WorldWideScience

Sample records for wear resistant ceramic

  1. Biocompatible wear-resistant thick ceramic coating

    Directory of Open Access Journals (Sweden)

    Vogt Nicola

    2016-09-01

    Full Text Available Sensitisation to immunologically active elements like chromium, cobalt or nickel and debris particle due to wear are serious problems for patients with metallic implants. We tested the approach of using a hard and thick ceramic coating as a wear-resistant protection of titanium implants, avoiding those sensitisation and foreign body problems. We showed that the process parameters strongly influence the coating porosity and, as a consequence, also its hardness.

  2. Research into properties of wear resistant ceramic metal plasma coatings

    Science.gov (United States)

    Ivancivsky, V. V.; Skeeba, V. Yu; Zverev, E. A.; Vakhrushev, N. V.; Parts, K. A.

    2018-03-01

    The study considers one of the promising ways to improve the quality of wear resistant plasma ceramic coatings by implementing various powder mixtures. The authors present the study results of the nickel-ceramic and cobalt-ceramic coating properties and describe the specific character of the investigated coatings composition. The paper presents the results of the coating microhardness, chemical and adhesive strength studies. The authors conducted wear resistance tests of composite coatings in comparison with the plasma coatings of initial powder components.

  3. A wear-resistant zirconia ceramic for low friction application

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.; Ran, S.; Wiratha, K.W.; Blank, D.H.A.; Pasaribu, H.R.; Sloetjes, J.W.; Schipper, D.J.

    2004-01-01

    A high wear-resistant ceramic/ceramic couple is described associated with low friction. By adding a small amount CuO to yttria-doped tetragonal zirconia (Y-TZP) the (dry) coefficient of friction against alumina is only 0.2 during a sliding distance of 3-5 km after which the coefficient drastically increases and a transition from mild to sever wear occurs. Pure Y-TZP exhibits a coefficient of friction of 0.7 under the same experimental conditions but wear remains mild during the test (upto 10 km of sliding distance). These small amounts of CuO also strongly influence the densification behaviour. Sintering of this system occurs in several steps where among other things dissolution of CuO in the Y-TZP matrix as well as liquid phase sintering takes place. Non-uniform shrinkage of the CuO-doped system resulting in relative large microcracks in the ceramic can explain its sudden drastic increase in coefficient of friction and wear rate after 3-5 km of operation. (orig.)

  4. Development of wear resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. (Caterpillar, Inc., Peoria, IL (United States))

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  5. Wear resistance of a pressable low-fusing ceramic opposed by dental alloys.

    Science.gov (United States)

    Faria, Adriana Cláudia Lapria; de Oliveira, André Almeida; Alves Gomes, Érica; Silveira Rodrigues, Renata Cristina; Faria Ribeiro, Ricardo

    2014-04-01

    Dental alloys have increasingly replaced by dental ceramics in dentistry because of aesthetics. As both dental alloys and ceramics can be present in the oral cavity, the evaluation of the wear resistance of ceramics opposed by dental alloys is important. The aim of the present study was to evaluate wear resistance of a pressable low-fusing ceramic opposed by dental alloys as well as the microhardness of the alloys and the possible correlation of wear and antagonist microhardness. Fifteen stylus tips samples of pressable low-fusing ceramic were obtained, polished and glazed. Samples were divided into three groups according to the disk of alloy/metal to be used as antagonist: Nickel-Chromium (Ni-Cr), Cobalt-Chromium (Co-Cr) and commercially pure titanium (cp Ti). Vickers microhardness of antagonist disks was evaluated before wear tests. Then, antagonist disks were sandblasted until surface roughness was adjusted to 0.75μm. Wear tests were performed at a speed of 60 cycles/min and distance of 10mm, in a total of 300,000 cycles. Before and after wear tests, samples were weighted and had their profile designed in an optical comparator to evaluate weight and height loss, respectively. Ni-Cr and cp Ti caused greater wear than Co-Cr, presenting greater weight (p=.009) and height (p=.002) loss. Cp Ti microhardness was lower than Ni-Cr and Co-Cr (pceramic presents different wear according to the dental alloy used as antagonist and the wear is not affected by antagonist microhardness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effect of La2O3 content on wear resistance of alumina ceramics

    Institute of Scientific and Technical Information of China (English)

    WU Tingting; ZHOU Jian; WU Bolin; LI Wenjie

    2016-01-01

    In order to improve the wear resistance, a kind of alumina ceramic with good wear resistance was created in an Al2O3-CaCO3-SiO2-MgO-La2O3 (ACSML) system. The effects of La2O3 content on sintering temperature, bulk density, and wear rate were investigated. The wear rate of sample was as low as 0.0393‰. The wear resistance of the sample containing La2O3 has im-proved 43% than that of the sample without La2O3. Appropriate La2O3 doping could inhibit grain growth, enhance density, and purify grain boundary. La2O3 could diffuse into Al2O3 to form a solid solution and react with Al2O3 to form high-aluminum low-lanthanum complex oxides. The combination among Al2O3, the solid solution layer, and the layer of high-aluminum low-lanthanum complex oxides combined closely, which could improve grain boundary cohesion. Besides, the homogeneous distributions of elements made uniform structure. Finally, the wear resistance of alumina ceramic was improved.

  7. Development of wear resistant ceramic coatings for diesel engine components. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. [Caterpillar, Inc., Peoria, IL (United States)

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  8. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    Science.gov (United States)

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  9. Abrasive wear of ceramic wear protection at ambient and high temperatures

    Science.gov (United States)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  10. TEM analysis and wear resistance of the ceramic coatings on Q235 steel prepared by hybrid method of hot-dipping aluminum and plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Science and Research Department, Chinese People' s Armed Police Academy, Langfang 065000 (China); Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen Dejiu, E-mail: sdj217@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wu Lailei; Jiang Guirong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Li Liang [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer Transmission electron microscopy (TEM) was firstly used to analyze the phase composition of the ceramic coatings. Black-Right-Pointing-Pointer The phase composition of the ceramic coatings is mainly amorphous phase and crystal Al{sub 2}O{sub 3} oxides. Black-Right-Pointing-Pointer The cross-section micro-hardness of the treated samples was investigated, the hardness of the ceramic coatings is about HV1300. Black-Right-Pointing-Pointer The wear resistance of the PEO samples is about 3 times higher than that of the heat treated 45 steel. - Abstract: The hybrid method of PEO and hot-dipping aluminum (HDA) was employed to deposit composite ceramic coatings on the surface of Q235 steel. The composition of the composite coatings was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The cross-section microstructure and micro-hardness of the treated specimens were investigated and analyzed with scanning electron microscopy (SEM) and microscopic hardness meter (MHM), respectively. The wear resistance of the ceramic coatings was investigated by a self-made rubbing wear testing machine. The results indicate that metallurgical bonding can be observed between the ceramic coatings and the steel substrate. There are many micro-pores and micro-cracks, which act as the discharge channels and result of quick and non-uniform cooling of melted sections in the plasma electrolytic oxidation ceramic coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. The grain size of the {kappa}-Al{sub 2}O{sub 3} crystal is quite non-uniform. The hardness of the ceramic coatings is about HV1300 and 10 times higher than that of the Q235 substrate, which was favorable to the better wear resistance of the ceramic

  11. Wear mechanisms in ceramic hip implants.

    Science.gov (United States)

    Slonaker, Matthew; Goswami, Tarun

    2004-01-01

    The wear in hip implants is one of the main causes for premature hip replacements. The wear affects the potential life of the prosthesis and subsequent removals of in vivo implants. Therefore, the objective of this article is to review various joints that show lower wear rates and consequently higher life. Ceramics are used in hip implants and have been found to produce lower wear rates. This article discusses the advantages and disadvantages of ceramics compared to other implant materials. Different types of ceramics that are being used are reviewed in terms of the wear characteristics, debris released, and their size together with other biological factors. In general, the wear rates in ceramics were lower than that of metal-on-metal and metal-on-polyethylene combinations.

  12. Wear Resistance of Nano Alumina Containing SiO2-B2O3-Na2O Glass-Ceramic on Steel Substrate

    Directory of Open Access Journals (Sweden)

    A. Faeghinia

    2016-09-01

    Full Text Available The experimental study has been carried out to investigate the tribological properties of nano Alumina reinforced glass-ceramic enamel. The mixtures of (5, 10, 15 wt.% nano alumina and glass powders have been air sprayed on stainless steel substrate.. The thixotropy, wetting angle and surface tension of used slurry were increased inherently by 15-wt.% nano alumina. By heat treating at 870-640-525 ºC, the homogeneous crystalline sodium silicate phase beside nano alumina was obtained in glass –ceramic coat. According to the EDAX results, the precipitated reduced Sb and Mo particles at the interface of enamel and steel caused to reasonable adherence of coat and steel. The dry sliding wear tests were carried out using pin on disk method. Results revealed the 0.01 mg wear rate by 30N load at 100 m for nano alumina bearing coats. The wear resistance increased by a factor of 10. According to SEM micrographs, the sliding load transfer by nano alumina particles occurred.

  13. DEVELOPMENT OF WEAR RESISTANT COATINGS FORMED BY PLASMA SPRAYING OF ALLOY Ni–Fe–Cr–Si–B–C SYSTEM REINFORCED WITH CERAMICS Al2O3

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available . Creating a functionally oriented, including nanostructured, anti-friction materials and coatings with qualitatively new complex of service properties is an important scientific and practical problem. In particular, for the cable industry it is urgent task of ensuring the high performance properties of fast deteriorating stretching and supporting rollers. Working surfaces of these parts operate under practically dry friction conditions with constantly updated material of stretching wire. Plasma spraying is one of the widely used methods of surface engineering to create wear resistant coatings and which is characterized with process flexibility and the ability to create coatings using various materials and alloys including composite ones. The installation UPU-3D with the PP-25 plasma torch was used for plasma spraying. The thickness of the sprayed layer was 0.8–1.1 mm. As a material for the deposition of composite coatings a powder mixture of self-fluxing nickel alloy PG-HN80SR4 (system Ni–Fe–Cr–Si–B–C and a neutral oxide ceramics Al2O3 was used. The amount of ceramics varied from 15 to 33 %. This ceramic oxide was selected due to the desire to reduce coatings’ costs while providing high durability. Carried out phase and microstructural studies have shown when ceramics was added in an amount more than 20 % a formation of conglomerates formed by not melted alumina particles often was observed. These conglomerates serve as crack formation centers in the coating. The phase composition of the coatings practically does not depend on the content of ceramics compounds. Tribological tests have shown that the best results were obtained when the content of the oxide ceramic in the coating was in the range from 15 to 20 %.

  14. Manufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants.

    Science.gov (United States)

    Turger, Anke; Köhler, Jens; Denkena, Berend; Correa, Tomas A; Becher, Christoph; Hurschler, Christof

    2013-08-29

    Ceramic materials are used in a growing proportion of hip joint prostheses due to their wear resistance and biocompatibility properties. However, ceramics have not been applied successfully in total knee joint endoprostheses to date. One reason for this is that with strict surface quality requirements, there are significant challenges with regard to machining. High-toughness bioceramics can only be machined by grinding and polishing processes. The aim of this study was to develop an automated process chain for the manufacturing of an all-ceramic knee implant. A five-axis machining process was developed for all-ceramic implant components. These components were used in an investigation of the influence of surface conformity on wear behavior under simplified knee joint motion. The implant components showed considerably reduced wear compared to conventional material combinations. Contact area resulting from a variety of component surface shapes, with a variety of levels of surface conformity, greatly influenced wear rate. It is possible to realize an all-ceramic knee endoprosthesis device, with a precise and affordable manufacturing process. The shape accuracy of the component surfaces, as specified by the design and achieved during the manufacturing process, has a substantial influence on the wear behavior of the prosthesis. This result, if corroborated by results with a greater sample size, is likely to influence the design parameters of such devices.

  15. Wear resistance of cast iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-10-01

    Full Text Available In this paper investigations of abrasive and adhesive wear resistance of different cast iron grades have been presented. Examinations showed, that the most advantageous pair of materials is the cast iron – the hardened steel with low-tempered martensite. It was found, that martensitic nodular cast iron with carbides is the most resistant material.

  16. Wear behavior of human enamel against lithium disilicate glass ceramic and type III gold.

    Science.gov (United States)

    Lee, Ahreum; Swain, Michael; He, Lihong; Lyons, Karl

    2014-12-01

    The wear behavior of human enamel that opposes different prosthetic materials is still not clear. The purpose of this in vitro study was to investigate and compare the friction and wear behavior of human tooth enamel that opposes 2 indirect restorative materials: lithium disilicate glass ceramic and Type III gold. Friction-wear tests on human enamel (n=5) that opposes lithium disilicate glass ceramic (n=5) and Type III gold (n=5) were conducted in a ball-on-flat configuration with a reciprocating wear testing apparatus. The wear pairs were subjected to a normal load of 9.8 N, a reciprocating amplitude of approximately 200 μm, and a reciprocating frequency of approximately 1.6 Hz for up to 1100 cycles per test under distilled water lubrication. The frictional force of each cycle was recorded, and the corresponding friction coefficient for different wear pairs was calculated. After wear testing, the wear scars on the enamel specimens were examined under a scanning electron microscope. Type III gold had a significantly lower steady-state friction coefficient (P=.009) and caused less wear damage on enamel than lithium disilicate glass ceramic. Enamel that opposed lithium disilicate glass ceramic exhibited cracks, plow furrows, and surface loss, which indicated abrasive wear as the prominent wear mechanism. In comparison, the enamel wear scar that opposed Type III gold had small patches of gold smear adhered to the surface, which indicated a predominantly adhesive wear mechanism. A lower friction coefficient and better wear resistance were observed when human enamel was opposed by Type III gold than by lithium disilicate glass ceramic in vitro. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. A comparative study of progressive wear of four dental monolithic, veneered glass-ceramics.

    Science.gov (United States)

    Zhang, Zhenzhen; Yi, Yuanping; Wang, Xuesong; Guo, Jiawen; Li, Ding; He, Lin; Zhang, Shaofeng

    2017-10-01

    This study evaluated the wear performance and wear mechanisms of four dental glass-ceramics, based on the microstructure and mechanical properties in the progressive wear process. Bar (N = 40, n = 10) and disk (N = 32, n = 8) specimens were prepared from (A) lithium disilicate glass-ceramic (LD), (B) leucite reinforced glass-ceramic (LEU), (C) feldspathic glass-ceramic (FEL), and (D) fluorapatite glass-ceramic (FLU). The bar specimens were tested for three-point flexural strength, hardness, fracture toughness and elastic modulus. The disk specimens paired with steatite antagonists were tested in a pin-on-disk tribometer with 10N up to 1000,000 wear cycles. The wear analysis of glass-ceramics was performed using a 3D profilometer after every 200,000 wear cycles. Wear loss of steatite antagonists was calculated by measuring the weight and density using sensitive balance and Archimedes' method. Wear morphologies and microstructures were analyzed by scanning electron microscopy (SEM). The crystalline phase compositions were determined using X-ray diffraction (XRD). One-way analysis of variance (ANOVA) was used to analyze the data. Multiple pair-wise comparison of means was performed by Tukey's post-hoc test. LD showed the highest fracture toughness, flexural strength, elastic modulus and crystallinity, followed by LEU and FEL, and FLU showed the lowest. However, the hardness of LD was lower than all the other three types of ceramics. For steatite antagonists, LD produced the least wear loss of antagonist, followed by LEU and FEL, and FLU had the most wear loss. For glass-ceramic materials, LD exhibited similar wear loss as LEU, but more than FLU and FEL did. Moreover, fracture occurred on the wear surface of FLU. In the progressive wear process, veneering porcelains showed better wear resistance but fluorapatite veneering porcelains appeared fracture surface. Monolithic lithium disilicate glass-ceramics with higher mechanical properties showed more wear loss, however

  18. Wear resistant performance of highly cross-linked and annealed ultra-high molecular weight polyethylene against ceramic heads in total hip arthroplasty.

    Science.gov (United States)

    Sato, Taishi; Nakashima, Yasuharu; Akiyama, Mio; Yamamoto, Takuaki; Mawatari, Taro; Itokawa, Takashi; Ohishi, Masanobu; Motomura, Goro; Hirata, Masanobu; Iwamoto, Yukihide

    2012-12-01

    The purpose of this study was to examine the effects of ceramic femoral head material, size, and implantation periods on the wear of annealed, cross-linked ultra-high molecular weight polyethylene (UHMWPE) (XLPE) in total hip arthroplasty compared to non-cross-linked conventional UHMWPE (CPE). XLPE was fabricated by cross-linking with 60 kGy irradiation and annealing. Femoral heads made from zirconia and alumina ceramics and cobalt-chrome (CoCr) of 22 or 26 mm diameter were used. In this retrospective cohort study, the femoral head penetration into the cup was measured digitally on radiographs of 367 hips with XLPE and 64 hips with CPE. The average follow-up periods were 6.3 and 11.9 years, respectively. Both XLPE creep and wear rates were significantly lower than those of CPE (0.19 mm vs. 0.44 mm, 0.0001 mm/year vs. 0.09 mm/year, respectively). Zirconia displayed increased wear rates compared to alumina in CPE; however, there was no difference among head materials in XLPE (0.0008, 0.00007, and -0.009 mm/year for zirconia, alumina, and CoCr, respectively). Neither head size or implantation period impacted XLPE wear. In contrast to CPE, XLPE displayed low wear rates surpassing the effects of varying femoral head material, size, implantation period, and patient demographics. Further follow-up is required to determine the long-term clinical performance of the annealed XLPE. Copyright © 2012 Orthopaedic Research Society.

  19. Wear properties of dental ceramics and porcelains compared with human enamel.

    Science.gov (United States)

    D'Arcangelo, Camillo; Vanini, Lorenzo; Rondoni, Giuseppe D; De Angelis, Francesco

    2016-03-01

    Contemporary pressable and computer-aided design/manufacturing (CAD/CAM) ceramics exhibit good mechanical and esthetic properties. Their wear resistance compared with human enamel and traditional gold based alloys needs to be better investigated. The purpose of this in vitro study was to compare the 2-body wear resistance of human enamel, gold alloy, and 5 different dental ceramics, including a recently introduced zirconia-reinforced lithium silicate ceramic (Celtra Duo). Cylindrical specimens were fabricated from a Type III gold alloy (Aurocast8), 2 hot pressed ceramics (Imagine PressX, IPS e.max Press), 2 CAD/CAM ceramics (IPS e.max CAD, Celtra Duo), and a CAD/CAM feldspathic porcelain (Vitablocs Mark II) (n=10). Celtra Duo was tested both soon after grinding and after a subsequent glaze firing cycle. Ten flat human enamel specimens were used as the control group. All specimens were subjected to a 2-body wear test in a dual axis mastication simulator for 120000 loading cycles against yttria stabilized tetragonal zirconia polycrystal cusps. The wear resistance was analyzed by measuring the vertical substance loss (mm) and the volume loss (mm(3)). Antagonist wear (mm) was also recorded. Data were statistically analyzed with 1-way ANOVA tests (α=.05). The wear depth (0.223 mm) of gold alloy was the closest to that of human enamel (0.217 mm), with no significant difference (P>.05). The greatest wear was recorded on the milled Celtra Duo (wear depth=0.320 mm), which appeared significantly less wear resistant than gold alloy or human enamel (Pceramics did not statistically differ in comparison with the human enamel. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Li Jianing; Chen Chuanzhong; Squartini, Tiziano; He Qingshan

    2010-01-01

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti 3 Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti 3 Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti 3 Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti 3 Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  1. A study on wear resistance and microcrack of the Ti{sub 3}Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianing, E-mail: ljnljn1022@163.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Chen Chuanzhong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China); Squartini, Tiziano [INFM-Department of Physics, Siena University, Siena 53100 (Italy); He Qingshan [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Department of Materials Science, Shandong University, Jing Shi Road 17923, Jinan 250061, Shandong (China)

    2010-12-15

    Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti{sub 3}Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti{sub 3}Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti{sub 3}Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti{sub 3}Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.

  2. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture ...

  3. Wear and impact resistance of HVOF sprayedceramic matrix composites coating

    Science.gov (United States)

    Prawara, B.; Martides, E.; Priyono, B.; Ardy, H.; Rikardo, N.

    2016-02-01

    Ceramic coating has the mechanical properties of high hardness and it is well known for application on wear resistance, but on the other hand the resistance to impact load is low. Therefore its use is limited to applications that have no impact loading. The aim of this research was to obtain ceramic-metallic composite coating which has improved impact resistance compared to conventional ceramic coating. The high impact resistance of ceramic-metallic composite coating is obtained from dispersed metallic alloy phase in ceramic matrix. Ceramic Matrix Composites (CMC) powder with chrome carbide (Cr3C2) base and ceramic-metal NiAl-Al2O3 with various particle sizes as reinforced particle was deposited on mild steel substrate with High Velocity Oxygen Fuel (HVOF) thermal spray coating. Repeated impact test showed that reinforced metallic phase size influenced impact resistance of CMC coating. The ability of CMC coating to absorb impact energy has improved eight times and ten times compared with original Cr3C2 and hard chrome plating respectively. On the other hand the high temperature corrosion resistance of CMC coating showed up to 31 cycles of heating at 800°C and water quenching cooling.

  4. Effects of crystal refining on wear behaviors and mechanical properties of lithium disilicate glass-ceramics.

    Science.gov (United States)

    Zhang, Zhenzhen; Guo, Jiawen; Sun, Yali; Tian, Beimin; Zheng, Xiaojuan; Zhou, Ming; He, Lin; Zhang, Shaofeng

    2018-05-01

    The purpose of this study is to improve wear resistance and mechanical properties of lithium disilicate glass-ceramics by refining their crystal sizes. After lithium disilicate glass-ceramics (LD) were melted to form precursory glass blocks, bar (N = 40, n = 10) and plate (N = 32, n = 8) specimens were prepared. According to the differential scanning calorimetry (DSC) of precursory glass, specimens G1-G4 were designed to form lithium disilicate glass-ceramics with different crystal sizes using a two-step thermal treatment. In the meantime, heat-pressed lithium disilicate glass-ceramics (GC-P) and original ingots (GC-O) were used as control groups. Glass-ceramics were characterized using X-ray diffraction (XRD) and were tested using flexural strength test, nanoindentation test and toughness measurements. The plate specimens were dynamically loaded in a chewing simulator with 350 N up to 2.4 × 10 6 loading cycles. The wear analysis of glass-ceramics was performed using a 3D profilometer after every 300,000 wear cycles. Wear morphologies and microstructures were analyzed by scanning electron microscopy (SEM). One-way analysis of variance (ANOVA) was used to analyze the data. Multiple pairwise comparisons of means were performed by Tukey's post-hoc test. Materials with different crystal sizes (p properties. Specifically, G3 with medium-sized crystals presented the highest flexural strength, hardness, elastic modulus and fracture toughness. G1 and G2 with small-sized crystals showed lower flexural strength, whereas G4, GC-P, and GC-O with large-sized crystals exhibited lower hardness and elastic modulus. The wear behaviors of all six groups showed running-in wear stage and steady wear stage. G3 showed the best wear resistance while GC-P and GC-O exhibited the highest wear volume loss. After crystal refining, lithium disilicate glass-ceramic with medium-sized crystals showed the highest wear resistance and mechanical properties. Copyright © 2018

  5. [An experimental study of the wear behavior of dental feldspathic glass-ceramic and lithium disilicate glass-ceramic].

    Science.gov (United States)

    Tian, Bei-min; Zhang, Shao-feng; He, Lin; Guo, Jia-wen; Yu, Jin-tao; Wu, Xiao-hong

    2013-11-01

    To investigate the tribology characteristics of two ceramic materials in vitro:feldspathic glass-ceramic (veneer porcelain) and lithium disilicate glass-ceramic (heat-pressed ceramic), and to evaluate the wear resistance of different ceramic materials from the dynamic chewing perspective. Wear tests were performed in simulated oral environment with stainless steel ball antagonists (r = 3 mm), veneer porcelain (CERAMCO 3) and heat-pressed ceramic (IPS e.max Press HT type) in the chewing simulator. The tribological tests were carried out under artificial saliva lubrication condition in room temperature with a vertical load of 10 N for 1.2×10(6) cycles (f = 1.5 Hz, uniform circular motion, revolving speed = 90 r/min, radius = 0.5 mm). The wear volumes were measured using three-dimensional profiling, and surface microscopic morphology were observed using scanning electron microscopy at time point of 200 000, 400 000, 600 000, 800 000, 1 000 000, and 1 200 000 cycles. In a simulated oral environment, the wear rates of veneer porcelain were (0.001 20 ± 0.00 018) , (0.000 10 ± 0.000 03) , (0.000 50 ± 0.000 05), (0.000 10 ± 0.000 02) , (0.004 10 ± 0.000 38) , and (0.019 00 ± 0.003 53) (×10(-4) mm(3)/cycles) at 200 000, 400 000, 600 000, 800 000, 1 000 000, 1 200 000 cycles. The wear rates of heat-pressed ceramic were (0.139 50 ± 0.030 94), (0.124 40 ± 0.031 20), (0.054 80 ± 0.005 38), (0.038 80 ± 0.006 10), (0.011 10 ± 0.003 75), (0.198 90 ± 0.045 80) (×10(-4) mm(3)/cycles) at 200 000, 400 000, 600 000, 800 000, 1 000 000, 1 200 000 cycles. Three stages were observed in the wear loss process of the two materials: running-in stage, steady wear stage and severe wear stage. In running-in and steady wear stage, the shallow wear tracks of veneer porcelain were produced by the fatigue effect.While in severe wear stage, the wear tracks turned into ploughing. In running-in stage, the surface of heat-pressed ceramic was characterized by dense and shallow ploughing

  6. Wear resistance of poly(2-methacryloyloxyethyl phosphorylcholine)-grafted carbon fiber reinforced poly(ether ether ketone) liners against metal and ceramic femoral heads.

    Science.gov (United States)

    Yamane, Shihori; Kyomoto, Masayuki; Moro, Toru; Hashimoto, Masami; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko

    2018-04-01

    Younger, active patients who undergo total hip arthroplasty (THA) have increasing needs for wider range of motion and improved stability of the joint. Therefore, bearing materials having not only higher wear resistance but also mechanical strength are required. Carbon fiber-reinforced poly(ether ether ketone) (CFR-PEEK) is known as a super engineering plastic that has great mechanical strength. In this study, we focused on poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted CFR-PEEK and investigated the effects of PMPC grafting and the femoral heads materials on the wear properties of CFR-PEEK liners. Compared with untreated CFR-PEEK, the PMPC-grafted CFR-PEEK surface revealed higher wettability and lower friction properties under aqueous circumstances. In the hip simulator wear test, wear particles generated from the PMPC-grafted CFR-PEEK liners were fewer than those of the untreated CFR-PEEK liners. There were no significant differences in the size and the morphology of the wear particles between the differences of PMPC-grafting and the counter femoral heads. Zirconia-toughened alumina (ZTA) femoral heads had significantly smoother surfaces compared to cobalt-chromium-molybdenum alloy femoral heads after the hip simulator test. Thus, we conclude that the bearing combination of the PMPC-grafted CFR-PEEK liner and ZTA head is expected to be a lifelong bearing interface in THA. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1028-1037, 2018. © 2017 Wiley Periodicals, Inc.

  7. High temperature resistant cermet and ceramic compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  8. Ceramic-like wear behaviour of human dental enamel.

    Science.gov (United States)

    Arsecularatne, J A; Hoffman, M

    2012-04-01

    This paper reports a transmission electron microscopy (TEM) analysis of subsurfaces of enamel specimens following in vitro reciprocating wear tests with an enamel cusp sliding on a flat enamel specimen under hydrated conditions. The obtained results show that crack formation occurred in the wear scar subsurface. The path followed by these cracks seems to be dictated either by the histological structure of enamel or by the contact stress field. Moreover, the analysis of a set of enamel wear results obtained from the literature and application of fracture-based models, originally developed for ceramics, correlate well, confirming the similar wear processes taking place in these materials. This analysis also reveals a marked influence of coefficient of friction on the enamel wear rate: for a higher coefficient of friction value, enamel wear can be severe even under forces generated during normal operation of teeth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  10. Grain size dependence of wear in ceramics

    International Nuclear Information System (INIS)

    Wu, C.C.; Rice, R.W.; Johnson, D.; Platt, B.A.

    1985-01-01

    Pin-On-Disk (POD), microwear tests of Al 2 O 3 , MgO, MgAl 2 O 4 , and ZrO 2 , most being dense and essentially single phase, showed the reciprocal of wear following a hall-petch type relationship. However, extrapolation to infinite grain size always gave a lower intercept than most or all single-crystal values; in particular, Al 2 O 3 data projects to a negative intercept. Initial macro wear tests of some of the same Al 2 O 3 materials also indicate a hall-petch type grain-size dependence, but with a greatly reduced grain-size dependence, giving a positive hall-petch intercept. Further, the macrowear grain-size dependence appears to decrease with increased wear. It is argued that thermal expansion anisotropy (of Al 2 O 3 ) significantly affects the grain size dependence of POD wear, in particular, giving a negative intercept, while elastic anisotropy is suggested as a factor in the grain-size dependence of the cubic (MgO, MgAl 2 O 4 , and ZrO 2 ) materials. The reduced grain-size dependence in the macrowear tests is attributed to overlapping wear tracks reducing the effects of enhanced wear damage, e.g., from elastic and thermal expansion anisotropies

  11. Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo

    2016-01-01

    This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).

  12. [Study on friction and wear properties of dental zirconia ceramics processed by microwave and conventional sintering methods].

    Science.gov (United States)

    Guoxin, Hu; Ying, Yang; Yuemei, Jiang; Wenjing, Xia

    2017-04-01

    This study evaluated the wear of an antagonist and friction and wear properties of dental zirconia ceramic that was subjected to microwave and conventional sintering methods. Ten specimens were fabricated from Lava brand zirconia and randomly assigned to microwave and conventional sintering groups. A profile tester for surface roughness was used to measure roughness of the specimens. Wear test was performed, and steatite ceramic was used as antagonist. Friction coefficient curves were recorded, and wear volume were calculated. Finally, optical microscope was used to observe the surface morphology of zirconia and steatite ceramics. Field emission scanning electron microscopy was used to observe the microstructure of zirconia. Wear volumes of microwave and conventionally sintered zirconia were (6.940±1.382)×10⁻², (7.952±1.815) ×10⁻² mm³, respectively. Moreover, wear volumes of antagonist after sintering by the considered methods were (14.189±4.745)×10⁻², (15.813±3.481)×10⁻² mm³, correspondingly. Statistically significant difference was not observed in the wear resistance of zirconia and wear volume of steatite ceramic upon exposure to two kinds of sintering methods. Optical microscopy showed that ploughed surfaces were apparent in zirconia. The wear surface of steatite ceramic against had craze, accompanied by plough. Scanning electron microscopy showed that zirconia was sintered compactly when subjected to both conventional sintering and microwave methods, whereas grains of zirconia sintered by microwave alone were smaller and more uniform. Two kinds of sintering methods are successfully used to produce dental zirconia ceramics with similar friction and wear properties.
.

  13. Wear behavior of pressable lithium disilicate glass ceramic.

    Science.gov (United States)

    Peng, Zhongxiao; Izzat Abdul Rahman, Muhammad; Zhang, Yu; Yin, Ling

    2016-07-01

    This article reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressable lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using three-dimensional laser scanning microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation, and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behavior of LDGC and will provide guidelines for better utilization and preparation of the material for long-term success in dental restorations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 968-978, 2016. © 2015 Wiley Periodicals, Inc.

  14. Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo

    2014-01-01

    The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.

  15. Laser cladding of wear resistant metal matrix composite coatings

    International Nuclear Information System (INIS)

    Yakovlev, A.; Bertrand, Ph.; Smurov, I.

    2004-01-01

    A number of coatings with wear-resistant properties as well as with a low friction coefficient are produced by laser cladding. The structure of these coatings is determined by required performance and realized as metal matrix composite (MMC), where solid lubricant serves as a ductile matrix (e.g. CuSn), reinforced by appropriate ceramic phase (e.g. WC/Co). One of the engineered coating with functionally graded material (FGM) structure has a dry friction coefficient 0.12. Coatings were produced by coaxial injection of powder blend into the zone of laser beam action. Metallographic and tribological examinations were carried out confirming the advanced performance of engineered coatings

  16. Wear resistance of polypropylene-SiC composite

    Science.gov (United States)

    Abenojar, J.; Enciso, B.; Martínez, MA; Velasco, F.

    2017-05-01

    In this work, the wear resistance of thermoplastic composites with a high amount of ceramic is evaluated. Composites made of polypropylene (PP) and silicon carbide (SiC) powder at 50 wt% were used with the final objective of manufacturing ablative materials. This is the first part of a project studying the wear resistance and the mechanical properties of those composites, to be used in applications like habitat industry. In theory, the exposure to high temperature of ablative materials involves the elimination of thermal energy by the sacrifice of surface polymer. In our case, PP will act as a heat sink, up to the reaction temperature (melting or sublimation), where endothermic chemical decomposition into charred material and gaseous products occurs. As the surface is eroded, it is formed a SiC like-foam with improved insulation performance. Composites were produced by extrusion and hot compression. The wear characterization was performed by pin-on-disk test. Wear test was carried out under standard ASTM G99. The parameters were 120 rpm speed, 15 N load, a alumina ball with 6 mm as pin and 1000 m sliding distance. The tracks were also observed by opto-digital microscope.

  17. Wear resistance of polypropylene-SiC composite

    International Nuclear Information System (INIS)

    Abenojar, J; Enciso, B; Martínez, MA; Velasco, F

    2017-01-01

    In this work, the wear resistance of thermoplastic composites with a high amount of ceramic is evaluated. Composites made of polypropylene (PP) and silicon carbide (SiC) powder at 50 wt% were used with the final objective of manufacturing ablative materials. This is the first part of a project studying the wear resistance and the mechanical properties of those composites, to be used in applications like habitat industry. In theory, the exposure to high temperature of ablative materials involves the elimination of thermal energy by the sacrifice of surface polymer. In our case, PP will act as a heat sink, up to the reaction temperature (melting or sublimation), where endothermic chemical decomposition into charred material and gaseous products occurs. As the surface is eroded, it is formed a SiC like-foam with improved insulation performance. Composites were produced by extrusion and hot compression. The wear characterization was performed by pin-on-disk test. Wear test was carried out under standard ASTM G99. The parameters were 120 rpm speed, 15 N load, a alumina ball with 6 mm as pin and 1000 m sliding distance. The tracks were also observed by opto-digital microscope. (paper)

  18. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  19. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  20. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  1. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  2. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  3. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J

    2013-06-01

    Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (pceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Wear Resistance of Nano Alumina Containing SiO2-B2O3-Na2O Glass-Ceramic on Steel Substrate

    OpenAIRE

    A. Faeghinia; A. Zamanian

    2016-01-01

    The experimental study has been carried out to investigate the tribological properties of nano Alumina reinforced glass-ceramic enamel. The mixtures of (5, 10, 15 wt.%) nano alumina and glass powders have been air sprayed on stainless steel substrate.. The thixotropy, wetting angle and surface tension of used slurry were increased inherently by 15-wt.% nano alumina. By heat treating at 870-640-525 ºC, the homogeneous crystalline sodium silicate phase beside nano alumina was obtained in glass ...

  5. Overview of PVD wear resistant coatings

    International Nuclear Information System (INIS)

    Teeter, F.J.

    1999-01-01

    The combined functionality of wear-resistant and low-friction multilayer coatings has widened application possibilities for a new generation of coated tools. For the first time tool wear mechanisms are comprehensively addressed both at the cutting edge and contact areas away from the edge where chip evacuation is facilitated. Since its recent market introduction a combined TiA1N and WC/C PVD coating has been proven to increase cutting performance in various metal cutting operations, notably drilling and tapping of steels and aluminum alloys. Significant improvements have been obtained under dry as well as with coolant conditions. The results of laboratory metal cutting tests and field trials to date will be described. Correlations between chip formation / wear mechanisms and coating properties are given to explain the effectiveness of this coating. (author)

  6. Wear-resistance of Aluminum Matrix Microcomposite Materials

    Directory of Open Access Journals (Sweden)

    M. Kandeva

    2011-03-01

    Full Text Available A procedure is developed for the study of wear of aluminum alloys AlSi7 obtained by casting, reinforced by TiC microparticles, before and after heat treatment. Tribological study is realized under conditions of friction on counterbody with fixed abrasive. Experimental results were obtained for mass wear, wear rate, wear intensity and wear-resistance of the alloys with different wt% of microparticles.

  7. Friction and wear behaviour of ion beam modified ceramics

    International Nuclear Information System (INIS)

    Lankford, J.; Wei, W.; Kossowsky, R.

    1987-01-01

    In the present study, the sliding friction coefficients and wear rates of carbide, oxide, and nitride materials for potential use as sliding seals (ring/liner) were measured under temparature, environmental, velocity, and loading conditions representative of a diesel engine. In addition, silicon nitride and partially stabilized zirconia discs were modified by ion mixing with TiNi, nickel, cobalt and chromium, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. However, the coefficient at 800 0 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implantation of TiNi or cobalt. This beneficial effect was found to derive from lubricious titanium, nickel, and cobalt oxides. (author)

  8. Friction and wear behaviour of ion beam modified ceramics

    Science.gov (United States)

    Lankford, J.; Wei, W.; Kossowsky, R.

    1987-01-01

    In the present study, the sliding friction coefficients and wear rates of carbide, oxide, and nitride materials for potential use as sliding seals (ring/liner) were measured under temperature, environmental, velocity, and loading conditions representative of a diesel engine. In addition, silicon nitride and partially stabilized zirconia discs were modified by ion mixing with TiNi, nickel, cobalt and chromium, and subsequently run against carbide pins, with the objective of producing reduced friction via solid lubrication at elevated temperature. Unmodified ceramic sliding couples were characterized at all temperatures by friction coefficients of 0.24 and above. However, the coefficient at 800 C in an oxidizing environment was reduced to below 0.1, for certain material combinations, by the ion implantation of TiNi or cobalt. This beneficial effect was found to derive from lubricious titanium, nickel, and cobalt oxides.

  9. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Mike L. Fulcher; Kenneth L. Knittel

    2004-06-08

    The work performed on this program was to develop wear resistant, tough FM composite materials with efforts focused on WC-Co based FM systems. The materials were developed for use in mining industry wear applications. Components of interest were drill bit inserts for drilling blast holes. Other component applications investigated included wear plates for a variety of equipment such as pit shovels, wear surfaces for conveyors, milling media for ball milling operations, hydrocyclone cones, grader blades and dozer teeth. Cross-cutting technologies investigated included hot metal extrusion dies, drill bits for circuit board fabrication, cutting tools for cast iron and aluminum machining. An important part of the work was identification of the standard materials used in drilling applications. A materials trade study to determine those metals and ceramics used for mining applications provided guidance for the most important materials to be investigated. WC-Co and diamond combinations were shown to have the most desirable properties. Other considerations such as fabrication technique and the ability to consolidate shifted the focus away from diamond materials and toward WC-Co. Cooperating partners such as Kennametal and Kyocera assisted with supplies, evaluations of material systems, fabricated parts and suggestions for cross-cutting technology applications for FM architectures. Kennametal provided the raw materials (WC-Co and Al-TiCN powders) for the extent of the material evaluations. Kyocera shared their research into various FM systems and provided laboratory testing of fabricated materials. Field testing provided by partners Superior Rock Bit and Brady Mining and Construction provided insight into the performance of the fabricated materials under actual operational conditions. Additional field testing of cross-cutting technology, the extrusion of hot metals, at Extruded Metals showed the potential for additional market development.

  10. In vitro wear of four ceramic materials and human enamel on enamel antagonist.

    Science.gov (United States)

    Nakashima, Jun; Taira, Yohsuke; Sawase, Takashi

    2016-06-01

    The purpose of the present study was to evaluate the wear of four different ceramics and human enamel. The ceramics used were lithium disilicate glass (e.max Press), leucite-reinforced glass (GN-Ceram), yttria-stabilized zirconia (Aadva Zr), and feldspathic porcelain (Porcelain AAA). Hemispherical styli were fabricated with these ceramics and with tooth enamel. Flattened enamel was used for antagonistic specimens. After 100,000 wear cycles of a two-body wear test, the height and volume losses of the styli and enamel antagonists were determined. The mean and standard deviation for eight specimens were calculated and statistically analyzed using a non-parametric (Steel-Dwass) test (α = 0.05). GN-Ceram exhibited greater stylus height and volume losses than did Porcelain AAA. E.max Press, Porcelain AAA, and enamel styli showed no significant differences, and Aadva Zr exhibited the smallest stylus height and volume losses. The wear of the enamel antagonist was not significantly different among GN-Ceram, e.max Press, Porcelain AAA, and enamel styli. Aadva Zr resulted in significantly lower wear values of the enamel antagonist than did GN-Ceram, Porcelain AAA, and enamel styli. In conclusion, leucite-reinforced glass, lithium disilicate glass, and feldspathic porcelain showed wear values closer to those for human enamel than did yttria-stabilized zirconia. © 2016 Eur J Oral Sci.

  11. Wear-dependent specific coefficients in a mechanistic model for turning of nickel-based superalloy with ceramic tools

    Directory of Open Access Journals (Sweden)

    López de Lacalle Luis Norberto

    2017-09-01

    Full Text Available Difficult to cut materials such as nickel and titanium alloys are used in the aeronautical industry, the former alloys due to its heat-resistant behavior and the latter for the low weight - high strength ratio. Ceramic tools made out alumina with reinforce SiC whiskers are a choice in turning for roughing and semifinishing workpiece stages. Wear rate is high in the machining of these alloys, and consequently cutting forces tends to increase along one operation.

  12. Wear and creep of highly crosslinked polyethylene against cobalt chrome and ceramic femoral heads.

    Science.gov (United States)

    Galvin, A L; Jennings, L M; Tipper, J L; Ingham, E; Fisher, J

    2010-10-01

    The wear and creep characteristics of highly crosslinked ultrahigh-molecular-weight polyethylene (UHMWPE) articulating against large-diameter (36mm) ceramic and cobalt chrome femoral heads have been investigated in a physiological anatomical hip joint simulator for 10 million cycles. The crosslinked UHMWPE/ceramic combination showed higher volume deformation due to creep plus wear during the first 2 million cycles, and a steady-state wear rate 40 per cent lower than that of the crosslinked UHMWPE/cobalt chrome combination. Wear particles were isolated and characterized from the hip simulator lubricants. The wear particles were similar in size and morphology for both head materials. The particle isolation methodology used could not detect a statistically significant difference between the particles produced by the cobalt chrome and alumina ceramic femoral heads.

  13. Wear-dependent specific coefficients in a mechanistic model for turning of nickel-based superalloy with ceramic tools

    Science.gov (United States)

    López de Lacalle, Luis Norberto; Urbicain Pelayo, Gorka; Fernández-Valdivielso, Asier; Alvarez, Alvaro; González, Haizea

    2017-09-01

    Difficult to cut materials such as nickel and titanium alloys are used in the aeronautical industry, the former alloys due to its heat-resistant behavior and the latter for the low weight - high strength ratio. Ceramic tools made out alumina with reinforce SiC whiskers are a choice in turning for roughing and semifinishing workpiece stages. Wear rate is high in the machining of these alloys, and consequently cutting forces tends to increase along one operation. This paper establishes the cutting force relation between work-piece and tool in the turning of such difficult-to-cut alloys by means of a mechanistic cutting force model that considers the tool wear effect. The cutting force model demonstrates the force sensitivity to the cutting engagement parameters (ap, f) when using ceramic inserts and wear is considered. Wear is introduced through a cutting time factor, being useful in real conditions taking into account that wear quickly appears in alloys machining. A good accuracy in the cutting force model coefficients is the key issue for an accurate prediction of turning forces, which could be used as criteria for tool replacement or as input for chatter or other models.

  14. Microstructure and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate

    International Nuclear Information System (INIS)

    Wu, Qianlin; Li, Wenge; Zhong, Ning; Gang, Wu; Haishan, Wang

    2013-01-01

    Highlights: ► The VC–Cr 7 C 3 coating on steel substrate was in situ produced by laser cladding. ► The distribution of VC–Cr 7 C 3 phase decreased gradually from the top of the coating. ► The laser cladding achieved a high hardness of the order of 1000 HV. ► The wear resistance of the coating was 4 times that of the steel substrate. - Abstract: To enhance the wear resistance of mechanical components, laser cladding has been applied to deposit in situ VC–Cr 7 C 3 ceramic coating on steel substrate using a pre-placed powder consisting of vanadium, carbon and high-carbon ferrochrome. The laser cladding samples were subjected to various microstructure examinations, microhardness and wear tests. The results showed that defect-free coating with metallurgical joint to the steel substrate was obtained. The quantity of VC–Cr 7 C 3 particles gradually increased from the bottom to the top of the coating. The VC particles in nanometer were observed within the coating. Average hardness of the coating up to 1050 HV was significantly higher than that of the substrate 150 HV. Wear tests indicated the wear resistance of the clad coating was 4 times that of the steel substrate

  15. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    International Nuclear Information System (INIS)

    Ramm, D.A.J.; Hutchings, I.M.; Clyne, T.W.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharply reducing the erosive wear at high erodent impact angles, whilst retaining the good erosion resistance of ceramics at low angles. It is shown that the proportion of metal and ceramic at the free surface can be specified so as to optimise the erosion resistance. Experiments have also been carried out on the resistance of the coatings to debonding during four-point bending of the coated substrate. Progress is being made towards the tailoring of composition profiles in graded coatings so as to optimise the combination of erosion resistance and adhesion. (orig.)

  16. High temperature resistant cermet and ceramic compositions. [for thermal resistant insulators and refractory coatings

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.

  17. Changing in tool steels wear resistance under electron irradiation

    International Nuclear Information System (INIS)

    Braginskaya, A.E.; Manin, V.N.; Makedonskij, A.V.; Mel'nikova, N.A.; Pakchanin, L.M.; Petrenko, P.V.

    1983-01-01

    The tool steels and alloys wear resistance under dry friction after electron irradiation has been studied. Electron irradiation of a wide variety of steels is shown to increase wear resistance. In this case phase composition and lattice parameters changes are observed both in matrix and carbides. The conclusion is drawn that an appreciable increase of steel wear resistance under electron irradiation can be explained both by carbide phase volume gain and changes in it's composition and the formation of carbide phase submicroscopic heterogeneities and, possibly, complexes of defects

  18. Alkaline resistant ceramics; Alkalimotstaandskraftiga keramer

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, Stig-Bjoern [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2001-02-01

    Despite durability in several environments, ceramics and refractories can not endure alkaline environments at high temperature. An example of such an environment is when burning biofuel in modern heat and power plants in which the demand for increasing efficiency results in higher combustion temperatures and content of alkaline substances in the flue gas. Some experiences of these environments has been gained from such vastly different equipment as regenerator chambers in the glass industry and MHD-generators. The grains of a ceramic material are usually bonded together by a glassy phase which despite it frequently being a minor constituent render the materials properties and limits its use at elevated temperature. The damage is usually caused by alkaline containing low-melting phases and the decrease of the viscosity of the bonding glass phase which is caused by the alkaline. The surfaces which are exposed to the flue gas in a modern power plant are not only exposed to the high temperature but also a corroding and eroding, particle containing, gas flow of high velocity. The use of conventional refractory products is limited to 1300-1350 deg C. Higher strength and fracture toughness as well as durability against gases, slag and melts at temperatures exceeding 1700 deg C are expected of the materials of the future. Continuous transport of corrosive compounds to the surface and corrosion products from the surface as well as a suitable environment for the corrosion to occur in are prerequisites for extensive corrosion to come about. The highest corrosion rate is therefore found in a temperature interval between the dew point and the melting point of the alkaline-constituent containing compound. It is therefore important that the corrosion resistance is sufficient in the environment in which alkaline containing melts or slag may appear. In environments such as these, even under normal circumstances durable ceramics, such as alumina and silicon carbide, are attacked

  19. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    Science.gov (United States)

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (Pglass ceramic, and enamel (Pglass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Wear mechanisms of Al2O3/TiC/Mo/Ni ceramic wire-drawing dies

    International Nuclear Information System (INIS)

    Deng Jianxin; Yang Xuefeng; Wang Jinghai

    2006-01-01

    Al 2 O 3 /TiC/Mo/Ni ceramic composites were produced by hot-pressing for the use of wire drawing dies. The fundamental properties of these ceramic die materials were examined. Wire drawing tests were carried out on the 65Mn steel wire with these ceramic dies. Finite element method (FEM) was used as a means of numerically evaluating stress and its distribution inside the ceramic drawing dies. Worn bore surfaces of the ceramic drawing dies were examined by scanning electron microscopy (SEM). The wear mechanisms of the ceramic drawing dies were investigated. Detailed observations and analyses of the die wear surface have revealed that the most common failure of the ceramic drawing die is the wear at its approach zone. FEM analysis showed that the compressive stresses on both sides of the corners at the approach zone are higher than those of other parts of the ceramic drawing die. Abrasive and adhesive wear were found to be the predominant wear mechanisms through the whole approach zone owing to the greater compressive stresses. Examination of the center bore surface at the die bearing zone of the ceramic drawing dies demonstrated that the wear occurred by light abrasive, no adhesion wear was observed

  1. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    Unknown

    Technical Education Faculty, Mersin University, 33480 Tarsus, Turkey. MS received 18 October 2005; revised 22 March 2006. Abstract. In this study, abrasive ... process were used to produce bio-active ceramics. Fracture toughness of studied ...

  2. Wear Characteristics of Ceramic Coating Materials by Plasma Spray under the Lubricative Environment

    International Nuclear Information System (INIS)

    Kim, Chang Ho

    2001-02-01

    This paper is to investigate the wear behaviors of two types of ceramics, Al 2 O 3 and TiO 2 , by coated plasma thermal spray method under the lubricative environment. The lubricative environments are grease fluids, a general hydraulic fluids, and bearing fluids. The wear testing machine used a pin on disk type. Wear characteristics, which were friction force, friction coefficient and the specific wear rate, according to the lubricative environments were obtained at the four kinds of load, and the sliding velocity is 0.2m/sec. After the wear experiments, the wear surfaces of the each test specimen were observed by a scanning electronic microscope. The obtained results are as follows. : 1. The friction coefficients of TiO 2 coating materials are 0.11 ∼ 0.16 range and those of Al 2 O 3 are 0.24 ∼ 0.39. The friction coefficient of two coating materials is relative to the hardness of these materials. 2. The friction coefficient of TiO 2 coating materials in three lubricative environments is almost same to each other in spite of changing of applied loads. 3. The friction coefficient of Al 2 O 3 coating materials is more large in low load than high load. And the friction coefficient in grease is more large than a general hydraulic and bearing fluids had almost same friction coefficient. 4. The specific wear rate in TiO 2 is greatly increasing according to change the applied loads, but that in Al 2 O 3 is slightly. And the wear in grease is the least among three lubricating environments. 5. On the wear mechanism by SEM image observation, the wear of Al 2 O 3 is adhesive wear and TiO 3 is abrasive wear

  3. Friction and wear behavior of glasses and ceramics

    Science.gov (United States)

    Buckley, D. H.

    1973-01-01

    Adhesion, friction, and wear behavior of glasses and ionic solids are reviewed. These materials are shown to behave in a manner similar to other solids with respect to adhesion. Their friction characteristics are shown to be sensitive to environmental constituents and surface films. This sensitivity can be related to a reduction in adhesive bonding and the changes in surficial mechanical behavior associated with Rehbinder and Joffe effects. Both friction and wear properties of ionic crystalline solids are highly anisotropic. With metals in contact with ionic solids the fracture strength of the ionic solid and the shear strength in the metal and those properties that determine these will dictate which of the materials undergoes adhesive wear. The chemical activity of the metal plays an important role in the nature and strength of the adhesive interfacial bond that develops between the metal and a glass or ionic solid.

  4. Wear properties of alumina/zirconia composite ceramics for joint prostheses measured with an end-face apparatus.

    Science.gov (United States)

    Morita, Yusuke; Nakata, Kenichi; Kim, Yoon-Ho; Sekino, Tohru; Niihara, Koichi; Ikeuchi, Ken

    2004-01-01

    While only alumina is applied to all-ceramic joint prostheses at present, a stronger ceramic is required to prevent fracture and chipping due to impingement and stress concentration. Zirconia could be a potential substitute for alumina because it has high strength and fracture toughness. However, the wear of zirconia/zirconia combination is too high for clinical use. Although some investigations on composite ceramics revealed that mixing of different ceramics was able to improve the mechanical properties of ceramics, there are few reports about wear properties of composite ceramics for joint prosthesis. Since acetabular cup and femoral head of artificial hip joint are finished precisely, they indicate high geometric conformity. Therefore, wear test under flat contact was carried out with an end-face wear testing apparatus for four kinds of ceramics: alumina monolith, zirconia monolith, alumina-based composite ceramic, and zirconia based composite ceramic. Mean contact pressure was 10 MPa and sliding velocity was 40 mm/s. The wear test continued for 72 hours and total sliding distance was 10 km. After the test, the wear factor was calculated. Worn surfaces were observed with a scanning electron micrograph (SEM). The results of this wear test show that the wear factors of the both composite ceramics are similarly low and their mechanical properties are much better than those of the alumina monolith and the zirconia monolith. According to these results, it is predicted that joint prostheses of the composite ceramics are safer against break down and have longer lifetime compared with alumina/alumina joint prostheses.

  5. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    With a new purchase of a waste conveyer screw at hand, for the 'A-warehouse' at the combined power and heating plant at E.ON Norrkoeping, the request for improved construction materials was raised. The previous screw required maintenance with very short intervals due to the difficult operation conditions. With the new screw the expectation is to manage 6 months of operation without interruption. The environment for the screw has two main components that sets the demand on the materials, on one hand the corrosive products that comes along and which forms at digestion of the waste and on the other hand the abrasive content in the waste. The term of the mechanism is wear-corrosion and can give considerably higher material loss than the two mechanisms wear and corrosion separately. Combination of a strong corrosive environment together with extensive wear is something that we today have limited knowledge about. The overall objective of the project has been to establish better wear and corrosive resistant construction materials for a waste conveyer screw that will lead to reduced operational disturbance costs. The evaluation has been performed in both controlled laboratory environments and in field tests, which has given us a better understanding of what materials are more suitable in this tough environment and has given us a tool for future predictions of the wear rate of the different material. The new conveyer screw, installed in February 2007 and with which the field test have been performed, has considerably reduced the wear of the construction and the target of 6 month maintenance-free operation is met with this screw for all the evaluated materials. The wear along the screw varies very much and with a clear trend for all the materials to increase towards the feeding direction of the screw. As an example, the wear plate SS2377 (stainless duplex steel) has a useful life at the most affected areas that is calculated to be 1077 days of operation with the

  6. Wear resistance of laser-deposited boride reinforced Ti-Nb-Zr-Ta alloy composites for orthopedic implants

    International Nuclear Information System (INIS)

    Samuel, Sonia; Nag, Soumya; Scharf, Thomas W.; Banerjee, Rajarshi

    2008-01-01

    The inherently poor wear resistance of titanium alloys limits their application as femoral heads in femoral (hip) implants. Reinforcing the soft matrix of titanium alloys (including new generation β-Ti alloys) with hard ceramic precipitates such as borides offers the possibility of substantially enhancing the wear resistance of these composites. The present study discusses the microstructure and wear resistance of laser-deposited boride reinforced composites based on Ti-Nb-Zr-Ta alloys. These composites have been deposited using the LENS TM process from a blend of elemental Ti, Nb, Zr, Ta, and boron powders and consist of complex borides dispersed in a matrix of β-Ti. The wear resistance of these composites has been compared with that of Ti-6Al-4V ELI, the current material of choice for orthopedic femoral implants, against two types of counterfaces, hard Si 3 N 4 and softer SS440C stainless steel. Results suggest a substantial improvement in the wear resistance of the boride reinforced Ti-Nb-Zr-Ta alloys as compared with Ti-6Al-4V ELI against the softer counterface of SS440. The presence of an oxide layer on the surface of these alloys and composites also appears to have a substantial effect in terms of enhanced wear resistance

  7. A new production technique for wear resistant ring-hammers

    Directory of Open Access Journals (Sweden)

    Li Shifeng

    2011-11-01

    Full Text Available Based on a great number of laboratory experiments, a new technique has been developed for producing wear resistant ring-hammers. In this technology, lost foam casting with iron sand was combined to make mold; a special alloy was used to inoculate the molten steel, and proper heat treatment was used to further improve mechanical properties of wear resistant ring-hammers. The influence of this new production technology on the microstructure and mechanical properties of wear resistant ring-hammers was studied. Results show that iron sand molding, having the inherent characteristic of sand molding, changes the type of metallic compounds, refines crystal grains and increases the fineness of microstructure. Practical experience verified that the properties of the ring-hammers produced with this new technique are as follows: tensile strength (Rm 720 MPa, impact toughness (ak > 210 J•cm-2 and hardness > 200 HB. After water quenching from 1,080℃ (holding for 4 h and tempering at 320℃ for 3 h, the best wear resistance is obtained, and the wear resistance is 1.6 times higher than that of common high manganese ring-hammers.

  8. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth L. Knittel

    2005-05-09

    The work performed on this program was to develop wear resistant, tough FM composite materials with efforts focused on WC-Co based FM systems. The materials were developed for use in mining industry wear applications. Components of interest were drill bit inserts for drilling blast holes. Other component applications investigated included wear plates for a variety of equipment such as pit shovels, wear surfaces for conveyors, milling media for ball milling operations, hydrocyclone cones, grader blades and dozer teeth. Cross-cutting technologies investigated included hot metal extrusion dies, drill bits for circuit board fabrication, cutting tools for cast iron and aluminum machining. An important part of the work was identification of the standard materials used in drilling applications. A materials trade study to determine those metals and ceramics used for mining applications provided guidance for the most important materials to be investigated. WC-Co and diamond combinations were shown to have the most desirable properties. Other considerations such as fabrication technique and the ability to consolidate shifted the focus away from diamond materials and toward WC-Co. Cooperating partners such as Kennametal and Kyocera assisted with supplies, evaluations of material systems, fabricated parts and suggestions for cross-cutting technology applications for FM architectures. Kennametal provided the raw materials (WC-Co and Al-TiCN powders) for the extent of the material evaluations. Kyocera shared their research into various FM systems and provided laboratory testing of fabricated materials. Kyocera also continued research of the FM systems with the intention of developing commercial markets for a variety of applications. The continued development of FM technology by Kyocera is seen as a direct result of the cooperation established under this funding. Kyocera has a specific interest in the commercial development of the FM technology and have licensed it and have paid

  9. A simple surrogate test method to rank the wear performance of prospective ceramic materials under hip prosthesis edge-loading conditions.

    Science.gov (United States)

    Sanders, Anthony P; Brannon, Rebecca M

    2014-02-01

    This research has developed a novel test method for evaluating the wear resistance of ceramic materials under severe contact stresses simulating edge loading in prosthetic hip bearings. Simply shaped test specimens - a cylinder and a spheroid - were designed as surrogates for an edge-loaded, head/liner implant pair. Equivalency of the simpler specimens was assured in the sense that their theoretical contact dimensions and pressures were identical, according to Hertzian contact theory, to those of the head/liner pair. The surrogates were fabricated in three ceramic materials: Al2 O3 , zirconia-toughened alumina (ZTA), and ZrO2 . They were mated in three different material pairs and reciprocated under a 200 N normal contact force for 1000-2000 cycles, which created small (material pairs were ranked by their wear resistance, quantified by the volume of abraded material measured using an interferometer. Similar tests were performed on edge-loaded hip implants in the same material pairs. The surrogates replicated the wear rankings of their full-scale implant counterparts and mimicked their friction force trends. The results show that a proxy test using simple test specimens can validly rank the wear performance of ceramic materials under severe, edge-loading contact stresses, while replicating the beginning stage of edge-loading wear. This simple wear test is therefore potentially useful for screening and ranking new, prospective materials early in their development, to produce optimized candidates for more complicated full-scale hip simulator wear tests. Copyright © 2013 Wiley Periodicals, Inc.

  10. Metal-ceramic composite coatings obtained by new thermal spray technologies: Cold Gas Spray (CGS) and its wear resistance; Recubrimientos de materiales compuestos metal-ceramico obtenidos por nuevas tecnologias de proyeccion termica: Proyeccion fria (CGS) y su resistencia al desgaste

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, J. M.; Vizcaino, S.; Dosta, S.; Cinca, N.; Lorenzana, C.; Guilemany, J. M.

    2011-07-01

    In this paper, composite coatings composed by an aluminum bronze metal matrix and a hard ceramic alumina phase obtained by cold spray technique were obtained in order to increase the tribological properties of the pure bronze coatings. The different processes that occur during the coating formation (hardening of the metal particles, fragmentation of the ceramic particles, shot peening on the metal substrate, etc) are described and their effects on the coating properties are studied. Wear tests consisting on Ball-on-Disk tests, abrasion Rubber Wheel tests and erosion tests as well as microhardness and adhesion tests are carried out and the results are correlated with the ceramic phase content of the coatings. It can be concluded that the hard ceramic phase increases the tribological properties with relation of the initial bronze coating. Finally, main wear mechanisms during the tribological tests are described. (Author) 21 refs.

  11. Corrosion and wear resistant metallic layers produced by electrochemical methods

    DEFF Research Database (Denmark)

    Christoffersen, Lasse; Maahn, Ernst Emanuel

    1999-01-01

    Corrosion and wear-corrosion properties of novel nickel alloy coatings with promising production characteristics have been compared with conventional bulk materials and hard platings. Corrosion properties in neutral and acidic environments have been investigated with electrochemical methods....... Determination of polarisation resistance during 100 hours followed by stepwise anodic polarisation seems to be a promising technique to obtain steady state data on slowly corroding coatings with transient kinetics. A slurry test enables determination of simultaneous corrosion and abrasive wear. Comparison...... of AISI 316, hard chromium and hardened Ni-P shows that there is no universal correlation between surface hardness and wear-corrosion loss. The possible relation between questionable passivity of Ni-P coatings and their high wear-corrosion loss rate compared to hard chromium is discussed....

  12. Wear of MgO-CaO-SiO2-P2O5-F-Based Glass Ceramics Compared to Selected Dental Ceramics

    Directory of Open Access Journals (Sweden)

    Jongee Park

    2007-01-01

    Full Text Available Wear of a glass-ceramic produced through controlled crystallization of a glass in the MgO-CaO-SiO2-P2O5-F system has been evaluated and compared to various commercial dental ceramics including IPS Empress 2, Cergo Pressable Ceramic, Cerco Ceram, and Super porcelain EX-3. Wear tests were performed in accord with the ASTM G99 for wear testing with a pin-on-disk apparatus. The friction coefficient and specific wear rate of the materials investigated were determined at a load of 10 N and at ambient laboratory conditions. Microhardness of the materials was also measured to elucidate the appropriateness of these materials for dental applications.

  13. Development of wear resistant NFSS-HA novel biocomposites and study of their tribological properties for orthopaedic applications.

    Science.gov (United States)

    Younesi, M; Bahrololoom, M E; Fooladfar, H

    2010-02-01

    Implants made of nickel free austenitic stainless steel can reduce the toxic effect of released nickel ion and compounds from the conventional stainless steels. On the other hand, hydroxyapatite is a ceramic which has been used in orthopaedic applications due to its good osteoconductivity, biocompatibility and bioactivity. However, there is no evidence in the literature up to now on producing composites based on nickel free stainless steel and hydroxyapatite and study of their tribology. The aim of this work was to produce novel biocomposites made up of nickel free stainless steel with hydroxyapatite (prepared by heat treating bone ash) and studying their tribology under various loads in air and in Ringer's physiological solution. Different amounts of hydroxyapatite powder (10, 20, 30 and 40% Vol.) were added to this nickel free stainless steel powder to get the biocomposites. Variation of their density, hardness, wear resistance and friction with the ceramic (hydroxyapatite) content and wear load were investigated in air and in Ringer's solution. The density of the composites was decreased by increasing the volume percentage of the hydroxyapatite, while wear resistance of the composites was increased. The wear mechanism of these composites was changed by increasing the wear load and consequently the volume loss was enhanced dramatically. Furthermore, by increasing the sliding distance, the rate of volume loss was decreased slightly. The friction coefficient of the composites was also decreased by increasing the weight percentage of hydroxyapatite. Effect of the physiological Ringer's solution on wear resistance and friction coefficient of the composites was nearly negligible. The wear mechanisms of the samples were identified by studying the SEM images of the worn surfaces of the tested samples in different wear loads and HA contents. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Durability analysis of gneiss using wear resistance

    Directory of Open Access Journals (Sweden)

    José Luiz Ernandes Dias Filho

    2014-01-01

    Full Text Available This paper presents a study conducted in gneiss in Santo Antonio de Pádua, RJ, BR, including durability analysis of the rock using slake durability test. Rocks in the region of Pádua are mostly used for ornamental purposes. A lab equipment was developed to evaluate the influence of rotation in the test, allowing for the speed variation of 7 RPM to 238 RPM. This study could be implemented in a wide variety of rock materials, targeting them according to their lifetime in the project. With variation of the wear levels, increasing weight loss was observed until the inertia moment in which the sample holds to the machine wall. The results indicate an increase in linear mass loss. These procedures allow a more precise analysis of durability than can be applied in different different regions of the world.

  15. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates.

    Science.gov (United States)

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J; Peña, Jose I

    2013-09-09

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  16. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    Directory of Open Access Journals (Sweden)

    Jose I. Peña

    2013-09-01

    Full Text Available In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics.

  17. Hard metal - a wear resistant material. Hartmetall - ein verschleissbestaendiger Werkstoff

    Energy Technology Data Exchange (ETDEWEB)

    Kolaska, J.; Dreyer, K. (Krupp Widia GmbH, Essen (Germany, F.R.))

    1989-01-01

    The article provides a survey of the various types of alloys of presently used carbides, their production processes and properties. Cermets (alloys with a high content of titanium carbide) are in the foreground here. With an eye on the future, advancements of further improved carbide materials are described, which feature at the same time a high resistance to wear and tenacity. (orig.).

  18. Thermophysical properties of selected wear-resistant alloys

    International Nuclear Information System (INIS)

    Farwick, D.G.; Johnson, R.N.

    1980-06-01

    Thermophysical properties of 13 selected wear-resistant materials, including specific heat, thermal conductivity, thermal diffusivity, and thermal expansion (instantaneous, mean, and linear) are provided. The Center for Information and Numerical Data Analysis and Synthesis (CINDAS) at Purdue University supplied properties data

  19. Influence of full-contour zirconia surface roughness on wear of glass-ceramics.

    Science.gov (United States)

    Luangruangrong, Palika; Cook, N Blaine; Sabrah, Alaa H; Hara, Anderson T; Bottino, Marco C

    2014-04-01

    The purpose of this study was to evaluate the influence of full-contour (Y-TZP) zirconia surface roughness (glazed vs. as-machined) on the wear behavior of glass-ceramics. Thirty-two full contour Y-TZP (Diazir®) specimens (hereafter referred to as zirconia sliders) (ϕ = 2 mm, 1.5 mm in height) were fabricated using CAD/CAM and sintered according to the manufacturer's instructions. Zirconia sliders were embedded in brass holders using acrylic resin and then randomly assigned (n = 16) according to the surface treatment received, that is, as-machined or glazed. Glass-ceramic antagonists, Empress/EMP and e.max/EX, were cut into tabs (13 × 13 × 2 mm(3) ), wet-finished, and similarly embedded in brass holders. Two-body pin-on-disk wear testing was performed at 1.2 Hz for 25,000 cycles under a 3 kg load. Noncontact profilometry was used to measure antagonist height (μm) and volume loss (mm(3) ). Qualitative data of the zirconia testing surfaces and wear tracks were obtained using SEM. Statistics were performed using ANOVA with a significance level of 0.05. As-machined yielded significantly higher mean roughness values (Ra = 0.83 μm, Rq = 1.09 μm) than glazed zirconia (Ra = 0.53 μm, Rq = 0.78 μm). Regarding glass-ceramic antagonist loss, as-machined zirconia caused significantly less mean height and volume loss (68.4 μm, 7.6 mm(3) ) for EMP than the glazed group (84.9 μm, 9.9 mm(3) ), while no significant differences were found for EX. Moreover, EMP showed significantly lower mean height and volume loss than EX (p glass-ceramics tested. e.max wear was not affected by zirconia surface roughness; however, Empress wear was greater when opposing glazed zirconia. Overall, surface glazing on full-contour zirconia did not minimize glass-ceramic wear when compared with as-machined zirconia. © 2013 by the American College of Prosthodontists.

  20. Effect of different dental ceramic systems on the wear of human enamel: An in vitro study.

    Science.gov (United States)

    Zandparsa, Roya; El Huni, Rabie M; Hirayama, Hiroshi; Johnson, Marc I

    2016-02-01

    The wear of tooth structure opposing different advanced dental ceramic systems requires investigation. The purpose of this in vitro study was to compare the wear of advanced ceramic systems against human enamel antagonists. Four ceramic systems (IPS e.max Press, IPS e.max CAD, Noritake Super Porcelain EX-3, and LAVA Plus Zirconia) and 1 control group containing human enamel specimens were used in this study (n = 12). All specimens were fabricated as disks 11 mm in diameter and 3 mm thick. The mesiopalatal cusps of the maxillary third molars were prepared to serve as the enamel styluses. All specimens were embedded individually in 25 mm(3) autopolymerizing acrylic resin blocks. Wear was measured with a cyclic loading machine and a newly designed wear simulator. All enamel styluses (cusps) were scanned using the Activity 880 digital scanner (SmartOptics). Data from the base line and follow-up scans were collected and compared with Qualify 2012 3-dimensional (3D) and 2D digital inspection software (Geomagic), which aligned the models and detected the geometric changes and the wear caused by the antagonist specimen. One-way ANOVA was used to analyze the collected data. After 125,000 bidirectional loading cycles, the mean loss of opposing enamel volume for the enamel disks in the control group was 37.08 μm(3), the lowest mean value for IPS e.max Press system was 39.75 μm(3); 40.58 μm(3) for IPS e.max CAD; 45.08 μm(3) for Noritake Super Porcelain EX-3 system; and 48.66 μm(3) for the Lava Plus Zirconia system. No statically significant differences were found among the groups in opposing enamel volume loss (P=.225) or opposing enamel height loss (P=.149). In terms of opposing enamel height loss, Lava Plus Zirconia system showed the lowest mean value of 27.5 μm. The mean value for the IPS e.max CAD system was 27.91 μm; 29.08 μm for the control enamel; 33.25 μm for the IPS e.max Press system; and 34.75 μm for the Noritake Super Porcelain EX-3 system. Within the

  1. Wear Potential of Dental Ceramics and its Relationship with Microhardness and Coefficient of Friction.

    Science.gov (United States)

    Freddo, Rafael Augusto; Kapczinski, Myriam Pereira; Kinast, Eder Julio; de Souza Junior, Oswaldo Baptista; Rivaldo, Elken Gomes; da Fontoura Frasca, Luis Carlos

    2016-10-01

    To evaluate, by means of pin-on-disk testing, the wear potential of different dental ceramic systems as it relates to friction parameters, surface finish, and microhardness. Three groups of different ceramic systems (Noritake EX3, Eris, Empress II) with 20 disks each (10 glazed, 10 polished) were used. Vickers microhardness (Hv) was determined with a 200-g load for 30 seconds. Friction coefficients (μ) were determined by pin-on-disk testing (5 N load, 600 seconds, and 120 rpm). Wear patterns were assessed by scanning electron microscopy (SEM). The results were analyzed using one-way ANOVA and Tukey's test, with the significance level set at α = 0.05. The coefficients of friction were as follows: Noritake EX3 0.28 ± 0.12 (polished), 0.33 ± 0.08 (glazed); Empress II 0.38 ± 0.08 (polished), 0.45 ± 0.05 (glazed); Eris 0.49 ± 0.05 (polished), 0.49 ± 0.06 (glazed). Microhardness measurements were as follows: Noritake EX3 530.7 ± 8.7 (polished), 525.9 ± 6.2 (glazed); Empress II 534.1 ± 8 (polished), 534.7 ± 4.5 (glazed); Eris, 511.7 ± 6.5 (polished), 519.5 ± 4.1 (glazed). The polished and glazed Noritake EX3 and polished and glazed Eris specimens showed statistically different friction coefficients. SEM image analysis revealed more surface changes, such as small cracks and grains peeling off, in glazed ceramics. Wear potential may be related to the coefficient of friction in Noritake ceramics, which had a lower coefficient than Eris ceramics. Within-group analysis showed no differences in polished or glazed specimens. The differences observed were not associated with microhardness. © 2015 by the American College of Prosthodontists.

  2. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    Science.gov (United States)

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

    2009-04-14

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  3. Wear Resistance Analysis of A359/SiC/20p Advanced Composite Joints Welded by Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    O. Cuevas Mata

    Full Text Available Abstract Advancement in automotive part development demands new cost-effective materials with higher mechanical properties and improved wear resistance as compared to existing materials. For instance, Aluminum Matrix Composites (AMC shows improved mechanical properties as wear and abrasion resistance, high strength, chemical and dimensional stability. Automotive industry has focused in AMC for a variety of applications in automotive parts in order to improve the fuel economy, minimize vehicle emissions, improve design options, and increase the performance. Wear resistance is one of the most important factors in useful life of the automotive components, overall in those components submitted to mechanical systems like automotive brakes and suspensions. Friction Stir Welding (FSW rises as the most capable process to joining AMC, principally for the capacity to weld without compromising their ceramic reinforcement. The aim of this study is focused on the analysis of wear characteristics of the friction-stir welded joint of aluminum matrix reinforced with 20 percent in weight silicon carbide composite (A359/SiC/20p. The experimental procedure consisted in cut samples into small plates and perform three welds on these with a FSW machine using a tool with 20 mm shoulder diameter and 8 mm pin diameter. The wear features of the three welded joints and parent metal were analyzed at constant load applying 5 N and a rotational speed of 100 rpm employing a Pin-on - Disk wear testing apparatus, using a sapphire steel ball with 6 mm diameter. The experimental results indicate that the three welded joints had low friction coefficient compared with the parent metal. The results determine that the FSW process parameters affect the wear resistance of the welded joints owing to different microstructural modifications during welding that causes a low wear resistance on the welded zone.

  4. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressiani, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y, Ba, Cu, O) - and (Y, A1, Ba, Cu, O) - based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper-constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  5. Electrical resistivity measurements in superconducting ceramics

    International Nuclear Information System (INIS)

    Muccillo, R.; Bressiani, A.H.A.; Muccillo, E.N.S.; Bressian, J.C.

    1988-01-01

    Electrical resistivity measurements have been done in (Y,Ba,Cu,O)- and (Y,Al,Ba,Cu,O)-based superconducting ceramics. The sintered specimens were prepared by applying gold electrodes and winding on the non-metalized part with a copper strip to be immersed in liquid nitrogen for cooling. The resistivity measurements have been done by the four-probe method. A copper constantan or chromel-alumel thermocouple inserted between the specimen and the copper cold finger has been used for the determination of the critical temperature T c . Details of the experimental set-up and resistivity versus temperature plots in the LNT-RT range for the superconducting ceramics are the major contributions of this communication. (author) [pt

  6. Determination of a Wear Initiation Cycle by using a Contact Resistance Measurement in Nuclear Fuel Fretting

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu

    2008-01-01

    In nuclear fuel fretting, the improving of the contact condition with a modified spring shape is a useful method for increasing the wear resistance of the nuclear fuel rod. This is because the fretting wear resistance between the fuel rod and grid spring is mainly affected by the grid spring shape rather than the environment, the contact modes, etc. In addition, the wear resistance is affected by the wear debris behavior between contact surfaces. So, it is expected that the wear initiation of each spring shape should be determined in order to evaluate a wear resistance. However, it is almost impossible to measure the wear behavior in contact surfaces on a real time basis because the contact surfaces are always hidden. Besides, the results of the worn surface observation after the fretting wear tests are restricted to archive the information on the wear debris behavior and the formation mechanism of the wear scar. In order to evaluate the wear behavior during the fretting wear tests, it is proposed that the contact resistance measurement is a useful method for examining the wear initiation cycle and modes. Generally, fretting wear damages are rapidly progressed by a localized plastic deformation between the contact surfaces, crack initiation and fracture of the deformed surface with a strain hardening difference between a surface and a subsurface and finally a detachment of wear debris. After this, wear debris is easily oxidized by frictional heat, test environment, etc. At this time, a small amount of electric current applied between the contact surfaces will be influenced by the wear debris, which could be an obstacle to an electric current flow. So, it is possible to archive the information on the wear behavior by measuring the contact resistance. In order to determine the wear initiation cycle during the fretting wear tests, in this study, fretting wear tests have been performed by applying a constant electric current in room temperature air

  7. Mechanical And Microstructural Evaluation Of A Wear Resistant Steel

    International Nuclear Information System (INIS)

    Santos, F.L.F. dos; Vieira, A.G.; Correa, E.C.S.; Pinheiro, I.P.

    2010-01-01

    In the present work, the analysis of the mechanical properties and the microstructural features of a high strength low alloy steel, containing chromium, molybdenum and boron, subjected to different heat treatments, was conducted. After austenitizing at 910 deg C for 10 minutes, three operations were carried out: oil quenching, oil quenching followed by tempering at 200 deg C for 120 minutes and austempering at 400 deg C for 5 minutes followed by water cooling. The analysis was performed through tensile and hardness tests, optical microscopy and X-ray diffraction. The bainitic structure led to high strength and toughness, both essential mechanical properties for wear resistant steels. The occurrence of allotriomorphic ferrite and retained austenite in the samples also increased the wear resistance. This phenomenon is related to the fact that both structures are able to be deformed and, in the case of the retained austenite, the transformation induced plasticity TRIP effect may take place as the material is used. (author)

  8. Study of Stainless Steel Resistance in Conditions of Tribocorrosion Wear

    Directory of Open Access Journals (Sweden)

    Goran Rozing

    2015-07-01

    Full Text Available Analyzed was the influence of tribocorrosion wear due to effects of fatty acids present in the processed medium. The analysis was conducted on samples made of two austenitic and two martensitic stainless steels. Austenitic steels were tested in their nitrided state and martensitic in their induction hardened state. Conducted were laboratory tests of corrosion resistance of samples, analysis of the microstructure and hardness. To see how the applied processes for modifying the surface of stainless steels behave in realistic conditions, it was conducted the examination of samples/parts of a sunflower cake chain conveyer. Based on the comparison of results obtained in the laboratory and in real conditions, it was estimated that steels AISI 420 and AISI 431 with induction hardened surfaces have a satisfactory resistance to abrasive-adhesive wear in the presence of fatty acids.

  9. Wear-resistant ball bearings for space applications

    Science.gov (United States)

    Boving, H.; Hintermann, H. E.; Hanni, W.; Bondivenne, E.; Boeto, M.; Conde, E.

    1977-01-01

    Ball bearings consisting of steel parts of which the rings are coated with hard, wear resistant, chemical vapor deposited TiC are described. Experiments conducted in ultrahigh vacuum, using cages of various materials with self-lubricating properties, show that such bearings are suitable for space applications. The results of laboratory tests on the ESA Meteosat Radiometer Focalizing mechanism, which contains six coated bearings, are summarized.

  10. Porosity and wear resistance of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermal-sprayed coatings offer practical and economical solutions for corrosion and wear protection of components or tools. To improve the coating properties, heat treatment such as preheat is applied. The selection of coating and substrate materials is a key factor in improving the quality of the coating morphology after the heat treatment. This paper presents the experimental results regarding the effect of preheat temperatures, i.e. 200°C, 300°C and 400°C, on porosity and wear resistance of tungsten carbide (WC) coating sprayed by flame thermal coating. The powders and coatings morphology were analyzed by a Field Emission Scanning Electron Microscope equipped with Energy Dispersive Spectrometry (FE-SEM/EDS), whereas the phase identification was performed by X-Ray diffraction technique (XRD). In order to evaluate the quality of the flame spray obtained coatings, the porosity, micro-hardness and wear rate of the specimens was determined. The results showed that WC coating gives a higher surface hardness from 1391 HVN up to 1541 HVN compared to that of the non-coating. Moreover, the wear rate increased from 0.072 mm3/min. to 0.082 mm3/min. when preheat temperature was increased. Preheat on H13 steel substrate can reduce the percentage of porosity level from 10.24 % to 3.94% on the thermal spray coatings.

  11. Wear-resistant powder materials with intermetallic hardening. I. Nonporous materials for antifriction purposes

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, G.K.; Akopov, N.L.; Karapetyan, F.K.; Manukyan, N.N.

    1987-09-01

    This article investigates the wear resistance, microhardness, microstructure, and crystal-phase behavior of a molybdenum alloy solid lubricant under cyclic wear and sliding friction tests against steel 45. Calculated and experimental results are given.

  12. Microstructure and wear characterization of self-lubricating Al2O3 - MoS2 composite ceramic coatings

    International Nuclear Information System (INIS)

    Koshkarian, K.A.; Kriven, W.M.

    1989-01-01

    The authors report the results of composite ceramic coatings of alumina Al 2 O 3 containing some molybdenum disulfide MoS 2 electro-codeposited on to Al metal substrates by a combination of anodic sparks deposition of Al 2 O 3 and electrophoresis of MoS 2 . The microstructures were characterized by XRD, XPS, SEM, EDS, SNMS, TEM, SAD and relative wear resistance measurements. The coatings consisted mostly of Al 2 O 3 with some and present as well. The coatings were porous and microcracked. SEM showed them to consist of circular splats which had rapidly crystallized from the molten state in areas of dielectric breakdown in the coating. In the TEM the microstructure was seen to contain sets of parallel, elongated grains having a single crystallographic orientation. The grains were separated by dislocated, low angle grain boundaries or microcracks. The sets intersected at irregularly curved interfaces and were mechanically interlocked. Quantitative SNMS indicated that up to 26 wt% MoS 2 was incorporated in coatings fabricated from 5g/1 solutions. SEM/EDS as well as TEM/SAD/EDS identified 1-3 μ particles of MoS 2 incorporated into the 5g/1 solution derived coatings. These coatings exhibited 50% lower wear rate than pure alumina coatings deposited under the same condition

  13. Sliding-wear resistance of pure near fully-dense B4C under lubrication with water, diesel fuel, and paraffin oil

    DEFF Research Database (Denmark)

    Ortiz, Angel L.; Leal, Victor Manuel Candelario; Borrero-López, Oscar

    2017-01-01

    The sliding-wear resistance of pure near fully-dense B4C is investigated, and the wear mode/mechanisms identified, under lubrication with water, diesel fuel, and paraffin oil. It is found that the wear is mild in the three cases, with specific wear rates (SWRs) of 10−16–10−17 m3/N m. Nonetheless......, the wear resistance of the B4C ceramic is one order of magnitude greater under oil lubrication (1016 N m/m3) than under water lubrication (1015 N m/m3), and twice as great for the specific case of paraffin oil than diesel fuel, attributable to the lubricant’s viscosity. It is also found that the wear mode...... is always abrasion, and that the wear mechanisms are plastic deformation and localized fracture with grain pullout. However, in agreement with the macro-wear data, the severity of the wear damage is lower under lubrication with paraffin oil, followed by diesel fuel, and lastly water. Finally...

  14. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations.

    Science.gov (United States)

    Bakeman, E M; Rego, N; Chaiyabutr, Y; Kois, J C

    2015-01-01

    This study evaluated the influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage ceramic restorations. Forty extracted molars were allocated into four groups (n=10) to test for two variables: 1) the thickness of ceramic (1 mm or 2 mm) and 2) the ceramic materials (a lithium disilicate glass-ceramic [IPS e.max] or leucite-reinforced glass ceramic [IPS Empress]). All ceramic restorations were luted with resin cement (Variolink II) on the prepared teeth. These luted specimens were loaded to failure in a universal testing machine, in the compression mode, with a crosshead speed of 1.0 mm/min. The data were analyzed using two-way analysis of variance and the Tukey Honestly Significantly Different multiple comparison test (α =0.05). The fracture resistance revealed a significant effect for materials (pceramic was not significant (p=0.074), and the interaction between the thickness of ceramic and the materials was not significant (p=0.406). Mean (standard deviation) fracture resistance values were as follows: a 2-mm thickness of a lithium disilicate bonded to tooth structure (2505 [401] N) revealed a significantly higher fracture resistance than did a 1-mm thickness of leucite-reinforced (1569 [452] N) and a 2-mm thickness of leucite-reinforced ceramic bonded to tooth structure (1716 [436] N) (pceramic at 1-mm thickness (2105 [567] N) and at 2-mm thickness. Using a lithium disilicate glass ceramic for partial coverage restoration significantly improved fracture resistance compared to using a leucite-reinforced glass ceramic. The thickness of ceramic had no significant effect on fracture resistance when the ceramics were bonded to the underlying tooth structure.

  15. Advancements in all-ceramics for dental restorations and their effect on the wear of opposing dentition

    Science.gov (United States)

    Rashid, Haroon; Sheikh, Zeeshan; Misbahuddin, Syed; Kazmi, Murtaza Raza; Qureshi, Sameer; Uddin, Muhammad Zuhaib

    2016-01-01

    Tooth wear is a process that is usually a result of tooth to tooth and/or tooth and restoration contact. The process of wear essentially becomes accelerated by the introduction of restorations inside the oral cavity, especially in case of opposing ceramic restorations. The newest materials have vastly contributed toward the interest in esthetic dental restorations and have been extensively studied in laboratories. However, despite the recent technological advancements, there has not been a valid in vivo method of evaluation involving clinical wear caused due to ceramics upon restored teeth and natural dentition. The aim of this paper is to review the latest advancements in all-ceramic materials, and their effect on the wear of opposing dentition. The descriptive review has been written after a thorough MEDLINE/PubMed search by the authors. It is imperative that clinicians are aware of recent advancements and that they should always consider the type of ceramic restorative materials used to maintain a stable occlusal relation. The ceramic restorations should be adequately finished and polished after the chair-side adjustment process of occlusal surfaces. PMID:28042280

  16. Influence of electrical resistivity and machining parameters on electrical discharge machining performance of engineering ceramics.

    Science.gov (United States)

    Ji, Renjie; Liu, Yonghong; Diao, Ruiqiang; Xu, Chenchen; Li, Xiaopeng; Cai, Baoping; Zhang, Yanzhen

    2014-01-01

    Engineering ceramics have been widely used in modern industry for their excellent physical and mechanical properties, and they are difficult to machine owing to their high hardness and brittleness. Electrical discharge machining (EDM) is the appropriate process for machining engineering ceramics provided they are electrically conducting. However, the electrical resistivity of the popular engineering ceramics is higher, and there has been no research on the relationship between the EDM parameters and the electrical resistivity of the engineering ceramics. This paper investigates the effects of the electrical resistivity and EDM parameters such as tool polarity, pulse interval, and electrode material, on the ZnO/Al2O3 ceramic's EDM performance, in terms of the material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). The results show that the electrical resistivity and the EDM parameters have the great influence on the EDM performance. The ZnO/Al2O3 ceramic with the electrical resistivity up to 3410 Ω·cm can be effectively machined by EDM with the copper electrode, the negative tool polarity, and the shorter pulse interval. Under most machining conditions, the MRR increases, and the SR decreases with the decrease of electrical resistivity. Moreover, the tool polarity, and pulse interval affect the EWR, respectively, and the electrical resistivity and electrode material have a combined effect on the EWR. Furthermore, the EDM performance of ZnO/Al2O3 ceramic with the electrical resistivity higher than 687 Ω·cm is obviously different from that with the electrical resistivity lower than 687 Ω·cm, when the electrode material changes. The microstructure character analysis of the machined ZnO/Al2O3 ceramic surface shows that the ZnO/Al2O3 ceramic is removed by melting, evaporation and thermal spalling, and the material from the working fluid and the graphite electrode can transfer to the workpiece surface during electrical discharge

  17. Frictional Resistance of Three Types of Ceramic Brackets

    Directory of Open Access Journals (Sweden)

    Claire L Williams

    2014-01-01

    Full Text Available Objectives: To investigate the static frictional resistance at the bracket/archwire interface in two recently introduced bracket systems and compare them to conventional ceramic and conventional metal bracket systems. Three variables were considered including the bracket system, archwire type and archwire angulation. Material and Methods: Four bracket systems were tested in vitro: Self ligating ceramic, ceramic with metal slot and module, conventional ceramic with module and conventional metal with module. A specially constructed jig and an Instron testing machine were used to measure the static frictional resistance for 0.014 inches round and 0.018 x 0.025 inches rectangular stainless steel wires at 0° and 7° angulations. Main outcome measures: static frictional force at the bracket/archwire interface; recorded and measured in units of force (Newtons. Results: Self ligating ceramic and metal slot ceramic bracket systems generated significantly less static frictional resistance than conventional ceramic bracket systems with the wire at both angulations (P < 0.05. Changing the wire from 0.014 round to 0.018 x 0.025 rectangular wire significantly increased frictional forces for metal slot ceramic and conventional metal bracket systems (P < 0.01. Increasing wire angulation significantly increased frictional resistance at the bracket/archwire interface for all four types of bracket systems tested (P < 0.001. Conclusions: Compared to conventional ceramic, self ligating ceramic and metal slot ceramic bracket systems should give improved clinical performance, matching that of conventional metal brackets.

  18. Standard Test Method for Abrasive Wear Resistance of Cemented

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the determination of abrasive wear resistance of cemented carbides. 1.2 The values stated in inch-pound units are to be regarded as the standard. The SI equivalents of inch-pound units are in parentheses and may be approximate. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Park, Cheol (Inventor); Bryant, Robert George (Inventor); Lowther, Sharon E. (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  20. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    Science.gov (United States)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  1. Wear resistance of TiB/sub 2/-Fe cermets

    International Nuclear Information System (INIS)

    Champagne, B.; Dallaire, S.

    1985-01-01

    A material which consists of TiB/sub 2/ dispersed in an iron matrix was synthesized by the exothermic reaction of ferrotitanium and boron. The as-reacted products were hot isostatically pressed to produce TiB/sub 2/-Fe cermets. The influence of HIP variables on the density and total fractional porosity of specimens is presented. Density above 95% is obtained by HIPping at temperatures below 1300 0 C. Increasing the temperature and the time of HIPping enhance the mechanical properties and wear resistance of TiB/sub 2/-Fe cermets by reducing their residual porosity. Relations obtained by regression analysis showed that the porosity strongly affects the properties of parts. Regression analysis point out that the wear loss of a 5% porosity TiB/sub 2/-Fe cermet is 270% higher than a dense HIPped cermet. Low stress and high stress abrasion resistance tests utilizing various abrasive media were carried out on dense HIPped cermets and results were compared with those obtained from WC-Co cermets and 1020 steel

  2. Wear resistance and fracture mechanics of WC-Co composites

    International Nuclear Information System (INIS)

    Kaytbay, Saleh; El-Hadek, Medhat

    2014-01-01

    Manufacturing of WC-Co composites using the electroless precipitation method at different sintering temperatures of 1 100, 1 250, 1 350 and 1 500 C was successfully achieved. The chemical composition of the investigated materials was 90 wt.% WC with 10 wt.% Co, and 80 wt.% WC with 20 wt.% Co. The specific density, densification, and Vickers microhardness measurements were found to increase with increased sintering temperature for both the WC-Co compositions. The composites of tungsten carbide with 10 wt.% Co had a higher specific density and Vickers microhardness measurements than those for the composites of tungsten carbide with 20 wt.% Co. Composites with WC-10 wt.% Co had better wear resistance. The stress-strain and transverse rupture strength increased monotonically with the increase in sintering temperatures, agreeing with the material hardness and wear resistance behavior. Fractographical scanning electron microscopy analysis of the fracture surface demonstrated a rough characteristic conical shape failure in the direction of the maximum shear stress. A proposed mechanism for the formation of the conical fracture surface under compression testing is presented. (orig.)

  3. Thermally-treated Pt-coated silicon AFM tips for wear resistance in ferroelectric data storage

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Palacio, Manuel; Kwak, Kwang Joo

    2008-01-01

    In ferroelectric data storage, a conductive atomic force microscopy (AFM) probe with a noble metal coating is placed in contact with a lead zirconate titanate (PZT) film. The understanding and improvement of probe tip wear, particularly at high velocities, is needed for high data rate recording. A commercial Pt-coated silicon AFM probe was thermally treated in order to form platinum silicide at the near-surface. Nanoindentation, nanoscratch and wear experiments were performed to evaluate the mechanical properties and wear performance at high velocities. The thermally treated tip exhibited lower wear than the untreated tip. The tip wear mechanism is adhesive and abrasive wear with some evidence of impact wear. The enhancement in mechanical properties and wear resistance in the thermally treated film is attributed to silicide formation in the near-surface. Auger electron spectroscopy and electrical resistivity measurements confirm the formation of platinum silicide. This study advances the understanding of thin film nanoscale surface interactions

  4. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The level of nuclear plant radiation exposure due to activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. Laboratory pin-on-disc and rolling contact wear tests were used to evaluate the wear performance of several coatings. Based on the results of these tests, multilayer Cr-nitride coatings and ion nitriding are the most promising approaches

  5. Comparison of the structure and wear resistance of Al2O3 -13 wt%TiO2 coatings made by GSP and WSP plasma process with two different powders

    Czech Academy of Sciences Publication Activity Database

    Ageorges, H.; Ctibor, Pavel

    2008-01-01

    Roč. 202, č. 18 (2008), s. 4362-4368 ISSN 0257-8972 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Alumina * titania * plasma spraying * wear resistance * slurry abrasion Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.860, year: 2008

  6. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY; SEMIANNUAL

    International Nuclear Information System (INIS)

    Mark J. Rigali; Kenneth L. Knittel; Mike L. Fulcher

    2002-01-01

    During this reporting period, work continued on development of formulations using the materials identified as contenders for the fibrous monolith wear resistant components. The FM structures fabricated were: diamond/WC-Co, B(sub 4)C/WC-Co, TiB(sub 2)/WC-Co, WC-Co/Co, WC-Co/WC-Co. Results of our consolidation densification studies on these systems lead to the down-selection of WC-Co/WC-Co, WC-Co/Co and diamond/WC-Co for further development for mining applications including drill bit inserts, roof bit inserts, radial tools conical tools and wear plates (WC-Co based system only) for earth moving equipment. Prototype component fabrication focused on the fabrication of WC-Co/WC-Co FM conical tools, diamond/WC-Co coated drill bit insert prototypes. Fabrication of WC-Co/WC-Co FM insert prototypes for a grader blade is also underway. ACR plans to initiate field-testing of the drill bit insert prototypes and the grader blade insert this summer (2002). The first WC-Co/WC-Co FM conical tool prototypes were sent to Kennametal for evaluation towards the end of the current reporting period

  7. Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sudhansu Ranjan; Kuma, Amaresh [National Institute of Technology, Jamshedpur (India); Dhupal, Debabrata [Veer Surendra Sai University of Technology, Burla (India)

    2015-10-15

    This experimental investigation deals with dry hard turning of AISI 4140 steel using PVD-TiN coated Al{sub 2}O{sub 3}+TiCN mixed ceramic inserts. The combined effect of cutting parameters (cutting speed, feed and depth of cut) on performance characteristics such as surface roughness and flank wear is explored by Full factorial design (FFD) and analysis of variance (ANOVA). The results show that feed is the principal cutting parameter influencing surface roughness, followed by cutting speed. However, flank wear is affected by the cutting speed and interaction of feed-depth of cut, although depth of cut has not been found statistically significant, but flank wear is an increasing function of depth of cut. Observations are made on the machined surface, and worn tool by Scanning electron microscope (SEM) to establish the process. Abrasion was the major wear mechanism found during hard turning within the studied range. The effect of tool wear on surface roughness was also studied. The experimental data were analyzed to predict the optimal range of surface roughness and flank wear. Based on Response surface methodology (RSM), mathematical models were developed for surface roughness (Ra) and flank wear (VB) with 95% confidence level. Finally, under optimum cutting conditions (obtained by response optimization technique), tool life was evaluated to perform cost analysis for justifying the economic viability of coated ceramic inserts in hard turning. The estimated machining cost per part for TiN coated ceramic was found to be lower (Rs. 12.31) because of higher tool life (51 min), which results in the reduction of downtime and increase in savings.

  8. Study of surface roughness and flank wear in hard turning of AISI 4140 steel with coated ceramic inserts

    International Nuclear Information System (INIS)

    Das, Sudhansu Ranjan; Kuma, Amaresh; Dhupal, Debabrata

    2015-01-01

    This experimental investigation deals with dry hard turning of AISI 4140 steel using PVD-TiN coated Al_2O_3+TiCN mixed ceramic inserts. The combined effect of cutting parameters (cutting speed, feed and depth of cut) on performance characteristics such as surface roughness and flank wear is explored by Full factorial design (FFD) and analysis of variance (ANOVA). The results show that feed is the principal cutting parameter influencing surface roughness, followed by cutting speed. However, flank wear is affected by the cutting speed and interaction of feed-depth of cut, although depth of cut has not been found statistically significant, but flank wear is an increasing function of depth of cut. Observations are made on the machined surface, and worn tool by Scanning electron microscope (SEM) to establish the process. Abrasion was the major wear mechanism found during hard turning within the studied range. The effect of tool wear on surface roughness was also studied. The experimental data were analyzed to predict the optimal range of surface roughness and flank wear. Based on Response surface methodology (RSM), mathematical models were developed for surface roughness (Ra) and flank wear (VB) with 95% confidence level. Finally, under optimum cutting conditions (obtained by response optimization technique), tool life was evaluated to perform cost analysis for justifying the economic viability of coated ceramic inserts in hard turning. The estimated machining cost per part for TiN coated ceramic was found to be lower (Rs. 12.31) because of higher tool life (51 min), which results in the reduction of downtime and increase in savings.

  9. Standard test method for ranking resistance of plastics to sliding wear using block-on-ring wear test—cumulative wear method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of plastics to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank plastics according to their sliding wear characteristics against metals or other solids. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. In addition, the test can be run with different gaseous atmospheres and elevated temperatures, as desired, to simulate service conditions. 1.3 Wear test results are reported as the volume loss in cubic millimetres for the block and ring. Materials of higher wear resistance will have lower volume loss. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with it...

  10. Microstructure and wear resistance of spray-formed supermartensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Guilherme Zepon

    2013-06-01

    Full Text Available Since the early 90's the oil industry has been encouraging the development of corrosion and wear resistant alloys for onshore and offshore pipeline applications. In this context supermartensitic stainless steel was introduced to replace the more expensive duplex stainless steel for tubing applications. Despite the outstanding corrosion resistance of stainless steels, their wear resistance is of concern. Some authors reported obtaining material processed by spray forming, such as ferritic stainless steel, superduplex stainless steel modified with boron, and iron-based amorphous alloys, which presented high wear resistance while maintaining the corrosion performance1,2. The addition of boron to iron-based alloys promotes the formation of hard boride particles (M2B type which improve their wear resistances3-9. This work aimed to study the microstructure and wear resistance of supermartensitic stainless steel modified with 0.3 wt. (% and 0.7 wt. (% processed by spray forming (SF-SMSS 0.3%B and SF-SMSS 0.7%B, respectively. These boron contents were selected in order to improve the wear resistance of supermartensitic stainless steel through the formation of uniformly distributed borides maintaining the characteristics of the corrosion resistant matrix. SF-SMSS 0.7%B presents an abrasive wear resistance considerably higher than spray-formed supermartensitic stainless steel without boron addition (SF-SMSS.

  11. Influence of the metallic matrix ratio on the wear resistance (dry and slurry abrasion) of plasma sprayed cermet (chromia / stainless steel) coatings

    Czech Academy of Sciences Publication Activity Database

    Ageorges, H.; Ctibor, Pavel; Medarhri, Z.; Touimi, S.; Fauchais, P.

    2006-01-01

    Roč. 201, č. 5 (2006), s. 2006-2011 ISSN 0257-8972 R&D Projects: GA AV ČR(CZ) 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * composite coating * tribology * hardness * wear * abrasion * chromia/stainless steel Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.559, year: 2006

  12. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    Science.gov (United States)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  13. Laser beam joining of non-oxidic ceramics for ultra high temperature resistant joints

    International Nuclear Information System (INIS)

    Lippmann, W.; Knorr, J.; Wolf, R.; Reinecke, A.M.; Rasper, R.

    2004-01-01

    The excellent technical properties of silicon carbide (SiC) and silicon nitride (Si 3 N 4 ) ceramics, such as resistance to extreme temperatures, oxidation, mechanical wear, aggressive chemical substances and radioactive radiation and also its high thermal conductivity and good temperature-shock resistance, make these ceramics ideally suited for use in the field of nuclear technology. However, their practical use has been limited so far because of the unavailability of effective joining techniques for these ceramics, especially for high temperature applications. A new joining technology (CERALINK registered ) has been developed in a network project which allowed high temperature resistant and vacuum-tight joining of SiC or Si 3 N 4 ceramics. A power laser is used as heat source, which makes it possible to join ceramic components in free atmosphere in combination with a pure oxidic braze filler. As no furnace is necessary, there are no limitations on the component dimensions by the furnace-geometry. During the joining process, the heated area can be limited to the seam area so that this technology can also be used to encapsulate materials with a low melting point. The seam has a high mechanical strength, it is resistant to a wide range of chemicals and radiation and it is also vacuum-tight. The temperature resistance can be varied by variation of the braze filler composition - usually between 1,400 C and >1,600 C. Beside the optimum filler it is also important to select the suitable laser wavelength. The paper will demonstrate the influence of different wave lengths, i. e. various laser types, on the seam quality. Examples are chosen to illustrate the strengths and limitations of the new technology

  14. Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Sudhakar

    2015-03-01

    Full Text Available Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys, 7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant MoS2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.

  15. Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings

    Science.gov (United States)

    Sergevnin, V. S.; Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Kuznetsov, D. V.; Gorshenkov, M. V.; Skryleva, E. A.

    2016-12-01

    Coating samples in the Ti-Al-Mo-N system were obtained by arc-PVD method at variable bias voltage Ub applied to the substrate, and the partial pressure of nitrogen P(N2) used as a reaction gas. The deposited coatings were characterized by a nanocrystalline structure with an average grain size of 30-40 nm and multilayered architecture with alternating layers of (Ti,Al)N nitride and Mo-containing phases with a thickness comparable to the grain size. Coatings of (Ti,Al)N-Mo-Mo2N and (Ti,Al)N-Mo2N compositions were obtained by changing deposition parameters. The obtained coatings had hardness of 40 GPa and the relative plastic deformation under microindentation up to 60%. (Ti,Al)N-Mo2N coatings demonstrated better physicomechanical characteristics, showing high resistance to crack formation and destruction through the plastic deformation mechanism without brittle fracturing, unlike (Ti,Al)N-Mo-Mo2N. The friction coefficient of the study coatings (against Al2O3 balls under dry condition using a pin-on-disc method) reached the values of 0.35 and 0.5 at 20 °C and 500 °C respectively, without noticeable wear within this temperature range. These tribological properties were achieved by forming MoO3 acting as a solid lubricant. At higher temperatures the deterioration in the tribological properties is due to the high rate of MoO3 sublimation from friction surfaces.

  16. Wear Behavior of Cold Pressed and Sintered Al2O3/TiC/CaF2Al2O3/TiC Laminated Ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    Xuefeng YANG; Jian CHENG; Peilong SONG; Shouren WANG; Liying YANG; Yanjun WANG; Ken MAO

    2013-01-01

    A novel laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite was fabricated through cold pressing and sintering to achieve better anti-wear performance,such as low friction coefficient and low wear rate.Al2O3/TiC/CaF2 and Al2O3/TiC composites were alternatively built layer-by-layer to obtain a sandwich structure.Solid lubricant CaF2 was added evenly into the Al2O3/TiC/CaF2 layer to reduce the friction and wear.Al2O3/TiC ceramic was also cold pressed and sintered for comparison.Friction analysis of the two ceramics was then conducted via a wear-and-tear machine.Worn surface and surface compositions were examined by scanning electron microscopy and energy dispersion spectrum,respectively.Results showed that the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite has lower friction coefficient and lower wear rate than those of Al2O3/TiC ceramic alone because of the addition of CaF2 into the laminated Al2O3/TiC/CaF2-Al2O3/TiC sandwich ceramic composite.Under the friction load,the tiny CaF2 particles were scraped from the Al2O3/TiC/CaF2 layer and spread on friction pairs before falling off into micropits.This process formed a smooth,self-lubricating film,which led to better anti-wear properties.Adhesive wear is the main wear mechanism of Al2O3/TiC/CaF2 layer and abrasive wear is the main wear mechanism of Al2O3/TiC layer.

  17. Strength and gas-abrasive wear-resistance of zirconium carbide based cerments

    International Nuclear Information System (INIS)

    Samsonov, G.V.; Dan'kin, A.A.; Markov, A.A.; Bogomol, I.V.

    1976-01-01

    Results relating to a study of cermet strength and wear resistance by means of a gas-abrasive flow are presented. It has been found that with a higher amount of the metallic binder (over 25 at.%) in zirconium carbide-based cermets the bending and compression strength and also hardness and wear resistance within the systems ZrC-Nb, ZrC-Mo, ZrC-W become lower. The interrelation of the cermet wear resistance of the various systems and their bending and compression strengths, which, in turn, depend on the electronic structure is shown

  18. Nitrogen implantation of type 303 stainless steel gears for improved wear and fatigue resistance

    International Nuclear Information System (INIS)

    Kustas, F.M.; Misra, M.S.; Tack, W.T.

    1987-01-01

    Fine-positioning mechanisms are responsible for accurate and reproducible control of aerospace system devices, i.e. filter grading wheels. Low wear and fatigue resistance of mechanism components, such as pinions and gears, can reduce system performance and reliability. Surface modification using ion implantation with nitrogen was used on type 303 stainless steel pinions and gears to increase tribological performance. Wear-life tests of untreated, nitrogen-implanted and nitrogen-implanted-and-annealed gears were performed in a fine-positioning mechanism under controlled environmental conditions. Wear and fatigue resistance were monitored at selected time intervals which were a percentage of the predicted failure life as determined by a numerical stress analysis. Surface analyses including scanning electron microscopy and Auger electron spectroscopy were performed to establish the wear and fatigue mechanisms and the nitrogen concentration-depth distributions respectively. Nitrogen implantation resulted in a significant improvement in both surface wear and fatigue spalling resistance over those of untreated gears. A 40% reduction in surface wear and a 44% reduction in dedendum spalling was observed. In contrast, the nitrogen-implanted-and-annealed gears showed a 46% increase in sliding wear area and an 11% increase in spall density compared with those of untreated gears, indicating that the post-implantation anneal was detrimental to wear and fatigue resistance. (orig.)

  19. Comparison of Wear Resistance of Hawley and Vacuum Formed Retainers: An in-vitro Study

    Directory of Open Access Journals (Sweden)

    Moshkelgosha V

    2016-06-01

    Full Text Available Statement of Problem: As a physical property, wear resistance of the materials used in the fabrication of orthodontic retainers play a significant role in the stability and long term use of the appliances. Objectives: To evaluate the wear resistance of two commonly used materials for orthodontic retainers: Acropars OP, i.e. a polymethyl methacrylate based material, and 3A-GS060, i.e. a polyethylene based material. Materials and Methods: For each material, 30 orthodontic retainers were made according to the manufacturers’ instructions and a 30×30×2 mm block was cut out from the mid- palatal area of each retainer. Each specimen underwent 1000 cycles of wear stimulation in a pin on disc machine. The depth of wear of each specimen was measured using a Nano Wizard II atomic force microscope in 3 random points of each specimen’s wear trough. The average of these three measurements was calculated and considered as mean value wear depth of each specimen (µm. Results: The mean wear depth was 6.10µm and 2.15µm for 3A-GS060 and Acropars OP groups respectively. Independent t-test showed a significant difference between the two groups (p < 0.001. The results show Polymethyl methacrylate base (Acropars is more wear resistance than the polyethylene based material (3A-GS060. Conclusions: As the higher wear resistance of the fabrication material can improve the retainers’ survival time and its cost-effectiveness, VFRs should be avoided in situations that the appliance needs high wear resistance such as bite blocks opposing occlusal forces.

  20. Comparison of Wear Resistance of Hawley and Vacuum Formed Retainers: An in-vitro Study.

    Science.gov (United States)

    V, Moshkelgosha; M, Shomali; M, Momeni

    2016-06-01

    As a physical property, wear resistance of the materials used in the fabrication of orthodontic retainers play a significant role in the stability and long term use of the appliances. To evaluate the wear resistance of two commonly used materials for orthodontic retainers: Acropars OP, i.e. a polymethyl methacrylate based material, and 3A-GS060, i.e. a polyethylene based material. For each material, 30 orthodontic retainers were made according to the manufacturers' instructions and a 30×30×2 mm block was cut out from the mid- palatal area of each retainer. Each specimen underwent 1000 cycles of wear stimulation in a pin on disc machine. The depth of wear of each specimen was measured using a Nano Wizard II atomic force microscope in 3 random points of each specimen's wear trough. The average of these three measurements was calculated and considered as mean value wear depth of each specimen (µm). The mean wear depth was 6.10µm and 2.15µm for 3A-GS060 and Acropars OP groups respectively. Independent t-test showed a significant difference between the two groups ( p < 0.001). The results show Polymethyl methacrylate base (Acropars) is more wear resistance than the polyethylene based material (3A-GS060). As the higher wear resistance of the fabrication material can improve the retainers' survival time and its cost-effectiveness, VFRs should be avoided in situations that the appliance needs high wear resistance such as bite blocks opposing occlusal forces.

  1. Wear resistance of AISI 304 stainless steel submitted to low temperature plasma carburizing

    Directory of Open Access Journals (Sweden)

    Marcos Antônio Barcelos

    Full Text Available Abstract Despite the AISI 304 stainless steel has high corrosion/oxidation resistance, its tribological properties are poor, being one of the barriers for use in severe wear applications. Thus, there is a wide field for studying technologies that aim to increase the surface hardness and wear resistance of this material. In this work, hardness and wear resistance for AISI 304 stainless steel submitted to the thermochemical treatment by low temperature plasma carburizing (LTPC in a fixed gas mixture composition of 93% H2 and 7% CH4 are presented. Through the evaluation of the carburizing layers, it was possible to observe a substantial improvement in tribological properties after all temperature and time of treatment. This improvement is directly related to the increase of the process variables; among them temperature has a stronger influence on the wear resistance obtained using LTPC process.

  2. Effect of Isothermal Bainitic Quenching on Rail Steel Impact Strength and Wear Resistance

    Science.gov (United States)

    Çakir, Fatih Hayati; Çelik, Osman Nuri

    2017-09-01

    The effect of heat treatment regimes on hardness, impact strength, and wear resistance of rail steel for high-speed tracks (rail quality category R350HT) is studied. Analysis of steel properties with a different structure is compared: pearlitic, and upper and lower bainite. It is shown that the steel with bainitic structure has the best impact strength, but wear resistance is better for steel with a lower bainite structure.

  3. Study on microstructure and high temperature wear resistance of laser cladded nuclear valve clack

    International Nuclear Information System (INIS)

    Zhang Chunliang; Chen Zichen

    2002-01-01

    Laser cladding of Co-base alloy on the nuclear valve-sealing surface are performed with a 5 kW CO 2 transverse flowing laser. The microstructure and the high temperature impact-slide wear resistance of the laser cladded coating and the plasma cladded coating are studied. The results show that the microstructure, the dilution rate and the high temperature impact-slide wear resistance of the laser cladded coating have obvious advantages over the spurt cladding processing

  4. Standard test method for ranking resistance of materials to sliding wear using block-on-ring wear test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of materials to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank pairs of materials according to their sliding wear characteristics under various conditions. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. However, the interlaboratory testing has been limited to metals. In addition, the test can be run with various lubricants, liquids, or gaseous atmospheres, as desired, to simulate service conditions. Rotational speed and load can also be varied to better correspond to service requirements. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. Wear test results are reported as the volume loss in cubic millimetres for both the block and ring. Materials...

  5. Effect of distribution of striated laser hardening tracks on dry sliding wear resistance of biomimetic surface

    Science.gov (United States)

    Su, Wei; Zhou, Ti; Zhang, Peng; Zhou, Hong; Li, Hui

    2018-01-01

    Some biological surfaces were proved to have excellent anti-wear performance. Being inspired, Nd:YAG pulsed laser was used to create striated biomimetic laser hardening tracks on medium carbon steel samples. Dry sliding wear tests biomimetic samples were performed to investigate specific influence of distribution of laser hardening tracks on sliding wear resistance of biomimetic samples. After comparing wear weight loss of biomimetic samples, quenched sample and untreated sample, it can be suggested that the sample covered with dense laser tracks (3.5 mm spacing) has lower wear weight loss than the one covered with sparse laser tracks (4.5 mm spacing); samples distributed with only dense laser tracks or sparse laser tracks (even distribution) were proved to have better wear resistance than samples distributed with both dense and sparse tracks (uneven distribution). Wear mechanisms indicate that laser track and exposed substrate of biomimetic sample can be regarded as hard zone and soft zone respectively. Inconsecutive striated hard regions, on the one hand, can disperse load into small branches, on the other hand, will hinder sliding abrasives during wear. Soft regions with small range are beneficial in consuming mechanical energy and storing lubricative oxides, however, soft zone with large width (>0.5 mm) will be harmful to abrasion resistance of biomimetic sample because damages and material loss are more obvious on surface of soft phase. As for the reason why samples with even distributed bionic laser tracks have better wear resistance, it can be explained by the fact that even distributed laser hardening tracks can inhibit severe worn of local regions, thus sliding process can be more stable and wear extent can be alleviated as well.

  6. The analysis of mechanism of rhenium-coated tools' wear-resistance rising

    Directory of Open Access Journals (Sweden)

    Daniel Petrosyan

    2017-06-01

    Full Text Available It is proposed to obtain wear-resistant layers on the hard-alloy materials by thermochemical treatment. In the different field of production – mechanical engineering, metallurgy and military technologies, with machine parts demanding high wearproof and corrosion-proof machinery parts on the surfaces of syntheses of diamonds, with metal surface thermal-diffusion with rhenium, to receive diffusion wearing layers for the first time. A method for thermochemical treatment of hard alloy plates has been investigated, allowing to raise the wear-resistance of cutting and mining tools.

  7. The friction wear of electrolytic composite coatings

    International Nuclear Information System (INIS)

    Starosta, R.

    2002-01-01

    The article presents the results of investigation of wear of galvanic composite coatings Ni-Al 2 O 3 and Ni-41%Fe-Al 2 O 3 . The diameter of small parts of aluminium oxide received 0.5; 3; 5 μm. Investigations of friction sliding were effected on PT3 device at Technical University of Gdansk. Counter sample constituted a funnel made of steel NC6 (750 HV). Increase of wear coatings together with the rise of iron content in matrix is observed. The rise of sizes of ceramic particles caused decrease of wear of composite coatings, but rise of steel funnel wear. The friction coefficient increased after ceramic particle s were built in coatings. The best wear resistance characterized Ni-41%Fe-Al 2 O 3 coatings containing 2.2x10 6 mm -2 ceramic particles. (author)

  8. Cutting tools and wear resistant articles and material for same

    Science.gov (United States)

    Tien, Tseng-Ying; Huang, Zhen-Kun

    2000-01-01

    A ceramic having a relatively high proportion of an alpha prime SiAlON phase and exhibiting high hardness and toughness. In a particularly preferred embodiment, a cation of Gd is used as a modifying cation.

  9. Microstructure and wear resistance of in situ porous TiO/Cu composites

    Science.gov (United States)

    Qin, Qingdong; Huang, Bowei; Li, Wei

    2016-07-01

    An in situ porous TiO/Cu composite is successfully prepared using powder metallurgy by the reaction of Ti2CO and Cu powder. Morphological examination of the composite shows that the porosity of composites lies in the range between 10.2% and 35.2%. Dry sliding un-lubricated wear tests show that the wear resistance of the composite is higher than that of the Cu-Al alloy ingot. The coefficient of friction test shows that, as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear rate variation trend of the oil-lubricated wear test results is similar to that of the un-lubricated wear test results. The coefficient of friction for oil lubrication is similar for different volume fractions of the reinforced phase. The wear resistance of the composite at a sliding velocity of 200 rpm is slightly larger than that at 50 rpm. The porosity of the composites enhances the high-velocity oil-lubricated sliding wear resistance.

  10. Amorphous Metallic Alloys: Pathways for Enhanced Wear and Corrosion Resistance

    Science.gov (United States)

    Aditya, Ayyagari; Felix Wu, H.; Arora, Harpreet; Mukherjee, Sundeep

    2017-11-01

    Amorphous metallic alloys are widely used in bulk form and as coatings for their desirable corrosion and wear behavior. Nevertheless, the effects of heat treatment and thermal cycling on these surface properties are not well understood. In this study, the corrosion and wear behavior of two Zr-based bulk metallic glasses were evaluated in as-cast and thermally relaxed states. Significant improvement in wear rate, friction coefficient, and corrosion penetration rate was seen for both alloys after thermal relaxation. A fully amorphous structure was retained with thermal relaxation below the glass transition. There was an increase in surface hardness and elastic modulus for both alloys after relaxation. The improvement in surface properties was explained based on annihilation of free volume.

  11. Abrasive Wear Resistance of the Iron- and WC-based Hardfaced Coatings Evaluated with Scratch Test Method

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2013-06-01

    Full Text Available Abrasive wear is one of the most common types of wear, which makesabrasive wear resistance very important in many industries. Thehard facing is considered as useful and economical way to improve theperformance of components submitted to severe abrasive wear conditions, with wide range of applicable filler materials. The abrasive wear resistance of the three different hardfaced coatings (two iron‐based and one WC‐based, which were intended to be used for reparation of the impact plates of the ventilation mill, was investigated and compared. Abrasive wear tests were carried‐out by using the scratch tester under the dry conditions. Three normal loads of 10, 50 and 100 N and the constant sliding speed of 4 mm/s were used. Scratch test was chosen as a relatively easy and quick test method. Wear mechanism analysis showed significant influence of the hardfaced coatings structure, which, along with hardness, has determined coatings abrasive wear resistance.

  12. Study on wear resistance of vanadium alloying compacted/vermicular graphite cast iron

    International Nuclear Information System (INIS)

    Park, Yoon Woo

    1987-01-01

    Wear resistance of the Compacted/Vermicular graphite cast irons was studied by changing the vanadium content in the cast irons. The results obtained in this work are summarized as follows. 1. When the same amount of vanadium was added to the flake graphite cast iron, spheroidal graphitecast iron and Compacted/Vermicular graphite cast iron, spheroidal graphite cast iron and Compacted/Vermicular graphite cast iron wear resistance decreased in following sequence, that is, flake graphite cast iron> spheroidal graphite cast iron>Compacted/Vermicular graphite cast iron. 2. Addition of vanadium to the Compacted/Vermicular cast iron leaded to a remarkable increase in hardness because it made the amount of pearlite in matrix increase. 3. Addition of vanadium to the compacted/Vermicular graphite cast iron significantly enhanced wear resistance and the maximum resistance was achieved at about 0.36% vanadium. 4. The maximum amount of wear apppeared at sliding speed of about 1.4m/sec and wear mode was considered to be oxidation abrasion from the observation of wear tracks. (Author)

  13. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Science.gov (United States)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  14. [Wear intensity and surface roughness of microhybrid composite and ceramic occlusal veneers on premolars after the thermocycling and cyclic mechanical loading tests].

    Science.gov (United States)

    Zhang, H Y; Jiang, T; Cheng, M X; Zhang, Y W

    2018-02-18

    To evaluate the wear intensity and surface roughness of occlusal veneers on premolars made of microhybrid composite resin or two kinds of ceramics in vitro after the thermocycling and cyclic mechanical loading tests. In the study,24 fresh extracted human premolars without root canal treatment were prepared (cusps reduction of 1.5 mm in thickness to simulate middle to severe tooth wear, the inclinations of cusps were 20°). The prepared teeth were restored with occlusal veneers made of three different materials: microhybrid composite, heat-pressed lithium disilicate ceramic and computer-aided design/computer-aided manufacturing (CAD/CAM) lithium disilicate ceramic in the thickness of 1.5 mm. The occlusal veneers were cemented with resin cement. The specimens were fatigued using the thermocycling and cyclic mechanical loading tests after being stored in water for 72 h. The wear of specimens was measured using gypsum replicas and 3D laser scanner before and after the thermocycling and cyclic mechanical loading tests and the mean lost distance (mm) was used to indicate the level of wear. The surfaces of occlusal contact area were observed and the surface roughness was recorded using 3D laser scanning confocal microscope before and after the fatigue test. Differences between the groups were compared using ONE-way ANOVA(Pcomposite group, heat-pressed lithium disilicate ceramic group, and CAD/CAM lithium disilicate ceramic group was (-0.13±0.03) mm, (-0.05±0.01) mm and (-0.05±0.01) mm, the wear of microhybrid composite was significantly higher than the two ceramic groups(Pcomposite was significantly higher than the two ceramic groups(Pcomposite(P=0.005) and CAD/CAM lithium disilicate ceramic (P=0.010). From the view of wear speed, microhybrid composite was significantly higher than the two kinds of ceramics, but it was similar to enamel when the opposing tooth was natural. The surface roughness before the themocycling and cyclic mechanical loading test of microhybrid

  15. The comparative studies of ADI versus Hadfield cast steel wear resistance

    Directory of Open Access Journals (Sweden)

    Mieczysław Kaczorowski

    2011-04-01

    Full Text Available The results of comparative studies of wear resistance of ADI versus high manganese Hadfield cast steel are presented. For evaluation ofwear resistance three type of ADI were chosen. Two of them were of moderate strength ADI with 800 and 1000MPa tensile strength whilethe third was 1400MPa tensile strength ADI. The specimens were cut from ADI test YII type casting poured and heat treated in Institute ofFoundry in Krakow. The pin on disc method was used for wear resistance experiment. The specimens had a shape of 40mm long rod withdiameter 6mm. The load and speed were 100N and 0,54m/s respectively. It was concluded that the wear resistance of ADI is comparablewith high manganese cast steel and in case of low tensile grade ADI and is even better for high strength ADI than Hadfield steel.

  16. The enhancement in wear resistance of W18Cr4V steel by ion implantation

    International Nuclear Information System (INIS)

    Zhou Ping; Xu Peiguang

    1987-01-01

    Two new methods of ion implantation were adopted in comparison with nitrogen implantation: carbon monoxide was implanted directly into W18Cr4V steel, and nitrogen was implanted into a deposited titanium film about 1000 A thick. It is shown that higher surface hardness and wear resistance have been achieved. The composition and phase structure of the implanted layer was determined in detail. The wear mechanisms were discussed

  17. Determination of metallo-organic and particulate wear metals in lubricating oils associated with hybrid ceramic bearings by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Russell, Robin Ann

    It is possible to increase both the performance and operating environment of jet engines by using hybrid ceramic bearings. Our laboratory is concerned with investigating lubricating fluids for wear metals associated with silicon nitride ball bearings and steel raceways. Silicon nitride is characterized by low weight, low thermal expansion, high strength, and corrosion resistance. These attributes result in longer engine lifetimes than when metallic ball bearings are used. Before the routine use of ceramic ball bearings can be realized, the wear mechanisms of the materials should be thoroughly understood. One important variable in determining wear degradation is the concentration of metal present in the lubricating oils used with the bearings. A complete method for analyzing used lubricating oils for wear metal content must accurately determine all metal forms present. Oil samples pose problems for routine analysis due to complex organic matrices. Nebulizing these types of samples into an Inductively Coupled Plasma - Mass Spectrometer introduces many problems including clogging of the sample cone with carbon and increasing interferences. In addition, other techniques such as Atomic Absorption Spectrometry and Atomic Emission Spectrometry are particle size dependent. They are unable to analyze particles greater than 10 mum in size. This dissertation describes a method of analyzing lubricating oils for both metallo-organic and particulate species by ICP-MS. Microwave digestion of the oil samples eliminates the need for elaborate sample introduction schemes as well as the use of a modified carrier gas. Al, Cr, Fe, Mg, Mo, Ni, Ti, and Y have been determined in both aqueous and organic media. Metallo-organic solutions of these metals were successfully digested, nebulized into the ICP, and the singly charged ions measured by mass spectrometry. Metal particulates in oil matrices have also been quantitatively determined by the above method. Linear analytical curves were

  18. Ceramic capacitor insulation resistance failures accelerated by low voltage

    Science.gov (United States)

    Brennan, T. F.

    1978-01-01

    Ceramic capacitors failed insulation resistance testing at less than one-tenth their rated voltage. Many failures recovered as the voltage was increased. Comprehensive failure analysis techniques, some of which are unprecedented, were used to examine these failures. It was determined that there was more than one failure mechanism, and the results indicate a need for special additional screening.

  19. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander

    2016-01-01

    Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.

  20. Microstructure and corrosive wear resistance of plasma sprayed Ni-based coatings after TIG remelting

    Science.gov (United States)

    Tianshun, Dong; Xiukai, Zhou; Guolu, Li; Li, Liu; Ran, Wang

    2018-02-01

    Ni based coatings were prepared on steel substrate by means of plasma spraying, and were remelted by TIG (tungsten inert gas arc) method subsequently. The microstructure, microhardness, electrochemical corrosion and corrosive wear resistance under PH = 4, PH = 7 and PH = 10 conditions of the coatings before and after remelting were investigated. The results showed that the TIG remelting obviously reduced the defects and dramatically decreased the coating’s porosity from 7.2% to 0.4%. Metallurgical bonding between the remelted coating and substrate was achieved. Meanwhile, the phase compositions of as-sprayed coating were γ-Ni, Mn5Si2 and Cr2B, while the phase compositions of the remelting coating were Fe3Ni, Cr23C6, Cr2B and Mn5Si2. The microhardness of the coating decreased from 724 HV to 608 HV, but the fracture toughness enhanced from 2.80 MPa m1/2 to 197.3 MPa m1/2 after remelting. After corrosive wear test, the average wear weight loss and 3D morphology of wear scar of two coatings indicated that the wear resistance of the remelted coating was remarkably higher than that of as-sprayed coating. Therefore, TIG remelting treatment was a feasible method to improve the coating’s microstructure and enhance its corrosive wear resistance.

  1. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, M; Lis, J; Partyka, J; Wojczyk, M, E-mail: mgajek@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramic, al. Mickiewicza 30, 30-059 Cracow (Poland)

    2011-10-29

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al{sub 2}O{sub 3}-SiO{sub 2}, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO{sub 2}, ZrO{sub 2}, V{sub 2}O{sub 5} on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6{approx}8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm{sup 2} (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5{approx}6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO{sub 2}-Al{sub 2}O{sub 3}, were examined with use of DTA, XRD and SEM methods.

  2. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Science.gov (United States)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  3. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    International Nuclear Information System (INIS)

    Gajek, M; Lis, J; Partyka, J; Wojczyk, M

    2011-01-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al 2 O 3 -SiO 2 , have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO 2 , ZrO 2 , V 2 O 5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6∼8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm 2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5∼6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO 2 -Al 2 O 3 , were examined with use of DTA, XRD and SEM methods.

  4. THE CORROSION BEHAVIOR AND WEAR RESISTANCE OF GRAY CAST IRON

    Directory of Open Access Journals (Sweden)

    Lina F. Kadhim

    2018-01-01

    Full Text Available Gray cast iron has many applications as pipes , pumps and valve bodies where it has influenced by heat and contact with other solutions . This research has studied the corrosion behavior and Vickers hardness of gray cast iron by immersion in four strong alkaline solutions (NaOH, KOH, Ca(OH2, LiOHwith three concentrations (1%,2%,3% of each solution. Dry sliding wear has carried out before and after the heat treatments (stress relief ,normalizing, hardening and tempering. In this work ,maximum wear strength has obtained at tempered gray cast iron and minimum corrosion rate has obtained in LiOH solution by forming protective white visible oxide layer.

  5. Alternate paddle configuration for improved wear resistance in the saltstone mixer

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-09-23

    The Saltstone Production Facility has a 10-inch Readco-Kurimoto continuous mixer that mixes the premix dry feeds and low-level waste salt solution to make fresh (uncured) saltstone. Inspection of the mixer in January 2013 showed significant wear on the third, fourth and fifth paddle pairs after the conveying augers. A 2-inch Readco-Kurimoto continuous mixer was used to test alternate paddle configurations for use in the 10-inch mixer to decrease the wear rate on the paddles. Two wear tests were conducted to investigate a method of reducing wear on the mixer paddles. The first test (wear test 2a) had a paddle configuration similar to the currently installed 10-inch mixer in the SPF. This test established baseline wear. The second test (wear test 2b) had a reconfigured paddle arrangement that replaced the flat paddles with helical paddles for paddle pairs 2 - 6 and aligned paddle pair 1 with the augers. The intent of the reconfiguration was to more effectively convey the partially wetted dry feeds through the transition region and into the liquid feed where paddle wear is reduced due to dry feeds and salt solution being mixed at the intended water to premix ratio. The design of the helical paddles provides conveyance through the transition region to the liquid feed inlet. The alignment with the auger is aimed to provide a smoother transition (minimizing the discontinuity between the auger and paddle pair 1) into the downstream paddles. A soft metal with low wear resistance (6000 series aluminum) was used for the wear testing paddles to determine wear patterns while minimizing run time and maximizing wear rate. For the two paddle configurations tested using the scaled 2-inch Readco-Kurimoto continuous mixer, with the first six paddles after the augers replaced by the wear paddles and the remaining paddles were stainless steel. Since the 10-inch SPF mixer is designed with the liquid inlet centered over paddle pairs 5 and 6, the scaled 2-inch mixer was configured the

  6. Microstructure and wear resistance of high chromium cast iron containing niobium

    Directory of Open Access Journals (Sweden)

    Zhang Zhiguo

    2014-05-01

    Full Text Available In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  7. Plasma nitrocarburizing process - a solution to improve wear and corrosion resistance

    International Nuclear Information System (INIS)

    Joseph, Alphonsa J.; Ghanshyam, J.; Mukherjee, S.

    2015-01-01

    To prevent wear and corrosion problems in steam turbines, coatings have proved to have an advantage of isolating the component substrate from the corrosive environment with minimal changes in turbine material and design. Diffusion based coatings like plasma nitriding and plasma nitrocarburizing have been used for improving the wear and corrosion resistance of components undergoing wear during their operation. In this study plasma nitrocarburizing process was carried out on ferritic alloys like ASTM A182 Grade F22 and ATM A105 alloy steels and austenitic stainless steels like AISI 304 and AISI 316 which are used to make trim parts of control valves used for high pressure and high temperature steam lines to enhance their wear and corrosion resistance properties. The corrosion rate was measured by a potentiodynamic set up and salt spray unit in two different environments viz., tap water and 5% NaCl solutions. The Tafel plots of ferritic alloys and austenitic stainless steels show that plasma nitrocarburizing process show better corrosion resistance compared to that of the untreated steel. It was found that after plasma nitrocarburizing process the hardness of the alloy steels increased by a factor of two. The corrosion resistance of all the steels mentioned above improved in comparison to the untreated steels. This improvement can be attributed to the nitrogen and carbon incorporation in the surface of the material. This process can be also applied to components used in nuclear industries to cater to the wear and corrosion problems. (author)

  8. A new approach for assessing the wear resistance of soft ductile materials

    International Nuclear Information System (INIS)

    Zaid, A.I.O.; Banna, M.A.E.

    2007-01-01

    Aluminum and its alloys are the most versatile and attractive metallic materials which have been used for many decades in many engineering applications specially in the automobile and airspace industries due to their high strength-to- weight ratio, thermal conductivity, electrical conductivity, corrosion and wear resistances. Wear is the loss of material from a surface caused by interaction with another material. The main mechanisms of interaction are applied loads and relative motion, which can cause adhesion or/and abrasion, all of which leads to material loss. Therefore, most of the suggested methods, theoretical and empirical, for estimating the wear resistance of material is based on the mass loss, irrespective of the material or type of existing wear. Experimental observations reveal that in some situations, especially for soft and ductile materials, the tested specimen showed little or no mass loss while its dimensions and shape have suffered from plastic deformation which causes more damage than mass loss. Similar phenomenon was observed during electric spot welding of aluminum and zinc coated steels at the area beneath the electrode where plastic deformation takes place, causing increase in area which reduces the current density, will be also discussed in the paper. The amount of the plastic deformation, even when mentioned in some publications, was neglected in assessing wear resistance. In this paper, a model based on the plastic deformation at the worn end together with the mass loss is forwarded and discussed. The model was tested qualitatively using commercially pure aluminum of 99.97% purity in the as supplied condition and in grain refined conditions by some rare earth materials e.g. titanium and titanium plus boron, which are normally used in industry for improving its hardness and mechanical behavior. The wear tests were carried out under different loads and speeds (the main parameters in assessing wear resistance) and the data was used for

  9. Wear resistance and structural changes in nitrogen-containing high-chromium martensitic steels under conditions of abrasive wear and sliding friction

    International Nuclear Information System (INIS)

    Makarov, A.V.; Korshunov, L.G.; Schastlivtsev, V.M.; Chernenko, N.L.

    1998-01-01

    Martensitic nitrogen-containing steels Kh17N2A0.14, Kh13A0.14, Kh14G4A0.22 as well as steel 20Kh13 were studied for their wear resistance under conditions of friction and abrasion. Metallography, X ray diffraction analysis and electron microscopy were used to investigate the structural changes taking place in a thin surface layer on wearing. It is shown that an increase of nitrogen content of 0.14 to 0.22% promotes an enhancement of steel resistance to abrasive and adhesive wear, especially after tempering in the range of 500-550 deg C. Typically, the nitrogen-containing steels exhibit lower resistance to various types of wear in comparison with the steels with high-carbon martensite due to their lower deformability under conditions of friction loading

  10. Wear resistance of layers hard faced by the high-alloyed filler metal

    Directory of Open Access Journals (Sweden)

    Dušan Arsić

    2016-10-01

    Full Text Available The objective of this work was to determine the wear resistance of layers hard faced by the high-alloyed filler metal, with or without the austenite inter-layer, on parts that operate at different sliding speeds in conditions without lubrication. The samples were hard faced with the filler metal E 10-UM-60-C with high content of C, Cr and W. Used filler metal belongs into group of alloys aimed for reparatory hard facing of parts damaged by abrasive and erosive wear and it is characterized by high hardness and wear resistance. In experiments, the sliding speed and the normal loading were varied and the wear scar was monitored, based on which the volume of the worn material was calculated analytically. The contact duration time was monitored over the sliding path of 300 mm. The most intensive wear was established for the loading force of 100 N and the sliding speed of 1 m.s-1, though the significant wear was also noticed in conditions of the small loading and speed of 0.25 m.s-1, which was even greater that at larger speeds.

  11. Effects of Synchronous Rolling on Microstructure, Hardness, and Wear Resistance of Laser Multilayer Cladding

    Science.gov (United States)

    Zhao, W.; Zha, G. C.; Xi, M. Z.; Gao, S. Y.

    2018-03-01

    A synchronous rolling method was proposed to assist laser multilayer cladding, and the effects of this method on microstructure, microhardness, and wear resistance were studied. Results show that the microstructure and mechanical properties of the traditional cladding layer exhibit periodic inhomogeneity. Synchronous rolling breaks the columnar dendrite crystals to improve the uniformity of the organization, and the residual plastic energy promotes the precipitation of strengthening phases, as CrB, M7C3, etc. The hardness and wear resistance of the extruded cladding layer increase significantly because of the grain refinement, formation of dislocations, and dispersion strengthening. These positive significances of synchronous rolling provide a new direction for laser cladding technology.

  12. Wear resistance increase of the modified coatings, deposited in the beam of relativistic electrons

    International Nuclear Information System (INIS)

    Poletika, I.M.; Perovskaya, M.V.; Balushkina, M.A.

    2015-01-01

    The 1.5-3 mm thickness coatings have been obtained by vacuum - free electron beam cladding of tungsten carbide on low - carbon steel sub state. The coatings have an increased hardness but low wear resistance. Adding both nickel and titanium carbide to the tungsten carbide results in essentially improving the wear resistance of the coatings due to austenite-promoting effect of nickel and precipitation of fine Tic particles resulting in the formation of the final and nano grain structure. In the layer of weld one can find 30-100 nm grain - size structures. (authors)

  13. Ceramic cutting tools materials, development and performance

    CERN Document Server

    Whitney, E Dow

    1994-01-01

    Interest in ceramics as a high speed cutting tool material is based primarily on favorable material properties. As a class of materials, ceramics possess high melting points, excellent hardness and good wear resistance. Unlike most metals, hardness levels in ceramics generally remain high at elevated temperatures which means that cutting tip integrity is relatively unaffected at high cutting speeds. Ceramics are also chemically inert against most workmetals.

  14. Development of abrasion resistant glass-ceramics from industrial waste products. Final report

    Energy Technology Data Exchange (ETDEWEB)

    von Roode, M.

    1983-05-26

    Slag-ceramics were produced from glass compositions using pelletized slag as the major ingredient. The abrasion resistance, fracture toughness and microstructure of the prepared glass and glass-ceramics were evaluated. Glas-ceramics with good abrasion resistance were obtained when iron oxide in conjunction with carbon was used as a nucleating agent. 5 figs., 11 tabs.

  15. Correlation of microstructure and wear resistance of molybdenum blend coatings fabricated by atmospheric plasma spraying

    International Nuclear Information System (INIS)

    Hwang, Byoungchul; Lee, Sunghak; Ahn, Jeehoon

    2004-01-01

    The correlation of microstructure and wear resistance of various molybdenum blend coatings applicable to automotive parts was investigated in this study. Five types of spray powders, one of which was pure molybdenum powder and the others were blends of brass, bronze, and aluminum alloy powders with molybdenum powder, were deposited on a low-carbon steel substrate by atmospheric plasma spraying (APS). Microstructural analysis of the coatings showed that they consisted of a curved lamellar structure formed by elongated splats, with hard phases that formed during spraying being homogeneously distributed in the molybdenum matrix. The wear test results revealed that the blend coatings showed better wear resistance than the pure molybdenum coating because they contained a number of hard phases. In particular, the molybdenum coating blended with bronze and aluminum alloy powders and the counterpart material showed an excellent wear resistance due to the presence of hard phases, such as CuAl 2 and Cu 9 Al 4 . In order to improve overall wear properties for the coating and the counterpart material, appropriate spray powders should be blended with molybdenum powders to form hard phases in the coatings

  16. The wear and corrosion resistance of shot peened-nitrided 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Hashemi, B.; Rezaee Yazdi, M.; Azar, V.

    2011-01-01

    Research highlights: → Shot peening-nitriding increased the wear resistance and surface hardness of samples. → This treatment improved the surface mechanical properties. → Shot peening alleviates the adverse effects of nitriding on the corrosion behavior. -- Abstract: 316L austenitic stainless steel was gas nitrided at 570 o C with pre-shot peening. Shot peening and nitriding are surface treatments that enhance the mechanical properties of surface layers by inducing compressive residual stresses and formation of hard phases, respectively. The structural phases, micro-hardness, wear behavior and corrosion resistance of specimens were investigated by X-ray diffraction, Vickers micro-hardness, wear testing, scanning electron microscopy and cyclic polarization tests. The effects of shot peening on the nitride layer formation and corrosion resistance of specimens were studied. The results showed that shot peening enhanced the nitride layer formation. The shot peened-nitrided specimens had higher wear resistance and hardness than other specimens. On the other hand, although nitriding deteriorated the corrosion resistance of the specimens, cyclic polarization tests showed that shot peening before the nitriding treatment could alleviate this adverse effect.

  17. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review

    International Nuclear Information System (INIS)

    PalDey, S.; Deevi, S.C.

    2003-01-01

    We review the status of (Ti,Al)N based coatings obtained by various physical vapor deposition (PVD) techniques and compare their properties. PVD techniques based on sputtering and cathodic arc methods are widely used to deposit wear resistant (Ti,Al)N coatings. These techniques were further modified to improve the metal ionization rate and to eliminate macrodroplets from plasma streams. We summarize manufacture of target/cathode, substrate materials for deposition of coatings, deposition parameters, and the effect of deposition parameters on the physical and mechanical properties of (Ti,Al)N coatings. It is shown that (Ti,Al)N coatings by PVD enhance the wear, thermal, and oxidation resistance of a wide variety of tool materials. We discuss the wear resistant properties of (Ti,Al)N for various machining applications as compared with coatings such as TiN, Ti(C,N) and (Ti,Zr)N. High hardness (∼28-32 GPa), relatively low residual stress (∼5 GPa), superior oxidation resistance, high hot hardness, and low thermal conductivity make (Ti,Al)N coatings most desirable in dry machining and machining of abrasive alloys at high speeds. Multicomponent coatings based on different metallic and nonmetallic elements combine the benefit of individual components leading to a further refinement of coating properties. Alloying additions such as Cr and Y drastically improve the oxidation resistance, Zr and V improve the wear resistance, whereas, Si increases the hardness and resistance to chemical reactivity of the film. Addition of boron improves the abrasive wear behavior of Ti-Al based coatings due to the formation of TiB 2 and BN phases depending on the deposition conditions. Hafnium based nitrides and carbides have potential for resistance to flank and crater wear. The presence of a large number of interfaces between individual layers of a multilayered structure results in a drastic increase in hardness and strength. (Ti,Al)N multilayer super lattice coatings with lattice

  18. Ceramic tantalum oxide thin film coating to enhance the corrosion and wear characteristics of Ti−6Al−4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rahmati, B., E-mail: r.bijan@yahoo.com [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Sarhan, Ahmed A.D., E-mail: ah_sarhan@um.edu.my [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Basirun, W. Jeffrey [Department of Chemistry, University of Malaya, 50603 Kuala Lumpur (Malaysia); Abas, W.A.B.W. [Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-08-15

    In this research, an attempt is made to study the corrosion and wear behavior of TaO{sub 2} thin film coating deposited onto Ti−6Al−4V alloy with the highest adhesion (was achieved in the author's previous experiments using Taguchi statistical method) which leads to increase corrosion resistance, decrease debris generation and improve durability. Accordingly, pure tantalum (Ta) was deposited onto Ti−6Al−4V substrate surface as intermetallic layer then to form a TaO{sub 2} thin film, Ta was deposited onto the sample surface in the presence of oxygen by using physical vapor deposition magnetron sputtering (PVDMS). Corrosion testing was carried out in fetal bovine serum (FBS). The corrosion test in FBS medium confirmed that the corrosion resistance of the TaO{sub 2} – coated Ti−6Al−4V alloys was significantly higher than the uncoated Ti−6Al−4V substrate due to the decrease in corrosion current density (I{sub corr}) for the coated substrate with high thin-film adhesion. Wear testing was carried out on uncoated and coated Ti−6Al−4V substrates in the presence of FBS medium under 15 N load (natural walking load) at 1.09 m/s (simulated medium walking speed). The tests revealed that the specific wear ratio of TaO{sub 2} coating was significantly lower than the uncoated substrate wear ratio. The average friction coefficients obtained were 0.183 and 0.152 for uncoated substrate and TaO{sub 2} thin film coating, respectively. So, due to the noticeable corrosion and wear resistance characteristics of the TaO{sub 2} coating, it is suggested for hip joint implant. - Highlights: • The TaO{sub 2} coating has been created onto the Ti−6Al−4V surface by using PVDMS method. • The TaO{sub 2} coating has been formed on the Ti−6Al−4V sample at the highest adhesion. • The corrosion resistance of the coated Ti−6Al−4V substrate has been improved. • The wear resistance of the coated Ti−6Al−4V substrate has been increased. • The durability

  19. Analysis and Modelling of Electrode Wear in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Madsen, Anders; Pedersen, Kim; Friis, Kasper Storgaard

    2010-01-01

    A model describing electrode wear as a function of weld number, initial tip diameter, truncated cone angle, welding current and electrode force is proposed. Excellent agreement between the model and experimental results is achieved, showing that the model can describe the change in electrode tip...... diameter with increasing weld number at different weld settings. Furthermore a method for measuring the worn tip diameter in a fast and robust manner is developed. The method relies on a well-known technique for capturing the electrode tip area by the use of carbon imprints and a new developed image...... a central cavity is formed and one where smaller pits are formed randomly across the electrode face. The influence of these two types of surface pits on the nugget size are investigated using the FE code SORPAS, revealing ring welds and undersized weld nuggets....

  20. Development of bushing material with higher corrosion and wear resistance; Taishoku taimamosei dogokin bush zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kira, T; Yokota, H; Kamiya, S [Taiho Kogyo Co. Ltd., Osaka (Japan)

    1997-10-01

    Recent diesel engines require a higher performance and a longer life. Due to higher cylinder pressure, the operating load and temperature of piston pin bushings become higher. Therefore, higher load capacity, higher wear resistance and higher corrosion resistance are required for piston pin bushings. For this reason, we have studied the effect of components added to copper alloy upon the corrosion resistance and the effect of hard particles dispersed in copper matrix upon the wear resistance and the influence of hard particles on the machinablity of materials. Based on the experimental results, we have developed a new bushing material improving wear and corrosion resistance. 17 figs., 3 tabs.

  1. Cerium Addition Improved the Dry Sliding Wear Resistance of Surface Welding AZ91 Alloy

    Directory of Open Access Journals (Sweden)

    Qingqiang Chen

    2018-02-01

    Full Text Available In this study, the effects of cerium (Ce addition on the friction and wear properties of surface welding AZ91 magnesium alloys were evaluated by pin-on-disk dry sliding friction and wear tests at normal temperature. The results show that both the friction coefficient and wear rate of surfacing magnesium alloys decreased with the decrease in load and increase in sliding speed. The surfacing AZ91 alloy with 1.5% Ce had the lowest friction coefficient and wear rate. The alloy without Ce had the worst wear resistance, mainly because it contained a lot of irregularly shaped and coarse β-Mg17Al12 phases. During friction, the β phase readily caused stress concentration and thus formed cracks at the interface between β phase and α-Mg matrix. The addition of Ce reduced the size and amount of Mg17Al12, while generating Al4Ce phase with a higher thermal stability. The Al-Ce phase could hinder the grain-boundary sliding and migration and reduced the degree of plastic deformation of subsurface metal. Scanning electron microscopy observation showed that the surfacing AZ91 alloy with 1.5% Ce had a total of four types of wear mechanism: abrasion, oxidation, and severe plastic deformation were the primary mechanisms; delamination was the secondary mechanism.

  2. Erosion wear of boron carbide ceramic nozzles by abrasive air-jets

    International Nuclear Information System (INIS)

    Deng Jianxin

    2005-01-01

    Boron carbide nozzles were produced by hot pressing. The erosion wear of this nozzle caused by abrasive particle impact was investigated by abrasive air-jets. Silica, silicon carbide and alumina powders with different hardness were used as the erodent abrasive particles. Results showed that the hardness of the erodent particles played an important role with respect to the erosion wear of the boron carbide nozzles. As the hardness of the erodent particles increases, there is a dramatic increase in erosion rate of the nozzles. The nozzle entrance area suffered from severe abrasive impact under large impact angles, and generated maximum tensile stresses. The wear mechanisms of boron carbide nozzle at this area appeared to be entirely brittle in nature with the evidence of large scale-chipping, and exhibited a brittle fracture induced removal process. While at the nozzle center wall section, most of the particles traveled parallel to the nozzle wall, and showed minimum tensile stresses. The wear mode in this area of the nozzle changed from impact to sliding erosion, and the wear mechanisms appeared to be the lateral cracking owing to a surface fatigue fracture mechanism

  3. Concrete surface with nano-particle additives for improved wearing resistance to increasing truck traffic.

    Science.gov (United States)

    2012-07-01

    This study focused on the use of nanotechnology in concrete to improve the wearing resistance of concrete. The nano : materials used were polymer cross-linked aerogels, carbon nanotubes, and nano-SiO2, nano-CaCO3, and nano-Al2O3 : particles. As an in...

  4. Wear analysis and cyclic fatigue resistance of electro discharge machined NiTi rotary instruments

    Directory of Open Access Journals (Sweden)

    F. Iacono

    2016-06-01

    Conclusions: The typical irregular surface of HyFlex EDM remained unaffected after multiple uses, confirming a high wear resistance. The new manufacturing process of electrical discharge machining had a substantial impact on fatigue lifetime of EDM files when compared with HyFlex CM. Within limitations of the present in vitro results, EDM files appeared suitable in shaping severely curved canals.

  5. Improvement of wear-resistance of solid lubricants by ionic impact

    DEFF Research Database (Denmark)

    1993-01-01

    A solid lubricating material, preferentially as a coating, deposited on a substrate surface by conventional technique such as dipping in a suspension, painting, or spraying is bombarded with energetic ions fron an ion accelerator or in a plasma discharge. By such a treatment the wear resistance o...

  6. Wear Resistance of TiC Reinforced Cast Steel Matrix Composite

    Directory of Open Access Journals (Sweden)

    Sobula S.

    2017-03-01

    Full Text Available Wear resistance of TiC-cast steel metal matrix composite has been investigated. Composites were obtained with SHSB method known as SHS synthesis during casting. It has been shown the differences in wear between composite and base cast steel. The Miller slurry machine test were used to determine wear loss of the specimens. The slurry was composed of SiC and water. The worn surface of specimens after test, were studied by SEM. Experimental observation has shown that surface of composite zone is not homogenous and consist the matrix lakes. Microscopic observations revealed the long grooves with SiC particles indented in the base alloy area, and spalling pits in the composite area. Due to the presence of TiC carbides on composite layer, specimens with TiC reinforced cast steel exhibited higher abrasion resistance. The wear of TiC reinforced cast steel mechanism was initially by wearing of soft matrix and in second stage by polishing and spalling of TiC. Summary weight loss after 16hr test was 0,14÷0,23 g for composite specimens and 0,90 g for base steel.

  7. Cutting tool wear monitoring with the use of impedance layers

    OpenAIRE

    Sadílek, Marek; Kratochvíl, Jiří; Petrů, Jana; Čep, Robert; Zlámal, Tomáš; Stančeková, Dana

    2014-01-01

    The article deals with problems of cutting process monitoring in real time. It is focused on tool wear by means of impedance layers applied on ceramic cutting inserts. In the experimental part the cutting process is monitored using electrical resistance measurement. The results are compared and verified using the monitored cutting temperature and tool wear. The testing of impedance layers is reasonable mainly for cutting edge diagnostics. The width of this layer determines the wear allowance ...

  8. Wear resistance and electrical properties of functionally graded epoxy-resin/silica composites

    International Nuclear Information System (INIS)

    Rihan, Y. A.; Abd El-Bary, B.

    2012-12-01

    In this paper graded Silica/Epoxy composite fabricated by controlled mold filling to obtain a stepwise graded structure. The generated graded structure was controlled by the w 1% content of silica particulates of size range from (45 μm-250 μm). Microstructural characterization was conducted using Scanning Electron Microscope (SEM). Electrical properties were conducted in High Voltage-Lab using Sphere-Plate Electrode System and Insulating resistance equipment s. Wear characteristics were studied using Block-on-Ring wear testing machine for the different layers of the graded silica/epoxy composites, The prepared materials are used as coating materials for the floors of chemical laboratories. (Author)

  9. Wear resistance of layers hard faced by the high-alloyed filler metal

    OpenAIRE

    Dušan Arsić; Vukić Lazić; Ruzica R. Nikolic; Milan Mutavdžić; Srbislav Aleksandrović; Milan Djordjević

    2016-01-01

    The objective of this work was to determine the wear resistance of layers hard faced by the high-alloyed filler metal, with or without the austenite inter-layer, on parts that operate at different sliding speeds in conditions without lubrication. The samples were hard faced with the filler metal E 10-UM-60-C with high content of C, Cr and W. Used filler metal belongs into group of alloys aimed for reparatory hard facing of parts damaged by abrasive and erosive wear and it is characterized by ...

  10. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  11. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  12. Wear Resistance Increase by Friction Stir Processing for Partial Magnesium Replacement in Aluminium Alloys

    Science.gov (United States)

    Balos, Sebastian; Labus Zlatanovic, Danka; Janjatovic, Petar; Dramicanin, Miroslav; Rajnovic, Dragan; Sidjanin, Leposava

    2018-03-01

    In this paper, the influence of friction stir processing (FSP) was evaluated as a way of increasing mechanical properties and a way of replacing the magnesium content in aluminium alloys. FSP was done on AA5754 H111 aluminium alloy, containing 3 % Mg, by using various types of tools and different welding speeds, rotational speeds and tilt angles. Wear test was done against SiC abrasive papers. SiC was used to simulate extreme abrasive wear conditions. The wear test was done on untreated AA5754 specimens, processed AA5754 specimens and untreated AA5083 H111 specimens, the latter containing 4.5 % Mg. AA5083 was chosen as an alternative to AA5754, but with a significantly higher Mg content. Base material microhardness was 60 HV1 and 80 HV1 for AA5754 and AA5083 alloys respectively. To find the effect of FSP on AA5754 alloy, microstructures were studied, mainly grain size in the stir zone. It was found, that an elevated processing and rotational speed, without tilt angle and the tool without a reservoir resulted in an increase in hardness of the AA5754 to 70 HV1, but with the occurrence of tunneling defect and the wear rate of 79.3 mg. Lower FSP parameters and a tilted tool with a reservoir resulted in microhardness of 68 HV1 and wear rate of 68.2 mg without tunneling. These wear values are lower than those obtained with unmodified Al-alloys: AA5754 97.2 mg and AA5083 86.3 mg. An increased wear resistance can be attributed to the combined effect of grain boundary strengthening mechanism and solid solution strengthening, versus only the latter in untreated alloys.

  13. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V., E-mail: vdaditya1000@gmail.com [Department of Electrical Engineering,College of Technology and Engineerin, MPUAT Udaipur, 313001,India (India); Rao, G. P., E-mail: ragrao38@gmail.com; Tiwari, G. S., E-mail: tiwarigsin@yahoo.com [Department of Farm Machinery and Power Engineering, MPUAT Udaipur, 313001,India (India); Sanger, A., E-mail: amitsangeriitr@gmail.com; Kumar, A., E-mail: 01ashraj@gmail.com; Chandra, R., E-mail: ramesfic@gmail.com [Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2016-04-13

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  14. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    International Nuclear Information System (INIS)

    Dave, V.; Rao, G. P.; Tiwari, G. S.; Sanger, A.; Kumar, A.; Chandra, R.

    2016-01-01

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  15. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    Science.gov (United States)

    Dave, V.; Rao, G. P.; Tiwari, G. S.; Sanger, A.; Kumar, A.; Chandra, R.

    2016-04-01

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  16. Surface modification of ceramics. Ceramics no hyomen kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hioki, T. (Toyota Central Research and Development Labs., Inc., Nagoya (Japan))

    1993-07-05

    Surface modification of ceramics and some study results using in implantation in surface modification are introduced. The mechanical properties (strength, fracture toughness, flaw resistance) of ceramics was improved and crack was repaired using surface modification by ion implantation. It is predicted that friction and wear properties are considerably affected because the hardness of ceramics is changed by ion implantation. Cementing and metalization are effective as methods for interface modification and the improvement of the adhesion power of the interface between metal and ceramic is their example. It was revealed that the improvement of mechanical properties of ceramics was achieved if appropriate surface modification was carried out. The market of ceramics mechanical parts is still small, therefore, the present situation is that the field of activities for surface modification of ceramics is also narrow. However, it is thought that in future, ceramics use may be promoted surely in the field like medicine and mechatronics. 8 refs., 4 figs.

  17. Enhancing wear resistance of working bodies of grinder through lining crushed material

    Science.gov (United States)

    Romanovich, A. A.; Annenko, D. M.; Romanovich, M. A.; Apukhtina, I. V.

    2018-03-01

    The article presents the analysis of directions of increasing wear resistance of working surfaces of rolls. A technical solution developed at the level of the invention is proposed, which is simple to implement in production conditions and which makes it possible to protect the roll surface from heavy wear due to surfacing of wear-resistant mesh material, cells of which are filling with grinding material in the process of work. Retaining them enables one to protect the roll surface from wear. The paper dwells on conditions of pressing materials in cells of eccentric rolls on the working surface with a grid of rectangular shape. The paper presents an equation for calculation of the cell dimension that provides the lining of the working surface by a mill material with respect to its properties. The article presents results of comparative studies on the grinding process of a press roller grinder (PRG) between rolls with and without a fusion-bonded mesh. It is clarified that the lining of rolls working surface slightly reduces the quality of the grinding, since the material thickness in the cell is small and has a finely divided and compacted structure with high strength.

  18. Wear Resistance of 3D Printing Resin Material Opposing Zirconia and Metal Antagonists

    Directory of Open Access Journals (Sweden)

    Ji-Man Park

    2018-06-01

    Full Text Available 3D printing offers many advantages in dental prosthesis manufacturing. This study evaluated the wear resistance of 3D printing resin material compared with milling and conventional resin materials. Sixty substrate specimens were prepared with three types of resin materials: 3D printed resin, milled resin, and self-cured resin. The 3D printed specimens were printed at a build angle of 0° and 100 μm layer thickness by digital light processing 3D printing. Two kinds of abraders were made of zirconia and CoCr alloy. The specimens were loaded at 5 kg for 30,000 chewing cycles with vertical and horizontal movements under thermocycling condition. The 3D printed resin did not show significant difference in the maximal depth loss or the volume loss of wear compared to the milled and the self-cured resins. No significant difference was revealed depending on the abraders in the maximal depth loss or the volume loss of wear. In SEM views, the 3D printed resin showed cracks and separation of inter-layer bonds when opposing the metal abrader. The results suggest that the 3D printing using resin materials provides adequate wear resistance for dental use.

  19. Wear Resistance of 3D Printing Resin Material Opposing Zirconia and Metal Antagonists.

    Science.gov (United States)

    Park, Ji-Man; Ahn, Jin-Soo; Cha, Hyun-Suk; Lee, Joo-Hee

    2018-06-20

    3D printing offers many advantages in dental prosthesis manufacturing. This study evaluated the wear resistance of 3D printing resin material compared with milling and conventional resin materials. Sixty substrate specimens were prepared with three types of resin materials: 3D printed resin, milled resin, and self-cured resin. The 3D printed specimens were printed at a build angle of 0° and 100 μm layer thickness by digital light processing 3D printing. Two kinds of abraders were made of zirconia and CoCr alloy. The specimens were loaded at 5 kg for 30,000 chewing cycles with vertical and horizontal movements under thermocycling condition. The 3D printed resin did not show significant difference in the maximal depth loss or the volume loss of wear compared to the milled and the self-cured resins. No significant difference was revealed depending on the abraders in the maximal depth loss or the volume loss of wear. In SEM views, the 3D printed resin showed cracks and separation of inter-layer bonds when opposing the metal abrader. The results suggest that the 3D printing using resin materials provides adequate wear resistance for dental use.

  20. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified

  1. Hardness and Wear Resistance of TiC-Fe-Cr Locally Reinforcement Produced in Cast Steel

    Directory of Open Access Journals (Sweden)

    Olejnik E.

    2016-06-01

    Full Text Available In order to increase wear resistance cast steel casting the TiC-Fe-Cr type composite zones were fabricated. These zones were obtained by means of in situ synthesis of substrates of the reaction TiC with a moderator of a chemical composition of white cast iron with nickel of the Ni-Hard type 4. The synthesis was carried out directly in the mould cavity. The moderator was applied to control the reactive infiltration occurring during the TiC synthesis. The microstructure of composite zones was investigated by electron scanning microscopy, using the backscattered electron mode. The structure of composite zones was verified by the X-ray diffraction method. The hardness of composite zones, cast steel base alloy and the reference samples such as white chromium cast iron with 14 % Cr and 20 % Cr, manganese cast steel 18 % Mn was measured by Vickers test. The wear resistance of the composite zone and the reference samples examined by ball-on-disc wear test. Dimensionally stable composite zones were obtained containing submicron sizes TiC particles uniformly distributed in the matrix. The macro and microstructure of the composite zone ensured three times hardness increase in comparison to the cast steel base alloy and one and a half times increase in comparison to the white chromium cast iron 20 % Cr. Finally ball-on-disc wear rate of the composite zone was five times lower than chromium white cast iron containing 20 % Cr.

  2. Ultra-high wear resistance of ultra-nanocrystalline diamond film: Correlation with microstructure and morphology

    Science.gov (United States)

    Rani, R.; Kumar, N.; Lin, I.-Nan

    2016-05-01

    Nanostructured diamond films are having numerous unique properties including superior tribological behavior which is promising for enhancing energy efficiency and life time of the sliding devices. High wear resistance is the principal criterion for the smooth functioning of any sliding device. Such properties are achievable by tailoring the grain size and grain boundary volume fraction in nanodiamond film. Ultra-nanocrystalline diamond (UNCD) film was attainable using optimized gas plasma condition in a microwave plasma enhanced chemical vapor deposition (MPECVD) system. Crystalline phase of ultra-nanodiamond grains with matrix phase of amorphous carbon and short range ordered graphite are encapsulated in nanowire shaped morphology. Film showed ultra-high wear resistance and frictional stability in micro-tribological contact conditions. The negligible wear of film at the beginning of the tribological contact was later transformed into the wearless regime for prolonged sliding cycles. Both surface roughness and high contact stress were the main reasons of wear at the beginning of sliding cycles. However, the interface gets smoothened due to continuous sliding, finally leaded to the wearless regime.

  3. Mixture for producing fracture-resistant, fiber-reinforced ceramic material by microwave heating

    Science.gov (United States)

    Meek, T.T.; Blake, R.D.

    1985-04-03

    A fracture-resistant, fiber-reinforced ceramic substrate is produced by a method which involves preparing a ceramic precursor mixture comprising glass material, a coupling agent, and resilient fibers, and then exposing the mixture to microwave energy. The microwave field orients the fibers in the resulting ceramic material in a desired pattern wherein heat later generated in or on the substrate can be dissipated in a desired geometric pattern parallel to the fiber pattern. Additionally, the shunt capacitance of the fracture-resistant, fiber-reinforced ceramic substrate is lower which provides for a quicker transit time for electronic pulses in any conducting pathway etched into the ceramic substrate.

  4. Assessment of thermal spray coatings for wear and abrasion resistance applications

    Science.gov (United States)

    Karode, Ishaan Nitin

    Thermal spray cermet and metallic coatings are extensively used for wear, abrasion and corrosion control in a variety of industries. The first part of the thesis focuses mainly on testing of sand erosion resistance of thermal spray coatings on carbon composites used in the manufacture of helicopter rotor blades. The test set-up employed is a sand blasting machine and is an effort to duplicate the in-flight conditions especially those encountered in hot arid conditions. The technique adopted follows the Department of Defence test method standard. Carbon Composites have excellent stiffness, strength and low weight/density. The strength to weight ratio is high. Hence, these are used in aerospace applications to a large extent. However, the biggest problem encountered with carbon composites is its low abrasion resistance as its surface is very weak. Hence, thermal spray coatings are used to improve the surface properties of CFRP. Zinc bond coats and WC-Co coatings were tested. However, high amount of thermal stresses were developed between the substrate and the coating due to large differences in the CTE's of the both, leading to high mass losses within two minutes and just 130 grams of sand sprayed on to the coatings with the sand blasting machine built; and hence the coatings with CC as a substrate could not qualify for the application. The second part of the thesis focuses on the assessment of different thermal spray coatings used for manufacture of mechanical seals in pumps and analyze the best coating material for the wear resistance application through detail quantification of material loss by block-on-ring test set-up. A machine based on Block-on-ring test set-up following ASTM G77 (Measurement of Adhesive wear resistance of thermal spray coatings) standards was built to duplicate the pump conditions. Thermally sprayed coated materials were tested in different conditions (Load, time, abrasive). WC-Co had the highest wear resistance (lower volume losses) and

  5. Provision of wear resistance and fatigue strength of surfaces during electroerosive processing

    Science.gov (United States)

    Fedonin, O. N.; Syanov, S. Yu; Papikyan, A. M.

    2018-03-01

    This article is a generalization of the results of theoretical studies of the effect of erosion control regimes on the operational properties of mold-forming parts of molds. The main problem is the provision of wear resistance and fatigue strength in the electroerosion processing of these types of products. The analysis showed that the fatigue strength is affected by the processing regimes and the coefficient after the erosion treatment. The index of wear resistance is determined both by the treatment modes and by the physical-mechanical properties of the billet materials. To ensure the operational performance of products, it is necessary to establish the physical picture of the processing of complex profile parts by finding the optimum eroding regime.

  6. CrN-based wear resistant hard coatings for machining and forming tools

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S; Cooke, K E; Teer, D G [Teer Coatings Ltd, West Stone House, Berry Hill Industrial Estate, Droitwich, Worcestershire WR9 9AS (United Kingdom); Li, X [School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); McIntosh, F [Rolls-Royce plc, Inchinnan, Renfrewshire PA4 9AF, Scotland (United Kingdom)

    2009-05-21

    Highly wear resistant multicomponent or multilayer hard coatings, based on CrN but incorporating other metals, have been developed using closed field unbalanced magnetron sputter ion plating technology. They are exploited in coated machining and forming tools cutting and forming of a wide range of materials in various application environments. These coatings are characterized by desirable properties including good adhesion, high hardness, high toughness, high wear resistance, high thermal stability and high machining capability for steel. The coatings appear to show almost universal working characteristics under operating conditions of low and high temperature, low and high machining speed, machining of ordinary materials and difficult to machine materials, and machining under lubricated and under minimum lubricant quantity or even dry conditions. These coatings can be used for cutting and for forming tools, for conventional (macro-) machining tools as well as for micromachining tools, either as a single coating or in combination with an advanced, self-lubricating topcoat.

  7. Influence of deep cryogenic treatment on structure and wear resistance of materials of hydraulic breaker chisels

    Science.gov (United States)

    Bolobov, V. I.; BinhLe, Thanh

    2018-03-01

    It is shown that shallow cryogenic treatment at -75°C (SCT) of the materials of hydraulic breaker chisels - P20, 1080 and D2 steels leads to a decrease (44 ÷ 82%) in the amount of retained austenite and an increase (26 ÷ 99%) in the amount of carbides in the structure of hardened steel, which is accompanied by an increase in its hardness (1.4 ÷ 2.1%) and abrasive wear resistance (10 ÷ 31%) with a simultaneous decrease in impact toughness (19 ÷ 24%). Deep cryogenic treatment at -196°C (DCT) and subsequent low-temperature tempering of D2 steel leads to a significant increase in its wear resistance (98%) and impact toughness (32%).

  8. Chemically robust carbon nanotube–PTFE superhydrophobic thin films with enhanced ability of wear resistance

    Institute of Scientific and Technical Information of China (English)

    Kewei Wang; Pan Xiong; Xiuping Xu; Kan Wang; YanLong Li; Yufeng Zheng

    2017-01-01

    A chemically robust superhydrophobic nanocomposite thin film with enhanced wear resistance is prepared from a composite comprising polytetrafluoroethylene (PTFE) and carbon nanotubes. The superhydrophobic thin films with hierarchical structure are fabricated by spraying an environmentally friendly aqueous dispersion containing carbon nanotubes and PTFE resin on silicon wafer. Thin films with a contact angle of 154.1° ± 2° and a sliding angle less than 2° remain superhydrophobic after abrading over 500 times under a pressure of 50 g/cm2. The thin film is also extremely stable even under much stress conditions. To further the understanding of the enhancement of wear resistance, we investigated the formation of microsized structure and their effects. The growth of microbumps is caused by attracting solution droplet to the hydrophilic islands on hydrophobic surface.

  9. Design of Wear-Resistant Austenitic Steels for Selective Laser Melting

    Science.gov (United States)

    Lemke, J. N.; Casati, R.; Lecis, N.; Andrianopoli, C.; Varone, A.; Montanari, R.; Vedani, M.

    2018-03-01

    Type 316L stainless steel feedstock powder was modified by alloying with powders containing carbide/boride-forming elements to create improved wear-resistant austenitic alloys that can be readily processed by Selective Laser Melting. Fe-based alloys with high C, B, V, and Nb contents were thus produced, resulting in a microstructure that consisted of austenitic grains and a significant amount of hard carbides and borides. Heat treatments were performed to modify the carbide distribution and morphology. Optimal hard-phase spheroidization was achieved by annealing the proposed alloys at 1150 °C for 1 hour followed by water quenching. The total increase in hardness of samples containing 20 pct of C/B-rich alloy powder was of 82.7 pct while the wear resistance could be increased by a factor of 6.

  10. DEVELOPMENT OF LASER CLADDING WEAR-RESISTANT COATING ON TITANIUM ALLOYS

    OpenAIRE

    RUILIANG BAO; HUIJUN YU; CHUANZHONG CHEN; BIAO QI; LIJIAN ZHANG

    2006-01-01

    Laser cladding is an advanced surface modification technology with broad prospect in making wear-resistant coating on titanium alloys. In this paper, the influences of laser cladding processing parameters on the quality of coating are generalized as well as the selection of cladding materials on titanium alloys. The microstructure characteristics and strengthening mechanism of coating are also analyzed. In addition, the problems and precaution measures in the laser cladding are pointed out.

  11. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    DEFF Research Database (Denmark)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham

    2016-01-01

    be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing...... findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT....

  12. Hybrid metallic nanocomposites for extra wear-resistant diamond machining tools

    DEFF Research Database (Denmark)

    Loginov, P.A.; Sidorenko, D.A.; Levashov, E.A.

    2018-01-01

    The applicability of metallic nanocomposites as binder for diamond machining tools is demonstrated. The various nanoreinforcements (carbon nanotubes, boron nitride hBN, nanoparticles of tungsten carbide/WC) and their combinations are embedded into metallic matrices and their mechanical properties...... are determined in experiments. The wear resistance of diamond tools with metallic binders modified by various nanoreinforcements was estimated. 3D hierarchical computational finite element model of the tool binder with hybrid nanoscale reinforcements is developed, and applied for the structure...

  13. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    International Nuclear Information System (INIS)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham; Sarri, Gianluca; Ng, Chi-Ho; Sharba, Ahmed; Man, Hau-Chung

    2016-01-01

    Graphical abstract: - Highlights: • Laser technology is a fast, clean and flexible method for surface hardening of TNZT. • Laser can form a protective hard layer on TNZT surface without altering surface roughness. • The laser-formed layer is metallurgically bonded to the substrate. • Laser-treated TNZT is highly resistant to corrosion and wear in Hank's solution. - Abstract: The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti–Nb–Zr–Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti–35.3Nb–7.3Zr–5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  14. IMPROVEMENT OF WEAR-RESISTANCE AND SERVICE LIFE OF MULTI-DISK BRAKE MECHANISMS OF «BELARUS» TRACTOR BY LASER THERMAL HARDENING OF FAST WEARING PARTS

    Directory of Open Access Journals (Sweden)

    O. S. Kobjakov

    2008-01-01

    Full Text Available Problems concerning wear resistance improvement of «Belarus» tractor brake mechanism parts are considered in the paper. Properties of ВЧ-50-pig iron are investigated as a result of laser thermal hardening by various technological methods.

  15. A method for increase abrasive wear resistance parts by obtaining on methods casting on gasifying models

    Science.gov (United States)

    Sedukhin, V. V.; Anikeev, A. N.; Chumanov, I. V.

    2017-11-01

    Method optimizes hardening working layer parts’, working in high-abrasive conditions looks in this work: bland refractory particles WC and TiC in respect of 70/30 wt. % prepared by beforehand is applied on polystyrene model in casting’ mould. After metal poured in mould, withstand for crystallization, and then a study is carried out. Study macro- and microstructure received samples allows to say that thickness and structure received hardened layer depends on duration interactions blend harder carbides and liquid metal. Different character interactions various dispersed particles and matrix metal observed under the same conditions. Tests abrasive wear resistance received materials of method calculating residual masses was conducted in laboratory’ conditions. Results research wear resistance showed about that method obtaining harder coating of blend carbide tungsten and carbide titanium by means of drawing on surface foam polystyrene model before moulding, allows receive details with surface has wear resistance in 2.5 times higher, than details of analogy steel uncoated. Wherein energy costs necessary for transformation units mass’ substances in powder at obtained harder layer in 2.06 times higher, than materials uncoated.

  16. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    Science.gov (United States)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham; Sarri, Gianluca; Ng, Chi-Ho; Sharba, Ahmed; Man, Hau-Chung

    2016-03-01

    The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks' solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  17. Preparation and Properties of Superamphiphobic Wear-resistance PPS-based Coating

    Directory of Open Access Journals (Sweden)

    WANG Huai-yuan

    2017-01-01

    Full Text Available Superamphiphobic wear-resistance PPS-based coatings were prepared by a simple spraying method with a pore-forming reagent of NH4HCO3 and nano-filler of carbon nanotubes (CNTs.The surface morphology and the hydrophobicity,oleophobicity of the coating were analyzed by scanning electron microscope (SEM and contact angle meter.The wear-resistance of the coating was verified by sanding method with given load.The results indicate that a rough surface is obtained after pore-forming,and the porous structures in combination with the CNTs construct the special micro/nano-scale network structures.When the mass fraction of NH4HCO3 is 5%,the contact angles of the coating for water,glycerine and ethylene glycol are 162°,158° and 152°,showing superamphiphobic property.After polished 10000 times by abrasive paper,the coating shows slight friction marks and remains high hydrophobicity,exhibiting excellent wear-resistance.

  18. Laser cladding of copper with molybdenum for wear resistance enhancement in electrical contacts

    International Nuclear Information System (INIS)

    Ng, K.W.; Man, H.C.; Cheng, F.T.; Yue, T.M.

    2007-01-01

    Laser cladding of Mo on Cu has been attempted with the aim of enhancing the wear resistance and hence increasing the service life of electrical contacts made of Cu. In order to overcome the difficulties arising from the large difference in thermal properties and the low mutual solubility between Cu and Mo, Ni was introduced as an intermediate layer between Mo and Cu. The Ni and Mo layers were laser clad one after the other to form a sandwich layer of Mo/Ni/Cu. Excellent bonding between the clad layer and the Cu substrate was ensured by strong metallurgical bonding. The hardness of the surface of the clad layer is seven times higher than that of the Cu substrate. Pin-on-disc wear tests consistently showed that the abrasive wear resistance of the clad layer was also improved by a factor of seven as compared with untreated Cu substrate. The specific electrical contact resistance of the clad surface was about 5.6 x 10 -7 Ω cm 2

  19. Development of in-situ ZrC reinforced iron based composites for wear resistance applications

    International Nuclear Information System (INIS)

    Bandyopadhyay, T.K.; Das, K.

    2002-01-01

    A common objective behind the processing of iron-based composites is to improve the wear resistance of steels by incorporating some reinforcing phases, e.g., carbides and oxides. In the present investigation, iron-based zirconium carbide reinforced composite is produced by the aluminothermic reduction of zircon sand (ZrSiO 4 ) and blue dust (Fe 2 O 3 ) in the presence of carbon. Aluminothermic reduction of blue dust and zircon sand, being highly exothermic in nature, essentially leads to a self-propagating high-temperature synthesis (SHS) of the Fe-ZrC composite. The as-cast composite is characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties of the composite and the effect of heat treatment on the microstructure are evaluated. The composite possess sufficient hardness and promising abrasive wear resistance property. The abrasive wear resistance property of the Fe-ZrC composite is compared with that of a M2 grade tool material and it is found to be better than the tool material. The composite also possess good high temperature stability. (author)

  20. Nitriding the influence of plasma in resistance to wear micro abrasive tool steel AISI D2

    International Nuclear Information System (INIS)

    Gobbi, Vagner Joao; Gobb, Silvio Jose; Silva, Cosme Roberto Moreira da

    2010-01-01

    This work studies the influence of time of treatment in the formation of nitride layer of AISI D2 tool steel and the resistance to micro-abrasive wear from the technique of nitriding in plasma. The samples were nitrides at 400 ° C with a pressure of 4.5 mbar (450 Pa) and using a gas mixture of 80% vol.H2 and 20% vol.N2. The times of treatment were: 30, 60, 120, 180 and 360 minutes. The properties of the layers in the samples obtained nitrides were assessed by surface microhardness, profiles of microhardness, metallography analysis, X-ray diffraction and test for resistance to micro-abrasive wear. The best results for nitriding to 400 deg C, was obtained with the time of treatment of 360 minutes. In this case the increase in surface hardness was 94.6% and resistance to micro-abrasive wear of 15%. This increase in hardness may be associated with high concentration of nitrogen in the crystalline network of iron-α and additional training of nitrides. Low temperature of nitriding reduces between grain fragility to reduce the likelihood of precipitation of nitrides in a continuous manner in the austenite grain boundaries and the absence of previous ε'+ γ phases. (author)

  1. Enhanced wear resistance of production tools and steel samples by implantation of nitrogen and carbon ions

    International Nuclear Information System (INIS)

    Mikkelsen, N.J.; Straede, C.A.

    1992-01-01

    In recent years ion implantation has become a feasible technique for obtaining improved wear resistance of production tools. However, basic knowledge of how and in which cases ion implantation is working at its best is still needed. The present paper discusses structural and tribological investigations of carbon and nitrogen implanted steels. The nitrogen data were obtained mainly from field tests and the investigation of carbon implantations took place mainly in the laboratory. A study was made of how the tribological behaviour of implanted steels changes with different implantation parameters. The tribological laboratory investigations were carried out using pin-on-disc equipment under controlled test conditions, and deal with high dose carbon implantation (approximately (1-2)x10 18 ions cm -2 ). The wear resistance of steels was enhanced dramatically, by up to several orders of magnitude. The field test results cover a broad range of ion implanted production tools, which showed a marked improvement in wear resistance. Nitrogen implanted tools are also compared with carbon and titanium implanted tools. (orig.)

  2. Microstructure and wear behaviors of laser clad NiCr/Cr3C2-WS2 high temperature self-lubricating wear-resistant composite coating

    Science.gov (United States)

    Yang, Mao-Sheng; Liu, Xiu-Bo; Fan, Ji-Wei; He, Xiang-Ming; Shi, Shi-Hong; Fu, Ge-Yan; Wang, Ming-Di; Chen, Shu-Fa

    2012-02-01

    The high temperature self-lubricating wear-resistant NiCr/Cr3C2-30%WS2 coating and wear-resistant NiCr/Cr3C2 coating were fabricated on 0Cr18Ni9 austenitic stainless steel by laser cladding. Phase constitutions and microstructures were investigated, and the tribological properties were evaluated using a ball-on-disc wear tester under dry sliding condition at room-temperature (17 °C), 300 °C and 600 °C, respectively. Results indicated that the laser clad NiCr/Cr3C2 coating consisted of Cr7C3 primary phase and γ-(Fe,Ni)/Cr7C3 eutectic colony, while the coating added with WS2 was mainly composed of Cr7C3 and (Cr,W)C carbides, with the lubricating WS2 and CrS sulfides as the minor phases. The wear tests showed that the friction coefficients of two coatings both decrease with the increasing temperature, while the both wear rates increase. The friction coefficient of laser clad NiCr/Cr3C2-30%WS2 is lower than the coating without WS2 whatever at room-temperature, 300 °C, 600 °C, but its wear rate is only lower at 300 °C. It is considered that the laser clad NiCr/Cr3C2-30%WS2 composite coating has good combination of anti-wear and friction-reducing capabilities at room-temperature up to 300 °C.

  3. Influence of Heat Treatment on Abrasive Wear Resistance of Silumin Matrix Composite Castings

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2016-03-01

    Full Text Available The authors attempted at examining the effect of heat treatment on abrasive wear resistance of metal composite castings. Metal matrix composites were made by infiltrating preforms created from unordered short fibers (graphite or silumin with liquid aluminium alloy AlSi12(b. Thus prepared composites were subject to solution heat treatment at a temperature of 520°C for four hours, then aging at a temperature of 220°C for four hours. Abrasion resistance of the material was tested before and after thermal treatment.

  4. Improvement of Scratch and Wear Resistance of Polymers by Fillers Including Nanofillers

    Directory of Open Access Journals (Sweden)

    Witold Brostow

    2017-03-01

    Full Text Available Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs. We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic—with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention.

  5. Effect of Volume Fraction of Particle on Wear Resistance of Al2O3/Steel Composites at Elevated Temperature

    Institute of Scientific and Technical Information of China (English)

    BAO Chong-gao; WANG En-ze; GAO Yi-min; XING Jian-dong

    2005-01-01

    Based on previous work,abrasive wear resistance of Al2 O3/steel composites with different Al2 O3 parti cle volume fraction (VOF) at 900 C was investigated.The experimental results showed that a suitable particle VOF is important to protect the metal matrix from wear at elevated temperature.Both too high and too low particle VOF lead to a poor abrasive wear because a bulk matrix is easily worn off by grits when it exceeds the suitable VOF and also because when VOF is low,the Al2O3 particles are easily dug out by grits during wearing as well.When the particle VOF is 39%,the wear resistance of tested composites is excellent.

  6. Hydrothermal development and characterization of the wear-resistant boron carbide from Pandanus: a natural carbon precursor

    Science.gov (United States)

    Saritha Devi, H. V.; Swapna, M. S.; Ambadas, G.; Sankararaman, S.

    2018-04-01

    Boron carbide (B4C) is a prominent semiconducting material that finds applications in the field of science and technology. The excellent physical, thermal and electronic properties make it suitable as ceramic armor, wear-resistant, lens polisher and neutron absorber in the nuclear industry. The existing methods of synthesis of boron carbide involve the use of toxic chemicals that adversely affect the environment. In the present work, we report for the first time the use of the hydrothermal method, for converting the cellulose from Pandanus leaves as the carbon precursor for the synthesis of B4C. The carbon precursor is changed into porous functionalized carbon by treating with sodium borohydride (NaBH4), followed by treating with boric acid to obtain B4C. The samples are characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, Raman, photoluminescent and Ultraviolet-Visible absorption spectroscopy. The formation of B4C from natural carbon source— Pandanus presents an eco-friendly, economic and non-toxic approach for the synthesis of refractory carbides.

  7. Application of response surface methodology on investigating flank wear in machining hardened steel using PVD TiN coated mixed ceramic insert

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Sahoo

    2013-10-01

    Full Text Available The paper presents the development of flank wear model in turning hardened EN 24 steel with PVD TiN coated mixed ceramic insert under dry environment. The paper also investigates the effect of process parameter on flank wear (VBc. The experiments have been conducted using three level full factorial design techniques. The machinability model has been developed in terms of cutting speed (v, feed (f and machining time (t as input variable using response surface methodology. The adequacy of model has been checked using correlation coefficients. As the determination coefficient, R2 (98% is higher for the model developed; the better is the response model fits the actual data. In addition, residuals of the normal probability plot lie reasonably close to a straight line showing that the terms mentioned in the model are statistically significant. The predicted flank wear has been found to lie close to the experimental value. This indicates that the developed model can be effectively used to predict the flank wear in the hard turning. Abrasion and diffusion has been found to be the dominant wear mechanism in machining hardened steel from SEM micrographs at highest parametric range. Machining time has been found to be the most significant parameter on flank wear followed by cutting speed and feed as observed from main effect plot and ANOVA study.

  8. A nanometric cushion for enhancing scratch and wear resistance of hard films

    Directory of Open Access Journals (Sweden)

    Katya Gotlib-Vainshtein

    2014-07-01

    Full Text Available Scratch resistance and friction are core properties which define the tribological characteristics of materials. Attempts to optimize these quantities at solid surfaces are the subject of intense technological interest. The capability to modulate these surface properties while preserving both the bulk properties of the materials and a well-defined, constant chemical composition of the surface is particularly attractive. We report herein the use of a soft, flexible underlayer to control the scratch resistance of oxide surfaces. Titania films of several nm thickness are coated onto substrates of silicon, kapton, polycarbonate, and polydimethylsiloxane (PDMS. The scratch resistance measured by scanning force microscopy is found to be substrate dependent, diminishing in the order PDMS, kapton/polycarbonate, Si/SiO2. Furthermore, when PDMS is applied as an intermediate layer between a harder substrate and titania, marked improvement in the scratch resistance is achieved. This is shown by quantitative wear tests for silicon or kapton, by coating these substrates with PDMS which is subsequently capped by a titania layer, resulting in enhanced scratch/wear resistance. The physical basis of this effect is explored by means of Finite Element Analysis, and we suggest a model for friction reduction based on the "cushioning effect” of a soft intermediate layer.

  9. Microstructure and wear resistance of a laser clad TiC reinforced nickel aluminides matrix composite coating

    International Nuclear Information System (INIS)

    Chen, Y.; Wang, H.M.

    2004-01-01

    Wear resistant TiC/(NiAl-Ni 3 Al) composite coating was fabricated on a substrate of electrolyzed nickel by laser cladding using Ni-Al-Ti-C alloy powders. The laser clad coating is metallurgically bonded to the substrate and has a homogenous fine microstructure consisting of the flower-like equiaxed TiC dendrite and the dual phase matrix of NiAl and Ni 3 Al. The intermetallic matrix composite coating exhibits excellent wear resistance under both room- and high-temperature sliding wear test conditions due to the high hardness of TiC coupled with the strong atomic bonds of intermetallic matrix

  10. Improvement of the wear resistance of electroplated Au-Ni coatings by Zr ion bombardment of Ni-B sublayer

    International Nuclear Information System (INIS)

    Lyazgin, Alexander; Shugurov, Artur; Sergeev, Viktor; Neufeld, Vasily; Panin, Alexey; Shesterikov, Evgeny

    2015-01-01

    The effect of bombardment of the Ni-B sublayer by Zr ion beams on the surface morphology and tribomechanical properties of Au-Ni coatings was investigated. It was found that the treatment has no significant effect on the surface roughness and grain size of the Au-Ni coatings, while it provides essential reducing of their friction coefficient and improvement of wear resistance. It is shown that increased wear resistance of these coatings was caused by their strain hardening resulted from localization of plastic strain. The optimal Zr fluence were determined that provide the maximum reduction of linear wear of the coatings

  11. The Tribological Performance of Hardfaced/ Thermal Sprayed Coatings for Increasing the Wear Resistance of Ventilation Mill Working Parts

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2015-09-01

    Full Text Available During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings. The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill’s working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC.

  12. Wear Resistance and Mechanical Behaviour of Epoxy/Mollusk Shell Biocomposites developed for Structural Applications

    Directory of Open Access Journals (Sweden)

    I.O. Oladele

    2016-09-01

    Full Text Available Epoxy resin is one of the strongest commercially exploitable thermosetting polymers in the polymer family; however its expensive nature in comparison with other thermosetting polymers such as vinylester and polyester limits its applications as a structural material. Inexpensive fillers on the other hand, especially those derived from agro-industrial wastes are very important in reducing the overall cost of polymer composites and furthermore influential in enhancing some of their engineering properties. In the present study, the wear resistance and mechanical behaviour of epoxy polymer matrix filled with <75 and 75 μm calcined particles of African land snail shells have been comparatively investigated. The wear resistance and the mechanical behaviour of the composites were studied via Taber Abraser and INSTRON universal testing machine. Also, the elemental constituents of the calcined snail shell and the epoxy biocomposites were characterized by X-Ray Fluorescence Spectroscopy and Scanning Electron Microscopy/Energy Dispersion Spectroscopy. From the experimental results, it was observed that, at the highest filler loading, smaller particle size presented a biocomposite with significant enhancement in wear and mechanical properties. However, it was also observed that increase in particle size showed no significant enhancement in the mechanical properties of the biocomposites.

  13. Recycled Aluminium Cans/Eggshell Composites: Evaluation of Mechanical and Wear Resistance Properties

    Directory of Open Access Journals (Sweden)

    J.O. Agunsoye

    2015-03-01

    Full Text Available Aluminium based metal matrix composites have been produced from recycled aluminium cans and 150µm sized eggshell particles using a stir cast process. The mechanical properties of the control and aluminium can/eggshell composites produced have been investigated. The microstructures of the aluminium can/eggshell composites were examined with the aids of Scanning Electron Microscope (SEM after the sample surfaces have been carefully prepared and etched with aqueous solution of 0.5 cm3 nitric acid. Micrographs revealed that there was a homogenous distribution of eggshell particles within the aluminium can matrix. An indication of effective stirring action during the melting process. The wear resistance was also investigated under different applied loads (6 to 14 N on an abrasive surface emery paper of grade 220. The results revealed an increase in Young’s modulus of elasticity and yield stress from 1,206.45 and 50.23 Mpa respectively of the cast aluminium can with 0 % eggshell particle to the maximum of 3,258.87and 73.2 MPa of aluminium can/12 % eggshell composites. The hardness values increased from 66.23 to 75.13 VN. There was a gradual increase in wear rate of the tested samples as the applied load increased. However, the wear resistance of the aluminium can/6 % eggshell and aluminium can/12 % eggshell composites increased significantly. Hence, recycling of aluminium cans and eggshells can be harnessed into development of useful engineering metal matrix composite materials.

  14. Improvement of the Wear Resistance of Ferrous Alloys by Electroless Plating of Nickel

    Science.gov (United States)

    Kaleicheva, J. K.; Karaguiozova, Z.

    2018-01-01

    The electroless nickel (Ni) and composite nickel - nanodiamond (Ni+DND) coatings are investigated in this study. The method EFTTOM-NICKEL for electroless nickel plating with nanosized strengthening particles (DND 4-6 nm) is applied for the coating deposition. The coatings are deposited on ferrous alloys samples. The wear resistance of the coatings is performed by friction wear tests under 50-400 MPa loading conditions - in accordance with a Polish Standard PN-83/H-04302. The microstructure observations are made by optic metallographic microscope GX41 OLIMPUS and the microhardness is determined by Vickers Method. Tests for wear resistance, thickness and microhardness measurements of the coatings without heat treatment and heat treatment are performed. The heat treatment regime is investigated with the aim to optimize the thermal process control of the coated samples without excessive tempering of the substrate material. The surface fatigue failure is determined by contact fatigue test with the purpose to establish suitable conditions for production of high performance materials.

  15. Electrodeposited Ni-B coatings: Formation and evaluation of hardness and wear resistance

    International Nuclear Information System (INIS)

    Krishnaveni, K.; Sankara Narayanan, T.S.N.; Seshadri, S.K.

    2006-01-01

    The formation of electrodeposited Ni-B alloy coatings using a dimethylamine borane (DMAB) modified Watt's nickel bath and evaluation of their structural characteristics, hardness and wear resistance are discussed. The boron content in the electrodeposited Ni-B alloy coating is determined by the ratio of rate of reduction of nickel and rate of decomposition of DMAB. The boron content of the electrodeposited Ni-B coating decreases as the current density increased from 0.4 to 4 A dm -2 . XRD diffraction pattern of electrodeposited Ni-B coatings in their as-plated condition exhibits the presence of Ni (1 1 1) (2 0 0) and (2 2 0) reflections with (1 1 1) texture. Heat treatment at 400 deg. C for 1 h has resulted in the formation of nickel boride phases, which results in an increase in hardness and wear resistance. The mechanism of wear in electrodeposited Ni-B coatings is intensive plastic deformation of the coating due to the ploughing action of the hard counter disk

  16. Ion implantation and ion assisted coatings for wear resistance in metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The implantation of electrically accelerated ions of chosen elements into the surface of material provides a method for improving surface properties such as wear resistance. High concentrations of nitrogen implanted into metals create obstacles to dislocation movement, and certain combinations of metallic and non-metallic species will also strengthen the surface. The process is best applied to situations involving mild abrasive wear and operating temperatures that are not too high. Some dramatic increases in life have been reported under such favourable conditions. A more recent development has been the combination of a thin coating with reactive ion bombardment designed to enhance adhesion by ion mixing at the interface and so provide hardness by the formation of finely dispersed nitrides, including cubic boron nitride. These coatings often possess vivid and decorative colours as an added benefit. Developments in the equipment for industrial ion implantation now offer more attractive costs per unit area and a potentially greater throughput of work. A versatile group of related hard vacuum treatments is now emerging, involving the use of intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (author)

  17. Microstructure and Wear Resistance of TIG Remelted NiCrBSi Thick Coatings

    Directory of Open Access Journals (Sweden)

    Guo-lu Li

    2018-01-01

    Full Text Available The self-fluxing NiCrBSi coatings with 800 μm thickness were prepared on the surface of AISI1045 steel substrate by plasma spraying. And the remelted coating was obtained using by the tungsten inert gas (TIG arc process. The microstructure, surface roughness, hardness, phase composition, and wear resistance of the sprayed coating and remelted coating were systematically investigated. The results demonstrate that TIG remelted treatment can significantly eliminate the microscopic defects in thick coating and improve its density. The surface roughness (Ra of the remelted coating is only 18.9% of the sprayed coating. The hardness of the remelted coating is 26.8% higher than that of the sprayed coating. The main phases in the sprayed coating are changed from γ-Ni, Cr7C3, and Cr2B to γ-Ni, Cr23C6, CrB, Ni3B, and Fe3C. The wear mass loss of the remelted coating is only 17.1% of the sprayed coating. Therefore, a Ni-based thick coating with good wear resistance can be obtained by plasma spraying and remelted technique.

  18. The influence of nominal stress on wear factors of carbon fibre-reinforced polyetheretherketone (PEEK-OPTIMA® Wear Performance) against zirconia toughened alumina (Biolox® delta ceramic).

    Science.gov (United States)

    Evans, Andrew; Horton, Henrietta; Unsworth, Anthony; Briscoe, Adam

    2014-06-01

    Carbon fibre-reinforced polyetheretherketone is an attractive alternative to ultra-high-molecular-weight polyethylene in artificial joints, but little has been published on the influence of stress on the wear factor. We know that in ultra-high-molecular-weight polyethylene, the wear factor reduces as the normal stress increases, which is counter-intuitive but very helpful in the case of non-conforming contacts. In this study, carbon fibre-reinforced polyetheretherketone (PEEK-OPTIMA ® Wear Performance) has been investigated in a pin-on-plate machine under steady loads and under stresses typical of hip and knee joints. At stresses below about 6 MPa, wear factors are between 10 and a 100 times lower than for ultra-high-molecular-weight polyethylene but at higher stresses the wear factors increase substantially. © IMechE 2014.

  19. High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools

    Science.gov (United States)

    Valls, I.; Hamasaiid, A.; Padré, A.

    2017-09-01

    In hot stamping/press hardening, in addition to its shaping function, the tool controls the cycle time, the quality of the stamped components through determining the cooling rate of the stamped blank, the production costs and the feasibility frontier for stamping a given component. During the stamping, heat is extracted from the stamped blank and transported through the tool to the cooling medium in the cooling lines. Hence, the tools’ thermal properties determine the cooling rate of the blank, the heat transport mechanism, stamping times and temperature distribution. The tool’s surface resistance to adhesive and abrasive wear is also an important cost factor, as it determines the tool durability and maintenance costs. Wear is influenced by many tool material parameters, such as the microstructure, composition, hardness level and distribution of strengthening phases, as well as the tool’s working temperature. A decade ago, Rovalma developed a hot work tool steel for hot stamping that features a thermal conductivity of more than double that of any conventional hot work tool steel. Since that time, many complimentary grades have been developed in order to provide tailored material solutions as a function of the production volume, degree of blank cooling and wear resistance requirements, tool geometries, tool manufacturing method, type and thickness of the blank material, etc. Recently, Rovalma has developed a new generation of high thermal conductivity, high wear resistance tool steel grades that enable the manufacture of cost effective tools for hot stamping to increase process productivity and reduce tool manufacturing costs and lead times. Both of these novel grades feature high wear resistance and high thermal conductivity to enhance tool durability and cut cycle times in the production process of hot stamped components. Furthermore, one of these new grades reduces tool manufacturing costs through low tool material cost and hardening through readily

  20. Wear resistant PTFE thin film enabled by a polydopamine adhesive layer

    International Nuclear Information System (INIS)

    Beckford, Samuel; Zou, Min

    2014-01-01

    The influence of a polydopamine (PDA) adhesive layer on the friction and wear resistance of polytetrafluoroethylene (PTFE) thin films coated on stainless steel was investigated. The friction and wear tests were carried out using a ball on flat configuration under a normal load of 50 g, sliding speed of 2.5 mm/s, and stroke length of 15 mm. It is found that the PDA/PTFE film is able to withstand approximately 500 times more rubbing cycles than the PTFE film alone. X-ray photoelectron spectroscopy (XPS) results show that a tenacious layer of PTFE remains adhered to the PDA layer, which enables the durability of the PDA/PTFE film. Because of the relatively low thickness of the film, PDA/PTFE shows great potential for use in applications where durable, thin films are desirable

  1. The use of ion implantation for the improvement of abrasive wear resistance

    International Nuclear Information System (INIS)

    Delves, B.G.; Dearnaley, G.

    1979-01-01

    At the conclusion of the 1977 IPAT conference a practical problem was described which called for an economically feasible method of improving the resistance of tool steel, chromium and other alloys to abrasive wear sustained during the injection moulding of phenolic resin. This paper will describe subsequent work to investigate ion implantation as a possible means of treating steel taps, injection nozzles, feed wear pads, cavity moulds etc. Various problems were encountered and it will be described how most of these have now been overcome. Under favourable conditions factors of 4, and sometimes up to 10 times the normal life can be achieved. An attempt will be made to estimate some of the economic benefits of the process. (author)

  2. Wear Resistance of Steel 20MnCr5 After Surfacing with Micro-jet Cooling

    Directory of Open Access Journals (Sweden)

    Tarasiuk W.

    2016-09-01

    Full Text Available This paper presents results of experimental research concerning the impact of an innovative method of micro-jet cooling on the padding weld performed with MIG welding. Micro-jet cooling is a novel method patented in 2011. It enables to steer the parameters of weld cooling in a precise manner. In addition, various elements which may e.g. enhance hardness or alter tribological properties can be entered into its top surface, depending on the applied cooling gas. The material under study was steel 20MnCr5, which was subject to the welding process with micro-jet cooling and without cooling. Nitrogen was used as a cooling gas. The main parameter of weld assessment was wear intensity. The tests were conducted in a tribological pin-on-disc type position. The following results exhibit growth at approximately 5% in wear resistance of padding welds with micro-jet cooling.

  3. Study of the effect of nano surface morphology on the stain-resistant property of ceramic tiles

    International Nuclear Information System (INIS)

    Pan, S P; Hung, J K; Liu, Y T

    2014-01-01

    In this study, six types of commercially available ceramic tiles, including nano-structured ceramic tiles and regular ceramic tiles, were selected to investigate the effect of surface morphology on their stain-resistant property. The stain-resistant efficiencies of various ceramic tiles with nano-size surface were measured in order to determine the appropriate method for testing ceramic tiles with nano-structure surface

  4. Modeling and Investigation of the Wear Resistance of Salt Bath Nitrided Aisi 4140 via ANN

    Science.gov (United States)

    Ekinci, Şerafettin; Akdemir, Ahmet; Kahramanli, Humar

    2013-05-01

    Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.

  5. Inventions in the nanotechnological area considerably increase wear- and chemical resistance of construction products

    Directory of Open Access Journals (Sweden)

    VLASOV Vladimir Alexeevich

    2014-08-01

    Full Text Available The invention «Reinforced flaked element made of natural or conglomerate stone and its multilayer protective coating (RU 2520193» is referred to construction materials. Reinforced flaked element made of natural or conglomerate stone consists of: natural or conglomerate materials as the basis; multilayer coating which protects the mentioned basis from chemical substances and wearing mechanical factors influencing on this element where the multilayer coating includes at least three layers formed by one or many film-forming compositions which comprise top layer with scratch-resistant nanoparticles and encircled with polyester, melamine, phenolic, acryl or epoxy resin (or any combination of them which provides protection against scratches; damper intermediate layer made of epoxy and/or acryl resin which provides impact resistant; lower layer adjoining to the basis and containing particles of Al2O3 or silicon carbide plus acryl polymer and providing resistance to abrasive wear. Technical result is increased wear- and chemical resistance of flaked elements from natural or conglomerate materials. The invention «Fine organic suspension of carbon metal-containing nanostructures and the method to produce it (RU 2515858» is referred to the area of physical and colloid chemistry and can be used to obtain polymer compositions. Fine organic suspension of carbon metal-containing nanostructures is produced by interaction between nanostructures and polyethylenepolyamine. At first the powder of carbon metalcontaining nanostructures (which are nanoparticles of 3d-metal such as copper, cobalt, nickel stabilized in carbon nanostructures is mechanically milled, then it is mechanically ground with polyethylenepolyamine introduced portionally unless and until the content of nanostructures is less 1 g/ml. The invention results in decreased power inputs as the obtained fine organic suspension of carbon and metal-containing nanostructures is able to recover due to

  6. [Comparison of in vivo characteristics of polyethylene wear particles produced by a metal and a ceramic femoral component in total knee replacement].

    Science.gov (United States)

    Veigl, D; Vavřík, P; Pokorný, D; Slouf, M; Pavlova, E; Landor, I

    2011-01-01

    The aim of the study was to evaluate in vivo and compare, in terms of the quality and number of ultra high-molecular polyethylene (UHMWPE) wear particles, total knee replacements of identical construction differing only in the material used for femoral component production, i.e., CoCrMo alloy or ZrO2 ceramics. Samples of peri-prosthetic granuloma tissue were collected in two patients with total knee replacement suffering from implant migration, who were matched in relevant characteristics. The primary knee replacement in Patient 1 with a CoCrMo femoral component was done 7.2 years and in Patient 2 with a ZrO2 implant 6.8 years before this assessment. The polyethylene wear-induced granuloma was analysed by the MORF method enabling us to assess the shape and size of wear debris and the IRc method for assessment of particle concentration. In the granuloma tissue samples of Patient 1, on the average, particles were 0.30 mm in size and their relative volume was 0.19. In the Patient 2 tissue samples, the average size of particles was 0.33 mm and their relative volume was 0.26. There was no significant difference in either particle morphology or their concentration in the granuloma tissue between the two patients. One of the options of how to reduce the production of polyethylene wear particles is to improve the tribological properties of contacting surfaces in total knee replacement by substituting a cobalt-chrome femoral component with a zirconia ceramic femoral component. The previous in vitro testing carried out with a mechanical simulator under conditions approaching real weight-bearing in the human body did show a nearly three-fold decrease in the number of UHMWPE wear particles in zirconia components. The evaluation of granuloma tissue induced by the activity of a real prosthetic joint for nearly seven years, however, did not reveal any great difference in either quality or quantity of polyethylene debris between the two replacements. The difference of surface

  7. Strength and wear resistance of a dental glass-ionomer cement with a novel nanofilled resin coating.

    Science.gov (United States)

    Lohbauer, Ulrich; Krämer, Norbert; Siedschlag, Gustavo; Schubert, Edward W; Lauerer, Brigitte; Müller, Frank A; Petschelt, Anselm; Ebert, Johannes

    2011-04-01

    To evaluate the influence of different resin coating protocols on the fracture strength and wear resistance of a commercial glass-ionomer cement (GIC). A new restorative concept [Equia (GC Europe)] has been introduced as a system application consisting of a condensable GIC (Fuji IX GP Extra) and a novel nanofilled resin coating material (G-Coat Plus). Four-point fracture strength (FS, 2 x 2 x 25 mm, 14-day storage, distilled water, 37 degrees C) were produced and measured from three experimental protocols: no coating GIC (Group 1), GIC coating before water contamination (Group 2), GIC coating after water contamination (Group 3). The strength data were analyzed using Weibull statistics. Three-body wear resistance (Group 1 vs. Group 2) was measured after each 10,000 wear cycles up to a total of 200,000 cycles using the ACTA method. GIC microstructure and interfaces between GIC and coating materials were investigated under SEM and CLSM. The highest FS of 26.1 MPa and the most homogenous behavior (m = 7.7) has been observed in Group 2. The coated and uncoated GIC showed similar wear resistance until 90,000 cycles. After 200,000 wear cycles, the coated version showed significantly higher wear rate (ANOVA, P< 0.05). The coating protocol has been shown to determine the GIC fracture strength. Coating after water contamination and air drying is leading to surface crack formation thus significantly reducing the FS. The resin coating showed a proper sealing of GIC surface porosities and cracks. In terms of wear, the coating did not improve the wear resistance of the underlying cement as similar or higher wear rates have been measured for Group 1 versus Group 2.

  8. Glass-ceramics frits for high mechanical resistance glazes

    International Nuclear Information System (INIS)

    Gajek, M.; Lis, J.; Partyka, J.; Wojczyk, M.

    2004-01-01

    The obtaining and application of glass-ceramics frits for glazes were discussed by many authors. This glazes are characterized by raised mechanical parameters and chemical resistance. Factors, that determines crystallization process are initial composition, heat treatment and nucleation agents. The kind of crystalline phases, crystal habit and the content of residual glass phase play the decisive role in the strengthening of the glaze. In this paper are shown results of investigation over controlled crystallization in the ternary systems; Li 2 O-Al 2 O 3 -SiO 2 , CaO-Al 2 O 3 -SiO 2 , ZnO-Al 2 O 3 -SiO 2 , MgO-Al 2 O 3 -SiO 2 , with or without nucleation agents. (author)

  9. Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier

    International Nuclear Information System (INIS)

    Barletta, M.; Gisario, A.; Puopolo, M.; Vesco, S.

    2015-01-01

    Highlights: • Polysiloxane coatings as protective barriers to delay erosion/corrosion of Fe 430 B metal substrates. • Methyl groups feature a very small steric hindrance and confer ductility to the Si–O–Si backbone. • Phenyl groups feature a larger steric hindrance, but they ensure stability and high chemical inertness. • Remarkable adhesion to the substrate, good scratch resistance and high wear endurance. • Innovative ways to design of long lasting protective barriers against corrosion and aggressive chemicals. - Abstract: Polysiloxanes are widely used as protective barriers to delay erosion/corrosion and increase chemical inertness of metal substrates. In the present work, a high molecular weight methyl phenyl polysiloxane resin was designed to manufacture a protective coating for Fe 430 B structural steel. Methyl groups feature very small steric hindrance and confer ductility to the Si–O–Si backbone of the organic inorganic hybrid resin, thus allowing the achievement of high thickness. Phenyl groups feature larger steric hindrance, but they ensure stability and high chemical inertness. Visual appearance and morphology of the coatings were studied by field emission scanning electron microscopy and contact gauge surface profilometry. Micro-mechanical response of the coatings was analyzed by instrumented progressive load scratch, while wear resistance by dry sliding linear reciprocating tribological tests. Lastly, chemical inertness and corrosion endurance of the coatings were evaluated by linear sweep voltammetry and chronoamperometry in aggressive acid environment. The resulting resins yielded protective materials, which feature remarkable adhesion to the substrate, good scratch resistance and high wear endurance, thus laying the foundations to manufacture long lasting protective barriers against corrosion and, more in general, against aggressive chemicals

  10. Effect of Cu content on wear resistance and mechanical behavior of Ti-Cu binary alloys

    Science.gov (United States)

    Yu, Feifei; Wang, Hefeng; Yuan, Guozheng; Shu, Xuefeng

    2017-04-01

    Arc melting with nonconsumable tungsten electrode and water-cooled copper crucible was used to fabricate Ti-Cu binary alloys with different Cu contents in an argon atmosphere. The compositions and phase structures of the fabricated alloys were investigated by glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). Nanoindentation tests through continuous stiffness measurement were then performed at room temperature to analyze the mechanical behaviors of the alloys. Results indicated that the composition of each Ti-Cu binary alloy was Ti(100- x) Cu x ( x = 43, 60, 69, and 74 at.%). The XRD analysis results showed that the alloys were composed of different phases, indicating that different Cu contents led to the variations in alloy hardness. The wear tests results revealed that elemental Cu positively affects the wear resistance properties of the Ti-Cu alloys. Nanoindentation testing results showed that the moduli of the Ti-Cu alloys were minimally changed at increasing Cu content, whereas their hardness evidently increased according to the wear test results.

  11. Influence of the ion nitriding temperature in the wear resistance of AISI H13 tool steel

    International Nuclear Information System (INIS)

    Heck, Stenio Cristaldo; Fernandes, Frederico Augusto Pires; Pereira, Ricardo Gomes; Casteletti, Luiz Carlos; Totten, George Edward

    2010-01-01

    The AISI H13 tool steel for hot work is the most used in its category. This steel was developed for injection molds and extrusion of hot metals as well as for conformation in hot presses and hammers. Plasma nitriding can improve significantly the surface properties of these steels, but the treatments conditions, such as temperature, must be optimized. In this work the influence of nitriding treatment temperature on the wear behavior of this steel is investigated. Samples of AISI H13 steel were quenched and tempered and then ion nitrided in the temperatures of 450, 550 and 650 deg C, at 4mbar pressure, during 5 hours. Samples of the treated material were characterized by optical microscopy, Vickers microhardness, x-ray analysis and wear tests. Plasma nitriding formed hard diffusion zones in all the treated samples. White layers were formed in samples treated at 550 deg C and 650 deg C. The treatment temperature of 450 deg C produced the highest hardness. Treatment temperature showed great influence in the diffusion layer thickness. X-ray analysis indicated the formation of the Fe_3N, Fe_4N and CrN phases for all temperatures, but with different concentrations. Nitriding increased significantly the AISI H13 wear resistance. (author)

  12. A material based approach to creating wear resistant surfaces for hot forging

    Science.gov (United States)

    Babu, Sailesh

    Tools and dies used in metal forming are characterized by extremely high temperatures at the interface, high local pressures and large metal to metal sliding. These harsh conditions result in accelerated wear of tooling. Lubrication of tools, done to improve metal flow drastically quenches the surface layers of the tools and compounds the tool failure problem. This phenomenon becomes a serious issue when parts forged at complex and are expected to meet tight tolerances. Unpredictable and hence uncontrolled wear and degradation of tooling result in poor part quality and premature tool failure that result in high scrap, shop downtime, poor efficiency and high cost. The objective of this dissertation is to develop a computer-based methodology for analyzing the requirements hot forging tooling to resist wear and plastic deformation and wear and predicting life cycle of forge tooling. Development of such is a system is complicated by the fact that wear and degradation of tooling is influenced by not only the die material used but also numerous process controls like lubricant, dilution ratio, forging temperature, equipment used, tool geometries among others. Phenomenological models available u1 the literature give us a good thumb rule to selecting materials but do not provide a way to evaluate pits performance in field. Once a material is chosen, there are no proven approaches to create surfaces out of these materials. Coating approaches like PVD and CVD cannot generate thick coatings necessary to withstand the conditions under hot forging. Welding cannot generate complex surfaces without several secondary operations like heat treating and machining. If careful procedures are not followed, welds crack and seldom survive forging loads. There is a strong need for an approach to selectively, reliably and precisely deposit material of choice reliably on an existing surface which exhibit not only good tribological properties but also good adhesion to the substrate

  13. Influence of the modes of laser cladding on bond strength and wear resistance of coatings

    Science.gov (United States)

    Birukov, V. P.; Tatarkin, D. Yu; Chriptovish, E. V.; Fichkov, A. A.

    2017-12-01

    The paper presents the results of metallographic studies and laboratory comparative tests on the adhesion strength of the coating to the substrate and abrasion on the scheme Brinell-Haworth cladding powder coatings on Nickel-based and samples of steel 40X. Strength of adhesion of the first coating layer with a hardness of HRC 38-42 was 400-480 MPa. It is shown that when the hardness of the deposited layer HRC 58-61 wear resistance of the coatings is higher than 40X steel in the normalized and improved in 10 and 4.6 times, respectively.

  14. Titanium Carbides Coatings for Wear Resistant Biomedical Devices: Manufacturing and Modeling

    International Nuclear Information System (INIS)

    Contro, R.; Vena, P.; Gastaldi, D.; Masante, S.; Cavallotti, P. L.; Nobili, L.; Bestetti, M.

    2008-01-01

    Deposition of Titanium Carbide coatings on Ti6Al4V substrate, through the reactive magnetron sputtering technique is here presented. The mechanical characterization of the coatings has been carried out through a set of indentation tests at different maximum applied loads. The elastic stiffness as well as the hardness of the coating-substrate system indicate that these coatings are suitable candidates for wear resistance applications in the orthopaedic field. Numerical simulation of the indentation tests allowed the identification of the constitutive parameters of the titanium carbide. Good agreement was achieved between experimental and numerical results

  15. DEVELOPMENT OF CARBIDE AND NITRIDE CERAMICS OF INCREASED RESISTIBILITY

    Directory of Open Access Journals (Sweden)

    O. V. Roman

    2005-01-01

    Full Text Available The developments of carbide and nitrite ceramics of high solidity are presented. It is shown that development of nanotechnology led to creation of thenanostructural ceramics, the composition of which is controlled on cluster level.

  16. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    OpenAIRE

    Ramm , D.; Hutchings , I.; Clyne , T.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharp...

  17. Effect of Cobalt on Microstructure and Wear Resistance of Ni-Based Alloy Coating Fabricated by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Kaiming Wang

    2017-12-01

    Full Text Available Ni-based alloy powders with different contents of cobalt (Co have been deposited on a 42CrMo steel substrate surface using a fiber laser. The effects of Co content on the microstructure, composition, hardness, and wear properties of the claddings were studied by scanning electron microscopy (SEM, an electron probe microanalyzer (EPMA, X-ray diffraction (XRD, a hardness tester, and a wear tester. The results show that the phases in the cladding layers are mainly γ, M7(C, B3, M23(C, B6, and M2B. With the increase in Co content, the amounts of M7(C, B3, M23(C, B6, and M2B gradually decrease, and the width of the eutectic structure in the cladding layer also gradually decreases. The microhardness decreases but the wear resistance of the cladding layer gradually improves with the increase of Co content. The wear resistance of the NiCo30 cladding layer is 3.6 times that of the NiCo00 cladding layer. With the increase of Co content, the wear mechanism of the cladding layer is changed from abrasive wear to adhesive wear.

  18. Assessment of exposures and potential risks to the US adult population from wear (attrition and abrasion) of gold and ceramic dental restorations.

    Science.gov (United States)

    Richardson, G Mark; Clemow, Scott R; Peters, Rachel E; James, Kyle J; Siciliano, Steven D

    2016-01-01

    Little has been published on the chemical exposures and risks of dental restorative materials other than from dental amalgam and composite resins. Here we provide the first exposure and risk assessment for gold (Au) alloy and ceramic restorative materials. Based on the 2001-2004 US National Health and Nutrition Examination Survey (NHANES), we assessed the exposure of US adults to the components of Au alloy and ceramic dental restorations owing to dental material wear. Silver (Ag) is the most problematic component of Au alloy restorations, owing to a combination of toxicity and proportional composition. It was estimated that adults could possess an average of four tooth surfaces restored with Au alloy before exceeding, on average, the reference exposure level (REL) for Ag. Lithium (Li) is the most problematic component of dental ceramics. It was estimated that adults could possess an average of 15 tooth surfaces restored with ceramics before exceeding the REL for Li. Relative risks of chemical exposures from dental materials decrease in the following order: Amalgam>Au alloys>ceramics>composite resins.

  19. Tough ceramics prolong the life of valves, pumps and well tools; Seig keramikk forlenger livet til ventiler, pumper og broennverktoey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Advanced ceramic materials, developed by Dynamic-Ceramic in the UK, are playing a chief role in improving the efficiency of components of oil and gas plants around the world. Transformation toughened zirconia ceramics are more resistant than metals to wear, corrosion, erosion and heat. On oil installations, they are typically used in the wearing parts of MWD (measuring while drilling) and LWD (logging while drilling) equipment, valve plugs, spindles, cages etc. For example, catalyzer tubes made of wear-resistant Technox(TM) last ten times as long as fire-resisting sleeves that are used for the same purpose.

  20. Fiscal 1999 achievement report on regional consortium research and development project. Regional consortium on energy research in its 3rd year (Research and development of mezoscopic composite phase material based on heat-/wear-resistant metal); 1999 nendo mezoscopic fukuso soshiki seigyo tainetsu taimamosei kinzokuki fukugo zairyo no kenkyu kaihatsu seika hokokusho. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Using an in-situ method, three kinds of Fe-C-Ni-Cr-Mo-Nb-based alloys are developed, whose strength is not less than 800MPa at 1073K. They exhibit, in a high-temperature erosion wear test, a wear resistance which is 2-3 times higher than that of conventional materials. When they are cast, wear-causing graphite precipitation is suppressed thanks to the cast iron coagulating in gaps in the ceramic formed into a net shape. It is also found that in this process the precipitation of cementites etc., which improves on the abrasion and wear characteristics, is accelerated and that the cementites etc. are finely dispersed for improvement on the brake (brake block) characteristics. Tentatively produced brake blocks are tested for performance at the Railway Technical Research Institute. The new materials are found to exhibit a wear resistance which is 2.2 times higher, and a braking capability 1.6 times better, than those of conventional materials. In the case of an Fe-50Cr-4.8C alloy produced by an MA (mechanical alloying) method, {alpha}-Fe is dispersed into M{sub 23}C{sub 6} for a remarkable improvement on the wear-resisting feature. A 10%TiC cermet exhibits a remarkably high wear resistance, that is, a transverse rupture strength of 1270MPa which is higher than that of a cast high-speed steel. (NEDO)

  1. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating

    International Nuclear Information System (INIS)

    Shi Lei; Sun Chufeng; Gao Ping; Zhou Feng; Liu Weimin

    2006-01-01

    Ni-Co/SiC nanocomposite coatings with various contents of SiC nano-particulates were prepared by electrodeposition in a Ni-Co plating bath containing SiC nano-particulates to be co-deposited. The influences of the nanoparticulates concentration, current density, stirring rate and temperature of the plating bath on the composition of the coatings were investigated. The shape and size of the SiC nano-particulates were observed and determined using a transmission electron microscope. The polarization behavior of the composite plating bath was examined on a PAR-273A potentiostat/galvanostat device. The wear behavior of the Ni-Co/SiC nanocomposite coatings was evaluated on a ball-on-disk UMT-2MT test rig. The worn surface morphologies of the Ni-Co/SiC nanocomposite coatings were observed using a scanning electron microscope. The corrosion behavior of the nanocomposite coatings was evaluated by charting the Tafel curves of the solution of 0.5 mol L -1 NaCl at room temperature. It was found that the cathodic polarization potential of the composite electrolyte increased with increasing SiC concentration in the plating bath. The microhardness and wear and corrosion resistance of the nanocomposite coatings also increased with increasing content of the nano-SiC in the plating bath, and the morphologies of the nanocomposite coatings varied with varying SiC concentration in the plating bath as well. Moreover, the co-deposited SiC nano-particulates were uniformly distributed in the Ni-Co matrix and contributed to greatly increase the microhardness and wear resistance of the Ni-Co alloy coating

  2. Optimizing Wear Resistance and Impact Toughness in High Chromium Iron Mo-Ni Alloy

    Science.gov (United States)

    Singh, K. K.; Verma, R. S.; Murty, G. M. D.

    2009-06-01

    An alloy with carbon and chromium in the range of 2.0 to 2.5% and 20 to 25%, respectively, with the addition of Mo and Ni in the range of 1.0 to 1.5% each when heat-treated at a quenching temperature of 1010 °C and tempering temperature of 550 °C produces a hardness in the range of 54 to 56 HRC and a microstructure that consists of discontinuous bands of high volume (35-40%) of wear resistant primary (eutectic) carbides in a tempered martensitic matrix with uniformly dispersed secondary precipitates. This alloy has been found to possess adequate impact toughness (5-6 J/cm2) with a wear resistance of the order of 3-4 times superior to Mn steel and 1.25 times superior to martensitic stainless steel with a reduction in cost-to-life ratio by a factor of 1.25 in both the cases.

  3. Effects of Rare Earth Metal Addition on Wear Resistance of Chromium-Molybdenum Cast Steel

    Directory of Open Access Journals (Sweden)

    Kasinska J.

    2017-09-01

    Full Text Available This paper discusses changes in the microstructure and abrasive wear resistance of G17CrMo5-5 cast steel modified with rare earth metals (REM. The changes were assessed using scanning microscopy. The wear response was determined in the Miller test to ASTM G75. Abrasion tests were supplemented with the surface profile measurements of non-modified and modified cast steel using a Talysurf CCI optical profilometer. It was demonstrated that the modification substantially affected the microstructure of the alloy, leading to grain size reduction and changed morphology of non-metallic inclusions. The observed changes in the microstructure resulted in a three times higher impact strength (from 33 to 99 kJ/cm2 and more than two times higher resistance to cracking (from 116 to 250 MPa. The following surface parameters were computed: Sa: Arithmetic mean deviation of the surface, Sq: Root-mean-square deviation of the surface, Sp: Maximum height of the peak Sv: Maximum depth of the valley, Sz: Ten Point Average, Ssk: Asymmetry of the surface, Sku: Kurtosis of the surface. The findings also indicated that the addition of rare earth metals had a positive effect on the abrasion behaviour of G17CrMo5-5 cast steel.

  4. Sputter deposition of wear-resistant coatings within the system Zr-B-N

    Energy Technology Data Exchange (ETDEWEB)

    Mitterer, C; Uebleis, A; Ebner, R [Inst. fuer Metallkunde und Werkstoffpruefung, Montanuniv., Leoben (Austria)

    1991-07-07

    Wear-resistant coatings of zirconium boride and zirconium boron nitride were deposited on steel and molybdenum substrates employing non-reactive as well as reactive d.c. magnetron sputtering using zirconium diboride targets. The characterization of the coatings was done by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results are discussed in connection with measured mechanical coating properties such as microhardness and adhesion. The optical properties of the coatings were determined using a CIE-L{sup *}a{sup *}b{sup *} colorimeter and specialized corrosion and abrasion tests. Non-reactive sputtering using ZrB{sub 2} targets results in the formation of coatings with a columnar structure and predominantly (001)-orientated ZrB{sub 2} crystals. Coatings deposited at low nitrogen flow rates exhibit very fine-grained or even fracture amorphous structures with a hexagonal Zr-B-N phase derived from the ZrB{sub 2} lattice. A further increase of the nitrogen flow leads to an amorphous film growth. The maximum Vickers microhardness of the coatings was found to be approximately 2300 HV 0.02. Zr-B and Zr-B-N coatings offer a wide range of interesting colours as well as good corrosion and wear resistance. (orig.).

  5. The effect of chromium diffusion redistribution on wear resistance of carburized 3Kh13 steel

    International Nuclear Information System (INIS)

    Shcherbedinskij, G.V.; Shumakov, A.I.; Zemskij, S.V.; Pereverzev, V.M.

    1977-01-01

    The redistribution of chromium in steel 3Kh13 on carburization in a high-activity carburizer and the wear-resistance of the steel have been investigated. Surface layers with an increased chromium concentration show the highest wear-resistance. The chromium content in the surface layer increases due to its diffusion from the interior. The distribution of carbon and chromium in the carburized layers has been studied with the aid of the radioactive isotope 14 C by the method of layer-by-layer spectral analysis on a vacuum quantometer, layer-by-layer chemical and X-ray structure analysis. The composition of the carbides has been determined by physicochemical analysis. It has been established that the carburized layer can be divided into four zones with respect to its phase composition: first zone - hematite and spinal with 0.5-2.0% C; second zone - solid carbides (Fe,Cr) 7 C 3 ; up to 5% C; third zone - globular carbides in a troostite matrix (Cr,Fe) 7 C 3 and Cr 23 C 6 ; up to 3.5% C; fourth, transitional, zone - troostite carbide mixture Cr 23 C 6 ; up to 1% C. The chromium diffusion in the carburized layer is faster than in the initial austenite. The chromium counterdiffusion is due to the development of a zone of solid carbides M 7 C 3

  6. Metallurgical/Alloy Optimization of High Strength and Wear Resistant Structural Quench and Tempered Steels

    Science.gov (United States)

    Stalheim, Douglas G.; Peimao, Fu; Linhao, Gu; Yongqing, Zhang

    Structural steels with yield strength requirements greater or equal to 690 MPa can be produced through controlled recrystallization hot rolling coupled with precipitation strengthening or purposeful heat treatment through quench and tempering (Q&T). High strength structural steel and wear/abrasion resistant requirements greater or equal to 360 Brinell hardness (BHN) are produced by the development of microstructures of tempered lower bainite and/or martensite through the Q&T process. While these Q&T microstructures can produce very high strengths and hardness levels making them ideal for 690 MPa plus yield strength or wear/abrasion resistant applications, they lack toughness/ductility and hence are very brittle and prone to cracking. While tempering the microstructures helps in improving the toughness/ductility and reducing the brittleness, strength and hardness can be sacrificed. In addition, these steels typically consist of alloy designs containing boron with carbon equivalents (CE) greater than 0.50 to achieve the desired microstructures. The higher CE has a negative influence on weldability.

  7. Effect of laser modification of B-Ni complex layer on wear resistance and microhardness

    Science.gov (United States)

    Bartkowska, Aneta; Pertek, Aleksandra; Popławski, Mikołaj; Bartkowski, Dariusz; Przestacki, Damian; Miklaszewski, Andrzej

    2015-09-01

    The paper presents the results of microstructure observations, microhardness measurements and wear resistance tests of B-Ni complex layers. Boronickelizing is a three-step process of layer production on metallic substrate. Nickel modified boronized layers were called 'boronickelized'. Nickel plating was applied first and, as a result, nickel coatings with a varying thickness were obtained. Diffusion boronizing was carried out as a second step. Boronickelized layer was formed following the merger of galvanic and diffusion processes. In the third step the galvanic-diffusion boronickelized layer was obtained by remelting it with a CO2 laser beam. Galvanic-diffusion boronickelized layer had a dual-zone microstructure. The first zone was continuous and nickel-enriched, and characterized by reduced microhardness, whereas the second zone was characterized by needle-shaped microstructure, with microhardness similar to Fe2B iron borides. After laser modification steel specimens with the boronickelized layer consisted of remelted zone (MZ), heat affected zone (HAZ), and substrate. It was found that increasing the thickness of nickel coating leads to decreasing the microhardness of the remelted zone. Increasing thickness of nickel coating causes the reduction of wear resistance of boronickelized layer modified by laser beam. The application of a nickel coating thicker than 20 μm causes incomplete remelting of needle-shaped microstructure of boronickelized layer.

  8. Wear mechanisms of toughened zirconias

    International Nuclear Information System (INIS)

    Becker, P.C.; Libsch, T.A.; Rhee, S.K.

    1985-01-01

    The dry friction and wear behavior of toughened zirconias against hardened steel was studied using the falex ring and block technique. Three experimental ZrO 2 -Y 2 O 3 ceramics and two commerical ZrO 2 -MgO ceramics were investigated. Each ceramic was tested at 500 and 2000 rpm at normal loads in the range 2.3 to 40.8 kg. Significant trends in the friction and wear data were found correlating composition, test speeds, and loads. Microstructural examination of the ring, ceramic block, and wear debris has shown that the wear process is very complex and incorporates a number of mechanisms

  9. Vacuum tight sodium resistant compound between ThO2 ceramic and metal

    International Nuclear Information System (INIS)

    Reetz, T.

    A method for evaluating the mechanical tensions for metal/ ceramic joinings was applied to the selection of metal components for a highly vacuum tight, sodium-resistant metal/ThO 2 ceramic solder joining. The metal component selected was the iron--nickel alloy Dilasil which is joined to the ceramic using a nickel-based solder. The wetting of the cearamic could be carried out using the titanium hydride technique or after the formation of a W-cerium layer on the surface of this ceramic. (U.S.)

  10. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    Science.gov (United States)

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  11. Investigation on wear resistance and corrosion resistance of electron beam cladding co-alloy coating on Inconel617

    Science.gov (United States)

    Liu, Hailang; Zhang, Guopei; Huang, Yiping; Qi, Zhengwei; Wang, Bo; Yu, Zhibiao; Wang, Dezhi

    2018-04-01

    To improve surface properties of Inconel 617 alloy (referred to as 617 alloy), co-alloy coating metallurgically bonded to substrate was prepared on the surface of 617 alloy by electron beam cladding. The microstructure, phase composition, microhardness, tribological properties and corrosion resistance of the coatings were investigated. The XRD results of the coatings reinforced by co-alloy (Co800) revealed the presence of γ-Co, CoCx and Cr23C6 phase as matrix and new metastable phases of Cr2Ni3 and Co3Mo2Si. These hypoeutectic structures contain primary dendrites and interdendritic eutectics. The metallurgical bonding forms well between the cladding layer and the matrix of 617 alloy. In most studied conditions, the co-alloy coating displays a better hardness, tribological performance, i.e., lower coefficient of frictions and wear rates, corrosion resistance in 1 mol L‑1 HCl solution, than the 617 alloy.

  12. Effects of a dynamic confinement on the penetration resistance of ceramics against long rods

    International Nuclear Information System (INIS)

    Malaise, Frederic; Tranchet, Jean-Yves; Collombet, Francis

    2000-01-01

    Adequate confinement of a ceramic block can lead to its impenetrability against long rod penetrators. New ballistic experiments (encapsulated rod experiments) enabling a pressurization of the front face of the ceramic block (dynamic confinement) have been performed and compared to results obtained from standard unconfined configurations (DOP tests). Impenetrability of the ceramic block is obtained with the encapsulated rod configuration. A modeling approach based on a description of the fragmentation process of the ceramic is proposed. In particular, effects of the void content of the fragmented ceramic on its shear resistance are taken into account. Comparisons between Eulerian computation and the experiments show that conditions for rod dwell are linked to immobilizing fragments of ceramic in front of the projectile

  13. Radiation-hard ceramic Resistive Plate Chambers for forward TOF and T0 systems

    Energy Technology Data Exchange (ETDEWEB)

    Akindinov, A., E-mail: Alexander.Akindinov@cern.ch [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Dreyer, J.; Fan, X.; Kämpfer, B. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Kiselev, S. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Kotte, R.; Garcia, A. Laso [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Malkevich, D. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Naumann, L. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Nedosekin, A.; Plotnikov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Stach, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Sultanov, R.; Voloshin, K. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2017-02-11

    Resistive Plate Chambers with ceramic electrodes are the main candidates for a use in precise multi-channel timing systems operating in high-radiation conditions. We report the latest R&D results on these detectors aimed to meet the requirements of the forward T0 counter at the CBM experiment. RPC design, gas mixture, limits on the bulk resistivity of ceramic electrodes, efficiency, time resolution, counting rate capabilities and ageing test results are presented.

  14. Microstructure, Wear Behavior and Corrosion Resistance of WC-FeCrAl and WC-WB-Co Coatings

    Directory of Open Access Journals (Sweden)

    Janette Brezinová

    2018-05-01

    Full Text Available The paper is focused on investigating the quality of two grades of thermally sprayed coatings deposited by high-velocity oxygen fuel (HVOF technology. One grade contains WC hard particles in an environmentally progressive Ni- and Co-free FeCrAl matrix, while the second coating contains WC and WB hard particles in a cobalt matrix. The aim of the experimental work was to determine the effect of thermal cyclic loading on the coatings’ resistance to adhesive, abrasive and erosive wear. Abrasive wear was evaluated using abrasive cloth of two grit sizes, and erosive wear was evaluated by a dry-pot wear test in a pin mill at two sample angles. Adhesion wear resistance of the coatings was determined by a sliding wear test under dry friction conditions and in a 1 mol water solution of NaCl. Corrosion resistance of the coatings was evaluated using potentiodynamic polarization tests. Metallographic cross-sections were used for measurement of the microhardness and thickness and for line energy-dispersive X-ray (EDX analysis. The tests proved the excellent resistance of both coatings against adhesive, abrasive, and erosive wear, as well as the ability of the WC-WB-Co coating to withstand alternating temperatures of up to 600 °C. The “green carbide” coating (WC-FeCrAl can be recommended as an environmentally friendly replacement for Ni- and Co-containing coatings, but its operating temperature is strictly limited to 500 °C in air.

  15. Investigating Corrosion, Wear Resistance and Friction of AA5454-O Series after its Severe Deformation by Rolling

    Directory of Open Access Journals (Sweden)

    Sinan SEZEK

    2017-02-01

    Full Text Available AA5454-O is an easily wrought, or in other words, a ductile aluminium alloy, however, its mechanical properties are inferior as compared to those of other alloys. The change taking place in corrosion resistance of AA5454-O alloy as a result of its severe plastic deformation (SPD by rolling has been investigated in this study. It has been observed that significant changes occurred in abrasion wear and corrosion resistances of AA5454-O alloy, which was severely deformed up to 80 % by rolling process. Corrosion resistance of the alloy that was severely deformed by rolling has increased. The effect of deformation rate on corrosion has been investigated by applying potentiodynamic test whereas on the other hand such change has been evidenced also through corrosion test. It has been observed that friction coefficient of severely deformed AA5454-O alloy varied by around 10 %, and that, associated with such change, its wear resistance also increased considerably. It has been determined that, as a result of severe deformation by rolling, hardness values rose in areas where the alloy was in contact with rolling surface. In this study, wear resistance of severely deformed alloy has been investigated as well. It has been observed that deformation value contributed positively to the increase in wear resistance.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14650

  16. Method for preparing corrosion-resistant ceramic shapes

    Science.gov (United States)

    Arons, R.M.; Dusek, J.T.

    1979-12-07

    Ceramic shapes having impermeable tungsten coatings can be used for containing highly corrosive molten alloys and salts. The shapes are prepared by coating damp green ceramic shapes containing a small amount of yttria with a tungsten coating slip which has been adjusted to match the shrinkage rate of the green ceramic and which will fire to a theoretical density of at least 80% to provide an impermeable coating.

  17. Ultrananocrystalline diamond film as a wear resistant and protective coating for mechanical seal applications

    International Nuclear Information System (INIS)

    Sumant, A.V.; Krauss, A.R.; Gruen, D.M.; Auciello, O.; Erdemir, A.; Williams, M.; Artiles, A.F.; Adams, W.

    2005-01-01

    Mechanical shaft seals used in pumps are critically important to the safe operation of the paper, pulp, and chemical process industry, as well as petroleum and nuclear power plants. Specifically, these seals prevent the leakage of toxic gases and hazardous chemicals to the environment and final products from the rotating equipment used in manufacturing processes. Diamond coatings have the potential to provide negligible wear, ultralow friction, and high corrosion resistance for the sliding surfaces of mechanical seals, because diamond exhibits outstanding tribological, physical, and chemical properties. However, diamond coatings produced by conventional chemical vapor deposition (CVD) exhibit high surface roughness (R a ≥ 1 μm), which results in high wear of the seal counterface, leading to premature seal failure. To avoid this problem, we have developed an ultrananocrystalline diamond (UNCD) film formed by a unique CH 4 /Ar microwave plasma CVD method. This method yields extremely smooth diamond coatings with surface roughness R a = 20-30 nm and an average grain size of 2-5 nm. We report the results of a systematic test program involving uncoated and UNCD-coated SiC shaft seals. Results confirmed that the UNCD-coated seals exhibited neither measurable wear nor any leakage during long-duration tests that took 21 days to complete. In addition, the UNCD coatings reduced the frictional torque for seal rotation by five to six times compared with the uncoated seals. This work promises to lead to rotating shaft seals with much improved service life, reduced maintenance cost, reduced leakage of environmentally hazardous materials, and increased energy savings. This technology may also have many other tribological applications involving rolling or sliding contacts.

  18. On the influence of Ti-Al intermetallic coating architecture on mechanical properties and wear resistance of end mills

    Science.gov (United States)

    Vardanyan, E. L.; Budilov, V. V.; Ramazanov, K. N.; Ataullin, Z. R.

    2017-07-01

    Thin-film wear-resistant coatings are widely used to increase life and efficiency of metal cutting tools. This paper shows the results of a study on the influence of architecture (number, sequence and thickness of layers) of wear-resistant coatings on physical, mechanical and operational properties of end mills. Coatings consisting of alternating Ti-Al/Ti-Al-N layers of equal thickness demonstrated the best physical and mechanical properties. Durability of coated tools when processing materials from chromium-vanadium steel increased twice as compared to uncoated tools.

  19. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amir, N., E-mail: norlailiamir@petronas.com.my; Othman, W. M. S. W., E-mail: wamosa@gmail.com; Ahmad, F., E-mail: faizahmad@petronas.com.my [Mechanical Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  20. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    International Nuclear Information System (INIS)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-01-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating

  1. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Science.gov (United States)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-07-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  2. Abrasive wear resistance and microstructure of Ni-Cr-B-Si hardfacing alloys with additions of Al, Nb, Mo, Fe, Mn and C

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.; Theisen, W.

    1987-01-01

    The development of new Ni-base hardfacing alloys for filler wire welding or metal spraying should result in materials with a good resistance against high temperature corrosion and abrasive wear. The first step is to design microstructures, which obtain a satisfactory abrasive wear behaviour at room temperature. Thus, different alloys are melted and scrutinized as to their microstructure and their abrasive wear resistance in laboratory. Compared to commercial Ni-base hardfacing alloys they show a higher volume fraction of coarse hard phases due to the additional, initial solidification of Nb-carbides and Cr-, and Mo-borides. Thus, the abrasive wear resistance is improved. For hard abrasive particles, such as corundum, the Ni-base alloys are more wear resistant than harder Fe-base alloys investigate earlier. This is due to the tougher Ni metal matrix that results in microcracking not to be the most significantly acting wear mechanism

  3. Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-Fluxing Alloy and Recycled Cermet Powders

    Directory of Open Access Journals (Sweden)

    Heikki SARJAS

    2012-03-01

    Full Text Available Thermal spray and WC-Co based coatings are widely used in areas subjected to abrasive wear. Commercial  cermet thermal spray powders for HVOF are relatively expensive. Therefore applying these powders in cost-sensitive areas like mining and agriculture are hindered. Nowadays, the use of cheap iron based self-fluxing alloy powders for thermal spray is limited. The aim of this research was to study properties of composite powders based on self-fluxing alloys and recycled cermets and to examine the properties of thermally sprayed (HVOF coatings from composite powders based on iron self-fluxing alloy and recycled cermet powders (Cr3C2-Ni and WC-Co. To estimate the properties of  recycled cermet powders, the sieving analysis, laser granulometry and morphology were conducted. For deposition of coatings High Velocity Oxy-Fuel spray was used. The structure and composition of powders and coatings were estimated by SEM and XRD methods. Abrasive wear performance of coatings was determined and compared with wear resistance of coatings from commercial powders. The wear resistance of thermal sprayed coatings from self-fluxing alloy and recycled cermet powders at abrasion is comparable with wear resistance of coatings from commercial expensive spray powders and may be an alternative in tribological applications in cost-sensitive areas.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1338

  4. Effect of vanadium of mechanical behavior, machinability and wear resistance of aluminium grain refined by Ti+B

    International Nuclear Information System (INIS)

    Zaid, A.I.O.; Hamid, A.A.A.

    1999-01-01

    It is well established that aluminum and its alloys are industrially grain refined by adding either Ti or Ti-B to improve their mechanical behavior and surface finish. In a previous paper, it was found that the grain refining efficiency of aluminum master alloys containing Ti or Ti+B was enhanced by addition of small amounts of other elements including vanadium. V. Therefore, it is anticipated that such an element will improve mechanical behavior, machinability and wear resistance of aluminum and its alloys. In this paper, the effect of vanadium addition, up to 0.3% on mechanical behavior is investigated. Machinability was assessed under different cutting conditions: speed, feed and depth of cut and finally the wear resistance was determined at different loads and speeds. The results indicated that improvement in hardness and mechanical strength were achieved by the addition of V that addition of more than 0.2%V resulted in little or no improvement. Similarly, addition of V resulted in improvement of surface quality under the different cutting conditions of speed, feed and depth of cut, and resistance to wear. However addition of more than 0.2% V resulted in increase of wear rate and change of wear mechanisms. (author)

  5. Wear resistance of nano- and micro-crystalline diamond coatings onto WC-Co with Cr/CrN interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Polini, Riccardo [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Rome, 00133 (Italy); Barletta, Massimiliano, E-mail: barletta@ing.uniroma2.i [Dipartimento di Ingegneria Meccanica, Universita di Roma Tor Vergata, Via del Politecnico, 1, Rome, 00133 (Italy); Cristofanilli, Giacomo [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Rome, 00133 (Italy)

    2010-12-30

    Cr/CrN bi-layers have been used recently to promote the growth of high quality Hot Filament Chemical Vapour Deposition (HFCVD) diamond coatings onto Co-cemented tungsten carbide (WC-6 wt.%Co) substrates. In the present investigation, the influence of the crystalline size of the diamond coatings on their wear endurance is looked into. Nano- (NDC) and micro-crystalline Diamond Coatings (MDC) were deposited by HFCVD onto untreated and Fluidized Bed (FB) treated Cr/CrN interlayers. NDCs, characterized by a cauliflower-like morphology, showed improved wear resistance. However, the superimposition of NDCs onto Cr/CrN interlayers micro-corrugated by FB treatment was found to be the most promising choice, leading to the formation of highly adherent and wear resistant coatings.

  6. Characterization of Co–Cr–Mo alloys after a thermal treatment for high wear resistance

    International Nuclear Information System (INIS)

    Balagna, C.; Spriano, S.; Faga, M.G.

    2012-01-01

    The cobalt–chromium–molybdenum alloys are characterized by a high resistance to wear and corrosion, as well as good mechanical properties, allowing their use in the substitution of hip and knee joints. Five alloys were used as substrates for a coating deposition by a thermal treatment in molten salts, as reported elsewhere, in order to form a tantalum‐rich coating on the sample surface, able to improve the biocompatibility and wear resistance of the materials. However, the temperature (970 °C), reached during this process, is considered critical for the phase transformation of the Co-based alloys. The aim of this work is the evaluation of the temperature effects on the structure, microstructure, mechanical and tribological properties of the considered substrates, after the removal of the coating by polishing. The substrates are characterized through X-ray diffraction (XRD), scanning electron microscopy with energy dispersion spectrometry (SEM-EDS) and profilometry. The mechanical behavior is evaluated by the macro- and micro-hardness and bending tests, whereas the tribological properties are analyzed through a ball on disc test. A comparison between the as-received alloys and thermal treated substrates is reported. The biocompatibility feature is not reported in this work. The substrate crystalline structure changed during the heat treatment, inducing the formation of the hexagonal cobalt phase and the decrement of the cubic one. This crystallographic modification does not seem to influence the tribological behavior of the substrates. On the contrary, it affects the strength and ductility of the substrates. - Highlights: ► Effect of a thermal treatment on different CoCrMo alloys suitable for hip and knee joint substitution. ► The temperature induced an increment in the amount of hexagonal phase and a change in the grain size. ► The increment of the hexagonal phase decreases the hardness of the substrates but not the tribological properties.

  7. Wear Resistance Properties Reinforcement Using Nano-Al/Cu Composite Coating in Sliding Bearing Maintenance.

    Science.gov (United States)

    Liu, Hongtao; Li, Zhixiong; Wang, Jianmei; Sheng, Chenxing; Liu, Wanli

    2018-03-01

    Sliding bearing maintenance is crucial for reducing the cost and extending the service life. An efficient and practical solution is to coat a restorative agent onto the worn/damaged bearings. Traditional pure-copper (Cu) coating results in a soft surface and poor abrasion resistance. To address this issue, this paper presents a nano-composite repairing coating method. A series of nano-Al/Cu coatings were prepared on the surface of 45 steel by composite electro-brush plating (EBP). Their micro-hardness was examined by a MHV-2000 Vickers hardness tester, and tribological properties by a UMT-2M Micro-friction tester, 3D profiler and SEM. Then, the influence of processing parameters such as nano-particle concentration and coating thickness on the micro-hardness of nano-Al/Cu coating was analyzed. The experimental analysis results demonstrate that, when the nano-Al particle concentration in electrolyte was 10 g/L, the micro-hardness of the composite coating was 1.1 times as much as that of pure-Cu coating. When the Al nano-particle concentration in electrolyte was 20 g/L, the micro-hardness of the composite coating reached its maximum value (i.e., 231.6 HV). Compared with the pure-Cu coating, the hardness and wear resistance of the nano-composite coating were increased, and the friction coefficient and wear volume were decreased, because of the grain strengthening and dispersion strengthening. The development in this work may provide a feasible and effective nano-composite EBP method for sliding bearing repair.

  8. Improved dental implant drill durability and performance using heat and wear resistant protective coatings.

    Science.gov (United States)

    Er, Nilay; Alkan, Alper; İlday, Serim; Bengu, Erman

    2018-03-02

    Dental implant drilling procedure is an essential step for implant surgery and frictional heat appeared in bone during drilling is a key factor affecting the success of an implant. The aim of this study is to increase the dental implant drill lifetime and performance using heat- and wear-resistant protective coatings hence to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling procedure was performed on a bovine femoral cortical bone under the conditions mimicking clinical practice, where the tests were performed both under water-assisted cooling and under the conditions without any cooling was applied. Coated drill performances and durabilities were compared to that of three commonly used commercial drills which surfaces are made from namely; zirconia, black diamond and stainless steel. Protective coatings with boron nitride, titanium boron nitride and diamond-like carbon have significantly improved drill performance and durability. Especially boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even without any cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat and wear resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can reflect positively on surgical procedure and healing period afterwards. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  9. Effect of Ni Addition on the Wear and Corrosion Resistance of Fe-20Cr-1.7C-1Si Hardfacing Alloy

    International Nuclear Information System (INIS)

    Lee, Sung Hoon; Kim, Ki Nam; Kim, Seon Jin

    2011-01-01

    In order to improve the corrosion resistance of Fe-20Cr-1.7C-1Si hardfacing alloy without a loss of wear resistance, the effect of Ni addition was investigated. As expected, the corrosion resistance of the alloy increased with increasing Ni concentration. The wear resistance of the alloy did not decrease, even though the hardness decreased, up to Ni concentration of 5 wt.%. This was attributed to the fact that the decrease in hardness was counterbalanced by the strain-induced martensitic transformation. The wear resistance of the alloy, however, decreased abruptly with increases of the Ni concentration over 5 wt.%.

  10. Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3

    Science.gov (United States)

    Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.

    2016-05-01

    An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.

  11. Experimental studies of resistance fretting-wear of fuel rods for VVER-1000 and TVS-KVADRAT fuel assemblies

    International Nuclear Information System (INIS)

    Makarov, V.; Afanasiev, A.; Egorov, Yu.; Matvienko, I.

    2015-01-01

    The paper covers the results of the studies performed to justify the wear resistance of fuel rods in contact with the spacer grids of TVS VVER-1000 fuel assembly and TVS-KVADRAT square fuel assembly of Russian design for PWR-900 reactor. The presented results of three testing stages comprise: Testing of mockup fuel rods of VVER TVS fuel assembly for fretting wear under the conditions of the water chemistry of VVER reactor; Testing models of different design embodiments of the fuel rods for VVER TVS fuel assembly for fretting wear in still cold water; Testing mockup fuel rods of TVS-KVADRAT square fuel assembly for PWR reactor for frettingwear under the conditions of PWR water chemistry. The effect of structural and operational factors was determined (amplitudes, fuel rod vibration frequencies, values of cladding-to-spacer grid cell gap for the depth of fuel rod cladding wear etc.), an assessment was made of the threshold values of fuel rod vibration parameters, which, if not exceeded, provide the absence of the fuel rod cladding fretting wear in the fuel rod-to spacer grid contact area. Key words: fretting wear, fuel rod, spacer grid, VVER, PWR (author)

  12. EFECT OF PLASMA IMMERSION ION IMPLANTATION TREATEMENT IN THE WEAR RESISTANCE OF Ti-6Al-4V ALLOY

    Directory of Open Access Journals (Sweden)

    Zepka, Susana

    2015-07-01

    Full Text Available The objective of this work was the evaluation of wear resistance of Ti-6Al-4V alloy after plasma immersion ion implantation (PIII in different immersion times. The goal of this process was the modification of surface properties of the alloy to obtain better tribology properties. In this process, atoms can be injected on the material´s surface changing the mechanical properties in the region near the surface independently of thermodynamics variables, as solubility and difusivity. The samples were submitted to 120 e 180 minutes of implantation at 250°C in the three samples for each condition. The wear analyses were made by pin-on-disk process, where the lost volumes and wear coefficients were compared in the samples. It was observed the decreasing of attrite coefficient and the lost volume of the material during wear test. The implanted sample by 180 minutes has showed the wear coefficient 35.12% lower in comparison of the sample without treatment, and 11.09% lower in comparison of implanted sample by 120 minutes. It can be observed that the sample implanted by 180 minutes showed lower wear coefficient.

  13. Electrodeposition of diamond-like carbon films on titanium alloy using organic liquids: Corrosion and wear resistance

    International Nuclear Information System (INIS)

    Falcade, Tiago; Shmitzhaus, Tobias Eduardo; Gomes dos Reis, Otávio; Vargas, André Luis Marin; Hübler, Roberto; Müller, Iduvirges Lourdes; Fraga Malfatti, Célia de

    2012-01-01

    Highlights: ► The electrodeposition may be conducted at room temperature. ► The DLC films have good resistance to corrosion in saline environments. ► The films have lower coefficient of friction than the uncoated substrate. ► The abrasive wear protection is evident in coated systems. - Abstract: Diamond-like carbon (DLC) films have been studied as coatings for corrosion protection and wear resistance because they have excellent chemical inertness in traditional corrosive environments, besides presenting a significant reduction in coefficient of friction. Diamond-like carbon (DLC) films obtained by electrochemical deposition techniques have attracted a lot of interest, regarding their potential in relation to the vapor phase deposition techniques. The electrochemical deposition techniques are carried out at room temperature and do not need vacuum system, making easier this way the technological transfer. At high electric fields, the organic molecules polarize and react on the electrode surface, forming carbon films. The aim of this work was to obtain DLC films onto Ti6Al4V substrate using as electrolyte: acetonitrile (ACN) and N,N-dimethylformamide (DMF). The films were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman spectroscopy, potentiodynamic polarization and wear tests. The results show that these films can improve, significantly, the corrosion resistance of titanium and its alloys and their wear resistance.

  14. Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance

    Science.gov (United States)

    Bonora, R.; Cioffi, M. O. H.; Voorwald, H. J. C.

    2017-05-01

    Surface improvement in steels is of great interest for applications in industry. The aim of this investigation is to study the effect of nitrogen ion implantation on the axial fatigue strength and wear resistance of 15-5 PH stainless steel. It is well know that electroplated coatings, which are used to improve abrasive wear and corrosion properties, affects negatively the fatigue strength. It is also important to consider requirements to reduce the use of coated materials with electroplated chromium and cadmium, that produce waste, which is harmful to health and environment. The HVOF (High velocity oxygen fuel) process provides hardness, wear strength and higher fatigue resistance in comparison to electroplated chromium. Plasma immersion ion implantation has been used to enhance the hardness, wear, fatigue and corrosion properties of metals and alloys. In the present research the fatigue life increased twice for 15-5 PH three hours PIII treated in comparison to base material. From the abrasive wear tests a lower pin mass reduction was observed, associated to the superficial treatments. The improvement of fatigue and mechanical performance is attributed to a combination of nitrides phase structure and compressive residual stresses during the PIII treatment.

  15. Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance

    International Nuclear Information System (INIS)

    Bonora, R; Cioffi, M O H; Voorwald, H J C

    2017-01-01

    Surface improvement in steels is of great interest for applications in industry. The aim of this investigation is to study the effect of nitrogen ion implantation on the axial fatigue strength and wear resistance of 15-5 PH stainless steel. It is well know that electroplated coatings, which are used to improve abrasive wear and corrosion properties, affects negatively the fatigue strength. It is also important to consider requirements to reduce the use of coated materials with electroplated chromium and cadmium, that produce waste, which is harmful to health and environment. The HVOF (High velocity oxygen fuel) process provides hardness, wear strength and higher fatigue resistance in comparison to electroplated chromium. Plasma immersion ion implantation has been used to enhance the hardness, wear, fatigue and corrosion properties of metals and alloys. In the present research the fatigue life increased twice for 15-5 PH three hours PIII treated in comparison to base material. From the abrasive wear tests a lower pin mass reduction was observed, associated to the superficial treatments. The improvement of fatigue and mechanical performance is attributed to a combination of nitrides phase structure and compressive residual stresses during the PIII treatment. (paper)

  16. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni–Mo–Si System

    Directory of Open Access Journals (Sweden)

    Boyuan Huang

    2017-02-01

    Full Text Available Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni–Mo–Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni–40Mo–15Si (at %, selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM, scanning electron microscopy (SEM, X-ray diffraction (XRD, and energy dispersive spectroscopy (EDS, and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo2Ni3Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo2Ni3Si.

  17. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  18. Electroless Ni-P/Ni-B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance

    International Nuclear Information System (INIS)

    Narayanan, T.S.N. Sankara; Krishnaveni, K.; Seshadri, S.K.

    2003-01-01

    The present work deals with the formation of Ni-P/Ni-B duplex coatings by electroless plating process and evaluation of their hardness, wear resistance and corrosion resistance. The Ni-P/Ni-B duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with both Ni-P and Ni-B as inner layers and with varying single layer thickness. Scanning electron microscopy (SEM) was used to assess the duplex interface. The microhardness, wear resistance and corrosion resistance of electroless nickel duplex coatings were compared with electroless Ni-P and Ni-B coatings of similar thickness. The study reveals that the Ni-P and Ni-B coatings are amorphous in their as-plated condition and upon heat-treatment at 450 deg. C for 1 h, both Ni-P and Ni-B coatings crystallize and produce nickel, nickel phosphide and nickel borides in the respective coatings. All the three phases are formed when Ni-P/Ni-B and Ni-B/Ni-P duplex coatings are heat-treated at 450 deg. C for 1 h. The duplex coatings are uniform and the compatibility between the layers is good. The microhardness, wear resistance and corrosion resistance of the duplex coating is higher than Ni-P and Ni-B coatings of similar thickness. Among the two types of duplex coatings studied, hardness and wear resistance is higher for coatings having Ni-B coating as the outer layer whereas better corrosion resistance is offered by coatings having Ni-P coating as the outer layer

  19. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  20. ASSESSMENT OF CERAMIC TILE FROST RESISTANCE BY MEANS OF THE FREQUENCY INSPECTION METHOD

    Directory of Open Access Journals (Sweden)

    MICHAL MATYSÍK

    2011-06-01

    Full Text Available The paper presents some results of our experimental analysis of ceramic cladding element frost resistance, particular attention being paid to the application of the frequency inspection method. Three different sets of ceramic tiles of the Ia class to EN 14 411 B standard made by various manufacturers have been analyzed. The ceramic tiles under investigation have been subjected to freeze-thaw-cycle-based degradation in compliance with the relevant ČSN EN ISO 10545-12 standard. Furthermore, accelerated degradation procedure has been applied to selected test specimens, consisting in reducing the temperature of water soaked ceramic tiles in the course of the degradation cycles down –70°C. To verify the correctness of the frequency inspection results, additional physical properties of the ceramic tiles under test have been measured, such as, the ceramic tile strength limit, modulus of elasticity and modulus of deformability, resulting from the flexural tensile strength tests, integrity defect and surface micro-geometry tracking. It has been proved that the acoustic method of frequency inspection is a sensitive indicator of the structure condition and can be applied to the ceramic cladding element frost resistance and service life prediction assessment.

  1. Evaluation of Skid Resistance of Wearing Course Made Of Stone Mastic Asphalt Mixture in Laboratory Conditions

    Science.gov (United States)

    Wasilewska, Marta

    2017-10-01

    This paper presents the comparison of skid resistance of wearing course made of SMA (Stone Mastic Asphalt) mixtures which differ in resistance to polishing of coarse aggregate. Dolomite, limestone, granite and trachybasalt were taken for investigation. SMA mixtures have the same nominal size of aggregate (11 mm) and very similar aggregate particle-size distribution in mineral mixtures. Tested SMA11 mixtures were designed according to EN 13108-5 and Polish National Specification WT-2: 2014. Evaluation of the skid resistance has been performed using the FAP (Friction After Polishing) test equipment also known as the Wehner/Schulze machine. Laboratory method enables to compare the skid resistance of different types of mixtures under specified conditions simulating polishing processes. Tests were performed on both the specimens made of each coarse aggregate and SMA11 mixtures containing these aggregates. Measuring of friction coefficient μm was conducted before and during polishing process up to 180 0000 passes of polishing head. Comparison of the results showed differences in sensitivity to polishing among particular mixtures which depend on the petrographic properties of rock used to produce aggregate. Limestone and dolomite tend to have a fairly uniform texture with low hardness which makes these rock types susceptible to rapid polishing. This caused lower coefficient of friction for SMA11 mixtures with limestone and dolomite in comparison with other test mixtures. These significant differences were already registered at the beginning of the polishing process. Limestone aggregate had lower value of μm before starting the process than trachybasalt and granite aggregate after its completion. Despite the differences in structure and mineralogical composition between the granite and trachybasalt, slightly different values of the friction coefficient at the end of polishing were obtained. Images of the surface were taken with the optical microscope for better

  2. Wear resistance and electronic structure of cutting tool materials on a basis carbides of tungsten and titanium

    International Nuclear Information System (INIS)

    Ryzhkin, A.A.; Ilyasov, V.V.; Lyulko, A.V.

    2001-01-01

    The tool materials durability problem, in particular shock and wear resistance, has allowed to formulate a set of requirements and also to stablish the dependence between physical properties and wear. However, for understanding the nature of the process, for example determining the tribological property of the cutting tool, it is necessary to consider the atom interactions in a crystal. A theoretical study of the physical properties of cutting tool materials (W-Ti-C) with varying concentration of titanium is presented. Total and partial local electronic density for each atom in such hard solutions were calculated. (nevyjel)

  3. Wear-resistance investigation of electro-screen coatings obtained using electroerosive powders of micro and nanofractions

    Science.gov (United States)

    Ageev, E. V.; Altukhov, A. Yu; Malneva, Yu V.; Novikov, A. N.

    2018-03-01

    The results of the wear resistance investigation of electro sparking coatings, applied using electrode material from electroerosive powders of hard alloy VK-8 (90%) with the addition of powder of high-speed steel of grade R6M5 (10%), are presented. Electro spark coatings were formed on samples of 30KhGSA steel using these electrodes and installation UR-121. The coefficient of friction and the wear rate of the surface of the sample and counterbody were measured on an automated friction machine “Tribometer” (CSM Instruments, Switzerland), controlled by a computer, according to the standard “ball-disk” test scheme.

  4. Researches concerning the ultasonic energy influence on the resistence to the abrasive wear of loaded welded parts

    Directory of Open Access Journals (Sweden)

    Gh. Amza

    2013-01-01

    Full Text Available The researches presented in the paper refer to the effect of ultrasounds propagation in the liquid metal bath on the process of transferring the additive material through the electric arch and on the crystallization process, and all these effects are analyzed for loaded welded parts solicited at the abrasive wear. All these influences are conferred to these two basic phenomena due to the ultrasounds propagation in liquid environments, namely, ultra-acoustic cavitation and acceleration of the diffusion process. The results concerns the resistance to the wear obtained for the loaded parts through manual welding with electric arch and classically covered electrode and ultrasonically activated.

  5. Fabrication of wear-resistant silicon microprobe tips for high-speed surface roughness scanning devices

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin

    2015-05-01

    Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.

  6. Machinability and scratch wear resistance of carbon-coated WC inserts

    Energy Technology Data Exchange (ETDEWEB)

    Pazhanivel, B., E-mail: palcecri@yahoo.co.in; Kumar, T. Prem; Sozhan, G.

    2015-03-15

    Highlights: • Cemented WC inserts were coated with carbon by CVD. • The deposits were either loosely held MWCNTs or adherent carbides. • Co-efficient of friction (ramp load; 1–13 N); 0.2 and 0.1 μ, respectively, for the uncoated and carbide-coated inserts. • The carbide-coated insert exhibited better machinability and surface finish than a commercial TiCN-coated insert. - Abstract: In this work, cemented tungsten carbide (WC) inserts were coated with nanocarbons/carbides by chemical vapor deposition (CVD) and their machinability and scratch wear resistance were investigated. The hardness and surface conditions of the WC substrate were studied before and after coating. The CVD-generated nanocarbons on the insert surfaces were examined by SEM, FE-SEM and TEM. The electron microscopic images revealed that the carbons generated were multi-walled carbon nanotubes (MWCNTs) or carbides depending on the experimental conditions. In both the cases, the cutting edges of the inserts had dense deposits. Scratch wear test with the coated inserts showed that the co-efficient of friction was 0.1 μ as against 0.2 μ for the uncoated inserts under a ramp load of 1–13 N. The machinability characteristics of commercially available TiCN-coated inserts and the carbon-coated WC inserts were compared by using a CNC machine and a Rapid I vision inspection system. It was found that the carbide-coated inserts exhibited machinability with better surface finish comparable to that of the TiCN-coated inserts while the MWCNT-coated inserts showed inferior adhesion properties.

  7. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    International Nuclear Information System (INIS)

    Gusain, Rashi; Kokufu, Sho; Bakshi, Paramjeet S.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki; Khatri, Om P.

    2016-01-01

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF_6) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF_6 thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF_6 thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF_6 thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF_6 thin film, the covalent interaction between ImPF_6 ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  8. The fabrication, nano/micro-structure, heat- and wear-resistance of the superhydrophobic PPS/PTFE composite coatings.

    Science.gov (United States)

    Wang, Huaiyuan; Zhao, Jingyan; Zhu, Youzhuang; Meng, Yang; Zhu, Yanji

    2013-07-15

    A simple engineering method was used to fabricate stability and wear-resistance of superhydrophobic PPS-based PPS/PTFE surfaces through nano/micro-structure design and modification of the lowest surface energy groups (-CF2-), which was inspired by the biomimic lotus leaves. The hydrophobic properties and wear-resistance of the coatings were measured by a contact angle meter and evaluated on a pin-on-disk friction and wear tester, respectively. Moreover, the surfaces of the PPS/PTFE composite coatings were investigated by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), and thermogravimetry (TG) analysis. Results showed that the highest contact angle of the PPS/PTFE surface, with papillae-like randomly distributed double-scale structure, could reach up to 162°. When 1 wt.% PDMS was added, the highest contact angle could hold is 172°. The coatings also retained superhydrophobicity, even under high temperature environment. The investigation also indicated that the coatings were not only superhydrophobic but also oleophobic behavior at room temperature, such as the crude oil, glycerol, and oil-water mixture. The PPS/45%PTFE coatings had more stable friction coefficient and excellent wear-resistance (331,407 cycles) compared with those with less than 45% of PTFE. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Dry sliding wear behavior and corrosion resistance of NiCrBSi coating deposited by activated combustion-high velocity air fuel spray process

    International Nuclear Information System (INIS)

    Liu, Shenglin; Zheng, Xueping; Geng, Gangqiang

    2010-01-01

    NiCrBSi is a Ni-based superalloy widely used to obtain high wear and corrosion resistant coatings. This Ni-based alloy coating has been deposited onto 0Cr13Ni5Mo stainless steel using the AC-HVAF technique. The structure and morphologies of the Ni-based coatings were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS). The wear resistance and corrosion resistance were studied. The tribological behaviors were evaluated using a HT-600 wear test rig. The wear resistance of the Ni-based coating was shown to be higher than that of the 0Cr13Ni5Mo stainless steel because Fe 3 B, with high hardness, was distributed in the coating so the dispersion strengthening in the Ni-based coating was obvious and this increased the wear resistance of the Ni-based coating in a dry sliding wear test. Under the same conditions, the worn volume of 0Cr13Ni5Mo stainless steel was 4.1 times greater than that of the Ni-based coating. The wear mechanism is mainly fatigue wear. A series of the electrochemical tests was carried out in a 3.5 wt.% NaCl solution in order to examine the corrosion behavior. The mechanisms for corrosion resistance are discussed.

  10. Advanced KSNP fuel, plus7 : grid-to-rod fretting wear resistance of the plus7 spacer grids

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Kim, Yong Hwan; Jang, Young Ki; Choi, Joon Hyung

    2003-01-01

    Vibration-induced grid-to-rod fretting wear initiates at a certain critical gap correlated with a critical work rate. A critical gap between grid and rod forms due to in-reactor performance of fuel, thermal relaxation of grid spring and irradiation growth of grid strap, etc. A critical work rate may be generated by three vibration mechanisms proposed in this paper. Three vibration mechanisms have been derived with various fretting wear experience in commercial reactors as well as various out-of-pile hydraulic test results. The first active vibration mechanism is high turbulence-induced excessive fuel rod vibration with the combination of excessive grid-to-rod gap. The second active vibration mechanism is self-excited fuel assembly vibration in a low frequency range caused by hydraulically unbalanced mixing vanes of the spacer grid assembly. The third active vibration mechanism is self-excited spacer grid strap vibration in quite a high frequency range caused by some spacer grid designs. In this study, each vibration mechanism on the grid-to-rod fretting wear damage is discussed. On the other hand, the effects of various grid designs on the fretting wear damage in the commercial reactors are predicted using the long-term fretting wear test results. It is found that the larger grid-to-rod initial contact area generates the less fretting wear damage. Consequently the conformal spring of PLUS7 is superior to typical convex shaped spring with regard to fretting wear resistance since the former generates relatively larger contact area than the latter

  11. Enhancement of the Wear Resistance and Microhardness of Aluminum Alloy by Nd:YaG Laser Treatment

    Directory of Open Access Journals (Sweden)

    Haitham T. Hussein

    2014-01-01

    Full Text Available Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM, energy-dispersive X-ray florescence analysis (EDS, optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4 : 1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment.

  12. Metal nitride coatings by physical vapor deposition (PVD) for a wear resistant aluminum extrusion die.

    Science.gov (United States)

    Lee, Su Young; Kim, Sang Ho

    2014-12-01

    The purpose of this study is to investigate the friction and wear behaviors of CrN, TiN, CrAlN, and TiAIN coated onto SKD61 for application to Al 7000 series extrusion dies. On the wear test, the experimental parameters are the load and the counter material's temperature. The results showed that the friction coefficient increased with load but decreased with the counter material's temperature, and the friction coefficients of CrN and CrAIN were lower than the friction coefficients of TiAIN and TIN, especially at a higher temperature. The wear track with different coatings identified different wear behaviors; the wear behavior of CrAIN was found to be abrasive, but the wear behavior of TiN, CrN, and TiAIN was adhesive. Therefore, CrAIN showed the least wear loss with a lower friction coefficient and less adhesion with counter materials at the highest range of wear load and temperature. This resulted in the easy formation of aluminum oxide in the wear track and less Al adhesion; moreover during the hard second phase, AIN dispersed in the film during deposition.

  13. Carbon glass-ceramics and their radiation resistance

    International Nuclear Information System (INIS)

    Virgil'ev, Yu. S.

    1995-01-01

    Structural carbon materials (SCMs) hold great promise for use in numerous plasma-facing components of fusion reactors. One possible candidate for this use is carbon glass-ceramic. Therefore, it is not surprising that there is considerable interest in studying its properties and their variations upon exposure to different radiations, such as neutrons, high-energy electrons, and light ions (H + , D + , and He + ). Here, the authors summarize data accumulated to date on the structure and properties of commercial carbon glass-ceramics and their behavior under irradiation with neutrons, electrons, and some ions

  14. The development and testing of ceramic components in piston engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McEntire, B.J. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.; Willis, R.W.; Southam, R.E. [TRW, Inc., Cleveland, OH (United States)

    1994-10-01

    Within the past 10--15 years, ceramic hardware has been fabricated and tested in a number of piston engine applications including valves, piston pins, roller followers, tappet shims, and other wear components. It has been shown that, with proper design and installation, ceramics improve performance, fuel economy, and wear and corrosion resistance. These results have been obtained using rig and road tests on both stock and race engines. Selected summaries of these tests are presented in this review paper.

  15. Bioactive glass–ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    International Nuclear Information System (INIS)

    Ye Xinyu; Cai Shu; Dou Ying; Xu Guohua; Huang Kai; Ren Mengguo; Wang Xuexin

    2012-01-01

    Highlights: ► Sol–gel derived 45S5 glass–ceramic coating was prepared on Mg alloy substrate. ► The corrosion resistance of glass–ceramic coated Mg alloy was markedly improved. ► The corrosion behavior of the coated sample varied due to the cracking of coating. - Abstract: In this work, a bioactive 45S5 glass–ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol–gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass–ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na 2 Ca 2 Si 3 O 9 , with the thickness of ∼1.0 μm, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (E corr ) form −1.60 V to −1.48 V, and a reduction of corrosion current density (i corr ) from 4.48 μA cm −2 to 0.16 μA cm −2 , due to the protection provided by the glass–ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass–ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass–ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  16. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shanshan; Liu, Ming [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Wu, Yiqiang, E-mail: wuyq0506@126.com [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004 (China); Luo, Sha [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Qing, Yan, E-mail: qingyan0429@163.com [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China); Hunan Provincial Collaborative Innovation Center for High-efficiency Utilization of Wood and Bamboo Resources, Central South University of Forestry and Technology, Changsha 410004 (China); Chen, Haibo [College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004 (China)

    2016-11-15

    Graphical abstract: Highly wear-resistance superhydrophobic surface on wood substrates was fabricated using silica nanoparticles modified by VTES. Display Omitted - Highlights: • Superhydrophobic surface on wood substrates was efficiently fabricated using nanoparticles modified by VTES. • The superhydrophobic surface exhibited a CA of 154° and a SAclose to 0°. • The superhydrophobic surface showed a durable and robust wear-resistance performance. - Abstract: In this study, an efficient, facile method has been developed for fabricating superhydrophobic surfaces on wood substrates using silica nanoparticles modified by VTES. The as-prepared superhydrophobic wood surface had a water contact angle of 154° and water slide angle close to 0°. Simultaneously, this superhydrophobic wood showed highly durable and robust wear resistance when having undergone a long period of sandpaper abrasion or being scratched by a knife. Even under extreme conditions of boiling water, the superhydrophobicity of the as-prepared wood composite was preserved. Characterizations by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy showed that a typical and tough hierarchical micro/nanostructure was created on the wood substrate and vinyltriethoxysilane contributed to preventing the agglomeration of silica nanoparticles and serving as low-surface-free-energy substances. This superhydrophobic wood was easy to fabricate, mechanically resistant and exhibited long-term stability. Therefore, it is considered to be of significant importance in the industrial production of functional wood, especially for outdoor applications.

  17. Application of wear resistant spraying for diesel engine; Diesel kikan eno taimamo yosha no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Y. [Mitsui Engineering and Shipbuliding Co. Ltd., Tokyo (Japan)

    1999-03-31

    Diesel engines used widely as propelling engines of ships have increasingly been provided with a high output and a high thermal efficiency; their structural members, particularly, the component parts for combustion chambers are therefore used under severe conditions, giving rise to the need of surface treatment and surface reforming of the members. Parts for marine diesel engines are huge, so that the technology applicable to the surface treatment and reforming are limited in point of facility and cost; therefore, most suitable is thermal spraying. This paper primarily discusses, among marine diesel engines, a 2-cycle low-speed engine with a 260-980mm bore used for the main engine of a merchant ship such as a container ship, bulk carrier or a tanker, and a 4-cycle medium-speed engine with a 300-420mm bore used for the main engine of a naval vessel; the paper explains the application status of a thermal spraying technology which is in progress to cope with the high output and high thermal efficiency of the diesel engines, explaining particularly the story of the development and the technological features of the wear resistant thermal spraying, which has been put to practical use, on the cylinder liner and the piston ring of the 4-cycle medium-speed engine. (NEDO)

  18. Tribaloy intermetallic alloy compositions: new materials or additives for wear resistant applications

    International Nuclear Information System (INIS)

    Cameron, C.B.; Hoffman, R.A.; Poskitt, R.W.

    1975-01-01

    Properties and uses of TRIBALOY alloys in powder metallurgy fabrication are discussed. Powders of TRIBALOY can be blended with essentially any powder processed by powder metallurgy. Green strength of the blended powder parts is reduced as the amount of TRIBALOY is increased. The concentration of TRIBALOY, however, is usually 15 to 20 volume percent, a compromise between green strength and effectiveness as a wear resistant part. Blended powders are sintered at the temperature normally used for the base metal with special consideration given to a low dew point in the atmosphere. The sintered parts can be coined, carburized, machined, or impregnated in any of the well-known ways. TRIBALOY as a powder blending agent has extended the useful life of P/M parts by factors of 5 and more. A variety of industries are presently using P/M parts at higher temperatures, heavier loads, in poorer or non-lubricated conditions or at higher speeds because of the addition of TRIBALOY. More important, however, is that TRIBALOY can be incorporated in parts to be made by powder metallurgy which until now had not been feasible. The overall effect has been considerable savings for the customer by switching to the powder metal method of manufacturing and increased activity for the fabricator

  19. Oxidation resistant filler metals for direct brazing of structural ceramics

    Science.gov (United States)

    Moorhead, Arthur J.

    1986-01-01

    A method of joining ceramics and metals to themselves and to one another is described using essentially pure trinickel aluminide and trinickel aluminide containing small amounts of carbon. This method produces strong joints that can withstand high service temperatures and oxidizing environments.

  20. Fabrication of low specific resistance ceramic carbon composites by ...

    Indian Academy of Sciences (India)

    2017-09-07

    Sep 7, 2017 ... many applications such as discrete resistors used in electronic circuits, pressure sensors used in ... A dispersant, sodium polyacrylate (NaPAA) (1 ml/100 g of ceramic powder) and an anti-foaming agent, n-octanol (100 μl/100 ...

  1. Patients presenting with miliaria while wearing flame resistant clothing in high ambient temperatures: a case series

    Directory of Open Access Journals (Sweden)

    Garcia Anisa M

    2011-09-01

    Full Text Available Abstract Introduction Clothing can be a cause of occupational dermatitis. Frequent causes of clothing-related dermatological problems can be the fabric itself and/or chemical additives used in the laundering process, friction from certain fabrics excessively rubbing the skin, or heat retention from perspiration-soaked clothing in hot working environments. To the best of our knowledge, these are the first reported cases of miliaria rubra associated with prolonged use of flame resistant clothing in the medical literature. Case presentation We report 18 cases (14 men and 4 women, with an age range of 19 to 37 years of moderate to severe skin irritation associated with wearing flame resistant clothing in hot arid environments (temperature range: 39 to 50°C, 5% to 25% relative humidity. We describe the medical history in detail of a 23-year-old Caucasian woman and a 31-year-old African-American man. A summary of the other 16 patients is also provided. Conclusions These cases illustrate the potential serious nature of miliaria with superimposed Staphylococcus infections. All 18 patients fully recovered with topical skin treatment and modifications to their dress ensemble. Clothing, in particular blend fabrics, must be thoroughly laundered to adequately remove detergent residue. While in hot environments, individuals with sensitive skin should take the necessary precautions such as regular changing of clothing and good personal hygiene to ensure that their skin remains as dry and clean as possible. It is also important that they report to their health care provider as soon as skin irritation or rash appears to initiate any necessary medical procedures. Miliaria rubra can take a week or longer to clear, so removal of exposure to certain fabric types may be necessary.

  2. Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance

    Science.gov (United States)

    Chung, Reinaldo Javier

    High chromium cast irons (HCCIs) have been demonstrated to be an effective material for a wide range of applications in aggressive environments, where resistances to abrasion, erosion and erosion-corrosion are required. For instance, machinery and facilities used in mining and extraction in Alberta's oil sands suffer from erosion and erosion-corrosion caused by silica-containing slurries, which create challenges for the reliability and maintenance of slurry pumping systems as well as other processing and handling equipment. Considerable efforts have been made to determine and understand the relationship between microstructural features of the HCCIs and their wear performance, in order to guide the material selection and development for specific service conditions with optimal performance. The focus was previously put on a narrow group of compositions dictated by ASTM A532. However, with recent advances in casting technology, the HCCI compositional range can be significantly expanded, which potentially brings new alloys that can be superior to those which are currently employed. This work consists of three main aspects of study. The first one is the investigation of an expanded system of white irons with their composition ranging from 1 to 6 wt.% C and 5 to 45 wt.% Cr, covering 53 alloys. This work has generated wear and corrosion maps and established correlation between the performance and microstructural features for the alloys. The work was conducted in collaboration with the Materials Development Center of Weir Minerals in Australia, and the results have been collected in a database that is used by the company to guide materials selection for slurry pump components in Alberta oil sands and in other mining operations throughout the world. The second part consists of three case studies on effects of high chromium and high carbon, respectively, on the performance of the HCCIs. The third aspect is the development of an approach to enhance the wear resistance of

  3. Mechanical And Microstructural Evaluation Of A Wear Resistant Steel; Avaliacao mecanica e microestrutural de um aco resistente ao desgaste

    Energy Technology Data Exchange (ETDEWEB)

    Santos, F.L.F. dos; Vieira, A.G.; Correa, E.C.S.; Pinheiro, I.P., E-mail: falletti@hotmail.co [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET/MG), Belo Horizonte, MG (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    In the present work, the analysis of the mechanical properties and the microstructural features of a high strength low alloy steel, containing chromium, molybdenum and boron, subjected to different heat treatments, was conducted. After austenitizing at 910 deg C for 10 minutes, three operations were carried out: oil quenching, oil quenching followed by tempering at 200 deg C for 120 minutes and austempering at 400 deg C for 5 minutes followed by water cooling. The analysis was performed through tensile and hardness tests, optical microscopy and X-ray diffraction. The bainitic structure led to high strength and toughness, both essential mechanical properties for wear resistant steels. The occurrence of allotriomorphic ferrite and retained austenite in the samples also increased the wear resistance. This phenomenon is related to the fact that both structures are able to be deformed and, in the case of the retained austenite, the transformation induced plasticity TRIP effect may take place as the material is used. (author)

  4. Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns.

    Science.gov (United States)

    Kassem, Amr S; Atta, Osama; El-Mowafy, Omar

    2012-01-01

    The aim of this study was to determine effect of compressive cyclic loading on fatigue resistance and microleakage of monolithic CAD/CAM molar ceramic and composite crowns. Thirty-two extracted molars were prepared to receive CEREC crowns according to manufacturer's guidelines using a special paralleling device (Parallel-A-Prep). Sixteen feldspathic ceramic crowns (VITABLOCS Mark II) (VMII) and 16 resin-composite crowns (Paradigm-MZ100 blocks) (PMZ) were milled using a CEREC-3D machine. Eight crowns of each group were cemented to their respective teeth using self-etching resin cement (Panavia-F-2.0) (PAN), and eight were cemented using self-adhesive resin cement (RelyX-Unicem-Clicker) (RXU). Following storage for 1 week in water, specimens were subjected to uniaxial compressive cyclic loading in an Instron testing machine at 12 Hz for 1,000,000 cycles. Load was applied at the central fossa, and the cycle range was 60-600 N. Specimens were then subjected to microleakage testing. Data were statistically analyzed using factorial ANOVA and Post Hoc (Tukey HSD) tests. All composite crowns survived compressive cyclic loading without fracture, while three ceramic crowns from the subgroup cemented with RXU developed surface cracks at the center of occlusal surfaces, extending laterally. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other three subgroups (p < 0.05). After 1,000,000 cycles of compressive cyclic loading, PMZ composite molar crowns were more fatigue-resistant than VMII ceramic crowns. Cement type had a significant effect on fatigue resistance of the ceramic crowns but not the composite ones. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other subgroups (p < 0.05). © 2011 by The American College of Prosthodontists.

  5. Contact Resistance of Ceramic Interfaces Between Materials Used for Solid Oxide Fuel Cell Applications

    DEFF Research Database (Denmark)

    Koch, Søren

    The contact resistance can be divided into two main contributions. The small area of contact between ceramic components results in resistance due to current constriction. Resistive phases or potential barriers at the interface result in an interface contribution to the contact resistance, which may....... The influence of the mechanical load on the contact resistance was ascribed to an area effect. The contact resistance of the investigated materials was dominated by current constric-tion at high temperatures. The measured contact resistance was comparable to the resis-tance calculated on basis of the contact...... areas found by optical and electron microscopy. At low temperatures, the interface contribution to the contact resistance was dominating. The cobaltite interface could be described by one potential barrier at the contact interface, whereas the manganite interfaces required several consecutive potential...

  6. The effects of vanadium on the microstructure and wear resistance of centrifugally cast Ni-hard rolls

    International Nuclear Information System (INIS)

    Kang, Minwoo; Suh, Yongchan; Oh, Yong-Jun; Lee, Young-Kook

    2014-01-01

    Highlights: • V addition changed the pro-eutectic phase from austenite to vermicular (V,Nb)C. • Pro-eutectic (V,Nb)C particles were segregated to the inner part of the roll. • Wear loss was inversely proportional to MC fraction under the same graphite fraction. • Cementite particles acted as the initiation site and propagation path of cracks. • High-temperature wear sequence of centrifugally cast Ni-hard rolls was suggested. - Abstract: The effects of V on the microstructure and wear resistance of centrifugally cast Ni-hard rolls are investigated under a constant fraction of graphite using electron microscopes and a revolving disk-type high-temperature wear tester. The volume fraction of (V,Nb)C particles was increased at the expense of the volume fraction of cementite with an increase in the V concentration. However, the volume fraction of graphite was held nearly constant by controlling the concentration ratio of Si and Cr. As the V concentration was higher than 3 wt.%, the pro-eutectic phase was changed from austenite to (V,Nb)C carbide. The pro-eutectic vermicular (V,Nb)C particles were segregated to the inner part of the roll during centrifugal casting. The wear resistance was improved with an addition of V due to the high volume fractions of the coarse eutectic and pro-eutectic (V,Nb)C particles and the precipitation hardening of fine (V,Nb)C particles in the martensitic matrix. The worn surface showed that cementite particles acted as the initiation site and propagation route of cracks

  7. Experimental research on microhardness and wear resistances of pure Cu subjected to surface dynamic plastic deformation by ultrasonic impact

    Science.gov (United States)

    Chen, Zhaoxia; He, Yangming

    2018-04-01

    Dynamic plastic deformation (DPD) has been induced in the surface of pure Cu by ultrasonic impact treating (UIT) with the varied impact current and coverage percentage. The microstructures of the treated surface were analyzed by a scanning electron microscope (SEM). And the wear resistance of pure Cu was experimentally researched both with the treated and untreated specimens. The effect of DPD on the hardness was also investigated using microhardness tester. The results show that the grains on the top surfaces of pure Cu are highly refined. The maximum depth of the plastic deformation layer is approximately 1400 µm. The larger the current and coverage percentage, the greater of the microhardness and wear resistance the treated surface layer of pure Cu will be. When the impact current is 2 A and coverage percentage is 300%, the microhardness and wear resistance of the treated sample is about 276.1% and 68.8% higher than that of the untreated specimen, respectively. But the properties of the treated sample deteriorate when the UIT current is 3 A and the coverage percentage is 300% because of the formation of a new phase forms in the treated surface.

  8. Effect of the low temperature ion nitriding on the wear and corrosion resistance of 316L austenitic stainless steel biomaterials

    International Nuclear Information System (INIS)

    Sudjatmoko; Bambang Siswanto; Wirjoadi; Lely Susita RM

    2012-01-01

    In the present study has been completed done the ion nitriding process and characterization of the 316L SS samples. The ion nitriding process has been conducted on the samples for nitriding temperature variation of 350, 400, 450, 500, and 550 °C, the optimum nitrogen gas pressure of 1.8 mbar and optimum nitriding time of 3 hours. The micro-structure, elemental composition and the phase structure of the nitride layer formed on the surface of samples were observed using the techniques of SEM-EDAX and XRD, respectively. It is known that a thin layer of iron nitrides has been formed on the surface of the samples. Iron nitride layer has a phase structure including ε-Fe_2_-_3N, γ'-Fe_4N, CrN, Cr_2N and expanded austenite γN. The characterization results of the wear resistance of the 316L SS samples showed an increasing of about 2.6 times the wear resistance of standard samples after nitriding temperature of 350 °C. From the corrosion test by using the Hanks solution was obtained 29.87 mpy corrosion rate or the increasing of corrosion resistance of about 137%. Thus it can be seen that by using ion nitriding technique the iron nitride layer has been formed on the surface of the 316L SS samples, and they have an excellent properties of wear resistance and corrosion resistance, which were caused especially due to the formation of an expanded austenite γN. Properties of the high hardness and has the good corrosion resistance, especially due to the formation of iron nitride and expanded austenite phases γN at low temperature nitriding process. (author)

  9. Ceramic microsieves: influence of perforation shape and distribution on flow resistance and membrane strength

    NARCIS (Netherlands)

    Kuiper, S.; Brink, R.; Nijdam, W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2002-01-01

    Ceramic microsieves with slit-shaped perforations were compared to sieves with circular-shaped perforations, regarding flow resistance and membrane strength. Destructive tests show that the highest strength is obtained if the perforations are placed in a non-alternating pattern. Especially for

  10. Interface-dependent resistance switching in Nd0⋅7 MnO3 ceramics

    Indian Academy of Sciences (India)

    Administrator

    EPIR) in Nd0⋅7Sr0⋅3MnO3 ceramics was studied. The results reveal that the EPIR effect originates from the interface between the electrodes and the bulk, and the EPIR ratio as well as the high and low resistance states can be strongly influ-.

  11. Influence of temperature and heat treatment on crack resistance of ceramic tungsten

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.; Bega, N.D.

    1983-01-01

    The effect of testing temperature in the range from 20 to 2000 deg C, and recrystallization annealing at 2200 deg C on crack resistance of ceramic tungsten in vacuum, is investigated. The extension diagrams thus obtained have been treated in accordance with the standard technique. The value of the critical crack loading and the stress intensity coefficient have been determined. Structural changes have been controlled with X-ray structural methods. Crack resistance of tungsten increases in the test temperature range from 20 deg C to Tsub(x) which is connected with the increase of mobility of screw components of dislocation loops. At the temperature more than Tsub(x) the plasticity growth of ceramic tungsten takes place simultaneously with grain boundary embrittlement. Recrystallization annealing at 2200 deg C creates the structure resistant to temperature effect; crack resistance being minimum

  12. Improving the Wear Resistance of Moulds for the Injection of Glass Fibre–Reinforced Plastics Using PVD Coatings: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Francisco Silva

    2017-02-01

    Full Text Available It is well known that injection of glass fibre–reinforced plastics (GFRP causes abrasive wear in moulds’ cavities and runners. Physical vapour deposition (PVD coatings are intensively used to improve the wear resistance of different tools, also being one of the most promising ways to increase the moulds’ lifespan, mainly when used with plastics strongly reinforced with glass fibres. This work compares four different thin, hard coatings obtained using the PVD magnetron sputtering process: TiAlN, TiAlSiN, CrN/TiAlCrSiN and CrN/CrCN/DLC. The first two are monolayer coatings while the last ones are nanostructured and consist of multilayer systems. In order to carry out the corresponding tribological characterization, two different approaches were selected: A laboratorial method, using micro-abrasion wear tests based on a ball-cratering configuration, and an industrial mode, analysing the wear resistance of the coated samples when inserted in a plastic injection mould. As expected, the wear phenomena are not equivalent and the results between micro-abrasion and industrial tests are not similar due to the different means used to promote the abrasion. The best wear resistance performance in the laboratorial wear tests was attained by the TiAlN monolayer coating while the best performance in the industrial wear tests was obtained by the CrN/TiAlCrSiN nanostructured multilayer coating.

  13. Improving of Water Resistance of Asphalt Concrete Wearing Course Using Latex-Bitumen Binder

    Directory of Open Access Journals (Sweden)

    Siswanto Henri

    2017-01-01

    Full Text Available It is well known that presence of water in a bituminous mix is a critical factor which can lead to premature failure of flexible pavements. This requires solutions one of which is to formulate an asphalt mix that has a high resistance to moisture and one way to do this is to mix latex with the asphalt mix. The purpose of this experimental study was to investigate the effect of water on Marshall stability of asphalt concrete wearing course (ACWC made with a latex-bitumen binder. Latex-bitumen was mixed with aggregate and four levels of latex content were investigated in this study, namely, 0%, 2%, 4% and 6% respectively by weight of asphalt. Wet procces was used in the blending of mixtures. The procedure used to obtain the optimum binder contents conformed to the Marshall procedure (SNI 06-2489-1991. Six Marshall specimens at optimum binder content were prepared for each binder mix investigated. Three of six specimens from each group were tested under Marshall standards. The remaining specimens were tested by immersion in a bath at 60°C for 24 hours. The Marshall index of retained stability was used to evaluate the effect of water on the Marshall stability of ACWC. The results indicated that the addition of up to 4% latex to ACWC mix increased the retained Marshall stability, whereas the addition of latex above 4% decreased the retained stability of the mixture. The addition of 4% CRM significantly improved the retained stability of the mixture and was the best latex – ACWC mix.

  14. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Gusain, Rashi [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India); Kokufu, Sho [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Bakshi, Paramjeet S. [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Khatri, Om P., E-mail: opkhatri@iip.res.in [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India)

    2016-02-28

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF{sub 6}) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF{sub 6} thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF{sub 6} thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF{sub 6} thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF{sub 6} thin film, the covalent interaction between ImPF{sub 6} ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  15. Ceramic on ceramic arthroplasty of the hip: new materials confirm appropriate use in young patients.

    Science.gov (United States)

    Sentuerk, U; von Roth, P; Perka, C

    2016-01-01

    The leading indication for revision total hip arthroplasty (THA) remains aseptic loosening owing to wear. The younger, more active patients currently undergoing THA present unprecedented demands on the bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest rates of wear. The recent advances, especially involving alumina/zirconia composite ceramic, have led to substantial improvements and good results in vitro. Alumina/zirconia composite ceramics are extremely hard, scratch resistant and biocompatible. They offer a low co-efficient of friction and superior lubrication and lower rates of wear compared with other bearings. The major disadvantage is the risk of fracture of the ceramic. The new composite ceramic has reduced the risk of fracture of the femoral head to 0.002%. The risk of fracture of the liner is slightly higher (0.02%). Assuming that the components are introduced without impingement, CoC bearings have major advantages over other bearings. Owing to the superior hardness, they produce less third body wear and are less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent choice for young, active patients requiring THA. ©2016 The British Editorial Society of Bone & Joint Surgery.

  16. Resistance to wear and microstructure of martensitic welds deposits for recharge

    International Nuclear Information System (INIS)

    Gualco, Agustin; Svoboda, Hernan G; Surian, Estela S; Vedia, Luis A

    2006-01-01

    This work studied the welding metal for a martensitic steel (alloyed to Cr, Mn, Mo, V and W), deposited with a tubular metal-cored wire with gaseous protection of 82%Ar-18%Co 2 on a low carbon steel using the semi-automatic welding process. Transverse pieces were cut from the welded coupon for microstructural characterization, measurement of hardness profiles, determination of the chemical composition and wear trials. The microstructural characterization was done using optic and scanning electronic microscopes, X-rays diffraction and energy-dispersive X-ray spectroscopy and Vicker microhardness (1 kg.) was measured. The wear trials (metal-metal) were performed in an Amsler machine under pure flow conditions. Different loads were used and the reference material was a SAE 1020 steel. The temperatures for each case were measured and the weight loss curves were defined as a function of the distance run and of the load. After testing the wear surfaces and the debris were measured. The microstructure of the welded deposit mostly consists of martensite and some retained austenite, with a pattern of dendritic segregation, and a hardness on the surface of 612 HVI. A lineal variation between the weight loss and the load applied was obtained as a response to the wear. The following phenomena were observed: abrasion, plastic deformation, oxidation and adhesion to the wear surfaces, as well as a tempering effect in the condition of the biggest load. The wear mechanisms acting on both surfaces were identified (CW)

  17. Potential countersample materials for in vitro simulation wear testing.

    Science.gov (United States)

    Shortall, Adrian C; Hu, Xiao Q; Marquis, Peter M

    2002-05-01

    Any laboratory investigation of the wear resistance of dental materials needs to consider oral conditions so that in vitro wear results can be correlated with in vivo findings. The choice of the countersample is a critical factor in establishing the pattern of tribological wear and in achieving an efficient in vitro wear testing system. This research investigated the wear behavior and surface characteristics associated with three candidate countersample materials used for in vitro wear testing in order to identify a possible suitable substitute for human dental enamel. Three candidate materials, stainless steel, steatite and dental porcelain were evaluated and compared to human enamel. A variety of factors including hardness, wear surface evolution and frictional coefficients were considered, relative to the tribology of the in vivo situation. The results suggested that the dental porcelain investigated bore the closest similarity to human enamel of the materials investigated. Assessment of potential countersample materials should be based on the essential tribological simulation supported by investigations of mechanical, chemical and structural properties. The selected dental porcelain had the best simulating ability among the three selected countersample materials and this class of material may be considered as a possible countersample material for in vitro wear test purposes. Further studies are required, employing a wider range of dental ceramics, in order to optimise the choice of countersample material for standardized in vitro wear testing.

  18. Study on Co-free amorphous material cladding using a laser beam to improve the resistance of primary system parts in NPPs to wear/erosion-corrosion

    International Nuclear Information System (INIS)

    Kim, J. S.; Woo, S. S.; Seo, J. H.

    2001-01-01

    A study on Co-free amorphous material, ARMACOR M, cladding using a laser beam has been performed to improve resistance of the primary system main parts on nuclear power plants to wear/erosion-corrosion. The wear/erosion-corrosion properties of ARMACRO M cladded speciemens were characterized in air at room temperature and 300 .deg. C and in air at room temperature, and compared to those of other hardfacing materials, such as Stellite 6, NOREM 02, Deloro 50, TIG-welde or laer cladded. According to the results, ARMACOR M laser-cladded specimen showed to have the highest resistance to wear/erosion-corrosion

  19. Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behavior of 1.2080 tool steel

    International Nuclear Information System (INIS)

    Akhbarizadeh, Amin; Amini, Kamran; Javadpour, Sirus

    2012-01-01

    Highlights: ► Deep cryogenic increases the carbide percentage and make a more homogenous distribution. ► Deep cryogenic improve the wear resistance and corrosion behavior of 1.2080 tool steel. ► Applying the magnetic field weaker the carbide distribution and decreases the carbides percentage. ► Magnetized samples showed weaker corrosion and wear behavior. -- Abstract: This work concerns with the effect of applying an external magnetic field on the corrosion behavior, wear resistance and microstructure of 1.2080 (D2) tool steel during the deep cryogenic heat treatment. These analyses were performed via scanning electron microscope (SEM), optical microscope (OM), transmission electron microscope (TEM) and X-ay diffraction (XRD) to study the microstructure, a pin-on-disk wear testing machine to study the wear behavior, and linear sweep voltammetry to study the corrosion behavior of the samples. It was shown that the deep cryogenic heat treatment eliminates retained austenite and makes a more uniform carbide distribution with higher percentage. It was also observed that the deep cryogenic heat treatment improves the wear behavior and corrosion resistance of 1.2080 tool steel. In comparison between the magnetized and non-magnetized samples, the carbide percentage decreases and the carbide distribution weakened in the magnetized samples; subsequently, the wear behavior and corrosion resistance attenuated compared in the magnetized samples.

  20. Penetration Resistance of Armor Ceramics: Dimensional Analysis and Property Correlations

    Science.gov (United States)

    2015-08-01

    which is found to be fairly constant for each impact velocity V0. A plot of P versus V0 at fixed values of h gives an overall estimate of vP/vV0, which...55,58]. An overall strat- egy can be written as ballistic performance ðP=L0Þ 4 1 dimensional parameters ðL ;E Þ 4 2 material properties ðG=E; t=rÞ 4 3...Cronin D, Worswick M, Pageau G, Beth A. Influence of material properties on the ballistic performance of ceramics for personal body armour . Shock

  1. High-Temperature Ceramic Matrix Composite with High Corrosion Resistance

    Science.gov (United States)

    2010-06-02

    description of high temperature oxidation processes of composite ceramic materials of ZrB2 - SiC and ZrB2-SiC-Zr(Mo)Si2 systems up to high (~1300 °C...analysis was applied using MІN-7 mineralogical microscope and a set of standard immersion liquids with the known values of refraction coefficients...2.0 V) corresponds to the simultaneous formation of ZrO2 zirconium dioxide of monoclinic modification and Zr(OH)4 zirconium hydroxide which is

  2. Contact resistance of ceramic interfaces between materials used for solid oxide fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Koch, S.

    2002-01-01

    The contact resistance can be divided into two main contributions. The small area of contact between ceramic components results in resistance due to current constriction. Resistive phases or potential barriers at the interface result in an interface contribution to the contact resistance, which may be smaller or larger than the constriction resistance. The contact resistance between pairs of three different materials were analysed (strontium doped lanthanum manganite, yttria stabilised zirconia and strontium and nickel doped lanthanum cobaltite), and the effects of temperature, atmosphere, polarisation and mechanical load on the contact resistance were investigated. The investigations revealed that the mechanical load of a ceramic contact has a high influence on the contact resistance, and generally power law dependence between the contact resistance and the mechanical load was found. The influence of the mechanical load on the contact resistance was ascribed to an area effect. The contact resistance of the investigated materials was dominated by current constriction at high temperatures. The measured contact resistance was comparable to the resistance calculated on basis of the contact areas found by optical and electron microscopy. At low temperatures, the interface contribution to the contact resistance was dominating. The cobaltite interface could be described by one potential barrier at the contact interface, whereas the manganite interfaces required several consecutive potential barriers to model the observed behaviour. The current-voltage behaviour of the YSZ contact interfaces was only weakly non-linear, and could be described by 22{+-}1 barriers in series. Contact interfaces with sinterable contact layers were also investigated, and the measured contact resistance for these interfaces were more than 10 times less than for the other interfaces. (au)

  3. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available Department of Metallurgical & Materials Engineering, IIT Kharagpur, West Bengal, India 2National Laser Centre, CSIR, Pretoria, South Africa Abstract In the present study, laser surface alloying of aluminium with WC+Co+NiCr (in the ratio of 70... be used for dispersion of ceramic materials into metallic matrix and hence, form a ceramic dispersed metal matrix composite on metallic substrate [3]. The advantages of laser surface alloying include refinement of the microstructure, uniform dispersion...

  4. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  5. Effect of CeO₂ on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding.

    Science.gov (United States)

    Chen, Tao; Liu, Defu; Wu, Fan; Wang, Haojun

    2017-12-31

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO₂ powders as the basic pre-placed materials. A certain amount of CeO₂ powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO₂ additive on the phase constituents, microstructures and wear resistance of the TiC coatings were researched in detail. Although the effect of CeO₂ on the phase constituents of the coatings was slight, it had a significant effect on the microstructure and wear resistance of the coatings. The crystalline grains in the TiC coatings, observed by a scanning electron microscope (SEM), were refined due to the effect of the CeO₂. With the increase of CeO₂ additive content in the pre-placed powders, finer and more compact dendrites led to improvement of the micro-hardness and wear resistance of the TiC coatings. Also, 5 wt % content of CeO₂ additive in the pre-placed powders was the best choice for improving the wear properties of the TiC coatings.

  6. Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding

    Science.gov (United States)

    Wang, Haojun

    2017-01-01

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO2 powders as the basic pre-placed materials. A certain amount of CeO2 powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO2 additive on the phase constituents, microstructures and wear resistance of the TiC coatings were researched in detail. Although the effect of CeO2 on the phase constituents of the coatings was slight, it had a significant effect on the microstructure and wear resistance of the coatings. The crystalline grains in the TiC coatings, observed by a scanning electron microscope (SEM), were refined due to the effect of the CeO2. With the increase of CeO2 additive content in the pre-placed powders, finer and more compact dendrites led to improvement of the micro-hardness and wear resistance of the TiC coatings. Also, 5 wt % content of CeO2 additive in the pre-placed powders was the best choice for improving the wear properties of the TiC coatings. PMID:29301218

  7. Effect of the Cutting Tool Geometry on the Tool Wear Resistance When Machining Inconel 625

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2017-12-01

    Full Text Available The paper deals with the design of a suitable cutting geometry of a tool for the machining of the Inconel 625 nickel alloy. This alloy is among the hard-to-machine refractory alloys that cause very rapid wear on cutting tools. Therefore, SNMG and RCMT indexable cutting insert were used to machine the alloy. The selected insert geometry should prevent notch wear and extend tool life. The alloy was machined under predetermined cutting conditions. The angle of the main edge and thus the size and nature of the wear changed with the depth of the material layer being cut. The criterion for determining a more suitable cutting geometry was the tool’s durability and the roughness of the machined surface.

  8. Effect of the Cutting Tool Geometry on the Tool Wear Resistance when Machining Inconel 625

    Directory of Open Access Journals (Sweden)

    Tomáš Zlámal

    2018-03-01

    Full Text Available The paper deals with the design of a suitable cutting geometry of a tool for the machining of the Inconel 625 nickel alloy. This alloy is among the hard-to-machine refractory alloys that cause very rapid wear on cutting tools. Therefore, SNMG and RCMT indexable cutting insert were used to machine the alloy. The selected insert geometry should prevent notch wear and extend tool life. The alloy was machined under predetermined cutting conditions. The angle of the main edge and thus the size and nature of the wear changed with the depth of the material layer being cut. The criterion for determining a more suitable cutting geometry was the tool’s durability and the roughness of the machined surface.

  9. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity.

    Science.gov (United States)

    Si, Yang; Wang, Xueqin; Dou, Lvye; Yu, Jianyong; Ding, Bin

    2018-04-01

    Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO 2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO 2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm -3 , rapid recovery from 80% strain, zero Poisson's ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form.

  10. Topological design of all-ceramic dental bridges for enhancing fracture resistance.

    Science.gov (United States)

    Zhang, Zhongpu; Chen, Junning; Li, Eric; Li, Wei; Swain, Michael; Li, Qing

    2016-06-01

    Layered all-ceramic systems have been increasingly adopted in major dental prostheses. However, ceramics are inherently brittle, and they often subject to premature failure under high occlusion forces especially in the posterior region. This study aimed to develop mechanically sound novel topological designs for all-ceramic dental bridges by minimizing the fracture incidence under given loading conditions. A bi-directional evolutionary structural optimization (BESO) technique is implemented within the extended finite element method (XFEM) framework. Extended finite element method allows modeling crack initiation and propagation inside all-ceramic restoration systems. Following this, BESO searches the optimum distribution of two different ceramic materials, namely porcelain and zirconia, for minimizing fracture incidence. A performance index, as per a ratio of peak tensile stress to material strength, is used as a design objective. In this study, the novel XFEM based BESO topology optimization significantly improved structural strength by minimizing performance index for suppressing fracture incidence in the structures. As expected, the fracture resistance and factor of safety of fixed partial dentures structure increased upon redistributing zirconia and porcelain in the optimal topological configuration. Dental CAD/CAM systems and the emerging 3D printing technology were commercially available to facilitate implementation of such a computational design, exhibiting considerable potential for clinical application in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Strengthening of oxidation resistant materials for gas turbine applications. [treatment of silicon ceramics for increased flexural strength and impact resistance

    Science.gov (United States)

    Kirchner, H. P.

    1974-01-01

    Silicon nitride and silicon carbide ceramics were treated to form compressive surface layers. On the silicon carbide, quenching and thermal exposure treatments were used, and on the silicon nitride, quenching, carburizing, and a combination of quenching and carburizing were used. In some cases substantial improvements in impact resistance and/or flexural strength were observed. The presence of compressive surface stresses was demonstrated by slotted rod tests.

  12. Bioactive glass-ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ye Xinyu [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Cai Shu, E-mail: caishu@tju.edu.cn [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Dou Ying [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Xu Guohua [Shanghai Changzheng Hospital, Shanghai 200003 (China); Huang Kai; Ren Mengguo; Wang Xuexin [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Sol-gel derived 45S5 glass-ceramic coating was prepared on Mg alloy substrate. Black-Right-Pointing-Pointer The corrosion resistance of glass-ceramic coated Mg alloy was markedly improved. Black-Right-Pointing-Pointer The corrosion behavior of the coated sample varied due to the cracking of coating. - Abstract: In this work, a bioactive 45S5 glass-ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol-gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass-ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na{sub 2}Ca{sub 2}Si{sub 3}O{sub 9}, with the thickness of {approx}1.0 {mu}m, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (E{sub corr}) form -1.60 V to -1.48 V, and a reduction of corrosion current density (i{sub corr}) from 4.48 {mu}A cm{sup -2} to 0.16 {mu}A cm{sup -2}, due to the protection provided by the glass-ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass-ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass-ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  13. Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic

    Science.gov (United States)

    Holsgrove, Kristina M.; Kepaptsoglou, Demie M.; Douglas, Alan M.; Ramasse, Quentin M.; Prestat, Eric; Haigh, Sarah J.; Ward, Michael B.; Kumar, Amit; Gregg, J. Marty; Arredondo, Miryam

    2017-06-01

    Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC), is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC) behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3-PbTiO3-CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.

  14. Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic

    Directory of Open Access Journals (Sweden)

    Kristina M. Holsgrove

    2017-06-01

    Full Text Available Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC, is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3–PbTiO3–CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.

  15. Bioactive glass-ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    Science.gov (United States)

    Ye, Xinyu; Cai, Shu; Dou, Ying; Xu, Guohua; Huang, Kai; Ren, Mengguo; Wang, Xuexin

    2012-10-01

    In this work, a bioactive 45S5 glass-ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol-gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass-ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na2Ca2Si3O9, with the thickness of ∼1.0 μm, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (Ecorr) form -1.60 V to -1.48 V, and a reduction of corrosion current density (icorr) from 4.48 μA cm-2 to 0.16 μA cm-2, due to the protection provided by the glass-ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass-ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass-ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  16. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Neha, E-mail: neha87bhu@gmail.com [Defence Material Store Research Development and Establishment (DMSRDE), DRDO, GT Road, Kanpur 208013, U.P (India); Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra (India); Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Mukhopadhyay, K.; Prasad, N. E. [Defence Material Store Research Development and Establishment (DMSRDE), DRDO, GT Road, Kanpur 208013, U.P (India); Gandhi, M. N.; Bhattacharyya, A. R. [Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra (India)

    2016-05-06

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS{sub 2}) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS{sub 2} and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS{sub 2} and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  17. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    International Nuclear Information System (INIS)

    Agrawal, Neha; Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Mukhopadhyay, K.; Prasad, N. E.; Gandhi, M. N.; Bhattacharyya, A. R.

    2016-01-01

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS_2) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS_2 and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS_2 and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  18. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    Science.gov (United States)

    Agrawal, Neha; Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Gandhi, M. N.; Bhattacharyya, A. R.; Mukhopadhyay, K.; Prasad, N. E.

    2016-05-01

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS2) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS2 and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS2 and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  19. Microstructure and Wear Resistance of Composite Coating by Laser Cladding Al/TiN on the Ti-6Al-4V Substrate

    Science.gov (United States)

    Zhang, H. X.; Yu, H. J.; Chen, C. Z.

    2015-05-01

    The composite coatings were fabricated by laser cladding Al/TiN pre-placed powders on Ti-6Al-4V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there was a good metallurgical bond between the coating and the substrate. The composite coatings were mainly composed of the matrix of β-Ti (Al) and the reinforcements of titanium nitride (TiN), Ti3Al, TiAl and Al3Ti. The hardness and wear resistance of the coatings on four samples were greatly improved, among which sample 4 exhibited the highest hardness and best wear resistance. The hardness of the coating on sample 4 was approximately 2.5 times of the Ti-6Al-4V substrate. And the wear resistance of sample 4 was four times of the substrate.

  20. A Study on Corrosion and Fretting Wear Resistance of Alloy 690 Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Won, Ju Jin; Min, Su Jung; Kim, Myeong Su; Kim, Kyu Tae [Dongguk Univ., Gyeongju (Korea, Republic of)

    2013-10-15

    In this article, the effects of such failures have on the materials of alloy 690 are assessed. The corroded volume variation and mass decreased continuously with time. However, the oxide volume changes in an irregular pattern since the oxide formed on the alloy 690 metal may be detached due to the flake formation. The amount of the fretting wear increased with time. It can be seen that the wear rate increased with time and reduced at the later time. The test results show that the ductility decreased as corrosion increases. Alloy 690 is broadly used as a material of nuclear power plant's steam generator tubes because of its excellent mechanical strength, corrosion properties, wear properties and stability at a high temperature. However, the tubes for nuclear power plant's steam generators become a major threat for lifetime management and efficient operation of nuclear power plant due to various corrosion and fretting wear failures caused by flow-induced vibration (FIV) that occurs between tubes.

  1. Improvement of wear resistance of machine elements by plasma spraying followed by hardening in the chlorine-barium melt

    International Nuclear Information System (INIS)

    Fominykh, V.V.; Stepanov, V.V.

    1979-01-01

    Proposed is the mathematical model, allowing to choose the optimal regime of sprayed coating hardening in the BaCl 2 salt melt. The method of hardening of machine elements by spraying wear resistance coatings of the Ni-Cr-B-Si alloys is described. It is established that diffusion heating followed by coating melting in the BaCl 2 solution increases the adhesion of sprayed layer to substrate metal. The formation of intermediate intermetallic compounds of the Ni 3 Si and Ni 3 Fe types takes place as a result of diffusion of interacting material atoms and valence electron joining

  2. Wear Performance of Sequentially Cross-Linked Polyethylene Inserts against Ion-Treated CoCr, TiNbN-Coated CoCr and Al2O3 Ceramic Femoral Heads for Total Hip Replacement

    Directory of Open Access Journals (Sweden)

    Christian Fabry

    2015-02-01

    Full Text Available The aim of the present study was to evaluate the biotribology of current surface modifications on femoral heads in terms of wettability, polyethylene wear and ion-release behavior. Three 36 mm diameter ion-treated CoCr heads and three 36 mm diameter TiNbN-coated CoCr heads were articulated against sequentially cross-linked polyethylene inserts (X3 in a hip joint simulator, according to ISO 14242. Within the scope of the study, the cobalt ion release in the lubricant, as well as contact angles at the bearing surfaces, were investigated and compared to 36 mm alumina ceramic femoral heads over a period of 5 million cycles. The mean volumetric wear rates were 2.15 ± 0.18 mm3·million cycles−1 in articulation against the ion-treated CoCr head, 2.66 ± 0.40 mm3·million cycles−1 for the coupling with the TiNbN-coated heads and 2.17 ± 0.40 mm3·million cycles−1 for the ceramic heads. The TiNbN-coated femoral heads showed a better wettability and a lower ion level in comparison to the ion-treated CoCr heads. Consequently, the low volumes of wear debris, which is comparable to ceramics, and the low concentration of metal ions in the lubrication justifies the use of coated femoral heads.

  3. Increasing Wear Resistance of Titanium Alloys by Anode Plasma Electrolytic Saturation with Interstitial Elements

    Science.gov (United States)

    Belkin, P. N.; Kusmanov, S. A.; Dyakov, I. G.; Silkin, S. A.; Smirnov, A. A.

    2017-05-01

    In our previous studies, we have shown that anode plasma electrolytic saturation of titanium alloys with nitrogen and carbon can improve their tribological properties. Obtained structure containing oxide layer and solid solution of diffused element in titanium promotes the enhancement of running-in ability and the decrease in the wear rate in some special cases. In this paper, further investigations are reported regarding the tribological properties of alpha- and beta-titanium alloys in wear test against hardened steel (50 HRC) disk using pin-on-disk geometry and balls of Al2O3 (6.25 mm in diameter) or bearing steel (9.6 mm in diameter) with ball-on-plate one and normal load from 5 to 209 N. Reproducible results were obtained under testing samples treated by means of the plasma electrolytic nitriding (PEN) with the mechanical removal of the oxide layer. Friction coefficient of nitrided samples is 0.5-0.9 which is somewhat higher than that for untreated one (0.48-0.75) during dry sliding against Al2O3 ball. An increase in the sliding speed results in the polishing of nitrided samples and reduction of their wear rate by 60 times. This result is obtained for 5 min at 850 °C using PEN in electrolyte containing 5 wt.% ammonia and 10 wt.% ammonium chloride followed by quenching in solution. Optical microscope was employed to assist in the evaluation of the wear behavior. Sizes of wear tracks were measured by profilometer TR200.

  4. Tooth wear and wear investigations in dentistry.

    Science.gov (United States)

    Lee, A; He, L H; Lyons, K; Swain, M V

    2012-03-01

    Tooth wear has been recognised as a major problem in dentistry. Epidemiological studies have reported an increasing prevalence of tooth wear and general dental practitioners see a greater number of patients seeking treatment with worn dentition. Although the dental literature contains numerous publications related to management and rehabilitation of tooth wear of varying aetiologies, our understanding of the aetiology and pathogenesis of tooth wear is still limited. The wear behaviour of dental biomaterials has also been extensively researched to improve our understanding of the underlying mechanisms and for the development of restorative materials with good wear resistance. The complex nature of tooth wear indicates challenges for conducting in vitro and in vivo wear investigations and a clear correlation between in vitro and in vivo data has not been established. The objective was to critically review the peer reviewed English-language literature pertaining to prevalence and aetiology of tooth wear and wear investigations in dentistry identified through a Medline search engine combined with hand-searching of the relevant literature, covering the period between 1960 and 2011. © 2011 Blackwell Publishing Ltd.

  5. MICROSTRUCTURE AND WEAR RESISTANCE OF COMPOSITE COATING BY LASER CLADDING Al/TiN ON THE Ti–6Al–4V SUBSTRATE

    OpenAIRE

    H. X. ZHANG; H. J. YU; C. Z. CHEN

    2015-01-01

    The composite coatings were fabricated by laser cladding Al/TiN pre-placed powders on Ti–6Al–4V substrate for enhancing wear resistance and hardness of the substrate. The composite coatings were analyzed by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The sliding wear tests were performed by MM200 wear test machine. The hardness of the coatings was tested by HV-1000 hardness tester. After laser cladding, it was found that there...

  6. Sliding wear resistance of metal matrix composite layers prepared by high power laser

    NARCIS (Netherlands)

    Ocelik, Vaclav; Matthews, D; de Hosson, Jeff

    2005-01-01

    Two laser surface engineering techniques, Laser Cladding and Laser Melt Injection (LMI), were used to prepare three different metal matrix composite layers with a thickness of about 1 mm and approximately 25-30% volume fraction of ceramic particles. SiC/Al-8Si, WC/Ti-6Al-4V and TiB2/Ti-6Al-4V layers

  7. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock

    Science.gov (United States)

    Lidman, W G; Bobrowsky, A R

    1949-01-01

    An analysis is made to determine which properties of materials affect their resistance to fracture by thermal stresses.From this analysis, a parameter is evaluated that is correlated with the resistance of ceramic materials to fracture by thermal shock as experimentally determined. This parameter may be used to predict qualitatively the resistance of a material to fracture by thermal shock. Resistance to fracture by thermal shock is shown to be dependent upon the following material properties: thermal conductivity, tensile strength, thermal expansion, and ductility modulus. For qualitative prediction of resistance of materials to fracture by thermal shock, the parameter may be expressed as the product of thermal conductivity and tensile strength divided by the product of linear coefficient of thermal expansion and ductility modulus of the specimen.

  8. The effect of laser treatment on the wear resistance of steel in corrosive media

    International Nuclear Information System (INIS)

    Plyatsko, G.V.; Porter, A.I.; Prejs, G.A.; Mojsa, M.I.

    1975-01-01

    The corrosion mechanical wearing properties of steel 45 treated with a laser beam (H 100 =7800 Mn/sq.m) under friction with nitrated steel 40KhNMA (HV=7000 Mn/sq.m), chrome cast iron Kh15M (hardened and low-temperature tempered, modified), perlite cast iron and bronze are studied. The aqueous buffers with pH=6 and 11 are used as a corrosion active media. In a weakly acid medium the most intensive wearing of steel 40KhNMA is observed at P=8 Mn/sq.m. Its wearing reduces due to increase of pressure to 12 Mn/sq.m. Extent of steel 45 wearing increases with pressure increase from 8 to 12 Mn/sg.m. Friction coefficient of this pair changes by jumps at an increase of normal pressure and its variation range is smaller than that observed in an alkaline medium. The maximum value of friction coefficient is shifted to the higher pressure. The wearing of cast iron Kh15M-steel 45 pair has an alternative pattern. In an alkaline medium the cast iron wearing intensity shows a linear increase with the normal contact pressure but that of the steel changes jumpwise attaining extreme at 8 and 12 Mn/sq.m. In a weak acid medium the intensity of grasping and graphitization at the friction surface of cast iron Kh15M-steel 45 pair is higher than that in the alkaline medium. Experiments demonstrate an effectiveness of the laser beam treatment of steel 45 for its friction in the alkaline medium with nitrated steel 40KhNMA and with hardened low-temperature tempered cast iron 45 under friction contact pressure as high as 8 Mn/sq.m, and in acid medium at 12 and 8 Mn/sq.m respectively. The laser treatment provides high corrosion-mechanical stability of steel 45 and the counterbodies described, as well as the low friction coefficient of these pairs

  9. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Martukanitz and S. Babu

    2007-05-03

    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the

  10. Surfactant-free electrodeposition of reduced graphene oxide/copper composite coatings with enhanced wear resistance

    Science.gov (United States)

    Mai, Y. J.; Zhou, M. P.; Ling, H. J.; Chen, F. X.; Lian, W. Q.; Jie, X. H.

    2018-03-01

    How to uniformly disperse graphene sheets into the electrolyte is one of the main challenges to synthesize graphene enhanced nanocomposites by electrodeposition. A surfactant-free colloidal solution comprised of copper (II)-ethylene diamine tetra acetic acid ([CuIIEDTA]2-) complexes and graphene oxide (GO) sheets is proposed to electrodeposit reduced graphene oxide/copper (RGO/Cu) composite coatings. Anionic [CuIIEDTA]2- complexes stably coexist with negatively charged GO sheets due to the electrostatic repulsion between them, facilitating the electrochemical reduction and uniform dispersion of GO sheets into the copper matrix. The RGO/Cu composite coatings are well characterized by XRD, Raman, SEM and XPS. Their tribological behavior as a function of RGO content in composite coatings and normal loads are investigated. Also the chemical composition and topography of the wear tracks for the composite coatings are analyzed to deduce the lubricating and anti-wear mechanism of RGO/Cu composite coatings.

  11. Abrasive wear resistance optimization of three different carbide coatings by the Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Guer, Ali Kaya [Firat Univ., Elazig (Turkey). Dept. of Metallurgy and Materials; Kaya, Sinan [Firat Univ., Elazig (Turkey). Faculty of Technology

    2017-06-01

    In this study, FeCrC, SiC and B{sub 4}C powders were alloyed on the surface of AISI 430 ferritic stainless steel by plasma arc welding. The mass losses of the abrasive wear of the AISI 430 substrate were examined under the loads of 6, 10 and 16 N and in the distances of 10, 20 and 30 m by using Taguchi design method. The results of abrasive wear test were optimized by the minimum optimal control characteristics of the Taguchi procedure and the results were analyzed by using graphical methods. The Taguchi procedure is an important approach to achieve high quality without increasing the cost during the optimization of process parameters. The orthogonal planes of maximum effects of the controllable process parameters and minimum effects of uncontrollable process parameters were employed in the Taguchi method.

  12. Impact of UHMWPE texture on friction and wear resistance of hip prosthesis

    Directory of Open Access Journals (Sweden)

    Eddoumy Fatima

    2013-11-01

    Full Text Available Ultra High Molecular Weight PolyEthylene (UHMWPE is a polymer widely used in hip implants (prostheses as a bearing surface against metal, because of its good mechanical properties and biocompatibility [1]. Nevertheless, the durability of such implants is limited because of failure resulting from osteolysis and aseptic loosening. These two phenomenons are due to the immune response of human body consecutive to the apparition of wear particles of UHMWPE with time.

  13. Wear resistant composite structure of vitreous carbon containing convoluted fibers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Burton, R.G.; Burton, R.A.

    1996-05-28

    Energy Related Inventions Program Number 613 was a two year program to commercialize a unique new wear material, Metal Reinforced Carbon Composite, MRCC. The program was designed to manufacture sample components of MRCC for evaluation by potential users and manufacturers. As a result of the program Burton Technologies Inc. and Rotary Power International are forming a joint company to manufacture, market and license MRCC materials to a wide range of industries.

  14. Influence of high sintering pressure on the microhardness and wear resistance of diamond powder and silicon carbide-based composites

    Directory of Open Access Journals (Sweden)

    Osipov Oleksandr Sergueevitch

    2004-01-01

    Full Text Available The work reported on here involved the development of several samples of "diamond-SiC" composite produced under sintering pressures of up to 9.0 GPa at temperatures of up to 1973 7K. The average size of the diamond micropowder crystals used was 40/28 µm. The sintering process was carried out in a 2500-ton hydraulic press equipped with an anvil-type high-pressure device having a toroidal work surface and a central concavity diameter of 20 mm. The microhardness and wear resistance of the samples were found to be dependent on the sintering pressure. The experimental results indicated that the maximum microhardness and minimum wear resistance coefficients of each compact were attained when the pressure applied during sintering exceeded 6.5 GPa. Based on the established values of pressure, this study served to identify the types of devices applicable for the manufacture of composite material inserts for a variety of rock drilling applications.

  15. Wear and Corrosion Resistance of Fe Based Coatings by HVOF Sprayed on Gray Cast-Iron for Automotive Application

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-12-01

    Full Text Available In this study, commercially available FeSiNiCr and FeBCr alloy powders were designed with suitable compositions, gas atomized and then coated on gray cast-iron substrate. The microstructures of the feed stock Fe based alloy powders and the coatings were investigated by means of optical microscopy (OM, X-Ray diffraction (XRD, Thermogravimetric analysis (TGA and Scanning Electron Microscopy (SEM. In the present study, both the coating materials experienced two-body wear mechanisms. The results showed that for loads of 0.05 N, 0.1 N and 0.2 N, the wear resistance of FeBCr coating was less than FeSiNiCr by 44 %, 40 % and 31 %, respectively. The results indicated that the coated substrates exhibited lower corrosion current densities and lower corrosion rates, when placed in 20 wt.% H2SO4 solutions. In addition, the use of optimal spraying parameters/conditions gave improvements to the corrosion resistance of the substrates that had been treated with the crystalline coating.

  16. Silver nanosheet-coated copper nanowire/epoxy resin nanocomposites with enhanced electrical conductivity and wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ningning; Ma, Jingyi; Zhang, Yujuan; Yang, Guangbin; Zhang, Shengmao, E-mail: zsm@henu.edu.cn; Zhang, Pingyu [Henan University, Engineering Research Center for Nanomaterials (China)

    2017-03-15

    Silver (Ag) nanosheet-coated Cu nanowires (denoted as Cu@AgNWs) were prepared with a facile transmetalation reaction method. The effect of reaction conditions on the morphology and microstructure of the as-prepared Cu@AgNWs was investigated, and the thermal stability of Cu@AgNWs was evaluated by thermogravimetric analysis. In the meantime, the as-prepared Cu@AgNWs were used as the nanofillers of epoxy resin (EP), and their effect on the electrical conductivity and wear resistance of the EP-matrix composites was examined. Results indicate that the as-prepared Cu@AgNWs consist of CuNW core and Ag nanosheet shell. The Ag nanosheet shell can well inhibit the oxidation of the CuNW core, thereby providing the as-prepared Cu@AgNWs with good thermal stability even at an elevated temperature of 230 °C. The reaction temperature, Cu/Ag molar ratio, Cu dispersion concentration, and the dropping speed of silver ammonia reagent are suggested to be 40 °C, 5:1, 1% (mass fraction), and poured directly, respectively. Resultant Cu@AgNWs exhibit desired morphology and performance and can effectively increase the electrical conductivity and wear resistance of EP. This could make it feasible for the Cu@AgNW-EP composite to be applied as an electrostatic conductive material.

  17. Effects of electron irradiation on the resistive behaviour of YBCO-type ceramics

    International Nuclear Information System (INIS)

    Galatanu, A.; Novac, A.; Mosteanu, T.; Magureanu, M.

    1998-01-01

    YBCO-123 ceramic samples were irradiated with electron beams (E=0.5 MeV), the particle fluxes ranging between 10 15 and 10 19 e - /cm 2 . The induced structure modifications are analyzed through X-ray diffraction and their effects on the resistive behaviour are estimated. It is shown that a direct correlation can be established between the irradiation effects, oxygen disorder and hence the modification of the sample resistivity. A particular attention is given to the effects on the fluctuation mechanism arising near the transition temperature. (authors)

  18. Wear resistance evaluation of palm fatty acid distillate using four-ball tribotester

    Science.gov (United States)

    Golshokouh, Iman; Ani, Farid Nasir; Syahrullail, S.

    2012-06-01

    Petroleum reserves are declining nowadays while ironically petroleum is a major source of pollution despite many uses. Researchers are in effort to find an alternative to replace petroleum as a lubricant. One of the best replace sources for petroleum is bio-oil. In this paper, a comparative study of friction and wear was carried out using a fourball tester. In this research, Palm Fatty Acid Distillate (PFAD) and Jatropha oil, two well-known oils from the vegetable family oils were compared with Hydraulic mineral oil and commercial mineral Engine oil. All investigated oils in this study are used in industries as lubricants. PFAD is a product from refined crude palm oil. It exists as a light brown solid at room temperature and Jatropa oil is produced from the seeds of the Jatropha cruces, a plant that grows in marginal lands. For the wear test, the experimental research condition was comparing four kind of oils with ASTM condition in which the load applied was 392N. The sliding speed was 1200rpm under the lubricant temperature of 75 degree Celsius. The experiment was run for 3600 seconds. The experimental results demonstrated that the PFAD and Jatropha oils exhibited better performance in term of friction and wear compared to Hydraulic and Engine mineral oils.

  19. Influence of halogen irradiance on short- and long-term wear resistance of resin-based composite materials.

    LENUS (Irish Health Repository)

    Bhamra, Gurcharn S

    2009-02-01

    The Oregon Health Science University (OHSU) four-chamber oral wear simulator was used to examine the impact of halogen irradiance on the short- and long-term wear behavior of four-methacrylate resin-based composites (RBCs). The hypothesis proposed was that exacerbated wear would occur following the long-term wear of RBCs irradiated under non-optimized irradiance conditions.

  20. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  1. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  2. The effects of different polishing techniques on the staining resistance of CAD/CAM resin-ceramics

    Science.gov (United States)

    Demirci, Tevfik; Demirci, Gamze; Sagsoz, Nurdan Polat; Yildiz, Mehmet

    2016-01-01

    PURPOSE The purposes of this study were to evaluate the staining resistance of CAD/CAM resin-ceramics polished with different techniques and to determine the effectiveness of the polishing techniques on resin-ceramics, comparing it with that of a glazed glass-ceramic. MATERIALS AND METHODS Four different CAD/CAM ceramics (feldspathic ceramic: C-CEREC Blocs, (SIRONA) and three resin-ceramics: L-Lava Ultimate, (3M ESPE), E-Enamic, (VITA) and CS-CeraSmart, (GC)) and one light cure composite resin: ME-Clearfil Majesty Esthetic (Kuraray) were used. Only C samples were glazed (gl). Other restorations were divided into four groups according to the polishing technique: nonpolished control group (c), a group polished with light cure liquid polish (Biscover LV BISCO) (bb), a group polished with ceramic polishing kit (Diapol, EVE) (cd), and a group polished with composite polishing kit (Clearfil Twist Dia, Kuraray) (kc). Glazed C samples and the polished samples were further divided into four subgroups and immersed into different solutions: distilled water, tea, coffee, and fermented black carrot juice. Eight samples (8 × 8 × 1 mm) were prepared for each subgroup. According to CIELab system, four color measurements were made: before immersion, immersion after 1 day, after 1 week, and after 1 month. Data were analyzed with repeated measures of ANOVA (α=.05). RESULTS The highest staining resistance was found in gl samples. There was no difference among gl, kc and cd (P>.05). Staining resistance of gl was significantly higher than that of bb (PCeramic and composite polishing kits can be used for resin ceramics as a counterpart of glazing procedure used for full ceramic materials. Liquid polish has limited indications for resin ceramics. PMID:28018558

  3. Hydrophobicity attainment and wear resistance enhancement on glass substrates by atmospheric plasma-polymerization of mixtures of an aminosilane and a fluorocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Múgica-Vidal, Rodolfo, E-mail: rodolfo.mugica@alum.unirioja.es [Department of Mechanical Engineering, University of La Rioja, c/ Luis de Ulloa 20, 26004, Logroño, La Rioja (Spain); Alba-Elías, Fernando, E-mail: fernando.alba@unirioja.es [Department of Mechanical Engineering, University of La Rioja, c/ Luis de Ulloa 20, 26004, Logroño, La Rioja (Spain); Sainz-García, Elisa, E-mail: elisa.sainzg@unirioja.es [Department of Mechanical Engineering, University of La Rioja, c/ Luis de Ulloa 20, 26004, Logroño, La Rioja (Spain); Pantoja-Ruiz, Mariola, E-mail: mpruiz@ing.uc3m.es [Materials Science and Engineering Department, IAAB, Materials Performance Group, University Carlos III of Madrid, Av. Universidad 30, 28911, Leganés, Madrid (Spain)

    2015-08-30

    Graphical abstract: - Highlights: • APTES and PFH were used to coat glass by non-thermal atmospheric jet plasma. • A mixture of 75% of APTES and 25% PFH produced the best sample of this work. • Hydrophobicity was achieved by changes in surface morphology and chemistry. • Wear resistance was enhanced by the formation of siloxane groups. - Abstract: Mixtures of different proportions of two liquid precursors were subjected to plasma-polymerization by a non-thermal atmospheric jet plasma system in a search for a coating that achieves a hydrophobic character on a glass substrate and enhances its wear resistance. 1-Perfluorohexene (PFH) was chosen as a low-surface-energy precursor to promote a hydrophobic character. Aminopropyltriethoxysilane (APTES) was chosen for its contribution to the improvement of wear resistance by the formation of siloxane bonds. The objective of this work was to determine which of the precursors’ mixtures that were tested provides the coating with the most balanced enhancement of both hydrophobicity and wear resistance, given that coatings deposited with fluorocarbon-based precursors such as PFH are usually low in resistance to wear and coatings deposited with APTES are generally hydrophilic. The coatings obtained were analyzed by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infra-Red (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), static Water Contact Angle (WCA) measurements, tribological ball-on-disc tests and contact profilometry. A relationship between the achievement of a hydrophobic character and the modifications to roughness and surface morphology and the incorporation of fluorocarbon groups in the surface chemistry was observed. Also, it was seen that the wear resistance was influenced by the SiOSi content of the coatings. In turn, the SiOSi content appears to be directly related to the percentage of APTES used in the mixture of precursors. The best conjunction of

  4. Effect of SiC Content on Microstructure and Wear Resistance of Laser Cladding SiC/Ni60A Composite Coating

    Directory of Open Access Journals (Sweden)

    ZHAO Long-zhi

    2017-03-01

    Full Text Available The SiC reinforced Ni60A alloy laser cladding coating on the 45 steel substrate was fabricated with the LDM2500-60 semiconductor laser equipment. The effect of SiC content on microstructure, dilution rate, wear resistance, friction coefficient and microhardness was investigated systematically.The results show that with the increase of SiC content, the microstructure of upper coating is refined obviously, the dilution rate, wear resistance, friction coefficient and microhardness increase firstly and then decrease;when the mass fraction of SiC is 20%, the wear resistance of the cladding coating is the best one, in which the wear loss of coating is only 0.0012g and is 1/36.3 of the matrix;the minimum friction coefficient is 0.464, the friction process is the most stable;the highest microhardness of the cladding coating is 1039.9HV0.2, which is 3.5 times of the substrate;but when the mass fraction of SiC is 25%, the microhardness and wear resistance of coating decrease.

  5. Oxidation resistant coatings for ceramic matrix composite components

    Energy Technology Data Exchange (ETDEWEB)

    Vaubert, V.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Hirschfeld, D.A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Materials and Metallurgical Engineering

    1998-11-01

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  6. Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI H13 Hot-Work Tool Steel

    Science.gov (United States)

    Çiçek, Adem; Kara, Fuat; Kıvak, Turgay; Ekici, Ergün; Uygur, İlyas

    2015-11-01

    In this study, a number of wear and tensile tests were performed to elucidate the effects of deep cryogenic treatment on the wear behavior and mechanical properties (hardness and tensile strength) of AISI H13 tool steel. In accordance with this purpose, three different heat treatments (conventional heat treatment (CHT), deep cryogenic treatment (DCT), and deep cryogenic treatment and tempering (DCTT)) were applied to tool steel samples. DCT and DCTT samples were held in nitrogen gas at -145 °C for 24 h. Wear tests were conducted on a dry pin-on-disk device using two loads of 60 and 80 N, two sliding velocities of 0.8 and 1 m/s, and a wear distance of 1000 m. All test results showed that DCT improved the adhesive wear resistance and mechanical properties of AISI H13 steel. The formation of small-sized and uniformly distributed carbide particles and the transformation of retained austenite to martensite played an important role in the improvements in the wear resistance and mechanical properties. After cleavage fracture, the surfaces of all samples were characterized by the cracking of primary carbides, while the DCT and DCTT samples displayed microvoid formation by decohesion of the fine carbides precipitated during the cryo-tempering process.

  7. Microhardness and wear resistance of PEO-coated 5754 aluminum alloy

    Science.gov (United States)

    Vyaliy, I. E.; Egorkin, V. S.; Sinebryukhov, S. L.; Minaev, A. N.; Gnedenkov, S. V.

    2017-09-01

    We present results of the study aimed at assessing the effect of duty cycle (D) during plasma electrolytic oxidation (PEO) on protective properties of the coatings produced on 5754 aluminum alloy. It is shown that increasing the duty cycle of a microsecond current pulses leads to increased hardness and reduced abrasive wear of the PEO-layers, improving mechanical properties. The obtained data allowed confirming, that increasing the amount of energy consumed for coating growth leads to the formation of thicker PEO-layers with improved tribological properties. The effect of duty cycle during plasma electrolytic oxidation on protective properties of the produced coatings was assessed.

  8. Sputter deposition and characterisation of hard wear-resistant Ti/TiN multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Simmonds, M.C.; Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Multilayered Ti/TiN thin films have been synthesized by magnetron sputter deposition. Alternating layers of Ti and TiN with layer thickness in the 5-50 nm range are sequentially deposited. The structure of the films have been characterised by atomic force microscopy (AFM), X-ray diffraction and reflection and Auger depth profiling. The mechanical properties have been investigated using pin-on-disc wear rate testing, nanoindentation determination of hardness and micro scratch testing. (author) 1 fig., 3 refs.

  9. Polishability and wear resistance of splint material for oral appliances produced with conventional, subtractive, and additive manufacturing.

    Science.gov (United States)

    Huettig, Fabian; Kustermann, Achim; Kuscu, Ebru; Geis-Gerstorfer, Jürgen; Spintzyk, Sebastian

    2017-11-01

    Occlusal splints to treat bruxism are commonly made from polymethylmethacrylate (PMMA) in a manual workflow (powder-liquid technique). Today digitalization allows a machine-based manufacturing in subtractive (milling) and additive (printing) means using industrial-made PMMA or comparable resins. An in-vitro study should assess the surface finish and screen the wear resistance of conventional and industrial materials. Therefore, a total of 30 specimens made from conventionally PMMA (group C; powder-liquid, Palapress), polycarbonate ingots (group S; innoBlanc splint plus), and light-curing resin (group A; VarseoWax splint) were polished to examine the surface roughness (Ra) by profilometry and further analyzed by SEM. The specimens were loaded with a steatite ball moving 5000 times along 1cm with 5N of surface pressure under constant wetting (artificial saliva). The total height of profile (Pt) was calculated by further profilometry of the specimens. All specimen showed initially comparable Ra values ranging between 0.06 and 0.05µm (SD = 0.01) after polishing. SEM investigations revealed no visual cues for scratches or irregularities in any group. After abrasion test, the comparison of the wear depths, revealed mean Pt values of 111.4µm (SD = 18.5) in C, 85.7µm (SD = 21.5) in S, and 99.1µm (SD = 21.5) in A, whereas the mean of S was statistically different from C (p = 0.025). No signs of abrasion were found on the steatite balls. All materials showed comparable polished surfaces and a similar scale of wear. It remains questionable if the detected statistical differences are of clinical relevance, but indicates the need for tests of novel materials, especially in additive manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander A.

    2016-01-01

    Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.

  11. Effect of in-situ TiC particulate on the wear resistance of spray-deposited 7075 Al matrix composite

    International Nuclear Information System (INIS)

    Wang Feng; Liu Huimin; Yang Bin

    2005-01-01

    TiC reinforced 7075 Al matrix composites have been fabricated by a melt in-situ reaction spray deposition. The microstructures of spray-deposited alloys were studied using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The dry sliding wear behavior of the alloys was investigated using a pin-on-disc machine under four loads, namely 8.9, 17.8, 26.7 and 35.6 N. It has been found that the wear behavior of the alloys was dependent on the TiC content in the microstructure and the applied load. At a lower load (8.9 N), with increasing TiC content, the wear rate of the alloy was decreased. At a higher loads (26.7, 35.6 N), a spray-deposited 7075 Al alloy exhibited superior wear resistance to the 7075/TiC composites

  12. Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding

    OpenAIRE

    Chen, Tao; Liu, Defu; Wu, Fan; Wang, Haojun

    2017-01-01

    To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO2 powders as the basic pre-placed materials. A certain amount of CeO2 powder was also added to the pre-placed powders to further improve the properties of the TiC coatings. The effects of CeO2 additive on the ph...

  13. Gloss and Stain Resistance of Ceramic-Polymer CAD/CAM Restorative Blocks.

    Science.gov (United States)

    Lawson, Nathaniel C; Burgess, John O

    2016-03-01

    To evaluate the gloss and stain resistance of several new ceramic-polymer CAD/CAM blocks Specimens (4 mm) were sectioned from: Enamic (polymer-infused ceramic), LAVA Ultimate (nano-ceramic reinforced polymer), e.max (lithium disilicate), Paradigm C (porcelain), and Paradigm MZ100 (composite). Specimens were wet polished on a polishing wheel to either 320 grit silicon paper (un-polished, N = 8) or 2000 grit silicon carbide papers followed by a 0.05 μm alumina slurry (polished, N = 8). Initial gloss and color (L*a*b*) values were measured. Specimens were stored in a staining solution at 37°C in darkness for 12 days (simulating 1 year). After storage, L*a*b* values re-measured. Change in color was reported as ΔE00 based on the CIEDE2000 formula. Gloss and ΔE00 were analyzed by two-way analysis of variance (ANOVA) (alpha = .05). Separate one-way ANOVA and Tukey post-hoc analyses were performed for both polish conditions and all materials. Two-way ANOVA showed that factors material, polish and their interaction were significant for both gloss and ΔE00 (p gloss and less color change than all other materials. The composition and polish of CAD/CAM materials affects gloss and stain resistance. Ceramic-polymer hybrid materials can achieve the high gloss required for esthetic restorations. These materials should be polished in order to minimize staining. If polished, all of the tested materials exhibited clinically acceptable color changes at 1 year of simulated staining. (J Esthet Restor Dent 28:S40-S45, 2016). © 2015 Wiley Periodicals, Inc.

  14. Monitoring of Non-Ferrous Wear Debris in Hydraulic Oil by Detecting the Equivalent Resistance of Inductive Sensors

    Directory of Open Access Journals (Sweden)

    Lin Zeng

    2018-03-01

    Full Text Available Wear debris in hydraulic oil contains important information on the operation of equipment, which is important for condition monitoring and fault diagnosis in mechanical equipment. A micro inductive sensor based on the inductive coulter principle is presented in this work. It consists of a straight micro-channel and a 3-D solenoid coil wound on the micro-channel. Instead of detecting the inductance change of the inductive sensor, the equivalent resistance change of the inductive sensor is detected for non-ferrous particle (copper particle monitoring. The simulation results show that the resistance change rate caused by the presence of copper particles is greater than the inductance change rate. Copper particles with sizes ranging from 48 μm to 150 μm were used in the experiment, and the experimental results are in good agreement with the simulation results. By detecting the inductive change of the micro inductive sensor, the detection limit of the copper particles only reaches 70 μm. However, the detection limit can be improved to 48 μm by detecting the equivalent resistance of the inductive sensor. The equivalent resistance method was demonstrated to have a higher detection accuracy than conventional inductive detection methods for non-ferrous particle detection in hydraulic oil.

  15. A New Design of In Situ Ti(C,N) Reinforced Composite Coatings and Their Microstructures, Interfaces, and Wear Resistances.

    Science.gov (United States)

    Wang, Mingliang; Cui, Hongzhi; Wei, Na; Ding, Lei; Zhang, Xinjie; Zhao, Yong; Wang, Canming; Song, Qiang

    2018-01-31

    Here, a unique combination of a novel carbon-nitrogen source (g-C 3 N 4 ) with different mole ratios of Ti/g-C 3 N 4 has been utilized to fabricate iron matrix composite coatings by a synchronized powder feeding plasma transferred arc (PTA) cladding technology. The results show that submicron Ti(C,N) particles are successfully fabricated in situ on a Q235 low carbon steel substrate to reinforce the iron matrix composite coatings and exhibit dense microstructures and good metallurgical bonding between the coating and the substrate. The microstructure of the coating consists of an α-Fe matrix and Ti(C,N) particles when the mole ratio of Ti/g-C 3 N 4 is no more than 5:1. The microhardness and wear resistance of the coating gradually improve with increasing abundance of the in-situ-synthesized Ti(C,N) particles. Interestingly, for a Ti/g-C 3 N 4 mole ratio of 6:1, a fine lamellar eutectic Laves phase (Fe 2 Ti) appears, and this phase further improves the microhardness and wear resistance of the coating. The microhardness of the coating is 3.5 times greater than that of the Q235 substrate, and the wear resistance is enhanced 7.66 times over that of the substrate. The Ti(C,N)/Fe 2 Ti and Fe 2 Ti/α-Fe interfaces are very clean, and the crystallographic orientation relationships between the phases are analyzed by high-resolution transmission electron microscopy (HRTEM) and an edge-to-edge matching model. The theoretical predictions and the experimental results are in good agreement. Furthermore, based on the present study, for the solidification process near equilibrium, smaller interatomic spacing misfits and interplanar spacing d-value mismatches contribute to the formation of crystallographic orientation relationships between phases during the PTA cladding process. The existence of orientation relationships is beneficial for improving the properties of the coatings. This work not only expands the application fields of g-C 3 N 4 but also provides a new idea for the

  16. The Abrasive Wear Resistance of the Segmented Linear Polyurethane Elastomers Based on a Variety of Polyols as Soft Segments

    Directory of Open Access Journals (Sweden)

    Konrad Kwiatkowski

    2017-12-01

    Full Text Available The presented results make an original contribution to the development of knowledge on the prediction and/or modeling of the abrasive wear properties of polyurethanes. A series of segmented linear polyurethane elastomers (PUR—In which the hard segments consist of 4,4′-methylene bis(phenylisocyanate and 1,4-butanodiol, whilst polyether, polycarbonate, or polyester polyols constitute the soft segments—Were synthesized and characterized. The hardness and wear performance as functions of the variable chemical composition of polyurethane elastomers were evaluated in order to define the relationship between studied factors. The microstructure was characterized in detail, including analysis of the hydrogen bonding by Fourier transformed infrared (FT-IR spectroscopy and the phase structure by X-ray scattering (WAXS and differential scanning calorimetry (DSC methods. The presented studies provide the key features of the polymer composition affecting the abrasive resistance as well as attempts to explain the origin of the differences in the polyurethane elastomers’ performance.

  17. Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists.

    Science.gov (United States)

    Stawarczyk, Bogna; Özcan, Mutlu; Trottmann, Albert; Schmutz, Felix; Roos, Malgorzata; Hämmerle, Christoph

    2013-05-01

    Computer-aided design and computer-aided manufacturing (CAD/CAM) resins exhibit good mechanical properties and can be used as long-term restorations. The wear rate of such resins and their enamel antagonists is unknown. The purpose of this study was to test and compare the 2-body wear rate of CAD/CAM resin blocks. Wear specimens (N=42, n=6) were made from 5 CAD/CAM resins: ZENO PMMA (ZP), artBloc Temp (AT), Telio CAD (TC), Blanc High-class (HC), CAD-Temp (CT); 1 manually polymerized resin: Integral esthetic press (negative control group, IEP); and 1 glass-ceramic: VITA Mark II (positive control group, VM2). The specimens for the wear resistance were aged in a thermomechanical loading machine (49 N, 1.67 Hz, 5/50°C) with human enamel antagonists. The material loss of all specimens before, during, and after aging was evaluated with a 3DS profilometer. The measured material loss data of all tested groups were statistically evaluated with linear mixed model analysis (a=.05). Manually polymerized resin showed significantly higher material wear (P<.001) than all other tested groups. Glass-ceramic showed significantly lower wear values (P<.001) than CAD/CAM resins ZP, AT, HC, CT, and IES. CAD/CAM resin TC was not significantly different from the positive control group. Glass-ceramic showed the highest enamel wear values (P<.001) of all tested resins. No differences were found in the enamel wear among all resins. The glass-ceramic group showed damage in the form of cracks on the worn enamel surface in 50% of specimens. CAD/CAM resins showed lower wear rates than those conventionally polymerized. Only one CAD/CAM resin, TC, presented material wear values comparable with glass-ceramic. The tested glass-ceramic developed cracks in the enamel antagonist and showed the highest enamel wear values of all other tested groups. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  18. Anodized porous titanium coated with Ni-CeO{sub 2} deposits for enhancing surface toughness and wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaowei, E-mail: zhouxiaowei901@163.com; Ouyang, Chun

    2017-05-31

    Highlights: • Structural design of anodized nanoporous Ti was introduced for bonding pinholes to achieve a metallurgical bonding interface. • Anodized porous Ti substrate was activated by electroless Ni-P film to be acted as transitional layer to deposit Ni-CeO{sub 2} nanocomposite coatings. • An analytical model was validated for predicting the Ce-rich worn products as a self-lubricant phase for monitoring wear mechanisms. - Abstract: In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO{sub 2} nanocomposite coatings. Regarding TiO{sub 2} barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO{sub 2} deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO{sub 2} nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO{sub 2} nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO{sub 2} coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO{sub 2} deposits, showing the existing Ce-rich worn products to be acted as a

  19. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations.

    Science.gov (United States)

    Sghaireen, Mohd G

    2015-06-01

    The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.

  20. Plasma transferred arc surface modification of atmospheric plasma sprayed ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ulutan, Mustafa; Kilicay, Koray; Kaya, Esad; Bayar, Ismail [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2016-08-15

    In this study, a 90MnCrV8 steel surface was coated with aluminum oxide and chromium oxide powders through the Atmospheric plasma spray (APS) and Plasma transferred arc (PTA) methods. The effects of PTA surface melting on the microstructure, hardness, and wear behavior were investigated. The microstructures of plasma-sprayed and modified layers were characterized by Optical microscopy (OM), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS). The dry-sliding wear properties of the samples were determined through the ball-on-disk wear test method. Voids, cracks, and nonhomogeneous regions were observed in the microstructure of the APS ceramic-coated surface. These microstructure defects were eliminated by the PTA welding process. The microhardness of the samples was increased. Significant reductions in wear rate were observed after the PTA surface modification. The wear resistance of ceramic coatings increased 7 to 12 times compared to that of the substrate material.

  1. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    Science.gov (United States)

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  2. Characterisation of Wear Resistant Boride Layers on a Tool Steel by Activity Controlled Pack Boronising

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work addresses the production and characterisation of iron boride layers by pack boronising of a Vanadis 6 tool steel. The boride layers were produced at 900°C for 2h using different pack compositions in order to obtain a single-phase boride layer. The layers were characterized...... by electron microscopy, glow discharge optical emission spectroscopy, X-ray diffraction, Vickers hardness tests and wear testing with a pin-on-disc tribometer. It was found that the type of boride phases (FeB and/or Fe2B) present in the treated layer can be controlled by changing the boron activity...... by pack boronising for all conditions as compared to the heat treated tool steel....

  3. Lead-free, bronze-based surface layers for wear resistance in axial piston hydraulic pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vetterick, Gregory Alan [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Concerns regarding the safety of lead have provided sufficient motivation to develop substitute materials for the surface layer on a thrust bearing type component known as a valve plate in axial piston hydraulic pumps that consists of 10% tin, 10% lead, and remainder cooper (in wt. %). A recently developed replacement material, a Cu-10Sn-3Bi (wt.%) P/M bronze, was found to be unsuitable as valve plate surface layer, requiring the development of a new alloy. A comparison of the Cu-1-Sn-10Pb and Cu-10Sn-3Bi powder metal valve plates showed that the differences in wear behavior between the two alloys arose due to the soft phase bismuth in the alloy that is known to cause both solid and liquid metal embrittlement of copper alloys.

  4. Endurance in Al Alloy Melts and Wear Resistance of Titanium Matrix Composite Shot-Sleeve for Aluminum Alloy Die-casting

    International Nuclear Information System (INIS)

    Choi, Bong-Jae; Kim, Young-Jig; Sung, Si-Young

    2012-01-01

    The main purpose of this study was to evaluate the endurance against Al alloy melts and wear resistance of an in-situ synthesized titanium matrix composite (TMC) sleeve for aluminum alloy die-casting. The conventional die-casting shot sleeve material was STD61 tool steel. TMCs have great thermal stability, wear and oxidation resistance. The in-situ reaction between Ti and B4C leads to two kinds of thermodynamically stable reinforcements, such as TiBw and TiCp. To evaluate the feasibility of the application to a TMCs diecasting shot sleeve, the interfacial reaction behavior was examined between Al alloys melts with TMCs and STD61 tool steel. The pin-on-disk type dry sliding wear test was also investigated for TMCs and STD61 tool steel.

  5. Sliding Wear Behaviour and Corosion Resistance to Ringer’s Solution of Uncoated and DLC Coated X46Cr13 Steel

    Directory of Open Access Journals (Sweden)

    Scendo M.

    2016-12-01

    Full Text Available Sliding wear properties and corrosion resistance in Ringer’s solution of uncoated and diamond-like carbon (DLC coated X46Cr13 steel was tested. The Raman spectra showed that the DLC film was successfully coated by plasma assisted CVD method onto the steel surface. The wear test, carried out using a ball-on disk tribometer, revealed that the DLC coating show better resistance to sliding wear and lower friction coefficient against a 100Cr6 steel ball than five times softer X46Cr13 steel. The oxidation kinetic parameters were determined by means of both the gravimetric and electrochemical method. It was found that the DLC coating markedly decreased the rate of corrosion of the X46Cr13 steel, irrespective of the corrosion mechanism involved.

  6. Fatigue resistance of 2 different CAD/CAM glass-ceramic materials used for single-tooth implant crowns.

    Science.gov (United States)

    Çavuşoğlu, Yeliz; Sahin, Erdal; Gürbüz, Riza; Akça, Kivanç

    2011-10-01

    To evaluate the fatigue resistance of 2 different CAD/CAM in-office monoceramic materials with single-tooth implant-supported crowns in functional area. A metal experimental model with a dental implant was designed to receive in-office CAD/CAM-generated monoceramic crowns. Laterally positioned axial dynamic loading of 300 N at 2 Hz was applied to implant-supported crowns machined from 2 different glass materials for 100,000 cycle. Failures in terms of fracture, crack formation, and chipping were macroscopically recorded and microscopically evaluated. Four of 10 aluminasilicate glass-ceramic crowns fractured at early loading cycles, the rest completed loading with a visible crack formation. Crack formation was recorded for 2 of 10 leucite glass-ceramic crowns. Others completed test without visible damage but fractured upon removal. Lack in chemical adhesion between titanium abutment and dental cement likely reduces the fatigue resistance of machinable glass-ceramic materials. However, relatively better fractural strength of leucite glass-ceramics could be taken into consideration. Accordingly, progress on developmental changes in filler composition of glass-ceramics may be promising. Machinable glass-ceramics do not possess sufficient fatigue resistance for single-tooth implant crowns in functional area.

  7. Sulphuric Acid Resistant of Self Compacted Geopolymer Concrete Containing Slag and Ceramic Waste

    Directory of Open Access Journals (Sweden)

    Shafiq I.

    2017-01-01

    Full Text Available Malaysia is a one of the developing countries where the constructions of infrastructure is still ongoing, resulting in a high demand for concrete. In order to gain sustainability factors in the innovations for producing concrete, geopolymer concrete containing granulated blast-furnace slag and ceramics was selected as a cement replacement in concrete for this study. Since Malaysia had many ceramic productions and uses, the increment of the ceramic waste will also be high. Thus, a new idea to reuse this waste in construction materials have been tested by doing research on this waste. Furthermore, a previous research stated that Ordinary Portland Cement concrete has a lower durability compared to the geopolymer concrete. Geopolymer binders have been reported as being acid resistant and thus are a promising and alternative binder for sewer pipe manufacture. Lack of study regarding the durability of the geopolymer self-compacting concrete was also one of the problems. The waste will be undergoing a few processes in the laboratory in order to get it in the best form before undergoing the next process as a binder in geopolymer concrete. This research is very significant in order to apply the concept of sustainability in the construction field. In addition, the impact of this geopolymer binder is that it emits up to nine times less CO2 than Portland Cement.

  8. Fracture properties and heat resistance of ceramics consisting of microspheres of stabilized zirconium dioxide

    International Nuclear Information System (INIS)

    Krasulin, Yu.L.; Barinov, S.M.; Ivanov, A.B.; Timofeev, V.N.; Grevtsev, S.N.; Ivanov, D.A.

    1980-01-01

    Determined were effective specific fracture work, critical coefficient of stress intensity in the upper point of the fracture, strength and heat resistance during heat changes (20-1300 deg C) of the material produced by sintering stabilized zirconium dioxide microspheres. Dependence of these characteristics on granulometric composition of microspheres was determined. It was ascertained that the additional introduction of large microspheres into the bulk of small microspheres increased the metal fracture work. Specific work of material fracture progress exceeded specific work of fracture motion initiation. High value of fracture work together with high strength permits to use the material formed of microspheres as structural ceramics

  9. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    Science.gov (United States)

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  10. Dry sliding wear behavior of heat treated hybrid metal matrix composite using Taguchi techniques

    International Nuclear Information System (INIS)

    Kiran, T.S.; Prasanna Kumar, M.; Basavarajappa, S.; Viswanatha, B.M.

    2014-01-01

    Highlights: • ZA-27 alloy is used as matrix material and reinforced with SiC and Gr particles. • Heat treatment was carried out for all specimen. • Dry sliding wear test was done on pin-on-disc apparatus by Taguchi technique. • ZA-27/9SiC–3Gr showed superior wear resistance over the base alloy. • Ceramic mixed mechanical layer on contact surface of composite was formed. - Abstract: Dry sliding wear behavior of zinc based alloy and composite reinforced with SiCp (9 wt%) and Gr (3 wt%) fabricated by stir casting method was investigated. Heat treatment (HT) and aging of the specimen were carried out, followed by water quenching. Wear behavior was evaluated using pin on disc apparatus. Taguchi technique was used to estimate the parameters affecting the wear significantly. The effect of HT was that it reduced the microcracks, residual stresses and improved the distribution of microconstituents. The influence of various parameters like applied load, sliding speed and sliding distance on wear behavior was investigated by means and analysis of variance (ANOVA). Further, correlation between the parameters was determined by multiple linear regression equation for each response. It was observed that the applied load significantly influenced the wear volume loss (WVL), followed by sliding speed implying that increase in either applied load or sliding speed increases the WVL. Whereas for composites, sliding distance showed a negative influence on wear indicating that increase in sliding distance reduces WVL due to the presence of reinforcements. The wear mechanism of the worn out specimen was analyzed using scanning electron microscopy. The analysis shows that the formation and retention of ceramic mixed mechanical layer (CMML) plays a major role in the dry sliding wear resistance

  11. Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite

    CSIR Research Space (South Africa)

    Mahamood, RM

    2013-09-01

    Full Text Available Ti6Al4V is the most widely used titanium alloy in the aerospace industry because of its excellent properties. However, the wear resistance behaviour of this material is not very impressive and surface damage occurs in applications involving contact...

  12. APPRAISAL OF APPLICATION OF WEAR-RESISTANT CHROMIC CAST IRONS FOR PRODUCTION OF MOULDED PIECES OF EQUIPMENT ON PRODUCTION OF BRICK OF CLAY

    Directory of Open Access Journals (Sweden)

    K. E. aranovkij

    2007-01-01

    Full Text Available The appraisal of application of wear-resistant chromic cast irons of different chemical compositions for production of moulded pieces of equipment on production of bricks of clay is carried out. It is determined that working resource of the details of test cast-irons is correlated with their hardness and not lower than of hardened steel.

  13. Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer

    Science.gov (United States)

    Xu, Jiang; Zhuo, Chengzhi; Tao, Jie; Jiang, Shuyun; Liu, Linlin

    2009-01-01

    In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO2 predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 °C) conditions, amorphous nano-SiO2 particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr6.5Ni2.5Si and Cr23C6. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO2 particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix around the precipitated phase takes place by the chemical

  14. Effect of plasma spraying parameter on wear resistance of NiCrBSiCFe plasma coatings on austenitic stainless steel at elevated temperatures at various loads

    International Nuclear Information System (INIS)

    Parthasarathi, N.L.; Duraiselvam, Muthukannan; Borah, Utpal

    2012-01-01

    Highlights: ► Effect of plasma spraying parameters, especially the stand-off distance. ► Effect of microstructure and applied load on coating in sliding wear. ► The reason for maximum wear rate at 250 °C and the minimum wear at 350 °C were explained. ► The worn debris were characterised by SEM analysis and correlated with wear rate. -- Abstract: The dry sliding wear tests were carried out on AISI 316 austenitic stainless steel (ASS) plasma coated with NiCrBSiCFe alloy powder under two set of plasma spraying parameters (PSP-1 and PSP-2). EN 8 medium carbon steel was used as a counterface material. The tests were carried out at loads of 20 N and 40 N with a constant sliding velocity of 1 m/s at room temperature (35°), 150 °C, 250 °C and 350 °C. Metallographic characterisation was carried out by optical microscope (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD). Between the two plasma parameters tested, stand-off distance of 125 mm was found to be more suitable for producing uniform lamellar microstructure with fewer amounts of pores which shows better wear resistance. The wear rate at 250 °C was comparatively more due to the material softening and adhesion by intermolecular bonding. The worn debris collected during sliding at 350 °C turn into oxides which further behaves like a protective and lubricative film eliminating the chances of severe material loss. SEM was used to characterise the worn track and debris to identity the wear mechanism.

  15. Effect of pressing temperature on the wear resistance of a Co-based Cr-Mo powder alloy produced by hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Somunkiran, Ilyas [Firat Univ., Elazig (Turkey). Metallurgical and Materials Engineering Dept.; Balin, Ahmet [Siirt Univ. (Turkey). Dept. of Vocational High School

    2016-02-01

    In this study, Co-based Cr-Mo powder alloy was produced at different pressing temperatures by using hot pressing technique and abrasive wear behaviors of the produced specimens were examined. Produced specimens were exposed to abrasive wear experiment using block on disc wear test device by applying a load of 50 N with 100-mesh SiC abrasive paper. Each specimen was investigated at 25, 50, 75 and 100 m. At the end of the experiment, abrasive wear results of the specimens were determined by calculating their mass losses. Microstructural properties of the specimens which were produced at different pressing temperatures were investigated by optical and SEM examinations and their wear resistances were examined by abrasive wear experiments. Consequently, it was observed that in Co-based Cr-Mo powder alloy produced by hot pressing technique; as sintering temperature increased, size of neck formations between the powder grains increased, porosity decreased and abrasive wear resistance increased. [German] In diesem Beitrag zugrunde liegenden Studie wurde eine Co-basierte Cr-Mo-Legierung mittels Heisspressens hergestellt und der Abrasivverschleisswiderstand dieser Proben untersucht. Die hergestellten Proben wurden dem Abrasivverschleissversuch durch einen Block-Scheibe-Versuchsaufbau unterzogen, wobei eine Kraft von 50 N mit einem SiC-Papier (100 mesh) verwendet wurde. Jede Probe wurde ueber eine Distanz von 25, 50, 75 und 100 m untersucht. Am Ende der jeweiligen Experimente wurden die Abrasivverschleissergebnisse ermittelt, indem die Massenverluste berechnet wurden. Die mikrostrukturellen Eigenschaften der Proben, die bei verschiedenen Presstemperaturen hergestellt wurden, wurden mittels optischer und Rasterelektronenmikroskopie bestimmt und ihr Verschleisswiderstand anhand der Verschleissversuche ermittelt. Schliesslich wurde beobachtet, dass bei steigender Sintertemperatur der heissgespressten Co-basierten Cr-Mo-Pulverlegierung die Groesse der Einschnuerungen zwischen den

  16. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing

    Science.gov (United States)

    Cai, Zhaobing; Cui, Xiufang; Liu, Zhe; Li, Yang; Dong, Meiling; Jin, Guo

    2018-02-01

    An attempt, combined with the technologies of laser cladding and laser remelting, has been made to develop a Ni-Cr-Co-Ti-V high entropy alloy coating. The phase composition, microstructure, micro-hardness and wear resistance (rolling friction) were studied in detail. The results show that after laser remelting, the phase composition remains unchanged, that is, as-cladded coating and as-remelted coatings are all composed of (Ni, Co)Ti2 intermetallic compound, Ti-rich phase and BCC solid solution phase. However, after laser remelting, the volume fraction of Ti-rich phase increases significantly. Moreover, the micro-hardness is increased, up to ∼900 HV at the laser remelting parameters: laser power of 1 kW, laser spot diameter of 3 mm, and laser speed of 10 mm/s. Compared to the as-cladded high-entropy alloy coating, the as-remelted high-entropy alloy coatings have high friction coefficient and low wear mass loss, indicating that the wear resistance of as-remelted coatings is improved and suggesting practical applications, like coatings on brake pads for wear protection. The worn surface morphologies show that the worn mechanism of as-cladded and as-remelted high-entropy alloy coatings are adhesive wear.

  17. Effect of deep cryogenic treatment and tempering on microstructure and mechanical behaviors of a wear-resistant austempered alloyed bainitic ductile iron

    Directory of Open Access Journals (Sweden)

    Chen Liqing

    2015-01-01

    Full Text Available In this paper, the effect of deep cryogenic treatment in combination with conven- tional heat treatment process was investigated on microstructure and mechanical behaviors of alloyed bainitic ductile iron. Three processing schedules were employed to treat this alloyed ductile iron including direct tempering treatment, tempering.+deep cryogenic treatment and deep cryogenic treatment.+tempering treatments. The microstructure and mechanical behavior, especially the wear resistance, have been evaluated after treated by these three schedules. The results show that martensite microstructure can be obviously refined and the precipitation of dispersed carbides is promoted by deep cryogenic treatment at .−196 ∘C for 3 h after tempered at 450 ∘C for 2 h. In this case, the alloyed bainitic ductile iron possesses rather high hardness and wear-resistance than those processed by other two schedules. The main wear mechanism of the austempered alloyed ductile iron with deep cryogenic treatment and tempering is micro-cutting wear in association with plastic deformation wear.

  18. Surface electric resistance of YBa2Cu3O7-δ ceramics and its dependence on magnetic field

    International Nuclear Information System (INIS)

    Gorochev, O.A.; Graboj, I.Eh.; Kaul', A.R.; Mitrofanov, V.P.

    1989-01-01

    Method of dielectric resonator in the 4.2-300 K temperature range is used to measure surface electric resistance of YBa 2 Cu 3 O 7-δ ceramics samples produced by different technologies. The temperature dependence of surface resistance near transition temperature is calculated. At 77.3 K dependence of electric resistance on external magnetic field at H≤200Oe is determined. Calculated dependence is verified in experiment

  19. Abrasive Wear Resistance, Mechanical Behaviour, Water Transport Phenomena and Biocorrosion of Epoxy/Femora Biocomposites

    Directory of Open Access Journals (Sweden)

    J.L. Olajide

    2017-09-01

    Full Text Available Of late, some biological wastes have proven to be reliable candidates in promoting the economic viability of developing polymeric composites. However, the field-proven reliability prediction of such materials during service life requires extensive characterization. In this research, the influence of 75 µm bovine femur ash subjected to two-step calcination process on spectroscopic, wear, mechanical, water absorbent and biocorrosive properties of epoxy/femur waste biocomposites was investigated. The test materials were developed via open mould casting and subjected to preferred characterizations apropos of the abovementioned properties. Elemental constituents of the biocomposites and the ash were determined by energy dispersive x-ray spectroscopy with scanning electron microscopy and x-ray fluorescence spectroscopy, respectively. The investigated properties were studied dependent on predetermined volume fractions of the ash in epoxy matrix. Observations from the experimental results revealed that properties’ enhancement was not specific to either low or high volume fraction of the ash in epoxy. Different properties were enhanced at different volume fractions of the ash. Nonetheless, one biocomposite approaching intermediate volume faction of the ash used, exhibited optimum combination of the investigated properties. This is a clear indication that bovine femur waste can be successfully exploited for engineering applications, especially in the areas of materials development.

  20. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B{sub 4}C)

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Ali [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Abdollahi, Alireza, E-mail: alirezaabdollahi1366@gmail.com [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Biukani, Hootan [Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-25

    In the current research, aluminum based hybrid composite reinforced with boron carbide (B{sub 4}C) and carbon nanotubes (CNTs) was produced by powder metallurgy method. creep behavior, wear resistance, surface roughness, and hardness of the samples were investigated. To prepare the samples, Al 5083 powder was milled with boron carbide particles and carbon nanotubes using planetary ball mill under argon atmosphere with ball-to-powder weight ratio of 10:1 for 5 h. Afterwards, the milled powders were formed by hot press process at 380{sup °}C and then were sintered at 585{sup °}C under argon atmosphere for 2 h. There was shown to be an increase in hardness values of composite with an increase in B{sub 4}C content. The micrograph of worn surfaces indicate a delamination mechanism due to the presence of CNTs and abrasion mechanism in composite containing 10 vol.%B{sub 4}C. Moreover, it was shown that increasing B{sub 4}C content increases the wear resistance by 3 times under a load of 20 N and 10 times under a load of 10 N compared to CNTs-reinforced composite. surface roughness of the composite containing 5 vol.%CNT has shown to be more than other samples. The results of creep test showed that adding carbon nanotubes increases creep rate of Al 5083 alloy; however, adding B{sub 4}C decreases its creep rate. - Highlights: • Al 5083/(CNTs + B{sub 4}C) hybrid composite was produced by powder metallurgy method. • Creep behavior, wear resistance, surface roughness, and Hardness of samples were investigated. • Addition of CNTs to Al 5083 matrix reduces alloy hardness, wear resistance and creep strength. • By addition of B{sub 4}C and composite hybridization, creep strength and wear resistance increased. • Surface roughness of Al-5 vol.%CNT has shown to be more than other samples.

  1. Insulation Resistance Degradation in Ni-BaTiO3 Multilayer Ceramic Capacitors

    Science.gov (United States)

    Liu, Donhang (David)

    2015-01-01

    Insulation resistance (IR) degradation in Ni-BaTiO3 multilayer ceramic capacitors has been characterized by the measurement of both time to failure and direct-current (DC) leakage current as a function of stress time under highly accelerated life test conditions. The measured leakage current-time dependence data fit well to an exponential form, and a characteristic growth time ?SD can be determined. A greater value of tau(sub SD) represents a slower IR degradation process. Oxygen vacancy migration and localization at the grain boundary region results in the reduction of the Schottky barrier height and has been found to be the main reason for IR degradation in Ni-BaTiO3 capacitors. The reduction of barrier height as a function of time follows an exponential relation of phi (??)=phi (0)e(exp -2?t), where the degradation rate constant ??=??o??(????/????) is inversely proportional to the mean time to failure (MTTF) and can be determined using an Arrhenius plot. For oxygen vacancy electromigration, a lower barrier height phi(0) will favor a slow IR degradation process, but a lower phi(0) will also promote electronic carrier conduction across the barrier and decrease the insulation resistance. As a result, a moderate barrier height phi(0) (and therefore a moderate IR value) with a longer MTTF (smaller degradation rate constant ??) will result in a minimized IR degradation process and the most improved reliability in Ni-BaTiO3 multilayer ceramic capacitors.

  2. Properties and performance of polysiloxane-derived ceramic matrix in heat resistant composites reinforced with R-glass or fine ceramic fibres

    Czech Academy of Sciences Publication Activity Database

    Černý, Martin; Glogar, Petr; Sucharda, Zbyněk; Machovič, V.

    2005-01-01

    Roč. 49, č. 3 (2005), s. 145-152 ISSN 0862-5468 R&D Projects: GA ČR(CZ) GA106/02/0177; GA ČR(CZ) GP106/02/P025 Institutional research plan: CEZ:AV0Z30460519 Keywords : polysiloxane resin * fibre-reinforced composite * mechanical properties Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 0.463, year: 2005

  3. Corrosion Resistance of a Cast-Iron Material Coated With a Ceramic Layer Using Thermal Spray Method

    Science.gov (United States)

    Florea, C. D.; Bejinariu, C.; Munteanu, C.; Istrate, B.; Toma, S. L.; Alexandru, A.; Cimpoesu, R.

    2018-06-01

    Cast-iron 250 used for breake systems present many corrosion signs after a mean usage time based on the environment conditions they work. In order to improve them corrosion resistance we propose to cover the active part of the material using a ceramic material. The deposition process is an industrial deposition system based on thermal spraying that can cover high surfaces in low time. In this articol we analyze the influence of a ceramic layer (40-50 µm) on the corrosion resistance of FC250 cast iron. The results were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDS) and linear and cyclic potentiometry.

  4. Data on post irradiation experiments of heat resistant ceramic composite materials. PIE for 97M-13A

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shin-ichi; Ishihara, Masahiro; Souzawa, Shizuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sekino, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The research on the radiation damage mechanism of heat resistant ceramic composite materials is one of the research subjects of the innovative basic research in the field of high temperature engineering, using the High Temperature engineering Test Reactor (HTTR). Three series of irradiation tests on the heat resistant ceramic composite materials, first to third irradiation test program, were carried out using the Japan Material Testing Reactor (JMTR). This is a summary report on the first irradiation test program; irradiation induced dimensional change, thermal expansion coefficient, X-ray diffraction and {gamma}-ray spectrum are reported. (author)

  5. Microtensile Bond Strength of New Ceramic/Polymer Materials Repaired with Composite Resin

    Science.gov (United States)

    2015-06-30

    also have been shown to have higher enamel wear rates than composite-resin CAD/CAM restorations (Mӧrmann et al, 2013). As material choices, cost, and...although the longevity of these repairs has not been validated by clinical studies. Paradigm MZ100 showed the least amount of opposing enamel wear...ability to absorb shock, resist staining and stop crack propagation. Further manufacturer claims are that ceramic/polymer materials are easily

  6. Influence of Plasma Transferred Arc Process Parameters on Structure and Mechanical Properties of Wear Resistive NiCrBSi-WC/Co Coatings

    Directory of Open Access Journals (Sweden)

    Eitvydas GRUZDYS

    2011-07-01

    Full Text Available Self-fluxing NiCrBSi and related coatings received considerable interest due to their good wear as well as corrosion resistance at moderate and elevated temperatures. Hard tungsten carbide (WC particles can be included in NiCrBSi for further increase of the coating hardness and abrasive wear resistance. Flame spray technique is widely used for fabrication of NiCrBSi films. However, in such a case, subsequent remelting of the deposited coatings by flame, arc discharge or high power laser beam is necessary. In present study NiCrBSi-WC/Co coatings were formed using plasma transferred arc process. By adjusting plasma parameters, such as current, plasma gas flow, shielding gas flow, a number of coatings were formed on steel substrates. Structure of the coatings was investigated using X-ray diffractometry. Microstructure of cross-sectioned coatings was examined using scanning electron microscopy. Hardness of the coating was evaluated by means of the Vickers hardness tests. Wear tests were also performed on specimens to determine resistance to abrasive wear. Acquired results allowed estimating the influence of the deposition process parameters on structure and mechanical properties of the coatings.http://dx.doi.org/10.5755/j01.ms.17.2.482

  7. Corrosion Behavior of Titanium Based Ceramic Coatings Deposited on Steels

    OpenAIRE

    Ali, Rania

    2016-01-01

    Titanium based ceramic films are increasingly used as coating materials because of their high hardness, excellent wear resistance and superior corrosion resistance. Using electrochemical and spectroscopic techniques, the electrochemical properties of different coatings deposited on different steels under different conditions were examined in this study. Thin films of titanium nitride (TiN), titanium diboride (TiB2), and titanium boronitride with different boron concentrations (TiBN-1&2) w...

  8. Improvement of wear and corrosion resistances of 17-4PH stainless steel by plasma nitrocarburizing

    International Nuclear Information System (INIS)

    Liu, R.L.; Yan, M.F.

    2010-01-01

    17-4PH stainless steel was plasma nitrocarburized at 460 o C for improving its mechanical properties without compromising its desirable corrosion resistance. The plasma nitrocarburized layers were studied by optical microscope, X-ray diffractometer, microhardness tester, pin-on-disc tribometer and the anodic polarization method in a 3.5% NaCl solution. The experimental results show that the nitrocarburized layer depths increase with increasing duration time and the layers growth conform approximately to the parabolic law. The phases in the nitrocarburized layer are mainly of γ'-Fe 4 N and α'-Fe with traces of CrN phase. The surface hardness of the modified specimen is more than 1200 HV, which is three times higher than that of untreated one. The friction coefficient and corrosion resistance of the specimen can be apparently improved by plasma nitrocarburizing. With the increase of duration time, the surface hardness slightly decreases whereas the friction coefficient and corrosion resistance of the modified specimen are first increase and then decrease. The 8 h treated specimen has the lowest friction coefficient and the best corrosion resistance in the present test conditions.

  9. Enhancement of wear and corrosion resistance of low modulus β-type Zr-20Nb-xTi (x=0, 3) dental alloys through thermal oxidation treatment.

    Science.gov (United States)

    Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong

    2017-07-01

    In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance

  10. The effect of boriding on wear resistance of cold work tool steel

    International Nuclear Information System (INIS)

    Anzawa, Y; Koyama, S; Shohji, I

    2017-01-01

    Recently, boriding has attracted extensive attention as surface stiffening processing of plain steel. In this research, the influence of processing time on the formation layer of cold work tool steel (KD11MAX) by Al added fused salt bath was examined. In addition, in order to improve the abrasion resistance of KD11MAX, the effect of the treatment of boronization on the formation layer has been investigated. Boriding were performed in molten borax which contained about 10 mass% Al at processing time of 1.8 ∼ 7.2 ks (processing temperature of 1303 K). As a result of the examination, the hardness of the boriding layer becomes about 1900 HV when the processing time of 3.6 ks. Also the abrasion resistance has improved remarkably. Furthermore, it was revealed that the formation layer was boronized iron from the Vickers hardness and analysis of the X-ray diffraction measurement. (paper)

  11. Laser Tailoring the Surface Chemistry and Morphology for Wear, Scale and Corrosion Resistant Superhydrophobic Coatings.

    Science.gov (United States)

    Boinovich, Ludmila B; Emelyanenko, Kirill A; Domantovsky, Alexander G; Emelyanenko, Alexandre M

    2018-06-04

    A strategy, combining laser chemical modification with laser texturing, followed by chemisorption of the fluorinated hydrophobic agent was used to fabricate the series of superhydrophobic coatings on an aluminum alloy with varied chemical compositions and parameters of texture. It was shown that high content of aluminum oxynitride and aluminum oxide formed in the surface layer upon laser treatment allows solving the problem of enhancement of superhydrophobic coating resistance to abrasive loads. Besides, the multimodal structure of highly porous surface layer leads to self-healing ability of fabricated coatings. Long-term behavior of designed coatings in "hard" hot water with an essential content of calcium carbonate demonstrated high antiscaling resistance with self-cleaning potential against solid deposits onto the superhydrophobic surfaces. Study of corrosion protection properties and the behavior of coatings at long-term contact with 0.5 M NaCl solution indicated extremely high chemical stability and remarkable anticorrosion properties.

  12. Effect of In-Office Carbamide Peroxide-Based Tooth Bleaching System on Wear Resistance of Silorane-Based and Methacrylate-Based Dental Composites

    Directory of Open Access Journals (Sweden)

    Masoumeh Hasani Tabatabaei

    2016-04-01

    Full Text Available Objectives: Several studies have assessed the characteristics and properties of silorane-based composites and adhesive systems. Considering the extensive application of tooth-whitening agents, possible deteriorative effects of tooth bleaching agents on these restorative materials must be studied. The aim of this study was to evaluate the effect of an in-office carbamide peroxide-based tooth bleaching agent on the wear resistance of a silorane-based and a conventional microhybrid dimethyl methacrylate-based dental composite with two different application times.  Materials and Methods: Thirty cylindrical specimens were made of Z250 and P90 dental composite resins (n=15 for each composite. Samples made of each composite were divided into three groups (n=5 for immersion in an in-office bleaching agent (Opalescence® Quick 45% for either three or eight hours or saline solution (control. Wear tests were conducted after bleaching using a pin-on disk apparatus under the load of 40N at a constant sliding speed of 0.5 ms-1 for a sliding distance of 300 m. The samples were weighed before and after the wear test. Repeated measures ANOVA was used to statistically analyze the obtained data (α=0.05.Results: There was a significant decrease in the weight of samples after the wear test (P<0.001. However, no significant difference was found among groups in the mean weight of samples before and after the wear test (P>0.05. Conclusion: Bleaching for three or eight hours using 45% carbamide peroxide had no deteriorative effect on the wear resistance of Z250 and P90 composites.

  13. The effects of dopants on the electrical resistivity in lead magnesium niobate multilayer ceramic capacitors

    International Nuclear Information System (INIS)

    Chang, D.D.; Ling, H.C.

    1989-01-01

    Electrical resistivity studies were performed on multilayer ceramic capacitors (MLC) based on lead magnesium niobate and containing dopants of lead titanate, lead zinc niobate, and lead cobalt niobate. The results showed that lead titanate and/or lead zinc niobate had no effect on the electrical resistivity while lead cobalt niobate decreased the resistivity. In samples without lead cobalt niobate, we observed a conduction mechanism with an activation energy of --1 eV, which is commonly observed in barium titanate based dielectrics. This is attributed to ionic conduction via the motion of oxygen vacancies. The increase in conductivity (or decrease in resistivity) resulting from the addition of lead cobalt niobate was rationalized as due to electronic conduction through charge hopping among the cations. This conduction mechanism was characterized by an activation energy of --0.5 eV. Since the activation energy associated with the long-term failure was previously determined by a matrix of temperature and voltage accelerated life tests to be -- 1 eV, they conclude that conduction through charge hopping is not affecting the long-term reliability of these devices

  14. Laser surface modification of Ti6Al4V-Cu for improved microhardness and wear resistance properties

    CSIR Research Space (South Africa)

    Erinosho, MF

    2017-06-01

    Full Text Available operating with linear reciprocating motion drive. The samples are rubbed against a ball-shaped upper specimen made of 9.5 mm diameter tungsten carbide ball. A load of 25 N, stroke length of 2 mm, oscillation frequency of 5 Hz and test duration of 1000... seconds were selected for the operation. The dry sliding wear tests were carried out according to the ASTM G133- 05 for determining the sliding wear of metals23. The wear loss was calculated from the length of the stroke, the width of the wear scar...

  15. Edge chipping resistance and flexural strength of polymer infiltrated ceramic network and resin nanoceramic restorative materials.

    Science.gov (United States)

    Argyrou, Renos; Thompson, Geoffrey A; Cho, Seok-Hwan; Berzins, David W

    2016-09-01

    Two novel restorative materials, a polymer infiltrated ceramic network (PICN) and a resin nanoceramic (RNC), for computer-assisted design and computer-assisted manufacturing (CAD-CAM) applications have recently become commercially available. Little independent evidence regarding their mechanical properties exists to facilitate material selection. The purpose of this in vitro study was to measure the edge chipping resistance and flexural strength of the PICN and RNC materials and compare them with 2 commonly used feldspathic ceramic (FC) and leucite reinforced glass-ceramic (LRGC) CAD-CAM materials that share the same clinical indications. PICN, RNC, FC, and LRGC material specimens were obtained by sectioning commercially available CAD-CAM blocks. Edge chipping test specimens (n=20/material) were adhesively attached to a resin substrate before testing. Edge chips were produced using a 120-degree, sharp, conical diamond indenter mounted on a universal testing machine and positioned 0.1 to 0.7 mm horizontally from the specimen's edge. The chipping force was plotted against distance to the edge, and the data were fitted to linear and quadratic equations. One-way ANOVA determined intergroup differences (α=.05) in edge chipping toughness. Beam specimens (n=22/material) were tested for determining flexural strength using a 3-point bend test. Weibull statistics determined intergroup differences (α=.05). Flexural modulus and work of fracture were also calculated, and 1-way ANOVA determined intergroup differences (α=.05) RESULTS: Significant (Pmaterials for the 4 mechanical properties. Specifically, the material rankings were edge chipping toughness: RNC>LRGC=FC>PICN; flexural strength: RNC=LRGC>PICN>FC; flexural modulus: RNCLRGC=PICN>FC. The RNC material demonstrated superior performance for the mechanical properties tested compared with the other 3 materials. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All

  16. Wear mechanisms of coated hardmetals

    International Nuclear Information System (INIS)

    Richter, V.

    2001-01-01

    In the paper several aspects of the wear mechanisms of coated hardmetals, ceramics and super-hard materials (CBN) in machining cast iron are discussed, with particular attention being given to high-speed machining of different cast iron grades. The influence of machining parameters, microstructure, composition and mechanical and chemical properties of the cutting tool and the work-piece material on wear are considered. (author)

  17. Microstructure and wear resistance of laser cladded composite coatings prepared from pre-alloyed WC-NiCrMo powder with different laser spots

    Science.gov (United States)

    Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong

    2018-05-01

    The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.

  18. Development of low-friction and wear-resistant surfaces for low-cost Al hot stamping tools

    Directory of Open Access Journals (Sweden)

    Dong Y.

    2015-01-01

    Full Text Available In this study, advanced surfaces and coatings have been developed using plasma thermochemical treatment, PVD coating, electroless Ni-BN plating and duplex surface engineering to produce low-friction and wear-resistant surfaces for cast iron stamping tools. Their microstructural and nano-mechanical properties were systematically analysed and the tribological behaviour of these new surfaces and coatings were evaluated. The experimental results have shown that under dry sliding condition, the tribological behaviour of aluminium differed great from that of steel regardless of the counterpart material. Highly reactive aluminium had a strong tendency to solder with tool surfaces during dry sliding. However, the lubricity of gray cast irons can be significantly improved by Ni-BN and DLC coatings. The coefficient of friction reduced from about 0.5 for untreated cast irons to about 0.2 sliding against aluminium. Duplex treatment combining plasma nitrocarburising with low-friction coatings showed superior durability than both DLC and Ni-BN coatings.

  19. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.

    Science.gov (United States)

    Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn

    2016-05-11

    The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.

  20. Development of corrosion and wear resistant coatings by an improved HVOF spraying process

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Y.; Kawakita, J.; Kuroda, S. [National Inst. for Materials Science, Tsukuba (Japan)

    2005-07-01

    We have developed an improved HVOF spray process called ''Gas-shrouded HVOF'' (GS-HVOF) over the past several years. By using an extension nozzle at the exit of a commercial HVOF spray gun, GS-HVOF is capable of controlling the oxidation of sprayed materials during flight as well as achieving higher velocity of sprayed particles. These features result in extremely dense and clean microstructure of the sprayed coatings. The process has been successfully applied to corrosion resistant alloys such as SUS316L, Hastelloy C, and alloy 625 as well as cermets such as WC-Cr{sub 3}C{sub 2}-Ni. The spray process, coatings microstructure and property evaluation will be discussed with potential industrial applications in the near future. (orig.)

  1. Wet Slurry Abrasion Tests of Ceramic Coatings Deposited by Water-Stabilized Plasma Spraying

    Czech Academy of Sciences Publication Activity Database

    Nohava, Jiří

    2003-01-01

    Roč. 48, č. 2 (2003), s. 203-214 ISSN 0001-7043 R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma spraying, wear resistence, ceramic coating Subject RIV: BL - Plasma and Gas Discharge Physics

  2. Laser melt injection of ceramic particles in metals : Processing, microstructure and properties

    NARCIS (Netherlands)

    Ocelík, V.; De Hosson, J.Th.M.

    2010-01-01

    The objective of this paper is to present an overview of the possibilities of the laser melt injection (LMI) methodology to enhance the surface of light-weighted metals by adding hard ceramic particles in the top layer, with the aim to enhance the wear resistance and to increase the hardness. In

  3. Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2014-01-01

    Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.

  4. Influence of temperature and composition in the mechanical resistance and porosity of ceramic pieces

    Directory of Open Access Journals (Sweden)

    Jordán Vidal, M. M.

    2001-03-01

    Full Text Available We have tried to establish a relationship between the raw material and the mechanical properties of ceramic pieces subjected to different firing processes, so under the determinant of the thermal process we have done a follow up on the petrogenetic process that the manufacture of ceramics represents. This is evaluated in terms of the mechanical behaviour of the ceramic tile bodies, which have been normalised and submitted to tests for flexion. The principal objective is to be able to indicate what the optimum firing temperature for each sample is, and to determine what it is in the ceramic body which offers the greatest resistance when a specific force is applied. The study of the texture of the ceramic body will be considered mainly in relation to the existent porosity, as well as its distribution, which conditions its characteristics and specifications. The relation between porosity and the parameters that describe the porous texture of the ceramic tile pieces studied is complicated because of the fact that these have many pores with a complex and irregular spatial disposition, with a broad distribution of forms and sizes, and as such they do not fit into established empirical equations.

    Se ha tratado de establecer la relación entre materia prima y propiedades mecánicas de piezas cerámicas sometidas a procesos de cocción diversos. Bajo el condicionante del proceso térmico se realiza un seguimiento del proceso petrogenético que representa la fabricación cerámica y se evalúa a través del comportamiento mecánico de probetas cerámicas normalizadas y sometidas a ensayos de flexión. El objetivo principal es poder indicar cuál es la temperatura óptima de cocción para cada muestra y determinar cuál es aquélla en que la probeta cerámica ofrece una mayor resistencia al aplicarle una determinada carga. El estudio de la textura de la matriz cerámica es de gran interés en relación con la porosidad, asi como su distribuci

  5. In vitro comparative analysis of resistance to compression of laboratory resin composites and a ceramic system

    Directory of Open Access Journals (Sweden)

    Montenegro Alexandre

    2010-01-01

    Full Text Available Background: Restorative materials must be capable not only of restoring the patient′s masticatory function, but also to rescue the self-esteem of those maculated by a disharmonious smile. Among the esthetic materials available on the market, the choice frequently lies between ceramic or indirect laboratory resin restorations. Aim: This study assessed the resistance to compression of two laboratory resins found on the market, namely Artglass ® and Targis ® , considering Omega 900 ® ceramic from Vita as control. Materials and Methods: With the aid of stainless steel matrices, with internal dimensions of 8.0 mm diameter at the base, 9.0 mm in the top portion and 4.0 mm height, 15 test specimens were made, being 5 of each material to be tested. The test specimens were kept in distilled water for 72 hours and submitted to an axial load by the action of a point with a rounded tip 2 mm in diameter, adapted to an EMIC 500 universal test machine. The compression speed was 0.5 mm/min, with a load cell capacity of 200 Kgf. Results: The means of the results were calculated in kilogram-force (Kgf. The results found were treated by analysis of variance (ANOVA and the differences found among the groups were identified by the Tukey test (5%. Conclusion: It was observed that the material Omega 900 ® offered significantly greater resistance to compression than the other two materials, which did not present statistically significant difference between them.

  6. Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti–6Al–4V alloy

    International Nuclear Information System (INIS)

    Liu, Xiu-Bo; Meng, Xiang-Jun; Liu, Hai-Qing; Shi, Gao-Lian; Wu, Shao-Hua; Sun, Cheng-Feng; Wang, Ming-Di; Qi, Long-Hao

    2014-01-01

    Highlights: • A novel high temperature self-lubricating anti-wear composite coating was fabricated. • Reinforced carbides as well as self-lubricating sulfides were in situ synthesized. • Microhardness of the Ti–6Al–4V substrate was significantly improved. • Friction coefficient and wear rate of the composite coating were greatly reduced. - Abstract: To enhance the wear resistance and friction-reducing capability of titanium alloy, a process of laser cladding γ-NiCrAlTi/TiC + TiWC 2 /CrS + Ti 2 CS coatings on Ti–6Al–4V alloy substrate with preplaced NiCr/Cr 3 C 2 –WS 2 mixed powders was studied. A novel coating without cracks and few pores was obtained in a proper laser processing. The composition and microstructure of the fabricated coating were examined by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) techniques, and tribological properties were evaluated using a ball-on-disc tribometer under dry sliding wear test conditions at 20 °C (room-temperature), 300 °C, 600 °C, respectively. The results show that the coating has unique microstructure consisting of α-Ti, TiC, TiWC 2 , γ-NiCrAlTi, Ti 2 CS and CrS phases. Average microhardness of the composite coating is 1005 HV 0.2 , which is about 3-factor higher than that of Ti–6Al–4V substrate (360 HV 0.2 ). The friction coefficient and wear rate of the coating are greatly decreased due to the combined effects of the dominating anti-wear capabilities of reinforced TiC and TiWC 2 carbides and the CrS and Ti 2 CS sulfides which have excellent self-lubricating property

  7. Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, G., E-mail: ligang_scut@outlook.com; Qu, S.G., E-mail: qusg@scut.edu.cn; Pan, Y.X.; Li, X.Q.

    2016-12-15

    Highlights: • Effects of MUSR frequency and load on surface properties of HIP Ti-6Al-4V investigated. • The grains in surface-modified layer were refined and appeared twins and many dense dislocations. • The hardened layer depth and surface residual stress of MUSR- treated samples were significantly improved. • MUSR- treated samples showed the good fretting friction and wear resistance. • The best microstructure and properties of surface-modified layer obtained by sample treated by 30 kHz and 900 N. - Abstract: The main purpose of this paper was to investigate the effects of the different frequencies and loads of multi-pass ultrasonic surface rolling (MUSR) on surface layer mechanical properties, microstructure and fretting friction and wear characteristics of HIP (hot isostatic pressing) Ti–6Al–4 V alloy. Some microscopic analysis methods (SEM, TEM and EDS) were used to characterize the modified surface layer of material after MUSR treatment. The results indicated that the material in sample surface layer experienced a certain extent plastic deformation, and accompanied by some dense dislocations and twins generation. Moreover surface microhardness and residual stress of samples treated by MUSR were also greatly improved compared with the untreated. The fretting friction and wear properties of samples treated by MUSR in different conditions are tested at 10 and 15 N in dry friction conditions. It could be found that friction coefficient and wear volume loss were significantly declined in the optimal result. The main wear mechanism of MUSR-treated samples included abrasive wear, adhesion and spalling.

  8. Fracture mechanical investigations about crack resistance behaviour in non-transforming ceramics in particular aluminum oxide

    International Nuclear Information System (INIS)

    Baer, K.K.O.; Kleist, G.; Nickel, H.

    1991-03-01

    The aim of this work is the clearification of R-curve behaviour of non-transforming ceramics, in particular aluminum oxide exhibiting incrystalline fracture. Investigations of crack growth in controlled bending experiments were performed using 3-Pt- and 4-Pt-bending samples of differing sizes under inert conditions. The fracture experiments were realized using several loading techniques, for example constant and varying displacement rates, load rupture (P = 0) and relaxation tests (v = 0). In addition unloading and reloading experiments were performed to investigate hysteresis curves and residual displacements in accordance with R-curve behaviour. During the crack-growth experiments, the crack extension was measured in situ using a high resolution immersion microscope. With this technique, the fracture processes near the crack tip (crack activity zone) was observed as well. The crack resistance as a function of crack extension (R-curve) was determined using differing calculation methods. All of the methods used resulted in approximately identical R-curves, within the statistical error band. The crack resistance at initiation R 0 was 20 N/m. The crack resistance increased during approximately 3 mm of growth to a maximum of 90 N/m. A decrease in the crack resistance was determined for large a/W (crack length normalized with sample height) values, independant of the calculation methods. The R-curve behaviour was interpreted as due to a functional resistance behind the observed crack tip, which arises from a volume dilatation in the crack activity zone while the crack proceeds. (orig.) [de

  9. Effect of different glass and zeolite A compositions on the leach resistance of ceramic waste forms

    International Nuclear Information System (INIS)

    Lewis, M.A.; Hash, M.; Glandorf, D.

    1996-01-01

    A ceramic waste form is being developed for waste generated during electrometallurgical treatment of spent nuclear fuel. The waste is generated when fission products are removed from the electrolyte, LiCl-KCl eutectic. The waste form is a composite fabricated by hot isostatic pressing a mixture of glass frit and zeolite occluded with fission products and salt. Normalized release rate is less than 1 g/m 2 d for all elements in MCC-1 leach test run for 28 days in deionized water at 90 C. This leach resistance is comparable to that of early Savannah River glasses. We are investigating how leach resistance is affected by changes in cationic form of zeolite and in glass composition. Composites were made with 3 forms of zeolite A and 6 glasses. We used 3-day ASTM C1220-92 (formerly MCC-1) leach tests to screen samples for development purposes only. The leach test results show that the glass composites of zeolites 5A and 4A retain fission products equally well. Loss of Cs is small (0.1-0.5 wt%), while the loss of divalent and trivalent fission products is one or more orders of magnitude smaller. Composites of 5A retain chloride ion better in these short-term screens than 4A and 3A. The more leach resistant composites were made with durable glasses rich in silica and poor in alkaline earth oxides. XRD show that a salt phase was absent in the leach resistant composites of 5A and the better glasses but was present in the other composites with poorer leach performance. Thus, absence of salt phase corresponds to improved leach resistance. Interactions between zeolite and glass depend on composition of both

  10. Enhancing Corrosion and Wear Resistance of AA6061 by Friction Stir Processing with Fe78Si₉B13 Glass Particles.

    Science.gov (United States)

    Guo, Lingyu; Liu, Yan; Shen, Kechang; Song, Chaoqun; Yang, Min; Kim, Kibuem; Wang, Weimin

    2015-08-07

    The AA6061-T6 aluminum alloy samples including annealed Fe 78 Si₉B 13 particles were prepared by friction stir processing (FSP) and investigated by various techniques. The Fe 78 Si₉B 13 -reinforced particles are uniformly dispersed in the aluminum alloy matrix. The XRD results indicated that the lattice parameter of α-Al increases and the preferred orientation factors F of (200) plane of α-Al reduces after friction stir processing. The coefficient of thermal expansion (CTE) for FSP samples increases at first with the temperature but then decreases as the temperature further increased, which can be explained by the dissolving of Mg and Si from β phase and Fe 78 Si₉B 13 particles. The corrosion and wear resistance of FSP samples have been improved compared with that of base metal, which can be attributed to the reduction of grain size and the CTE mismatch between the base metal and reinforced particles by FSP, and the lubrication effect of Fe 78 Si₉B 13 particles also plays a role in improving wear resistance. In particular, the FSP sample with reinforced particles in amorphous state exhibited superior corrosion and wear resistance due to the unique metastable structure.

  11. Enhancing Corrosion and Wear Resistance of AA6061 by Friction Stir Processing with Fe78Si9B13 Glass Particles

    Directory of Open Access Journals (Sweden)

    Lingyu Guo

    2015-08-01

    Full Text Available The AA6061-T6 aluminum alloy samples including annealed Fe78Si9B13 particles were prepared by friction stir processing (FSP and investigated by various techniques. The Fe78Si9B13-reinforced particles are uniformly dispersed in the aluminum alloy matrix. The XRD results indicated that the lattice parameter of α-Al increases and the preferred orientation factors F of (200 plane of α-Al reduces after friction stir processing. The coefficient of thermal expansion (CTE for FSP samples increases at first with the temperature but then decreases as the temperature further increased, which can be explained by the dissolving of Mg and Si from β phase and Fe78Si9B13 particles. The corrosion and wear resistance of FSP samples have been improved compared with that of base metal, which can be attributed to the reduction of grain size and the CTE mismatch between the base metal and reinforced particles by FSP, and the lubrication effect of Fe78Si9B13 particles also plays a role in improving wear resistance. In particular, the FSP sample with reinforced particles in amorphous state exhibited superior corrosion and wear resistance due to the unique metastable structure.

  12. High performance corrosion and wear resistant composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method

    Directory of Open Access Journals (Sweden)

    Michał Tacikowski

    2014-09-01

    Full Text Available Composite, diffusive titanium nitride layers formed on a titanium and aluminum sub-layer were produced on the AZ91D magnesium alloy. The layers were obtained using a hybrid method which combined the PVD processes with the final sealing by a hydrothermal treatment. The microstructure, resistance to corrosion, mechanical damage, and frictional wear of the layers were examined. The properties of the AZ91D alloy covered with these layers were compared with those of the untreated alloy and of some engineering materials such as 316L stainless steel, 100Cr6 bearing steel, and the AZ91D alloy subjected to commercial anodizing. It has been found that the composite diffusive nitride layer produced on the AZ91D alloy and then sealed by the hydrothermal treatment ensures the corrosion resistance comparable with that of 316L stainless steel. The layers are characterized by higher electrochemical durability which is due to the surface being overbuilt with the titanium oxides formed, as shown by the XPS examinations, from titanium nitride during the hydrothermal treatment. The composite titanium nitride layers exhibit high resistance to mechanical damage and wear, including frictional wear which is comparable with that of 100Cr6 bearing steel. The performance properties of the AZ91D magnesium alloy covered with the composite titanium nitride coating are substantially superior to those of the alloy subjected to commercial anodizing which is the dominant technique employed in industrial practice.

  13. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2012-03-15

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl{sub 2}O{sub 4}, {alpha}-Al{sub 2}O{sub 3}, and {gamma}-Al{sub 2}O{sub 3.} By controlling the working parameters, the distribution of the CoAl{sub 2}O{sub 4} phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  14. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O.

    2012-01-01

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl 2 O 4 , α-Al 2 O 3 , and γ-Al 2 O 3. By controlling the working parameters, the distribution of the CoAl 2 O 4 phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  15. Thermal resistance of buffer layer in a ceramic wall of MHD generation channel

    International Nuclear Information System (INIS)

    Nomura, Osami; Ebata, Yoshihiro; Hijikata, Kenichi.

    1982-01-01

    A wal l model is composed for obtaining the thermal resistance of the buffer layer. A buffer layer of the model is consisted to an adhesive layer and a buffer body. The adhesive layer is made of a copper plate, which is 0.3 mm thick, and adhered to the element by Refractory Method. The adhesive layer is consisted to three layers, i.e., Cu, Cu 2 O and CuO. These three layers seems to give rise to the thermal resistance. The buffer body is made of nickel wires of which radious is 0.4 mm and purity is 99.7%. All of the nickel wires are assembled in one direction which is parallel to a center line of the element, and bundled all together. Occupation ratio of nickel is about 78% in a sectional area of the buffer body. One end of the buffer body is soldered to adhesive layer by silver solder and opposite and is soldered to holder by lead solder. An element of the model is made of magnesia ceramics of which purity is about 99.9% and porosity is about 3%. A holder of the model is made of copper block. Results are as follows: (1) Thermal resistance of the buffer layer is from 1.9 to 2.5K/(W/cm 2 ). (2) Thermal resistance of the adhesive layer is from 0.43 to 0.87K/(W/cm 2 ). (3) Thermal resistance of the buffer body is calculated to about 0.7K/(W/cm 2 ) under the estimation at which the heat flows in the nickel wires only. (4) From above results, thermal resistance of silver soldering layer seems to be same as that of the adhesive layers. The buffer layer needs more value of the thermal resistance in order to apply to the MHD generation channel. Value of the thermal resistance is easily satisfied by changing of material of the buffer body, increase of thickness of the buffer layer and etc. Then this wall appears to be useful to an MHD generation channel wall. (author)

  16. Effect of the post heat treatment on the sliding wear resistance of a nickel base coating deposited by high velocity oxyl-fuel (HVOF)

    International Nuclear Information System (INIS)

    Cadenas, P.; Rodriguez, M.; Staia, M. H.

    2007-01-01

    In the present research, a nickel base coating was deposited on an AISI 1020 substrate by using high velocity oxy-fuel technique (HVOF). The coating was subsequently post heat-treated by means of an oxyacetylene flame. For the conditions evaluated in the present study, it was found that the CTT coating coating has 1,15 better wear resistance for the smaller level of the applied load and nearly 50 times for the highest level of the applied load when compared to the STT coatings. These results have been attributed to a better distribution of the hard phases, better cohesion between particles and an increase in hardness, as consequence of the post heat treatment process. A severe wear regime was found for all the samples since the wear rates presented values which were higher tan 1.10''-5 mm''3/m. For the CT T coatings, the wear mechanisms was mainly due to the adhesion and oxidation phenomena, meanwhile for the steel counterpart mechanisms such oxidation, grooving and three body abrasion were observed. (Author) 22 refs

  17. Non-contact evaluation of mechanical properties of electroplated wear resistant Ni-P layer from the velocity dispersion of laser SAW; Laser reiki Rayleigh ha no sokudo bunsan wo mochiita taimamo Ni-P mekkiso tokusei no hisesshoku hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Y.; Cho, H.; Takemoto, M. [Aoyama Gakuin University, Tokyo (Japan). Faculty of Science and Engineering; Nakayama, T. [Kobe Steel Ltd., Kobe (Japan)

    1996-11-01

    We developed a new laser surface acoustic wave (SAW) system and applied this to estimate the mechanical properties of the wear-resistant Ni-P layer electroplated on a stainless steel. The velocity dispersions of Rayleigh wave of the as -plated and heat-treated Ni-P layer were obtained by the one point time domain signal processing. The Ni-P layers with excellent wear resistance produced by the heated treatment higher than 725K were found to show higher Rayleigh velocities than that of the substrate steel, while the Ni-P layer with poor wear resistance showed lower velocities. Young`s moduli of the Ni-P layer, estimated so as the computed velocity dispersion agreed with the measured one, increased with the increase of wear resistance. 10 refs., 9 figs., 2 tabs.

  18. Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M Mohan; Gorin, Alexander [School of Engineering and Science, Curtin University of Technology, Sarawak (Malaysia); Abou-El-Hossein, K A, E-mail: mohan.m@curtin.edu.my [Mechanical and Aeronautical Department, Nelson Mandela Metropolitan University, Port Elegebeth, 6031 (South Africa)

    2011-02-15

    Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.

  19. Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic

    International Nuclear Information System (INIS)

    Reddy, M Mohan; Gorin, Alexander; Abou-El-Hossein, K A

    2011-01-01

    Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.

  20. A method for simultaneous determination of wear-resistance of structurally identical machine parts with mutual friction

    International Nuclear Information System (INIS)

    Valigura, V.; Volyn'ski, A.

    1979-01-01

    There are mechanisms in the technique, boundary state of separate parts of which is determined by the process of wear of three elements of the mechanism, made of the same material (for example antifriction bearings). The main concept of wear determination in the case of such a mechanism is to conduct measurements by means of simultaneous application of three different methods, for example: the method of roentgen-fluorescence; the tracer technique with application of activation by means of irradiation by different elementary particles, practically by means of neutrons and protons; the method of artifical bases application. In the paper the method is presented having been developed in the Institute of Working Machines of the Poznan Polytechnic. This method of simultaneous investigation in the wear process of bearing rings, inner and outer, and rolling elements of roller bearings. All these elements of bearings are made of LX-15 steel. The method developed, permits to determine the wear sufficient for practical purposes sensitivity [ru

  1. Fiscal 1997 achievement report. Research and development of synergy ceramics; 1997 nendo synergy ceramics no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development is conducted on two subjects, that is, 1) hyper organized structure control technology and 2) structural element control technology. In addition, joint research and development is conducted on the creation of new materials by hyper organized structure controlling, hyper organized structure controlling for ceramics by a structurization reaction process, designing of precursors to ceramics, and the hyper organized structure control for ceramics by nanostructure process control. The joint research and development endeavors further deal with re-entrusted projects which involve researches on sintered structure control by powdery particulate structure control; dynamic process of synergy ceramics; oxynitride liquids, glasses, and glass-ceramics; and multifunctional ceramic laminates for engineering applications. Under subject 1), researches are made on the development of precursors into ceramics by utilizing chemical reactions of organic metal compounds, and analyses are conducted into the effects, exerted by the molecular structures of precursors and the conditions of a reaction for their development into ceramics, on the microstructures and various properties of the ceramics to be composed. Under subject 2), high strength, great hardness, and high resistance to wear are realized by allowing the precipitation of nano-particulates in crystals of a fine and very compact sintered body of alumina. (NEDO)

  2. Wear Behavior and Self Tribofilm Formation of Infiltration-Type TiC/FeCrWMoV Metal Ceramics Under Dry Sliding Conditions

    DEFF Research Database (Denmark)

    Wang, Yanjun; Yang, Zhenyu; Han, Liying

    2015-01-01

    infiltration furnace. The friction and wear behaviors of the composites were investigated using a pin-on-disk high temperature wear testing machine at different temperature (up to 800°C). The compositions, images and structures of worn surfaces were analyzed by means of scanning electron microscope (SEM...... PbMoO4, PbO, SnWO4, Ag2WO4 and Ag3Sn. The formation of lubrication film containing of these oxides and of intermetallic compounds was the main reason that the composites had good self-lubrication properties at high temperature. It was considered that the micro-pores on friction surface would...

  3. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  4. Microstructure and Wear Resistance of Laser-Clad (Co, Ni61.2B26.2Si7.8Ta4.8 Coatings

    Directory of Open Access Journals (Sweden)

    Luan Zhang

    2017-10-01

    Full Text Available It has been reported that a quaternary Co61.2B26.2Si7.8Ta4.8 alloy is a good glass former and can be laser-clad to an amorphous composite coating with superior hardness and wear resistance. In this paper, alloys with varying Ni contents to substitute for Co are coated on the surface of #45 carbon steel using a 5-kW CO2 laser source for the purpose of obtaining protective coatings. In contrast to the quaternary case, the clad layers are characterized by a matrix of α-(Fe, Co, Ni solid solution plus CoB, Co3B, and Co3Ta types of precipitates. The cladding layer is divided into four regions: Near-surface dendrites, α-(Fe, Co, Ni solid solution plus dispersed particles in the middle zone, columnar bonding zone, and heat-affected area that consists of martensite. The hardness gradually decreases with increasing Ni content, and the maximum hardness occurs in the middle zone. Both the friction coefficient and wear volume are minimized in the alloy containing 12.2% Ni. Compared with the previous cobalt-based quaternary alloy Co61.2B26.2Si7.8Ta4.8, the addition of the Ni element reduces the glass-forming ability and henceforth the hardness and wear resistance of the clad layers.

  5. Comparison study on resistance to wear and abrasion of high-temperature sliding strike of laser and plasma spray layer on the stainless steel surface

    International Nuclear Information System (INIS)

    Shi Shihong; Zheng Qiguang; Fu Geyan; Wang Xinlin

    2004-01-01

    In this paper, the effect of coatings, which are formed with laser cladding and plasma spray welding on 1Cr18Ni9Ti base metal of nuclear valve seats, on wear resistance is studied. A 5-kW transverse-flowing CO 2 laser is used for cladding Co base alloy powder pre-placed on the substrate. Comparing with the plasma spray coatings, the laser-cladding layer have lower rate of spoiled products and higher rate of finished products. Their microstructure is extremely fine. They have close texture and small-size grain. Their dilution diluted by the compositions of their base metal and hot-effect on base metal are less. The hardness, toughness, and strength of the laser-cladding layers are higher. The grain size is 11-12th grade in the laser-cladding layer and 9-10th in the plasma spray layer. The width of combination zone between laser-cladding layer and substrate is 10-45 μm but that between plasma spray layer and substrate is 120-160 μm. The wear test shows that the laser layers have higher property of anti-friction, anti-scour, and high-temperature sliding strike. The wear resistance of laser-cladding layer is about one time higher than that of plasma spray welding layer

  6. Effect of Mo and nano-Nd{sub 2}O{sub 3} on the microstructure and wear resistance of laser cladding Ni-based alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lin; Hu, Shengsun; Shen, Junqi [Tianjin University, Tianjin Key Laboratory of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin (China); Quan, Xiumin [Lu' an Vocation Technology College, School of Automobile and Mechanical and Electrical Engineering, Lu' an (China)

    2016-04-15

    Three kinds of coatings were successfully prepared on Q235 steel by laser cladding technique through adulterating with Mo and nano-Nd{sub 2}O{sub 3} into Ni-based alloys. The effect of Mo and nano-Nd{sub 2}O{sub 3} on the microstructure and properties of Ni-based coatings was investigated systematically by means of optical microscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and microhardness testing and wear testing. The results indicated a certain amount of fine grains and polygonal equiaxed grains synthesized after adding Mo and nano-Nd{sub 2}O{sub 3}. Both the microhardness and wear resistance of Ni-based coatings improved greatly with a moderate additional amount of Mo and nano-Nd{sub 2}O{sub 3}. The largest improvement in microhardness was 31.9 and 14.7 %, and the largest reduction in loss was 45.0 and 30.7 %, respectively, for 5.0 wt% Mo powders and 1.0 wt% nano-Nd{sub 2}O{sub 3}. The effect of Mo on microhardness and wear resistance of laser cladding Ni-based alloy coatings is greater than the effect of nano-Nd{sub 2}O{sub 3}. (orig.)

  7. Influence of load and sliding velocity on wear resistance of solid-lubricant composites of ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Buslovich, D. G.; Alexenko, V. O.; Ivanova, L. R.

    2017-12-01

    To determine the limits of the operation loading intervals appropriate for the use of solid lubricant UHMWPE composites in tribounits for mechanical engineering and medicine, the tribotechnical properties of UHMWPE blends with the optimum solid lubricant filler content (polytetrafluoroethylene, calcium stearate, molybdenum disulfide, colloidal graphite, boron nitride) are studied under dry sliding friction at different velocities (V = 0.3 and 0.5 m/s) and loads (P = 60 and 140 N). It is shown that the wear resistance of solid lubricant UHMWPE composites at moderate sliding velocities (V = 0.3 m/s) and loads (P = 60 N) increases 2-3 times in comparison with pure UHMWPE, while at high load P = 140 N wear resistance of both neat UHMWPE and its composites is reduced almost twice. At high sliding velocities and loads (up to P = 140 N), multiple increasing of the wear of pure UHMWPE and its composites takes place (by the factor of 5 to 10). The operational conditions of UHMWPE composites in tribounits in engineering and medicine are discussed.

  8. The Particle Distribution in Liquid Metal with Ceramic Particles Mould Filling Process

    Science.gov (United States)

    Dong, Qi; Xing, Shu-ming

    2017-09-01

    Adding ceramic particles in the plate hammer is an effective method to increase the wear resistance of the hammer. The liquid phase method is based on the “with the flow of mixed liquid forging composite preparation of ZTA ceramic particle reinforced high chromium cast iron hammer. Preparation method for this system is using CFD simulation analysis the particles distribution of flow mixing and filling process. Taking the 30% volume fraction of ZTA ceramic composite of high chromium cast iron hammer as example, by changing the speed of liquid metal viscosity to control and make reasonable predictions of particles distribution before solidification.

  9. Ceramic heat exchangers. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The bibliography contains citations of selected patents concerning the use of ceramic materials in the manufacture of industrial heat exchangers. The focus is on ceramics that display resistance to high temperature corrosion, abrasion, wear, and thermal shock. The design and fabrication of rotary, regenerative, and recuperative heat exchangers are discussed. Ceramic heat exchangers for uses in gas turbines, waste heat recovery equipment, and central heating systems are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Ceramic heat exchangers. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The bibliography contains citations of selected patents concerning the use of ceramic materials in the manufacture of industrial heat exchangers. The focus is on ceramics that display resistance to high temperature corrosion, abrasion, wear, and thermal shock. The design and fabrication of rotary, regenerative, and recuperative heat exchangers are discussed. Ceramic heat exchangers for uses in gas turbines, waste heat recovery equipment, and central heating systems are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    International Nuclear Information System (INIS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-01-01

    Graphical abstract: - Highlights: • Hydroxyapatite was synthesized by sol–gel route. • Bilayer (AT13/HAP) coating improves wear resistance of CP-Ti implant surface. • The microhardness values of bilayer coating surface were increased 4 times compared to uncoated sample surface. - Abstract: Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al 2 O 3 -13 wt%TiO 2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14–20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces

  12. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al{sub 2}O{sub 3}-13 wt%TiO{sub 2}/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    Energy Technology Data Exchange (ETDEWEB)

    Palanivelu, R.; Ruban Kumar, A., E-mail: arubankumarvit@gmail.com

    2014-10-01

    Graphical abstract: - Highlights: • Hydroxyapatite was synthesized by sol–gel route. • Bilayer (AT13/HAP) coating improves wear resistance of CP-Ti implant surface. • The microhardness values of bilayer coating surface were increased 4 times compared to uncoated sample surface. - Abstract: Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al{sub 2}O{sub 3}-13 wt%TiO{sub 2} (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14–20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.

  13. Friction and wear properties of novel HDPE--HAp--Al2O3 biocomposites against alumina counterface.

    Science.gov (United States)

    Bodhak, Subhadip; Nath, Shekhar; Basu, Bikramjit

    2009-03-01

    In an effort to enhance physical properties of biopolymers (high-density polyethylene, HDPE) in terms of elastic modulus and hardness, various ceramic fillers, like alumina (Al2O3) and hydroxyapatite (HAp) are added, and therefore it is essential to assess the friction and wear resistance properties of HDPE biocomposites. In this perspective, HDPE composites with varying ceramic filler content (upto 40 vol%) were fabricated under the optimal compression molding conditions and their friction and wear properties were evaluated against Al2O3 at fretting contacts. All the experiments were conducted at a load of 10 N for duration of 100,000 cycles in both dry as well as simulated body fluid (SBF). Such planned set of experiments has been designed to address three important issues: (a) whether the improvement in physical properties (hardness, E-modulus) will lead to corresponding improvement in friction and wear properties; (b) whether the fretting in SBF will provide sufficient lubrication in order to considerably enhance the tribological properties, as compared to that in ambient conditions; and (c) whether the generation of wear debris particles be reduced for various compositionally modified polymer composites, in comparison to unreinforced HDPE. The experimental results indicate the possibility of achieving extremely low coefficient of friction (COF approximately 0.047) as well as higher wear resistance (wear rate in the order of approximately 10(-7) mm3 N(-1) m(-1)) with the newly developed composites in SBF. A low wear depth of 3.5-4 microm is recorded, irrespective of fretting environment. Much effort has been put forward to correlate the friction and wear mechanisms with abrasion, adhesion, and wear debris formation.

  14. Remarkable improvement of the wear resistance of poly(vinylidene difluoride) by incorporating polyimide powder and carbon nanofibers

    Science.gov (United States)

    Min, Chunying; Liu, Dengdeng; Shen, Chen; Zhang, Qiaqia; Shen, Xiaojuan; Zhang, Kan

    2017-10-01

    Poly(vinylidene difluoride) (PVDF) composites reinforced via adding different fillers have attracted wide attention in the field of dielectric materials, but few have been reported in the tribological area. In this paper, the effect of polyimide (PI) powder and carbon nanofibers (CF) as reinforcement phases on the friction and wear performance of PVDF composites has been investigated. It was found that PI powder enhances the mechanical and tribological properties of PVDF and especially as the content of the PI powder reaches 5 wt%. In addition, CF and PI exhibited synergistic effect on the tribological properties of PVDF. With PVDF containing 5 wt% PI powder and 20 wt% CF, the friction and wear behavior of the PVDF composite showed the best performance. PVDF, PI powder and CF can form a consistent network structure, which prevents the polymer molecular chains from moving or deformation, decreasing the wear loss of PVDF composites.

  15. Development of a thin film vitreous bond based composite ceramic coating for corrosion and abrasion services

    International Nuclear Information System (INIS)

    Franke, B.

    2003-01-01

    IPC has been involved with the Alberta Research Council in developing a vitreous bond (VB) - based composite ceramic fluoropolymer coating technology. Compared to the present state of the art which is based on a hard discontinuous phase (ceramic particles) suspended in a soft continuous matrix (fluoropolymer mix) the novelty of our approach consists of designing a composite system in which both the ceramic and the fluoropolymer phases are continuous. The ceramic matrix will provide the strength and the erosion resistance for the fluoropolymer matrix even at high temperatures. The ceramic formulation employed is not affected by temperatures up to 500 o F while the fluoropolymer matrix provides a corrosion protection seal for the ceramic matrix. The inherent flexibility of the polymer matrix will protect against brittle fractures that may develop by handling or impact. Therefore the composite coating is able to withstand the deformation of the substrate without chipping or disbanding. The fluoropolymer matrix also provides dry lubrication properties further enhancing the erosion resistance of the ceramic phase. The thickness of the coating is very thin, in the 25 to 100 micron range. In summary, the coating technology is able to provide the following features: Corrosion protection levels similar to those of fluoropolymer coatings; Erosion resistance similar to that of ceramic coatings; Price comparable to that of polymer coatings; Exceptional wear resistance properties; and Capability for coating complicated shapes internally or externally or both. This paper will discuss the theory and development of this new technology and the resultant coating and potential properties. (author)

  16. Fabrication and characterization of glass–ceramics materials developed from steel slag waste

    International Nuclear Information System (INIS)

    He, Feng; Fang, Yu; Xie, Junlin; Xie, Jun

    2012-01-01

    Highlights: ► Steelmaking slag (SS) is one of the most common industrial wastes. ► Glass–ceramics produced from SS is observed to have good properties. ► A large volume of raw SS can be recycled. ► The utilization of SS could reduce solid waste pollution. -- Abstract: In this study, glass–ceramic materials were produced from SS (steel slag) obtained from Wuhan Iron and Steel Corporation in China. The amount of SS used in glass batch was about 31–41 wt.% of the total batch mixture. On basis of differential thermal analysis (DTA) results, the nucleation and crystallization temperature of the parent glass samples were identified, respectively. X-ray diffraction (XRD) revealed that multiple crystalline phases coexisted in the glass–ceramics, and the main crystalline phase was wollastonite (CaSiO 3 ). SEM observation indicated that there was an increase in the amount of crystalline phase in the glass–ceramics when the CaO content and crystallization time increased. It was also found that the glass–ceramics with fine microstructure enhance mechanical properties and erosion wear resistance. The obtained glass–ceramics showed a maximum bending strength of 145.6 MPa and very nice wear resistance. Therefore, it is feasible to produce nucleated glass–ceramics materials for building and decorative materials from SS.

  17. Fracture resistance of computer-aided design and computer-aided manufacturing ceramic crowns cemented on solid abutments.

    Science.gov (United States)

    Stona, Deborah; Burnett, Luiz Henrique; Mota, Eduardo Gonçalves; Spohr, Ana Maria

    2015-07-01

    Because no information was found in the dental literature regarding the fracture resistance of all-ceramic crowns using CEREC (Sirona) computer-aided design and computer-aided manufacturing (CAD-CAM) system on solid abutments, the authors conducted a study. Sixty synOcta (Straumann) implant replicas and regular neck solid abutments were embedded in acrylic resin and randomly assigned (n = 20 per group). Three types of ceramics were used: feldspathic, CEREC VITABLOCS Mark II (VITA); leucite, IPS Empress CAD (Ivoclar Vivadent); and lithium disilicate, IPS e.max CAD (Ivoclar Vivadent). The crowns were fabricated by the CEREC CAD-CAM system. After receiving glaze, the crowns were cemented with RelyX U200 (3M ESPE) resin cement under load of 1 kilogram. For each ceramic, one-half of the specimens were subjected to the fracture resistance testing in a universal testing machine with a crosshead speed of 1 millimeter per minute, and the other half were subjected to the fractured resistance testing after 1,000,000 cyclic fatigue loading at 100 newtons. According to a 2-way analysis of variance, the interaction between the material and mechanical cycling was significant (P = .0001). According to a Tukey test (α = .05), the fracture resistance findings with or without cyclic fatigue loading were as follows, respectively: CEREC VITABLOCKS Mark II (405 N/454 N) was statistically lower than IPS Empress CAD (1169 N/1240 N) and IPS e.max CAD (1378 N/1025 N) (P Empress CAD and IPS e.max CAD did not differ statistically (P > .05). According to a t test, there was no statistical difference in the fracture resistance with and without cyclic fatigue loading for CEREC VITABLOCS Mark II and IPS Empress CAD (P > .05). For IPS e.max CAD, the fracture resistance without cyclic fatigue loading was statistically superior to that obtained with cyclic fatigue loading (P Empress CAD and IPS e.max CAD showed higher fracture resistance compared with CEREC VITABLOCS Mark II. The cyclic

  18. Effect of power toothbrushing on simulated wear of dental cement margins.

    Science.gov (United States)

    Black, Marsha A; Bayne, Stephen C; Peterson, Charlotte A

    2007-01-01

    Power toothbrushes (PTBs), in combination with abrasive dentifrices, may encourage wear of dental cements at crown margins. The objective of this in vitro simulation was to control the clinical variables associated with PTB use and measure the potential side effects of PTBs with mild and abrasive dentifrices. Four PTBs ( Braun-Oral-B-Professional Care at 150 g brushing force, Sonicare-Elite at 90 g, Colgate-Actibrush at 200 g and Crest-Spinbrush-Pro at 250 g) and 2 dentifrices mixed 1:1 with tap water (Mild= Colgate-Total, Colgate-Palmolive; Abrasive= Close-up, Chesebrough-Ponds) versus tap water alone (control) were used to abrade 2 cements (Fleck's Mizzy Zinc Phosphate [ZP]; 3M-ESPE Unicem universal cement [UC]) using cement-filled slots (160 m wide) cut into wear-resistant ceramic blocks. A custom fixture controlled PTB/block alignment, PTB loads, and other testing variables. Wear was measured (3 profilometer traces/slot, 5 slots/block/group, baseline to 5-year differences) and analyzed (3-way ANOVA, p PTBs and both dentifrices. Brushing with water showed no effects (pPTBs. Pooled 5y-wear levels for ZP for both dentifrices approximately 21 microm /5y) were similar to values for current-day posterior composite materials. Combinations of PTBs with mild and abrasive dentifrices produced significant wear with ZP but not UC; thus, resin-composite cements seem to represent a better choice for wear resistance.

  19. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    Science.gov (United States)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  20. Study on the wear of TiN/Ti duplex and multilayer coatings in microabrasion tests

    International Nuclear Information System (INIS)

    Flores, M; De Las Heras, E; Ruelas, R; Rodriguez, E; Bautista, A; Pazos, L; Corengia, P

    2008-01-01

    Ionic nitriding, on steels, is used to harden the surface of components improving resistance to corrosion and wear and increasing the stress life. Duplex treatments are an alternative for resolving the limitations of very hard coatings on less hard substrates. In this case the duplex treatment consists of an ionic nitriding treatment followed by a single or multilayer coatings deposited by means of the PVD technique. This work presents the influence of the variation in the severity of contact on the kind of wear present in the microabrasion test used to measure the wear coefficient of duplex coatings, consisting of a layer nitrided by DC-pulsed plasma plus TiN coatings and multilayers of TiN/Ti deposited on non-nitrided and nitrided AISI 316L stainless steel and H13 steel. The severity of contact was modified by varying the charge (0.25 to 1 N). The abrasives used were a suspension of 0.1μm diameter diamond particles and a suspension of an average 5 μm diameter aluminum particles. The influence of the presence of relatively soft metallic layers on the determination of the wear coefficient was analyzed in the metal-ceramic multilayers. Two sphere revolving speeds of de 0.05 and 0.154 m/s were used on two microabrasion machines: one commercial and the other built in the UdeG laboratory. The wear marks were photographed and measured with an optic microscope. The value of the critical charge at which the transition occurs between the methods of wear of the substrates and the nitrited samples was determined. Resistance to the AISI 316L steel's microabrasive wear increases with the ionic nitriding treatment. The duplex coatings increase resistance to the wear from the nitrited samples. The wear resistance of the samples with multilayer coatings surpassed that of the duplex samples with multilayer coatings. The greater resistance of the multilayers may be explained by an increase in the resistance to the fracture and not by a increase in surface hardness. The transition

  1. An Investigation on the Wear Resistance and Fatigue Behaviour of Ti-6Al-4V Notched Members Coated with Hydroxyapatite Coatings

    Directory of Open Access Journals (Sweden)

    Reza H Oskouei

    2016-02-01

    Full Text Available In this study, surface properties of Ti-6Al-4V alloy coated with hydroxyapatite coatings were investigated. Wear resistance and fatigue behaviour of samples with coating thicknesses of 10 and 50 µm as well as uncoated samples were examined. Wear experiments demonstrated that the friction factor of the uncoated titanium decreased from 0.31 to 0.06, through a fluctuating trend, after 50 cycles of wear tests. However, the friction factor of both the coated samples (10 and 50 µm gradually decreased from 0.20 to 0.12 after 50 cycles. At the end of the 50th cycle, the penetration depth of the 10 and 50 µm coated samples were 7.69 and 6.06 µm, respectively. Fatigue tests showed that hydroxyapatite coatings could improve fatigue life of a notched Ti-6Al-4V member in both low and high cycle fatigue zones. It was understood, from fractography of the fracture surfaces, that the fatigue zone of the uncoated specimens was generally smaller in comparison with that of the coated specimens. No significant difference was observed between the fatigue life of coated specimens with 10 and 50 µm thicknesses.

  2. Composite Coatings of Alumina-based Ceramics and Stainless Steel Manufactured by Plasma Spraying

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Ageorges, H.; Neufuss, Karel; Zahálka, F.

    2009-01-01

    Roč. 15, č. 2 (2009), s. 108-114 ISSN 1392-1320 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Cermet * plasma spraying * microstructure * elastic modulus * wear resistance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.299, year: 2009 http://internet.ktu.lt/en/science/journals/medz/medz0-97.html#Composite_Coatings_

  3. Wear-resistant EBW coatings based on a TiB{sub 2}-Fe SHS composite with a high-alloy matrix

    Energy Technology Data Exchange (ETDEWEB)

    Galchenko, Nina K.; Kolesnikova, Ksenia A.; Belyuk, Sergei I. [Institute of Strength Physics and Materials Science SB RAS, Tomsk (Russian Federation); Semenov, Grigoriy V., E-mail: Kolesnikova_KsAl@mail.ru [Tomsky Instrument Manufacturing Company, Tomsk (Russian Federation)

    2011-07-01

    In the work, we studied the structure and properties of “titanium diboride – high-chromium cast iron binder” coatings obtained by electron beam welding. It is demonstrated that the phase and structure formation of the composite coatings depends on the content of high-chromium cast iron in the deposited mixture. Varying the volume fraction of the hardening compounds and the chemical composition of the metal binder makes possible wear-resistant coatings with specified operating characteristics. Key words: electron beam technology, composite coatings.

  4. Flexural resistance of Cerec CAD/CAM system ceramic blocks. Part 2: Outsourcing materials.

    Science.gov (United States)

    Sedda, Maurizio; Vichi, Alessandro; Del Siena, Francesco; Louca, Chris; Ferrari, Marco

    2014-02-01

    To test different Cerec CAD/CAM system ceramic blocks, comparing mean flexural strength (sigma), Weibull modulus (m), and Weibull characteristic strength (sigma0) in an ISO standardized set-up. Following the recent ISO Standard (ISO 6872:2008), 11 types of ceramic blocks were tested: IPS e.max CAD MO, IPS e.max CAD LT and IPS e.max CAD HT (lithium disilicate glass-ceramic); In-Ceram SPINELL, In-Ceram Alumina and In-Ceram Zirconia (glass-infiltrated materials); inCoris AL and In-Ceram AL (densely sintered alumina); In-Ceram YZ, IPS e.max Zir-CAD and inCoris ZI (densely sintered zirconia). Specimens were cut out from ceramic blocks, finished, crystallized/infiltrated/sintered, polished, and tested in a three-point bending test apparatus. Flexural strength, Weibull characteristic strength, and Weibull modulus were obtained. A statistically significant difference was found (P ceramic (sigma = 272.6 +/- 376.8 MPa, m = 6.2 +/- 11.3, sigma0 = 294.0 +/- 394.1 MPa) and densely sintered alumina (sigma = 441.8 +/- 541.6 MPa, m = 11.9 +/- 19.0, sigma0 = 454.2 +/- 565.2 MPa). No statistically significant difference was found (P = 0.254) in glass infiltrated materials (sigma = 376.9 +/- 405.5 MPa, m = 7.5 +/- 11.5, sigma0 = 393.7 +/- 427.0 MPa). No statistically significant difference was found (P = 0.160) in densely sintered zirconia (sigma = 1,060.8 +/- 1,227.8 MPa, m = 5.8 +/- 7.4, sigma0 = 1,002.4 +/- 1,171.0 MPa). Not all the materials tested fulfilled the requirements for the clinical indications recommended by the manufacturer.

  5. X-ray residual stress measurement and its variation during plane bending fatigue and sliding wear processes in TiC, TiN, TiB2 and Al2O3 coated carbon steels

    International Nuclear Information System (INIS)

    Endoh, Takashi; Idemitsu, Kohji; Kawakami, Mamoru

    1993-01-01

    The development of ceramic coating to metals was stimulated by the need for high temperature, wear and corrosion resistant materials. Recently TiC, TiN, TiB 2 and Al 2 O 3 are used as ceramic coating materials. In the present study, the X-ray method was successfully applied to measure the residual stress distribution in their ceramics coated steels. The X-ray elastic constants were determined and compared with the mechanically measured values. And plane bending and sliding wear tests were carried out. The X-ray method was successfully applied to measure the residual stress changes during fatigue and wear processes. The relationship between the change of residual stress and damage accumulation was investigated. (author)

  6. Fracture Resistance of Lithium Disilicate Ceramics Bonded to Enamel or Dentin Using Different Resin Cement Types and Film Thicknesses.

    Science.gov (United States)

    Rojpaibool, Thitithorn; Leevailoj, Chalermpol

    2017-02-01

    To investigate the influence of cement film thickness, cement type, and substrate (enamel or dentin) on ceramic fracture resistance. One hundred extracted human third molars were polished to obtain 50 enamel and 50 dentin specimens. The specimens were cemented to 1-mm-thick lithium disilicate ceramic plates with different cement film thicknesses (100 and 300 μm) using metal strips as spacers. The cements used were etch-and-rinse (RelyX Ultimate) and self-adhesive (RelyX U200) resin cements. Compressive load was applied on the ceramic plates using a universal testing machine, and fracture loads were recorded in Newtons (N). Statistical analysis was performed by multiple regression (p enamel showed the highest mean fracture load (MFL; 1591 ± 172.59 N). The RelyX Ultimate groups MFLs were significantly higher than the corresponding RelyX U200 groups (p enamel (p enamel. Reduced resin film thickness could reduce lithium disilicate restoration fracture. Etch-and-rinse resin cements are recommended for cementing on either enamel or dentin, compared with self-adhesive resin cement, for improved fracture resistance. © 2015 by the American College of Prosthodontists.

  7. Abrasion Wear Resistance, Hardness and Microstructure of Hard Linings Deposited by Means of a Submerged Arc. Dureza, microestructura y resistencia al desgaste por abrasion de recargues duros depositados con arco sumergido

    Energy Technology Data Exchange (ETDEWEB)

    Paranhos, R; Alcoforado, J M; Castillo, J A; Sauer, A

    1989-01-01

    Consumable materials for submerged arc welding of the types alloyed flux-neutral electrode and neutral flux-alloyed electrode were used to form, through multipass welding, a light alloy hard lining of the C-Mn type on ASTM A36 Type structural steel. Emphasis was put on microstructural characterization of the linings surveyed under electron scanning microscopy, and tests were performed to study their hardness and abrasion wear resistance at low pressures. As a result of these tests, a great influence of welding parameters on hardness and abrasion resistance properties of the combination active flux-neutral electrode was noticed. As the results showed no relationship between the hardness and the abrasion wear resistance of the linings surveyed, an attempt was made to relate the resulting microstructure with their abrasion wear resistance. (Author)

  8. Development of high temperature resistant ceramic matrix composites based on SiC- and novel SiBNC-fibres

    International Nuclear Information System (INIS)

    Daenicke, Enrico

    2014-01-01

    Novel ceramic fibres in the quaternary system Si-B-C-N exhibit excellent high temperature stability and creep resistance. In th is work it was investigated, to what extent these outstanding properties of SiBNC-fibres can be transferred into ceramic matrix composites (CMC) in comparison to commercial silicon carbide (SiC) fibres. For the CMC development the liquid silicon infiltration (LSI) as well as the polymer infiltration and pyrolysis process (PIP) was applied. Extensive correlations between fibre properties, fibre coating (without, pyrolytic carbon, lanthanum phosphate), process parameters of the CMC manufacturing method and the mechanical and microstructural properties of the CMC before and after exposure to air could be established. Hence, the potential of novel CMCs can be assessed and application fields can be derived.

  9. FY 1997 report on the study on development of corrosion-resistant ceramics for refuse incinerators; 1997 nendo chosa hokokusho (gomi shokyakuroyo taishoku ceramics zairyo no kaihatsu ni kansuru kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper describes development of structural materials for municipal refuse incinerators, in particular, high- temperature corrosion-resistant ceramics for inner walls. Unlike boiler tubes of which inner walls are cooled by water or water vapor, refractory for inner walls is subjected to high-temperature flame over 1000degC, corrosive gases such as HCl and SO2. and low-melting point corrosive dust such as chloride, sulfate and oxide under strong corrosive environment. Experiment was made on 14 kinds of ceramics including commercially available oxide system, non-oxide system and refractory system ceramics. Except graphite system ones, every ceramics, in particular, Al2O3, ZrO2, B4C-doped SiC and CVD-SiO showed superior properties. Commercially available ceramics, in particular, non-oxide system ones are very expensive. Since inner wall materials for refuse incinerators are heat-/corrosion-resistant consumption articles, it is suggested that improvement of reasonable oxide system ceramics or conventional SiC system ones is better. 73 refs., 89 figs., 39 tabs.

  10. Theoretical Research on Thermal Shock Resistance of Ultra-High Temperature Ceramics Focusing on the Adjustment of Stress Reduction Factor

    Directory of Open Access Journals (Sweden)

    Daining Fang

    2013-02-01

    Full Text Available The thermal shock resistance of ceramics depends on not only the mechanical and thermal properties of materials, but also the external constraint and thermal condition. So, in order to study the actual situation in its service process, a temperature-dependent thermal shock resistance model for ultra-high temperature ceramics considering the effects of the thermal environment and external constraint was established based on the existing theory. The present work mainly focused on the adjustment of the stress reduction factor according to different thermal shock situations. The influences of external constraint on both critical rupture temperature difference and the second thermal shock resistance parameter in either case of rapid heating or cooling conditions had been studied based on this model. The results show the necessity of adjustment of the stress reduction factor in different thermal shock situations and the limitations of the applicable range of the second thermal shock resistance parameter. Furthermore, the model was validated by the finite element method.

  11. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  12. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance

    International Nuclear Information System (INIS)

    Farah, Alessandro Fraga

    1997-01-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  13. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding.

    Science.gov (United States)

    Zhuang, Qiaoqiao; Zhang, Peilei; Li, Mingchuan; Yan, Hua; Yu, Zhishui; Lu, Qinghua

    2017-10-30

    The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti₂Ni and Ti₅Si₃ phases exist in all coatings, and some samples have TiSi₂ phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness)) and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti₂Ni and reinforcement phases of Ti₅Si₃ and TiSi₂, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO₂, Al₂O₃ and SiO₂. Phases Ti₂Ni, Ti₅Si₃, TiSi₂ and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  14. Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Qiaoqiao Zhuang

    2017-10-01

    Full Text Available The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy and EDS (energy dispersive spectrometer. It has been found that Ti2Ni and Ti5Si3 phases exist in all coatings, and some samples have TiSi2 phases. Moreover, due to the existence of these phases, coatings presented relatively higher microhardness than that of the substrate (826 HV (Vickers hardness and the microhardness value of coating 3 is about twice larger than that of the substrate. During the dry sliding friction and wear test, due to the distribution of the relatively ductile phase of Ti2Ni and reinforcement phases of Ti5Si3 and TiSi2, the coatings performed good wear resistance. The oxidation process contains two stages: the rapid oxidation and slow oxidation by high temperature oxidation test at 800 °C for 50 h. Meanwhile, the value of the oxidation weight gain of the substrate is approximately three times larger than that of the coating 4. During the oxidation process, the oxidation film formed on the coating is mainly consisted of TiO2, Al2O3 and SiO2. Phases Ti2Ni, Ti5Si3, TiSi2 and TiSi were still found and it could be responsible for the improvement in oxidation resistance of the coatings by laser cladding.

  15. Thermal shock resistance of ceramic fibre composites characterized by non-destructive methods

    Directory of Open Access Journals (Sweden)

    M. Dimitrijević

    2008-12-01

    Full Text Available Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behaviour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock experiments.

  16. A new high temperature resistant glass–ceramic coating for gas ...

    Indian Academy of Sciences (India)

    Unknown

    resultant coatings showed presence of a number of microcrystalline phases. SEM micrographs ... processing of two novel glass–ceramic coating materials, ... stainless steel tray to yield frit (a friable glassy material). .... Frit (– 20 mesh) powder.

  17. Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance

    Science.gov (United States)

    Sui, Xudong; Liu, Jinyu; Zhang, Shuaituo; Yang, Jun; Hao, Junying

    2018-05-01

    Adhesive wear is one of the major reasons for the failure of components during various tribological application, especially for rubbing with viscous materials. This study presents CrN/DLC/Cr-DLC multilayer composite coatings prepared on a plasma enhanced chemical vapor deposition (PECVD) device with the close field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique. SEM, XRD and Raman spectroscopy were used to determine the structure of multilayer coatings. It was found that the multilayer coatings are composed by the alternating CrN and DLC layers. Compared with the single CrN coatings, the friction coefficient of the CrN/DLC/Cr-DLC multilayer coating decreases about more than seven times after sliding a distance of 500 m. This helps to reduce the adhesive wear of multilayer coatings. Compared with the single CrN and DLC coating, the wear rate of the CrN/DLC/Cr-DLC multilayer coating is reduced by an order of magnitude to 7.10 × 10-17 (sliding with AISI 440C) and 2.64 × 10-17 (sliding with TC4) m3/(N m). The improved tribological performance of multilayer coatings mainly attributes to the introduction of lubricant DLC and hard support CrN layers, the enhancement of crack propagation inhibition, and the increment of elastic recovery value We (71.49%) by multilayer design method.

  18. Wear resistance and microstructural properties of Ni–Al/h-BN/WC–Co coatings deposited using plasma spraying

    International Nuclear Information System (INIS)

    Hsiao, W.T.; Su, C.Y.; Huang, T.S.; Liao, W.H.

    2013-01-01

    Hexagonal boron nitride (h-BN) and tungsten carbide cobalt (WC–Co) were added to nickel aluminum alloy (Ni–Al) and deposited as plasma sprayed coatings to improve their tribological properties. The microstructure of the coatings was analyzed using a scanning electron microscope (SEM). Following wear test, the worn surface morphologies of the coatings were analyzed using a SEM to identify their fracture modes. The results of this study demonstrate that the addition of h-BN and WC–Co improved the properties of the coatings. Ni–Al/h-BN/WC–Co coatings with high hardness and favorable lubrication properties were deposited. - Highlights: • We mixed Ni–Al, h-BN and WC–Co powders and deposited them as composite coatings. • Adding WC–Co was found to increase the hardness and reduce the wear volume loss. • Adding h-BN was found to decrease the hardness and reduce the friction coefficient. • This composite coating was shown to have improved wear properties at 850 °C

  19. Microstructure, Residual Stress, Corrosion and Wear Resistance of Vacuum Annealed TiCN/TiN/Ti Films Deposited on AZ31

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Composite titanium carbonitride (TiCN thin films deposited on AZ31 by DC/RF magnetron sputtering were vacuum annealed at different temperatures. Vacuum annealing yields the following on the structure and properties of the films: the grain grows and the roughness increases with an increase of annealing temperature, the structure changes from polycrystalline to single crystal, and the distribution of each element becomes more uniform. The residual stress effectively decreases compared to the as-deposited film, and their corrosion resistance is much improved owing to the change of structure and fusion of surface defects, whereas the wear-resistance is degraded due to the grain growth and the increase of surface roughness under a certain temperature.

  20. Wear- and heat resistance of vacuum-arc TiN and TiAlN based coatings with Si and Y additives

    International Nuclear Information System (INIS)

    Aksenov, I.I.; Belous, V.A.; Grigor'ev, A.N.; Ermolenko, I.G.; Zadneprovskij, Yu.A.; Kovalenko, V.I.; Lomino, N.S.; Marinin, V.G.; Tolmacheva, G.N.; Sobol', O.V.

    2011-01-01

    It is shown, that insertion of silicon additives into TiN coatings and of yttrium into TiAlN coatings in explored limits (to a few wht. %) leads to increasing of resistance against abrasive friction wear. At the same time silicon or yttrium presence in the coatings leads to loos of their columnar structure and demonstrate decrease in the cavitation resistance. It is supposed, that such distinction in behaviour of the given working performances is a consequence of that mechanisms of the coating surface fracture at action of cavitation and abrasive friction are different. All explored coatings of (Ti-Si)N composition are not oxidised up to 600 o C, and of (Ti-Al-Y)N coatings - up to 800 o C.

  1. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: two-body wear, gloss retention, roughness and Martens hardness.

    Science.gov (United States)

    Mörmann, Werner H; Stawarczyk, Bogna; Ender, Andreas; Sener, Beatrice; Attin, Thomas; Mehl, Albert

    2013-04-01

    This study determined the two-body wear and toothbrushing wear parameters, including gloss and roughness measurements and additionally Martens hardness, of nine aesthetic CAD/CAM materials, one direct resin-based nanocomposite plus that of human enamel as a control group. Two-body wear was investigated in a computer-controlled chewing simulator (1.2 million loadings, 49N at 1.7Hz; 3000 thermocycles 5/50°C). Each of the 11 groups consisted of 12 specimens and 12 enamel antagonists. Quantitative analysis of wear was carried out with a 3D-surface analyser. Gloss and roughness measurements were evaluated using a glossmeter and an inductive surface profilometer before and after abrasive toothbrushing of machine-polished specimens. Additionally Martens hardness was measured. Statistically significant differences were calculated with one-way ANOVA (analysis of variance). Statistically significant differences were found for two-body wear, gloss, surface roughness and hardness. Zirconium dioxide ceramics showed no material wear and low wear of the enamel antagonist. Two-body wear of CAD/CAM-silicate and -lithium disilicate ceramics, -hybrid ceramics and -nanocomposite as well as direct nanocomposite did not differ significantly from that of human enamel. Temporary polymers showed significantly higher material wear than permanent materials. Abrasive toothbrushing significantly reduced gloss and increased roughness of all materials except zirconium dioxide ceramics. Gloss retention was highest with zirconium dioxide ceramics, silicate ceramics, hybrid ceramics and nanocomposites. Temporary polymers showed least gloss retention. Martens hardness differed significantly among ceramics, between ceramics and composites, and between resin composites and acrylic block materials as well. All permanent aesthetic CAD/CAM block materials tested behave similarly or better with respect to two-body wear and toothbrushing wear than human enamel, which is not true for temporary polymer CAD

  2. Abrasive Wear of AlSi12-Al2O3 Composite Materials Manufactured by Pressure Infiltration

    Directory of Open Access Journals (Sweden)

    Kremzer M.

    2016-09-01

    Full Text Available The aim of this study is to investigate tribological properties of EN AC-AlSi12 alloy composite materials matrix manufactured by pressure infiltration of Al2O3 porous preforms. In the paper, a technique of manufacturing composite materials was described in detail as well as wear resistance made on pin on disc was tested. Metallographic observations of wear traces of tested materials using stereoscopic and confocal microscopy were made. Studies allow concluding that obtained composite materials have much better wear resistance than the matrix alloy AlSi12. It was further proved that the developed technology of their preparation consisting of pressure infiltration of porous ceramic preforms can find a practical application.

  3. The Use of Heat-Resistant Concrete Made with Ceramic Sanitary Ware Waste for a Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Paweł Ogrodnik

    2017-12-01

    Full Text Available The paper presents the results obtained in the course of a study on the concrete made of aggregate obtained from wastes of sanitary ceramics. Previous examinations proved high in strength and durability of concrete of this type, and it showed a resistance to high temperatures. The material was classified as a fireproof concrete. While searching for the optimal applications of such concrete, a series of examinations and analyses on its thermal energy storage (TES properties were performed. This paper describes the two-stage experiment on the thermal behavior of the concrete made with sanitary ceramic wastes during cooling processes in comparison to different building materials subjected to the same thermal conditions. On the basis of the thermal, infrared analysis, and suitable calculations, the thermal power and the ability of the composite to store thermal energy was estimated. Finally, it was stated that the concrete made of sanitary ceramic waste aggregate and alumina cement can be recommended as a heat-accumulating material, and in combination with high durability can be used, e.g., for the construction of fireplace bodies.

  4. Studies of valve lifter for automotive heavy duty diesel engine by ceramic materials. I. Development of ceramic-metal joint by brazing method

    Energy Technology Data Exchange (ETDEWEB)

    Yun, H W [Technical Centre of KIA-ASIA MOTORS (Korea, Republic of); Han, I S [Korea Institute of Energy Research, Tajeon (Korea, Republic of); Lim, Y S; Chung, Y J [Myong Ji University (Korea, Republic of)

    1998-02-01

    Continuously contacting with camshaft, the face of Valve Lifter, made of cast iron, brings about abnormal wear such as unfair wear or early wear because it is heavily loaded in the valve train system as the engine gets more powered. This abnormal sear becomes a defect namely over-clearance when the valve is lifting so that the fuel gas imperfectly combusted by unsuitable open or close action of engine valve in the combustion chamber. The imperfect combustion, in the end, results in the major causes of air pollution and decrease of the engine output. Consequently, to prevent this wear, this study was to develop the valve lifter which is joined by brazing process with SCM435H and a tip by manufacturing the face as a superhardened ceramics alloy which has high wear resistance. Having the excellent surface hardness with Hv1100-1200, the sintered body developed with superhardened alloy(WC) can endure the severe face loading in the valve train system. We experienced with various brazing alloys and obtained the excellent joining strength to the joint had 150 MPa shear strength. Interface analysis and microstructure in a joint were examined through SEM and EDS, Optical microscope. Also, 2,500 hours, high speed(3,000{approx}4,000 rpm) and continuous (1step 12hr) engine dynamo testing was carried out to the casting valve lifter and ceramics-metal joint valve lifter so that the abnormal wears were compared and evaluated.

  5. Influence of Heat Treatment and Composition Variations on Microstructure, Hardness, and Wear Resistance of C 18000 Copper Alloy

    OpenAIRE

    Osorio-Galicia, Ramon; Gomez-Garcia, Carlos; Alcantara, Miguel Angel; Herrera-Vazquez, Andres

    2012-01-01

    The hardness and wear behavior properties of two C 18000 copper alloys with variations in Ni, Si, and Cr concentrations, both within the range of C18000 chemical analysis standard, were studied after the alloy samples had been prepared by melting and casting in sand molds and then heat-treated in solution using two-stage aging for different heating time periods. The results obtained from sample sets of the aforementioned two alloys, C 0 and C 1 , show that the alloy C 1 , with slightly higher...

  6. Fracture resistance of prepared premolars restored with bonded new lab composite and all-ceramic inlay/onlay restorations: Laboratory study.

    Science.gov (United States)

    Wafaie, Ramy Ahmed; Ibrahim Ali, Ashraf; Mahmoud, Salah Hasab

    2018-01-25

    To assess the influence of new light curing lab composite, lithium-disilicate glass-ceramic and yttrium-stabilized zirconia-based ceramic on the fracture resistance of maxillary premolars with class II inlay and onlay preparations. Seventy sound maxillary premolars were divided randomly into seven main groups. The first group was left intact (control group). The remaining six groups were prepared with inlay and onlay cavities and restored with lab composite (SR Nexco), lithium-disilicate glass-ceramic (IPS e.max Press) and yttrium-stabilized zirconia-based ceramic (ICE Zirkon). The restorations were cemented with luting resin composite (Variolink N). All specimens were thermocycled 5000 cycles between 5°C ± 2°C and 55°C ± 2°C and were then cyclic loaded for 500 000 cycles. The specimens were subjected to a compressive load in a universal testing machine using a metal sphere until fracture occurred. The results were analyzed by 2-way ANOVA and Tukey HSD post hoc tests. The level of significance was set at P  .05). However, statistically significant differences were found among the means of control group and the groups restored with lab composite inlays, lab composite onlays, pressable glass ceramic inlays and pressable glass ceramic onlays (P lab composite is used. Conversely, when a ceramic material being used, the prepared teeth for inlay and onlay restorations showed a comparable strength to the intact teeth especially zirconia ceramic. Premolar teeth restored with zirconia ceramic inlays and onlays exhibited fracture resistance comparable to intact teeth. © 2018 Wiley Periodicals, Inc.

  7. Wear mechanisms in powder metallurgy high speed steels matrix composites

    International Nuclear Information System (INIS)

    Gordo, E.; Martinez, M. A.; Torralba, J. M.; Jimenez, J. A.

    2001-01-01

    The development of metal matrix composites has a major interest for automotive and cutting tools industries since they possess better mechanical properties and wear resistance than corresponding base materials. One of the manufacturing methods for these materials includes processing by powder metallurgy techniques. in this case, blending of both, base material and reinforcement powders constitute the most important process in order to achieve a homogeneous distribution of second phase particles. in the present work, composite materials of M3/2 tool steel reinforced with 2.5,5 and 8 vol% of niobium carbide have been prepared. In order to ensure a homogeneous mix, powders of both materials were mixed by dry high-energy mechanical milling at 200 r.p.m. for 40 h. After a recovering annealing, two routes for consolidate were followed die pressing and vacuum sintering, and hot isostatic pressing (HIP). Pin-on-disc tests were carried out to evaluate wear behaviour in all the materials. Results show that ceramic particles additions improve wear resistance of base material. (Author) 9 refs

  8. Oxidized zirconium on ceramic; Catastrophic coupling.

    Science.gov (United States)

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Bakoglidis, Konstantinos D., E-mail: konba@ifm.liu.se; Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2015-09-15

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN{sub x}) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN{sub x} films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N{sub 2}/Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V{sub s}, was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V{sub s} ≥ 60 V, V{sub s} ≥ 100 V, and V{sub s} = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V{sub s} for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V{sub s}, while CN{sub x} films deposited by MFMS showed residual stresses up to −4.2

  10. Low-temperature growth of low friction wear-resistant amorphous carbon nitride thin films by mid-frequency, high power impulse, and direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Bakoglidis, Konstantinos D.; Schmidt, Susann; Garbrecht, Magnus; Ivanov, Ivan G.; Jensen, Jens; Greczynski, Grzegorz; Hultman, Lars

    2015-01-01

    The potential of different magnetron sputtering techniques for the synthesis of low friction and wear resistant amorphous carbon nitride (a-CN x ) thin films onto temperature-sensitive AISI52100 bearing steel, but also Si(001) substrates was studied. Hence, a substrate temperature of 150 °C was chosen for the film synthesis. The a-CN x films were deposited using mid-frequency magnetron sputtering (MFMS) with an MF bias voltage, high power impulse magnetron sputtering (HiPIMS) with a synchronized HiPIMS bias voltage, and direct current magnetron sputtering (DCMS) with a DC bias voltage. The films were deposited using a N 2 /Ar flow ratio of 0.16 at the total pressure of 400 mPa. The negative bias voltage, V s , was varied from 20 to 120 V in each of the three deposition modes. The microstructure of the films was characterized by high-resolution transmission electron microscopy and selected area electron diffraction, while the film morphology was investigated by scanning electron microscopy. All films possessed an amorphous microstructure, while the film morphology changed with the bias voltage. Layers grown applying the lowest substrate bias of 20 V exhibited pronounced intercolumnar porosity, independent of the sputter technique. Voids closed and dense films are formed at V s  ≥ 60 V, V s  ≥ 100 V, and V s  = 120 V for MFMS, DCMS, and HiPIMS, respectively. X-ray photoelectron spectroscopy revealed that the nitrogen-to-carbon ratio, N/C, of the films ranged between 0.2 and 0.24. Elastic recoil detection analysis showed that Ar content varied between 0 and 0.8 at. % and increased as a function of V s for all deposition techniques. All films exhibited compressive residual stress, σ, which depends on the growth method; HiPIMS produces the least stressed films with values ranging between −0.4 and −1.2 GPa for all V s , while CN x films deposited by MFMS showed residual stresses up to −4.2 GPa. Nanoindentation showed a significant

  11. What every surgeon should know about Ceramic-on-Ceramic bearings in young patients

    OpenAIRE

    Hernigou, Philippe; Roubineau, Fran?ois; Bouthors, Charlie; Flouzat-Lachaniette, Charles-Henri

    2016-01-01

    Based on the exceptional tribological behaviour and on the relatively low biological activity of ceramic particles, Ceramic-on-Ceramic (CoC) total hip arthroplasty (THA) presents significant advantages CoC bearings decrease wear and osteolysis, the cumulative long-term risk of dislocation, muscle atrophy, and head-neck taper corrosion. However, there are still concerns regarding the best technique for implantation of ceramic hips to avoid fracture, squeaking, and revision of ceramic hips with...

  12. Polishing of silicon based advanced ceramics

    Science.gov (United States)

    Klocke, Fritz; Dambon, Olaf; Zunke, Richard; Waechter, D.

    2009-05-01

    Silicon based advanced ceramics show advantages in comparison to other materials due to their extreme hardness, wear and creep resistance, low density and low coefficient of thermal expansion. As a matter of course, machining requires high efforts. In order to reach demanded low roughness for optical or tribological applications a defect free surface is indispensable. In this paper, polishing of silicon nitride and silicon carbide is investigated. The objective is to elaborate scientific understanding of the process interactions. Based on this knowledge, the optimization of removal rate, surface quality and form accuracy can be realized. For this purpose, fundamental investigations of polishing silicon based ceramics are undertaken and evaluated. Former scientific publications discuss removal mechanisms and wear behavior, but the scientific insight is mainly based on investigations in grinding and lapping. The removal mechanisms in polishing are not fully understood due to complexity of interactions. The role of, e.g., process parameters, slurry and abrasives, and their influence on the output parameters is still uncertain. Extensive technological investigations demonstrate the influence of the polishing system and the machining parameters on the stability and the reproducibility. It is shown that the interactions between the advanced ceramics and the polishing systems is of great relevance. Depending on the kind of slurry and polishing agent the material removal mechanisms differ. The observed effects can be explained by dominating mechanical or chemo-mechanical removal mechanisms. Therefore, hypotheses to state adequate explanations are presented and validated by advanced metrology devices, such as SEM, AFM and TEM.

  13. Wear performance of laser processed tantalum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dittrick, Stanley; Balla, Vamsi Krishna; Bose, Susmita; Bandyopadhyay, Amit, E-mail: amitband@wsu.edu

    2011-12-01

    This first generation investigation evaluates the in vitro tribological performance of laser-processed Ta coatings on Ti for load-bearing implant applications. Linear reciprocating wear tests in simulated body fluid showed one order of magnitude less wear rate, of the order of 10{sup -4} mm{sup 3}(N.m){sup -1}, for Ta coatings compared to Ti. Our results demonstrate that Ta coatings can potentially minimize the early-stage bone-implant interface micro-motion induced wear debris generation due to their excellent bioactivity comparable to that of hydroxyapatite (HA), high wear resistance and toughness compared to popular HA coatings. Highlights: {yields} In vitro wear performance of laser processed Ta coatings on Ti was evaluated. {yields} Wear tests in SBF showed one order of magnitude less wear for Ta coatings than Ti. {yields} Ta coatings can minimize early-stage micro-motion induced wear debris generation.

  14. Hardness of ion implanted ceramics

    International Nuclear Information System (INIS)

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of