement. Therefore, we attempted to measure skin blood flow at the forehead, fingertip, and earlobe of seven young men while running as a pilot experiment to extend the utility of the micro blood flowmeter. We measured blood flow in each subject at velocities of 6, 8, and 10 km/h. We succeeded in obtaining stable measurements of blood flow, with few motion artifacts, using the micro blood flowmeter, and the pulse wave signal and motion artifacts were clearly separated by conducting frequency analysis. Furthermore, the results showed that the extent of the changes in blood flow depended on the intensity of exercise as well as previous work with an ergometer. Thus, we demonstrated the capability of this wearable blood flow sensor for measurement during exercise.

  12. Respiratory rate detection using a wearable electromagnetic generator.

    Science.gov (United States)

    Padasdao, Bryson; Boric-Lubecke, Olga

    2011-01-01

    Wearable health and fitness monitoring systems are a promising new way of collecting physiological data without inconveniencing patients. Human energy harvesting may be used to power wearable sensors. In this paper, we explore this zero-net energy biosensor concept through sensing and harvesting of respiratory effort. An off the shelf servo motor operation in reverse was used to successfully obtain respiratory rate, while also demonstrating significant harvested power. These are the first reported respiratory rate sensing results using electromagnetic generators.

  13. Wearable technology a new paradigm in Educational Universities

    Directory of Open Access Journals (Sweden)

    T. Naga Swathi

    2015-04-01

    Full Text Available Wearable technology, making a mark as the emerging technology where the goal of computing is to minimize the time and accessing the technology everywhere. It helps students in many ways. For identifying buildings by combining Google mobile app and on the campus map. For displaying supplemental material, during lectures. In labs it is used in demonstrations, teaching students doctor surgery techniques.There are different wearable devices available in the market, whichis utilized in the real world.

  14. A flexible inkjet printed antenna for wearable electronics applications

    KAUST Repository

    Karimi, Muhammad Akram

    2016-11-02

    Wearable electronics has gained enormous attention since past few years because it is a promising technology to enhance the human experience. This paper shows a modified inverted-F antenna (IFA), inkjet printed directly on the fabric. A flexible and UV curable interface layer has been used to reduce the surface roughness of the fabric to realize the antenna on top of fabric with fine features. Flexibility tests of the prototype confirm the viability of the design for the wearable applications.

  15. Development of a wearable haptic game interface

    Directory of Open Access Journals (Sweden)

    J. Foottit

    2016-04-01

    Full Text Available This paper outlines the ongoing development of a wearable haptic game interface, in this case for controlling a flight simulator. The device differs from many traditional haptic feedback implementations in that it combines vibrotactile feedback with gesture based input, thus becoming a two-way conduit between the user and the virtual environment. The device is intended to challenge what is considered an “interface” and sets out to purposefully blur the boundary between man and machine. This allows for a more immersive experience, and a user evaluation shows that the intuitive interface allows the user to become the aircraft that is controlled by the movements of the user's hand.

  16. Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    J. G. Joshi

    2012-01-01

    Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.

  17. Wearable computer technology for dismounted applications

    Science.gov (United States)

    Daniels, Reginald

    2010-04-01

    Small computing devices which rival the compact size of traditional personal digital assistants (PDA) have recently established a market niche. These computing devices are small enough to be considered unobtrusive for humans to wear. The computing devices are also powerful enough to run full multi-tasking general purpose operating systems. This paper will explore the wearable computer information system for dismounted applications recently fielded for ground-based US Air Force use. The environments that the information systems are used in will be reviewed, as well as a description of the net-centric, ground-based warrior. The paper will conclude with a discussion regarding the importance of intuitive, usable, and unobtrusive operator interfaces for dismounted operators.

  18. A flexible and wearable terahertz scanner

    Science.gov (United States)

    Suzuki, D.; Oda, S.; Kawano, Y.

    2016-12-01

    Imaging technologies based on terahertz (THz) waves have great potential for use in powerful non-invasive inspection methods. However, most real objects have various three-dimensional curvatures and existing THz technologies often encounter difficulties in imaging such configurations, which limits the useful range of THz imaging applications. Here, we report the development of a flexible and wearable THz scanner based on carbon nanotubes. We achieved room-temperature THz detection over a broad frequency band ranging from 0.14 to 39 THz and developed a portable THz scanner. Using this scanner, we performed THz imaging of samples concealed behind opaque objects, breakages and metal impurities of a bent film and multi-view scans of a syringe. We demonstrated a passive biometric THz scan of a human hand. Our results are expected to have considerable implications for non-destructive and non-contact inspections, such as medical examinations for the continuous monitoring of health conditions.

  19. Features and application of wearable biosensors in medical care

    Science.gov (United States)

    Ajami, Sima; Teimouri, Fotooheh

    2015-01-01

    One of the new technologies in the field of health is wearable biosensor, which provides vital signs monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in impassable regions far from health and medical services. The aim of this study was to explain features and applications of wearable biosensors in medical services. This was a narrative review study that done in 2015. Search conducted with the help of libraries, books, conference proceedings, through databases of Science Direct, PubMed, Proquest, Springer, and SID (Scientific Information Database). In our searches, we employed the following keywords and their combinations; vital sign monitoring, medical smart shirt, smart clothing, wearable biosensors, physiological monitoring system, remote detection systems, remote control health, and bio-monitoring system. The preliminary search resulted in 54 articles, which published between 2002 and 2015. After a careful analysis of the content of each paper, 41 sources selected based on their relevancy. Although the use of wearable in healthcare is still in an infant stage, it could have a magic effect on healthcare. Smart wearable in the technology industry for 2015 is one that is looking to be a big and profitable market. Wearable biosensors capable of continuous vital signs monitoring and feedback to the user will be significantly effective in timely prevention, diagnosis, treatment, and control of diseases. PMID:26958058

  20. Features and application of wearable biosensors in medical care

    Directory of Open Access Journals (Sweden)

    Sima Ajami

    2015-01-01

    Full Text Available One of the new technologies in the field of health is wearable biosensor, which provides vital signs monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in impassable regions far from health and medical services. The aim of this study was to explain features and applications of wearable biosensors in medical services. This was a narrative review study that done in 2015. Search conducted with the help of libraries, books, conference proceedings, through databases of Science Direct, PubMed, Proquest, Springer, and SID (Scientific Information Database. In our searches, we employed the following keywords and their combinations; vital sign monitoring, medical smart shirt, smart clothing, wearable biosensors, physiological monitoring system, remote detection systems, remote control health, and bio-monitoring system. The preliminary search resulted in 54 articles, which published between 2002 and 2015. After a careful analysis of the content of each paper, 41 sources selected based on their relevancy. Although the use of wearable in healthcare is still in an infant stage, it could have a magic effect on healthcare. Smart wearable in the technology industry for 2015 is one that is looking to be a big and profitable market. Wearable biosensors capable of continuous vital signs monitoring and feedback to the user will be significantly effective in timely prevention, diagnosis, treatment, and control of diseases.

  1. Ethical Implications of User Perceptions of Wearable Devices.

    Science.gov (United States)

    Segura Anaya, L H; Alsadoon, Abeer; Costadopoulos, N; Prasad, P W C

    2017-02-02

    Health Wearable Devices enhance the quality of life, promote positive lifestyle changes and save time and money in medical appointments. However, Wearable Devices store large amounts of personal information that is accessed by third parties without user consent. This creates ethical issues regarding privacy, security and informed consent. This paper aims to demonstrate users' ethical perceptions of the use of Wearable Devices in the health sector. The impact of ethics is determined by an online survey which was conducted from patients and users with random female and male division. Results from this survey demonstrate that Wearable Device users are highly concerned regarding privacy issues and consider informed consent as "very important" when sharing information with third parties. However, users do not appear to relate privacy issues with informed consent. Additionally, users expressed the need for having shorter privacy policies that are easier to read, a more understandable informed consent form that involves regulatory authorities and there should be legal consequences the violation or misuse of health information provided to Wearable Devices. The survey results present an ethical framework that will enhance the ethical development of Wearable Technology.

  2. A novel system identification technique for improved wearable hemodynamics assessment.

    Science.gov (United States)

    Wiens, Andrew D; Inan, Omer T

    2015-05-01

    Recent advances have led to renewed interest in ballistocardiography (BCG), a noninvasive measure of the small movements of the body due to cardiovascular events. A broad range of platforms have been developed and verified for BCG measurement including beds, chairs, and weighing scales: while the body is coupled to such a platform, the cardiogenic movements are measured. Wearable BCG, measured with an accelerometer affixed to the body, may enable continuous, or more regular, monitoring during the day; however, the signals from such wearable BCGs represent local or distal accelerations of skin and tissue rather than the whole body. In this paper, we propose a novel method to reconstruct the BCG measured with a weighing scale (WS BCG) from a wearable sensor via a training step to remove these local effects. Preliminary validation of this method was performed with 15 subjects: the wearable sensor was placed at three locations on the surface of the body while WS BCG measurements were recorded simultaneously. A regularized system identification approach was used to reconstruct the WS BCG from the wearable BCG. Preliminary results suggest that the relationship between local and central disturbances is highly dependent on both the individual and the location where the accelerometer is placed on the body and that these differences can be resolved via calibration to accurately measure changes in cardiac output and contractility from a wearable sensor. Such measurements could be highly effective, for example, for improved monitoring of heart failure patients at home.

  3. Features and application of wearable biosensors in medical care.

    Science.gov (United States)

    Ajami, Sima; Teimouri, Fotooheh

    2015-12-01

    One of the new technologies in the field of health is wearable biosensor, which provides vital signs monitoring of patients, athletes, premature infants, children, psychiatric patients, people who need long-term care, elderly, and people in impassable regions far from health and medical services. The aim of this study was to explain features and applications of wearable biosensors in medical services. This was a narrative review study that done in 2015. Search conducted with the help of libraries, books, conference proceedings, through databases of Science Direct, PubMed, Proquest, Springer, and SID (Scientific Information Database). In our searches, we employed the following keywords and their combinations; vital sign monitoring, medical smart shirt, smart clothing, wearable biosensors, physiological monitoring system, remote detection systems, remote control health, and bio-monitoring system. The preliminary search resulted in 54 articles, which published between 2002 and 2015. After a careful analysis of the content of each paper, 41 sources selected based on their relevancy. Although the use of wearable in healthcare is still in an infant stage, it could have a magic effect on healthcare. Smart wearable in the technology industry for 2015 is one that is looking to be a big and profitable market. Wearable biosensors capable of continuous vital signs monitoring and feedback to the user will be significantly effective in timely prevention, diagnosis, treatment, and control of diseases.

  4. Wearable joystick for gloves-on human/computer interaction

    Science.gov (United States)

    Bae, Jaewook; Voyles, Richard M.

    2006-05-01

    In this paper, we present preliminary work on a novel wearable joystick for gloves-on human/computer interaction in hazardous environments. Interacting with traditional input devices can be clumsy and inconvenient for the operator in hazardous environments due to the bulkiness of multiple system components and troublesome wires. During a collapsed structure search, for example, protective clothing, uneven footing, and "snag" points in the environment can render traditional input devices impractical. Wearable computing has been studied by various researchers to increase the portability of devices and to improve the proprioceptive sense of the wearer's intentions. Specifically, glove-like input devices to recognize hand gestures have been developed for general-purpose applications. But, regardless of their performance, prior gloves have been fragile and cumbersome to use in rough environments. In this paper, we present a new wearable joystick to remove the wires from a simple, two-degree of freedom glove interface. Thus, we develop a wearable joystick that is low cost, durable and robust, and wire-free at the glove. In order to evaluate the wearable joystick, we take into consideration two metrics during operator tests of a commercial robot: task completion time and path tortuosity. We employ fractal analysis to measure path tortuosity. Preliminary user test results are presented that compare the performance of both a wearable joystick and a traditional joystick.

  5. A flexible, wave-shaped P(VDF-TrFE)/metglas piezoelectric composite for wearable applications

    Science.gov (United States)

    You, Sujian; Shi, Huaduo; Wu, Jingen; Shan, Liang; Guo, Shishang; Dong, Shuxiang

    2016-12-01

    In this work, a wave-shaped piezoelectric composite (WSPC) made of fine β-phase vinylidene fluoride trifluoroethylene copolymer (P(VDF-TrFE)) polymer and high-elastic FeSiB amorphous alloy (metglas) ribbon has been successfully fabricated for wearable device applications. X-ray diffraction and the Fourier Transform Infrared Spectrum studies reveal P(VDF-TrFE) exhibiting the fine β-phase. Both theoretical analysis and experimental results show that unique wave-shaped structure enhances the electromechanical coupling significantly, because of the combination piezoelectric effects of d33 and d31 modes in P(VDF-TrFE) polymer, as well as the enhanced effective piezoelectric coefficient caused by the pre-stretch in P(VDF-TrFE) film. Two application examples of WSPC, (i) mechanical force sensor or energy harvester, and (ii) the medical blood-pressure pulse sensor, have been investigated, which show that the WSPC is a promising candidate for future wearable device applications.

  6. A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres

    KAUST Repository

    Tai, Yanlong

    2015-01-01

    Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces. Here, a highly sensitive, low-cost, wearable pressure sensor based on conductive single-walled carbon nanotube (SWCNT)/alginate hydrogel spheres is reported. Conductive and piezoresistive spheres are embedded between conductive electrodes (indium tin oxide-coated polyethylene terephthalate films) and subjected to environmental pressure. The detection mechanism is based on the piezoresistivity of the SWCNT/alginate conductive spheres and on the sphere-electrode contact. Step-by-step, we optimized the design parameters to maximize the sensitivity of the sensor. The optimized hydrogel sensor exhibited a satisfactory sensitivity (0.176 ΔR/R0/kPa-1) and a low detectable limit (10 Pa). Moreover, a brief response time (a few milliseconds) and successful repeatability were also demonstrated. Finally, the efficiency of this strategy was verified through a series of practical tests such as monitoring human wrist pulse, detecting throat muscle motion or identifying the location and the distribution of an external pressure using an array sensor (4 × 4). © 2015 The Royal Society of Chemistry.

  7. High-performance flexible energy storage and harvesting system for wearable electronics

    Science.gov (United States)

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-01-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices. PMID:27184194

  8. Wearable sensors network for health monitoring using e-Health platform

    Directory of Open Access Journals (Sweden)

    I. Orha

    2014-06-01

    Full Text Available In this paper we have proposed to present a wearable system for automatic recording of the main physiological parameters of the human body: body temperature, galvanic skin response, respiration rate, blood pressure, pulse, blood oxygen content, blood glucose content, electrocardiogram (ECG, electromyography(EMG, and patient position. To realize this system, we have developed a program that can read and automatically save in a file, the data from specialized sensors. The results can be later interpreted, by comparing them with known normal values and thus offering the possibility for a primary health status diagnosis by specialized personnel. The data received from the wearable sensors is taken by an interface circuit, provided with signal conditioning (filtering, amplification, etc. A microcontroller controls the data acquisition. In this applications we used an Arduino Uno standard development platform. The data are transferred to a PC, using serial communication port of Arduino platform and a communications shield. The whole process of health assessment is commissioned by a program developed by us in the Python programming language. The program provides automatic recording of the aforementioned parameters in a predetermined sequence, or only certain parameters are registered.

  9. High-performance flexible energy storage and harvesting system for wearable electronics

    Science.gov (United States)

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-05-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  10. High-performance flexible energy storage and harvesting system for wearable electronics.

    Science.gov (United States)

    Ostfeld, Aminy E; Gaikwad, Abhinav M; Khan, Yasser; Arias, Ana C

    2016-05-17

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm(2) and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  11. A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres.

    Science.gov (United States)

    Tai, Yanlong; Mulle, Matthieu; Aguilar Ventura, Isaac; Lubineau, Gilles

    2015-09-21

    Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces. Here, a highly sensitive, low-cost, wearable pressure sensor based on conductive single-walled carbon nanotube (SWCNT)/alginate hydrogel spheres is reported. Conductive and piezoresistive spheres are embedded between conductive electrodes (indium tin oxide-coated polyethylene terephthalate films) and subjected to environmental pressure. The detection mechanism is based on the piezoresistivity of the SWCNT/alginate conductive spheres and on the sphere-electrode contact. Step-by-step, we optimized the design parameters to maximize the sensitivity of the sensor. The optimized hydrogel sensor exhibited a satisfactory sensitivity (0.176 ΔR/R0/kPa(-1)) and a low detectable limit (10 Pa). Moreover, a brief response time (a few milliseconds) and successful repeatability were also demonstrated. Finally, the efficiency of this strategy was verified through a series of practical tests such as monitoring human wrist pulse, detecting throat muscle motion or identifying the location and the distribution of an external pressure using an array sensor (4 × 4).

  12. Wearable technologies for soldier first responder assessment and remote monitoring (Conference Presentation)

    Science.gov (United States)

    Lee, Stephen

    2017-05-01

    Embedded combat medical personnel require accurate and timely biometric data to ensure appropriate life saving measures. Injured warfighter's operating in remote environments require both assessment and monitoring often while still engaged with enemy forces. Small wearable devices that can be placed on injured personnel capable of collecting essential biometric data, including the capacity to remotely deliver collected data in real-time, would allow additional medical monitoring and triage that will greatly help the medic in the battlefield. These new capabilities will provide a force multiplier through remote assessment, increased survivability, and in freeing engaged warfighter's from direct monitoring thus improving combat effectiveness and increasing situational awareness. Key questions around what information does the medic require and how effective it can be relayed to support personnel are at their early stages of development. A low power biometric wearable device capable of reliable electrocardiogram (EKG) rhythm, temperature, pulse, and other vital data collection which can provide real-time remote monitoring are in development for the Soldier.

  13. Noise-Tolerant Streaming Real-Time Data Acquisition Fabric for Pulsed Accelerators

    CERN Document Server

    Siskind, E J

    2002-01-01

    A noise-tolerant data communications fabric has been developed to meet the real-time data acquisition and control requirements of fast feedback loops, machine protection systems, pulse-to-pulse sequencing, and machine-experiment communications at next-generation pulsed accelerators such as the Next Linear Collider ("NLC"). The fabric is constructed from "platform" or "system-on-a-chip" field programmable gate arrays ("FPGAs") containing embedded processors, block memory, and multi-gigabit serial transceivers interconnected via an array of point-to-point fiber-optic physical links for standard networks such as gigabit Ethernet. The FPGA-based link hardware segments messages of varying priorities into a continuous sequence of fixed-length data cells, interrupting the cell stream of lower priority messages with those comprising higher priority traffic. A high level of noise-tolerance is provided by dedicating almost half the contents of each cell to Reed-Solomon forward error correcting code ("ECC") data. Furthe...

  14. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires

    Science.gov (United States)

    Gong, Shu; Schwalb, Willem; Wang, Yongwei; Chen, Yi; Tang, Yue; Si, Jye; Shirinzadeh, Bijan; Cheng, Wenlong

    2014-02-01

    Ultrathin gold nanowires are mechanically flexible yet robust, which are novel building blocks with potential applications in future wearable optoelectronic devices. Here we report an efficient, low-cost fabrication strategy to construct a highly sensitive, flexible pressure sensor by sandwiching ultrathin gold nanowire-impregnated tissue paper between two thin polydimethylsiloxane sheets. The entire device fabrication process is scalable, enabling facile large-area integration and patterning for mapping spatial pressure distribution. Our gold nanowires-based pressure sensors can be operated at a battery voltage of 1.5 V with low energy consumption (1.14 kPa-1) and high stability (>50,000 loading-unloading cycles). In addition, our sensor can resolve pressing, bending, torsional forces and acoustic vibrations. The superior sensing properties in conjunction with mechanical flexibility and robustness enabled real-time monitoring of blood pulses as well as detection of small vibration forces from music.

  15. Multi-Level Micromachined Systems-on-a-Chip: Technology and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.J.; Krygowski, T.W.; Miller, S.L.; Montague, S.; Rodgers, M.S.; Smith, J.H.; Sniegowski, J.J.

    1998-10-27

    Researchers at Sandia have recently designed and built several research prototypes, which demonstrate that truly complex mechanical systems can now be realized in a surface micromachined technology. These MicroElectro- Mechanical Systems (MEMS) include advanced actuators, torque multiplying gear tmins, rack and pinion assemblies, positionable mirrors, and mechanical discriminators. All of tile mechanical components are batch fabricated on a single chip of silicon using the infrastructure origimdly developed to support today's highly reliabk; and robust microelectronics industry. Sand ia is also developing the technology 10 integrate microelectronic circuits onto the s,ime piece of silicon that is used to fabricate the MEMS devices. This significantly increases sensitivity and reliability, while fhrther reducing package size and fabrication costs. A review of the MEMS technology and capabilities available at Sandia National Laboratories is presented.

  16. Electronics Miniaturization with a System-on-a-Chip for Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The first year objective of this multi-year project is to develop a plan to assemble the common, essential monitoring and control functions required by spacecraft...

  17. VLSI design of turbo decoder for integrated communication system on a chip applications

    Science.gov (United States)

    Fang, Wai-Chi; Sethuram, Ashwin; Belevi, Kemal

    2003-01-01

    A high-throughput low-power turbo decoder core has been developed for integrated communication system applications such as satellite communications, wireless LAN, digital TV, cable modem, Digital Video Broadcast (DVB), and xDSL systems. The turbo decoder is based on convolutional constituent codes, which outperform all other Forward Error Correction techniques. This turbo decoder core is parameterizable and can be modified easily to fit any size for advanced communication system-on-chip products. The turbo decoder core provides Forward Error Correction of up to 15 Mbits/sec on a 0.13-micron CMOS FPGA prototyping chip at a power of 0.1 watts.

  18. A low-power digital frequency divider for system-on-a-chip applications

    KAUST Repository

    Omran, Hesham

    2011-08-01

    In this paper, an idea for a new frequency divider architecture is proposed. The divider is based on a coarse-fine architecture. The coarse block operates at a low frequency to save power consumption and it selectively enables the fine block which operates at the high input frequency. The proposed divider has the advantages of synchronous divider, but with lower power consumption and higher operation speed. The design can achieve a wide division range with a minor effect on power consumption and speed. The architecture was implemented on a complex programmable logic device (CPLD) to verify its operation. Experimental measurements validate system operation with power reduction greater than 40%. © 2011 IEEE.

  19. Response compaction for system-on-a-chip based on advanced convolutional codes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper addresses the problem of test response compaction. In order to maximize compaction ratio, a single-output compactor based on a (n, n-1, m, 3) convolutional code is presented. When the proposed theorems are satisfied, the compactor can avoid two and any odd erroneous bits cancellations, and handle one unknown bit (X bit). When the X bits in response are clustered, multiple-weight check matrix design algorithm can be used to reduce the effect of massive X bits. Some extended experimental results show that the proposed encoder has an acceptable-level X tolerant capacity and low error cancellations probability.

  20. 3D-TV Rendering on a Multiprocessor System on a Chip

    NARCIS (Netherlands)

    Van Eijndhoven, J.T.J.; Li, X.

    2006-01-01

    This thesis focuses on the issue of mapping 3D-TV rendering applications to a multiprocessor platform. The target platform aims to address tomorrow's multi-media consumer market. The prototype chip, called Wasabi, contains a set of TriMedia processors that communicate viaa shared memory, fast messag

  1. Efficiency of static core turn-off in a system-on-a-chip with variation

    Science.gov (United States)

    Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong

    2013-10-29

    A processor-implemented method for improving efficiency of a static core turn-off in a multi-core processor with variation, the method comprising: conducting via a simulation a turn-off analysis of the multi-core processor at the multi-core processor's design stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's design stage includes a first output corresponding to a first multi-core processor core to turn off; conducting a turn-off analysis of the multi-core processor at the multi-core processor's testing stage, wherein the turn-off analysis of the multi-core processor at the multi-core processor's testing stage includes a second output corresponding to a second multi-core processor core to turn off; comparing the first output and the second output to determine if the first output is referring to the same core to turn off as the second output; outputting a third output corresponding to the first multi-core processor core if the first output and the second output are both referring to the same core to turn off.

  2. Wearable Systems for Service based on Physiological Signals.

    Science.gov (United States)

    Ryoo, Dong-Wan; Kim, Young-Sung; Lee, Jeun-Woo

    2005-01-01

    Many researches for useful status information on humans have been done using the bio-signals. The bio-signal acquisition systems can be used to connect a user and a ubiquitous computing environment. The ubiquitous computing environment has to give various services anywhere, anytime. Consequently, ubiquitous computing requires new technology, such as a new user interface, dynamic service mechanism based on context and mobility support, which is different from technology used in desktop environment. To do this, we developed a wearable system, which can sense physiological data, determine emotional status and execute service based on the emotion. In this paper, we described wearable systems for personalized service based on physiological signals. The wearable system is composed of three subsystems, the physiological data sensing subsystem, the human status awareness subsystem and the service management subsystem. The physiological data sensing subsystem senses PPG, GSR and SKT signals from the data glove and sends the data to a wearable system using Bluetooth. The human status awareness subsystem in the wearable system receives the data from bio-sensors and determines emotional status using nonlinear mapping and rule-base. After determining emotion, the service management subsystem activates proper service automatically, and the service management subsystem can provide personalized service for users based on acquired bio-signals. Also, we presented various feature extraction using bio-signals such as PPG, GSR, SKT considering mobility, and emotion recognition of human status for the ubiquitous computing service.

  3. Wearable Fall Detector using Integrated Sensors and Energy Devices.

    Science.gov (United States)

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-24

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  4. A Method of Data Aggregation for Wearable Sensor Systems.

    Science.gov (United States)

    Shen, Bo; Fu, Jun-Song

    2016-06-23

    Data aggregation has been considered as an effective way to decrease the data to be transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less energy, which makes energy conservation in data transmission more important. Nevertheless, wearable sensor systems usually have features like frequently dynamic changes of topologies and data over a large range, of which current aggregating methods can't adapt to the demand. In this paper, we study the system composed of many wearable devices with sensors, such as the network of a tactical unit, and introduce an energy consumption-balanced method of data aggregation, named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of 'happened-before' to construct a dynamic and energy-balancing routing tree. We also present a distributed data aggregating and sorting algorithm to execute top-k query and decrease the data that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It also outperforms the filter-based top-k monitoring approach in energy consumption, load balance, and the network's lifetime, especially for highly dynamic data sources.

  5. A Method of Data Aggregation for Wearable Sensor Systems

    Directory of Open Access Journals (Sweden)

    Bo Shen

    2016-06-01

    Full Text Available Data aggregation has been considered as an effective way to decrease the data to be transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less energy, which makes energy conservation in data transmission more important. Nevertheless, wearable sensor systems usually have features like frequently dynamic changes of topologies and data over a large range, of which current aggregating methods can’t adapt to the demand. In this paper, we study the system composed of many wearable devices with sensors, such as the network of a tactical unit, and introduce an energy consumption-balanced method of data aggregation, named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of ‘happened-before’ to construct a dynamic and energy-balancing routing tree. We also present a distributed data aggregating and sorting algorithm to execute top-k query and decrease the data that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It also outperforms the filter-based top-k monitoring approach in energy consumption, load balance, and the network’s lifetime, especially for highly dynamic data sources.

  6. Wearable Fall Detector using Integrated Sensors and Energy Devices

    Science.gov (United States)

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  7. A Novel Photodiode for Reflectance Pulse Oximetry in low-power applications

    DEFF Research Database (Denmark)

    Haahr, Rasmus Grønbek; Duun, Sune; Birkelund, Karen;

    2007-01-01

    The amount of light collected is crucial for low-power applications of pulse oximetry. In this work a novel ring-shaped backside photodiode has been developed for a wearable reflectance pulse oximeter. The photodiode is proven to work with a dual LED with wavelengths of 660 nm and 940 nm. For the......The amount of light collected is crucial for low-power applications of pulse oximetry. In this work a novel ring-shaped backside photodiode has been developed for a wearable reflectance pulse oximeter. The photodiode is proven to work with a dual LED with wavelengths of 660 nm and 940 nm....... For the purpose of continuously monitoring vital signs of a human, a temperature sensor is integrated onto the chip containing the photodiode. This biomedical multisensor chip is made for integration into "the electronic patch", an autonomous monitoring system for humans....

  8. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications

    Directory of Open Access Journals (Sweden)

    Alvaro Muro-de-la-Herran

    2014-02-01

    Full Text Available This article presents a review of the methods used in recognition and analysis of the human gait from three different approaches: image processing, floor sensors and sensors placed on the body. Progress in new technologies has led the development of a series of devices and techniques which allow for objective evaluation, making measurements more efficient and effective and providing specialists with reliable information. Firstly, an introduction of the key gait parameters and semi-subjective methods is presented. Secondly, technologies and studies on the different objective methods are reviewed. Finally, based on the latest research, the characteristics of each method are discussed. 40% of the reviewed articles published in late 2012 and 2013 were related to non-wearable systems, 37.5% presented inertial sensor-based systems, and the remaining 22.5% corresponded to other wearable systems. An increasing number of research works demonstrate that various parameters such as precision, conformability, usability or transportability have indicated that the portable systems based on body sensors are promising methods for gait analysis.

  9. Low-Power Wearable Respiratory Sound Sensing

    Directory of Open Access Journals (Sweden)

    Dinko Oletic

    2014-04-01

    Full Text Available Building upon the findings from the field of automated recognition of respiratory sound patterns, we propose a wearable wireless sensor implementing on-board respiratory sound acquisition and classification, to enable continuous monitoring of symptoms, such as asthmatic wheezing. Low-power consumption of such a sensor is required in order to achieve long autonomy. Considering that the power consumption of its radio is kept minimal if transmitting only upon (rare occurrences of wheezing, we focus on optimizing the power consumption of the digital signal processor (DSP. Based on a comprehensive review of asthmatic wheeze detection algorithms, we analyze the computational complexity of common features drawn from short-time Fourier transform (STFT and decision tree classification. Four algorithms were implemented on a low-power TMS320C5505 DSP. Their classification accuracies were evaluated on a dataset of prerecorded respiratory sounds in two operating scenarios of different detection fidelities. The execution times of all algorithms were measured. The best classification accuracy of over 92%, while occupying only 2.6% of the DSP’s processing time, is obtained for the algorithm featuring the time-frequency tracking of shapes of crests originating from wheezing, with spectral features modeled using energy.

  10. Nanopatterned textile-based wearable triboelectric nanogenerator.

    Science.gov (United States)

    Seung, Wanchul; Gupta, Manoj Kumar; Lee, Keun Young; Shin, Kyung-Sik; Lee, Ju-Hyuck; Kim, Tae Yun; Kim, Sanghyun; Lin, Jianjian; Kim, Jung Ho; Kim, Sang-Woo

    2015-01-01

    Here we report a fully flexible, foldable nanopatterned wearable triboelectric nanogenerator (WTNG) with high power-generating performance and mechanical robustness. Both a silver (Ag)-coated textile and polydimethylsiloxane (PDMS) nanopatterns based on ZnO nanorod arrays on a Ag-coated textile template were used as active triboelectric materials. A high output voltage and current of about 120 V and 65 μA, respectively, were observed from a nanopatterned PDMS-based WTNG, while an output voltage and current of 30 V and 20 μA were obtained by the non-nanopatterned flat PDMS-based WTNG under the same compressive force of 10 kgf. Furthermore, very high voltage and current outputs with an average value of 170 V and 120 μA, respectively, were obtained from a four-layer-stacked WTNG under the same compressive force. Notably it was found there are no significant differences in the output voltages measured from the multilayer-stacked WTNG over 12 000 cycles, confirming the excellent mechanical durability of WTNGs. Finally, we successfully demonstrated the self-powered operation of light-emitting diodes, a liquid crystal display, and a keyless vehicle entry system only with the output power of our WTNG without any help of external power sources.

  11. SURFACING ELECTRODE WITH CRACKING RESISTANCE AND WEARABILITY

    Institute of Scientific and Technical Information of China (English)

    Yang Shanglei; Lu Xueqin; Lou Songnian; Zou Zengda

    2005-01-01

    A new surfacing electrode is developed with cracking resistance and wearability based on high microhardness of TiC and VC, carbides of Ti and V are formed in deposited metal by means of high temperature arc metallurgic reaction. The results show the hardness of surfacing metal increases with the increase of ferrotitanium (Fe-Ti), ferrovanadium (Fe-V) and graphite in the coat. However,when graphite reaches the volume fraction of 11%, the hardness reaches its peak value, and when beyond 11%, the hardness falls off. As Fe-Ti, Fe-V and graphite increase, the cracking resistance of deposited metal and usability of electrode declines. Carbides are dispersedly distributed in the matrix structure. The matrix microstructure of deposited metal is lath martensite. Carbides present irregular block. When using the researched surfacing electrode to continue weld with non-preheated, no seeable crack or only a few micro-cracks can be observed in the surface of deposited metal. The hardness is above 60 HRC. The wear resistance is better than that of EDZCr-C-15.

  12. Gait Recognition Using Wearable Motion Recording Sensors

    Directory of Open Access Journals (Sweden)

    Davrondzhon Gafurov

    2009-01-01

    Full Text Available This paper presents an alternative approach, where gait is collected by the sensors attached to the person's body. Such wearable sensors record motion (e.g. acceleration of the body parts during walking. The recorded motion signals are then investigated for person recognition purposes. We analyzed acceleration signals from the foot, hip, pocket and arm. Applying various methods, the best EER obtained for foot-, pocket-, arm- and hip- based user authentication were 5%, 7%, 10% and 13%, respectively. Furthermore, we present the results of our analysis on security assessment of gait. Studying gait-based user authentication (in case of hip motion under three attack scenarios, we revealed that a minimal effort mimicking does not help to improve the acceptance chances of impostors. However, impostors who know their closest person in the database or the genders of the users can be a threat to gait-based authentication. We also provide some new insights toward the uniqueness of gait in case of foot motion. In particular, we revealed the following: a sideway motion of the foot provides the most discrimination, compared to an up-down or forward-backward directions; and different segments of the gait cycle provide different level of discrimination.

  13. Gait Recognition Using Wearable Motion Recording Sensors

    Science.gov (United States)

    Gafurov, Davrondzhon; Snekkenes, Einar

    2009-12-01

    This paper presents an alternative approach, where gait is collected by the sensors attached to the person's body. Such wearable sensors record motion (e.g. acceleration) of the body parts during walking. The recorded motion signals are then investigated for person recognition purposes. We analyzed acceleration signals from the foot, hip, pocket and arm. Applying various methods, the best EER obtained for foot-, pocket-, arm- and hip- based user authentication were 5%, 7%, 10% and 13%, respectively. Furthermore, we present the results of our analysis on security assessment of gait. Studying gait-based user authentication (in case of hip motion) under three attack scenarios, we revealed that a minimal effort mimicking does not help to improve the acceptance chances of impostors. However, impostors who know their closest person in the database or the genders of the users can be a threat to gait-based authentication. We also provide some new insights toward the uniqueness of gait in case of foot motion. In particular, we revealed the following: a sideway motion of the foot provides the most discrimination, compared to an up-down or forward-backward directions; and different segments of the gait cycle provide different level of discrimination.

  14. Novel compliant actuator for wearable robotics applications.

    Science.gov (United States)

    Claros, M; Soto, R; Rodríguez, J J; Cantú, C; Contreras-Vidal, José L

    2013-01-01

    In the growing fields of wearable robotics, rehabilitation robotics, prosthetics, and walking robots, variable impedance and force actuators are being designed and implemented because of their ability to dynamically modulate the intrinsic viscoelastic properties such as stiffness and damping. This modulation is crucial to achieve an efficient and safe human-robot interaction that could lead to electronically generate useful emergent dynamical behaviors. In this work we propose a novel actuation system in which is implemented a control scheme based on equilibrium forces for an active joint capable to provide assistance/resistance as needed and also achieve minimal mechanical impedance when tracking the movement of the user limbs. The actuation system comprises a DC motor with a built in speed reducer, two force-sensing resistors (FSR), a mechanism which transmits to the FSRs the torque developed in the joint and a controller which regulate the amount of energy that is delivered to the DC motor. The proposed system showed more impedance reduction, by the effect of the controlled contact forces, compared with the ones in the reviewed literature.

  15. Sustainably powering wearable electronics solely by biomechanical energy

    Science.gov (United States)

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-09-01

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m-2. With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered.

  16. Wearable devices for blood purification: principles, miniaturization, and technical challenges.

    Science.gov (United States)

    Armignacco, Paolo; Lorenzin, Anna; Neri, Mauro; Nalesso, Federico; Garzotto, Francesco; Ronco, Claudio

    2015-01-01

    The prevalences of end-stage renal disease (ESRD) and renal replacement therapy (RRT) continue to increase across the world imposing staggering costs on providers. Therefore, strategies to optimize the treatment and improve survival are of fundamental importance. Despite the benefits of daily dialysis, its implementation is difficult and wearable hemodialysis might represent an alternative by which frequent treatments can be delivered to ESRD patients with much less interference in their routines promoting better quality of life. The development of the wearable artificial kidney (WAK) requires incorporation of basic components of a dialysis system into a wearable device that allows mobility, miniaturization, and above all, patient-oriented management. The technical requirements necessary for WAK can be divided into the following broad categories: dialysis membranes, dialysis regeneration, vascular access, patient monitoring systems, and power sources. Pumping systems for blood and other fluids are the most critical components of the entire device.

  17. International Conference on Wearable Sensors and Robots 2015

    CERN Document Server

    Virk, G; Yang, Huayong

    2017-01-01

    These proceedings present the latest information on regulations and standards for medical and non-medical devices, including wearable robots for gait training and support, design of exoskeletons for the elderly, innovations in assistive robotics, and analysis of human–machine interactions taking into account ergonomic considerations. The rapid development of key mechatronics technologies in recent years has shown that human living standards have significantly improved, and the International Conference on Wearable Sensor and Robot was held in Hangzhou, China from October 16 to 18, 2015, to present research mainly focused on personal-care robots and medical devices. The aim of the conference was to bring together academics, researchers, engineers and students from across the world to discuss state-of-the-art technologies related to various aspects of wearable sensors and robots. .

  18. A Wearable Capacitive Sensor for Monitoring Human Respiratory Rate

    Science.gov (United States)

    Kundu, Subrata Kumar; Kumagai, Shinya; Sasaki, Minoru

    2013-04-01

    Realizing an untethered, low-cost, and comfortably wearable respiratory rate sensor for long-term breathing monitoring application still remains a challenge. In this paper, a conductive-textile-based wearable respiratory rate sensing technique based on the capacitive sensing approach is proposed. The sensing unit consists of two conductive textile electrodes that can be easily fabricated, laminated, and integrated in garments. Respiration cycle is detected by measuring the capacitance of two electrodes placed on the inner anterior and posterior sides of a T-shirt at either the abdomen or chest position. A convenient wearable respiratory sensor setup with a capacitance-to-voltage converter has been devised. Respiratory rate as well as breathing mode can be accurately identified using the designed sensor. The sensor output provides significant information on respiratory flow. The effectiveness of the proposed system for different breathing patterns has been evaluated by experiments.

  19. Location tracking system using wearable on-body GPS antenna

    Directory of Open Access Journals (Sweden)

    Sabapathy Thennarasan

    2017-01-01

    Full Text Available An on-body location tracking system is developed and integrated with a wearable GPS antenna. Such system is beneficial in human location tracking of patients and elderly within a radius of 1 km. The system consists of a wearable antenna, a GPS module, a low cost microcontroller, two RF modules and a local monitoring system. A user equipped with the GPS antenna, GPS module and a RF transmitter is able send his/her location to the local monitoring system via a RF receiver. The proposed wearable antenna is validated to be safe for human use in terms of specific absorption rate (SAR. This antenna was then incorporated into the complete prototype and tested. Several suggestions for future improvements are also proposed and discussed.

  20. Sustainably powering wearable electronics solely by biomechanical energy.

    Science.gov (United States)

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-09-28

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m(-2). With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered.

  1. Quantitative wearable sensors for objective assessment of Parkinson's disease.

    Science.gov (United States)

    Maetzler, Walter; Domingos, Josefa; Srulijes, Karin; Ferreira, Joaquim J; Bloem, Bastiaan R

    2013-10-01

    There is a rapidly growing interest in the quantitative assessment of Parkinson's disease (PD)-associated signs and disability using wearable technology. Both persons with PD and their clinicians see advantages in such developments. Specifically, quantitative assessments using wearable technology may allow for continuous, unobtrusive, objective, and ecologically valid data collection. Also, this approach may improve patient-doctor interaction, influence therapeutic decisions, and ultimately ameliorate patients' global health status. In addition, such measures have the potential to be used as outcome parameters in clinical trials, allowing for frequent assessments; eg, in the home setting. This review discusses promising wearable technology, addresses which parameters should be prioritized in such assessment strategies, and reports about studies that have already investigated daily life issues in PD using this new technology.

  2. Carbon nanotube strain sensors for wearable patient monitoring applications

    Science.gov (United States)

    Abraham, Jose K.; Aryasomayajula, Lavanya; Whitchurch, Ashwin; Varadan, Vijay K.

    2008-03-01

    Wearable health monitoring systems have recently attracted widespread interest for their application in long term patient monitoring. Wireless wearable technology enables continuous observation of patients while they perform their normal everyday activities. This involves the development of flexible and conformable sensors that could be easily integrated to the smart fabrics. Carbon nanotubes are found to be one of the ideal candidate materials for the design of multifunctional e-textiles because of their capability to change conductance based on any mechanical deformation as well as surface functionalization. This paper presents the development and characterization of a carbon nanotube (CNT)-polymer nanocomposite flexible strain sensor for wearable health monitoring applications. These strain sensors can be used to measure the respiration rhythm which is a vital signal required in health monitoring. A number of strain sensor prototypes with different CNT compositions have been fabricated and their characteristics for both static as well as dynamic strain have been measured.

  3. Triboelectric generators and sensors for self-powered wearable electronics.

    Science.gov (United States)

    Ha, Minjeong; Park, Jonghwa; Lee, Youngoh; Ko, Hyunhyub

    2015-04-28

    In recent years, the field of wearable electronics has evolved at a rapid pace, requiring continued innovation in technologies in the fields of electronics, energy devices, and sensors. In particular, wearable devices have multiple applications in healthcare monitoring, identification, and wireless communications, and they are required to perform well while being lightweight and having small size, flexibility, low power consumption, and reliable sensing performances. In this Perspective, we introduce two recent reports on the triboelectric generators with high-power generation achieved using flexible and lightweight textiles or miniaturized and hybridized device configurations. In addition, we present a brief overview of recent developments and future prospects of triboelectric energy harvesters and sensors, which may enable fully self-powered wearable devices with significantly improved sensing capabilities.

  4. Smart Woven Fabrics With Portable And Wearable Vibrating Electronics

    Directory of Open Access Journals (Sweden)

    Özdemir Hakan

    2015-06-01

    Full Text Available The portable and wearable instrumented fabrics capable of measuring biothermal variable is essential for drivers, especially long-distance drivers. Here we report on portable and wearable devices that are able to read the temperature of human body within the woven fabric. The sensory function of the fabric is achieved by temperature sensors, soldered on conductive threads coated with cotton. The presence of stainless steel wires gives these materials conductive properties, enabling the detection of human body temperature and transmitting the signal form sensors to the motors on the fabric. When body temperature decreases, hardware/software platforms send a signal to the vibration motors in order to stimulate the driver. The ‘smart woven fabric’-sensing architecture can be divided into two parts: a textile platform, where portable and wearable devices acquire thermal signals, and hardware/software platforms, to which a sensor sends the acquired data, which send the signals to the vibration motors.

  5. Sustainably powering wearable electronics solely by biomechanical energy

    Science.gov (United States)

    Wang, Jie; Li, Shengming; Yi, Fang; Zi, Yunlong; Lin, Jun; Wang, Xiaofeng; Xu, Youlong; Wang, Zhong Lin

    2016-01-01

    Harvesting biomechanical energy is an important route for providing electricity to sustainably drive wearable electronics, which currently still use batteries and therefore need to be charged or replaced/disposed frequently. Here we report an approach that can continuously power wearable electronics only by human motion, realized through a triboelectric nanogenerator (TENG) with optimized materials and structural design. Fabricated by elastomeric materials and a helix inner electrode sticking on a tube with the dielectric layer and outer electrode, the TENG has desirable features including flexibility, stretchability, isotropy, weavability, water-resistance and a high surface charge density of 250 μC m−2. With only the energy extracted from walking or jogging by the TENG that is built in outsoles, wearable electronics such as an electronic watch and fitness tracker can be immediately and continuously powered. PMID:27677971

  6. [Key Technology and Quantity Control of Wearable Medical Devices].

    Science.gov (United States)

    Cui, Hongen; Yao, Shaowei

    2015-03-01

    In recent years, because the wearable medical devices can indicate the health monitoring index of blood sugar, blood pressure, heart rate, oxygen content, temperature, respiration of the human body anytime and anywhere, can also be used for the treatment of various diseases, accompanied by the development of large data, which will bring a subversive revolution for the medical device industry. This paper introduces the development of wearable devices, key technical index of main products, and to make a preliminary study on its quantity control.

  7. Designing Wearable Personal Assistants for Surgeons: An Egocentric Approach

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Pederson, Thomas

    2015-01-01

    The design of general-purpose wearable computers demands particular care for how human perception, cognition, and action work and work together. The authors propose a human body-and-mind centric (egocentric as opposed to device-centric) design framework and present initial findings from deploying...... it in the design of a wearable personal assistant (WPA) for orthopedic surgeons. The result is a Google Glass-based prototype system aimed at facilitating touchless interaction with x-ray images, browsing of electronic patient records (EPR) when on the move, and synchronized ad hoc remote collaboration...

  8. Wearable System for Acquisition and Monitoring of Biological Signals

    Science.gov (United States)

    Piccinini, D. J.; Andino, N. B.; Ponce, S. D.; Roberti, MA; López, y. N.

    2016-04-01

    This paper presents a modular, wearable system for acquisition and wireless transmission of biological signals. Configurable slaves for different signals (such as ECG, EMG, inertial sensors, and temperature) based in the ADS1294 Medical Analog Front End are connected to a Master, based in the CC3200 microcontroller, both from Texas Instruments. The slaves are configurable according to the specific application, providing versatility to the wearable system. The battery consumption is reduced, through a couple of Li-ion batteries and the circuit has also a battery charger. A custom made box was designed and fabricated in a 3D printer, preserving the requirements of low cost, low weight and safety recommendations.

  9. Low power signal processing electronics for wearable medical devices.

    Science.gov (United States)

    Casson, Alexander J; Rodriguez-Villegas, Esther

    2010-01-01

    Custom designed microchips, known as Application Specific Integrated Circuits (ASICs), offer the lowest possible power consumption electronics. However, this comes at the cost of a longer, more complex and more costly design process compared to one using generic, off-the-shelf components. Nevertheless, their use is essential in future truly wearable medical devices that must operate for long periods of time from physically small, energy limited batteries. This presentation will demonstrate the state-of-the-art in ASIC technology for providing online signal processing for use in these wearable medical devices.

  10. The wearable cardioverter-defibrillator: current technology and evolving indications.

    Science.gov (United States)

    Reek, Sven; Burri, Haran; Roberts, Paul R; Perings, Christian; Epstein, Andrew E; Klein, Helmut U

    2016-10-04

    The wearable cardioverter-defibrillator has been available for over a decade and now is frequently prescribed for patients deemed at high arrhythmic risk in whom the underlying pathology is potentially reversible or who are awaiting an implantable cardioverter-defibrillator. The use of the wearable cardioverter-defibrillator is included in the new 2015 ESC guidelines for the management of ventricular arrhythmias and prevention of sudden cardiac death. The present review provides insight into the current technology and an overview of this approach.

  11. Exposure Control Indoors with Wearable Personal Exhaust Unit

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Barova, Maria I.; Melikov, Arsen Krikor

    2013-01-01

    A wearable personalized ventilation (PV) unit to reduce the risk from airborne disease contamination is reported. The PV unit consists of a nozzle, installed on a headset, which is used to locally exhaust the exhaled air before it mixes with the surroundings. Experiments at 22 °C were performed...... background air distribution at 3, 6 and 12 ACH. The use of the device showed a great potential in reducing the concentration of exhaled air in the room to the level measured under mixing ventilation alone at 12 ACH. The high potential to capture exhaled air, makes the wearable PV applicable as an efficient...

  12. NASA Wearable Technology CLUSTER 2013-2014 Report

    Science.gov (United States)

    Simon, Cory; Dunne, Lucy; Zeagler, Clint; Martin, Tom; Pailes-Friedman, Rebecca

    2014-01-01

    Wearable technology has the potential to revolutionize the way humans interact with one another, with information, and with the electronic systems that surround them. This change can already be seen in the dramatic increase in the availability and use of wearable health and activity monitors. These devices continuously monitor the wearer using on-­-body sensors and wireless communication. They provide feedback that can be used to improve physical health and performance. Smart watches and head mounted displays are also receiving a great deal of commercial attention, providing immediate access to information via graphical displays, as well as additional sensing features. For the purposes of the Wearable Technology CLUSTER, wearable technology is broadly defined as any electronic sensing, human interfaces, computing, or communication that is mounted on the body. Current commercially available wearable devices primarily house electronics in rigid packaging to provide protection from flexing, moisture, and other contaminants. NASA mentors are interested in this approach, but are also interested in direct integration of electronics into clothing to enable more comfortable systems. For human spaceflight, wearable technology holds a great deal of promise for significantly improving safety, efficiency, autonomy, and research capacity for the crew in space and support personnel on the ground. Specific capabilities of interest include: Continuous biomedical monitoring for research and detection of health problems. Environmental monitoring for individual exposure assessments and alarms. Activity monitoring for responsive robotics and environments. Multi-modal caution and warning using tactile, auditory, and visual alarms. Wireless, hands-free, on-demand voice communication. Mobile, on-demand access to space vehicle and robotic displays and controls. Many technical challenges must be overcome to realize these wearable technology applications. For example, to make a wearable

  13. Smart Vest: wearable multi-parameter remote physiological monitoring system.

    Science.gov (United States)

    Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C

    2008-05-01

    The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.

  14. Conceptual privacy framework for health information on wearable device.

    Science.gov (United States)

    Safavi, Seyedmostafa; Shukur, Zarina

    2014-01-01

    Wearable health tech provides doctors with the ability to remotely supervise their patients' wellness. It also makes it much easier to authorize someone else to take appropriate actions to ensure the person's wellness than ever before. Information Technology may soon change the way medicine is practiced, improving the performance, while reducing the price of healthcare. We analyzed the secrecy demands of wearable devices, including Smartphone, smart watch and their computing techniques, that can soon change the way healthcare is provided. However, before this is adopted in practice, all devices must be equipped with sufficient privacy capabilities related to healthcare service. In this paper, we formulated a new improved conceptual framework for wearable healthcare systems. This framework consists of ten principles and nine checklists, capable of providing complete privacy protection package to wearable device owners. We constructed this framework based on the analysis of existing mobile technology, the results of which are combined with the existing security standards. The approach also incorporates the market share percentage level of every app and its respective OS. This framework is evaluated based on the stringent CIA and HIPAA principles for information security. This evaluation is followed by testing the capability to revoke rights of subjects to access objects and ability to determine the set of available permissions for a particular subject for all models Finally, as the last step, we examine the complexity of the required initial setup.

  15. A Dual-Core System Solution for Wearable Health Monitors

    NARCIS (Netherlands)

    Santana Arnaiz, O.A.; Bouwens, F.; Huisken, J.A.; De Groot, H.; Bennebroek, M.T.; Van Meerbergen, J.L.; Abbo, A.A.; Fraboulet, A.

    2011-01-01

    This paper presents a system design study for wearable sensor devices intended for healthcare and lifestyle applications based on ECG,EEG and activity monitoring. In order to meet the low-power requirement of these applications, a dual-core signal processing system is proposed which combines an ultr

  16. Deformable devices with integrated functional nanomaterials for wearable electronics.

    Science.gov (United States)

    Kim, Jaemin; Lee, Jongsu; Son, Donghee; Choi, Moon Kee; Kim, Dae-Hyeong

    2016-01-01

    As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.

  17. Creating a wearable artificial kidney : where are we now?

    NARCIS (Netherlands)

    Kooman, Jeroen P; Joles, Jaap A.; Gerritsen, Karin G F

    2015-01-01

    A wearable and, ultimately, an implantable artificial kidney is a long-held aim in the treatment of patients with end-stage renal disease, provided that it would combine continuous blood purification, preventing the fluctuations in the internal environment associated with hemodialysis, while maintai

  18. Educational Behavior Apps and Wearable Devices: Current Research and Prospects

    Science.gov (United States)

    Lowe, Heather

    2016-01-01

    Dartmouth and MIT have developed educational behavior apps and wearable devices that collect contiguous streams of data from student users. Given the consent of the user, the app collects information about a student's physical activity, sleep patterns, and location to form conjectures about social and academic behavior. These apps have the…

  19. Designing Wearable Personal Assistants for Surgeons: An Egocentric Approach

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Pederson, Thomas

    2015-01-01

    it in the design of a wearable personal assistant (WPA) for orthopedic surgeons. The result is a Google Glass-based prototype system aimed at facilitating touchless interaction with x-ray images, browsing of electronic patient records (EPR) when on the move, and synchronized ad hoc remote collaboration...

  20. Towards Mental Stress Detection Using Wearable Physiological Sensors

    NARCIS (Netherlands)

    Wijsman, J.L.P; Grundlehner, Bernard; Liu, Hao; Liu, H.; Hermens, Hermanus J.; Penders, Julien

    2011-01-01

    Early mental stress detection can prevent many stress related health problems. This study aimed at using a wearable sensor system to measure physiological signals and detect mental stress. Three different stress conditions were presented to a healthy subject group. During the procedure, ECG,

  1. Deformable devices with integrated functional nanomaterials for wearable electronics

    Science.gov (United States)

    Kim, Jaemin; Lee, Jongsu; Son, Donghee; Choi, Moon Kee; Kim, Dae-Hyeong

    2016-03-01

    As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.

  2. Wearable technology: using Google Glass as a teaching tool.

    Science.gov (United States)

    Knight, Hui Min; Gajendragadkar, Parag Ravindra; Bokhari, Awais

    2015-05-12

    Wearable technology holds great promise in revolutionising healthcare delivery. The benefits can also be seen in medical education and delivering healthcare in remote places. We report the use of Google Glass technology as a teaching tool in broadcasting a procedure onto a mobile phone as a viewer, replacing expensive and often cumbersome existing equipment.

  3. Wearable sensors and systems. From enabling technology to clinical applications.

    Science.gov (United States)

    Bonato, Paolo

    2010-01-01

    It is now more than 50 years since the time when clinical monitoring of individuals in the home and community settings was first envisioned. Until recently, technologies to enable such vision were lacking. However, wearable sensors and systems developed over the past decade have provided the tools to finally implement and deploy technology with the capabilities required by researchers in the field of patients' home monitoring. As discussed, potential applications of these technologies include the early diagnosis of diseases such as congestive heart failure, the prevention of chronic conditions such as diabetes, improved clinical management of neurodegenerative conditions such as Parkinson's disease, and the ability to promptly respond to emergency situations such as seizures in patients with epilepsy and cardiac arrest in subjects undergoing cardiovascular monitoring. Current research efforts are now focused on the development of more complex systems for home monitoring of individuals with a variety of preclinical and clinical conditions. Recent research on the clinical assessment of wearable technology promises to deliver methodologies that are expected to lead to clinical adoption within the next five to ten years. In particular, combining home robots and wearable technology is likely to be a key step toward achieving the goal of effectively monitoring patients in the home. These efforts to merge home robots and wearable technology are expected to enable a new generation of complex systems with the ability to monitor subjects' status, facilitate the administration of interventions, and provide an invaluable tool to respond to emergency situations.

  4. Use of wearable technology for performance assessment: a validation study.

    Science.gov (United States)

    Papi, Enrica; Osei-Kuffour, Denise; Chen, Yen-Ming A; McGregor, Alison H

    2015-07-01

    The prevalence of osteoarthritis is increasing globally but current compliance with rehabilitation remains poor. This study explores whether wearable sensors can be used to provide objective measures of performance with a view to using them as motivators to aid compliance to osteoarthritis rehabilitation. More specifically, the use of a novel attachable wearable sensor integrated into clothing and inertial measurement units located in two different positions, at the waist and thigh pocket, was investigated. Fourteen healthy volunteers were asked to complete exercises adapted from a knee osteoarthritis rehabilitation programme whilst wearing the three sensors including five times sit-to-stand test, treadmill walking at slow, preferred and fast speeds. The performances of the three sensors were validated against a motion capture system and an instrumented treadmill. The systems showed a high correlation (r(2) > 0.7) and agreement (mean difference range: -0.02-0.03 m, 0.005-0.68 s) with gold standards. The novel attachable wearable sensor was able to monitor exercise tasks as well as the inertial measurement units (ICC > 0.95). Results also suggested that a functional placement (e.g., situated in a pocket) is a valid position for performance monitoring. This study shows the potential use of wearable technologies for assessing subject performance during exercise and suggests functional solutions to enhance acceptance.

  5. Manufacturing of Wearable Sensors for Human Health and Performance Monitoring

    Science.gov (United States)

    Alizadeh, Azar

    2015-03-01

    Continuous monitoring of physiological and biological parameters is expected to improve performance and medical outcomes by assessing overall health status and alerting for life-saving interventions. Continuous monitoring of these parameters requires wearable devices with an appropriate form factor (lightweight, comfortable, low energy consuming and even single-use) to avoid disrupting daily activities thus ensuring operation relevance and user acceptance. Many previous efforts to implement remote and wearable sensors have suffered from high cost and poor performance, as well as low clinical and end-use acceptance. New manufacturing and system level design approaches are needed to make the performance and clinical benefits of these sensors possible while satisfying challenging economic, regulatory, clinical, and user-acceptance criteria. In this talk we will review several recent design and manufacturing efforts aimed at designing and building prototype wearable sensors. We will discuss unique opportunities and challenges provided by additive manufacturing, including 3D printing, to drive innovation through new designs, faster prototyping and manufacturing, distributed networks, and new ecosystems. We will also show alternative hybrid self-assembly based integration techniques for low cost large scale manufacturing of single use wearable devices. Coauthors: Prabhjot Singh and Jeffrey Ashe.

  6. Towards Mental Stress Detection Using Wearable Physiological Sensors

    NARCIS (Netherlands)

    Wijsman, Jacqueline; Grundlehner, Bernard; Liu, Hao; Hermens, Hermie; Penders, Julien

    2011-01-01

    Early mental stress detection can prevent many stress related health problems. This study aimed at using a wearable sensor system to measure physiological signals and detect mental stress. Three different stress conditions were presented to a healthy subject group. During the procedure, ECG, respira

  7. Conceptual privacy framework for health information on wearable device.

    Directory of Open Access Journals (Sweden)

    Seyedmostafa Safavi

    Full Text Available Wearable health tech provides doctors with the ability to remotely supervise their patients' wellness. It also makes it much easier to authorize someone else to take appropriate actions to ensure the person's wellness than ever before. Information Technology may soon change the way medicine is practiced, improving the performance, while reducing the price of healthcare. We analyzed the secrecy demands of wearable devices, including Smartphone, smart watch and their computing techniques, that can soon change the way healthcare is provided. However, before this is adopted in practice, all devices must be equipped with sufficient privacy capabilities related to healthcare service. In this paper, we formulated a new improved conceptual framework for wearable healthcare systems. This framework consists of ten principles and nine checklists, capable of providing complete privacy protection package to wearable device owners. We constructed this framework based on the analysis of existing mobile technology, the results of which are combined with the existing security standards. The approach also incorporates the market share percentage level of every app and its respective OS. This framework is evaluated based on the stringent CIA and HIPAA principles for information security. This evaluation is followed by testing the capability to revoke rights of subjects to access objects and ability to determine the set of available permissions for a particular subject for all models Finally, as the last step, we examine the complexity of the required initial setup.

  8. Self-Powered Pulse Sensor for Antidiastole of Cardiovascular Disease.

    Science.gov (United States)

    Ouyang, Han; Tian, Jingjing; Sun, Guanglong; Zou, Yang; Liu, Zhuo; Li, Hu; Zhao, Luming; Shi, Bojing; Fan, Yubo; Fan, Yifan; Wang, Zhong Lin; Li, Zhou

    2017-09-01

    Cardiovascular diseases are the leading cause of death globally; fortunately, 90% of cardiovascular diseases are preventable by long-term monitoring of physiological signals. Stable, ultralow power consumption, and high-sensitivity sensors are significant for miniaturized wearable physiological signal monitoring systems. Here, this study proposes a flexible self-powered ultrasensitive pulse sensor (SUPS) based on triboelectric active sensor with excellent output performance (1.52 V), high peak signal-noise ratio (45 dB), long-term performance (10(7) cycles), and low cost price. Attributed to the crucial features of acquiring easy-processed pulse waveform, which is consistent with second derivative of signal from conventional pulse sensor, SUPS can be integrated with a bluetooth chip to provide accurate, wireless, and real-time monitoring of pulse signals of cardiovascular system on a smart phone/PC. Antidiastole of coronary heart disease, atrial septal defect, and atrial fibrillation are made, and the arrhythmia (atrial fibrillation) is indicative diagnosed from health, by characteristic exponent analysis of pulse signals accessed from volunteer patients. This SUPS is expected to be applied in self-powered, wearable intelligent mobile diagnosis of cardiovascular disease in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices.

    Science.gov (United States)

    Zheng, Zhaoqiang; Zhang, Tanmei; Yao, Jiandomg; Zhang, Yi; Xu, Jiarui; Yang, Guowei

    2016-06-03

    Although two-dimensional (2D) materials have attracted considerable research interest for use in the development of innovative wearable optoelectronic systems, the integrated optoelectronic performance of 2D materials photodetectors, including flexibility, transparency, broadband response and stability in air, remains quite low to date. Here, we demonstrate a flexible, transparent, high-stability and ultra-broadband photodetector made using large-area and highly-crystalline WSe2 films that were prepared by pulsed-laser deposition (PLD). Benefiting from the 2D physics of WSe2 films, this device exhibits excellent average transparency of 72% in the visible range and superior photoresponse characteristics, including an ultra-broadband detection spectral range from 370 to 1064 nm, reversible photoresponsivity approaching 0.92 A W(-1), external quantum efficiency of up to 180% and a relatively fast response time of 0.9 s. The fabricated photodetector also demonstrates outstanding mechanical flexibility and durability in air. Also, because of the wide compatibility of the PLD-grown WSe2 film, we can fabricate various photodetectors on multiple flexible or rigid substrates, and all these devices will exhibit distinctive switching behavior and superior responsivity. These indicate a possible new strategy for the design and integration of flexible, transparent and broadband photodetectors based on large-area WSe2 films, with great potential for practical applications in the wearable optoelectronic devices.

  10. Encapsulated, High-Performance, Stretchable Array of Stacked Planar Micro-Supercapacitors as Waterproof Wearable Energy Storage Devices.

    Science.gov (United States)

    Kim, Hyoungjun; Yoon, Jangyeol; Lee, Geumbee; Paik, Seung-Ho; Choi, Gukgwon; Kim, Daeil; Kim, Beop-Min; Zi, Goangseup; Ha, Jeong Sook

    2016-06-29

    We report the fabrication of an encapsulated, high-performance, stretchable array of stacked planar micro-supercapacitors (MSCs) as a wearable energy storage device for waterproof applications. A pair of planar all-solid-state MSCs with spray-coated multiwalled carbon nanotube electrodes and a drop-cast UV-patternable ion-gel electrolyte was fabricated on a polyethylene terephthalate film using serial connection to increase the operation voltage of the MSC. Additionally, multiple MSCs could be vertically stacked with parallel connections to increase both the total capacitance and the areal capacitance owing to the use of a solid-state patterned electrolyte. The overall device of five parallel-connected stacked MSCs, a microlight-emitting diode (μ-LED), and a switch was encapsulated in thin Ecoflex film so that the capacitance remained at 82% of its initial value even after 4 d in water; the μ-LED was lit without noticeable decrease in brightness under deformation including bending and stretching. Furthermore, an Ecoflex encapsulated oximeter wound around a finger was operated using the stored energy of the MSC array attached to the hand (even in water) to give information on arterial pulse rate and oxygen saturation in the blood. This study suggests potential applications of our encapsulated MSC array in wearable energy storage devices especially in water.

  11. A transdisciplinary approach to wearables, big data and quality of life.

    Science.gov (United States)

    Sungmee Park; Jayaraman, Sundaresan

    2014-01-01

    Today, the term "wearable" goes beyond the traditional definition of clothing; it refers to an accessory that enables personalized mobile information processing. We define the concept of wearables, present their attributes and discuss their role at the core of an ecosystem for harnessing big data. We discuss the concept of a meta-wearable and propose a transdisciplinary approach to transform the field and enhance the quality of life for everyone.

  12. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.

    Science.gov (United States)

    Zhang, Qingxue; Zhou, Dian; Zeng, Xuan

    2017-02-06

    Long-term continuous systolic blood pressure (SBP) and heart rate (HR) monitors are of tremendous value to medical (cardiovascular, circulatory and cerebrovascular management), wellness (emotional and stress tracking) and fitness (performance monitoring) applications, but face several major impediments, such as poor wearability, lack of widely accepted robust SBP models and insufficient proofing of the generalization ability of calibrated models. This paper proposes a wearable cuff-less electrocardiography (ECG) and photoplethysmogram (PPG)-based SBP and HR monitoring system and many efforts are made focusing on above challenges. Firstly, both ECG/PPG sensors are integrated into a single-arm band to provide a super wearability. A highly convenient but challenging single-lead configuration is proposed for weak single-arm-ECG acquisition, instead of placing the electrodes on the chest, or two wrists. Secondly, to identify heartbeats and estimate HR from the motion artifacts-sensitive weak arm-ECG, a machine learning-enabled framework is applied. Then ECG-PPG heartbeat pairs are determined for pulse transit time (PTT) measurement. Thirdly, a PTT&HR-SBP model is applied for SBP estimation, which is also compared with many PTT-SBP models to demonstrate the necessity to introduce HR information in model establishment. Fourthly, the fitted SBP models are further evaluated on the unseen data to illustrate the generalization ability. A customized hardware prototype was established and a dataset collected from ten volunteers was acquired to evaluate the proof-of-concept system. The semi-customized prototype successfully acquired from the left upper arm the PPG signal, and the weak ECG signal, the amplitude of which is only around 10% of that of the chest-ECG. The HR estimation has a mean absolute error (MAE) and a root mean square error (RMSE) of only 0.21 and 1.20 beats per min, respectively. Through the comparative analysis, the PTT&HR-SBP models significantly outperform

  13. Wearable sensor network for health monitoring: the case of Parkinson disease

    Science.gov (United States)

    Pastorino, M.; Arredondo, M. T.; Cancela, J.; Guillen, S.

    2013-06-01

    The aim of this paper is to show how wearable sensors can be useful in health solutions, improving the continuous monitoring and management of patients. This paper is focused on the available solution for motion analysis, providing a description of human motion features which can be measured through the use of wearable sensors. Moreover, this paper presents an example of wearable solution used for the objective assessment of Parkinson's disease symptoms. Results indicate that wearable sensors are useful for the objective evaluation of motor fluctuation and clinicians can benefit from these tools in order to adjust and personalise the treatment.

  14. Development of gait segmentation methods for wearable foot pressure sensors.

    Science.gov (United States)

    Crea, S; De Rossi, S M M; Donati, M; Reberšek, P; Novak, D; Vitiello, N; Lenzi, T; Podobnik, J; Munih, M; Carrozza, M C

    2012-01-01

    We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to detect gait phases with different levels of complexity in the processing of the wearable pressure sensors signals. Therefore three different datasets are developed: raw voltage values, calibrated sensor signals and a calibrated estimation of total ground reaction force and position of the plantar center of pressure. The method is tested on a pool of 5 healthy subjects, through a leave-one-out cross validation. The results show high classification performances achieved using estimated biomechanical variables, being on average the 96%. Calibrated signals and raw voltage values show higher delays and dispersions in phase transition detection, suggesting a lower reliability for online applications.

  15. Multifunctional wearable devices for diagnosis and therapy of movement disorders.

    Science.gov (United States)

    Son, Donghee; Lee, Jongha; Qiao, Shutao; Ghaffari, Roozbeh; Kim, Jaemin; Lee, Ji Eun; Song, Changyeong; Kim, Seok Joo; Lee, Dong Jun; Jun, Samuel Woojoo; Yang, Shixuan; Park, Minjoon; Shin, Jiho; Do, Kyungsik; Lee, Mincheol; Kang, Kwanghun; Hwang, Cheol Seong; Lu, Nanshu; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2014-05-01

    Wearable systems that monitor muscle activity, store data and deliver feedback therapy are the next frontier in personalized medicine and healthcare. However, technical challenges, such as the fabrication of high-performance, energy-efficient sensors and memory modules that are in intimate mechanical contact with soft tissues, in conjunction with controlled delivery of therapeutic agents, limit the wide-scale adoption of such systems. Here, we describe materials, mechanics and designs for multifunctional, wearable-on-the-skin systems that address these challenges via monolithic integration of nanomembranes fabricated with a top-down approach, nanoparticles assembled by bottom-up methods, and stretchable electronics on a tissue-like polymeric substrate. Representative examples of such systems include physiological sensors, non-volatile memory and drug-release actuators. Quantitative analyses of the electronics, mechanics, heat-transfer and drug-diffusion characteristics validate the operation of individual components, thereby enabling system-level multifunctionalities.

  16. Development of a wearable vital signs monitor for healthcare.

    Science.gov (United States)

    Gallego, Jonathan; Lemos, Diego; Meneses, Gustavo A; Hernandez, Alher M

    2010-01-01

    In development countries the vital signs data measurement normally is performed at hospitals or laboratories where patients remain under observation with many electrodes attached on the body. The integration of biomedical data acquisition systems and information technologies (IT) enables continuous real time monitoring of physiological data in daily life, which improves patient's medical care and medical research possibilities. To achieve this goal, the research and development of some wearable intelligent sensors, sensors miniaturization, signal processing, wireless transmission, and databases development for these vital data have been done. Our goal is to implement a wearable system that can be used in places located outside of hospitals and medical institutions coverage area. In this paper, we present the current stage of the project where some intelligent modules have been implemented and other are under construction. Preliminary results concerning Non-Invasive Blood Pressure (NIBP), ECG and wireless connection are also presented.

  17. Mining Personal Data Using Smartphones and Wearable Devices: A Survey

    Science.gov (United States)

    Rehman, Muhammad Habib ur; Liew, Chee Sun; Wah, Teh Ying; Shuja, Junaid; Daghighi, Babak

    2015-01-01

    The staggering growth in smartphone and wearable device use has led to a massive scale generation of personal (user-specific) data. To explore, analyze, and extract useful information and knowledge from the deluge of personal data, one has to leverage these devices as the data-mining platforms in ubiquitous, pervasive, and big data environments. This study presents the personal ecosystem where all computational resources, communication facilities, storage and knowledge management systems are available in user proximity. An extensive review on recent literature has been conducted and a detailed taxonomy is presented. The performance evaluation metrics and their empirical evidences are sorted out in this paper. Finally, we have highlighted some future research directions and potentially emerging application areas for personal data mining using smartphones and wearable devices. PMID:25688592

  18. Wearable Technology to Garner the Perspective of Dementia Family Caregivers.

    Science.gov (United States)

    Matthews, Judith T; Campbell, Grace B; Hunsaker, Amanda E; Klinger, Julie; Mecca, Laurel Person; Hu, Lu; Hostein, Sally; Lingler, Jennifer H

    2016-04-01

    Family caregivers of individuals with dementia typically have limited opportunity during brief clinical encounters to describe the dementia-related behaviors and interactions they find difficult to handle. Lack of objective data depicting the nature, intensity, and impact of these manifestations of the underlying disease further constrains the extent to which strategies recommended by nurses or other health care providers can be tailored to the situation. The current article describes a prototype wearable camera system used to gather image and voice data from the caregiver's perspective in a pilot feasibility intervention study conducted with 18 caregiving dyads. Several scenarios are presented that include salient events (i.e., behaviors or interactions deemed difficult by the caregiver or identified as concerning by the research team during screening) captured in the resulting video. The current authors anticipate future wearable camera systems and software will automate screening for salient events, providing new tools for assessment and intervention by nurses.

  19. Design Considerations for Optimized Lateral Spring Structures for Wearable Electronics

    KAUST Repository

    Hussain, Aftab M.

    2016-03-07

    The market for wearable electronics has been gaining momentum in the recent years. For completely electronic wearable textiles with integrated sensors, actuators, computing units and communication circuitry, it is important that there is significant stretchability. This stretchability can be obtained by introducing periodic stretchable structures between the electronic circuits. In this work, we derive the equations and constraints governing the stretchability in horseshoe lateral spring structures. We have derived the optimum design and the parameters therein, to help develop the best spring structures for a given stretchability. We have also developed a figure of merit, called area efficiency of stretchability, to compare all twodimensional stretchable systems. Finally, we experimentally verify the validity of our equations by fabricating a metal/polymer bilayer thin film based stretchable horseshoe lateral spring structures. We obtain a stretchability of 1.875 which is comparable to the theoretical maxima of 2.01 for the given parameters.

  20. Flexible and stretchable power sources for wearable electronics.

    Science.gov (United States)

    Zamarayeva, Alla M; Ostfeld, Aminy E; Wang, Michael; Duey, Jerica K; Deckman, Igal; Lechêne, Balthazar P; Davies, Greg; Steingart, Daniel A; Arias, Ana Claudia

    2017-06-01

    Flexible and stretchable power sources represent a key technology for the realization of wearable electronics. Developing flexible and stretchable batteries with mechanical endurance that is on par with commercial standards and offer compliance while retaining safety remains a significant challenge. We present a unique approach that demonstrates mechanically robust, intrinsically safe silver-zinc batteries. This approach uses current collectors with enhanced mechanical design, such as helical springs and serpentines, as a structural support and backbone for all battery components. We show wire-shaped batteries based on helical band springs that are resilient to fatigue and retain electrochemical performance over 17,000 flexure cycles at a 0.5-cm bending radius. Serpentine-shaped batteries can be stretched with tunable degree and directionality while maintaining their specific capacity. Finally, the batteries are integrated, as a wearable device, with a photovoltaic module that enables recharging of the batteries.

  1. Feasibility of energy harvesting techniques for wearable medical devices.

    Science.gov (United States)

    Voss, Thaddaeus J; Subbian, Vignesh; Beyette, Fred R

    2014-01-01

    Wearable devices are arguably one of the most rapidly growing technologies in the computing and health care industry. These systems provide improved means of monitoring health status of humans in real-time. In order to cope with continuous sensing and transmission of biological and health status data, it is desirable to move towards energy autonomous systems that can charge batteries using passive, ambient energy. This not only ensures uninterrupted data capturing, but could also eliminate the need to frequently remove, replace, and recharge batteries. To this end, energy harvesting is a promising area that can lead to extremely power-efficient portable medical devices. This paper presents an experimental prototype to study the feasibility of harvesting two energy sources, solar and thermoelectric energy, in the context of wearable devices. Preliminary results show that such devices can be powered by transducing ambient energy that constantly surrounds us.

  2. QRS complex detection in ECG signal for wearable devices.

    Science.gov (United States)

    Arefin, M Riadh; Tavakolian, Kouhyar; Fazel-Rezai, Reza

    2015-01-01

    This paper presents QRS complex detection algorithm based on dual slope technique, which is suitable for wearable electrocardiogram (ECG) applications. For cardiac patients of different arrhythmias, ECG signals are needed to be monitored over an extensive period of time. Thus, the wearable heart monitoring system needs computationally efficient QRS detection technique with good accuracy. In this paper, a method of QRS detection based on two slopes on both sides of an R peak is presented which is computationally efficient. Based on the slopes, first, a variable measuring steepness is developed, then by introducing an adjustable R-R interval based window and adaptive thresholding techniques, depending on the number of peaks detected in such window, R peaks are detected. The algorithm was evaluated against MIT/BIH arrhythmia database and achieved 99.16% detection rate with sensitivity of 0.9935 and positive predictivity of 0.9981. The method was compared with two widely used R peaks detection algorithms.

  3. Mining personal data using smartphones and wearable devices: a survey.

    Science.gov (United States)

    Habib ur Rehman, Muhammad; Liew, Chee Sun; Wah, Teh Ying; Shuja, Junaid; Daghighi, Babak

    2015-02-13

    The staggering growth in smartphone and wearable device use has led to a massive scale generation of personal (user-specific) data. To explore, analyze, and extract useful information and knowledge from the deluge of personal data, one has to leverage these devices as the data-mining platforms in ubiquitous, pervasive, and big data environments. This study presents the personal ecosystem where all computational resources, communication facilities, storage and knowledge management systems are available in user proximity. An extensive review on recent literature has been conducted and a detailed taxonomy is presented. The performance evaluation metrics and their empirical evidences are sorted out in this paper. Finally, we have highlighted some future research directions and potentially emerging application areas for personal data mining using smartphones and wearable devices.

  4. Wearable diagnostic system for age-related macular degeneration.

    Science.gov (United States)

    Mohaghegh, N; Zadeh, E Ghafar; Magierowski, S

    2016-08-01

    This paper presents a novel head-mounted point-of-care diagnostic system for detection and continuous monitoring of Age-related Macular Degeneration (AMD). This wearable embedded open-source platform enables accurate monitoring of AMD by taking advantage of multiple standard graphical interface techniques such as Amsler Grid, Threshold Amsler Grid, Macular Computerized Psychophysical Test and Preferential Hyperacuity Perimeter (PHP). Here, we describe the proposed multi-Grid or so-called NGRID software and elaborate on the hardware prototype. This prototype includes a commercially available Oculus HMD incorporated with a single board computer. As the first step towards a fully integrated wearable system, this paper successfully proves the functionality of head-mounted graphical interface device ready for a live demonstration. Participants can experience this device and take a 10-minute AMD eye-exam. Furthermore, NGRID has been approved and permitted for an in-hospital clinical trial.

  5. A Comparative Review of Footwear-Based Wearable Systems

    Directory of Open Access Journals (Sweden)

    Nagaraj Hegde

    2016-08-01

    Full Text Available Footwear is an integral part of daily life. Embedding sensors and electronics in footwear for various different applications started more than two decades ago. This review article summarizes the developments in the field of footwear-based wearable sensors and systems. The electronics, sensing technologies, data transmission, and data processing methodologies of such wearable systems are all principally dependent on the target application. Hence, the article describes key application scenarios utilizing footwear-based systems with critical discussion on their merits. The reviewed application scenarios include gait monitoring, plantar pressure measurement, posture and activity classification, body weight and energy expenditure estimation, biofeedback, navigation, and fall risk applications. In addition, energy harvesting from the footwear is also considered for review. The article also attempts to shed light on some of the most recent developments in the field along with the future work required to advance the field.

  6. Exploring Architectural Details Through a Wearable Egocentric Vision Device

    Directory of Open Access Journals (Sweden)

    Stefano Alletto

    2016-02-01

    Full Text Available Augmented user experiences in the cultural heritage domain are in increasing demand by the new digital native tourists of 21st century. In this paper, we propose a novel solution that aims at assisting the visitor during an outdoor tour of a cultural site using the unique first person perspective of wearable cameras. In particular, the approach exploits computer vision techniques to retrieve the details by proposing a robust descriptor based on the covariance of local features. Using a lightweight wearable board, the solution can localize the user with respect to the 3D point cloud of the historical landmark and provide him with information about the details at which he is currently looking. Experimental results validate the method both in terms of accuracy and computational effort. Furthermore, user evaluation based on real-world experiments shows that the proposal is deemed effective in enriching a cultural experience.

  7. Wearable knee health rehabilitation assessment using acoustical emissions

    Science.gov (United States)

    Teague, Caitlin N.; Hersek, Sinan; Conant, Jordan L.; Gilliland, Scott M.; Inan, Omer T.

    2017-02-01

    We have developed a novel, wearable sensing system based on miniature piezoelectric contact microphones for measuring the acoustical emissions from the knee during movement. The system consists of two contact microphones, positioned on the medial and lateral sides of the patella, connected to custom, analog pre-amplifier circuits and a microcontroller for digitization and data storage on a secure digital card. Tn addition to the acoustical sensing, the system includes two integrated inertial measurement sensors including accelerometer and gyroscope modalities to enable joint angle calculations; these sensors, with digital outputs, are connected directly to the same microcontroller. The system provides low noise, accurate joint acoustical emission and angle measurements in a wearable form factor and has several hours of battery life.

  8. A novel wearable smart button system for fall detection

    Science.gov (United States)

    Zhuang, Wei; Sun, Xiang; Zhi, Yueyan; Han, Yue; Mao, Hande

    2017-05-01

    Fall has been the second most cause of accidental injury to death in the world. It has been a serious threat to the physical and mental health of the elders. Therefore, developing wearable node system with fall detecting ability has become increasingly pressing at present. A novel smart button for long-term fall detection is proposed in this paper, which is able to accurately monitor the falling behavior, and sending warning message online as well. The smart button is based on the tri-axis acceleration sensor which is used to collect the body motion signals. By using the statistical metrics of acceleration characteristics, a new SVM classification algorithm with high positive accuracy and stability is proposed so as to classify the falls and activities of daily living, and the results can be real-time displayed on Android based mobile phone. The experiments show that our wearable node system can continuously monitor the falling behavior with positive rate 94.8%.

  9. Research advances in control methods of wearable walking assist robots

    Directory of Open Access Journals (Sweden)

    Xia ZHANG

    2016-04-01

    Full Text Available As the proportion of the elderly in China increases, the need for robotic assist walking is growing. The assisted-as-needed (AAN property of a wearable walking assist robot matches a user’s biological need and improves the flexibility, appetency and friendliness of a mechanical system. To realize AAN walking and aiming at realizing master/slave flexible assist, a new hybrid control method consisting of hip joint control based on central pattern generators and knee joint impedance structured control is proposed. The adaptation of a robot's master/slave motion mode to a user's physical function, the continuous switching method for knee joint impedance structured control and its stability, and the AAN effect of the Hybrid control theory are studied, which provides a new thought for the development of wearable walking assist robots.

  10. Wearable devices- from healthy lifestyle to active ageing.

    Science.gov (United States)

    Lewy, H

    2015-01-01

    As wearable and mobile technologies are becoming more available and can provide more information and knowledge to users, new challenges and opportunities opens for industry and healthcare organizations. The future use of wearable by health and wellbeing users, from fitness tracking, to chronic disease management and independent living will create ecosystem for the population that will be adapted to their changing needs along lifespan in health and disease. This will also drive a change in healthcare delivery models and the relationship between patient and healthcare providers. It raises challenges for the healthcare systems as well as for the industry in implementing these new technologies, data privacy and security, regulation, adaptation of the systems to the individual and the growing amount of information in clinical practice and workflows. In this paper the vision, barriers, the gaps and opportunities will be discussed.

  11. Design, fabrication and metrological evaluation of wearable pressure sensors.

    Science.gov (United States)

    Goy, C B; Menichetti, V; Yanicelli, L M; Lucero, J B; López, M A Gómez; Parodi, N F; Herrera, M C

    2015-04-01

    Pressure sensors are valuable transducers that are necessary in a huge number of medical application. However, the state of the art of compact and lightweight pressure sensors with the capability of measuring the contact pressure between two surfaces (contact pressure sensors) is very poor. In this work, several types of wearable contact pressure sensors are fabricated using different conductive textile materials and piezo-resistive films. The fabricated sensors differ in size, the textile conductor used and/or the number of layers of the sandwiched piezo-resistive film. The intention is to study, through the obtaining of their calibration curves, their metrological properties (repeatability, sensitivity and range) and determine which physical characteristics improve their ability for measuring contact pressures. It has been found that it is possible to obtain wearable contact pressure sensors through the proposed fabrication process with satisfactory repeatability, range and sensitivity; and that some of these properties can be improved by the physical characteristics of the sensors.

  12. Wearable technology to help with visual challenges - two case studies.

    Science.gov (United States)

    Kálmán, Viktor; Baczó, Csaba; Livadas, Makis; Csielka, Tamás

    2015-01-01

    Today as embedded computing technology and sensors become cheaper and smaller wearable technologies experience an unprecedented boom. This article presents two wearable systems that aim to help people with low vision and the blind in performing everyday tasks and doing sports. DIGIGLASSES is a project aimed at creating a pair of augmented reality digital glasses that present controlled light and contrast levels and marks selectable features on the field of vision to aid in everyday tasks. BLINDTRACK is guidance system that uses wireless localization and an innovative haptic feedback belt to guide blind runners along the running track. Both systems are briefly presented along with the most relevant technical details and user feedback where applicable. Both projects were funded by the EU FP7. Corresponding author V. Kalman: viktor.kalman@ateknea.com.

  13. Mining Personal Data Using Smartphones and Wearable Devices: A Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Habib ur Rehman

    2015-02-01

    Full Text Available The staggering growth in smartphone and wearable device use has led to a massive scale generation of personal (user-specific data. To explore, analyze, and extract useful information and knowledge from the deluge of personal data, one has to leverage these devices as the data-mining platforms in ubiquitous, pervasive, and big data environments. This study presents the personal ecosystem where all computational resources, communication facilities, storage and knowledge management systems are available in user proximity. An extensive review on recent literature has been conducted and a detailed taxonomy is presented. The performance evaluation metrics and their empirical evidences are sorted out in this paper. Finally, we have highlighted some future research directions and potentially emerging application areas for personal data mining using smartphones and wearable devices.

  14. Energy-aware activity classification using wearable sensor networks

    Science.gov (United States)

    Dong, Bo; Montoye, Alexander; Moore, Rebecca; Pfeiffer, Karin; Biswas, Subir

    2013-05-01

    This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities for the on-body scenario are also characterized in terms of detection accuracy, by varying the background processing load in the sensor units. Impacts of varying number of sensors in terms of activity classification accuracy are also evaluated. Through a rigorous systems study, it is shown that an efficient human activity analytics system can be designed and operated even under energy and processing constraints of tiny on-body wearable sensors.

  15. A Wearable Hydration Sensor with Conformal Nanowire Electrodes.

    Science.gov (United States)

    Yao, Shanshan; Myers, Amanda; Malhotra, Abhishek; Lin, Feiyan; Bozkurt, Alper; Muth, John F; Zhu, Yong

    2017-01-27

    A wearable skin hydration sensor in the form of a capacitor is demonstrated based on skin impedance measurement. The capacitor consists of two interdigitated or parallel electrodes that are made of silver nanowires (AgNWs) in a polydimethylsiloxane (PDMS) matrix. The flexible and stretchable nature of the AgNW/PDMS electrode allows conformal contact to the skin. The hydration sensor is insensitive to the external humidity change and is calibrated against a commercial skin hydration system on an artificial skin over a wide hydration range. The hydration sensor is packaged into a flexible wristband, together with a network analyzer chip, a button cell battery, and an ultralow power microprocessor with Bluetooth. In addition, a chest patch consisting of a strain sensor, three electrocardiography electrodes, and a skin hydration sensor is developed for multimodal sensing. The wearable wristband and chest patch may be used for low-cost, wireless, and continuous monitoring of skin hydration and other health parameters.

  16. Assessment of Wearable Technology for Integrated Decision Support

    Science.gov (United States)

    2016-05-01

    direct  medical  supervision  and  hospitalization .  Wearable  sensors  and  nanoneedle  technologies  may  allow  patients  to  become  ambulatory...during  treatment  and  monitoring,  allowing them to stay at home, reducing the costs and  hospital  stays.     Security & Prevention:   Wearable...patients which allows  this  to be  measured accurately.   Motion  artifacts   in PPG based heart  rate sensors  is considerable.   ECG  devices monitor

  17. A Wearable Computing System for Dynamic Locating of Parking Spaces

    OpenAIRE

    Damian Mrugala; Alexander Dannies; Walter Lang

    2010-01-01

    This paper describes a dynamic locating system implemented in an autonomous wearable computing system for the automobile warehouse management application. Since the first prototype is developed as jacket [1], this prototype is miniaturized and therefore realized as holster which consists of several modules for identification, communication and localization. It is worn by employees during warehousing of automobiles. The modules collect data, which are used by the operating system to calculate ...

  18. Wearable Beat-to-Beat Blood Pressure Monitor

    Science.gov (United States)

    Lee, Yong Jin

    2015-01-01

    Linea Research Corporation has developed a wearable noninvasive monitor that provides continuous blood pressure and heart rate measurements in extreme environments. Designed to monitor the physiological effects of astronauts' prolonged exposure to reduced-gravity environments as well as the effectiveness of various countermeasures, the device offers wireless connectivity to allow transfer of both real-time and historical data. It can be modified to monitor the health status of astronaut crew members during extravehicular missions.

  19. Reconfigurable wearable to monitor physiological variables and movement

    Science.gov (United States)

    Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnación; García, Antonio; Tahmassebi, Amirhessam; Meyer-Baese, Anke

    2017-05-01

    This article presents a preliminary prototype of a wearable instrument for oxygen saturation and ECG monitoring. The proposed measuring system is based on the light reflection variability of a LED emission on the subject temple. Besides, the system has the capacity to incorporate electrodes to obtain ECG measurements. All measurements are stored and transmitted to a mobile device (tablet or smartphone) through a Bluetooth link.

  20. A Wearable Computing System for Dynamic Locating of Parking Spaces

    Directory of Open Access Journals (Sweden)

    Damian Mrugala

    2010-07-01

    Full Text Available This paper describes a dynamic locating system implemented in an autonomous wearable computing system for the automobile warehouse management application. Since the first prototype is developed as jacket [1], this prototype is miniaturized and therefore realized as holster which consists of several modules for identification, communication and localization. It is worn by employees during warehousing of automobiles. The modules collect data, which are used by the operating system to calculate the location of parking spaces dynamically.

  1. Textile-based wearable sensors for assisting sports performance

    OpenAIRE

    Coyle, Shirley; Morris, Deirdre; Lau, King-Tong; Moyna, Niall; Diamond, Dermot

    2009-01-01

    There is a need for wearable sensors to assess physiological signals and body kinematics during exercise. Such sensors need to be straightforward to use, and ideally the complete system integrated fully within a garment. This would allow wearers to monitor their progress as they undergo an exercise training programme without the need to attach external devices. This takes physiological monitoring into a more natural setting. By developing textile sensors the intelligence is integrated int...

  2. Bending Investigation of Broadband Wearable All-Textile Antennas

    OpenAIRE

    Soh, Ping Jack; VANDENBOSCH, Guy; Wee, Fwen Hoon; Abdul Aziz, Mohamad Zoinol Abidin

    2013-01-01

    This investigation proposes a method of consistently evaluating wearable textile antennas when operating in bent conditions. This is to emulate the usage of these antennas in practice, when operating on a real human arm in bent conditions. Two similarly-shaped Planar Inverted-F Antenna (PIFA) made from a common substrate and different flexible metallic conductors and are studied. Both antennas are bent in two different orthogonal axes on three different cylindrical sizes, 20, 40 and 60 mm in ...

  3. Cost-effective wearable sensor to detect EMF

    OpenAIRE

    Paradiso, Joseph A.; Vaucelle, Catherine Nicole; Ishii, Hiroshi

    2009-01-01

    In this paper we present the design of a cost-effective wearable sensor to detect and indicate the strength and other characteristics of the electric field emanating from a laptop display. Our Electromagnetic Field Detector Bracelet can provide an immediate awareness of electric fields radiated from an object used frequently. Our technology thus supports awareness of ambient background emanation beyond human perception. We discuss how detection of such radiation mig...

  4. Wearable smart systems: from technologies to integrated systems.

    Science.gov (United States)

    Lymberis, A

    2011-01-01

    Wearable technology and integrated systems, so called Smart Wearable Systems (SWS) have demonstrated during the last 10-15 years significant advances in terms of, miniaturisation, seamless integration, data processing & communication, functionalisation and comfort. This is mainly due to the huge progress in sciences and technologies e.g. biomedical and micro & nano technologies, but also to a strong demand for new applications such as continuous personal health monitoring, healthy lifestyle support, human performance monitoring and support of professionals at risk. Development of wearable systems based of smart textile have, in addition, benefited from the eagerness of textile industry to develop new value-added apparel products like functionalized garments and smart clothing. Research and development in these areas has been strongly promoted worldwide. In Europe the major R&D activities were supported through the Information & Communication Technologies (ICT) priority of the R&D EU programs. The paper presents and discusses the main achievements towards integrated systems as well as future challenges to be met in order to reach a market with reliable and high value-added products.

  5. Assessment of Lower Limb Prosthesis through Wearable Sensors and Thermography

    Science.gov (United States)

    Cutti, Andrea Giovanni; Perego, Paolo; Fusca, Marcello C.; Sacchetti, Rinaldo; Andreoni, Giuseppe

    2014-01-01

    This study aimed to explore the application of infrared thermography in combination with ambulatory wearable monitoring of temperature and relative humidity, to assess the residual limb-to-liner interface in lower-limb prosthesis users. Five male traumatic transtibial amputees were involved, who reported no problems or discomfort while wearing the prosthesis. A thermal imaging camera was used to measure superficial thermal distribution maps of the stump. A wearable system for recording the temperature and relative humidity in up to four anatomical points was developed, tested in vitro and integrated with the measurement set. The parallel application of an infrared camera and wearable sensors provided complementary information. Four main Regions of Interest were identified on the stump (inferior patella, lateral/medial epicondyles, tibial tuberosity), with good inter-subject repeatability. An average increase of 20% in hot areas (P < 0.05) is shown after walking compared to resting conditions. The sensors inside the cuff did not provoke any discomfort during recordings and provide an inside of the thermal exchanges while walking and recording the temperature increase (a regime value is ∼+1.1 ± 0.7 °C) and a more significant one (∼+4.1 ± 2.3%) in humidity because of the sweat produced. This study has also begun the development of a reference data set for optimal socket/liner-stump construction. PMID:24618782

  6. Detection of essential hypertension with physiological signals from wearable devices.

    Science.gov (United States)

    Ghosh, Arindam; Torres, Juan Manuel Mayor; Danieli, Morena; Riccardi, Giuseppe

    2015-08-01

    Early detection of essential hypertension can support the prevention of cardiovascular disease, a leading cause of death. The traditional method of identification of hypertension involves periodic blood pressure measurement using brachial cuff-based measurement devices. While these devices are non-invasive, they require manual setup for each measurement and they are not suitable for continuous monitoring. Research has shown that physiological signals such as Heart Rate Variability, which is a measure of the cardiac autonomic activity, is correlated with blood pressure. Wearable devices capable of measuring physiological signals such as Heart Rate, Galvanic Skin Response, Skin Temperature have recently become ubiquitous. However, these signals are not accurate and are prone to noise due to different artifacts. In this paper a) we present a data collection protocol for continuous non-invasive monitoring of physiological signals from wearable devices; b) we implement signal processing techniques for signal estimation; c) we explore how the continuous monitoring of these physiological signals can be used to identify hypertensive patients; d) We conduct a pilot study with a group of normotensive and hypertensive patients to test our techniques. We show that physiological signals extracted from wearable devices can distinguish between these two groups with high accuracy.

  7. Radio-frequency energy harvesting for wearable sensors.

    Science.gov (United States)

    Borges, Luís M; Chávez-Santiago, Raul; Barroca, Norberto; Velez, Fernando José; Balasingham, Ilangko

    2015-02-01

    The use of wearable biomedical sensors for the continuous monitoring of physiological signals will facilitate the involvement of the patients in the prevention and management of chronic diseases. The fabrication of small biomedical sensors transmitting physiological data wirelessly is possible as a result of the tremendous advances in ultra-low power electronics and radio communications. However, the widespread adoption of these devices depends very much on their ability to operate for long periods of time without the need to frequently change, recharge or even use batteries. In this context, energy harvesting (EH) is the disruptive technology that can pave the road towards the massive utilisation of wireless wearable sensors for patient self-monitoring and daily healthcare. Radio-frequency (RF) transmissions from commercial telecommunication networks represent reliable ambient energy that can be harvested as they are ubiquitous in urban and suburban areas. The state-of-the-art in RF EH for wearable biomedical sensors specifically targeting the global system of mobile 900/1800 cellular and 700 MHz digital terrestrial television networks as ambient RF energy sources are showcased. Furthermore, guidelines for the choice of the number of stages for the RF energy harvester are presented, depending on the requirements from the embedded system to power supply, which is useful for other researchers that work in the same area. The present authors' recent advances towards the development of an efficient RF energy harvester and storing system are presented and thoroughly discussed too.

  8. Wearable electronics and smart textiles: a critical review.

    Science.gov (United States)

    Stoppa, Matteo; Chiolerio, Alessandro

    2014-07-07

    Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy.

  9. Wearable Electronics and Smart Textiles: A Critical Review

    Directory of Open Access Journals (Sweden)

    Matteo Stoppa

    2014-07-01

    Full Text Available Electronic Textiles (e-textiles are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems’ configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy.

  10. Wearable Device Control Platform Technology for Network Application Development

    Directory of Open Access Journals (Sweden)

    Heejung Kim

    2016-01-01

    Full Text Available Application development platform is the most important environment in IT industry. There are a variety of platforms. Although the native development enables application to optimize, various languages and software development kits need to be acquired according to the device. The coexistence of smart devices and platforms has rendered the native development approach time and cost consuming. Cross-platform development emerged as a response to these issues. These platforms generate applications for multiple devices based on web languages. Nevertheless, development requires additional implementation based on a native language because of the coverage and functions of supported application programming interfaces (APIs. Wearable devices have recently attracted considerable attention. These devices only support Bluetooth-based interdevice communication, thereby making communication and device control impossible beyond a certain range. We propose Network Application Agent (NetApp-Agent in order to overcome issues. NetApp-Agent based on the Cordova is a wearable device control platform for the development of network applications, controls input/output functions of smartphones and wearable/IoT through the Cordova and Native API, and enables device control and information exchange by external users by offering a self-defined API. We confirmed the efficiency of the proposed platform through experiments and a qualitative assessment of its implementation.

  11. Textile Organic Electrochemical Transistors as a Platform for Wearable Biosensors

    Science.gov (United States)

    Gualandi, I.; Marzocchi, M.; Achilli, A.; Cavedale, D.; Bonfiglio, A.; Fraboni, B.

    2016-09-01

    The development of wearable chemical sensors is receiving a great deal of attention in view of non-invasive and continuous monitoring of physiological parameters in healthcare applications. This paper describes the development of a fully textile, wearable chemical sensor based on an organic electrochemical transistor (OECT) entirely made of conductive polymer (PEDOT:PSS). The active polymer patterns are deposited into the fabric by screen printing processes, thus allowing the device to actually “disappear” into it. We demonstrate the reliability of the proposed textile OECTs as a platform for developing chemical sensors capable to detect in real-time various redox active molecules (adrenaline, dopamine and ascorbic acid), by assessing their performance in two different experimental contexts: i) ideal operation conditions (i.e. totally dipped in an electrolyte solution); ii) real-life operation conditions (i.e. by sequentially adding few drops of electrolyte solution onto only one side of the textile sensor). The OECTs response has also been measured in artificial sweat, assessing how these sensors can be reliably used for the detection of biomarkers in body fluids. Finally, the very low operating potentials (wearable applications.

  12. Business model design for a wearable biofeedback system.

    Science.gov (United States)

    Hidefjäll, Patrik; Titkova, Dina

    2015-01-01

    Wearable sensor technologies used to track daily activities have become successful in the consumer market. In order for wearable sensor technology to offer added value in the more challenging areas of stress-rehab care and occupational health stress-related biofeedback parameters need to be monitored and more elaborate business models are needed. To identify probable success factors for a wearable biofeedback system (Affective Health) in the two mentioned market segments in a Swedish setting, we conducted literature studies and interviews with relevant representatives. Data were collected and used first to describe the two market segments and then to define likely feasible business model designs, according to the Business Model Canvas framework. Needs of stakeholders were identified as inputs to business model design. Value propositions, a key building block of a business model, were defined for each segment. The value proposition for occupational health was defined as "A tool that can both identify employees at risk of stress-related disorders and reinforce healthy sustainable behavior" and for healthcare as: "Providing therapists with objective data about the patient's emotional state and motivating patients to better engage in the treatment process".

  13. Octopus: A Design Methodology for Motion Capture Wearables

    Science.gov (United States)

    2017-01-01

    Human motion capture (MoCap) is widely recognised for its usefulness and application in different fields, such as health, sports, and leisure; therefore, its inclusion in current wearables (MoCap-wearables) is increasing, and it may be very useful in a context of intelligent objects interconnected with each other and to the cloud in the Internet of Things (IoT). However, capturing human movement adequately requires addressing difficult-to-satisfy requirements, which means that the applications that are possible with this technology are held back by a series of accessibility barriers, some technological and some regarding usability. To overcome these barriers and generate products with greater wearability that are more efficient and accessible, factors are compiled through a review of publications and market research. The result of this analysis is a design methodology called Octopus, which ranks these factors and schematises them. Octopus provides a tool that can help define design requirements for multidisciplinary teams, generating a common framework and offering a new method of communication between them. PMID:28809786

  14. Assessment of Lower Limb Prosthesis through Wearable Sensors and Thermography

    Directory of Open Access Journals (Sweden)

    Andrea Giovanni Cutti

    2014-03-01

    Full Text Available This study aimed to explore the application of infrared thermography in combination with ambulatory wearable monitoring of temperature and relative humidity, to assess the residual limb-to-liner interface in lower-limb prosthesis users. Five male traumatic transtibial amputees were involved, who reported no problems or discomfort while wearing the prosthesis. A thermal imaging camera was used to measure superficial thermal distribution maps of the stump. A wearable system for recording the temperature and relative humidity in up to four anatomical points was developed, tested in vitro and integrated with the measurement set. The parallel application of an infrared camera and wearable sensors provided complementary information. Four main Regions of Interest were identified on the stump (inferior patella, lateral/medial epicondyles, tibial tuberosity, with good inter-subject repeatability. An average increase of 20% in hot areas (P < 0.05 is shown after walking compared to resting conditions. The sensors inside the cuff did not provoke any discomfort during recordings and provide an inside of the thermal exchanges while walking and recording the temperature increase (a regime value is ~+1.1 ± 0.7 °C and a more significant one (~+4.1 ± 2.3% in humidity because of the sweat produced. This study has also begun the development of a reference data set for optimal socket/liner-stump construction.

  15. Monitoring elbow isometric contraction by novel wearable fabric sensing device

    Science.gov (United States)

    Wang, Xi; Tao, Xiaoming; So, Raymond C. H.; Shu, Lin; Yang, Bao; Li, Ying

    2016-12-01

    Fabric-based wearable technology is highly desirable in sports, as it is light, flexible, soft, and comfortable with little interference to normal sport activities. It can provide accurate information on the in situ deformation of muscles in a continuous and wireless manner. During elbow flexion in isometric contraction, upper arm circumference increases with the contraction of elbow flexors, and it is possible to monitor the muscles’ contraction by limb circumferential strains. This paper presents a new wireless wearable anthropometric monitoring device made from fabric strain sensors for the human upper arm. The materials, structural design and calibration of the device are presented. Using an isokinetic testing system (Biodex3®) and the fabric monitoring device simultaneously, in situ measurements were carried out on elbow flexors in isometric contraction mode with ten subjects for a set of positions. Correlations between the measured values of limb circumferential strain and normalized torque were examined, and a linear relationship was found during isometric contraction. The average correlation coefficient between them is 0.938 ± 0.050. This wearable anthropometric device thus provides a useful index, the limb circumferential strain, for upper arm muscle contraction in isometric mode.

  16. Wearable Ring-Based Sensing Platform for Detecting Chemical Threats.

    Science.gov (United States)

    Sempionatto, Juliane R; Mishra, Rupesh K; Martín, Aida; Tang, Guangda; Nakagawa, Tatsuo; Lu, Xiaolong; Campbell, Alan S; Lyu, Kay Mengjia; Wang, Joseph

    2017-10-11

    This work describes a wireless wearable ring-based multiplexed chemical sensor platform for rapid electrochemical monitoring of explosive and nerve-agent threats in vapor and liquid phases. The ring-based sensor system consists of two parts: a set of printed electrochemical sensors and a miniaturized electronic interface, based on a battery-powered stamp-size potentiostat, for signal processing and wireless transmission of data. A wide range of electrochemical capabilities have thus been fully integrated into a 3D printed compact ring structure, toward performing fast square-wave voltammetry and chronoamperometric analyses, along with interchangeable screen-printed sensing electrodes for the rapid detection of different chemical threats. High analytical performance is demonstrated despite the remarkable miniaturization and integration of the ring system. The attractive capabilities of the wearable sensor ring system have been demonstrated for sensitive and rapid voltammetric and amperometric monitoring of nitroaromatic and peroxide explosives, respectively, along with amperometric biosensing of organophosphate (OP) nerve agents. Such ability of the miniaturized wearable sensor ring platform to simultaneously detect multiple chemical threats in both liquid and vapor phases and alert the wearer of such hazards offers considerable promise for meeting the demands of diverse defense and security scenarios.

  17. Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring

    Science.gov (United States)

    Ghosh, Sujoy Kumar; Mandal, Dipankar

    2017-03-01

    A human interactive self-powered wearable sensor is designed using waste by-product prawn shells. The structural origin of intrinsic piezoelectric characteristics of bio-assembled chitin nanofibers has been investigated. It allows the prawn shell to make a tactile sensor that performs also as a highly durable mechanical energy harvester/nanogenerator. The feasibility and fundamental physics of self-powered consumer electronics even from human perception is highlighted by prawn shells made nanogenerator (PSNG). High fidelity and non-invasive monitoring of vital signs, such as radial artery pulse wave and coughing actions, may lead to the potential use of PSNG for early intervention. It is presumed that PSNG has enormous future aspects in real-time as well as remote health care assessment.

  18. The front-end design of wearable functional near-infrared spectroscopy system%可穿戴式的功能近红外光谱成像系统的前端设计

    Institute of Scientific and Technical Information of China (English)

    谢宏; 王光明; 姚楠; 夏斌

    2015-01-01

    A wearable multi-channel functional near-infrared spectroscopy (fNIRS) imaging system front-end is designed, which can monitor brain blood oxygen in non-invasive and non-destructive condition. In order to achieve a front-end of brain imaging system with small size, low power consumption, high precision, wireless transmission and real-timely acquisition, ultra-low power wireless system on chip (SoC) is used as the control center and wireless transmission module, adopting time division multiplexing technology to drive light source, and implementing data acquisition by using high sensitivity photoelectric sensor and high resolution A/D chip. At the end of this paper, the method of extending the light source driving and signal acquisition are given, which allows the system to be freely expanded to more channel acquisition system.%针对脑部血氧非侵入式无损血氧检测,设计了一款多通道的可穿戴式功能近红外光谱成像系统的前端。采用超低功耗无线片上系统( System on a Chip , SoC )芯片作为控制中心以及无线传送模块,借用时分复用技术实现光源驱动,利用高灵敏度的光电传感器以及高分辨率的模数转换芯片实现信号采集,实现一款体积小、功耗低、精度高、无线数传、可实时检测脑部血氧浓度的系统前端。给出了光源驱动与信号采集扩展方案,使得系统可以自由配置成更多通道采集系统。

  19. Using Medical-Device Wearable to Improve Hemodialysis Patient’s Live and Access the Holistic Health

    Science.gov (United States)

    Chen, W. L.; Wu, C.-C.; Kan, C. D.

    2017-06-01

    The increasing incidence of end-stage renal disease (ESRD) is the major burden to health budgets and a threat to public health worldwide. For many years, Taiwan has been ranked the first in the world for the number of hemodialysis patients. For solving the above-mentioned circumstance, we demonstrate the project, here, which goal is to construct the holistic health for hemodialysis patient. The project is to design a wearable medicine-device which can simultaneously measure and monitor the vital sign, including heart rate (HR), pulse oximetry (SPO2), continuous non-invasive blood pressure (c-NIBP), and total body water (TBW), of hemodialysis patient. By aid of the device we design, hemodialysis patients will get better health care than before. This device comprises three techniques. The first is named “Using phonoangiography technique to early detect the dysfunction of arteriovenous access by arteriovenous access (AVA) stenosis detector”. The stenosis detector based on autoregressive model was employed to simultaneously estimate the status of AVA life cycle and to tract changes in frequency spectra. It helps hemodialysis patients to early detect the dysfunction of AVA and alarms them to make a return visit. The second technique is named “Physiological detecting device for wearable medical device and encoding algorithm development”. The feature of the second technique is to optimize the prognosis by analyzing physiological signals, including water content index, pulse oximetry, and blood pressure in the meanwhile. The third technique is named “Intelligent and smart tourniquet”. This technique aims to preclude AVA dysfunction caused by inappropriate hemostasis.

  20. Pulse Voltammetry.

    Science.gov (United States)

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  1. The Museum Wearable: Real-Time Sensor-Driven Understanding of Visitors' Interests for Personalized Visually-Augmented Museum Experiences.

    Science.gov (United States)

    Sparacino, Flavia

    This paper describes the museum wearable: a wearable computer that orchestrates an audiovisual narration as a function of the visitors' interests gathered from their physical path in the museum and length of stops. The wearable consists of a lightweight and small computer that people carry inside a shoulder pack. It offers an audiovisual…

  2. Handheld Versus Wearable Interaction Design for Professionals - A Case Study of Hospital Service Work

    DEFF Research Database (Denmark)

    Stisen, Allan; Blunck, Henrik; Kjærgaard, Mikkel Baun;

    2014-01-01

    service work. This explorative study was conducted with 4 experienced hospital orderlies who interacted with an application across two wearable concepts, and one handheld smartphone in five scenarios in a hospital environment. The interaction was video recorded with a chest-mounted video afterwards semi...... aspects to aid designers of next generation wearable designs for hospital service work....

  3. Wearable Writing: Enriching Student Peer Review with Point-of-View Video Feedback Using Google Glass

    Science.gov (United States)

    Tham, Jason Chew Kit

    2017-01-01

    As technology continues to become more ubiquitous and touches almost every aspect of the composing process, students and teachers are faced with new means to make writing a multimodal experience. This article embraces the emerging sector of wearable technology, presenting wearable writing strategies that would reimagine composition pedagogy.…

  4. Design considerations on ultra-low-power wireless transmitters for wearable medical devices.

    Science.gov (United States)

    Manstretta, Danilo

    2010-01-01

    A wireless transmitter for wearable bio-sensing applications must fulfill very specialized requirements. It has been estimated that for truly wearable systems it must operate with an average power consumption of less than 140 microW. The alternatives, pitfalls, and realistic performance of robust, low power signal transmission will be addressed.

  5. Wearable Writing: Enriching Student Peer Review with Point-of-View Video Feedback Using Google Glass

    Science.gov (United States)

    Tham, Jason Chew Kit

    2017-01-01

    As technology continues to become more ubiquitous and touches almost every aspect of the composing process, students and teachers are faced with new means to make writing a multimodal experience. This article embraces the emerging sector of wearable technology, presenting wearable writing strategies that would reimagine composition pedagogy.…

  6. A review of wearable sensors and systems with application in rehabilitation.

    Science.gov (United States)

    Patel, Shyamal; Park, Hyung; Bonato, Paolo; Chan, Leighton; Rodgers, Mary

    2012-04-20

    The aim of this review paper is to summarize recent developments in the field of wearable sensors and systems that are relevant to the field of rehabilitation. The growing body of work focused on the application of wearable technology to monitor older adults and subjects with chronic conditions in the home and community settings justifies the emphasis of this review paper on summarizing clinical applications of wearable technology currently undergoing assessment rather than describing the development of new wearable sensors and systems. A short description of key enabling technologies (i.e. sensor technology, communication technology, and data analysis techniques) that have allowed researchers to implement wearable systems is followed by a detailed description of major areas of application of wearable technology. Applications described in this review paper include those that focus on health and wellness, safety, home rehabilitation, assessment of treatment efficacy, and early detection of disorders. The integration of wearable and ambient sensors is discussed in the context of achieving home monitoring of older adults and subjects with chronic conditions. Future work required to advance the field toward clinical deployment of wearable sensors and systems is discussed.

  7. A review of wearable sensors and systems with application in rehabilitation

    Directory of Open Access Journals (Sweden)

    Patel Shyamal

    2012-04-01

    Full Text Available Abstract The aim of this review paper is to summarize recent developments in the field of wearable sensors and systems that are relevant to the field of rehabilitation. The growing body of work focused on the application of wearable technology to monitor older adults and subjects with chronic conditions in the home and community settings justifies the emphasis of this review paper on summarizing clinical applications of wearable technology currently undergoing assessment rather than describing the development of new wearable sensors and systems. A short description of key enabling technologies (i.e. sensor technology, communication technology, and data analysis techniques that have allowed researchers to implement wearable systems is followed by a detailed description of major areas of application of wearable technology. Applications described in this review paper include those that focus on health and wellness, safety, home rehabilitation, assessment of treatment efficacy, and early detection of disorders. The integration of wearable and ambient sensors is discussed in the context of achieving home monitoring of older adults and subjects with chronic conditions. Future work required to advance the field toward clinical deployment of wearable sensors and systems is discussed.

  8. Wearable systems for monitoring mobility-related activities in older people : a systematic review

    NARCIS (Netherlands)

    de Bruin, Eling D.; Hartmann, Antonia; Uebelhart, Daniel; Murer, Kurt; Zijlstra, Wiebren

    2008-01-01

    Objective: The use of wearable motion-sensing technology offers important advantages over conventional methods for obtaining measures of physical activity and/or physical functioning in aged individuals. This review aims to identify the actual state of applying wearable systems for monitoring mobili

  9. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals.

    Science.gov (United States)

    Cai, Feng; Yi, Changrui; Liu, Shichang; Wang, Yan; Liu, Lacheng; Liu, Xiaoqing; Xu, Xuming; Wang, Li

    2016-03-15

    Flexible sensors have attracted more and more attention as a fundamental part of anthropomorphic robot research, medical diagnosis and physical health monitoring. Here, we constructed an ultrasensitive and passive flexible sensor with the advantages of low cost, lightness and wearability, electric safety and reliability. The fundamental mechanism of the sensor is based on triboelectric effect inducing electrostatic charges on the surfaces between two different materials. Just like a plate capacitor, current will be generated while the distance or size of the parallel capacitors changes caused by the small mechanical disturbance upon it and therefore the output current/voltage will be produced. Typically, the passive sensor unambiguously monitors muscle motions including hand motion from stretch-clench-stretch, mouth motion from open-bite-open, blink and respiration. Moreover, this sensor records the details of the consecutive phases in a cardiac cycle of the apex cardiogram, and identify the peaks including percussion wave, tidal wave and diastolic wave of the radial pulse wave. To record subtle human physiological signals including radial pulsilogram and apex cardiogram with excellent signal/noise ratio, stability and reproducibility, the sensor shows great potential in the applications of medical diagnosis and daily health monitoring.

  10. A wearable stimulation bandage for electrotherapy studies in a rat ischemic wound model.

    Science.gov (United States)

    Howe, Daniel S; Dunning, Jeremy L; Henzel, Mary K; Graebert, Jennifer K; Bogie, Kath M

    2011-01-01

    The clinical efficacy of electro-therapy in the treatment of chronic wounds is currently debated, and a in-vivo evaluation of stimulation parameters will provide the statistical evidence needed to direct clinical guidelines. A low-cost, wearable electrical stimulation bandage has been developed for use with an established rat ischemic wound model. The bandage consists of a user-programmable stimulator PCB and a plastic bandage with two hydrogel electrodes. The battery-powered bandage may be used for up to seven days between dressing changes, and the stimulator may be reused. The microcontroller-based stimulator uses a boost converter circuit to generate pulses up to 90 V from a 3 V coin cell battery. Consistent operation of the boost converter over the wide input and output voltage ranges is achieved using voltage feedforward and soft-start techniques implemented in firmware. The bandages are laser-cut to shape, and electrical traces are applied using stencils and conductive nickel paint. Both the PCB and electrical traces are encapsulated to protect the animal. The device has been successfully demonstrated using the rat ischemic wound model for a period of seven days, and clinical experiments are ongoing.

  11. Development of a Respiratory Inductive Plethysmography Module Supporting Multiple Sensors for Wearable Systems

    Directory of Open Access Journals (Sweden)

    Zhengbo Zhang

    2012-09-01

    Full Text Available In this paper, we present an RIP module with the features of supporting multiple inductive sensors, no variable frequency LC oscillator, low power consumption, and automatic gain adjustment for each channel. Based on the method of inductance measurement without using a variable frequency LC oscillator, we further integrate pulse amplitude modulation and time division multiplexing scheme into a module to support multiple RIP sensors. All inductive sensors are excited by a high-frequency electric current periodically and momentarily, and the inductance of each sensor is measured during the time when the electric current is fed to it. To improve the amplitude response of the RIP sensors, we optimize the sensing unit with a matching capacitor parallel with each RIP sensor forming a frequency selection filter. Performance tests on the linearity of the output with cross-sectional area and the accuracy of respiratory volume estimation demonstrate good linearity and accurate lung volume estimation. Power consumption of this new RIP module with two sensors is very low. The performance of respiration measurement during movement is also evaluated. This RIP module is especially desirable for wearable systems with multiple RIP sensors for long-term respiration monitoring.

  12. Development of a respiratory inductive plethysmography module supporting multiple sensors for wearable systems.

    Science.gov (United States)

    Zhang, Zhengbo; Zheng, Jiewen; Wu, Hao; Wang, Weidong; Wang, Buqing; Liu, Hongyun

    2012-09-27

    In this paper, we present an RIP module with the features of supporting multiple inductive sensors, no variable frequency LC oscillator, low power consumption, and automatic gain adjustment for each channel. Based on the method of inductance measurement without using a variable frequency LC oscillator, we further integrate pulse amplitude modulation and time division multiplexing scheme into a module to support multiple RIP sensors. All inductive sensors are excited by a high-frequency electric current periodically and momentarily, and the inductance of each sensor is measured during the time when the electric current is fed to it. To improve the amplitude response of the RIP sensors, we optimize the sensing unit with a matching capacitor parallel with each RIP sensor forming a frequency selection filter. Performance tests on the linearity of the output with cross-sectional area and the accuracy of respiratory volume estimation demonstrate good linearity and accurate lung volume estimation. Power consumption of this new RIP module with two sensors is very low. The performance of respiration measurement during movement is also evaluated. This RIP module is especially desirable for wearable systems with multiple RIP sensors for long-term respiration monitoring.

  13. Heart Rate Detection Using Microsoft Kinect: Validation and Comparison to Wearable Devices

    Directory of Open Access Journals (Sweden)

    Ennio Gambi

    2017-08-01

    Full Text Available Contactless detection is one of the new frontiers of technological innovation in the field of healthcare, enabling unobtrusive measurements of biomedical parameters. Compared to conventional methods for Heart Rate (HR detection that employ expensive and/or uncomfortable devices, such as the Electrocardiograph (ECG or pulse oximeter, contactless HR detection offers fast and continuous monitoring of heart activities and provides support for clinical analysis without the need for the user to wear a device. This paper presents a validation study for a contactless HR estimation method exploiting RGB (Red, Green, Blue data from a Microsoft Kinect v2 device. This method, based on Eulerian Video Magnification (EVM, Photoplethysmography (PPG and Videoplethysmography (VPG, can achieve performance comparable to classical approaches exploiting wearable systems, under specific test conditions. The output given by a Holter, which represents the gold-standard device used in the test for ECG extraction, is considered as the ground-truth, while a comparison with a commercial smartwatch is also included. The validation process is conducted with two modalities that differ for the availability of a priori knowledge about the subjects’ normal HR. The two test modalities provide different results. In particular, the HR estimation differs from the ground-truth by 2% when the knowledge about the subject’s lifestyle and his/her HR is considered and by 3.4% if no information about the person is taken into account.

  14. Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor

    Directory of Open Access Journals (Sweden)

    Jang-Ho Park

    2015-09-01

    Full Text Available In this study, we developed a novel heart rate (HR monitoring approach in which we measure the pressure variance of the surface of the ear canal. A scissor-shaped apparatus equipped with a piezoelectric film sensor and a hardware circuit module was designed for high wearability and to obtain stable measurement. In the proposed device, the film sensor converts in-ear pulse waves (EPW into electrical current, and the circuit module enhances the EPW and suppresses noise. A real-time algorithm embedded in the circuit module performs morphological conversions to make the EPW more distinct and knowledge-based rules are used to detect EPW peaks. In a clinical experiment conducted using a reference electrocardiogram (ECG device, EPW and ECG were concurrently recorded from 58 healthy subjects. The EPW intervals between successive peaks and their corresponding ECG intervals were then compared to each other. Promising results were obtained from the samples, specifically, a sensitivity of 97.25%, positive predictive value of 97.17%, and mean absolute difference of 0.62. Thus, highly accurate HR was obtained from in-ear pressure variance. Consequently, we believe that our proposed approach could be used to monitor vital signs and also utilized in diverse applications in the near future.

  15. Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor.

    Science.gov (United States)

    Park, Jang-Ho; Jang, Dae-Geun; Park, Jung Wook; Youm, Se-Kyoung

    2015-09-16

    In this study, we developed a novel heart rate (HR) monitoring approach in which we measure the pressure variance of the surface of the ear canal. A scissor-shaped apparatus equipped with a piezoelectric film sensor and a hardware circuit module was designed for high wearability and to obtain stable measurement. In the proposed device, the film sensor converts in-ear pulse waves (EPW) into electrical current, and the circuit module enhances the EPW and suppresses noise. A real-time algorithm embedded in the circuit module performs morphological conversions to make the EPW more distinct and knowledge-based rules are used to detect EPW peaks. In a clinical experiment conducted using a reference electrocardiogram (ECG) device, EPW and ECG were concurrently recorded from 58 healthy subjects. The EPW intervals between successive peaks and their corresponding ECG intervals were then compared to each other. Promising results were obtained from the samples, specifically, a sensitivity of 97.25%, positive predictive value of 97.17%, and mean absolute difference of 0.62. Thus, highly accurate HR was obtained from in-ear pressure variance. Consequently, we believe that our proposed approach could be used to monitor vital signs and also utilized in diverse applications in the near future.

  16. The Baetylus Theorem-the central disconnect driving consumer behavior and investment returns in Wearable Technologies.

    Science.gov (United States)

    Levine, James A

    2016-08-01

    The Wearable Technology market may increase fivefold by the end of the decade. There is almost no academic investigation as to what drives the investment hypothesis in wearable technologies. This paper seeks to examine this issue from an evidence-based perspective. There is a fundamental disconnect in how consumers view wearable sensors and how companies market them; this is called The Baetylus Theorem where people believe (falsely) that by buying a wearable sensor they will receive health benefit; data suggest that this is not the case. This idea is grounded social constructs, psychological theories and marketing approaches. A marketing proposal that fails to recognize The Baetylus Theorem and how it can be integrated into a business offering has not optimized its competitive advantage. More importantly, consumers should not falsely believe that purchasing a wearable technology, improves health.

  17. The Baetylus Theorem—the central disconnect driving consumer behavior and investment returns in Wearable Technologies

    Science.gov (United States)

    Levine, James A.

    2016-01-01

    The Wearable Technology market may increase fivefold by the end of the decade. There is almost no academic investigation as to what drives the investment hypothesis in wearable technologies. This paper seeks to examine this issue from an evidence-based perspective. There is a fundamental disconnect in how consumers view wearable sensors and how companies market them; this is called The Baetylus Theorem where people believe (falsely) that by buying a wearable sensor they will receive health benefit; data suggest that this is not the case. This idea is grounded social constructs, psychological theories and marketing approaches. A marketing proposal that fails to recognize The Baetylus Theorem and how it can be integrated into a business offering has not optimized its competitive advantage. More importantly, consumers should not falsely believe that purchasing a wearable technology, improves health. PMID:27617162

  18. The Feasibility of Wearables in an Enterprise Environment and Their Impact on IT Security

    Science.gov (United States)

    Scotti, Vincent, Jr.

    2015-01-01

    This paper is intended to explore the usability and feasibility of wearables in an enterprise environment and their impact on IT Security. In this day and age, with the advent of the Internet of Things, we must explore all the new technology emerging from the minds of the new inventors. This means exploring the use of wearables in regards to their benefits, limitations, and the new challenges they pose to securing computer networks in the Federal environment. We will explore the design of the wearables, the interfaces needed to connect them, and what it will take to connect personal devices in the Federal enterprise network environment. We will provide an overview of the wearable design, concerns of ensuring the confidentiality, integrity, and availability of information and the challenges faced by those doing so. We will also review the implications and limitations of the policies governing wearable technology and the physical efforts to enforce them.

  19. The Style Evolution of Glasses: Acknowledging Well-being for Wearable Medical Device

    Directory of Open Access Journals (Sweden)

    Lydia Royeen

    2015-10-01

    Full Text Available The focus of Peta Bush’s work is to create wearable medical devices that address all qualities of the individual, including physical, mental, emotional, and psychosocial aspects. Peta is completing a practice-based research PhD titled “Therapeutic jewelry: The craft of people-centric devices for wellbeing.” Her passion for creating wearable medical devices that are multi-dimensional stems from her personal experiences, as she has Ehlers-Danlos syndrome. In addition, she uses her knowledge of well-being and the biopsychosocial model when creating her wearable medical devices. Peta currently uses technology, such as 3D printing, as one method to fabricate her collection. Her aspirations are for this concept of wearable medical devices to become mainstream, similar to glasses, and to remove the stigma associated with wearable medical devices.

  20. Collaborative Processing of Wearable and Ambient Sensor System for Blood Pressure Monitoring

    Science.gov (United States)

    Nakamura, Masayuki; Nakamura, Jiro; Lopez, Guillaume; Shuzo, Masaki; Yamada, Ichiro

    2011-01-01

    This paper describes wireless wearable and ambient sensors that cooperate to monitor a person’s vital signs such as heart rate and blood pressure during daily activities. Each wearable sensor is attached on different parts of the body. The wearable sensors require a high sampling rate and time synchronization to provide a precise analysis of the received signals. The trigger signal for synchronization is provided by the ambient sensors, which detect the user’s presence. The Bluetooth and IEEE 802.15.4 wireless technologies are used for real-time sensing and time synchronization. Thus, this wearable health-monitoring sensor response is closely related to the context in which it is being used. Experimental results indicate that the system simultaneously provides information about the user’s location and vital signs, and the synchronized wearable sensors successfully measures vital signs with a 1 ms resolution. PMID:22163984

  1. Collaborative Processing of Wearable and Ambient Sensor System for Blood Pressure Monitoring

    Directory of Open Access Journals (Sweden)

    Ichiro Yamada

    2011-06-01

    Full Text Available This paper describes wireless wearable and ambient sensors that cooperate to monitor a person’s vital signs such as heart rate and blood pressure during daily activities. Each wearable sensor is attached on different parts of the body. The wearable sensors require a high sampling rate and time synchronization to provide a precise analysis of the received signals. The trigger signal for synchronization is provided by the ambient sensors, which detect the user’s presence. The Bluetooth and IEEE 802.15.4 wireless technologies are used for real-time sensing and time synchronization. Thus, this wearable health-monitoring sensor response is closely related to the context in which it is being used. Experimental results indicate that the system simultaneously provides information about the user’s location and vital signs, and the synchronized wearable sensors successfully measures vital signs with a 1 ms resolution.

  2. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  3. Nanoalloy Printed and Pulse-Laser Sintered Flexible Sensor Devices with Enhanced Stability and Materials Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wei; Rovore, Thomas; Weerawarne, Darshana; Osterhoudt, Gavin; Kang, Ning; Joseph, Pharrah; Luo, Jin; Shim, Bonggu; Poliks, Mark; Zhong, Chuan-Jian

    2015-06-02

    While conformal and wearable devices have become one of the most desired formats for printable electronics, it is challenging to establish a scalable process that produces stable conductive patterns but also uses substrates compatible with widely available wearable materials. Here, we describe findings of an investigation of a nanoalloy ink printed and pulsed laser sintered conductive patterns as flexible functional devices with enhanced stability and materials compatibility. While nanoparticle inks are desired for printable electronics, almost all existing nanoparticle inks are based on single-metal component, which, as an electronic element, is limited by its inherent stabilities of the metal such as propensity of metal oxidation and mobility of metal ions, especially in sintering processes. The work here has demonstrated the first example in exploiting plasmonic coupling of nanoalloys and pulsed-laser energy with controllable thermal penetration. The experimental and theoretical results have revealed clear correlation between the pulsed laser parameters and the nanoalloy structural characteristics. The superior performance of the resulting flexible sensor device, upon imparting nanostructured sensing materials, for detecting volatile organic compounds has significant implications to developing stable and wearable sensors for monitoring environmental pollutants and breath biomarkers. This simple “nanoalloy printing 'laser sintering' nanostructure printing” process is entirely general to many different sensor devices and nanostructured sensing materials, enabling the ability to easily construct sophisticated sensor array.

  4. Textile materials for the design of wearable antennas: a survey.

    Science.gov (United States)

    Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro

    2012-11-15

    In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented.

  5. Analysis of Public Datasets for Wearable Fall Detection Systems

    Directory of Open Access Journals (Sweden)

    Eduardo Casilari

    2017-06-01

    Full Text Available Due to the boom of wireless handheld devices such as smartwatches and smartphones, wearable Fall Detection Systems (FDSs have become a major focus of attention among the research community during the last years. The effectiveness of a wearable FDS must be contrasted against a wide variety of measurements obtained from inertial sensors during the occurrence of falls and Activities of Daily Living (ADLs. In this regard, the access to public databases constitutes the basis for an open and systematic assessment of fall detection techniques. This paper reviews and appraises twelve existing available data repositories containing measurements of ADLs and emulated falls envisaged for the evaluation of fall detection algorithms in wearable FDSs. The analysis of the found datasets is performed in a comprehensive way, taking into account the multiple factors involved in the definition of the testbeds deployed for the generation of the mobility samples. The study of the traces brings to light the lack of a common experimental benchmarking procedure and, consequently, the large heterogeneity of the datasets from a number of perspectives (length and number of samples, typology of the emulated falls and ADLs, characteristics of the test subjects, features and positions of the sensors, etc.. Concerning this, the statistical analysis of the samples reveals the impact of the sensor range on the reliability of the traces. In addition, the study evidences the importance of the selection of the ADLs and the need of categorizing the ADLs depending on the intensity of the movements in order to evaluate the capability of a certain detection algorithm to discriminate falls from ADLs.

  6. Pulmonary disease management system with distributed wearable sensors.

    Science.gov (United States)

    Fu, Yongji; Ayyagari, Deepak; Colquitt, Nhedti

    2009-01-01

    A pulmonary disease management system with on-body and near-body sensors is introduced in this presentation. The system is wearable for continuous ambulatory monitoring. Distributed sensor data is transferred through a wireless body area network (BAN) to a central controller for real time analysis. Physiological and environmental parameters are monitored and analyzed using prevailing clinical guidelines for self-management of environmentally-linked pulmonary ailments. The system provides patients with reminders, warnings, and instructions to reduce emergency room and physician visits, and improve clinical outcomes.

  7. A FPGA Implementation of JPEG Baseline Encoder for Wearable Devices.

    Science.gov (United States)

    Li, Yuecheng; Jia, Wenyan; Luan, Bo; Mao, Zhi-Hong; Zhang, Hong; Sun, Mingui

    2015-04-01

    In this paper, an efficient field-programmable gate array (FPGA) implementation of the JPEG baseline image compression encoder is presented for wearable devices in health and wellness applications. In order to gain flexibility in developing FPGA-specific software and balance between real-time performance and resources utilization, A High Level Synthesis (HLS) tool is utilized in our system design. An optimized dataflow configuration with a padding scheme simplifies the timing control for data transfer. Our experiments with a system-on-chip multi-sensor system have verified our FPGA implementation with respect to real-time performance, computational efficiency, and FPGA resource utilization.

  8. The Acceptance of Smart Wearable Devices through Health Cognitive

    Directory of Open Access Journals (Sweden)

    Huang Fen-Fen

    2016-01-01

    Full Text Available Many people have become “health consumers” and “health conscious” by seeking products to more effectively manage health-related lifestyle aspects such as fitness activities, healthcare, sports, and rehabilitation. The results revealed that perceived ease of use, perceived usefulness, and health cognitive had a significant impact on attitude to use. To increase individuals’ intention to use smart wearable devices, it is critical to encourage a positive attitude toward using the devices to acquire health knowledge. Emphasizing devising effective means to communicate the health utility of the devices to customers should be the highest priority for industry producers.

  9. Designing a Vibrotactile Language for a Wearable Vest

    DEFF Research Database (Denmark)

    Morrison, Ann; Knoche, Hendrik; Manresa-Yee, Cristina

    2015-01-01

    We designed a wearable vest that houses a set of actuators to be placed at specific points on the body. We developed vibrotactile patterns to induce five sensation types: (1) Calming, (2 patterns, Up and Down back) (2) Feel Good (4 patterns in different directions around the waist), (3) Activating...... (2 patterns, Tarzan and Shiver, on top front of body and then down the back as well for Shiver), (4) Navigation (2 patterns, Turn Left and Turn Right, prompting on back then opposite side front waist) for full body turning and (5) Warning, (1 pattern on solar plexus) to slow down or stop the wearers...

  10. Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles.

    Science.gov (United States)

    Di, Jiangtao; Zhang, Xiaohua; Yong, Zhenzhong; Zhang, Yongyi; Li, Da; Li, Ru; Li, Qingwen

    2016-12-01

    Carbon-nanotube (CNT) fibers integrate such properties as high mechanical strength, extraordinary structural flexibility, high thermal and electrical conductivities, novel corrosion and oxidation resistivities, and high surface area, which makes them a very promising candidate for next-generation smart textiles and wearable devices. A brief review of the preparation of CNT fibers and recently developed CNT-fiber-based flexible and functional devices, which include artificial muscles, electrochemical double-layer capacitors, lithium-ion batteries, solar cells, and memristors, is presented.

  11. Oscillometric continuous blood pressure sensing for wearable health monitoring system

    CERN Document Server

    Gelao, Gennaro; Passaro, Vittorio M N; Perri, Anna Gina

    2015-01-01

    In this paper we present an acquisition chain for the measurement of blood arterial pressure based on the oscillometric method. This method does not suffer from any limitation as the well-known auscultatory method and it is suited for wearable health monitoring systems. The device uses a pressure sensor whose signal is filtered, digitalized and analyzed by a microcontroller. Local analysis allows the evaluation of the systolic and diastolic pressure values which can be used for local alarms, data collection and remote monitoring.

  12. Wearable Triboelectric Generator for Powering the Portable Electronic Devices.

    Science.gov (United States)

    Cui, Nuanyang; Liu, Jinmei; Gu, Long; Bai, Suo; Chen, Xiaobo; Qin, Yong

    2015-08-26

    A cloth-base wearable triboelectric nanogenerator made of nylon and Dacron fabric was fabricated for harvesting body motion energy. Through the friction between forearm and human body, the generator can turn the mechanical energy of an arm swing into electric energy and power an electroluminescent tubelike lamp easily. The maximum output current and voltage of the generator reach up to 0.2 mA and 2 kV. Furthermore, this generator can be easily folded, kneaded, and cleaned like a common garment.

  13. Sleep Quality Prediction From Wearable Data Using Deep Learning.

    Science.gov (United States)

    Sathyanarayana, Aarti; Joty, Shafiq; Fernandez-Luque, Luis; Ofli, Ferda; Srivastava, Jaideep; Elmagarmid, Ahmed; Arora, Teresa; Taheri, Shahrad

    2016-11-04

    The importance of sleep is paramount to health. Insufficient sleep can reduce physical, emotional, and mental well-being and can lead to a multitude of health complications among people with chronic conditions. Physical activity and sleep are highly interrelated health behaviors. Our physical activity during the day (ie, awake time) influences our quality of sleep, and vice versa. The current popularity of wearables for tracking physical activity and sleep, including actigraphy devices, can foster the development of new advanced data analytics. This can help to develop new electronic health (eHealth) applications and provide more insights into sleep science. The objective of this study was to evaluate the feasibility of predicting sleep quality (ie, poor or adequate sleep efficiency) given the physical activity wearable data during awake time. In this study, we focused on predicting good or poor sleep efficiency as an indicator of sleep quality. Actigraphy sensors are wearable medical devices used to study sleep and physical activity patterns. The dataset used in our experiments contained the complete actigraphy data from a subset of 92 adolescents over 1 full week. Physical activity data during awake time was used to create predictive models for sleep quality, in particular, poor or good sleep efficiency. The physical activity data from sleep time was used for the evaluation. We compared the predictive performance of traditional logistic regression with more advanced deep learning methods: multilayer perceptron (MLP), convolutional neural network (CNN), simple Elman-type recurrent neural network (RNN), long short-term memory (LSTM-RNN), and a time-batched version of LSTM-RNN (TB-LSTM). Deep learning models were able to predict the quality of sleep (ie, poor or good sleep efficiency) based on wearable data from awake periods. More specifically, the deep learning methods performed better than traditional logistic regression. “CNN had the highest specificity and

  14. Woven electronics: a new perspective for wearable technology.

    Science.gov (United States)

    Locci, Simone; Maccioni, Maurizio; Orgiu, Emanuele; Bonfiglio, Annalisa

    2007-01-01

    Endowing a textile substrate (i.e. fibers, yarns, fabrics) with active functions is a new powerful concept, that has recently given rise to several interesting contributions. In this paper, we will describe a possible approach to this intriguing objective, focusing on the technology and on the electronic model. Future applications for this technology will allow to obtain, for instance, matrices of sensors assembled by textile technology and will ensure to obtain for wearable devices the necessary properties of drapability and conformity to the body that are required for these applications.

  15. Snaps to Connect Coaxial and Microstrip Lines in Wearable Systems

    Directory of Open Access Journals (Sweden)

    Tiiti Kellomäki

    2012-01-01

    Full Text Available Commercial snaps (clothing fasteners can be used to connect a coaxial cable to a microstrip line. This is useful in the context of wearable antennas, especially in consumer applications and disposable connections. The measured S-parameters of the transition are presented, and an equivalent circuit and approximate equations are derived for system design purposes. The proposed connection is usable up to 1.5 GHz (10 dB return loss condition, and the frequency range can be extended to 2 GHz if a thinner, more flexible coaxial cable is used.

  16. Wearable technologies for sweat rate and conductivity sensors

    CERN Document Server

    Salvo, Pietro

    2012-01-01

    Hauptbeschreibung Wearable sensors present a new frontier in the development of monitoring techniques. They are of great importance in sectors such as sports and healthcare, as they permit the continuous monitoring of physiological and biological elements, such as ECG and human sweat. Until recently, this could only be carried out in specialized laboratories in the presence of cumbersome, and usually, expensive devices. Sweat monitoring sensors integrated onto textile substrates are not only part of a new field of work but, they also represent the first attempt to implement such an

  17. Development of a Wearable-Sensor-Based Fall Detection System

    Directory of Open Access Journals (Sweden)

    Falin Wu

    2015-01-01

    Full Text Available Fall detection is a major challenge in the public healthcare domain, especially for the elderly as the decline of their physical fitness, and timely and reliable surveillance is necessary to mitigate the negative effects of falls. This paper develops a novel fall detection system based on a wearable device. The system monitors the movements of human body, recognizes a fall from normal daily activities by an effective quaternion algorithm, and automatically sends request for help to the caregivers with the patient’s location.

  18. Wearable sensor network to study laterality of brain functions.

    Science.gov (United States)

    Postolache, Gabriela B; Girao, Pedro S; Postolache, Octavian A

    2015-08-01

    In the last decade researches on laterality of brain functions have been reinvigorated. New models of lateralization of brain functions were proposed and new methods for understanding mechanisms of asymmetry between right and left brain functions were described. We design a system to study laterality of motor and autonomic nervous system based on wearable sensors network. A mobile application was developed for analysis of upper and lower limbs movements, cardiac and respiratory function. The functionalities and experience gained with deployment of the system are described.

  19. Development of a Wearable-Sensor-Based Fall Detection System

    Science.gov (United States)

    Zhao, Hengyang; Zhao, Yan; Zhong, Haibo

    2015-01-01

    Fall detection is a major challenge in the public healthcare domain, especially for the elderly as the decline of their physical fitness, and timely and reliable surveillance is necessary to mitigate the negative effects of falls. This paper develops a novel fall detection system based on a wearable device. The system monitors the movements of human body, recognizes a fall from normal daily activities by an effective quaternion algorithm, and automatically sends request for help to the caregivers with the patient's location. PMID:25784933

  20. Hand-arm vibration exposure monitoring with wearable sensor module.

    Science.gov (United States)

    Austad, Hanne O; Røed, Morten H; Liverud, Anders E; Dalgard, Steffen; Seeberg, Trine M

    2013-01-01

    Vibration exposure is a serious risk within work physiology for several work groups. Combined with cold artic climate, the risk for permanent harm is even higher. Equipment that can monitor the vibration exposure and warn the user when at risk will provide a safer work environment for these work groups. This study evaluates whether data from a wearable wireless multi-parameter sensor module can be used to estimate vibration exposure and exposure time. This work has been focused on the characterization of the response from the accelerometer in the sensor module and the optimal location of the module in the hand-arm configuration.

  1. Reconfigurable Multiparameter Biosignal Acquisition SoC for Low Power Wearable Platform

    Directory of Open Access Journals (Sweden)

    Jongpal Kim

    2016-11-01

    Full Text Available A low power and low noise reconfigurable analog front-end (AFE system on a chip (SoC for biosignal acquisition is presented. The presented AFE can be reconfigured for use in electropotential, bioimpedance, electrochemical, and photoelectrical modes. The advanced healthcare services based on multiparameter physiological biosignals can be easily implemented with these multimodal and highly reconfigurable features of the proposed system. The reconfigurable gain and input referred noise of the core instrumentation amplifier block are 25 dB to 52 dB, and 1 μVRMS, respectively. The power consumption of the analog blocks in one readout channel is less than 52 μW. The reconfigurable capability among various modes of applications including electrocardiogram, blood glucose concentration, respiration, and photoplethysmography are shown experimentally.

  2. Reconfigurable Multiparameter Biosignal Acquisition SoC for Low Power Wearable Platform

    Science.gov (United States)

    Kim, Jongpal; Ko, Hyoungho

    2016-01-01

    A low power and low noise reconfigurable analog front-end (AFE) system on a chip (SoC) for biosignal acquisition is presented. The presented AFE can be reconfigured for use in electropotential, bioimpedance, electrochemical, and photoelectrical modes. The advanced healthcare services based on multiparameter physiological biosignals can be easily implemented with these multimodal and highly reconfigurable features of the proposed system. The reconfigurable gain and input referred noise of the core instrumentation amplifier block are 25 dB to 52 dB, and 1 μVRMS, respectively. The power consumption of the analog blocks in one readout channel is less than 52 μW. The reconfigurable capability among various modes of applications including electrocardiogram, blood glucose concentration, respiration, and photoplethysmography are shown experimentally. PMID:27898004

  3. Reconfigurable Multiparameter Biosignal Acquisition SoC for Low Power Wearable Platform.

    Science.gov (United States)

    Kim, Jongpal; Ko, Hyoungho

    2016-11-25

    A low power and low noise reconfigurable analog front-end (AFE) system on a chip (SoC) for biosignal acquisition is presented. The presented AFE can be reconfigured for use in electropotential, bioimpedance, electrochemical, and photoelectrical modes. The advanced healthcare services based on multiparameter physiological biosignals can be easily implemented with these multimodal and highly reconfigurable features of the proposed system. The reconfigurable gain and input referred noise of the core instrumentation amplifier block are 25 dB to 52 dB, and 1 μVRMS, respectively. The power consumption of the analog blocks in one readout channel is less than 52 μW. The reconfigurable capability among various modes of applications including electrocardiogram, blood glucose concentration, respiration, and photoplethysmography are shown experimentally.

  4. StayFit: a wearable application for Gym based power training.

    Science.gov (United States)

    Maheedhar, Maram; Gaurav, Aman; Jilla, Vivek; Tiwari, Vijay N; Narayanan, Rangavittal

    2016-08-01

    Comprehensive fitness training involves both cardiorespiratory and power components. Often power/muscle strength training is confused with cardiorespiratory endurance training. However, each of them target different physiological aspects of fitness. Although, wearable based fitness trackers designed towards cardiorespiratory endurance training are available in the market, a dedicated wearable based fitness application designed for power training/tracking is still not readily available to fitness enthusiasts. With growing usage of wearable technology to manage and track personal health, it is imperative to develop health/fitness applications for wearables. A wearable based application for power training will allow the user to track build-up of muscle strength unobtrusively over a period of time. This work provides a framework and design for automatic detection, counting repetitions of strength training Gym exercises (covering all the major muscle groups), estimate personalized calories spent in each session and track power on a standalone Gear watch (both analysis and display including User Experience(UX) design). Our proposed method detects activity with ~96% sensitivity and ~96% specificity on an average and count repetitions with an overall accuracy of >95% using motion sensor data (accelerometer, gyroscope) for eight major Gym exercises. Additionally, using heart rate sensor data we have provided a mechanism to individually track the power/muscle strength of a person. This work will give further impetus towards developing wearable based systems for personalized fitness tracking and training. This will also give an option for wearable users to address both the crucial aspects of fitness (cardiorespiratory and muscle strength).

  5. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices

    Science.gov (United States)

    Thurow, Kerstin; Stoll, Regina

    2017-01-01

    Objectives Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. Methods MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Results Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Conclusions Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization. PMID:28261526

  6. Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives.

    Science.gov (United States)

    Pacchierotti, Claudio; Sinclair, Stephen; Solazzi, Massimiliano; Frisoli, Antonio; Hayward, Vincent; Prattichizzo, Domenico

    2017-05-09

    In the last decade, we have witnessed a drastic change in the form factor of audio and vision technologies, from heavy and grounded machines to lightweight devices that naturally fit our bodies. However, only recently, haptic systems have started to be designed with wearability in mind. The wearability of haptic systems enables novel forms of communication, cooperation, and integration between humans and machines. Wearable haptic interfaces are capable of communicating with the human wearers during their interaction with the environment they share, in a natural and yet private way. This paper presents a taxonomy and review of wearable haptic systems for the fingertip and the hand, focusing on those systems directly addressing wearability challenges. The paper also discusses the main technological and design challenges for the development of wearable haptic interfaces, and it reports on the future perspectives of the field. Finally, the paper includes two tables summarizing the characteristics and features of the most representative wearable haptic systems for the fingertip and the hand.

  7. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices.

    Science.gov (United States)

    Haghi, Mostafa; Thurow, Kerstin; Stoll, Regina

    2017-01-01

    Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization.

  8. Wearable Virtual White Cane Network for navigating people with visual impairment.

    Science.gov (United States)

    Gao, Yabiao; Chandrawanshi, Rahul; Nau, Amy C; Tse, Zion Tsz Ho

    2015-09-01

    Navigating the world with visual impairments presents inconveniences and safety concerns. Although a traditional white cane is the most commonly used mobility aid due to its low cost and acceptable functionality, electronic traveling aids can provide more functionality as well as additional benefits. The Wearable Virtual Cane Network is an electronic traveling aid that utilizes ultrasound sonar technology to scan the surrounding environment for spatial information. The Wearable Virtual Cane Network is composed of four sensing nodes: one on each of the user's wrists, one on the waist, and one on the ankle. The Wearable Virtual Cane Network employs vibration and sound to communicate object proximity to the user. While conventional navigation devices are typically hand-held and bulky, the hands-free design of our prototype allows the user to perform other tasks while using the Wearable Virtual Cane Network. When the Wearable Virtual Cane Network prototype was tested for distance resolution and range detection limits at various displacements and compared with a traditional white cane, all participants performed significantly above the control bar (p Virtual Cane Network rather than the white cane. The obstacle course experiment also shows that the use of the white cane in combination with the Wearable Virtual Cane Network can significantly improve navigation over using either the white cane or the Wearable Virtual Cane Network alone (p < 0.05, paired t-test).

  9. A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Jingjing Zhao

    2014-07-01

    Full Text Available Harvesting mechanical energy from human motion is an attractive approach for obtaining clean and sustainable electric energy to power wearable sensors, which are widely used for health monitoring, activity recognition, gait analysis and so on. This paper studies a piezoelectric energy harvester for the parasitic mechanical energy in shoes originated from human motion. The harvester is based on a specially designed sandwich structure with a thin thickness, which makes it readily compatible with a shoe. Besides, consideration is given to both high performance and excellent durability. The harvester provides an average output power of 1 mW during a walk at a frequency of roughly 1 Hz. Furthermore, a direct current (DC power supply is built through integrating the harvester with a power management circuit. The DC power supply is tested by driving a simulated wireless transmitter, which can be activated once every 2–3 steps with an active period lasting 5 ms and a mean power of 50 mW. This work demonstrates the feasibility of applying piezoelectric energy harvesters to power wearable sensors.

  10. How wearable technologies will impact the future of health care.

    Science.gov (United States)

    Barnard, Rick; Shea, J Timothy

    2004-01-01

    After four hundred years of delivering health care in hospitals, industrialized countries are now shifting towards treating patients at the "point of need". This trend will likely accelerate demand for, and adoption of, wearable computing and smart fabric and interactive textile (SFIT) solutions. These healthcare solutions will be designed to provide real-time vital and diagnostic information to health care providers, patients, and related stakeholders in such a manner as to improve quality of care, reduce the cost of care, and allow patients greater control over their own health. The current market size for wearable computing and SFIT solutions is modest; however, the future outlook is extremely strong. Venture Development Corporation, a technology market research and strategy firm, was founded in 1971. Over the years, VDC has developed and implemented a unique and highly successful methodology for forecasting and analyzing highly dynamic technology markets. VDC has extensive experience in providing multi-client and proprietary analysis in the electronic components, advanced materials, and mobile computing markets.

  11. Discriminating stress from cognitive load using a wearable EDA device.

    Science.gov (United States)

    Setz, Cornelia; Arnrich, Bert; Schumm, Johannes; La Marca, Roberto; Tröster, Gerhard; Ehlert, Ulrike

    2010-03-01

    The inferred cost of work-related stress call for prevention strategies that aim at detecting early warning signs at the workplace. This paper goes one step towards the goal of developing a personal health system for detecting stress. We analyze the discriminative power of electrodermal activity (EDA) in distinguishing stress from cognitive load in an office environment. A collective of 33 subjects underwent a laboratory intervention that included mild cognitive load and two stress factors, which are relevant at the workplace: mental stress induced by solving arithmetic problems under time pressure and psychosocial stress induced by social-evaluative threat. During the experiments, a wearable device was used to monitor the EDA as a measure of the individual stress reaction. Analysis of the data showed that the distributions of the EDA peak height and the instantaneous peak rate carry information about the stress level of a person. Six classifiers were investigated regarding their ability to discriminate cognitive load from stress. A maximum accuracy of 82.8% was achieved for discriminating stress from cognitive load. This would allow keeping track of stressful phases during a working day by using a wearable EDA device.

  12. Reviving a medical wearable computer for teaching purposes.

    Science.gov (United States)

    Frenger, Paul

    2014-01-01

    In 1978 the author constructed a medical wearable computer using an early CMOS microprocessor and support chips. This device was targeted for use by health-conscious consumers and other early adopters. Its expandable functions included weight management, blood pressure control, diabetes care, medication reminders, smoking cessation, pediatric growth and development, simple medical database, digital communication with a doctor’s office and emergency alert system. Various physiological sensors could be plugged-into the calculator-sized chassis. The device was shown to investor groups but funding was not obtained; by 1992 the author ceased pursuing it. The Computing and Mathematics Chair at a local University, a NASA acquaintance, approached the author to mentor a CS capstone course for Summer 2012. With the author’s guidance, five students proceeded to convert this medical wearable computer design to an iPhone-based implementation using the Apple Xcode Developer Kit and other utilities. The final student device contained a body mass index (BMI) calculator, an emergency alert for 911 or other first responders, a medication reminder, a Doctor’s appointment feature, a medical database, medical Internet links, and a pediatric growth & development guide. The students’ final imple-mentation was successfully demonstrated on an actual iPhone 4 at the CS capstone meeting in mid-Summer.

  13. Unobtrusive sensing and wearable devices for health informatics.

    Science.gov (United States)

    Zheng, Ya-Li; Ding, Xiao-Rong; Poon, Carmen Chung Yan; Lo, Benny Ping Lai; Zhang, Heye; Zhou, Xiao-Lin; Yang, Guang-Zhong; Zhao, Ni; Zhang, Yuan-Ting

    2014-05-01

    The aging population, prevalence of chronic diseases, and outbreaks of infectious diseases are some of the major challenges of our present-day society. To address these unmet healthcare needs, especially for the early prediction and treatment of major diseases, health informatics, which deals with the acquisition, transmission, processing, storage, retrieval, and use of health information, has emerged as an active area of interdisciplinary research. In particular, acquisition of health-related information by unobtrusive sensing and wearable technologies is considered as a cornerstone in health informatics. Sensors can be weaved or integrated into clothing, accessories, and the living environment, such that health information can be acquired seamlessly and pervasively in daily living. Sensors can even be designed as stick-on electronic tattoos or directly printed onto human skin to enable long-term health monitoring. This paper aims to provide an overview of four emerging unobtrusive and wearable technologies, which are essential to the realization of pervasive health information acquisition, including: (1) unobtrusive sensing methods, (2) smart textile technology, (3) flexible-stretchable-printable electronics, and (4) sensor fusion, and then to identify some future directions of research.

  14. A flexible organic resistance memory device for wearable biomedical applications

    Science.gov (United States)

    Cai, Yimao; Tan, Jing; YeFan, Liu; Lin, Min; Huang, Ru

    2016-07-01

    Parylene is a Food and Drug Administration (FDA)-approved material which can be safely used within the human body and it is also offers chemically inert and flexible merits. Here, we present a flexible parylene-based organic resistive random access memory (RRAM) device suitable for wearable biomedical application. The proposed device is fabricated through standard lithography and pattern processes at room temperature, exhibiting the feasibility of integration with CMOS circuits. This organic RRAM device offers a high storage window (>104), superior retention ability and immunity to disturbing. In addition, brilliant mechanical and electrical stabilities of this device are demonstrated when under harsh bending (bending cycle >500, bending radius <10 mm). Finally, the underlying mechanism for resistance switching of this kind of device is discussed, and metallic conducting filament formation and annihilation related to oxidization/redox of Al and Al anions migrating in the parylene layer can be attributed to resistance switching in this device. These advantages reveal the significant potential of parylene-based flexible RRAM devices for wearable biomedical applications.

  15. Toward lightweight biometric signal processing for wearable devices.

    Science.gov (United States)

    Francescon, Roberto; Hooshmand, Mohsen; Gadaleta, Matteo; Grisan, Enrico; Yoon, Seung Keun; Rossi, Michele

    2015-01-01

    Wearable devices are becoming a natural and economic means to gather biometric data from end users. The massive amount of information that they will provide, unimaginable until a few years ago, owns an immense potential for applications such as continuous monitoring for personalized healthcare and use within fitness applications. Wearables are however heavily constrained in terms of amount of memory, transmission capability and energy reserve. This calls for dedicated, lightweight but still effective algorithms for data management. This paper is centered around lossy data compression techniques, whose aim is to minimize the amount of information that is to be stored on their onboard memory and subsequently transmitted over wireless interfaces. Specifically, we analyze selected compression techniques for biometric signals, quantifying their complexity (energy consumption) and compression performance. Hence, we propose a new class of codebook-based (CB) compression algorithms, designed to be energy efficient, online and amenable to any type of signal exhibiting recurrent patterns. Finally, the performance of the selected and the new algorithm is assessed, underlining the advantages offered by CB schemes in terms of memory savings and classification algorithms.

  16. Color tunable photonic textiles for wearable display applications

    Science.gov (United States)

    Sayed, I.; Berzowska, J.; Skorobogatiy, M.

    2010-04-01

    Integration of optical functionalities such as light emission, processing and collection into flexible woven matrices of fabric have grabbed a lot of attention in the last few years. Photonic textiles frequently involve optical fibers as they can be easily processed together with supporting fabric fibers. This technology finds uses in various fields of application such as interactive clothing, signage, wearable health monitoring sensors and mechanical strain and deformation detectors. Recent development in the field of Photonic Band Gap optical fibers (PBG) could potentially lead to novel photonic textiles applications and techniques. Particularly, plastic PBG Bragg fibers fabricated in our group have strong potential in the field of photonic textiles as they offer many advantages over standard silica fibers at the same low cost. Among many unusual properties of PBG textiles we mention that they are highly reflective, PBG textiles are colored without using any colorants, PBG textiles can change their color by controlling the relative intensities of guided and reflected light, and finally, PBG textiles can change their colors when stretched. Some of the many experimental realization of photonic bandgap fiber textiles and their potential applications in wearable displays are discussed.

  17. A Fabric-Based Approach for Wearable Haptics

    Directory of Open Access Journals (Sweden)

    Matteo Bianchi

    2016-07-01

    Full Text Available In recent years, wearable haptic systems (WHS have gained increasing attention as a novel and exciting paradigm for human–robot interaction (HRI. These systems can be worn by users, carried around, and integrated in their everyday lives, thus enabling a more natural manner to deliver tactile cues. At the same time, the design of these types of devices presents new issues: the challenge is the correct identification of design guidelines, with the two-fold goal of minimizing system encumbrance and increasing the effectiveness and naturalness of stimulus delivery. Fabrics can represent a viable solution to tackle these issues. They are specifically thought “to be worn”, and could be the key ingredient to develop wearable haptic interfaces conceived for a more natural HRI. In this paper, the author will review some examples of fabric-based WHS that can be applied to different body locations, and elicit different haptic perceptions for different application fields. Perspective and future developments of this approach will be discussed.

  18. A flexible organic resistance memory device for wearable biomedical applications.

    Science.gov (United States)

    Cai, Yimao; Tan, Jing; YeFan, Liu; Lin, Min; Huang, Ru

    2016-07-08

    Parylene is a Food and Drug Administration (FDA)-approved material which can be safely used within the human body and it is also offers chemically inert and flexible merits. Here, we present a flexible parylene-based organic resistive random access memory (RRAM) device suitable for wearable biomedical application. The proposed device is fabricated through standard lithography and pattern processes at room temperature, exhibiting the feasibility of integration with CMOS circuits. This organic RRAM device offers a high storage window (>10(4)), superior retention ability and immunity to disturbing. In addition, brilliant mechanical and electrical stabilities of this device are demonstrated when under harsh bending (bending cycle >500, bending radius mechanism for resistance switching of this kind of device is discussed, and metallic conducting filament formation and annihilation related to oxidization/redox of Al and Al anions migrating in the parylene layer can be attributed to resistance switching in this device. These advantages reveal the significant potential of parylene-based flexible RRAM devices for wearable biomedical applications.

  19. Wearable and implantable wireless sensor network solutions for healthcare monitoring.

    Science.gov (United States)

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper.

  20. Learning Predictive Movement Models From Fabric-Mounted Wearable Sensors.

    Science.gov (United States)

    Michael, Brendan; Howard, Matthew

    2016-12-01

    The measurement and analysis of human movement for applications in clinical diagnostics or rehabilitation is often performed in a laboratory setting using static motion capture devices. A growing interest in analyzing movement in everyday environments (such as the home) has prompted the development of "wearable sensors", with the most current wearable sensors being those embedded into clothing. A major issue however with the use of these fabric-embedded sensors is the undesired effect of fabric motion artefacts corrupting movement signals. In this paper, a nonparametric method is presented for learning body movements, viewing the undesired motion as stochastic perturbations to the sensed motion, and using orthogonal regression techniques to form predictive models of the wearer's motion that eliminate these errors in the learning process. Experiments in this paper show that standard nonparametric learning techniques underperform in this fabric motion context and that improved prediction accuracy can be made by using orthogonal regression techniques. Modelling this motion artefact problem as a stochastic learning problem shows an average 77% decrease in prediction error in a body pose task using fabric-embedded sensors, compared to a kinematic model.

  1. Flexible dielectric elastomer actuators for wearable human-machine interfaces

    Science.gov (United States)

    Bolzmacher, Christian; Biggs, James; Srinivasan, Mandayam

    2006-03-01

    Wearable dielectric elastomer actuators have the potential to enable new technologies, such as tactile feedback gloves for virtual reality, and to improve existing devices, such as automatic blood pressure cuffs. They are potentially lighter, quieter, thinner, simpler, and cheaper than pneumatic and hydraulic systems now used to make compliant, actuated interfaces with the human body. Achieving good performance without using a rigid frame to prestrain the actuator is a fundamental challenge in using these actuators on body. To answer this challenge, a new type of fiber-prestrained composite actuator was developed. Equations that facilitate design of the actuator are presented, along with FE analysis, material tests, and experimental results from prototypes. Bending stiffness of the actuator material was found to be comparable to textiles used in clothing, confirming wearability. Two roll-to-roll machines are also presented that permit manufacture of this material in bulk as a modular, compact, prestressed composite that can be cut, stacked, and staggered, in order to build up actuators for a range of desired forces and displacements. The electromechanical properties of single- layered actuators manufactured by this method were measured (N=5). At non-damaging voltages, blocking force ranged from 3,7-5,0 gram per centimeter of actuator width, with linear strains of 20,0-30%. Driving the actuators to breakdown produced maximum force of 8,3-10 gram/cm, and actuation strain in excess 30%. Using this actuator, a prototype tactile display was constructed and demonstrated.

  2. Potential Applications of Smart Multifunctional Wearable Materials to Gerontology.

    Science.gov (United States)

    Armstrong, David G; Najafi, Bijan; Shahinpoor, Mohsen

    2017-01-12

    Smart multifunctional materials can play a constructive role in addressing some very important aging-related issues. Aging affects the ability of older adults to continue to live safely and economically in their own residences for as long as possible. Thus, there will be a greater need for preventive, acute, rehabilitative, and long-term health care services for older adults as well as a need for tools to enable them to function independently during daily activities. The objective of this paper is, thus, to present a comprehensive review of some potential smart materials and their areas of applications to gerontology. Thus, brief descriptions of various currently available multifunctional smart materials and their possible applications to aging-related problems are presented. It is concluded that some of the most important applications to geriatrics may be in various sensing scenarios to collect health-related feedback or information and provide personalized care. Further described are the applications of wearable technologies to aging-related needs, including devices for home rehabilitation, remote monitoring, social well-being, frailty monitoring, monitoring of diabetes and wound healing and fall detection or prediction. It is also concluded that wearable technologies, when combined with an appropriate application and with appropriate feedback, may help improve activities and functions of older patients with chronic diseases. Finally, it is noted that methods developed to measure what one collectively manages in this population may provide a foundation to establish new definitions of quality of life.

  3. Advances in wearable technology and its medical applications.

    Science.gov (United States)

    Bonato, Paolo

    2010-01-01

    The concept of monitoring individuals in the home and community settings was introduced more than 50 years ago, when Holter monitoring was proposed (in the late 1940s) and later adopted (in the 1960s) as a clinical tool. However, technologies to fully enable such vision were lacking and only sporadic and rather obtrusive monitoring techniques were available for several decades. Over the past decade, we have witnessed a great deal of progress in the field of wearable sensors and systems. Advances in this field have finally provided the tools to implement and deploy technology with the capabilities required by researchers in the field of patients' home monitoring. These technologies provide the tools to achieve early diagnosis of diseases such as congestive heart failure, prevention of chronic conditions such as diabetes, improved clinical management of neurodegenerative conditions such as Parkinson's disease, and the ability to promptly respond to emergency situations such as seizures in patients with epilepsy and cardiac arrest in subjects undergoing cardiovascular monitoring. Current research efforts are focused on the development of systems enabling clinical applications. The current focus on developing and deploying wearable systems targeting specific clinical applications has the potential of leading to clinical adoption within the next five to ten years.

  4. A wearable robotic orthosis with a spring-assist actuator.

    Science.gov (United States)

    Seungmin Jung; Chankyu Kim; Jisu Park; Dongyoub Yu; Jaehwan Park; Junho Choi

    2016-08-01

    This paper introduces a wearable robotic orthosis with spring-assist actuators, which is designed to assist people who have difficulty in walking. The spring-assist actuator consists of an electrical motor and a spring, which are attached to a rotational axis in parallel to each other. The spring-assist actuator is developed based on the analysis on the stiffness of the knee and hip joints during walking. "COWALK-Mobile," which is a wearable robotic orthosis, is developed using the spring-assist actuators to reduce the required motor torque during walking. The COWALK-Mobile has active hip and knee joints and passive ankle joints to provide assistive torque to the wearer. The required joint torque is generated by the spring as well as the electrical motor, which results in a decrease of maximum required torque for the motor. In order to evaluate the performance of the spring-assist actuator, experiments are carried out. The experiments show that the spring-assist actuators reduced the required motor torque during walking.

  5. Mental Fatigue Monitoring Using a Wearable Transparent Eye Detection System

    Directory of Open Access Journals (Sweden)

    Kota Sampei

    2016-01-01

    Full Text Available We propose mental fatigue measurement using a wearable eye detection system. The system is capable of acquiring movement of the pupil and blinking from the light reflected from the eye. The reflection is detected by dye-sensitized photovoltaic cells. Since these cells are patterned onto the eyeglass and do not require external input power, the system is notable for its lightweight and low power consumption and can be combined with other wearable devices, such as a head mounted display. We performed experiments to correlate information obtained by the eye detection system with the mental fatigue of the user. Since it is quite difficult to evaluate mental fatigue objectively and quantitatively, we assumed that the National Aeronautics and Space Administration Task Load Index (NASA-TLX had a strong correlation with te mental fatigue. While a subject was requested to conduct calculation tasks, the eye detection system collected his/her information that included position, velocity and total movement of the eye, and amount and frequency of blinking. Multiple regression analyses revealed the correlation between NASA-TLX and the information obtained for 3 out of 5 subjects.

  6. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

    Science.gov (United States)

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-09-01

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.

  7. A shoe-embedded piezoelectric energy harvester for wearable sensors.

    Science.gov (United States)

    Zhao, Jingjing; You, Zheng

    2014-07-11

    Harvesting mechanical energy from human motion is an attractive approach for obtaining clean and sustainable electric energy to power wearable sensors, which are widely used for health monitoring, activity recognition, gait analysis and so on. This paper studies a piezoelectric energy harvester for the parasitic mechanical energy in shoes originated from human motion. The harvester is based on a specially designed sandwich structure with a thin thickness, which makes it readily compatible with a shoe. Besides, consideration is given to both high performance and excellent durability. The harvester provides an average output power of 1 mW during a walk at a frequency of roughly 1 Hz. Furthermore, a direct current (DC) power supply is built through integrating the harvester with a power management circuit. The DC power supply is tested by driving a simulated wireless transmitter, which can be activated once every 2-3 steps with an active period lasting 5 ms and a mean power of 50 mW. This work demonstrates the feasibility of applying piezoelectric energy harvesters to power wearable sensors.

  8. Wearable Training-Monitoring Technology: Applications, Challenges, and Opportunities.

    Science.gov (United States)

    Cardinale, Marco; Varley, Matthew C

    2017-04-01

    The need to quantify aspects of training to improve training prescription has been the holy grail of sport scientists and coaches for many years. Recently, there has been an increase in scientific interest, possibly due to technological advancements and better equipment to quantify training activities. Over the last few years there has been an increase in the number of studies assessing training load in various athletic cohorts with a bias toward subjective reports and/or quantifications of external load. There is an evident lack of extensive longitudinal studies employing objective internal-load measurements, possibly due to the cost-effectiveness and invasiveness of measures necessary to quantify objective internal loads. Advances in technology might help in developing better wearable tools able to ease the difficulties and costs associated with conducting longitudinal observational studies in athletic cohorts and possibly provide better information on the biological implications of specific external-load patterns. Considering the recent technological developments for monitoring training load and the extensive use of various tools for research and applied work, the aim of this work was to review applications, challenges, and opportunities of various wearable technologies.

  9. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors

    Science.gov (United States)

    Francioso, L.; De Pascali, C.; Farella, I.; Martucci, C.; Cretì, P.; Siciliano, P.; Perrone, A.

    2011-03-01

    In this work we proposed design, fabrication and functional characterization of a very low cost energy autonomous, maintenance free, flexible and wearable micro thermoelectric generator (μTEG), finalized to power very low consumption electronics ambient assisted living (AAL) applications. The prototype, integrating an array of 100 thin films thermocouples of Sb2Te3 and Bi2Te3, generates, at 40 °C, an open circuit output voltage of 430 mV and an electrical output power up to 32 nW with matched load. In real operation conditions of prototype, which are believed to be very close to a thermal gradient of 15 °C, the device generates an open circuit output voltage of about 160 mV, with an electrical output power up to 4.18 nW. In the first part of work, deposition investigation Sb2Te3 and Bi2Te3 thin films alloys on Kapton HN polyimide foil by RF magnetron co-sputtering technique is discussed. Deposition parameters have been optimized to gain perfect stoichiometric ratio and high thermoelectric power factor; fabricated thermogenerator has been tested at low gradient conditioned to evaluate applications like human skin wearable power generator for ambient assisted living applications.

  10. A Wearable Sensor System for Monitoring Cigarette Smoking

    Science.gov (United States)

    Sazonov, Edward; Lopez-Meyer, Paulo; Tiffany, Stephen

    2013-01-01

    Objective: Available methods of smoking assessment (e.g., self-report, portable puff-topography instruments) do not permit the collection of accurate measures of smoking behavior while minimizing reactivity to the assessment procedure. This article suggests a new method for monitoring cigarette smoking based on a wearable sensor system (Personal Automatic Cigarette Tracker [PACT]) that is completely transparent to the end user and does not require any conscious effort to achieve reliable monitoring of smoking in free-living individuals. Method: The proposed sensor system consists of a respiratory inductance plethysmograph for monitoring of breathing and a hand gesture sensor for detecting a cigarette at the mouth. The wearable sensor system was tested in a laboratory study of 20 individuals who performed 12 different activities including cigarette smoking. Signal processing was applied to evaluate the uniqueness of breathing patterns and their correlation with hand gestures. Results: The results indicate that smoking manifests unique breathing patterns that are highly correlated with hand-to-mouth cigarette gestures and suggest that these signals can potentially be used to identify and characterize individual smoke inhalations. Conclusions: With the future development of signal processing and pattern-recognition methods, PACT can be used to automatically assess the frequency of smoking and inhalation patterns (such as depth of inhalation and smoke holding) throughout the day and provide an objective method of assessing the effectiveness of behavioral and pharmacological smoking interventions. PMID:24172124

  11. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Science.gov (United States)

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper. PMID:22163914

  12. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Directory of Open Access Journals (Sweden)

    Ashraf Darwish

    2011-05-01

    Full Text Available Wireless sensor network (WSN technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper.

  13. Ambulatory stress monitoring with a wearable bluetooth electrocardiographic device.

    Science.gov (United States)

    Hong, Sungyoup; Yang, Youngmo; Lee, Jangyoung; Yang, Heebum; Park, Kyungnam; Lee, Suyeul; Lee, Inbum; Jang, Yongwon

    2010-01-01

    We tried to monitor stress by using a wearable one channel ECG device that can send ECG signals through Bluetooth wireless communication. Noxious physical and mental arithmetic stress was given three times repeatedly to healthy adults, and cortisol and catecholamines were measured serially from peripheral blood. At the same time, time domain and frequency domain parameters of heart rate variability (HRV) were calculated by taking precordial electrocardiogram. The intensity of correlation between subjective visual analogue scale (VAS) and catecholamine, cortisol, and HRV parameters according to stress was analyzed by using concordance correlation coefficients. The HRV triangular index and LF/HF ratio had high concordance correlation with the degree of stress in the physical stress model. In mental arithmetic stress model, the HRV triangular index and LF/HF ratio had weak concordance correlation with the degree of stress, and it had lower predictability than epinephrine. In both models, cortisol had some correlation with catecholamine, but it had little correlation with HRV parameters. HRV parameters using wearable one channel ECG device can be useful in predicting acute stress and also in many other areas.

  14. Wearable sweat detector device design for health monitoring and clinical diagnosis

    Science.gov (United States)

    Wu, Qiuchen; Zhang, Xiaodong; Tian, Bihao; Zhang, Hongyan; Yu, Yang; Wang, Ming

    2017-06-01

    Miniaturized sensor is necessary part for wearable detector for biomedical applications. Wearable detector device is indispensable for online health care. This paper presents a concept of an wearable digital health monitoring device design for sweat analysis. The flexible sensor is developed to quantify the amount of hydrogen ions in sweat and skin temperature in real time. The detection system includes pH sensor, temperature sensor, signal processing module, power source, microprocessor, display module and so on. The sweat monitoring device is designed for sport monitoring or clinical diagnosis.

  15. Wearable Wireless Cardiovascular Monitoring Using Textile-Based Nanosensor and Nanomaterial Systems

    Directory of Open Access Journals (Sweden)

    Prashanth Shyamkumar

    2014-08-01

    Full Text Available Wearable and ultraportable electronics coupled with pervasive computing are poised to revolutionize healthcare services delivery. The potential cost savings in both treatment, as well as preventive care are the focus of several research efforts across the globe. In this review, we describe the motivations behind wearable solutions to real-time cardiovascular monitoring from a perspective of current healthcare services, as well as from a systems design perspective. We identify areas where emerging research is underway, namely: nanotechnology in textile-based wearable monitors and healthcare solutions targeted towards smart devices, like smartphones and tablets.

  16. [Wearable Medical Devices' MCU Selection Analysis Based on the ARM Cortex-MO+ Architecture].

    Science.gov (United States)

    Wu, Zaoquan; Liu, Mengxing; Qin, Liping; Ye, Shuming; Chen, Hang

    2015-03-01

    According to the characteristics of low cost, high performance, high integration and long battery life of wearable medical devices, the mainstream low-power microcontroller(MCU) series were compared, and came to the conclusion that the MCU series based on ARM Cortex-M0+ architecture were suitable for the development of wearable medical devices. In aspects of power consumption, operational performance, integrated peripherals and cost, the MCU series based on Cortex-M0+ architecture of primary semiconductor companies were compared, aimed at providing the guides of MCU selection for wearable medical devices.

  17. The bioengineering of changing lifestyle and wearable technology: a mini review.

    Science.gov (United States)

    Geib, Roy W; Swink, Phil J; Vorel, Alyssa J; Shepard, Cynthia S; Gurovich, Alvaro N; Waite, Gabi N

    2015-01-01

    Chronic diseases are a major health concern at the national and global level. According to the CDC, 86% of US health dollars go toward the treatment of chronic diseases. Many chronic diseases are manageable or preventable if individuals make appropriate lifestyle choices. Wearable technology – both consumer and medical – provides a unique opportunity to track lifestyle choices, such as increasing physical activity. It is estimated the market for consumer wearables will grow from $9.2 billion in 2014 to $30 billion by 2018. With such a potential market growth, it is important to understand the potential benefits and limitations of wearable technology to impact chronic disease management and prevention.

  18. Wearable technology. Health-care solutions for a growing global population.

    Science.gov (United States)

    Rutherford, Jesse Jayne

    2010-01-01

    Wearable technology may provide an integral part of the solution for providing health care to a growing world population that will be strained by a ballooning aging population. By providing a means to conduct telemedicine-the monitoring, recording, and transmission of physiological signals from outside of the hospital-wearable technology solutions could ease the burden on health-care personnel and use hospital space for more emergent or responsive care. In addition, employing wearable technology in professions where workers are exposed to dangers or hazards could help save their lives and protect health-care personnel.

  19. Comparing Metabolic Energy Expenditure Estimation Using Wearable Multi-Sensor Network and Single Accelerometer

    Science.gov (United States)

    Dong, Bo; Biswas, Subir; Montoye, Alexander; Pfeiffer, Karin

    2014-01-01

    This paper presents the implementation details, system architecture and performance of a wearable sensor network that was designed for human activity recognition and energy expenditure estimation. We also included ActiGraph GT3X+ as a popular single sensor solution for detailed comparison with the proposed wearable sensor network. Linear regression and Artificial Neural Network are implemented and tested. Through a rigorous system study and experiment, it is shown that the wearable multi-sensor network outperforms the single sensor solution in terms of energy expenditure estimation. PMID:24110325

  20. Simulation-Based Design for Wearable Robotic Systems: An Optimization Framework for Enhancing a Standing Long Jump.

    Science.gov (United States)

    Ong, Carmichael F; Hicks, Jennifer L; Delp, Scott L

    2016-05-01

    Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human-robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135, 365, and 297 Nm to the ankle, knee, and hip, respectively. Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Simulation can aid in the design of performance-enhancing technologies.

  1. Pulsed thermoelectricity

    Science.gov (United States)

    Apostol, M.; Nedelcu, M.

    2010-07-01

    A special mechanism of thermoelectric transport is described, consisting of pulses of charge carriers which "fly" periodically through the external circuit from the hot end of the sample to the cold end, with a determined duration of the "on" and "off" times of the electric contacts, while maintaining continuously the thermal contacts. It is shown that such a "resonant" ideal thermogenerator may work cyclically, with the same efficiency quotient as the ideal efficiency quotient of the thermoelectric devices operated in the usual stationary transport regime but the electric flow and power are increased, as a consequence of the concentration of the charge carriers on pulses of small spatial extent. The process is reversible, in the sense that it can be operated either as a thermoelectric generator or as an electrothermal cooler.

  2. 一款医用可穿戴计算机系统的设计与实现%Design and Realization of a Medical Wearable Computer System

    Institute of Scientific and Technical Information of China (English)

    荣雪宇; 车忠根

    2011-01-01

    目前,可穿戴技术越来越多地应用于医疗领域.文中设计了一款集传感器、蓝牙、GPS,TD-SCDMA等技术于一体的现代医用可穿戴监测系统,由传感器采集各项重要生理指标(血压、脉搏、体温等),经过蓝牙短距离无线传输系统传送给个入手持终端,个人手持终端通过先进的面向通信的双核处理器DTT6COIB对整个系统进行控制,及时地与携带者及远程医疗控制中心进行通信.通过实例对可穿戴计算技术的休系结构进行探讨.并对其中的关键数据采集技术进行了实验论证,并就可穿戴计算技术的前景进行了展望.%At present, wearable technology is increasingly used in medical field. A new system about medical wearable monitoring which includes sensors, bluetooth, GPS, TD-SCDMA and other technologies are introduced. The data of important physiological indicators ( blood pressure, pulse, temperature, etc. ) are collected by the sensors and transported to the personal handheld devices by bluetooth.The personal handheld device control the whole system by DTT6C01B-a communication oriented multi-type information processor, and communicate timely with the carriers and medical control center. In this paper, the architecture of the wearable computer is studied in some cases, and one of the key experimental data collection techniques were demnstrated, and look into the future of it.

  3. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors: e0138105

    National Research Council Canada - National Science Library

    Silvia Fantozzi; Andrea Giovanardi; Davide Borra; Giorgio Gatta

    2015-01-01

    .... The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors...

  4. An Adaptive Sensor Data Segments Selection Method for Wearable Health Care Services.

    Science.gov (United States)

    Chen, Shih-Yeh; Lai, Chin-Feng; Hwang, Ren-Hung; Lai, Ying-Hsun; Wang, Ming-Shi

    2015-12-01

    As cloud computing and wearable devices technologies mature, relevant services have grown more and more popular in recent years. The healthcare field is one of the popular services for this technology that adopts wearable devices to sense signals of negative physiological events, and to notify users. The development and implementation of long-term healthcare monitoring that can prevent or quickly respond to the occurrence of disease and accidents present an interesting challenge for computing power and energy limits. This study proposed an adaptive sensor data segments selection method for wearable health care services, and considered the sensing frequency of the various signals from human body, as well as the data transmission among the devices. The healthcare service regulates the sensing frequency of devices by considering the overall cloud computing environment and the sensing variations of wearable health care services. The experimental results show that the proposed service can effectively transmit the sensing data and prolong the overall lifetime of health care services.

  5. A wearable respiratory biofeedback system based on generalized body sensor network.

    Science.gov (United States)

    Liu, Guan-Zheng; Huang, Bang-Yu; Wang, Lei

    2011-06-01

    Wearable medical devices have enabled unobtrusive monitoring of vital signs and emerging biofeedback services in a pervasive manner. This article describes a wearable respiratory biofeedback system based on a generalized body sensor network (BSN) platform. The compact BSN platform was tailored for the strong requirements of overall system optimizations. A waist-worn biofeedback device was designed using the BSN. Extensive bench tests have shown that the generalized BSN worked as intended. In-situ experiments with 22 subjects indicated that the biofeedback device was discreet, easy to wear, and capable of offering wearable respiratory trainings. Pilot studies on wearable training patterns and resultant heart rate variability suggested that paced respirations at abdominal level and with identical inhaling/exhaling ratio were more appropriate for decreasing sympathetic arousal and increasing parasympathetic activities.

  6. A Wearable Respiratory Biofeedback System Based on Generalized Body Sensor Network

    Science.gov (United States)

    Liu, Guan-Zheng; Huang, Bang-Yu

    2011-01-01

    Abstract Wearable medical devices have enabled unobtrusive monitoring of vital signs and emerging biofeedback services in a pervasive manner. This article describes a wearable respiratory biofeedback system based on a generalized body sensor network (BSN) platform. The compact BSN platform was tailored for the strong requirements of overall system optimizations. A waist-worn biofeedback device was designed using the BSN. Extensive bench tests have shown that the generalized BSN worked as intended. In-situ experiments with 22 subjects indicated that the biofeedback device was discreet, easy to wear, and capable of offering wearable respiratory trainings. Pilot studies on wearable training patterns and resultant heart rate variability suggested that paced respirations at abdominal level and with identical inhaling/exhaling ratio were more appropriate for decreasing sympathetic arousal and increasing parasympathetic activities. PMID:21545293

  7. Wearable chemical sensing – sensor design and sampling techniques for real-time sweat analysis

    OpenAIRE

    2014-01-01

    Wearable chemical sensors have the potential to provide new methods of non-invasive physiological measurement. The nature of chemical sensors involves an active surface where a chemical reaction must occur to elicit a response. This adds complexity to a wearable system which creates challenges in the design of a reliable long-term working system. This work presents the design of a real-time sweat sensing platform to analyse sweat loss and composition. Sampling methods have an impact on...

  8. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices.

    Science.gov (United States)

    Wu, Weiwei; Bai, Suo; Yuan, Miaomiao; Qin, Yong; Wang, Zhong Lin; Jing, Tao

    2012-07-24

    Wearable nanogenerators are of vital importance to portable energy-harvesting and personal electronics. Here we report a method to synthesize a lead zirconate titanate textile in which nanowires are parallel with each other and a procedure to make it into flexible and wearable nanogenerators. The nanogenerator can generate 6 V output voltage and 45 nA output current, which are large enough to power a liquid crystal display and a UV sensor.

  9. Congestive heart failure patient monitoring using wearable Bio-impedance sensor technology.

    Science.gov (United States)

    Seulki Lee; Squillace, Gabriel; Smeets, Christophe; Vandecasteele, Marianne; Grieten, Lars; de Francisco, Ruben; Van Hoof, Chris

    2015-08-01

    A new technique to monitor the fluid status of congestive heart failure (CHF) patients in the hospital is proposed and verified in a clinical trial with 8 patients. A wearable Bio-impedance (BioZ) sensor allows a continuous localized measurement which can be complement clinical tools in the hospital. Thanks to the multi-parametric approach and correlation analysis with clinical reference, BioZ is successfully shown as a promising parameter for continuous and wearable CHF patient monitoring application.

  10. Outdoor thermal physiology along human pathways: a study using a wearable measurement system

    Science.gov (United States)

    Nakayoshi, Makoto; Kanda, Manabu; Shi, Rui; de Dear, Richard

    2015-05-01

    An outdoor summer study on thermal physiology along subjects' pathways was conducted in a Japanese city using a unique wearable measurement system that measures all the relevant thermal variables: ambient temperature, humidity, wind speed ( U) and short/long-wave radiation ( S and L), along with some physio-psychological parameters: skin temperature ( T skin), pulse rate, subjective thermal sensation and state of body motion. U, S and L were measured using a globe anemo-radiometer adapted use with pedestrian subjects. The subjects were 26 healthy Japanese adults (14 males, 12 females) ranging from 23 to 74 years in age. Each subject wore a set of instruments that recorded individual microclimate and physiological responses along a designated pedestrian route that traversed various urban textures. The subjects experienced varying thermal environments that could not be represented by fixed-point routine observational data. S fluctuated significantly reflecting the mixture of sunlit/shade distributions within complex urban morphology. U was generally low within urban canyons due to drag by urban obstacles such as buildings but the subjects' movements enhanced convective heat exchanges with the atmosphere, leading to a drop in T skin. The amount of sweating increased as standard effective temperature (SET*) increased. A clear dependence of sweating on gender and body size was found; males sweated more than females; overweight subjects sweated more than standard/underweight subjects. T skin had a linear relationship with SET* and a similarly clear dependence on gender and body size differences. T skin of the higher-sweating groups was lower than that of the lower-sweating groups, reflecting differences in evaporative cooling by perspiration.

  11. PULSE COLUMN

    Science.gov (United States)

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  12. Pumps in wearable ultrafiltration devices: pumps in wuf devices.

    Science.gov (United States)

    Armignacco, Paolo; Garzotto, Francesco; Bellini, Corrado; Neri, Mauro; Lorenzin, Anna; Sartori, Marco; Ronco, Claudio

    2015-01-01

    The wearable artificial kidney (WAK) is a device that is supposed to operate like a real kidney, which permits prolonged, frequent, and continuous dialysis treatments for patients with end-stage renal disease (ESRD). Its functioning is mainly related to its pumping system, as well as to its dialysate-generating and alarm/shutoff ones. A pump is defined as a device that moves fluids by mechanical action. In such a context, blood pumps pull blood from the access side of the dialysis catheter and return the blood at the same rate of flow. The main aim of this paper is to review the current literature on blood pumps, describing the way they have been functioning thus far and how they are being engineered, giving details about the most important parameters that define their quality, thus allowing the production of a radar comparative graph, and listing ideal pumps' features.

  13. Self-healable electrically conducting wires for wearable microelectronics.

    Science.gov (United States)

    Sun, Hao; You, Xiao; Jiang, Yishu; Guan, Guozhen; Fang, Xin; Deng, Jue; Chen, Peining; Luo, Yongfeng; Peng, Huisheng

    2014-09-01

    Electrically conducting wires play a critical role in the advancement of modern electronics and in particular are an important key to the development of next-generation wearable microelectronics. However, the thin conducting wires can easily break during use, and the whole device fails to function as a result. Herein, a new family of high-performance conducting wires that can self-heal after breaking has been developed by wrapping sheets of aligned carbon nanotubes around polymer fibers. The aligned carbon nanotubes offer an effective strategy for the self-healing of the electric conductivity, whereas the polymer fiber recovers its mechanical strength. A self-healable wire-shaped supercapacitor fabricated from a wire electrode of this type maintained a high capacitance after breaking and self-healing.

  14. Micro Data: Wearable Devices Contribute to Improved Chronic Disease Management.

    Science.gov (United States)

    Bianchi, Andria; Parke, Bob

    2016-01-01

    Issues involving chronic disease prevention and management (CDPM) are prevalent in today's aging society, and suggestions for improvement are essential to treat this patient demographic effectively. This article addresses the use of wearable devices for the medical community to improve CDPM by relying on the accumulation of micro data. For the patient, we recognize that these devices can be an effective tool to facilitate real-time monitoring of their vital signs and activity levels. With real-time monitoring and earlier responses, individuals can benefit by preventing, delaying or reducing exacerbations of chronic diseases. Use of these devices also has great benefit to the person and has the potential to decrease the individual's emergency room visits, hospital admissions and re-admissions. As patients and their healthcare providers work together to identify cumulative trends in their micro data, transitions in care planning will be enhanced, further contributing to improved chronic disease management.

  15. A low power wearable transceiver for human body communication.

    Science.gov (United States)

    Huang, Jin; Chen, Lian-Kang; Zhang, Yuan-Ting

    2009-01-01

    This paper reports a low power transceiver designed for wearable medical healthcare system. Based on a novel energy-efficient wideband wireless communication scheme that uses human body as a transmission medium, the transceiver can achieve a maximum 15 Mbps data rate with total receiver sensitivity of -30 dBm. The chip measures only 0.56 mm(2) and was fabricated in the SMIC 0.18um 1P6M RF CMOS process. The RX consumes 5mW and TX dissipates 1mW with delivering power up to 10uW, which is suitable for the body area network short range application. Real-time medical information collecting through the human body is fully simulated. Architecture of the chip together with the detail characterizes from its wireless analog front-end are presented.

  16. Design and implementation of a wearable healthcare monitoring system.

    Science.gov (United States)

    Sagahyroon, Assim; Raddy, Hazem; Ghazy, Ali; Suleman, Umair

    2009-01-01

    A wearable healthcare monitoring unit that integrates various technologies was developed to provide patients with the option of leading a healthy and independent life without risks or confinement to medical facilities. The unit consists of various sensors integrated to a microcontroller and attached to the patient's body, reading vital signs and transmitting these readings via a Bluetooth link to the patient's mobile phone. Short-Messaging-Service (SMS) is incorporated in the design to alert a physician in emergency cases. Additionally, an application program running on the mobile phone uses the internet to update (at regular intervals) the patient records in a hospital database with the most recent readings. To reduce development costs, the components used were both off-the-shelf and affordable.

  17. Low Power Design for Future Wearable and Implantable Devices

    DEFF Research Database (Denmark)

    Lundager, Katrine; Zeinali, Behzad; Tohidi, Mohammad

    2016-01-01

    power provider for such devices. However, batteries have a fixed energy density, limited lifetime and chemical side effect plus the fact that the total size of the WID is dominated by the battery size. These issues make the design very challenging or even impossible. A promising solution is to design...... limit, which is a critical limit for further miniaturization to develop smaller and smarter wearable/implantable devices (WIDs), especially for multi-task continuous computing purposes. Developing smaller and smarter devices with more functionality requires larger batteries, which are currently the main......, the energy provided by each of these harvesting mechanisms is very limited and thus cannot be used for complex tasks. Therefore, a more comprehensive solution is the use of different harvesting mechanisms on a single platform providing enough energy for more complex tasks without the need of batteries...

  18. A wearable walking monitoring system for gait analysis.

    Science.gov (United States)

    Hsieh, Tsung-Han; Tsai, An-Chih; Chang, Cha-Wei; Ho, Ka-Hou; Hsu, Wei-Li; Lin, Ta-Te

    2012-01-01

    In this paper, both hardware and software design to develop a wearable walking monitoring system for gait analysis are presented. For hardware, the mechanism proposed is adaptive to different individuals to wear, and the portability of the design makes it easy to perform outdoor experiments. Four force sensors and two angle displacement sensors were used to measure plantar force distribution and the angles of hip and knee joints. For software design, a novel algorithm was developed to detect different gait phases and the four gait periods during the stance phase. Furthermore, the center of ground contact force was calculated based on the relationships of the force sensors. The results were compared with the VICON motion capture system and a force plate for validation. Experiments showed the behavior of the joint angles are similar to VICON system, and the average error in foot strike time is less than 90 ms.

  19. Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors.

    Science.gov (United States)

    Nguyen, Cuong M; Kota, Pavan Kumar; Nguyen, Minh Q; Dubey, Souvik; Rao, Smitha; Mays, Jeffrey; Chiao, J-C

    2015-09-23

    In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS)-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations.

  20. Weakly Supervised Recognition of Daily Life Activities with Wearable Sensors.

    Science.gov (United States)

    Stikic, Maja; Larlus, Diane; Ebert, Sandra; Schiele, Bernt

    2011-12-01

    This paper considers scalable and unobtrusive activity recognition using on-body sensing for context awareness in wearable computing. Common methods for activity recognition rely on supervised learning requiring substantial amounts of labeled training data. Obtaining accurate and detailed annotations of activities is challenging, preventing the applicability of these approaches in real-world settings. This paper proposes new annotation strategies that substantially reduce the required amount of annotation. We explore two learning schemes for activity recognition that effectively leverage such sparsely labeled data together with more easily obtainable unlabeled data. Experimental results on two public data sets indicate that both approaches obtain results close to fully supervised techniques. The proposed methods are robust to the presence of erroneous labels occurring in real-world annotation data.

  1. Wearable technology for biomechanics: e-textile or micromechanical sensors?

    Science.gov (United States)

    De Rossi, Danilo; Veltink, Peter

    2010-01-01

    The possibility of gathering reliable information about movement characteristics during activities of daily living holds particular appeal for researchers. Data such as this could be used to analyze the performance of individuals undergoing rehabilitation and to provide vital information on whether or not there is an improvement during a neurorehabilitation protocol. Wearable devices are particularly promising toward this aim, because they can be used in unstructured environments (e.g., at home). Recently, two different approaches in this area have become very popular and show promising performance: the use of inertial sensors together with advanced algorithms (e.g., Kalman filters) and the development of e-textile, in which the sensing technology is directly embroidered into the garment worn by the user.

  2. Comunicação e consumo nas wearable technologies

    Directory of Open Access Journals (Sweden)

    Vicente Martin Mastrocola

    2015-12-01

    Full Text Available Tendo em vista a centralidade das relações entre comunicação, consumo e tecnologia,este artigo examina determinados dispositivos digitais que se hibridizam ao corpohumano e que se situam na categoria das wearable technologies. Como parte de projetode pesquisa doutoral em andamento, discutimos como o entrelaçamento de diversosobjetos tecnológicos está reconfigurando o cotidiano e gerando novas possibilidades parapensarmos as materialidades da comunicação e do consumo. Neste contexto não nosatemos a um device específico. Procuramos refletir, de maneira ampla, sobre diferentesintegrações entre humano e não humano, ponderando sobre o que constitui o campo dastecnologias vestíveis e discutindo como elas hoje participam das estratégias derelacionamento entre marcas/empresas e seus consumidores.

  3. Bootstrapping Security Policies for Wearable Apps Using Attributed Structural Graphs.

    Science.gov (United States)

    González-Tablas, Ana I; Tapiador, Juan E

    2016-05-11

    We address the problem of bootstrapping security and privacy policies for newly-deployed apps in wireless body area networks (WBAN) composed of smartphones, sensors and other wearable devices. We introduce a framework to model such a WBAN as an undirected graph whose vertices correspond to devices, apps and app resources, while edges model structural relationships among them. This graph is then augmented with attributes capturing the features of each entity together with user-defined tags. We then adapt available graph-based similarity metrics to find the closest app to a new one to be deployed, with the aim of reusing, and possibly adapting, its security policy. We illustrate our approach through a detailed smartphone ecosystem case study. Our results suggest that the scheme can provide users with a reasonably good policy that is consistent with the user's security preferences implicitly captured by policies already in place.

  4. Models for 31-mode PVDF energy harvester for wearable applications.

    Science.gov (United States)

    Zhao, Jingjing; You, Zheng

    2014-01-01

    Currently, wearable electronics are increasingly widely used, leading to an increasing need of portable power supply. As a clean and renewable power source, piezoelectric energy harvester can transfer mechanical energy into electric energy directly, and the energy harvester based on polyvinylidene difluoride (PVDF) operating in 31-mode is appropriate to harvest energy from human motion. This paper established a series of theoretical models to predict the performance of 31-mode PVDF energy harvester. Among them, the energy storage one can predict the collected energy accurately during the operation of the harvester. Based on theoretical study and experiments investigation, two approaches to improve the energy harvesting performance have been found. Furthermore, experiment results demonstrate the high accuracies of the models, which are better than 95%.

  5. Wearable wireless tactile display for virtual interactions with soft bodies

    Directory of Open Access Journals (Sweden)

    Gabriele eFrediani

    2014-09-01

    Full Text Available We describe here a wearable, wireless, compact and lightweight tactile display, able to mechanically stimulate the fingertip of users, so as to simulate contact with soft bodies in virtual environments. The device was based on dielectric elastomer actuators, as high-performance electromechanically active polymers. The actuator was arranged at the user’s fingertip, integrated within a plastic case, which also hosted a compact high-voltage circuitry. A custom-made wireless control unit was arranged on the forearm and connected to the display via low-voltage leads. We present the structure of the device and a characterization of it, in terms of electromechanical response and stress relaxation. Furthermore, we present results of a psychophysical test aimed at assessing the ability of the system to generate different levels of force that can be perceived by users.

  6. Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors

    Directory of Open Access Journals (Sweden)

    Cuong M. Nguyen

    2015-09-01

    Full Text Available In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu. A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations.

  7. Integration of biochemical sensors into wearable biomaterial platforms

    Science.gov (United States)

    Jandhyala, Sidhartha; Walper, Scott A.; Cargill, Allison A.; Ozual, Abigail; Daniele, Michael A.

    2016-05-01

    With rapidly inflating healthcare costs, a limited supply of physicians and an alarming surge in lifestyle diseases, radical changes must be made to improve preventative medicine and ensure a sustainable healthcare system. A compelling solution is to equip the population with wearable health monitors to continuously record representative and actionable physiological data. Herein, we present a preliminary design and evaluation of a biochemical sensor node enabled by a substrate comprised of a nanocellulose thin-film that conforms to the skin and carries a printed sensor element. The nanocellulose layer ensures conformal and biocompatible contact with the skin, while a printed layer provides a high surface-area electrode. While the recognition/transduction element can be exchanged for many different sensing motifs, we utilize the general structure of an electrochemical glucose sensor.

  8. Skin-mountable stretch sensor for wearable health monitoring.

    Science.gov (United States)

    Pegan, Jonathan D; Zhang, Jasmine; Chu, Michael; Nguyen, Thao; Park, Sun-Jun; Paul, Akshay; Kim, Joshua; Bachman, Mark; Khine, Michelle

    2016-10-06

    This work presents a wrinkled Platinum (wPt) strain sensor with tunable strain sensitivity for applications in wearable health monitoring. These stretchable sensors show a dynamic range of up to 185% strain and gauge factor (GF) of 42. This is believed to be the highest reported GF of any metal thin film strain sensor over a physiologically relevant dynamic range to date. Importantly, sensitivity and dynamic range are tunable to the application by adjusting wPt film thickness. Performance is reliable over 1000 cycles with low hysteresis after sensor conditioning. The possibility of using such a sensor for real-time respiratory monitoring by measuring chest wall displacement and correlating with lung volume is demonstrated.

  9. A Wearable Mobile Sensor Platform to Assist Fruit Grading

    Directory of Open Access Journals (Sweden)

    Luiz M. G. Gonçalves

    2013-05-01

    Full Text Available Wearable computing is a form of ubiquitous computing that offers flexible and useful tools for users. Specifically, glove-based systems have been used in the last 30 years in a variety of applications, but mostly focusing on sensing people’s attributes, such as finger bending and heart rate. In contrast, we propose in this work a novel flexible and reconfigurable instrumentation platform in the form of a glove, which can be used to analyze and measure attributes of fruits by just pointing or touching them with the proposed glove. An architecture for such a platform is designed and its application for intuitive fruit grading is also presented, including experimental results for several fruits.

  10. A Wearable Mobile Sensor Platform to Assist Fruit Grading

    Science.gov (United States)

    Aroca, Rafael V.; Gomes, Rafael B.; Dantas, Rummennigue R.; Calbo, Adonai G.; Gonçalves, Luiz M. G.

    2013-01-01

    Wearable computing is a form of ubiquitous computing that offers flexible and useful tools for users. Specifically, glove-based systems have been used in the last 30 years in a variety of applications, but mostly focusing on sensing people's attributes, such as finger bending and heart rate. In contrast, we propose in this work a novel flexible and reconfigurable instrumentation platform in the form of a glove, which can be used to analyze and measure attributes of fruits by just pointing or touching them with the proposed glove. An architecture for such a platform is designed and its application for intuitive fruit grading is also presented, including experimental results for several fruits. PMID:23666134

  11. Bootstrapping Security Policies for Wearable Apps Using Attributed Structural Graphs

    Directory of Open Access Journals (Sweden)

    Ana I. González-Tablas

    2016-05-01

    Full Text Available We address the problem of bootstrapping security and privacy policies for newly-deployed apps in wireless body area networks (WBAN composed of smartphones, sensors and other wearable devices. We introduce a framework to model such a WBAN as an undirected graph whose vertices correspond to devices, apps and app resources, while edges model structural relationships among them. This graph is then augmented with attributes capturing the features of each entity together with user-defined tags. We then adapt available graph-based similarity metrics to find the closest app to a new one to be deployed, with the aim of reusing, and possibly adapting, its security policy. We illustrate our approach through a detailed smartphone ecosystem case study. Our results suggest that the scheme can provide users with a reasonably good policy that is consistent with the user’s security preferences implicitly captured by policies already in place.

  12. Perspectives from the Wearable Electronics and Applications Research (WEAR) Lab, NASA Johnson Space Center

    Science.gov (United States)

    Moses, Haifa R.

    2017-01-01

    As NASA moves beyond exploring low earth orbit and into deep space exploration, increased communication delays between astronauts and earth drive a need for crew to become more autonomous (earth-independent). Currently crew on board the International Space Station (ISS) have limited insight into specific vehicle system performance because of the dependency on monitoring and real-time communication with Mission Control. Wearable technology provides a method to bridge the gap between the human (astronaut) and the system (spacecraft) by providing mutual monitoring between the two. For example, vehicle or environmental information can be delivered to astronauts through on-body devices and in return wearables provide data to the spacecraft regarding crew health, location, etc. The Wearable Electronics and Applications Research (WEAR) Lab at the NASA Johnson Space Center utilizes a collaborative approach between engineering and human factors to investigate the use of wearables for spaceflight. Zero and partial gravity environments present unique challenges to wearables that require collaborative, user-centered, and iterative approaches to the problems. Examples of the WEAR Lab's recent wearable projects for spaceflight will be discussed.

  13. Wearable Cameras Are Useful Tools to Investigate and Remediate Autobiographical Memory Impairment: A Systematic PRISMA Review.

    Science.gov (United States)

    Allé, Mélissa C; Manning, Liliann; Potheegadoo, Jevita; Coutelle, Romain; Danion, Jean-Marie; Berna, Fabrice

    2017-03-01

    Autobiographical memory, central in human cognition and every day functioning, enables past experienced events to be remembered. A variety of disorders affecting autobiographical memory are characterized by the difficulty of retrieving specific detailed memories of past personal events. Owing to the impact of autobiographical memory impairment on patients' daily life, it is necessary to better understand these deficits and develop relevant methods to improve autobiographical memory. The primary objective of the present systematic PRISMA review was to give an overview of the first empirical evidence of the potential of wearable cameras in autobiographical memory investigation in remediating autobiographical memory impairments. The peer-reviewed literature published since 2004 on the usefulness of wearable cameras in research protocols was explored in 3 databases (PUBMED, PsycINFO, and Google Scholar). Twenty-eight published studies that used a protocol involving wearable camera, either to explore wearable camera functioning and impact on daily life, or to investigate autobiographical memory processing or remediate autobiographical memory impairment, were included. This review analyzed the potential of wearable cameras for 1) investigating autobiographical memory processes in healthy volunteers without memory impairment and in clinical populations, and 2) remediating autobiographical memory in patients with various kinds of memory disorder. Mechanisms to account for the efficacy of wearable cameras are also discussed. The review concludes by discussing certain limitations inherent to using cameras, and new research perspectives. Finally, ethical issues raised by this new technology are considered.

  14. An Overview of the Application of Wearable Technology to Nursing Practice.

    Science.gov (United States)

    Wilson, Daira

    2017-04-01

    Wearable technology is here and nurses are going to be increasingly responsible for patients who use it. Most research in this area has been done in other fields and now is the time for nurses to be more involved in this promising technology to improve patient lives. This paper synthesizes the current state of wearable technology, a brief history of nurse satisfaction with technology, current research about wearable technology, and implications for its future use in nursing. Other areas in health care are already employing wearable technology to improve gait in people with Parkinson's disease, provide automatic defibrillation in cardiac patients, and monitor poststroke rehabilitation. Nurses can be on the front lines of designing and patenting new ideas to improve the lives of their patients. Nurses have always adopted the newest technologies such as electronic health records, electronic medication administration records, and simulation experiences in education. Wearable technology is the next step in this journey and the possible uses are endless. Involving patients in their own care is a major goal of nursing and more research is needed to connect patients and their caregivers to the benefits of wearable technology. © 2016 Wiley Periodicals, Inc.

  15. A Semantic Big Data Platform for Integrating Heterogeneous Wearable Data in Healthcare.

    Science.gov (United States)

    Mezghani, Emna; Exposito, Ernesto; Drira, Khalil; Da Silveira, Marcos; Pruski, Cédric

    2015-12-01

    Advances supported by emerging wearable technologies in healthcare promise patients a provision of high quality of care. Wearable computing systems represent one of the most thrust areas used to transform traditional healthcare systems into active systems able to continuously monitor and control the patients' health in order to manage their care at an early stage. However, their proliferation creates challenges related to data management and integration. The diversity and variety of wearable data related to healthcare, their huge volume and their distribution make data processing and analytics more difficult. In this paper, we propose a generic semantic big data architecture based on the "Knowledge as a Service" approach to cope with heterogeneity and scalability challenges. Our main contribution focuses on enriching the NIST Big Data model with semantics in order to smartly understand the collected data, and generate more accurate and valuable information by correlating scattered medical data stemming from multiple wearable devices or/and from other distributed data sources. We have implemented and evaluated a Wearable KaaS platform to smartly manage heterogeneous data coming from wearable devices in order to assist the physicians in supervising the patient health evolution and keep the patient up-to-date about his/her status.

  16. Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer.

    Science.gov (United States)

    Kwon, Donguk; Lee, Tae-Ik; Shim, Jongmin; Ryu, Seunghwa; Kim, Min Seong; Kim, Seunghwan; Kim, Taek-Soo; Park, Inkyu

    2016-07-06

    We report a flexible and wearable pressure sensor based on the giant piezocapacitive effect of a three-dimensional (3-D) microporous dielectric elastomer, which is capable of highly sensitive and stable pressure sensing over a large tactile pressure range. Due to the presence of micropores within the elastomeric dielectric layer, our piezocapacitive pressure sensor is highly deformable by even very small amounts of pressure, leading to a dramatic increase in its sensitivity. Moreover, the gradual closure of micropores under compression increases the effective dielectric constant, thereby further enhancing the sensitivity of the sensor. The 3-D microporous dielectric layer with serially stacked springs of elastomer bridges can cover a much wider pressure range than those of previously reported micro-/nanostructured sensing materials. We also investigate the applicability of our sensor to wearable pressure-sensing devices as an electronic pressure-sensing skin in robotic fingers as well as a bandage-type pressure-sensing device for pulse monitoring at the human wrist. Finally, we demonstrate a pressure sensor array pad for the recognition of spatially distributed pressure information on a plane. Our sensor, with its excellent pressure-sensing performance, marks the realization of a true tactile pressure sensor presenting highly sensitive responses to the entire tactile pressure range, from ultralow-force detection to high weights generated by human activity.

  17. Heterogeneous System-on-a-Chip Design for Self-Powered Wireless Sensor Networks in Non-Benign Environments

    Science.gov (United States)

    2008-03-01

    due to the academic non-disclosure agreement in force. The novel photocell design utilizes NPN SiGe large area transistors , which are thin and close... transistor test structures and are discussed in section 4.4. Test chip results reveal that the NPN CB junction is not activated as expected. Upon closer...broadened over the past decade with the introduction of processes optimized for radio frequency (RF), optical sensors, integrated bipolar transistors

  18. Noise tolerant voltage-controlled LC oscillator circuits for deep submicron VLSI system-on-a-chip radio circuits

    OpenAIRE

    Typpö, Jukka

    2003-01-01

    This thesis studies the problems with maintaining the spectral purity of fully integrated VCO circuits for radio frequency synthesizers in single-chip system designs. LC tank circuit oscillator circuits are shown to convert amplitude variation in the tank circuit voltage into frequency modulation, if voltage dependent capacitances are present in the tank circuit. Since the parasitic capacitances of the gain transistors and the capacitance of the varactor device in a VCO circuit are voltage de...

  19. Reliability and performance of a system-on-a-chip by predictive wear-out based activation of functional components

    Science.gov (United States)

    Cher, Chen-Yong; Coteus, Paul W; Gara, Alan; Kursun, Eren; Paulsen, David P; Schuelke, Brian A; Sheets, II, John E; Tian, Shurong

    2013-10-01

    A processor-implemented method for determining aging of a processing unit in a processor the method comprising: calculating an effective aging profile for the processing unit wherein the effective aging profile quantifies the effects of aging on the processing unit; combining the effective aging profile with process variation data, actual workload data and operating conditions data for the processing unit; and determining aging through an aging sensor of the processing unit using the effective aging profile, the process variation data, the actual workload data, architectural characteristics and redundancy data, and the operating conditions data for the processing unit.

  20. Development and Test of a High Performance Multi Channel Readout System on a Chip with Application in PET/MR

    OpenAIRE

    2014-01-01

    The availability of new, compact, magnetic field tolerant sensors suitable for PET has opened the opportunity to build highly integrated PET scanners that can be included in commercial MR scanners. This combination has long been expected to have big advantages over existing systems combining PET and CT. This thesis describes my work towards building a highly integrated readout ASIC for application in PET/MR within the framework of the HYPERImage and SUBLIMA projects. It also gives a brief ...

  1. Batteryless Electroencephalography (EEG): Subthreshold Voltage System-on-a-Chip (SoC) Design for Neurophysiological Measurement

    Science.gov (United States)

    2015-03-01

    ARL-TR-7234 ● MAR 2015 US Army Research Laboratory Batteryless Electroencephalography ( EEG ): Subthreshold Voltage System-on-a...originator. ARL-TR-7234 ● MAR 2015 US Army Research Laboratory Batteryless Electroencephalography ( EEG ): Subthreshold Voltage System-on-a...3. DATES COVERED (From - To) 1 October 2013–30 September 2014 4. TITLE AND SUBTITLE Batteryless Electroencephalography ( EEG ): Subthreshold

  2. Low Power Design for Future Wearable and Implantable Devices

    Directory of Open Access Journals (Sweden)

    Katrine Lundager

    2016-10-01

    Full Text Available With the fast progress in miniaturization of sensors and advances in micromachinery systems, a gate has been opened to the researchers to develop extremely small wearable/implantable microsystems for different applications. However, these devices are reaching not to a physical limit but a power limit, which is a critical limit for further miniaturization to develop smaller and smarter wearable/implantable devices (WIDs, especially for multi-task continuous computing purposes. Developing smaller and smarter devices with more functionality requires larger batteries, which are currently the main power provider for such devices. However, batteries have a fixed energy density, limited lifetime and chemical side effect plus the fact that the total size of the WID is dominated by the battery size. These issues make the design very challenging or even impossible. A promising solution is to design batteryless WIDs scavenging energy from human or environment including but not limited to temperature variations through thermoelectric generator (TEG devices, body movement through Piezoelectric devices, solar energy through miniature solar cells, radio-frequency (RF harvesting through antenna etc. However, the energy provided by each of these harvesting mechanisms is very limited and thus cannot be used for complex tasks. Therefore, a more comprehensive solution is the use of different harvesting mechanisms on a single platform providing enough energy for more complex tasks without the need of batteries. In addition to this, complex tasks can be done by designing Integrated Circuits (ICs, as the main core and the most power consuming component of any WID, in an extremely low power mode by lowering the supply voltage utilizing low-voltage design techniques. Having the ICs operational at very low voltages, will enable designing battery-less WIDs for complex tasks, which will be discussed in details throughout this paper. In this paper, a path towards battery

  3. Stretchable electronics for wearable and high-current applications

    Science.gov (United States)

    Hilbich, Daniel; Shannon, Lesley; Gray, Bonnie L.

    2016-04-01

    Advances in the development of novel materials and fabrication processes are resulting in an increased number of flexible and stretchable electronics applications. This evolving technology enables new devices that are not readily fabricated using traditional silicon processes, and has the potential to transform many industries, including personalized healthcare, consumer electronics, and communication. Fabrication of stretchable devices is typically achieved through the use of stretchable polymer-based conductors, or more rigid conductors, such as metals, with patterned geometries that can accommodate stretching. Although the application space for stretchable electronics is extensive, the practicality of these devices can be severely limited by power consumption and cost. Moreover, strict process flows can impede innovation that would otherwise enable new applications. In an effort to overcome these impediments, we present two modified approaches and applications based on a newly developed process for stretchable and flexible electronics fabrication. This includes the development of a metallization pattern stamping process allowing for 1) stretchable interconnects to be directly integrated with stretchable/wearable fabrics, and 2) a process variation enabling aligned multi-layer devices with integrated ferromagnetic nanocomposite polymer components enabling a fully-flexible electromagnetic microactuator for large-magnitude magnetic field generation. The wearable interconnects are measured, showing high conductivity, and can accommodate over 20% strain before experiencing conductive failure. The electromagnetic actuators have been fabricated and initial measurements show well-aligned, highly conductive, isolated metal layers. These two applications demonstrate the versatility of the newly developed process and suggest potential for its furthered use in stretchable electronics and MEMS applications.

  4. Wearable technology as a booster of clinical care

    Science.gov (United States)

    Jonas, Stephan; Hannig, Andreas; Spreckelsen, Cord; Deserno, Thomas M.

    2014-03-01

    Wearable technology defines a new class of smart devices that are accessories or clothing equipped with computational power and sensors, like Google Glass. In this work, we propose a novel concept for supporting everyday clinical pathways with wearable technology. In contrast to most prior work, we are not focusing on the omnipresent screen to display patient information or images, but are trying to maintain existing workflows. To achieve this, our system supports clinical staff as a documenting observer, only intervening adequately if problems are detected. Using the example of medication preparation and administration, a task known to be prone to errors, we demonstrate the full potential of the new devices. Patient and medication identifier are captured with the built-in camera, and the information is send to a transaction server. The server communicates with the hospital information system to obtain patient records and medication information. The system then analyses the new medication for possible side-effects and interactions with already administered drugs. The result is sent to the device while encapsulating all sensitive information respecting data security and privacy. The user only sees a traffic light style encoded feedback to avoid distraction. The server can reduce documentation efforts and reports in real-time on possible problems during medication preparation or administration. In conclusion, we designed a secure system around three basic principles with many applications in everyday clinical work: (i) interaction and distraction is kept as low as possible; (ii) no patient data is displayed; and (iii) device is pure observer, not part of the workflow. By reducing errors and documentation burden, our approach has the capability to boost clinical care.

  5. Wearable high-tech gear for homeland security personnel

    Science.gov (United States)

    Venkateswarlu, Ronda; Hui Wei, Choo; Li Lian, Ngiam; Lim, E. T.; Zhu, Zijian; Yang, Mingjiang

    2006-05-01

    Recent homeland security problems in various countries indicate that fixed surveillance systems at important places are not adequate enough. As the security threats take new dimensions in future, mobile smart security personnel wearing high-tech gear will form the basic infrastructure. See first, listen first, detect first, track first, communicate first with peers, assess the threat and coordinate with security head-quarters are the functions of high-tech gear. This paper proposes a high-tech gear involving (i) hands-free and obtrusion-free textile-based wearable microphone array to capture users voice and interface with body-worn computer, (ii) microphone arrays embedded in textiles to listen and record others voices from a distance, (iii) miniature cameras embedded in the shirt to provide the user with omni vision (iv) wireless personal display as GUI hidden in textile or natural glasses, (v) GPS and body area network for positional awareness for information in the form of text or textile integrated, (vi) reconfigurable HW/SW for all the above functions configured in the form of a usual belt. The main focus of this paper is how to configure the high-tech gear with all these sophisticated functions to disappear into the natural wearables of the user giving him normal look in the public. This project is sponsored by Defence Science & Technology Agency, Ministry of Defence, Singapore. This paper covers multi-discipline technologies at system level, hence not possible to go into details of any subsystem. The main objective of this paper is to share our thoughts and get feedback. Progress and some critical design issues are discussed in this paper.

  6. A wearable system for multi-segment foot kinetics measurement.

    Science.gov (United States)

    Rouhani, H; Favre, J; Crevoisier, X; Aminian, K

    2014-05-01

    This study aims to design a wearable system for kinetics measurement of multi-segment foot joints in long-distance walking and to investigate its suitability for clinical evaluations. The wearable system consisted of inertial sensors (3D gyroscopes and 3D accelerometers) on toes, forefoot, hindfoot, and shank, and a plantar pressure insole. After calibration in a laboratory, 10 healthy elderly subjects and 12 patients with ankle osteoarthritis walked 50m twice wearing this system. Using inverse dynamics, 3D forces, moments, and power were calculated in the joint sections among toes, forefoot, hindfoot, and shank. Compared to those we previously estimated for a one-segment foot model, the sagittal and transverse moments and power in the ankle joint, as measured via multi-segment foot model, showed a normalized RMS difference of less than 11%, 14%, and 13%, respectively, for healthy subjects, and 13%, 15%, and 14%, for patients. Similar to our previous study, the coronal moments were not analyzed. Maxima-minima values of anterior-posterior and vertical force, sagittal moment, and power in shank-hindfoot and hindfoot-forefoot joints were significantly different between patients and healthy subjects. Except for power, the inter-subject repeatability of these parameters was CMC>0.90 for healthy subjects and CMC>0.70 for patients. Repeatability of these parameters was lower for the forefoot-toes joint. The proposed measurement system estimated multi-segment foot joints kinetics with acceptable repeatability but showed difference, compared to those previously estimated for the one-segment foot model. These parameters also could distinguish patients from healthy subjects. Thus, this system is suggested for outcome evaluations of foot treatments.

  7. The Routing Algorithm Based on Fuzzy Logic Applied to the Individual Physiological Monitoring Wearable Wireless Sensor Network

    OpenAIRE

    Jie Jiang; Yun Liu; Fuxing Song; Ronghao Du; Mengsen Huang

    2015-01-01

    In recent years, the research of individual wearable physiological monitoring wireless sensor network is in the primary stage. The monitor of physiology and geographical position used in wearable wireless sensor network requires performances such as real time, reliability, and energy balance. According to these requirements, this paper introduces a design of individual wearable wireless sensor network monitoring system; what is more important, based on this background, this paper improves the...

  8. Wearables and the Internet of Things for Health: Wearable, Interconnected Devices Promise More Efficient and Comprehensive Health Care.

    Science.gov (United States)

    Metcalf, David; Milliard, Sharlin T J; Gomez, Melinda; Schwartz, Michael

    2016-01-01

    In our recent book Health-e Everything: Wearables and the Internet of Things for Health, we capture in an interactive e-book format some global thought-leader perspectives as well as early examples of case studies and novel innovations that are driving this emerging technology domain. Here, we provide a brief snapshot of key findings related to these novel technologies and use cases, which are driving both health care practitioners and health consumers (patients). As technologists, having a firm understanding of customer-driven innovation and the actual user benefits of interconnective devices for health will help us engineer better solutions that are more targeted to the triple aim of better, faster, and cheaper health solutions.

  9. Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution

    Directory of Open Access Journals (Sweden)

    Zhang Yuan-ting

    2005-03-01

    Full Text Available Abstract Background The pulse oximeter, a medical device capable of measuring blood oxygen saturation (SpO2, has been shown to be a valuable device for monitoring patients in critical conditions. In order to incorporate the technique into a wearable device which can be used in ambulatory settings, the influence of motion artifacts on the estimated SpO2 must be reduced. This study investigates the use of the smoothed psuedo Wigner-Ville distribution (SPWVD for the reduction of motion artifacts affecting pulse oximetry. Methods The SPWVD approach is compared with two techniques currently used in this field, i.e. the weighted moving average (WMA and the fast Fourier transform (FFT approaches. SpO2 and pulse rate were estimated from a photoplethysmographic (PPG signal recorded when subject is in a resting position as well as in the act of performing four types of motions: horizontal and vertical movements of the hand, and bending and pressing motions of the finger. For each condition, 24 sets of PPG signals collected from 6 subjects, each of 30 seconds, were studied with reference to the PPG signal recorded simultaneously from the subject's other hand, which was stationary at all times. Results and Discussion The SPWVD approach shows significant improvement (p Conclusion The results suggested that the SPWVD approach could potentially be used to reduce motion artifact on wearable pulse oximeters.

  10. Validity of a wearable accelerometer to quantify gait in spinocerebellar ataxia type 6.

    Science.gov (United States)

    Hickey, Aodhán; Gunn, Eleanor; Alcock, Lisa; Del Din, Silvia; Godfrey, Alan; Rochester, Lynn; Galna, Brook

    2016-11-01

    Biomarkers are required to track disease progression and measure the effectiveness of interventions for people with spinocerebellar ataxia type-6 (SCA6). Gait is a potential biomarker that is sensitive to SCA6 which can be measured using wearable technology, reducing the need for expensive specialist facilities. However, algorithms used to calculate gait using data from wearables have not been validated in SCA6. This study sought to examine the validity of a single wearable for deriving 14 spatio-temporal gait characteristics in SCA6 and control cohorts. Participants performed eight intermittent walks along a 7 m instrumented walkway at their preferred walking pace while also wearing a single accelerometer-based wearable on L5. Gait algorithms previously validated in neurological populations and controls were used to derive gait characteristics. We assessed the bias, agreement and sensitivity of gait characteristics derived using the instrumented walkway and the wearable. Mean gait characteristics showed good to excellent agreement for both groups, although gait variability and asymmetry showed poor agreement between the two systems. Agreement improved considerably in the SCA6 group when people who used walking sticks were excluded from the analysis, suggesting poorer agreement in people with more severe gait impairment. Despite poor agreement for some characteristics, gait measured using the wearable was generally more sensitive to group differences than the instrumented walkway. Our findings indicate mean gait characteristics can be accurately measured using an accelerometer-based wearable in people SCA6 with mild-to-moderately severe gait impairment yet further development of algorithms are required for people with more severe symptoms.

  11. Excimer Laser Pulse Compress With Pulse Feedback

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>To attain a shorter laser pulse, a compressing technique called pulse feedback was developed from the saturation gain switch applied to the amplification in a discharge pumping excimer laser cavity. It can

  12. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.

    Directory of Open Access Journals (Sweden)

    Silvia Fantozzi

    Full Text Available Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23° and the ankle more dorsiflexed (≈ 9° at heel strike, and the hip was more flexed at toe-off (≈ 13° in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7° and showed a more inversed mean value (≈ 7°. The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered

  13. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.

    Science.gov (United States)

    Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio

    2015-01-01

    Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the

  14. Pulsed Optics

    Science.gov (United States)

    Hirlimann, C.

    Optics is the field of physics which comprises knowledge on the interaction between light and matter. When the superposition principle can be applied to electromagnetic waves or when the properties of matter do not depend on the intensity of light, one speaks of linear optics. This situation occurs with regular light sources such as light bulbs, low-intensity light-emitting diodes and the sun. With such low-intensity sources the reaction of matter to light can be characterized by a set of parameters such as the index of refraction, the absorption and reflection coefficients and the orientation of the medium with respect to the polarization of the light. These parameters depend only on the nature of the medium. The situation changed dramatically after the development of lasers in the early sixties, which allowed the generation of light intensities larger than a kilowatt per square centimeter. Actual large-scale short-pulse lasers can generate peak powers in the petawatt regime. In that large-intensity regime the optical parameters of a material become functions of the intensity of the impinging light. In 1818 Fresnel wrote a letter to the French Academy of Sciences in which he noted that the proportionality between the vibration of the light and the subsequent vibration of matter was only true because no high intensities were available. The intensity dependence of the material response is what usually defines nonlinear optics.

  15. Sensing human physiological response using wearable carbon nanotube-based fabrics

    Science.gov (United States)

    Wang, Long; Loh, Kenneth J.; Koo, Helen S.

    2016-04-01

    Flexible and wearable sensors for human monitoring have received increased attention. Besides detecting motion and physical activity, measuring human vital signals (e.g., respiration rate and body temperature) provide rich data for assessing subjects' physiological or psychological condition. Instead of using conventional, bulky, sensing transducers, the objective of this study was to design and test a wearable, fabric-like sensing system. In particular, multi-walled carbon nanotube (MWCNT)-latex thin films of different MWCNT concentrations were first fabricated using spray coating. Freestanding MWCNT-latex films were then sandwiched between two layers of flexible fabric using iron-on adhesive to form the wearable sensor. Second, to characterize its strain sensing properties, the fabric sensors were subjected to uniaxial and cyclic tensile load tests, and they exhibited relatively stable electromechanical responses. Finally, the wearable sensors were placed on a human subject for monitoring simple motions and for validating their practical strain sensing performance. Overall, the wearable fabric sensor design exhibited advances such as flexibility, ease of fabrication, light weight, low cost, noninvasiveness, and user comfort.

  16. Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.

    Science.gov (United States)

    Shull, Peter B; Damian, Dana D

    2015-07-20

    Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage.

  17. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices.

    Science.gov (United States)

    Jin, Han; Abu-Raya, Yasmin Shibli; Haick, Hossam

    2017-06-01

    Skin-based wearable devices have a great potential that could result in a revolutionary approach to health monitoring and diagnosing disease. With continued innovation and intensive attention to the materials and fabrication technologies, development of these healthcare devices is progressively encouraged. This article gives a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to recent advances and developments in the scope of skin-based wearable devices (e.g. temperature, strain, biomarker-analysis werable devices, etc.), with an emphasis on emerging materials and fabrication techniques in the relevant fields. To give a comprehensive statement, part of the review presents and discusses different aspects of these advanced materials, such as the sensitivity, biocompatibility and durability as well as the major approaches proposed for enhancing their chemical and physical properties. A complementary section of the review linking these advanced materials with wearable device technologies is particularly specified. Some of the strong and weak points in development of each wearable material/device are highlighted and criticized. Several ideas regarding further improvement of skin-based wearable devices are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Wearable Sensors in Healthcare and Sensor-Enhanced Health Information Systems: All Our Tomorrows?

    Science.gov (United States)

    Gietzelt, Matthias; Schulze, Mareike; Kohlmann, Martin; Song, Bianying; Wolf, Klaus-Hendrik

    2012-01-01

    Wearable sensor systems which allow for remote or self-monitoring of health-related parameters are regarded as one means to alleviate the consequences of demographic change. This paper aims to summarize current research in wearable sensors as well as in sensor-enhanced health information systems. Wearable sensor technologies are already advanced in terms of their technical capabilities and are frequently used for cardio-vascular monitoring. Epidemiologic predictions suggest that neuropsychiatric diseases will have a growing impact on our health systems and thus should be addressed more intensively. Two current project examples demonstrate the benefit of wearable sensor technologies: long-term, objective measurement under daily-life, unsupervised conditions. Finally, up-to-date approaches for the implementation of sensor-enhanced health information systems are outlined. Wearable sensors are an integral part of future pervasive, ubiquitous and person-centered health care delivery. Future challenges include their integration into sensor-enhanced health information systems and sound evaluation studies involving measures of workload reduction and costs. PMID:22844645

  19. KOMEKAMI Switch: A Wearable Input Device Based on the Concept of Affordance

    Science.gov (United States)

    Taniguchi, Kazuhiro; Nishikawa, Atsushi; Miyazaki, Fumio

    A wearable computing system plays a leading role in the ubiquitous computing era, in which computers are used at any place and at any time. Now the mobile multimedia communication technology based devices, such as mobile phone, handy-type PC, etc., have come to be used in such a broad range of areas, the features of wearable hands-free computing system, which people can constantly use in their daily life or workplace while doing some other job, are highly valued more than ever. However, the wearable computing system has not yet spread so widely owing to various factors. Among such factors is the delay in the development of human machine interface, which is applicable to the wearable computing system. We developed a blink based human-machine interface for the wearable computing system, called KOMEKAMI Switch. This interface makes it easy to manipulate machine with intentional movements of temple. User can constantly use machine with no interference, as well as with hands free. It is compact and lightweight, permitting ease of manufacturing at a low cost. It does not react to daily actions like conversation, diet, etc., other than movements intended to control the machine.

  20. The Motivational Impact of Wearable Healthy Lifestyle Technologies: A Self-Determination Perspective on Fitbits with Adolescents

    Science.gov (United States)

    Kerner, Charlotte; Goodyear, Victoria A.

    2017-01-01

    Background: Considerable numbers of young people are not meeting physical activity guidelines. Wearable fitness devices can provide opportunities for physical activity promotion. Purpose: The aim of the study was to explore whether wearable healthy lifestyle technologies impacted on adolescents' (13- to 14-year-olds) motivation for physical…

  1. Let's Get Physical: K-12 Students Using Wearable Devices to Obtain and Learn about Data from Physical Activities

    Science.gov (United States)

    Lee, Victor R.; Drake, Joel; Williamson, Kylie

    2015-01-01

    Accessibility to wearable technology has exploded in the last decade. As such, this technology has potential to be used in classrooms in uniquely interactive and personally meaningful ways. Seeing this as a possible future for schools, we have been exploring approaches for designing activities to incorporate wearable physical activity data…

  2. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics.

    Science.gov (United States)

    Kim, Jayoung; Imani, Somayeh; de Araujo, William R; Warchall, Julian; Valdés-Ramírez, Gabriela; Paixão, Thiago R L C; Mercier, Patrick P; Wang, Joseph

    2015-12-15

    This article demonstrates an instrumented mouthguard capable of non-invasively monitoring salivary uric acid (SUA) levels. The enzyme (uricase)-modified screen printed electrode system has been integrated onto a mouthguard platform along with anatomically-miniaturized instrumentation electronics featuring a potentiostat, microcontroller, and a Bluetooth Low Energy (BLE) transceiver. Unlike RFID-based biosensing systems, which require large proximal power sources, the developed platform enables real-time wireless transmission of the sensed information to standard smartphones, laptops, and other consumer electronics for on-demand processing, diagnostics, or storage. The mouthguard biosensor system offers high sensitivity, selectivity, and stability towards uric acid detection in human saliva, covering the concentration ranges for both healthy people and hyperuricemia patients. The new wireless mouthguard biosensor system is able to monitor SUA level in real-time and continuous fashion, and can be readily expanded to an array of sensors for different analytes to enable an attractive wearable monitoring system for diverse health and fitness applications.

  3. Exploiting wearable goniometer technology for motion sensing gloves.

    Science.gov (United States)

    Carbonaro, Nicola; Dalle Mura, Gabriele; Lorussi, Federico; Paradiso, Rita; De Rossi, Danilo; Tognetti, Alessandro

    2014-11-01

    This paper presents an innovative wearable kinesthetic glove realized with knitted piezoresistive fabric (KPF) sensor technology. The glove is conceived to capture hand movement and gesture by using KPF in a double-layer configuration working as angular sensors (electrogoniometers). The sensing glove prototype is endowed by three KPF goniometers, used to track flexion and extension movement of metacarpophalangeal joint of thumb, index, and middle fingers. The glove is devoted to the continuous monitoring of patients during their daily-life activities, in particular for stroke survivors during their rehabilitation. The prototype performances have been evaluated in comparison with an optical tracking system considered as a gold standard both for relieving static and dynamic posture and gesture of the hand. The introduced prototype has shown very interesting figures of merit. The angular error, evaluated through the standard Bland Altman analysis, has been estimated in ±3° which is slightly less accurate than commercial electrogoniometers. Moreover, a new conceptual prototype design, preliminary evaluated within this study, is presented and discussed in order to solve actual limitations in terms of number and type of sensor connections, avoiding mechanical constraints given by metallic inextensible wires and improving user comfort.

  4. Adaptive sleep-wake discrimination for wearable devices.

    Science.gov (United States)

    Karlen, Walter; Floreano, Dario

    2011-04-01

    Sleep/wake classification systems that rely on physiological signals suffer from intersubject differences that make accurate classification with a single, subject-independent model difficult. To overcome the limitations of intersubject variability, we suggest a novel online adaptation technique that updates the sleep/wake classifier in real time. The objective of the present study was to evaluate the performance of a newly developed adaptive classification algorithm that was embedded on a wearable sleep/wake classification system called SleePic. The algorithm processed ECG and respiratory effort signals for the classification task and applied behavioral measurements (obtained from accelerometer and press-button data) for the automatic adaptation task. When trained as a subject-independent classifier algorithm, the SleePic device was only able to correctly classify 74.94 ± 6.76% of the human-rated sleep/wake data. By using the suggested automatic adaptation method, the mean classification accuracy could be significantly improved to 92.98 ± 3.19%. A subject-independent classifier based on activity data only showed a comparable accuracy of 90.44 ± 3.57%. We demonstrated that subject-independent models used for online sleep-wake classification can successfully be adapted to previously unseen subjects without the intervention of human experts or off-line calibration.

  5. Wearable and superhydrophobic hardware for ambulatory biopotential acquisition.

    Science.gov (United States)

    Martinez-Tabares, F J; Delgado-Trejos, E; Castellanos-Dominguez, G

    2013-01-01

    Wearable monitoring devices are a promising trend for ambulatory and real time biosignal processing, because they improve access and coverage by means of comfortable sensors, with real-time communication via mobile networks. In this paper, we present a garment for ambulatory electrocardiogram monitoring, a smart t-shirt with a textile electrode that conducts electricity and has a coating designed to preserve the user's hygiene, allowing long-term mobile measurements. Silicon dioxide nanoparticles were applied on the surface of the textile electrodes to preserve conductivity and impart superhydrophobic properties. A model to explain these results is proposed. The best result of this study is obtained when the contact angles between the fluid and the fabric exceeded 150°, while the electrical resistivity remained below 5 Ω·cm, allowing an acquisition of high quality electrocardiograms in moving patients. Thus, this tool represents an interesting alternative for medium and long-term measurements, preserving the textile feeling of clothing and working under motion conditions.

  6. Tissue viability monitoring: a multi-sensor wearable platform approach

    Science.gov (United States)

    Mathur, Neha; Davidson, Alan; Buis, Arjan; Glesk, Ivan

    2016-12-01

    Health services worldwide are seeking ways to improve patient care for amputees suffering from diabetes, and at the same time reduce costs. The monitoring of residual limb temperature, interface pressure and gait can be a useful indicator of tissue viability in lower limb amputees especially to predict the occurrence of pressure ulcers. This is further exacerbated by elevated temperatures and humid micro environment within the prosthesis which encourages the growth of bacteria and skin breakdown. Wearable systems for prosthetic users have to be designed such that the sensors are minimally obtrusive and reliable enough to faithfully record movement and physiological signals. A mobile sensor platform has been developed for use with the lower limb prosthetic users. This system uses an Arduino board that includes sensors for temperature, gait, orientation and pressure measurements. The platform transmits sensor data to a central health authority database server infrastructure through the Bluetooth protocol at a suitable sampling rate. The data-sets recorded using these systems are then processed using machine learning algorithms to extract clinically relevant information from the data. Where a sensor threshold is reached a warning signal can be sent wirelessly together with the relevant data to the patient and appropriate medical personnel. This knowledge is also useful in establishing biomarkers related to a possible deterioration in a patient's health or for assessing the impact of clinical interventions.

  7. Upper-limb prosthetic control using wearable multichannel mechanomyography.

    Science.gov (United States)

    Wilson, Samuel; Vaidyanathan, Ravi

    2017-07-01

    In this paper we introduce a robust multi-channel wearable sensor system for capturing user intent to control robotic hands. The interface is based on a fusion of inertial measurement and mechanomyography (MMG), which measures the vibrations of muscle fibres during motion. MMG is immune to issues such as sweat, skin impedance, and the need for a reference signal that is common to electromyography (EMG). The main contributions of this work are: 1) the hardware design of a fused inertial and MMG measurement system that can be worn on the arm, 2) a unified algorithm for detection, segmentation, and classification of muscle movement corresponding to hand gestures, and 3) experiments demonstrating the real-time control of a commercial prosthetic hand (Bebionic Version 2). Results show recognition of seven gestures, achieving an offline classification accuracy of 83.5% performed on five healthy subjects and one transradial amputee. The gesture recognition was then tested in real time on subsets of two and five gestures, with an average accuracy of 93.3% and 62.2% respectively. To our knowledge this is the first applied MMG based control system for practical prosthetic control.

  8. A Bioinspired 10 DOF Wearable Powered Arm Exoskeleton for Rehabilitation

    Directory of Open Access Journals (Sweden)

    Soumya Kanti Manna

    2013-01-01

    Full Text Available The developed exoskeleton device (Exorn has ten degrees of freedom to control joints starting from shoulder griddle to wrist to provide better redundancy, portability, and flexibility to the human arm motion. A 3D conceptual model is being designed to make the system wearable by human arm. All the joints are simple revolute joints with desired motion limit. A Simulink model of the human arm is being developed with proper mass and length to determine proper torque required for actuating those joints. Forward kinematics of the whole system has been formulated for getting desired dexterous workspace. A proper and simple Graphical User Interface (GUI and the required embedded system have been designed for providing physiotherapy lessons to the patients. In the literature review it has been found that researchers have generally ignored the motion of shoulder griddle. Here we have implemented those motions in our design. It has also been found that people have taken elbow pronation and supination motion as a part of shoulder internal and external rotation though both motions are quite different. A predefined resolved motion rate control structure with independent joint control is used so that all movements can be controlled in a predefined way.

  9. Recent advances in wearable sensors for animal health management

    Directory of Open Access Journals (Sweden)

    Suresh Neethirajan

    2017-02-01

    Full Text Available Biosensors, as an application for animal health management, are an emerging market that is quickly gaining recognition in the global market. Globally, a number of sensors being produced for animal health management are at various stages of commercialization. Some technologies for producing an accurate health status and disease diagnosis are applicable only for humans, with few modifications or testing in animal models. Now, these innovative technologies are being considered for their future use in livestock development and welfare. Precision livestock farming techniques, which include a wide span of technologies, are being applied, along with advanced technologies like microfluidics, sound analyzers, image-detection techniques, sweat and salivary sensing, serodiagnosis, and others. However, there is a need to integrate all the available sensors and create an efficient online monitoring system so that animal health status can be monitored in real time, without delay. This review paper discusses the scope of different wearable technologies for animals, nano biosensors and advanced molecular biology diagnostic techniques for the detection of various infectious diseases of cattle, along with the efforts to enlist and compare these technologies with respect to their drawbacks and advantages in the domain of animal health management. The paper considers all recent developments in the field of biosensors and their applications for animal health to provide insight regarding the appropriate approach to be used in the future of enhanced animal welfare.

  10. Effectiveness of using wearable vibration therapy to alleviate muscle soreness.

    Science.gov (United States)

    Cochrane, Darryl J

    2017-03-01

    To examine the acute and short-term effect of a wearable vibration device following strenuous eccentric exercise of the elbow flexors. Physically active males (n = 13) performed vibration therapy (VT) and control following eccentric exercise. The arms were randomised and counterbalanced, separated by 14 days. 15 min of VT (120 Hz) was applied immediately and 24, 48, and 72 h after eccentric exercise while the contralateral arm performed no VT (control). Muscle (isometric and concentric) strength, range of motion, electromyography (EMG), muscle soreness and creatine kinase were taken pre-exercise, immediately and 24, 48, and 72 h post-eccentric exercise. Additionally, the acute effect of VT of muscle strength, range of motion, EMG, muscle soreness was also investigated immediately after VT. In the short-term VT was able to significantly reduce the level of biceps brachii pain at 24 h (p motion at 24 h (p control. Acutely, following VT treatment muscle pain and range of motion significantly improved (p motion; however, there was no improvement of muscle strength recovery compared to control following eccentric exercise of the elbow flexors.

  11. A Superhydrophobic Smart Coating for Flexible and Wearable Sensing Electronics.

    Science.gov (United States)

    Li, Lianhui; Bai, Yuanyuan; Li, Lili; Wang, Shuqi; Zhang, Ting

    2017-09-22

    Superhydrophobic surfaces have shown versatile applications in waterproofing, self-cleaning, drag reduction, selective absorption, etc. The most convenient and universally applicable approach to forming superhydrophobic surfaces is by coating; however, currently, superhydrophobic, smart coatings with flexibility and multiple functions for wearable sensing electronics are not yet reported. Here, a highly flexible multifunctional smart coating is fabricated by spray-coating multiwalled carbon nanotubes dispersed in a thermoplastic elastomer solution, followed by treatment with ethanol. The coatings not only endow various substrate materials with superhydrophobic surfaces, but can also respond to stretching, bending, and torsion-a property useful for flexible sensor applications. The coatings show superior sensitivity (gauge factor of 5.4-80), high resolution (1° of bending), a fast response time (<8 ms), a stable response over 5000 stretching-relaxing cycles, and wide sensing ranges (stretching: over 76%, bending: 0°-140°, torsion: 0-350 rad m(-1) ). Moreover, multifunctional coatings with thicknesses of only 1 µm can be directly applied to clothing for full-range and real-time detection of human motions, which also show extreme repellency to water, acid, and alkali, which helps the sensors to work under wet and corrosive conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Wearable inertial sensors in swimming motion analysis: a systematic review.

    Science.gov (United States)

    de Magalhaes, Fabricio Anicio; Vannozzi, Giuseppe; Gatta, Giorgio; Fantozzi, Silvia

    2015-01-01

    The use of contemporary technology is widely recognised as a key tool for enhancing competitive performance in swimming. Video analysis is traditionally used by coaches to acquire reliable biomechanical data about swimming performance; however, this approach requires a huge computational effort, thus introducing a delay in providing quantitative information. Inertial and magnetic sensors, including accelerometers, gyroscopes and magnetometers, have been recently introduced to assess the biomechanics of swimming performance. Research in this field has attracted a great deal of interest in the last decade due to the gradual improvement of the performance of sensors and the decreasing cost of miniaturised wearable devices. With the aim of describing the state of the art of current developments in this area, a systematic review of the existing methods was performed using the following databases: PubMed, ISI Web of Knowledge, IEEE Xplore, Google Scholar, Scopus and Science Direct. Twenty-seven articles published in indexed journals and conference proceedings, focusing on the biomechanical analysis of swimming by means of inertial sensors were reviewed. The articles were categorised according to sensor's specification, anatomical sites where the sensors were attached, experimental design and applications for the analysis of swimming performance. Results indicate that inertial sensors are reliable tools for swimming biomechanical analyses.

  13. Energy harvesting for human wearable and implantable bio-sensors.

    Science.gov (United States)

    Mitcheson, Paul D

    2010-01-01

    There are clear trade-offs between functionality, battery lifetime and battery volume for wearable and implantable wireless-biosensors which energy harvesting devices may be able to overcome. Reliable energy harvesting has now become a reality for machine condition monitoring and is finding applications in chemical process plants, refineries and water treatment works. However, practical miniature devices that can harvest sufficient energy from the human body to power a wireless bio-sensor are still in their infancy. This paper reviews the options for human energy harvesting in order to determine power availability for harvester-powered body sensor networks. The main competing technologies for energy harvesting from the human body are inertial kinetic energy harvesting devices and thermoelectric devices. These devices are advantageous to some other types as they can be hermetically sealed. In this paper the fundamental limit to the power output of these devices is compared as a function of generator volume when attached to a human whilst walking and running. It is shown that the kinetic energy devices have the highest fundamental power limits in both cases. However, when a comparison is made between the devices using device effectivenesses figures from previously demonstrated prototypes presented in the literature, the thermal device is competitive with the kinetic energy harvesting device when the subject is running and achieves the highest power density when the subject is walking.

  14. Usability of a Wearable Camera System for Dementia Family Caregivers

    Directory of Open Access Journals (Sweden)

    Judith T. Matthews

    2015-01-01

    Full Text Available Health care providers typically rely on family caregivers (CG of persons with dementia (PWD to describe difficult behaviors manifested by their underlying disease. Although invaluable, such reports may be selective or biased during brief medical encounters. Our team explored the usability of a wearable camera system with 9 caregiving dyads (CGs: 3 males, 6 females, 67.00 ± 14.95 years; PWDs: 2 males, 7 females, 80.00 ± 3.81 years, MMSE 17.33 ± 8.86 who recorded 79 salient events over a combined total of 140 hours of data capture, from 3 to 7 days of wear per CG. Prior to using the system, CGs assessed its benefits to be worth the invasion of privacy; post-wear privacy concerns did not differ significantly. CGs rated the system easy to learn to use, although cumbersome and obtrusive. Few negative reactions by PWDs were reported or evident in resulting video. Our findings suggest that CGs can and will wear a camera system to reveal their daily caregiving challenges to health care providers.

  15. Recognizing the intensity of strength training exercises with wearable sensors.

    Science.gov (United States)

    Pernek, Igor; Kurillo, Gregorij; Stiglic, Gregor; Bajcsy, Ruzena

    2015-12-01

    In this paper we propose a system based on a network of wearable accelerometers and an off-the-shelf smartphone to recognize the intensity of stationary activities, such as strength training exercises. The system uses a hierarchical algorithm, consisting of two layers of Support Vector Machines (SVMs), to first recognize the type of exercise being performed, followed by recognition of exercise intensity. The first layer uses a single SVM to recognize the type of the performed exercise. Based on the recognized type a corresponding intensity prediction SVM is selected on the second layer, specializing in intensity prediction for the recognized type of exercise. We evaluate the system for a set of upper-body exercises using different weight loads. Additionally, we compare the most important features for exercise and intensity recognition tasks and investigate how different sliding window combinations, sensor configurations and number of training subjects impact the algorithm performance. We perform all of the experiments for two different types of features to evaluate the feasibility of implementation on resource constrained hardware. The results show the algorithm is able to recognize exercise types with approximately 85% accuracy and 6% intensity prediction error. Furthermore, due to similar performance using different types of features, the algorithm offers potential for implementation on resource constrained hardware.

  16. Corrugated Textile based Triboelectric Generator for Wearable Energy Harvesting

    Science.gov (United States)

    Choi, A Young; Lee, Chang Jun; Park, Jiwon; Kim, Dogyun; Kim, Youn Tae

    2017-01-01

    Triboelectric energy harvesting has been applied to various fields, from large-scale power generation to small electronics. Triboelectric energy is generated when certain materials come into frictional contact, e.g., static electricity from rubbing a shoe on a carpet. In particular, textile-based triboelectric energy-harvesting technologies are one of the most promising approaches because they are not only flexible, light, and comfortable but also wearable. Most previous textile-based triboelectric generators (TEGs) generate energy by vertically pressing and rubbing something. However, we propose a corrugated textile-based triboelectric generator (CT-TEG) that can generate energy by stretching. Moreover, the CT-TEG is sewn into a corrugated structure that contains an effective air gap without additional spacers. The resulting CT-TEG can generate considerable energy from various deformations, not only by pressing and rubbing but also by stretching. The maximum output performances of the CT-TEG can reach up to 28.13 V and 2.71 μA with stretching and releasing motions. Additionally, we demonstrate the generation of sufficient energy from various activities of a human body to power about 54 LEDs. These results demonstrate the potential application of CT-TEGs for self-powered systems.

  17. Wearable and Implantable Sensors: The Patient’s Perspective

    Directory of Open Access Journals (Sweden)

    Alison McGregor

    2012-12-01

    Full Text Available There has been a rising interest in wearable and implantable biomedical sensors over the last decade. However, many technologies have not been integrated into clinical care, due to a limited understanding of user-centered design issues. Little information is available about these issues and there is a need to adopt more rigorous evidence standards for design features to allow important medical sensors to progress quicker into clinical care. Current trends in patient preferences need to be incorporated at an early stage into the design process of prospective clinical sensors. The first comprehensive patient data set, discussing mobile biomedical sensor technology, is presented in this paper. The study population mainly consisted of individuals suffering from arthritis. It was found that sensor systems needed to be small, discreet, unobtrusive and preferably incorporated into everyday objects. The upper extremity was seen as the favored position on the body for placement, while invasive placement yielded high levels of acceptance. Under these conditions most users were willing to wear the body-worn sensor for more than 20 h a day. This study is a first step to generate research based user-orientated design criteria’s for biomedical sensors.

  18. Ubiquitous human upper-limb motion estimation using wearable sensors.

    Science.gov (United States)

    Zhang, Zhi-Qiang; Wong, Wai-Choong; Wu, Jian-Kang

    2011-07-01

    Human motion capture technologies have been widely used in a wide spectrum of applications, including interactive game and learning, animation, film special effects, health care, navigation, and so on. The existing human motion capture techniques, which use structured multiple high-resolution cameras in a dedicated studio, are complicated and expensive. With the rapid development of microsensors-on-chip, human motion capture using wearable microsensors has become an active research topic. Because of the agility in movement, upper-limb motion estimation has been regarded as the most difficult problem in human motion capture. In this paper, we take the upper limb as our research subject and propose a novel ubiquitous upper-limb motion estimation algorithm, which concentrates on modeling the relationship between upper-arm movement and forearm movement. A link structure with 5 degrees of freedom (DOF) is proposed to model the human upper-limb skeleton structure. Parameters are defined according to Denavit-Hartenberg convention, forward kinematics equations are derived, and an unscented Kalman filter is deployed to estimate the defined parameters. The experimental results have shown that the proposed upper-limb motion capture and analysis algorithm outperforms other fusion methods and provides accurate results in comparison to the BTS optical motion tracker.

  19. Waterproof, Ultrahigh Areal-Capacitance, Wearable Supercapacitor Fabrics.

    Science.gov (United States)

    Yang, Yu; Huang, Qiyao; Niu, Liyong; Wang, Dongrui; Yan, Casey; She, Yiyi; Zheng, Zijian

    2017-02-24

    High-performance supercapacitors (SCs) are promising energy storage devices to meet the pressing demand for future wearable applications. Because the surface area of a human body is limited to 2 m(2) , the key challenge in this field is how to realize a high areal capacitance for SCs, while achieving rapid charging, good capacitive retention, flexibility, and waterproofing. To address this challenge, low-cost materials are used including multiwall carbon nanotube (MWCNT), reduced graphene oxide (RGO), and metallic textiles to fabricate composite fabric electrodes, in which MWCNT and RGO are alternatively vacuum-filtrated directly onto Ni-coated cotton fabrics. The composite fabric electrodes display typical electrical double layer capacitor behavior, and reach an ultrahigh areal capacitance up to 6.2 F cm(-2) at a high areal current density of 20 mA cm(-2) . All-solid-state fabric-type SC devices made with the composite fabric electrodes and water-repellent treatment can reach record-breaking performance of 2.7 F cm(-2) at 20 mA cm(-2) at the first charge-discharge cycle, 3.2 F cm(-2) after 10 000 charge-discharge cycles, zero capacitive decay after 10 000 bending tests, and 10 h continuous underwater operation. The SC devices are easy to assemble into tandem structures and integrate into garments by simple sewing.

  20. Wearable Sensors in Huntington Disease: A Pilot Study.

    Science.gov (United States)

    Andrzejewski, Kelly L; Dowling, Ariel V; Stamler, David; Felong, Timothy J; Harris, Denzil A; Wong, Cynthia; Cai, Hang; Reilmann, Ralf; Little, Max A; Gwin, Joseph T; Biglan, Kevin M; Dorsey, E Ray

    2016-06-18

    The Unified Huntington's Disease Rating Scale (UHDRS) is the principal means of assessing motor impairment in Huntington disease but is subjective and generally limited to in-clinic assessments. To evaluate the feasibility and ability of wearable sensors to measure motor impairment in individuals with Huntington disease in the clinic and at home. Participants with Huntington disease and controls were asked to wear five accelerometer-based sensors attached to the chest and each limb for standardized, in-clinic assessments and for one day at home. A second chest sensor was worn for six additional days at home. Gait measures were compared between controls, participants with Huntington disease, and participants with Huntington disease grouped by UHDRS total motor score using Cohen's d values. Fifteen individuals with Huntington disease and five controls completed the study. Sensor data were successfully captured from 18 of the 20 participants at home. In the clinic, the standard deviation of step time (time between consecutive steps) was increased in Huntington disease (p Huntington disease, and participants with Huntington disease grouped by motor impairment.

  1. WEARABLE TECHNOLOGY: FASHION DESIGNERS BRINGS TOGETHER FASHION WITH SCIENCE

    Directory of Open Access Journals (Sweden)

    Gozde Yetmen

    2017-04-01

    Full Text Available In this paper, from the designers, engineers, scientists and technicians are working multidisciplinary and developed in process of time; electronic textiles, smart textiles, nano technology, 3D printed textiles and coded couture. As a result today generated "Wearable Technology". Designer creates contemporary fashion design products and concepts will be examined in this paper. Since the mid-twentieth century, to today’s XXI Century, living an important technological development for the future of fashion is to ensure the creation of high tech fabrics with functional textile fibers. 21st Century avant-garde fashion designers: Hussein Chalayan, Ryan Genz & Francesca Rosella and Anouk Wipprecht are working on the future garment design and determine a new visions that the texture of the emerging trends and technologies in the area of fashion. They realized that the importance of innovation in their collections. For this reason, textile engineers and scientists are working together and investigating various technologies to develop a variety of innovative fabrics or garments.

  2. PEDOT:PSS "Wires" Printed on Textile for Wearable Electronics.

    Science.gov (United States)

    Guo, Yang; Otley, Michael T; Li, Mengfang; Zhang, Xiaozheng; Sinha, Sneh K; Treich, Gregory M; Sotzing, Gregory A

    2016-10-03

    Herein, the fabrication of all-organic conductive wires is demonstrated by utilizing patterning techniques such as inkjet printing and sponge stencil to apply poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) onto nonwoven polyethylene terephthalate (PET) fabric. The coating of the conducting polymer is only present on the surface of the substrate (penetration depth ∼ 200 μm) to retain the functionality and wearability of the textile. The wires fabricated by different patterning techniques provide a wide range of resistance, i.e., tens of kΩ/□ to less than 2 Ω/□ that allows the resistance to be tailored to a specific application. The sheet resistance is measured to be as low as 1.6 Ω/□, and the breakdown current is as high as 0.37 A for a 1 mm wide line. The specific breakdown current exceeds the previously reported values of macroscopic carbon nanotube based materials. Simple circuits composed of the printed wires are demonstrated, and resistance of the circuit from the measurement agrees with the calculated value based on Kirchhoff's rules. Additionally, the printed PEDOT:PSS wires show less than 6.2% change in sheet resistance after three washing and drying cycles using detergent.

  3. Comparison of Non-Invasive Individual Monitoring of the Training and Health of Athletes with Commercially Available Wearable Technologies.

    Science.gov (United States)

    Düking, Peter; Hotho, Andreas; Holmberg, Hans-Christer; Fuss, Franz Konstantin; Sperlich, Billy

    2016-01-01

    Athletes adapt their training daily to optimize performance, as well as avoid fatigue, overtraining and other undesirable effects on their health. To optimize training load, each athlete must take his/her own personal objective and subjective characteristics into consideration and an increasing number of wearable technologies (wearables) provide convenient monitoring of various parameters. Accordingly, it is important to help athletes decide which parameters are of primary interest and which wearables can monitor these parameters most effectively. Here, we discuss the wearable technologies available for non-invasive monitoring of various parameters concerning an athlete's training and health. On the basis of these considerations, we suggest directions for future development. Furthermore, we propose that a combination of several wearables is most effective for accessing all relevant parameters, disturbing the athlete as little as possible, and optimizing performance and promoting health.

  4. Comparison of non-invasive individual monitoring of the training and health of athletes with commercially available wearable technologies

    Directory of Open Access Journals (Sweden)

    Peter eDüking

    2016-03-01

    Full Text Available Athletes adapt their training daily to optimize performance, as well as avoid fatigue, overtraining and other undesirable effects on their health. To optimize training load, each athlete must take his/her own personal objective and subjective characteristics into consideration and an increasing number of wearable technologies (wearables provide convenient monitoring of various parameters. Accordingly, it is important to help athletes decide which parameters are of primary interest and which wearables can monitor these parameters most effectively. Here, we discuss the wearable technologies available for non-invasive monitoring of various parameters concerning an athlete’s training and health. On the basis of these considerations, we suggest directions for future development. Furthermore, we propose that a combination of several wearables is most effective for accessing all relevant parameters, disturbing the athlete as little as possible, and optimizing performance and promoting health.

  5. Mobile and Wearable Technology Needs for Aging in Place: Perspectives from Older Adults and Their Caregivers and Providers.

    Science.gov (United States)

    Wang, Jing; Carroll, Deidra; Peck, Michelle; Myneni, Sahiti; Gong, Yang

    2016-01-01

    There is an increasing number of wearable trackers and mobile devices in the burgeoning world of digital health, the purpose of the study is to explore the role of these mobile and wearable tools among older adults aging in place. We conducted a cross sectional study using individual interviews with older adults and surveys with their caregivers or providers. We interviewed 29 residents living in a retirement community, and surveyed 6 caregivers or providers. The older adults had an average age of 88 years, most did not express interests on technology and heavily relied on providers for health tracking, while their professional caregivers or providers saw a great need to access older adults' health information collected from these mobile and wearable tools. Educating the older old on the benefits of mobile and wearable tools may address such discrepancy on needs of adopting mobile and wearable tools for aging in place.

  6. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications

    Science.gov (United States)

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-01-01

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers. PMID:28216556

  7. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement.

    Science.gov (United States)

    Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-01-01

    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.

  8. Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics.

    Science.gov (United States)

    Son, Donghee; Koo, Ja Hoon; Song, Jun-Kyul; Kim, Jaemin; Lee, Mincheol; Shim, Hyung Joon; Park, Minjoon; Lee, Minbaek; Kim, Ji Hoon; Kim, Dae-Hyeong

    2015-05-26

    Electronics for wearable applications require soft, flexible, and stretchable materials and designs to overcome the mechanical mismatch between the human body and devices. A key requirement for such wearable electronics is reliable operation with high performance and robustness during various deformations induced by motions. Here, we present materials and device design strategies for the core elements of wearable electronics, such as transistors, charge-trap floating-gate memory units, and various logic gates, with stretchable form factors. The use of semiconducting carbon nanotube networks designed for integration with charge traps and ultrathin dielectric layers meets the performance requirements as well as reliability, proven by detailed material and electrical characterizations using statistics. Serpentine interconnections and neutral mechanical plane layouts further enhance the deformability required for skin-based systems. Repetitive stretching tests and studies in mechanics corroborate the validity of the current approaches.

  9. Design of real-time encryption module for secure data protection of wearable healthcare devices.

    Science.gov (United States)

    Kim, Jungchae; Lee, Byuck Jin; Yoo, Sun K

    2013-01-01

    Wearable devices for biomedical instrumentation could generate the medical data and transmit to a repository on cloud service through wireless networks. In this process, the private medical data will be disclosed by man in the middle attack. Thus, the archived data for healthcare services would be protected by non-standardized security policy by healthcare service provider (HSP) because HIPAA only defines the security rules. In this paper, we adopted the Advanced Encryption Standard (AES) for security framework on wearable devices, so healthcare applications using this framework could support the confidentiality easily. The framework developed as dynamic loadable module targeted for lightweight microcontroller such as msp430 within embedded operating system. The performance was shown that the module can support the real-time encryption using electrocardiogram and photoplethysmogram. In this regard, the processing load for enabling security is distributed to wearable devices, and the customized data protection method could be composed by HSP for a trusted healthcare service.

  10. Large displacement haptic stimulus actuator using piezoelectric pump for wearable devices.

    Science.gov (United States)

    Kodama, Taisuke; Izumi, Shintaro; Masaki, Kana; Kawaguchi, Hiroshi; Maenaka, Kazusuke; Yoshimoto, Masahiko

    2015-08-01

    Recently, given Japan's aging society background, wearable healthcare devices have increasingly attracted attention. Many devices have been developed, but most devices have only a sensing function. To expand the application area of wearable healthcare devices, an interactive communication function with the human body is required using an actuator. For example, a device must be useful for medication assistance, predictive alerts of a disease such as arrhythmia, and exercise. In this work, a haptic stimulus actuator using a piezoelectric pump is proposed to realize a large displacement in wearable devices. The proposed actuator drives tactile sensation of the human body. The measurement results obtained using a sensory examination demonstrate that the proposed actuator can generate sufficient stimuli even if adhered to the chest, which has fewer tactile receptors than either the fingertip or wrist.

  11. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring

    Directory of Open Access Journals (Sweden)

    Che-Chang Yang

    2010-08-01

    Full Text Available Characteristics of physical activity are indicative of one’s mobility level, latent chronic diseases and aging process. Accelerometers have been widely accepted as useful and practical sensors for wearable devices to measure and assess physical activity. This paper reviews the development of wearable accelerometry-based motion detectors. The principle of accelerometry measurement, sensor properties and sensor placements are first introduced. Various research using accelerometry-based wearable motion detectors for physical activity monitoring and assessment, including posture and movement classification, estimation of energy expenditure, fall detection and balance control evaluation, are also reviewed. Finally this paper reviews and compares existing commercial products to provide a comprehensive outlook of current development status and possible emerging technologies.

  12. Toward flexible and wearable human-interactive health-monitoring devices.

    Science.gov (United States)

    Takei, Kuniharu; Honda, Wataru; Harada, Shingo; Arie, Takayuki; Akita, Seiji

    2015-03-11

    This Progress Report introduces flexible wearable health-monitoring devices that interact with a person by detecting from and stimulating the body. Interactive health-monitoring devices should be highly flexible and attach to the body without awareness like a bandage. This type of wearable health-monitoring device will realize a new class of electronics, which will be applicable not only to health monitoring, but also to other electrical devices. However, to realize wearable health-monitoring devices, many obstacles must be overcome to economically form the active electrical components on a flexible substrate using macroscale fabrication processes. In particular, health-monitoring sensors and curing functions need to be integrated. Here recent developments and advancements toward flexible health-monitoring devices are presented, including conceptual designs of human-interactive devices.

  13. Sensors and wearable technologies in sport technologies, trends and approaches for implementation

    CERN Document Server

    James, Daniel A

    2016-01-01

    This book explores emerging trends in wearable sensors for sport and highlights the developments taking place. Drawing on the literature both the approaches and principals for the use of sensors in sport are outlined, and together with references to key works the reader finds this useful in considering such endeavours. The development of wearable technologies is fast paced and accompanying that is an exponential growth in the use and development of computing resources, thus while the review is comprehensive on content not all works can be included and given publication times will inevitably be somewhat dated. The illumination through trends, examples and principles are an aid for anyone considering the use of sensors and wearables in sports.

  14. Wearable Technology in Medicine: Machine-to-Machine (M2M) Communication in Distributed Systems.

    Science.gov (United States)

    Schmucker, Michael; Yildirim, Kemal; Igel, Christoph; Haag, Martin

    2016-01-01

    Smart wearables are capable of supporting physicians during various processes in medical emergencies. Nevertheless, it is almost impossible to operate several computers without neglecting a patient's treatment. Thus, it is necessary to set up a distributed network consisting of two or more computers to exchange data or initiate remote procedure calls (RPC). If it is not possible to create flawless connections between those devices, it is not possible to transfer medically relevant data to the most suitable device, as well as to control a device with another one. This paper shows how wearables can be paired and what problems occur when trying to pair several wearables. Furthermore, it is described as to what interesting scenarios are possible in the context of emergency medicine/paramedicine.

  15. Recognizing Multi-user Activities using Wearable Sensors in a Smart Home

    DEFF Research Database (Denmark)

    Wang, Liang; Gu, Tao; Tao, Xianping

    2010-01-01

    The advances of wearable sensors and wireless networks oer many opportunities to recognize human activities from sensor readings in pervasive computing. Existing work so far focuses mainly on recognizing activities of a single user in a home environment. However, there are typically multiple...... inhabitants in a real home and they often perform activities together. In this paper, we investigate the problem of recognizing multi-user activities using wearable sensors in a home setting. We develop a multi-modal, wearable sensor platform to collect sensor data for multiple users, and study two temporal...... probabilistic models—Coupled Hidden Markov Model (CHMM) and Factorial Conditional Random Field (FCRF)—to model interacting processes in a sensor-based, multi-user scenario. We conduct a real-world trace collection done by two subjects over two weeks, and evaluate these two models through our experimental...

  16. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications

    Directory of Open Access Journals (Sweden)

    Diego Antolín

    2017-02-01

    Full Text Available This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  17. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications.

    Science.gov (United States)

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-02-14

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO₂ concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  18. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array

    Directory of Open Access Journals (Sweden)

    Panida Lorwongtragool

    2014-10-01

    Full Text Available A novel wearable electronic nose for armpit odor analysis is proposed by using a low-cost chemical sensor array integrated in a ZigBee wireless communication system. We report the development of a carbon nanotubes (CNTs/polymer sensor array based on inkjet printing technology. With this technique both composite-like layer and actual composite film of CNTs/polymer were prepared as sensing layers for the chemical sensor array. The sensor array can response to a variety of complex odors and is installed in a prototype of wearable e-nose for monitoring the axillary odor released from human body. The wearable e-nose allows the classification of different armpit odors and the amount of the volatiles released as a function of level of skin hygiene upon different activities.

  19. A Review of Wearable Sensor Systems for Monitoring Body Movements of Neonates

    Directory of Open Access Journals (Sweden)

    Hongyu Chen

    2016-12-01

    Full Text Available Characteristics of physical movements are indicative of infants’ neuro-motor development and brain dysfunction. For instance, infant seizure, a clinical signal of brain dysfunction, could be identified and predicted by monitoring its physical movements. With the advance of wearable sensor technology, including the miniaturization of sensors, and the increasing broad application of micro- and nanotechnology, and smart fabrics in wearable sensor systems, it is now possible to collect, store, and process multimodal signal data of infant movements in a more efficient, more comfortable, and non-intrusive way. This review aims to depict the state-of-the-art of wearable sensor systems for infant movement monitoring. We also discuss its clinical significance and the aspect of system design.

  20. Wearable Potentiometric Chloride Sweat Sensor: The Critical Role of the Salt Bridge.

    Science.gov (United States)

    Choi, Dong-Hoon; Kim, Jin Seob; Cutting, Garry R; Searson, Peter C

    2016-12-20

    The components of sweat provide an array of potential biomarkers for health and disease. Sweat chloride is of interest as a biomarker for cystic fibrosis, electrolyte metabolism disorders, electrolyte balance, and electrolyte loss during exercise. Developing wearable sensors for biomarkers in sweat is a major technological challenge. Potentiometric sensors provide a relatively simple technology for on-body sweat chloride measurement, however, equilibration between reference and test solutions has limited the time over which accurate measurements can be made. Here, we report on a wearable potentiometric chloride sweat sensor. We performed parametric studies to show how the salt bridge geometry determines equilibration between the reference and test solutions. From these results, we show a sweat chloride sensor can be designed to provide accurate measurements over extended times. We then performed on-body tests on healthy subjects while exercising to establish the feasibility of using this technology as a wearable device.