#### Sample records for weakly-varying rotational flow

1. The drift force on an object in an inviscid weakly-varying rotational flow

Energy Technology Data Exchange (ETDEWEB)

Wallis, G.B. [Dartmouth College, Hanover, NH (United States)

1995-12-31

The force on any stationary object in an inviscid incompressible extensive steady flow is derived in terms of the added mass tensor and gradient of velocity of the undisturbed fluid. Taylors theorem is extended to flows with weak vorticity. There are possible applications to constitutive equations for two-phase flow.

2. Rotating flow

CERN Document Server

Childs, Peter R N

2010-01-01

Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

3. Flow past a rotating cylinder

Science.gov (United States)

2003-02-01

Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.

4. Parallel computation of rotating flows

DEFF Research Database (Denmark)

Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær

1999-01-01

This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process....... In the first step, the vorticity at the new time level is computed using the velocity at the previous time level. In the second step, the velocity at the new time level is computed using the new vorticity. We discuss here the second part which is by far the most time‐consuming. The numerical problem...

5. Parallel computation of rotating flows

DEFF Research Database (Denmark)

Lundin, Lars Kristian; Barker, Vincent A.; Sørensen, Jens Nørkær

1999-01-01

This paper deals with the simulation of 3‐D rotating flows based on the velocity‐vorticity formulation of the Navier‐Stokes equations in cylindrical coordinates. The governing equations are discretized by a finite difference method. The solution is advanced to a new time level by a two‐step process...... is that of solving a singular, large, sparse, over‐determined linear system of equations, and the iterative method CGLS is applied for this purpose. We discuss some of the mathematical and numerical aspects of this procedure and report on the performance of our software on a wide range of parallel computers. Darbe...

6. Unsteady flow over a decelerating rotating sphere

Science.gov (United States)

Turkyilmazoglu, M.

2018-03-01

Unsteady flow analysis induced by a decelerating rotating sphere is the main concern of this paper. A revolving sphere in a still fluid is supposed to slow down at an angular velocity rate that is inversely proportional to time. The governing partial differential equations of motion are scaled in accordance with the literature, reducing to the well-documented von Kármán equations in the special circumstance near the pole. Both numerical and perturbation approaches are pursued to identify the velocity fields, shear stresses, and suction velocity far above the sphere. It is detected that an induced flow surrounding the sphere acts accordingly to adapt to the motion of the sphere up to some critical unsteadiness parameters at certain latitudes. Afterward, the decay rate of rotation ceases such that the flow at the remaining azimuths starts revolving freely. At a critical unsteadiness parameter corresponding to s = -0.681, the decelerating sphere rotates freely and requires no more torque. At a value of s exactly matching the rotating disk flow at the pole identified in the literature, the entire flow field around the sphere starts revolving faster than the disk itself. Increasing values of -s almost diminish the radial outflow. This results in jet flows in both the latitudinal and meridional directions, concentrated near the wall region. The presented mean flow results will be useful for analyzing the instability features of the flow, whether of a convective or absolute nature.

7. Rotating electrical machines: Poynting flow

International Nuclear Information System (INIS)

Donaghy-Spargo, C

2017-01-01

This paper presents a complementary approach to the traditional Lorentz and Faraday approaches that are typically adopted in the classroom when teaching the fundamentals of electrical machines—motors and generators. The approach adopted is based upon the Poynting vector, which illustrates the ‘flow’ of electromagnetic energy. It is shown through simple vector analysis that the energy-flux density flow approach can provide insight into the operation of electrical machines and it is also shown that the results are in agreement with conventional Maxwell stress-based theory. The advantage of this approach is its complementary completion of the physical picture regarding the electromechanical energy conversion process—it is also a means of maintaining student interest in this subject and as an unconventional application of the Poynting vector during normal study of electromagnetism. (paper)

8. Experimental studies of rotating exchange flow

Science.gov (United States)

Rabe, B.; Smeed, D. A.; Dalziel, S. B.; Lane-Serff, G. F.

2007-02-01

Ocean basins are connected by straits and passages, geometrically limiting important heat and salt exchanges which in turn influence the global thermohaline circulation and climate. Such exchange can be modeled in an idealized way by taking into consideration the density-driven two-layer flow along a strait under the influence of rotation. We use a laboratory model of a lock exchange between two reservoirs of different density through a flat-bottom channel with a horizontal narrows, set up on two different platforms: a 1 m diameter turntable, where density interface position was measured by dye attenuation, and the 14 m diameter turntable at Coriolis/LEGI (Grenoble, France), where correlation imaging velocimetry, a particle imaging technique, allowed us to obtain for the first time detailed measurements of the velocity fields in these flows. The influence of rotation is studied by varying a parameter, Bu, a type of Burger number given by the ratio of the Rossby radius to the channel width at the narrows. In addition, a two-layer version of the Miami Isopycnic Coordinate Model (MICOM) is used, to study the cases with low Burger number. Results from experiments by Dalziel [1988. Two-layer hydraulics: maximal exchange flows. Ph.D. Thesis, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, see also people/sd103/papers/1988/Thesis_Dalziel.pdf>] are also included for comparison. Time-mean exchange fluxes for any Bu are in close agreement with the inviscid zero-potential vorticity theory of Dalziel [1990. Rotating two-layer sill flows. In: Pratt, L.J. (Ed.), The Physical Oceanography of Sea Straits. Kluwer Academic, Dordrecht, pp. 343-371] and Whitehead et al. [1974. Rotating hydraulics of strait and sill flows. Geophysical Fluid Dynamics 6, 101-125], who found that fluxes for Bu>1 mainly vary with channel width, similar to non-rotating flow, but for Bu1 a steady, two-layer flow was observed that persisted across the channel at the narrows

9. On effects of topography in rotating flows

Science.gov (United States)

Burmann, Fabian; Noir, Jerome; Jackson, Andrew

2017-11-01

Both, seismological studies and geodynamic arguments suggest that there is significant topography at the core mantle boundary (CMB). This leads to the question whether the topography of the CMB could influence the flow in the Earth's outer core. As a preliminary experiment, we investigate the effects of bottom topography in the so-called Spin-Up, where motion of a contained fluid is created by a sudden increase of rotation rate. Experiments are performed in a cylindrical container mounted on a rotating table and quantitative results are obtained with particle image velocimetry. Several horizontal length scales of topography (λ) are investigated, ranging from cases where λ is much smaller then the lateral extend of the experiment (R) to cases where λ is a fraction of R. We find that there is an optimal λ that creates maximum dissipation of kinetic energy. Depending on the length scale of the topography, kinetic energy is either dissipated in the boundary layer or in the bulk of the fluid. Two different phases of fluid motion are present: a starting flow in the from of solid rotation (phase I), which is later replaced by meso scale vortices on the length scale of bottom topography (phase II).

10. Rotational flow in tapered slab rocket motors

Science.gov (United States)

Saad, Tony; Sams, Oliver C.; Majdalani, Joseph

2006-10-01

Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.

11. Fluid flow and heat transfer in rotating porous media

CERN Document Server

2016-01-01

This Book concentrates the available knowledge on rotating fluid flow and heat transfer in porous media in one single reference. Dr. Vadasz develops the fundamental theory of rotating flow and heat transfer in porous media and introduces systematic classification and identification of the relevant problems. An initial distinction between rotating flows in isothermal heterogeneous porous systems and natural convection in homogeneous non-­‐isothermal porous systems provides the two major classes of problems to be considered. A few examples of solutions to selected problems are presented, highlighting the significant impact of rotation on the flow in porous media.

12. Steady hydromagnetic Couette flow in a rotating system with ...

African Journals Online (AJOL)

International Journal of Engineering, Science and Technology ... Couette flow of class-II of a viscous incompressible electrically conducting fluid in a rotating system ... Heat transfer characteristics of the flow are considered taking viscous and ...

13. Modelling of convective heat and mass transfer in rotating flows

CERN Document Server

Shevchuk, Igor V

2016-01-01

This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...

14. Flow Visualization of a Rotating Detonation Engine

Science.gov (United States)

2016-10-05

SUPPLEMENTARY NOTES 14. ABSTRACT The rotating detonation engine ( RDE ) is a propulsion system that obtains thrust using continuously existing...2014 – 12/4/2015 Summary: The rotating detonation engine ( RDE ) is a propulsion system that obtains thrust using continuously existing detonation...structure. Studies have been conducted on rotating detonation engines ( RDE ) that obtain thrust from the continuously propagating detonation waves in the

15. Low frequency oscillatory flow in a rotating curved pipe

Institute of Scientific and Technical Information of China (English)

陈华军; 章本照; 苏霄燕

2003-01-01

The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotation on the low frequency oscillatory flow were examined in detail. The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without rotation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis force to centrifugal force and the axial pressure gradient.

16. Sources of intrinsic rotation in the low-flow ordering

International Nuclear Information System (INIS)

Parra, Felix I.; Barnes, Michael; Catto, Peter J.

2011-01-01

A low flow, δf gyrokinetic formulation to obtain the intrinsic rotation profiles is presented. The momentum conservation equation in the low-flow ordering contains new terms, neglected in previous first-principles formulations, that may explain the intrinsic rotation observed in tokamaks in the absence of external sources of momentum. The intrinsic rotation profile depends on the density and temperature profiles and on the up-down asymmetry.

17. Experimental analysis of flow structure in contra-rotating axial flow pump designed with different rotational speed concept

Science.gov (United States)

Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori

2013-08-01

As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.

18. Low frequency oscillatory flow in a rotating curved pipe

Institute of Scientific and Technical Information of China (English)

陈华军; 章本照; 苏霄燕

2003-01-01

The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotationon the low frequency oscillatory flow were examined in detail, The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without ro-tation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis foree to centrifugal foree and the axial pressure gradient.

19. Rotating thermal flows in natural and industrial processes

CERN Document Server

Lappa, Marcello

2012-01-01

Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework.  This allows the reader to understand and assimilate the underlying, quintessential mechanisms withou

20. Dynamic Characteristics of Rotating Stall in Mixed Flow Pump

Directory of Open Access Journals (Sweden)

Xiaojun Li

2013-01-01

Full Text Available Rotating stall, a phenomenon that causes flow instabilities and pressure hysteresis by propagating at some fraction of the impeller rotational speed, can occur in centrifugal impellers, mixed impellers, radial diffusers, or axial diffusers. Despite considerable efforts devoted to the study of rotating stall in pumps, the mechanics of this phenomenon are not sufficiently understood. The propagation mechanism and onset of rotating stall are not only affected by inlet flow but also by outlet flow as well as the pressure gradient in the flow passage. As such, the complexity of these concepts is not covered by the classical explanation. To bridge this research gap, the current study investigated prerotation generated at the upstream of the impeller, leakage flow at the tip clearance between the casing and the impeller, and strong reserve flow at the inlet of the diffuser. Understanding these areas will clarify the origin of the positive slope of the head-flow performance curve for a mixed flow pump. Nonuniform pressure distribution and adverse pressure gradient were also introduced to evaluate the onset and development of rotating stall within the diffuser.

1. Secondary Flow Phenomena in Rotating Radial Straight Pipes

OpenAIRE

Cheng, K. C.; Wang, Liqiu

1995-01-01

Flow visualization results for secondary flow phenomena near the exit of a rotating radial-axis straight pipe (length ࡁ = 82 cm, inside diameter d = 3.81 cm, ࡁ/d 21.52) are presented to study the stabilizing (relaminarization) and destabilizing (early transition from laminar to turbulent flow) effects of Coriolis forces for Reynolds numbers Re = 500 ∼ 4,500 and rotating speeds n = 0 ∼ 200 rpm. The flow visualization was realised by smoke injection method. The main features of the trans...

2. Flow produced in a conical container by a rotating endwall

International Nuclear Information System (INIS)

Escudier, M.P.; O'Leary, J.; Poole, R.J.

2007-01-01

Numerical calculations have been carried out for flow in a truncated cone generated by rotation of one endwall. For both convergent (radius increasing with approach to the rotating endwall) and divergent geometries, vortex breakdown is suppressed beyond a certain angle of inclination of the sidewall. At the same time Moffat eddies of increasing strength and extent appear in the corner between the sidewall and the non-rotating endwall. For the divergent geometry, a zone of recirculation appears on the sidewall and eventually merges with the Moffat eddies. The flow phenomena identified from streamline patterns are consistent with the calculated variation of pressure around the periphery of the computational domain

3. Topographic instability of flow in a rotating fluid

Directory of Open Access Journals (Sweden)

K. I. Patarashvili

2006-01-01

Full Text Available Here are presented the results of experimental and theoretical studies on a stability of zonal geostrophic flows in the rotating layer of the shallow water. In the experiments, a special apparatus by Abastumani Astrophysical Observatory Georgian Academy of Science was used. This apparatus represents a paraboloid of rotation, which can be set in a regulable rotation around the vertical axis. Maximal diameter of the paraboloid is 1.2 m, radius of curvature in the pole is 0.698 m. In the paraboloid, water spreads on walls as a layer uniform on height under the period of rotation 1.677 s. Against a background of the rotating fluid, the zonal flows are formed by the source-sink system. It consists of two concentric circular perforations on the paraboloid bottom (width is 0.3 cm, radiuses are 8.4 and 57.3 cm, respectively; water can be pumped through them with various velocities and in all directions. It has been established that under constant vertical depth of the rotating fluid the zonal flows are stable. There are given the measurements of the radial profiles for the water level and velocity in the stationary regime. It has been found that zonal flows may lose stability under the presence of the radial gradient of full depth formed by a change of angular velocity of paraboloid rotation. An instability origin results in the loss of flow axial symmetry and in the appearance of self-excited oscillations in the zonal flow. At the given angular velocity of rotation, instability is observed only in the definite range of intensities of the source-sink system. The theoretical estimations are performed in the framework of the equations of the shallow water theory, including the terms describing the bottom friction. It has been shown that the instability of zonal flows found experimentally has a topographical nature and is related with non-monotone dependence of the potential vorticity on radius.

4. Stokes flow heat transfer in an annular, rotating heat exchanger

International Nuclear Information System (INIS)

Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.

2011-01-01

The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.

5. Steady hydromagnetic Couette flow in a rotating system with non ...

African Journals Online (AJOL)

user

energy equation and numerical values of rate of heat transfer at both plates are ... An investigation of MHD flow of an electrically conducting fluid in a rotating ... bounded by stationary free stream whereas MHD flow past a stationary plate ... induced magnetic field produced by fluid motion is negligible in comparison to the ...

6. Secondary flows and particle centrifugation in slightly tilted rotating pipes

NARCIS (Netherlands)

Brouwers, J.J.H.

1995-01-01

A theoretical analysis is presented of viscous incompressible laminar flow in a pipe which rotates around an axis held at small angle with respect to its symmetry-axis. Analogous to the results of Barua and Benton [1, 2], solutions in closed-form are given for circulatory flows in the

7. Contribution to the study of rotating disc induced MHD flows

International Nuclear Information System (INIS)

Herve, P.

1983-01-01

Influence of a magnetic field on electroconductor viscous fluid flow generated by disks in rotation is studied here. Flow in rectilinear conduct is first studied, together with velocity, force and current line repartition. Then a case more general is dealt with a toroidal conduct with disk drive. The influence of electric conductivity and of the thickness of the mobile disk are detailed. Couple study leads to think to a transmission by fluid variable by magnetic field variations. At last, a radial flow with a source in the middle of it is studied with a disk rotation. Analysis of velocity and pressure evolution shows a pump effect [fr

8. Similarity flows between a rotating and a stationary disk

International Nuclear Information System (INIS)

Buchmann, J.H.; Qassim, R.Y.

1981-07-01

The radial distribution of fluid pressure on a stationary disk coaxial with a rotating disk is determined experimentally for various inter-disc spacings. The results show that similarity flows are only possible for both small and large values of this distance. In the former case, the flow faraway from the stationary disk appears to be that suggested by Batchelor, while in the latter case, the flow turns out to be in accordance with the assumption of Stewartson. (Author) [pt

9. Bubble Pinch-Off in a Rotating Flow

DEFF Research Database (Denmark)

Bergmann, Raymond; Andersen, Anders Peter; van der Meer, Devaraj

2009-01-01

We create air bubbles at the tip of a "bathtub vortex" which reaches to a finite depth. The bathtub vortex is formed by letting water drain through a small hole at the bottom of a rotating cylindrical container. The tip of the needlelike surface dip is unstable at high rotation rates and releases...... bubbles which are carried down by the flow. Using high-speed imaging we find that the minimal neck radius of the unstable tip decreases in time as a power law with an exponent close to 1/3. This exponent was found by Gordillo et al. [Phys. Rev. Lett. 95, 194501 (2005)] to govern gas flow driven pinch...

10. Rarefied, rotational gas flows in spiral galaxies

International Nuclear Information System (INIS)

Roberts, W.W. Jr.; Hausman, M.A.

1983-01-01

We develop a computational model of a rotating, rarefied gas in which the individual molecules collide inelastically and are subject to circularly asymmetric external forces and internal heating sources. This model is applied to the interstellar medium (ISM) of spiral galaxies, in which most of the matter is confined to discrete gas clouds separated by a tenuous intercloud medium. We identify inelastically-colliding gas molecules with interstellar clouds which orbit ballistically in the galactic gravitational field and are perturbed by expanding shells surrounding supernovae. When a small, spiral perturbation is added to the gravitational force to mimic a spiral galaxy, the cloud distribution responds with a strong, global shock. In the model, stars are formed from the gas when clouds collide or are perturbed by supernovae; these stars are the internal heating sources for the gas cloud system. We determine the morphologies (evolution, distribution) of the two components, gas and stars, in the model as functions of varying input physics. Variation of the cloud system's collisional mean free path (over physically-realistic ranges) has remarkably little influence on the computed shock structure

11. Jets of an electroconducting fluid in rotating flows

Energy Technology Data Exchange (ETDEWEB)

Gorbachev, L P; Kalyakin, A N; Potanin, E P; Tubin, A A

1976-04-01

A study was made of weak-intensity jets of an electroconducting incompressible fluid in rotating flows, caused by the action of a uniform axial magnetic field B and a radial electric field E =E/sub 0/r. The induced magnetic field is neglected. Hydrodynamic characteristics were obtained for flows during conservation of the jet flow rate or momentum. The presence of a counterflow in the jet and the weak dependence of the flow parameters on the linear coordinate were demonstrated. 7 references, 1 figure.

12. Pattern formation and three-dimensional instability in rotating flows

Science.gov (United States)

Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

1997-03-01

A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

13. Experimental study on flow past a rotationally oscillating cylinder

Science.gov (United States)

Gao, Yang-yang; Yin, Chang-shan; Yang, Kang; Zhao, Xi-zeng; Tan, Soon Keat

2017-08-01

A series of experiments was carried out to study the flow behaviour behind a rotationally oscillating cylinder at a low Reynolds number (Re=300) placed in a recirculation water channel. A stepper motor was used to rotate the cylinder clockwise- and- counterclockwise about its longitudinal axis at selected frequencies. The particle image velocimetry (PIV) technique was used to capture the flow field behind a rotationally oscillating cylinder. Instantaneous and timeaveraged flow fields such as the vorticity contours, streamline topologies and velocity distributions were analyzed. The effects of four rotation angle and frequency ratios F r ( F r= f n/ f v, the ratio of the forcing frequency f n to the natural vortex shedding frequency f v) on the wake in the lee of a rotationally oscillating cylinder were also examined. The significant wake modification was observed when the cylinder undergoes clockwise-and-counterclockwise motion with amplitude of π, especially in the range of 0.6≤ F r≤1.0.

14. Flow in Rotating Serpentine Coolant Passages With Skewed Trip Strips

Science.gov (United States)

Tse, David G.N.; Steuber, Gary

1996-01-01

Laser velocimetry was utilized to map the velocity field in serpentine turbine blade cooling passages with skewed trip strips. The measurements were obtained at Reynolds and Rotation numbers of 25,000 and 0.24 to assess the influence of trips, passage curvature and Coriolis force on the flow field. The interaction of the secondary flows induced by skewed trips with the passage rotation produces a swirling vortex and a corner recirculation zone. With trips skewed at +45 deg, the secondary flows remain unaltered as the cross-flow proceeds from the passage to the turn. However, the flow characteristics at these locations differ when trips are skewed at -45 deg. Changes in the flow structure are expected to augment heat transfer, in agreement with the heat transfer measurements of Johnson, et al. The present results show that trips are skewed at -45 deg in the outward flow passage and trips are skewed at +45 deg in the inward flow passage maximize heat transfer. Details of the present measurements were related to the heat transfer measurements of Johnson, et al. to relate fluid flow and heat transfer measurements.

15. Ekman effects in a rotating flow over bottom topography

NARCIS (Netherlands)

Zavala Sansón, L.; Heijst, van G.J.F.

2002-01-01

This paper presents a general two-dimensional model for rotating barotropic flows over topography. The model incorporates in a vorticity–stream function formulation both inviscid topography effects, associated with stretching and squeezing of fluid columns enforced by their motion over variable

16. Generation of rotation and shear flow in an imploding liner

Energy Technology Data Exchange (ETDEWEB)

Hammer, J H; Ryutov, D D [Lawrence Livermore National Lab., Livermore, CA (United States)

1997-12-31

There exist several techniques that can set the liner into rotation and/or excite an embedded shear flow at any desired depth of the liner material. A common element of all these techniques is the use of properly used left-right asymmetric structures, situated either on the liner surface or embedded in the shell. Both rotation and shear flow get enhanced in the course of the liner implosion because of the angular momentum conservation. While fast enough rotation should stabilize the Rayleigh-Taylor instability near the turn-around point, the shear flow can also have a stabilizing effect on the interface. The specific model presented in the paper shows that a strong enough shear causes stabilization of a broad class of Rayleigh-Taylor perturbations. Thus, the use of left-right asymmetric structure for generation of rotation and shear flow is an interesting new option for improvement of the quality of the liner implosions. (J.U.). 4 figs., 12 refs.

17. Nonlinear travelling waves in rotating Hagen–Poiseuille flow

Science.gov (United States)

Pier, Benoît; Govindarajan, Rama

2018-03-01

The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.

18. Unsteady flow simulations of Pelton turbine at different rotational speeds

Directory of Open Access Journals (Sweden)

Minsuk Choi

2015-11-01

Full Text Available This article presents numerical simulations of a small Pelton turbine suitable for desalination system. A commercial flow solver was adopted to resolve difficulties in the numerical simulation for Pelton turbine such as the relative motion of the turbine runner to the injector and two-phase flow of water and air. To decrease the numerical diffusion of the water jet, a new topology with only hexagonal mesh was suggested for the computational mesh around the complex geometry of a bucket. The predicted flow coefficient, net head coefficient, and overall efficiency showed a good agreement with the experimental data. Based on the validation of the numerical results, the pattern of wet area on the bucket inner surface has been analyzed at different rotational speeds, and an attempt to find the connection between rotational speeds, torque, and efficiency has been made.

19. Polygon formation and surface flow on a rotating fluid surface

DEFF Research Database (Denmark)

Bergmann, Raymond; Tophøj, Laust Emil Hjerrild; Homan, T. A. M.

2011-01-01

We present a study of polygons forming on the free surface of a water flow confined to a stationary cylinder and driven by a rotating bottom plate as described by Jansson et al. (Phys. Rev. Lett., vol. 96, 2006, 174502). In particular, we study the case of a triangular structure, either completely...... there the symmetry breaking proceeds like a low-dimensional linear instability. We show that the circular state and the unstable manifold connecting it with the polygon solution are universal in the sense that very different initial conditions lead to the same circular state and unstable manifold. For a wet triangle......, we measure the surface flows by particle image velocimetry (PIV) and show that there are three vortices present, but that the strength of these vortices is far too weak to account for the rotation velocity of the polygon. We show that partial blocking of the surface flow destroys the polygons and re...

20. Numerical simulation of fluid flow in a rotational bioreactor

Science.gov (United States)

Ganimedov, V. L.; Papaeva, E. O.; Maslov, N. A.; Larionov, P. M.

2017-10-01

Application of scaffold technology for the problem of bone tissue regeneration has great prospects in modern medicine. The influence of fluid shear stress on stem cells cultivation and its differentiation into osteoblasts is the subject of intensive research. Mathematical modeling of fluid flow in bioreactor allowed us to determine the structure of flow and estimate the level of mechanical stress on cells. The series of computations for different rotation frequencies (0.083, 0.124, 0.167, 0.2 and 0.233 Hz) was performed for the laminar flow regime approximation. It was shown that the Taylor vortices in the gap between the cylinders qualitatively change the distribution of static pressure and shear stress in the region of vortices connection. It was shown that an increase in the rotation frequency leads to an increase of the unevenness in distribution of the above mentioned functions. The obtained shear stress and static pressure dependence on the rotational frequency make it possible to choose the operating mode of the reactor depending on the provided requirements. It was shown that in the range of rotation frequencies chosen in this work (0.083 < f < 0.233 Hz), the shear stress does not exceed the known literature data (0.002 - 0.1 Pa).

1. Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates

Science.gov (United States)

SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro

2016-11-01

Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.

2. Precessing rotating flows with additional shear: stability analysis.

Science.gov (United States)

Salhi, A; Cambon, C

2009-03-01

We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally

3. Rotating permanent magnet excitation for blood flow measurement.

Science.gov (United States)

Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S

2015-11-01

A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.

4. Flow visualization around a rotating body in a wind tunnel

Science.gov (United States)

Hiraki, K.; Zaitsu, D.; Yanaga, Y.; Kleine, H.

2017-02-01

The rotational behavior of capsule-shaped models is investigated in the transonic wind tunnel of JAXA. A special support is developed to allow the model to rotate around the pitch, yaw and roll axes. This 3-DOF free rotational mounting apparatus achieves the least frictional torque from the support and the instruments. Two types of capsule models are prepared, one is drag type (SPH model) and the other is lift type (HTV-R model). The developed mounting apparatus is used in the wind tunnel tests with these capsule models. In a flow of Mach 0.9, the SPH model exhibits oscillations in pitch and yaw, and it rolls half a turn during the test. Similarly, the HTV-R model exhibits pitch and yaw oscillations in a flow of Mach 0.5. Moreover, it rolls multiple times during the test. In order to investigate the flow field around the capsule, the combined technique of color schlieren and surface tufts is applied. This visualization clearly shows the flow reattachment on the back surface of a capsule, which is suspected to induce the rapid rolling motion.

5. Anomalous scaling of passive scalars in rotating flows.

Science.gov (United States)

Rodriguez Imazio, P; Mininni, P D

2011-06-01

We present results of direct numerical simulations of passive scalar advection and diffusion in turbulent rotating flows. Scaling laws and the development of anisotropy are studied in spectral space, and in real space using an axisymmetric decomposition of velocity and passive scalar structure functions. The passive scalar is more anisotropic than the velocity field, and its power spectrum follows a spectral law consistent with ~ k[Please see text](-3/2). This scaling is explained with phenomenological arguments that consider the effect of rotation. Intermittency is characterized using scaling exponents and probability density functions of velocity and passive scalar increments. In the presence of rotation, intermittency in the velocity field decreases more noticeably than in the passive scalar. The scaling exponents show good agreement with Kraichnan's prediction for passive scalar intermittency in two dimensions, after correcting for the observed scaling of the second-order exponent.

6. Steady particulate flows in a horizontal rotating cylinder

Science.gov (United States)

Yamane, K.; Nakagawa, M.; Altobelli, S. A.; Tanaka, T.; Tsuji, Y.

1998-06-01

Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio ˜7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit.

7. Precession of a rapidly rotating cylinder flow: traverse through resonance

Science.gov (United States)

Lopez, Juan; Marques, Francisco

2014-11-01

The flow in a rapidly rotating cylinder that is titled and also rotating around another axis can undergo sudden transitions to turbulence. Experimental observations of this have been associated with triadic resonances. The experimental and theoretical results are well-established in the literature, but there remains a lack of understanding of the physical mechanisms at play in the sudden transition from laminar to turbulent flow with very small variations in the governing parameters. Here, we present direct numerical simulations of a traverse in parameter space through an isolated resonance, and describe in detail the bifurcations involved in the sudden transition. U.S. National Science Foundation Grant CBET-1336410 and Spanish Ministry of Education and Science Grant (with FEDER funds) FIS2013-40880.

8. Magnus effect on laminar flow around a rotating cylinder

International Nuclear Information System (INIS)

Amarante, J.C.A.

1989-01-01

The laminar flow around a rotating cylinder is studied, through the numerical solution of the full Navier-Stokes equations, for Reynolds number, based on cylinder radius, varying between 0.5 and 25 and for non-dimensional tangential velocities of the body surface between zero and 8. The Taylor and Hughes method is employed in the theoretical investigation. The Magnus lift coefficient and the drag coefficient are obtained and the presure and vorticity distribution are calculated. (author)

9. On soft stability loss in rotating turbulent MHD flows

International Nuclear Information System (INIS)

2014-01-01

The problem of the stability of turbulent flows of liquid metal in a cylindrical cavity against small velocity disturbances under the action of a rotating magnetic field (RMF) has been studied. The flow is considered in the induction-free approximation using the ‘external’ friction model. A system of dimensionless equations is examined in cylindrical coordinates. The results of computations performed on the basis of this mathematical model using the exchange of stabilities principle have shown a good consistency between the critical values of computed and experimental Reynolds numbers. (paper)

10. Aerodynamic structures and processes in rotationally augmented flow fields

DEFF Research Database (Denmark)

Schreck, S.J.; Sørensen, Niels N.; Robinson, M.C.

2007-01-01

. Experimental measurements consisted of surface pressure data statistics used to infer sectional boundary layer state and to quantify normal force levels. Computed predictions included high-resolution boundary layer topologies and detailed above-surface flow field structures. This synergy was exploited...... to reliably identify and track pertinent features in the rotating blade boundary layer topology as they evolved in response to varying wind speed. Subsequently, boundary layer state was linked to above-surface flow field structure and used to deduce mechanisms; underlying augmented aerodynamic force...

11. Couple stress fluid flow in a rotating channel with peristalsis

Science.gov (United States)

Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.

2018-04-01

This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.

12. Nonlinear dynamics near the stability margin in rotating pipe flow

Science.gov (United States)

Yang, Z.; Leibovich, S.

1991-01-01

The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.

13. Granular flow in a rotating drum: Experiments and theory

Science.gov (United States)

Hung, C. Y.; Stark, C. P.; Capart, H.; Li, L.; Smith, B.; Grinspun, E.

2015-12-01

Erosion at the base of a debris flow fundamentally controls how large the flow will become and how far it will travel. Experimental observations of this important phenomenon are rather limited, and this lack has led theoretical treatments to making ad hoc assumptions about the basal process. In light of this, we carried out a combination of laboratory experiments and theoretical analysis of granular flow in a rotating drum, a canonical example of steady grain motion in which entrainment rates can be precisely controlled. Our main result is that basal sediment is entrained as the velocity profile adjusts to imbalance in the flow of kinetic energy.Our experimental apparatus consisted of a 40cm-diameter drum, 4cm-deep, half-filled with 2.3mm grains. Rotation rates varied from 1-70 rpm. We varied the effective scale by varying effective gravity from 1g to 70g on a geotechnical centrifuge. The field of grain motion was recorded using high-speed video and mapped using particle tracking velocimetry. In tandem we developed a depth-averaged theory using balance equations for mass, momentum and kinetic energy. We assumed a linearized GDR Midi granular rheology [da Cruz, 2005] and a Coulomb friction law along the sidewalls [Jop et al., 2005]. A scaling analysis of our equations yields a dimensionless "entrainment number" En, which neatly parametrizes the flow geometry in the drum for a wide range of variables, e.g., rotation rate and effective gravity. At low En, the flow profile is planar and kinetic energy is balanced locally in the flow layer. At high En, the flow profile is sigmoidal (yin-yang shaped) and the kinetic energy is dominated by longitudinal, streamwise transfer. We observe different scaling behavior under each of these flow regimes, e.g., between En and kinetic energy, surface slope and flow depth. Our theory correctly predicts their scaling exponents and the value of En at which the regime transition takes place. We are also able to make corrections for

14. Steady flow in a rotating sphere with strong precession

Science.gov (United States)

Kida, Shigeo

2018-04-01

The steady flow in a rotating sphere is investigated by asymptotic analysis in the limit of strong precession. The whole spherical body is divided into three regions in terms of the flow characteristics: the critical band, which is the close vicinity surrounding the great circle perpendicular to the precession axis, the boundary layer, which is attached to the whole sphere surface and the inviscid region that occupies the majority of the sphere. The analytic expressions, in the leading order of the asymptotic expansion, of the velocity field are obtained in the former two, whereas partial differential equations for the velocity field are derived in the latter, which are solved numerically. This steady flow structure is confirmed by the corresponding direct numerical simulation.

15. Enstrophy-based proper orthogonal decomposition of flow past rotating cylinder at super-critical rotating rate

Science.gov (United States)

Sengupta, Tapan K.; Gullapalli, Atchyut

2016-11-01

Spinning cylinder rotating about its axis experiences a transverse force/lift, an account of this basic aerodynamic phenomenon is known as the Robins-Magnus effect in text books. Prandtl studied this flow by an inviscid irrotational model and postulated an upper limit of the lift experienced by the cylinder for a critical rotation rate. This non-dimensional rate is the ratio of oncoming free stream speed and the surface speed due to rotation. Prandtl predicted a maximum lift coefficient as CLmax = 4π for the critical rotation rate of two. In recent times, evidences show the violation of this upper limit, as in the experiments of Tokumaru and Dimotakis ["The lift of a cylinder executing rotary motions in a uniform flow," J. Fluid Mech. 255, 1-10 (1993)] and in the computed solution in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)]. In the latter reference, this was explained as the temporal instability affecting the flow at higher Reynolds number and rotation rates (>2). Here, we analyze the flow past a rotating cylinder at a super-critical rotation rate (=2.5) by the enstrophy-based proper orthogonal decomposition (POD) of direct simulation results. POD identifies the most energetic modes and helps flow field reconstruction by reduced number of modes. One of the motivations for the present study is to explain the shedding of puffs of vortices at low Reynolds number (Re = 60), for the high rotation rate, due to an instability originating in the vicinity of the cylinder, using the computed Navier-Stokes equation (NSE) from t = 0 to t = 300 following an impulsive start. This instability is also explained through the disturbance mechanical energy equation, which has been established earlier in Sengupta et al. ["Temporal flow instability for Magnus-robins effect at high rotation rates," J. Fluids Struct. 17, 941-953 (2003)].

16. SOLAR ROTATION EFFECTS ON THE HELIOSHEATH FLOW NEAR SOLAR MINIMA

International Nuclear Information System (INIS)

Borovikov, Sergey N.; Pogorelov, Nikolai V.; Ebert, Robert W.

2012-01-01

The interaction between fast and slow solar wind (SW) due to the Sun's rotation creates corotating interaction regions (CIRs), which further interact with each other creating complex plasma structures at large heliospheric distances. We investigate the global influence of CIRs on the SW flow in the inner heliosheath between the heliospheric termination shock (TS) and the heliopause. The stream interaction model takes into account the major global effects due to slow-fast stream interaction near solar minima. The fast and slow wind parameters are derived from the Ulysses observations. We investigate the penetration of corotating structures through the TS and their further propagation through the heliosheath. It is shown that the heliosheath flow structure may experience substantial modifications, including local decreases in the radial velocity component observed by Voyager 1.

17. Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders

International Nuclear Information System (INIS)

Paoletti, M. S.; Lathrop, D. P.

2011-01-01

We present measurements of the angular momentum flux (torque) in Taylor-Couette flow of water between independently rotating cylinders for all regions of the (Ω 1 , Ω 2 ) parameter space at high Reynolds numbers, where Ω 1 (Ω 2 ) is the inner (outer) cylinder angular velocity. We find that the Rossby number Ro=(Ω 1 -Ω 2 )/Ω 2 fully determines the state and torque G as compared to G(Ro=∞)≡G ∞ . The ratio G/G ∞ is a linear function of Ro -1 in four sections of the parameter space. For flows with radially increasing angular momentum, our measured torques greatly exceed those of previous experiments [Ji et al., Nature (London), 444, 343 (2006)], but agree with the analysis of Richard and Zahn [Astron. Astrophys. 347, 734 (1999)].

18. Combined free and forced convection flow in a rotating channel with ...

African Journals Online (AJOL)

user

free and forced convection flow of a viscous incompressible electrically conducting fluid in a .... The boundary conditions (10) and (11), in dimensionless form, become ...... On hydromagnetic Flow and heat transfer in a rotating fluid past an infinite porous ... Electrically Conducting Fluid in Non-Rotating and Rotating Media”.

19. Elastic fingering in rotating Hele-Shaw flows

KAUST Repository

Carvalho, Gabriel D.

2014-05-21

The centrifugally driven viscous fingering problem arises when two immiscible fluids of different densities flow in a rotating Hele-Shaw cell. In this conventional setting an interplay between capillary and centrifugal forces makes the fluid-fluid interface unstable, leading to the formation of fingered structures that compete dynamically and reach different lengths. In this context, it is known that finger competition is very sensitive to changes in the viscosity contrast between the fluids. We study a variant of such a rotating flow problem where the fluids react and produce a gellike phase at their separating boundary. This interface is assumed to be elastic, presenting a curvature-dependent bending rigidity. A perturbative weakly nonlinear approach is used to investigate how the elastic nature of the interface affects finger competition events. Our results unveil a very different dynamic scenario, in which finger length variability is not regulated by the viscosity contrast, but rather determined by two controlling quantities: a characteristic radius and a rigidity fraction parameter. By properly tuning these quantities one can describe a whole range of finger competition behaviors even if the viscosity contrast is kept unchanged. © 2014 American Physical Society.

20. Optic Flow Information Influencing Heading Perception during Rotation

Directory of Open Access Journals (Sweden)

Diederick C. Niehorster

2011-05-01

Full Text Available We investigated what roles global spatial frequency, surface structure, and foreground motion play in heading perception during simulated rotation from optic flow. The display (110°Hx94°V simulated walking on a straight path over a ground plane (depth range: 1.4–50 m at 2 m/s while fixating a target off to one side (mean R/T ratios: ±1, ±2, ±3 under six display conditions. Four displays consisted of nonexpanding dots that were distributed so as to manipulate the amount of foreground motion and the presence of surface structure. In one further display the ground was covered with disks that expanded during the trial and lastly a textured ground display was created with the same spatial frequency power spectrum as the disk ground. At the end of each 1s trial, observers indicated their perceived heading along a line at the display's center. Mean heading biases were smaller for the textured than for the disk ground, for the displays with more foreground motion and for the displays with surface structure defined by dot motion than without. We conclude that while spatial frequency content is not a crucial factor, dense motion parallax and surface structure in optic flow are important for accurate heading perception during rotation.

1. Elastic fingering in rotating Hele-Shaw flows

KAUST Repository

Carvalho, Gabriel D.; Gadê lha, Hermes; Miranda, José A.

2014-01-01

The centrifugally driven viscous fingering problem arises when two immiscible fluids of different densities flow in a rotating Hele-Shaw cell. In this conventional setting an interplay between capillary and centrifugal forces makes the fluid-fluid interface unstable, leading to the formation of fingered structures that compete dynamically and reach different lengths. In this context, it is known that finger competition is very sensitive to changes in the viscosity contrast between the fluids. We study a variant of such a rotating flow problem where the fluids react and produce a gellike phase at their separating boundary. This interface is assumed to be elastic, presenting a curvature-dependent bending rigidity. A perturbative weakly nonlinear approach is used to investigate how the elastic nature of the interface affects finger competition events. Our results unveil a very different dynamic scenario, in which finger length variability is not regulated by the viscosity contrast, but rather determined by two controlling quantities: a characteristic radius and a rigidity fraction parameter. By properly tuning these quantities one can describe a whole range of finger competition behaviors even if the viscosity contrast is kept unchanged. © 2014 American Physical Society.

2. Reynolds-Stress and Triple-Product Models Applied to Flows with Rotation and Curvature

Science.gov (United States)

Olsen, Michael E.

2016-01-01

Predictions for Reynolds-stress and triple product turbulence models are compared for flows with significant rotational effects. Driver spinning cylinder flowfield and Zaets rotating pipe case are to be investigated at a minimum.

3. Computer modeling of the stalled flow of a rotating cylinder and the reverse magnus effect

Science.gov (United States)

Belotserkovskii, S. M.; Kotovskii, V. N.; Nisht, M. I.; Fedorov, R. M.

1985-02-01

Unsteady stalled flow around a rotating cylinder is investigated in a numerical experiment. Attention is mostly given to the reverse Magnus effect which was discovered in tube experiments at some critical rotational speed of the cylinder.

4. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

Science.gov (United States)

Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

2016-06-01

Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

5. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

Directory of Open Access Journals (Sweden)

Norimasa Shiomi

2003-01-01

Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

6. Water flow in soil from organic dairy rotations

DEFF Research Database (Denmark)

Lamandé, Mathieu; Eriksen, Jørgen; Krogh, Paul Henning

2017-01-01

rye. Each plot was irrigated for an hour with 18·5 mm of water containing a conservative tracer, potassium bromide; 24 h after irrigation, macropores >1 mm were recorded visually on a horizontal plan of 0·7 m2 at five depths (10, 30, 40, 70 and 100 cm). The bromide (Br−) concentration in soil was also......Managed grasslands are characterized by rotations of leys and arable crops. The regime of water flow evolves during the leys because of earthworm and root activity, climate and agricultural practices (fertilizer, cutting and cattle trampling). The effects of duration of the leys, cattle trampling...... and fertilizer practice on the movement of water through sandy loam soil profiles were investigated in managed grassland of a dairy operation. Experiments using tracer chemicals were performed, with or without cattle slurry application, with cutting or grazing, in the 1st and the 3rd year of ley, and in winter...

7. Spectroscopic studies of a high Mach-number rotating plasma flow

International Nuclear Information System (INIS)

Ando, Akira; Ashino, Masashi; Sagi, Yukiko; Inutake, Masaaki; Hattori, Kunihiko; Yoshinuma, Mikirou; Imasaki, Atsushi; Tobari, Hiroyuki; Yagai, Tsuyoshi

2001-01-01

Characteristics of an axially-magnetized rotating plasma are investigated by spectroscopy in the HITOP device of Tohoku University. A He plasma flows our axially and rotates azimuthally near the muzzle region of the MPD arcjet. Flow and rotational velocities and temperature of He ions and atoms are measured by Doppler shift and broadening of the HeII (γ=468.58 nm) and HeI (γ=587.56 nm) lines. Rotational velocity increases with the increase of axially-applied magnetic field strength and discharge current. As discharge current increases and mass flow rate decreases, the plasma flow velocity increases and T i increases. Ion acoustic Mach number of the plasma flow also increases, but tends to saturate at near 1. Radial profile of space potential is calculated from the obtained rotational velocity. The potential profile in the core region is parabolic corresponding to the observed rigid-body rotation of the core plasma. (author)

8. Spectroscopic studies of a high Mach-number rotating plasma flow

Energy Technology Data Exchange (ETDEWEB)

Ando, Akira; Ashino, Masashi; Sagi, Yukiko; Inutake, Masaaki; Hattori, Kunihiko; Yoshinuma, Mikirou; Imasaki, Atsushi; Tobari, Hiroyuki; Yagai, Tsuyoshi [Tohoku Univ., Dept. of Electrical Engineering, Sendai, Miyagi (Japan)

2001-07-01

Characteristics of an axially-magnetized rotating plasma are investigated by spectroscopy in the HITOP device of Tohoku University. A He plasma flows our axially and rotates azimuthally near the muzzle region of the MPD arcjet. Flow and rotational velocities and temperature of He ions and atoms are measured by Doppler shift and broadening of the HeII ({gamma}=468.58 nm) and HeI ({gamma}=587.56 nm) lines. Rotational velocity increases with the increase of axially-applied magnetic field strength and discharge current. As discharge current increases and mass flow rate decreases, the plasma flow velocity increases and T{sub i} increases. Ion acoustic Mach number of the plasma flow also increases, but tends to saturate at near 1. Radial profile of space potential is calculated from the obtained rotational velocity. The potential profile in the core region is parabolic corresponding to the observed rigid-body rotation of the core plasma. (author)

9. Bondi flow from a slowly rotating hot atmosphere

Science.gov (United States)

Narayan, Ramesh; Fabian, Andrew C.

2011-08-01

A supermassive black hole in the nucleus of an elliptical galaxy at the centre of a cool-core group or cluster of galaxies is immersed in hot gas. Bondi accretion should occur at a rate determined by the properties of the gas at the Bondi radius and the mass of the black hole. X-ray observations of massive nearby elliptical galaxies, including M87 in the Virgo cluster, indicate a Bondi accretion rate ? which roughly matches the total kinetic power of the jets, suggesting that there is a tight coupling between the jet power and the mass accretion rate. While the Bondi model considers non-rotating gas, it is likely that the external gas has some angular momentum, which previous studies have shown could decrease the accretion rate drastically. We investigate here the possibility that viscosity acts at all radii to transport angular momentum outwards so that the accretion inflow proceeds rapidly and steadily. The situation corresponds to a giant advection-dominated accretion flow (ADAF) which extends from beyond the Bondi radius down to the black hole. We find solutions of the ADAF equations in which the gas accretes at just a factor of a few less than ?. These solutions assume that the atmosphere beyond the Bondi radius rotates with a sub-Keplerian velocity and that the viscosity parameter is large, α≥ 0.1, both of which are reasonable for the problem at hand. The infall time of the ADAF solutions is no more than a few times the free-fall time. Thus, the accretion rate at the black hole is closely coupled to the surrounding gas, enabling tight feedback to occur. We show that jet powers of a few per cent of ? are expected if either a fraction of the accretion power is channelled into the jet or the black hole spin energy is tapped by a strong magnetic field pressed against the black hole by the pressure of the accretion flow. We discuss the Bernoulli parameter of the flow, the role of convection and the possibility that these as well as magnetohydrodynamic effects

10. Liquid metal flow in a finite-length cylinder with a rotating magnetic field

International Nuclear Information System (INIS)

Gelfgat, Yu.M.; Gorbunov, L.A.; Kolevzon, V.

1993-01-01

A liquid metal flow induced by a rotating magnetic field in a cylindrical container of finite height was investigated experimentally. It was demonstrated that the flow in a rotating magnetic field is similar to geophysical flows: the fluid rotates uniformly with depth and the Ekman layer exists at the container bottom. Near the vertical wall the flow is depicted in the form of a confined jet whose thickness determines the instability onset in a rotating magnetic field. It was shown that the critical Reynolds number can be found by using the jet velocity u 0 for Re cr =u 2 0 /ν∂u/∂r. The effect of frequency of a magnetic field on the fluid flow was also studied. An approximate theoretical model is presented for describing the fluid flow in a uniform rotating magnetic field. (orig.)

11. Large Eddy Simulation of turbulence induced secondary flows in stationary and rotating straight square ducts

Science.gov (United States)

Sudjai, W.; Juntasaro, V.; Juttijudata, V.

2018-01-01

The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.

12. Flow control by combining radial pulsation and rotation of a cylinder in uniform flow

Science.gov (United States)

Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.

2008-11-01

Flow visualizations and hot-wire measurements are carried out to study a circular cylinder undergoing simultaneous radial pulsation and rotation and placed in a uniform flow. The Reynolds number is in the range of 1,000--22,000, for which transition in the shear layers and near wake is expected. Our previous experimental and numerical investigations in this subcritical flow regime have established the existence of an important energy transfer mechanism from the mean flow to the fluctuations. Radial pulsations cause and enhance that energy transfer. Certain values of the amplitude and frequency of the pulsations lead to negative drag (i.e. thrust). The nonlinear interaction between the Magnus effect induced by the steady rotation of the cylinder and the near-wake modulated by the bluff body's pulsation leads to alteration of the omnipresent Kármán vortices and the possibility of optimizing the lift-to-drag ratio as well as the rates of heat and mass transfer. Other useful applications include the ability to enhance or suppress the turbulence intensity, and to avoid the potentially destructive lock-in phenomenon in the wake of bridges, electric cables and other structures.

13. Tokamak turbulence in self-regulated differentially rotating flow and L-H transition dynamics

International Nuclear Information System (INIS)

Terry, P.W.; Carreras, B.A.; Sidikman, K.

1992-01-01

An analytical study of turbulence in the presence of turbulently generated differentially rotating flow is presented as a paradigm for fluctuation dynamics in L- and H-mode plasmas. Using a drift wave model, the role of both flow shear and flow curvature (second radial derivative of the poloidal ExB flow) is detailed in linear and saturated turbulence phases. In the strong turbulence saturated state, finite amplitude-induced modification of the fluctuation structure near low order rational surfaces strongly inhibits flow shear suppression. Suppression by curvature is not diminished, but it occurs through a frequency shift. A description of L-H mode transition dynamics based on the self-consistent linking of turbulence suppression by differentially rotating flow and generation of flow by turbulent momentum transport is presented. In this model, rising edge temperature triggers a transition characterized by spontaneous generation of differentially rotating flow and decreasing turbulence intensity

14. Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes

Energy Technology Data Exchange (ETDEWEB)

Barik, R.N., E-mail: barik.rabinarayan@rediffmail.com [Department of Mathematics, Trident Academy of Technology, Bhubaneswar (India); Dash, G.C., E-mail: gcdash@indiatimes.com [Department of Mathematics, S.O.A. University, Bhubaneswar (India); Rath, P.K., E-mail: pkrath_1967@yahoo.in [Department of Mathematics, B.R.M. International Institute of Technology, Bhubaneswar (India)

2013-01-15

Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S{sup 2}. Further, the axis of rotation has no effect on the fluid flow. (author)

15. Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes

International Nuclear Information System (INIS)

Barik, R.N.; Dash, G.C.; Rath, P.K.

2013-01-01

Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S 2 . Further, the axis of rotation has no effect on the fluid flow. (author)

16. Hydromagnetic stability of rotating stratified compressible fluid flows

Energy Technology Data Exchange (ETDEWEB)

Srinivasan, V; Kandaswamy, P [Dept. of Mathematics, Bharathiar University, Coimbatore, Tamil Nadu, India; Debnath, L [Dept. of Mathematics, University of Central Florida, Orlando, USA

1984-09-01

The hydromagnetic stability of a radially stratified compressible fluid rotating between two coaxial cylinders is investigated. The stability with respect to axisymmetric disturbances is examined. The fluid system is found to be thoroughly stable to axisymmetric disturbances provided the fluid rotates very rapidly. The system is shown to be unstable to non-axisymmetric disturbances, and the slow amplifying hydromagnetic wave modes propagate against the basic rotation. The lower and upper bounds of the azimuthal phase speeds of the amplifying waves are determined. A quadrant theorem on the slow waves characteristic of a rapidly rotating fluid is derived. Special attention is given to the effects of compressibility of the fluid. Some results concerning the stability of an incompressible fluid system are obtained as special cases of the present analysis.

17. Stability Analysis for Rotating Stall Dynamics in Axial Flow Compressors

Science.gov (United States)

1999-01-01

modes determines collectively local stability of the compressor model. Explicit conditions are obtained for local stability of rotating stall which...critical modes determines the stability for rotating stall collectively . We point out that although in a special case our stability condition for...strict crossing assumption implies that the zero solution changes its stability as ~, crosses ~’c. For instance, odk (yc ) > 0 implies that the zero

18. LES of turbulent flow in a concentric annulus with rotating outer wall

International Nuclear Information System (INIS)

2013-01-01

Highlights: • High rotation up to N = 2 dampens progressively the turbulence near the rotating outer wall. • At 2 2.8, while tending to laminarize, the flow exhibits distinct Taylor-Couette vortical rolls. -- Abstract: Fully-developed turbulent flow in a concentric annulus, r 1 /r 2 = 0.5, Re h = 12,500, with the outer wall rotating at a range of rotation rates N = U θ,wall /U b from 0.5 up to 4 is studied by large-eddy simulations. The focus is on the effects of moderate to very high rotation rates on the mean flow, turbulence statistics and eddy structure. For N up to ∼2, an increase in the rotation rate dampens progressively the turbulence near the rotating outer wall, while affecting only mildly the inner-wall region. At higher rotation rates this trend is reversed: for N = 2.8 close to the inner wall turbulence is dramatically reduced while the outer wall region remains turbulent with discernible helical vortices as the dominant turbulent structure. The turbulence parameters and eddy structures differ significantly for N = 2 and 2.8. This switch is attributed to the centrifuged turbulence (generated near the inner wall) prevailing over the axial inertial force as well as over the counteracting laminarizing effects of the rotating outer wall. At still higher rotation, N = 4, the flow gets laminarized but with distinct spiralling vortices akin to the Taylor–Couette rolls found between the two counter-rotating cylinders without axial flow, which is the limiting case when N approaches to infinity. The ratio of the centrifugal to axial inertial forces, Ta/Re 2 ∝ N 2 (where Ta is the Taylor number) is considered as a possible criterion for defining the conditions for the above regime change

19. Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field

Energy Technology Data Exchange (ETDEWEB)

Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru [National Research Center Kurchatov Institute (Russian Federation)

2016-11-15

A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model of a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.

20. Rotating turbulent Rayleigh-Bénard convection subject to harmonically forced flow reversals

NARCIS (Netherlands)

Geurts, B.J.; Kunnen, R.P.J.

2014-01-01

The characteristics of turbulent flow in a cylindrical Rayleigh–B´enard convection cell which can be modified considerably in case rotation is included in the dynamics. By incorporating the additional effects of an Euler force, i.e., effects induced by nonconstant rotation rates, a remarkably strong

1. Rotating turbulent Rayleigh–Bénard convection subject to harmonically forced flow reversals

NARCIS (Netherlands)

Geurts, Bernardus J.; Kunnen, Rudie P.J.

2014-01-01

The characteristics of turbulent flow in a cylindrical Rayleigh–Bénard convection cell which can be modified considerably in case rotation is included in the dynamics. By incorporating the additional effects of an Euler force, i.e., effects induced by non-constant rotation rates, a remarkably strong

2. On Stationary Navier-Stokes Flows Around a Rotating Obstacle in Two-Dimensions

Science.gov (United States)

Higaki, Mitsuo; Maekawa, Yasunori; Nakahara, Yuu

2018-05-01

We study the two-dimensional stationary Navier-Stokes equations describing the flows around a rotating obstacle. The unique existence of solutions and their asymptotic behavior at spatial infinity are established when the rotation speed of the obstacle and the given exterior force are sufficiently small.

3. The flow of a thin liquid film on a stationary and rotating disk. I - Experimental analysis and flow visualization

Science.gov (United States)

Thomas, S.; Faghri, A.; Hankey, W.

1990-01-01

The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.

4. On unsteady two-phase fluid flow due to eccentric rotation of a disk

Directory of Open Access Journals (Sweden)

A. K. Ghosh

2003-01-01

in a double-disk configuration, a result which is the reverse to that of solid-body rotation. Finally, the results are presented graphically to determine the quantitative response of the particle on the flow.

5. Prediction of Heat Transfer For Turbulent Flow in Rotating Radial Duct

Directory of Open Access Journals (Sweden)

P. Tekriwal

1995-01-01

in the case of low-Re model, the computation time is relatively high and the convergence is rather slow, thus rendering the low-Re model as an unattractive choice for rotating flows at high Reynolds number.

6. Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser

Science.gov (United States)

Moore, F. K.

1988-01-01

A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.

7. Reynolds-Stress and Triple-Product Models Applied to a Flow with Rotation and Curvature

Science.gov (United States)

Olsen, Michael E.

2016-01-01

Turbulence models, with increasing complexity, up to triple product terms, are applied to the flow in a rotating pipe. The rotating pipe is a challenging case for turbulence models as it contains significant rotational and curvature effects. The flow field starts with the classic fully developed pipe flow, with a stationary pipe wall. This well defined condition is then subjected to a section of pipe with a rotating wall. The rotating wall introduces a second velocity scale, and creates Reynolds shear stresses in the radial-circumferential and circumferential-axial planes. Furthermore, the wall rotation introduces a flow stabilization, and actually reduces the turbulent kinetic energy as the flow moves along the rotating wall section. It is shown in the present work that the Reynolds stress models are capable of predicting significant reduction in the turbulent kinetic energy, but triple product improves the predictions of the centerline turbulent kinetic energy, which is governed by convection, dissipation and transport terms, as the production terms vanish on the pipe axis.

8. Bingham liquid flow between two cylinders induced by inner ring rotation

Science.gov (United States)

Jaroslav, Štigler; Simona, Fialová

2017-09-01

This paper deals with the fluid flow between two cylinders induced by inner ring rotation. The gap width between the cylinders, in case that they are both concentric, is 1mm, the gap and inner ring radius ratio 0.013 and the radius ratio 0.987. Attention is focused on rotation speed and eccentricity influence on the flow. Calculations were done for both Newtonian liquid and Bingham plastic liquid with the yield stress threshold 50 Pa.

9. Effects of rotation on flow in an asymmetric rib-roughened duct: LES study

International Nuclear Information System (INIS)

Borello, D.; Salvagni, A.; Hanjalić, K.

2015-01-01

Highlights: • Ribbed duct reproduces most of the phenomena occurring in internal cooling channels of blade turbines (rotor and stator). • LES analysis of the flow in a ribbed duct was carried out aiming at detecting the influence of rotation on the turbulence. • In destabilizing conditions, rotation enhances turbulence close to the ribbed duct thus enhancing removal of fluid from the wall and improving mixing. • In stabilizing conditions, turbulence is suppressed by rotation close to the ribbed wall. - Abstract: We report on large-eddy simulations (LES) of fully-developed asymmetric flow in a duct of a rectangular cross-section in which square-sectioned, equally-spaced ribs oriented perpendicular to the flow direction, were mounted on one of the walls. The configuration mimics a passage of internal cooling of a gas-turbine blade. The duct flow at a Reynolds number Re = 15,000 (based on hydraulic diameter D_h and bulk flow velocity U_0) was subjected to clock-wise (stabilising) and anti-clock-wise (destabilising) orthogonal rotation at a moderate rotational number Ro = ΩD_h/U_0 = 0.3, where Ω is the angular velocity. The LES results reproduced well the available experimental results of Coletti et al. (2011) (in the mid-plane adjacent to the ribbed wall) and provided insight into the whole duct complementing the reference PIV measurement. We analyzed the effects of stabilising and destabilising rotation on the flow, vortical structures and turbulence statistics by comparison with the non-rotating case. The analysis includes the identification of depth of penetration of the rib-effects into the bulk flow, influence of flow three-dimensionality and the role of secondary motions, all shown to be strongly affected by the rotation and its direction.

10. Generation of zonal flows in rotating fluids and magnetized plasmas

DEFF Research Database (Denmark)

Juul Rasmussen, J.; Garcia, O.E.; Naulin, V.

2006-01-01

The spontaneous generation of large-scale flows by the rectification of small-scale turbulent fluctuations is of great importance both in geophysical flows and in magnetically confined plasmas. These flows regulate the turbulence and may set up effective transport barriers. In the present....... The analogy to large-scale flow generation in drift-wave turbulence dynamics in magnetized plasma is briefly discussed....

11. Dynamics of shallow flows with and without background rotation

NARCIS (Netherlands)

Durán Matute, M.

2010-01-01

Large-scale oceanic and atmospheric flows tend to behave in a two-dimensional way. To further understand such flows, a large scientific effort has been devoted to the study of perfect two-dimensional flows. For the last 30 years, there has been a large interest in experimentally validating the

12. Lift of a rotating circular cylinder in unsteady flows

DEFF Research Database (Denmark)

Carstensen, Stefan; Mandviwalla, Xerxes; Vita, Luca

2012-01-01

A cylinder rotating in steady current experiences a lift known as the Magnus effect. In the present study the effect of waves on the Magnus effect has been investigated. This situation is experienced with the novel floating offshore vertical axis wind turbine (VAWT) concept called the DEEPWIND...... concept, which incorporates a rotating spar buoy and thereby utilizes seawater as a roller-bearing. The a priori assumption and the results suggest that the lift in waves, to a first approximation, may be represented by a formulation similar to the well-known Morison formulation. The force coefficients...

13. Rotation induced flow suppression around two tandem circular cylinders at low Reynolds number

Energy Technology Data Exchange (ETDEWEB)

Chatterjee, Dipankar [Advanced Design and Analysis Group, CSIR—Central Mechanical Engineering Research Institute, Durgapur-713209 (India); Gupta, Krishan [Department of Mechanical Engineering, Sardar Vallabhai National Institute of Technology Surat, Surat-395007 (India); Kumar, Virendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna-800013 (India); Varghese, Sachin Abraham, E-mail: d_chatterjee@cmeri.res.in [Department of Mechanical Engineering, National Institute of Technology Durgapur, Durgapur-713209 (India)

2017-08-15

The rotation to a bluff object is known to have a stabilizing effect on the fluid dynamic transport around the body. An unsteady periodic flow can be degenerated into a steady flow pattern depending on the rate of rotation imparted to the body. On the other hand, multiple bodies placed in tandem arrangement with respect to an incoming flow can cause destabilization to the flow as a result of the complicated wake interaction between the bodies. Accordingly, the spacing between the bodies and the rate of rotation have significant impact on the overall fluid dynamic transport around them. The present work aims to understand how these two competing factors are actually influencing the fluidic transport across a pair of identical rotating circular cylinders kept in tandem arrangement in an unconfined medium. The cylinders are subjected to a uniform free stream flow and the gaps between the cylinders are varied as 0.2, 0.7, 1.5 and 3.0. Both the cylinders are made to rotate in the clockwise sense. The Reynolds number based on the free stream flow is taken as 100. A two-dimensional finite volume based transient computation is performed for a range of dimensionless rotational speeds of the cylinders (0 ≤ Ω ≤ 2.75). The results show that the shedding phenomena can be observed up to a critical rate of rotation (Ω{sub cr}) depending on the gap spacing. Beyond Ω{sub cr}, the flow becomes stabilized and finally completely steady as Ω increases further. Increasing the gap initially causes a slight decrease in the critical rotational speed, however, it increases at a rapid rate for larger gap spacing. (paper)

14. Unconfined laminar nanofluid flow and heat transfer around a rotating circular cylinder in the steady regime

Directory of Open Access Journals (Sweden)

Bouakkaz Rafik

2017-06-01

Full Text Available In this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5–40. Furthermore, the range of nanoparticle volume fractions considered is 0–5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.

15. A study on heat-flow analysis of friction stir welding on a rotation affected zone

International Nuclear Information System (INIS)

Kang, Sung Wook; Jang, Beom Seon; Kim, Jae Woong

2014-01-01

In recent years, as interest in environmental protection and energy conservation rose, technological development for lightweight efficiency of transport equipment, such as aircrafts, railcars, automobiles and vessels, have been briskly proceeding. This has led to an expansion of the application of lightweight alloys such as aluminum and magnesium. For the welding of these lightweight alloys, friction stir welding has been in development by many researchers. Heat-flow analysis of friction stir welding is one such research. The flow and energy equation is solved using the computational fluid dynamic commercial program 'Fluent'. In this study, a rotation affected zone concept is imposed. The rotation affected zone is a constant volume. In this volume, flow is rotated the same as the tool rotation speed and so plastic dissipation occurs. Through this simulation, the temperature distribution results are calculated and the simulation results are compared with the experimental results.

16. Scaling of wet granular flows in a rotating drum

Directory of Open Access Journals (Sweden)

Jarray Ahmed

2017-01-01

Full Text Available In this work, we investigate the effect of capillary forces and particle size on wet granular flows and we propose a scaling methodology that ensures the conservation of the bed flow. We validate the scaling law experimentally by using different size glass beads with tunable capillary forces. The latter is obtained using mixtures of ethanol-water as interstitial liquid and by increasing the hydrophobicity of glass beads with an ad-hoc silanization procedure. The scaling methodology in the flow regimes considered (slipping, slumping and rolling yields similar bed flow for different particle sizes including the angle of repose that normally increases when decreasing the particle size.

17. Inception mechanism and suppression of rotating stall in an axial-flow fan

International Nuclear Information System (INIS)

Nishioka, T

2013-01-01

Inception patterns of rotating stall at two stagger-angle settings for the highly loaded rotor blades were experimentally investigated in a low-speed axial-flow fan. Rotor-tip flow fields were also numerically investigated to clarify the mechanism behind the rotating stall inception. The stall inception patterns depended on the rotor stagger-angle settings. The stall inception from a rotating instability was confirmed at the design stagger-angle settings. The stall inception from a short length-scale stall cell (spike) was also confirmed at the small stagger-angle setting. The spillage of tip-leakage flow and the tip-leakage vortex breakdown influence the rotating stall inception. An air-separator has been developed based on the clarified inception mechanism of rotating stall. The rotating stall was suppressed by the developed air-separator, and the operating range of fan was extended towards low flow rate. The effect of developed air-separator was also confirmed by application to a primary air fan used in a coal fired power plant. It is concluded from these results that the developed air-separator can provide a wide operating range for an axial-flow fan

18. Powerful Swirl Generation of Flow-driven Rotating Mixing Vane for Enhancing CHF

International Nuclear Information System (INIS)

Seo, Han; Seo, Seok Bin; Heo, Hyo; Bang, In Cheol

2014-01-01

Mixing vanes are utilized to improve CHF and heat transfer performance in the rod bundle during normal operation. Experimental measurement of the swirling flow from a split vane pair was conducted using particle image velocimetry (PIV) and boroscope. The lateral velocity fields show that the swirling flow was initially centered in the subchannel and the computational fluid dynamics (CFD) analysis was performed based on the experiment. To visualize flow patterns in the 5Χ5 subchannel using PIV, matching the refraction between the working fluid and the structure was considered and the experiment aimed to develop the experimental data for providing fundamental information of the CFD analysis. The fixed split vane is the main mixing inducer in the fuel assembly. In a heat exchanger research, propeller type swirl generates at several pitch ratios and different blades angles were used to enhance heat transfer rate. Significant improvements of the heat transfer rate using the propellers were confirmed due to creation of tangential flow. In the present study, the mixing effect of rotation vane which has a shape of propeller was studied using PIV. A split vane was considered in the experiment to show the effect of rotation vane. Vertical and horizontal flow analyses were conducted to show the possible use of rotation vane in a subchannel. In the present work, the study of flow visualization using three types of vanes is conducted to show the mixing effect. The vertical flow and the horizontal flow distributions were analyzed in the two experimental facilities. For the vertical flow facility, flow distributions, flow profiles, and the turbulence kinetic energy are analyzed at the centerline of the channel. The results show that the rotation vane has the highest flow and turbulence kinetic intensity at the centerline of the channel. For the horizontal flow facility, the results indicate that lateral flow of the rotation vane is generated and maintained along with the flow

19. Shear-induced autorotation of freely rotatable cylinder in a channel flow at moderate Reynolds number

Science.gov (United States)

Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung

2018-04-01

Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.

20. Rotating polygon instability of a swirling free surface flow

DEFF Research Database (Denmark)

Tophøj, Laust Emil Hjerrild; Bohr, Tomas; Mougel, J.

2013-01-01

We explain the rotating polygon instability on a swirling fluid surface [G. H. Vatistas, J. Fluid Mech. 217, 241 (1990)JFLSA70022-1120 and Jansson et al., Phys. Rev. Lett. 96, 174502 (2006)PRLTAO0031-9007] in terms of resonant interactions between gravity waves on the outer part of the surface...... behavior near the corners), and indeed we show that we can obtain the polygons transiently by violently stirring liquid nitrogen in a hot container....

1. Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field

Science.gov (United States)

Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves

2016-10-01

Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.

2. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

Science.gov (United States)

Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

2017-11-01

We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

3. Lattice Boltzmann simulation of viscoelastic flow past a confined free rotating cylinder

Science.gov (United States)

Xia, Yi; Zhang, Peijie; Lin, Jianzhong; Ku, Xiaoke; Nie, Deming

2018-05-01

To study the dynamics of rigid body immersed in viscoelastic fluid, an Oldroyd-B fluid flow past an eccentrically situated, free rotating cylinder in a two-dimensional (2D) channel is simulated by a novel lattice Boltzmann method. Two distribution functions are employed, one of which is aimed to solve Navier-Stokes equation and the other to the constitutive equation, respectively. The unified interpolation bounce-back scheme is adopted to treat the moving curved boundary of cylinder, and the novel Galilean invariant momentum exchange method is utilized to obtain the hydrodynamic force and torque exerted on the cylinder. Results show that the center-fixed cylinder rotates inversely in the direction where a cylinder immersed in Newtonian fluid do, which generates a centerline-oriented lift force according to Magnus effect. The cylinder’s eccentricity, flow inertia, fluid elasticity and viscosity would affect the rotation of cylinder in different ways. The cylinder rotates more rapidly when located farther away from the centerline, and slows down when it is too close to the wall. The rotation frequency decreases with increasing Reynolds number, and larger rotation frequency responds to larger Weissenberg number and smaller viscosity ratio, indicating that the fluid elasticity and low solvent viscosity accelerates the flow-induced rotation of cylinder.

4. Heat transfer in rotating serpentine passages with trips normal to the flow

Science.gov (United States)

Wagner, J. H.; Johnson, B. V.; Graziani, R. A.; Yeh, F. C.

1991-01-01

Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges which are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces, where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.

5. Regimes of Axisymmetric Flow and Scaling Laws in a Rotating Annulus with Local Convective Forcing

Directory of Open Access Journals (Sweden)

Susie Wright

2017-07-01

Full Text Available We present a numerical study of axisymmetric flow in a rotating annulus in which local thermal forcing, via a heated annular ring on the outside of the base and a cooled circular disk in the centre of the top surface, drives convection. This new configuration is a variant of the classical thermally-driven annulus, where uniform heating and cooling are applied through the outer and inner sidewalls respectively. The annulus provides an analogue to a planetary circulation and the new configuration, with its more relaxed vertical thermal boundary conditions, is expected to better emulate vigorous convection in the tropics and polar regions as well as baroclinic instability in the mid-latitude baroclinic zone. Using the Met Office/Oxford Rotating Annulus Laboratory (MORALS code, we have investigated a series of equilibrated, two dimensional axisymmetric flows across a large region of parameter space. These are characterized in terms of their velocity and temperature fields. When rotation is applied several distinct flow regimes may be identified for different rotation rates and strengths of differential heating. These regimes are defined as a function of the ratio of the horizontal Ekman layer thickness to the non-rotating thermal boundary layer thickness and are found to be similar to those identified in previous annulus experiments. Convection without rotation is also considered and the scaling of the heat transport with Rayleigh number is calculated. This is then compared with existing work on the classical annulus as well as horizontal and Rayleigh-Bénard convection. As with previous studies on both rotating and non-rotating convection the system’s behaviour is found to be aspect ratio dependent. This dependence is seen in the scaling of the non-rotating Nusselt number and in transitions between regimes in the rotating case although further investigation is required to fully explain these observations.

6. Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1

Science.gov (United States)

Rigby, David L.

2000-01-01

Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number

7. Flow field analysis inside a gas turbine trailing edge cooling channel under static and rotating conditions

International Nuclear Information System (INIS)

Armellini, A.; Casarsa, L.; Mucignat, C.

2011-01-01

The flow field inside a modern internal cooling channel specifically designed for the trailing edge of gas turbine blades has been experimentally investigated under static and rotating conditions. The passage is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers, while particular care was put in the implementation of proper pressure conditions at the channel exits to allow the comparison between data under static and rotating conditions. The flow velocity was measured by means of 2D and Stereo-PIV techniques applied in the absolute frame of reference. The relative velocity fields were obtained through a pre-processing procedure of the PIV images developed on purpose. Time averaged flow fields inside the stationary and rotating channels are analyzed and compared. A substantial modification of the whole flow behavior due to rotational effects is commented, nevertheless no trace of rotation induced secondary Coriolis vortices has been found because of the progressive flow discharge along the trailing edge. For Ro = 0.23, at the channel inlet the high aspect-ratio of the cross section enhances inviscid flow effects which determine a mass flow redistribution towards the leading edge side. At the trailing edge exits, the distortion of the flow path observed in the channel central portion causes a strong reduction in the dimensions of the 3D separation structures that surround the pedestals.

8. Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders

Energy Technology Data Exchange (ETDEWEB)

Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng [School of Energy and Power Engineering, Jiangsu University, Zhenjiang (China); Kim, Hyoung Bum [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju (Korea, Republic of)

2016-12-15

The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition.

9. Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders

International Nuclear Information System (INIS)

Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng; Kim, Hyoung Bum

2016-01-01

The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition

10. A new representation of rotational flow fields satisfying Euler's equation of an ideal compressible fluid

International Nuclear Information System (INIS)

Kambe, Tsutomu

2013-01-01

A new representation of the solution to Euler's equation of motion is presented by using a system of expressions for compressible rotational flows of an ideal fluid. This is regarded as a generalization of Bernoulli's theorem to compressible rotational flows. The present expressions are derived from the variational principle. The action functional for the principle consists of the main terms of the total kinetic, potential and internal energies, together with three additional terms yielding the equations of continuity, entropy and a third term that provides the rotational component of velocity field. The last term has the form of scalar product satisfying gauge symmetry with respect to both translation and rotation. This is a generalization of the Clebsch transformation from a physical point of view. It is verified that the system of new expressions, in fact, satisfies Euler's equation of motion. (paper)

11. Theoretical Investigation of Creeping Viscoelastic Flow Transition Around a Rotating Curved Pipe

OpenAIRE

Hamza, S. E. E.; El-Bakry, Mostafa Y.

2015-01-01

The study of creeping motion of viscoelastic fluid around a rotating rigid torus is investigated. The analysis of the problem is performed using a second-order viscoelastic model. The study is carried out in terms of the bipolar toroidal system of coordinates where the toroid is rotating about its axis of symmetry (z-axis). The problem is solved within the frame of slow flow approximation. Therefore, all variables in the governing equations are expanded in a power series of angular velocity. ...

12. Flows about a rotating circular cylinder by the discrete-vortex method

Science.gov (United States)

Kimura, Takeyoshi; Tsutahara, Michihisa

1987-01-01

A numerical study has been conducted for flows past a rotating circular cylinder at high Reynolds numbers, using the discrete-vortex method. It is noted that the reverse Magnus effect is caused by the retreat of the separation point on the acceleration side. At high rotating speed, the nascent vortices of opposite directions are mixed faster, the wake becomes narrower, and predominating frequencies in the lift force disappear.

13. Self-motion Perception from Optic Flow and Rotation Signals

NARCIS (Netherlands)

J.A. Beintema (Jaap)

2000-01-01

textabstractThe value of optic flow for retrieving movement direction was recognised already two centuries ago by astronomers, searching the sky for meteorite showers. The point from which the shower appeared to emanate they termed the radiant, knowing it indicated the direction along which the

14. Visualization of the flow in a cylindrical container with a rotating disk

Science.gov (United States)

Imahoko, Ryoki; Kurakata, Hiroki; Sakakibara, Jun

2017-11-01

We studied a behavior of the flow in a cylindrical container with a rotating disk. The apparatus consists of a fixed cylindrical container of the inner diameter of 140 mm and height H, and a coaxial rotating disc with a diameter of 140 mm connected with a cylindrical shaft driven by an electrical motor. The radial gap between rotating disk and side wall is very slight distance. The height H is variable up to 100 mm. The velocity distribution in the container was measured by means of particle image velocimetry (PIV). The results of this experiments will be discussed at the conference.

15. Large eddy simulation of rotating turbulent flows and heat transfer by the lattice Boltzmann method

Science.gov (United States)

Liou, Tong-Miin; Wang, Chun-Sheng

2018-01-01

Due to its advantage in parallel efficiency and wall treatment over conventional Navier-Stokes equation-based methods, the lattice Boltzmann method (LBM) has emerged as an efficient tool in simulating turbulent heat and fluid flows. To properly simulate the rotating turbulent flow and heat transfer, which plays a pivotal role in tremendous engineering devices such as gas turbines, wind turbines, centrifugal compressors, and rotary machines, the lattice Boltzmann equations must be reformulated in a rotating coordinate. In this study, a single-rotating reference frame (SRF) formulation of the Boltzmann equations is newly proposed combined with a subgrid scale model for the large eddy simulation of rotating turbulent flows and heat transfer. The subgrid scale closure is modeled by a shear-improved Smagorinsky model. Since the strain rates are also locally determined by the non-equilibrium part of the distribution function, the calculation process is entirely local. The pressure-driven turbulent channel flow with spanwise rotation and heat transfer is used for validating the approach. The Reynolds number characterized by the friction velocity and channel half height is fixed at 194, whereas the rotation number in terms of the friction velocity and channel height ranges from 0 to 3.0. A working fluid of air is chosen, which corresponds to a Prandtl number of 0.71. Calculated results are demonstrated in terms of mean velocity, Reynolds stress, root mean square (RMS) velocity fluctuations, mean temperature, RMS temperature fluctuations, and turbulent heat flux. Good agreement is found between the present LBM predictions and previous direct numerical simulation data obtained by solving the conventional Navier-Stokes equations, which confirms the capability of the proposed SRF LBM and subgrid scale relaxation time formulation for the computation of rotating turbulent flows and heat transfer.

16. Lattice gas automaton scheme with stochastic particle movement for a rotated fluid flow

International Nuclear Information System (INIS)

Ishiguro, Misako

2002-01-01

Lattice gas automaton (LGA) models developed so far are just for Cartesian geometries, and no direct approach to rotated fluid flows is found. In this paper, LGA method is applied to model a two-dimensional rotated flow. Several problems specific to the rotated flow are to be solved: hexagonal lattice geometry to effectively identify the neighbors, boundary condition for irregular walls, multi-speed scheme to represent angular-oriented fluid velocity υ θ ≅γω, shape of macroscopic domain for statistics, formula to obtain macroscopic quantities such as density and mean fluid velocities, application method of Fermi-Dirac function to the initial particle arrangement. For this purpose, FHP-I type hexagonal lattice model is revised and a new LGA model with stochastic particle movement is proposed. The results of the trial calculation are shown. It is also investigated whether or not the underlying microscopic Boolean equations newly introduced leads to Navier-Stokes equation. (author)

17. Numerical investigations of passive scalar transport in Taylor-Couette flows: Counter-rotation effect

Science.gov (United States)

Ouazib, Nabila; Salhi, Yacine; Si-Ahmed, El-Khider; Legrand, Jack; Degrez, G.

2017-07-01

Numerical methods for solving convection-diffusion-reaction (CDR) scalar transport equation in three-dimensional flow are used in the present investigation. The flow is confined between two concentric cylinders both the inner cylinder and the outer one are allowed to rotate. Direct numerical simulations (DNS) have been achieved to study the effects of the gravitational and the centrifugal potentials on the stability of incompressible Taylor-Couette flow. The Navier-Stokes equations and the uncoupled convection-diffusion-reaction equation are solved using a spectral development in one direction combined together with a finite element discretization in the two remaining directions. The complexity of the patterns is highlighted. Since, it increases as the rotation rates of the cylinders increase. In addition, the effect of the counter-rotation of the cylinders on the mass transfer is pointed out.

18. Experimental investigation of the microscale rotor-stator cavity flow with rotating superhydrophobic surface

Science.gov (United States)

Wang, Chunze; Tang, Fei; Li, Qi; Wang, Xiaohao

2018-03-01

The flow characteristics of microscale rotor-stator cavity flow and the drag reduction mechanism of the superhydrophobic surface with high shearing stress were investigated. A microscale rotating flow testing system was established based on micro particle image velocimetry (micro-PIV), and the flow distribution under different Reynolds numbers (7.02 × 103 ≤ Re ≤ 3.51 × 104) and cavity aspect ratios (0.013 ≤ G ≤ 0.04) was measured. Experiments show that, for circumferential velocity, the flow field distributes linearly in rotating Couette flow in the case of low Reynolds number along the z-axis, while the boundary layer separates and forms Batchelor flow as the Reynolds number increases. The separation of the boundary layer is accelerated with the increase of cavity aspect ratio. The radial velocities distribute in an S-shape along the z-axis. As the Reynolds number and cavity aspect ratio increase, the maximum value of radial velocity increases, but the extremum position at rotating boundary remains at Z* = 0.85 with no obvious change, while the extremum position at the stationary boundary changes along the z-axis. The model for the generation of flow disturbance and the transmission process from the stationary to the rotating boundary was given by perturbation analysis. Under the action of superhydrophobic surface, velocity slip occurs near the rotating boundary and the shearing stress reduces, which leads to a maximum drag reduction over 51.4%. The contours of vortex swirling strength suggest that the superhydrophobic surface can suppress the vortex swirling strength and repel the vortex structures, resulting in the decrease of shearing Reynolds stress and then drag reduction.

19. Controlling the structure of forced convective flow by means of rotating magnetic-field inductors

International Nuclear Information System (INIS)

Sorkin, M.Z.; Mozgirs, O.Kh.

1993-01-01

The forced convective flow generated by a rotating magnetic-field inductor is used in a melt as a means of controlling the transfer of mass and heat in the case of directed crystallization. An obvious advantage in using a rotating field is the generation of azimuthal twisting of the fluid, this providing for an evening out of the crystallization conditions in the azimuthal direction under nonsymmetrical boundary conditions in an actual technological process. From the standpoint of affecting the crystallization processes it would be preferable to use an inductor which would allow alteration of the intensity and of the direction of the meridional flow. Mixing in the form of velocity pulsations generated by the inductor within the melt would be if interest from the standpoint of affecting the crystallization processes, in particular to intensify the crystallization purification. The authors propose the use of a double magnetohydrodynmic rotator which consists of two rotating magnetic-field inductors, separated in altitude, with separate power supplies. The supply of power to the inductors with various current loads allows the generation of a controllable nonuniformity in field distribution and in the azimuthal velocity through the altitude and thus allows control of both the intensity and configuration of the meridional flows. The dual rotator makes it possible to purposefully control the structure of the meridional flows and the pulsation component of velocity and can be recommended for use in processes of directed crystallization as well as in crystallization purification. 4 refs., 3 figs

20. Active unsteady aerodynamic suppression of rotating stall in an incompressible flow centrifugal compressor with vaned diffuser

Science.gov (United States)

Lawless, Patrick B.; Fleeter, Sanford

1991-01-01

A mathematical model is developed to analyze the suppression of rotating stall in an incompressible flow centrifugal compressor with a vaned diffuser, thereby addressing the important need for centrifugal compressor rotating stall and surge control. In this model, the precursor to to instability is a weak rotating potential velocity perturbation in the inlet flow field that eventually develops into a finite disturbance. To suppress the growth of this potential disturbance, a rotating control vortical velocity disturbance is introduced into the impeller inlet flow. The effectiveness of this control is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. To demonstrate instability control, this model is then used to predict the control effectiveness for centrifugal compressor geometries based on a low speed research centrifugal compressor. These results indicate that reductions of 10 to 15 percent in the mean inlet flow coefficient at instability are possible with control waveforms of half the magnitude of the total disturbance at the inlet.

1. Transient flows occurring during the accelerated crucible rotation technique

International Nuclear Information System (INIS)

Horowitz, Atara; Horowitz, Yigal

1992-11-01

The transient flows occurring after a change in the angular velocity of the cylindrical container are described. The dependence of the transient (known as spin-up or spin-down time) on experimental parameters as kinematic viscosity, cylinder dimensions and the cylinder's initial and final angular velocities are elucidates by a review of the literature. It is emphasized that with large Rossby numbers the spin-up time is longer and the amount of fluid mixing is greater than small and moderate Rossby numbers. It is also elucidated that most crystal growth crucibles cannot be considered as infinitely-long cylinders for the evaluation of the fluid dynamics (authors)

2. The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings

Science.gov (United States)

2018-06-01

In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.

3. One-dimensional analysis of plane and radial thin film flows including solid-body rotation

Science.gov (United States)

Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.

1989-01-01

The flow of a thin liquid film with a free surface along a horizontal plate which emanates from a pressurized vessel is examined by integrating the equations of motion across the thin liquid layer and discretizing the integrated equations using finite difference techniques. The effects of 0-g and solid-body rotation will be discussed. The two cases of interest are plane flow and radial flow. In plane flow, the liquid is considered to be flowing along a channel with no change in the width of the channel, whereas in radial flow the liquid spreads out radially over a disk, so that the area changes along the radius. It is desired to determine the height of the liquid film at any location along the plate of disk, so that the heat transfer from the plate or disk can be found. The possibility that the flow could encounter a hydraulic jump is accounted for.

4. Heat Transfer and Flows of Thermal Convection in a Fluid-Saturated Rotating Porous Medium

Directory of Open Access Journals (Sweden)

Jianhong Kang

2015-01-01

Full Text Available Thermal convection at the steady state for high Rayleigh number in a rotating porous half space is investigated. Taking into account the effect of rotation, Darcy equation is extended to incorporate the Coriolis force term in a rotating reference frame. The velocity and temperature fields of thermal convection are obtained by using the homotopy analysis method. The influences of Taylor number and Rayleigh number on the Nusselt number, velocity profile, and temperature distribution are discussed in detail. It is found that the Nusselt number decreases rapidly with the increase of Taylor number but tends to have an asymptotic value. Besides, the rotation can give rise to downward flow in contrast with the upward thermal convection.

5. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

DEFF Research Database (Denmark)

Guntur, Srinivas; Sørensen, Niels N.; Schreck, Scott

2016-01-01

a reduced order dynamic stall model that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional two-dimensional, non-rotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared...... Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D; and (3) data from...... with those from the dynamic stall model. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in two-dimensional flow to be investigated. Results indicated a good qualitative...

6. Unsteady flow of fractional Oldroyd-B fluids through rotating annulus

Science.gov (United States)

2018-04-01

In this paper exact solutions corresponding to the rotational flow of a fractional Oldroyd-B fluid, in an annulus, are determined by applying integral transforms. The fluid starts moving after t = 0+ when pipes start rotating about their axis. The final solutions are presented in the form of usual Bessel and hypergeometric functions, true for initial and boundary conditions. The limiting cases for the solutions for ordinary Oldroyd-B, fractional Maxwell and Maxwell and Newtonian fluids are obtained. Moreover, the solution is obtained for the fluid when one pipe is rotating and the other one is at rest. At the end of this paper some characteristics of fluid motion, the effect of the physical parameters on the flow and a correlation between different fluid models are discussed. Finally, graphical representations confirm the above affirmation.

7. Hydrodynamic instabilities in the developing region of an axially rotating pipe flow

Energy Technology Data Exchange (ETDEWEB)

Miranda-Barea, A; Fabrellas-García, C; Parras, L; Pino, C del, E-mail: cpino@uma.es [Universidad de Málaga, Escuela Técnica Superior de Ingeniería Industrial, Ampliación Campus de Teatinos, 29071, Málaga, España (Spain)

2015-06-15

We conduct experiments in a rotating Hagen–Poiseuille flow (RHPF) through flow visualizations when the flow becomes convectively and absolutely unstable at low-to-moderate Reynolds numbers, Re. We characterize periodic patterns at a very high swirl parameter, L, when the flow overcomes the absolutely unstable region. These non-steady helical filaments wrapped around the axis appear in the developing region of the pipe. Experimentally, we compute the onset of these oscillations in the (L, Re)-plane finding that the rotation rate decreases as the Reynolds number increases in the process of achieving the time-dependent state. Additionally, we report information regarding frequencies and wavelengths that appear downstream of the rotating pipe for convectively and absolutely unstable flows, even for very high swirl parameters at which the flow becomes time-dependent in the developing region. We do not observe variations in the trends of these parameters, so these hydrodynamic instabilities in the developing region do not affect the unstable travelling waves downstream of the pipe. (paper)

8. Preferential states of rotating turbulent flows in a square container with a step topography

NARCIS (Netherlands)

Tenreiro, M.; Trieling, R.R.; Zavala Sansón, L.; Heijst, van G.J.F.

2013-01-01

The self-organization of confined, quasi-two-dimensional turbulent flows in a rotating square container with a step-like topography is investigated by means of laboratory experiments and numerical simulations based on a rigid lid, shallow-water formulation. The domain is divided by a bottom

9. Numerical Modelling of Non-Newtonian Fluid in a Rotational Cross-Flow MBR

DEFF Research Database (Denmark)

Bentzen, Thomas Ruby; Ratkovic, Nicolas Rios; Rasmussen, Michael R.

2011-01-01

Fouling is the main bottleneck of the widespread of MBR systems. One way to decrease and/or control fouling is by process hydrodynamics. This can be achieved by the increase of liquid crossflow velocity. In rotational cross-flow MBR systems, this is attained by the spinning of e.g. impellers. Val...

10. Sustained turbulence and magnetic energy in non-rotating shear flows

DEFF Research Database (Denmark)

Nauman, Farrukh; Blackman, Eric G.

2017-01-01

From numerical simulations, we show that non-rotating magnetohydrodynamic shear flows are unstable to finite amplitude velocity perturbations and become turbulent, leading to the growth and sustenance of magnetic energy, including large scale fields. This supports the concept that sustained...... magnetic energy from turbulence is independent of the driving mechanism for large enough magnetic Reynolds numbers....

11. Numerical Investigation of Monodisperse Granular Flow Through an Inclined Rotating Chute

NARCIS (Netherlands)

Shirsath, Sushil S.; Padding, J.T.; Kuipers, J.A.M.; Peeters, Tim W.J.; Clercx, H.J.H.

2014-01-01

A discrete element model of spherical glass particles flowing down a rotating chute is validated against high quality experimental data. The simulations are performed in a corotating frame of reference, taking into account Coriolis and centrifugal forces. In view of future extensions aimed at

12. Electromagnetic interaction of a rotating plasma flow with a conducting mesh

International Nuclear Information System (INIS)

Ikehata, Takashi; Sato, Hirofumi; Iwaya, Tohru; Sato, Naoyuki; Tanabe, Toshio; Mase, Hiroshi

2001-01-01

The effect of a conducting mesh (floating) on the penetrating current (a fraction of discharge current flowing in the downstream across a magnetic field) and the rotational velocity has been investigated and results have been compared with Simpson's model. The velocity was independent of the conductance of the mesh contrary to Simpson's model since the mesh is floating in the present study. (author)

13. Modelling of granular flows through inclined rotating chutes using a discrete particle model

NARCIS (Netherlands)

Shirsath, S.S.; Padding, J.T.; Clercx, H.J.H.; Kuipers, J.A.M.

2012-01-01

In blast furnaces, particles like coke, sinter and pellets enter from a hopper and are distributed on the burden surface by a rotating chute. Such particulate flows suffer occasionally from chocking and particle segregation at bottlenecks, which hinders efficient throughflow. To get a more

14. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

Energy Technology Data Exchange (ETDEWEB)

Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com; Shaha, Poly Rani [Department of Mathematics, Jagannath University, Dhaka-1100 (Bangladesh); Roy, Titob [Department of Mathematics, Vikarunnesa Nun School and College, Boshundhara, Dhaka (Bangladesh); Yanase, Shinichiro, E-mail: yanase@okayama-u.ac.jp [Department of Mechanical and Systems Engineering, Okayama University, Okayama 700-8530 (Japan)

2016-07-12

Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.

15. Effect of rotation on the formation of longitudinal vortices in mixed convection flow over a flat plate

Energy Technology Data Exchange (ETDEWEB)

Lin, Ming-Han [Ta-Hwa Institute of Technology, Department of Automation Engineering, Hsinchu (Taiwan); Chen, Chin-Tai [Ta-Hwa Institute of Technology, Department of Industrial Engineering and Management, Hsinchu (Taiwan)

2006-01-01

This paper presents a numerical study of the effect of rotation on the formation of longitudinal vortices in mixed convection flow over a flat plate. The criterion on the position of marking the onset of longitudinal vortices is defined in this paper. The onset position characterized by the Goertler number G{sub {delta}} depends on the Grashof number, the rotation number Ro, the Prandtl number Pr and the wave number. The results show that negative rotation stabilizes the boundary layer flow on the surface. On the contrary, positive rotation destabilizes the flow. The numerical data are compared with the experimental results. (orig.)

16. On the inverse Magnus effect for flow past a rotating cylinder

Science.gov (United States)

John, Benzi; Gu, Xiao-Jun; Barber, Robert W.; Emerson, David R.

2016-11-01

Flow past a rotating cylinder has been investigated using the direct simulation Monte Carlo method. The study focuses on the occurrence of the inverse Magnus effect under subsonic flow conditions. In particular, the variations in the coefficients of lift and drag have been investigated as a function of the Knudsen and Reynolds numbers. Additionally, a temperature sensitivity study has been carried out to assess the influence of the wall temperature on the computed aerodynamic coefficients. It has been found that both the Reynolds number and the cylinder wall temperature significantly affect the drag as well as the onset of lift inversion in the transition flow regime.

17. Reconstruction of 3D flow structures in a cylindrical cavity with a rotating lid

DEFF Research Database (Denmark)

Meyer, Knud Erik

is difficult to capture experimentally since the flow is fully three-dimensional and also varies in time. A measurement in a point or in a plane will by itself not give the full picture of the flow.Measurement with Particle Image Velocimetry (PIV) analyzed with Proper Orthogonal Decomposition (POD......) and that the presence of helical vortices can be detected. However, the interpretation of the resulting flow still is done with an element of guessing on whether a specific variation is caused by an actual time variation of a structure or is caused by the rotation of a three-dimensional structure.The present work...

18. Near-Wall Turbulence Modelling of Rotating and Curved Shear Flows

Energy Technology Data Exchange (ETDEWEB)

1997-12-31

This thesis deals with verification and refinement of turbulence models within the framework of the Reynolds-averaged approach. It pays special attention to modelling the near-wall region, where the turbulence is strongly non-homogeneous and anisotropic. It also studies in detail the effects associated with an imposed rotation of the reference frame or streamline curvature. The objective with near-wall turbulence closure modelling is to formulate a set of equations governing single point turbulence statistics, which can be solved in the region of the flow which extends to the wall. This is in contrast to the commonly adopted wall-function approach in which the wall-boundary conditions are replaced by matching conditions in the logarithmic region. The near-wall models allow more flexibility by not requiring any such universal behaviour. Assessment of the novel elliptic relaxation approach to model the proximity of a solid boundary reveals an encouraging potential used in conjunction with second-moment and eddy-viscosity closures. The most natural level of closure modelling to predict flows affected by streamline curvatures or an imposed rotation of the reference frame is at the second-moment closure (SMC) level. Although SMCs naturally accounts for the effects of system rotation, the usual application of a scalar dissipation rate equation is shown to require ad hoc corrections in some cases in order to give good results. The elliptic relaxation approach is also used in conjunction with non-linear pressure-strain models and very encouraging results are obtained for rotating flows. Rotational induced secondary motions are vital to predicting the effects of system rotation. Some severe weaknesses of non-linear pressure-strain models are also indicated. Finally, a modelling methodology for anisotropic dissipation in nearly homogeneous turbulence are proposed. 84 refs., 56 figs., 16 tabs.

19. Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres

Science.gov (United States)

Zhou, Qiang; Fan, Liang-Shih

2015-07-01

Direct numerical simulations with an immersed boundary-lattice Boltzmann method are used to investigate the effects of particle rotation on flows past random arrays of mono-disperse spheres at moderate particle Reynolds numbers. This study is an extension of a previous study of the authors [Q. Zhou and L.-S. Fan, "Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres," J. Fluid Mech. 765, 396-423 (2015)] that explored the effects of particle rotation at low particle Reynolds numbers. The results of this study indicate that as the particle Reynolds number increases, the normalized Magnus lift force decreases rapidly when the particle Reynolds number is in the range lower than 50. For the particle Reynolds number greater than 50, the normalized Magnus lift force approaches a constant value that is invariant with solid volume fractions. The proportional dependence of the Magnus lift force on the rotational Reynolds number (based on the angular velocity and the diameter of the spheres) observed at low particle Reynolds numbers does not change in the present study, making the Magnus lift force another possible factor that can significantly affect the overall dynamics of fluid-particle flows other than the drag force. Moreover, it is found that both the normalized drag force and the normalized torque increase with the increase of the particle Reynolds number and the solid volume fraction. Finally, correlations for the drag force, the Magnus lift force, and the torque in random arrays of rotating spheres at arbitrary solids volume fractions, rotational Reynolds numbers, and particle Reynolds numbers are formulated.

20. A fluid dynamical flow model for the central peak in the rotation curve of disk galaxies

International Nuclear Information System (INIS)

Bhattacharyya, T.; Basu, B.

1980-01-01

The rotation curve of the central region in some disk galaxies shows a linear rise, terminating at a peak (primary peak) which is then vollowed by a deep minimum. The curve then again rises to another peak at more or less half-way across the galactic radius. This latter peak is considered as the peak of the rotation curve in all large-scale analysis of galactic structure. The primary peak is usually ignored for the purpose. In this work an attempt has been made to look at the primary peak as the manifestation of the post-explosion flow pattern of gas in the deep central region of galaxies. Solving hydrodynamical equations of motion, a flow model has been derived which imitates very closely the actually observed linear rotational velocity, followed by the falling branch of the curve to minimum. The theoretical flow model has been compared with observed results for nine galaxies. The agreement obtained is extremely encouraging. The distance of the primary peak from the galactic centre has been shown to be correlated with the angular velocity in the linear part of the rotation curve. Here also, agreement is very good between theoretical and observed results. It is concluded that the distance of the primary peak from the centre not only speaks of the time that has elapsed since the explosion occurred in the nucleus, it also speaks of the potential capability of the nucleus of the galaxy for repeating explosions through some efficient process of mass replenishment at the core. (orig.)

1. Effects of fluid flow on heat transfer in large rotating electrical machines

International Nuclear Information System (INIS)

Lancial, Nicolas

2014-01-01

EDF operates a large number of electrical rotating machines in its electricity generation capacity. Thermal stresses which affect them can cause local heating, sufficient to damage their integrity. The present work contributes to provide methodologies for detecting hot spots in these machines, better understanding the topology of rotating flows and identifying their effects on heat transfer. Several experimental scale model were used by increasing their complexity to understand and validate the numerical simulations. A first study on a turbulent wall jet over a non-confined backward-facing step (half-pole hydro-generator) notes significant differences compared to results from confined case: both of them are present in an hydro-generator. A second study was done on a small confined rotating scale model to determinate the effects of a Taylor-Couette-Poiseuille on temperature distribution and position of hot spots on the heated rotor, by studying the overall flow regimes flow. These studies have helped to obtain a reliable method based on conjugate heat transfer (CHT) simulations. Another method, based on FEM coupled with the use of an inverse method, has been studied on a large model of hydraulic generator so as to solve the computation time issue of the first methodology. It numerically calculates the convective heat transfer from temperature measurements, but depends on the availability of experimental data. This work has also developed new no-contact measurement techniques as the use of a high-frequency pyrometer which can be applied on rotating machines for monitoring temperature. (author)

2. The Rolling Transition in a Granular Flow along a Rotating Wall

Directory of Open Access Journals (Sweden)

Aurélie Le Quiniou

2011-11-01

Full Text Available The flow of a dry granular material composed of spherical particles along a rotating boundary has been studied by the discrete element method (DEM. This type of flow is used, among others, as a process to spread particles. The flow consists of several phases. A compression phase along the rotating wall is followed by an elongation of the flow along the same boundary. Eventually, the particles slide or roll independently along the boundary. We show that the main motion of the flow can be characterized by a complex deformation rate of traction/compression and shear. We define numerically an effective friction coefficient of the flow on the scale of the continuum and show a strong decrease of this effective friction beyond a certain critical friction coefficient μ*. We correlate this phenomenon with the apparition of a new transition from a sliding regime to a rolling without sliding regime that we called the rolling transition; this dynamic transition is controlled by the value of the friction coefficient between the particle and the wall. We show that the spherical shape for the particles may represent an optimum for the flow in terms of energetic.

3. Methods of measurement signal acquisition from the rotational flow meter for frequency analysis

Directory of Open Access Journals (Sweden)

Świsulski Dariusz

2017-01-01

Full Text Available One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.

4. Linear and nonlinear stability of a thermally stratified magnetically driven rotating flow in a cylinder.

Science.gov (United States)

Grants, Ilmars; Gerbeth, Gunter

2010-07-01

The stability of a thermally stratified liquid metal flow is considered numerically. The flow is driven by a rotating magnetic field in a cylinder heated from above and cooled from below. The stable thermal stratification turns out to destabilize the flow. This is explained by the fact that a stable stratification suppresses the secondary meridional flow, thus indirectly enhancing the primary rotation. The instability in the form of Taylor-Görtler rolls is consequently promoted. These rolls can only be excited by finite disturbances in the isothermal flow. A sufficiently strong thermal stratification transforms this nonlinear bypass instability into a linear one reducing, thus, the critical value of the magnetic driving force. A weaker temperature gradient delays the linear instability but makes the bypass transition more likely. We quantify the non-normal and nonlinear components of this transition by direct numerical simulation of the flow response to noise. It is observed that the flow sensitivity to finite disturbances increases considerably under the action of a stable thermal stratification. The capabilities of the random forcing approach to identify disconnected coherent states in a general case are discussed.

5. Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma

International Nuclear Information System (INIS)

Yoshimura, Shinji; Tanaka, Masayoshi Y.

2008-01-01

The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)

6. Numerical Study of Transonic Axial Flow Rotating Cascade Aerodynamics – Part 1: 2D Case

Directory of Open Access Journals (Sweden)

Irina Carmen ANDREI

2014-06-01

Full Text Available The purpose of this paper is to present a 2D study regarding the numerical simulation of flow within a transonic highly-loaded rotating cascade from an axial compressor. In order to describe an intricate flow pattern of a complex geometry and given specific conditions of cascade’s loading and operation, an appropriate accurate flow model is a must. For such purpose, the Navier-Stokes equations system was used as flow model; from the computational point of view, the mathematical support is completed by a turbulence model. A numerical comparison has been performed for different turbulence models (e.g. KE, KO, Reynolds Stress and Spallart-Allmaras models. The convergence history was monitored in order to focus on the numerical accuracy. The force vector has been reported in order to express the aerodynamics of flow within the rotating cascade at the running regime, in terms of Lift and Drag. The numerical results, expressed by plots of the most relevant flow parameters, have been compared. It comes out that the selecting of complex flow models and appropriate turbulence models, in conjunction with CFD techniques, allows to obtain the best computational accuracy of the numerical results. This paper aims to carry on a 2D study and a prospective 3D will be intended for the same architecture.

7. The sound field of a rotating dipole in a plug flow.

Science.gov (United States)

Wang, Zhao-Huan; Belyaev, Ivan V; Zhang, Xiao-Zheng; Bi, Chuan-Xing; Faranosov, Georgy A; Dowell, Earl H

2018-04-01

An analytical far field solution for a rotating point dipole source in a plug flow is derived. The shear layer of the jet is modelled as an infinitely thin cylindrical vortex sheet and the far field integral is calculated by the stationary phase method. Four numerical tests are performed to validate the derived solution as well as to assess the effects of sound refraction from the shear layer. First, the calculated results using the derived formulations are compared with the known solution for a rotating dipole in a uniform flow to validate the present model in this fundamental test case. After that, the effects of sound refraction for different rotating dipole sources in the plug flow are assessed. Then the refraction effects on different frequency components of the signal at the observer position, as well as the effects of the motion of the source and of the type of source are considered. Finally, the effect of different sound speeds and densities outside and inside the plug flow is investigated. The solution obtained may be of particular interest for propeller and rotor noise measurements in open jet anechoic wind tunnels.

8. Numerical simulation of 3D unsteady flow in a rotating pump by dynamic mesh technique

International Nuclear Information System (INIS)

Huang, S; Guo, J; Yang, F X

2013-01-01

In this paper, the numerical simulation of unsteady flow for three kinds of typical rotating pumps, roots blower, roto-jet pump and centrifugal pump, were performed using the three-dimensional Dynamic Mesh technique. In the unsteady simulation, all the computational domains, as stationary, were set in one inertial reference frame. The motions of the solid boundaries were defined by the Profile file in FLUENT commercial code, in which the rotational orientation and speed of the rotors were specified. Three methods (Spring-based Smoothing, Dynamic Layering and Local Re-meshing) were used to achieve mesh deformation and re-meshing. The unsteady solutions of flow field and pressure distribution were solved. After a start-up stage, the flow parameters exhibit time-periodic behaviour corresponding to blade passing frequency of rotor. This work shows that Dynamic Mesh technique could achieve numerical simulation of three-dimensional unsteady flow field in various kinds of rotating pumps and have a strong versatility and broad application prospects

9. Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder

KAUST Repository

Leslie, G. A.

2013-01-29

10. Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder

KAUST Repository

Leslie, G. A.; Wilson, S. K.; Duffy, B. R.

2013-01-01

11. Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans

Science.gov (United States)

Zhu, Tao; Lallier-Daniels, Dominic; Sanjosé, Marlène; Moreau, Stéphane; Carolus, Thomas

2018-03-01

Noise from axial fans typically increases significantly as the tip clearance is increased. In addition to the broadband tip clearance noise at the design flow rate, narrowband humps also associated with the tip flow are observed in the far-field acoustic spectra at lower flow rate. In this study, both experimental and numerical methods are used to shed more light on the noise generation mechanism of this narrowband tip clearance noise and provide a unified description of this source. Unsteady aeroacoustic predictions with the Lattice-Boltzmann Method (LBM) are successfully compared with experiment. Such a validation allows using LBM data to conduct a detailed modal analysis of the pressure field for detecting rotating coherent flow structures which might be considered as noise sources. As previously found in ring fans the narrowband humps in the far-field noise spectra are found to be related to the tip clearance noise that is generated by an interaction of coherent flow structures present in the tip region with the leading edge of the impeller blades. The visualization of the coherent structures shows that they are indeed part of the unsteady tip clearance vortex structures. They are hidden in a complex, spatially and temporally inhomogeneous flow field, but can be recovered by means of appropriate filtering techniques. Their pressure trace corresponds to the so-called rotational instability identified in previous turbomachinery studies, which brings a unified picture of this tip-noise phenomenon for the first time.

12. Evaluation of Flow Accelerated Corrosion of Carbon Steel with Rotating Cylinder

International Nuclear Information System (INIS)

Park, Tae Jun; Lee, Eun Hee; Kim, Kyung Mo; Kim, Hong Pyo

2012-01-01

Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. Rotating cylinder FAC test facility was designed and fabricated and then performance of the facility was evaluated. The facility is very simple in design and economic in fabrication and can be used in material and chemistry screening test. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO), and temperature. Fluid velocity is controlled with rotating speed of the cylinder with a test specimen. FAC test of SA106 Gr. B carbon steel under 4 m/s flow velocity was performed with the rotating cylinder at DO concentration of less than 1 ppb and of 1.3 ppm. Also a corrosion test of the carbon steel at static condition, that is at zero fluid velocity, of test specimen and solution was performed at pH from 8 to 10 for comparison with the FAC data. For corrosion test in static condition, the amount of non adherent corrosion product was almost constant at pH ranging from 8 to 10. But adherent corrosion product decreased with increasing pH. This trend is consistent with decrease of Fe solubility with an increase in pH. For FAC test with rotating cylinder FAC test facility, the amount of non adherent corrosion product was also almost same for both DO concentrations. The rotating cylinder FAC test facility will be further improved by redesigning rotating cylinder and FAC specimen geometry for future work

13. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

Energy Technology Data Exchange (ETDEWEB)

Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)

2015-04-22

14. MHD rotating flow and heat transfer through a channel with Hall effects

International Nuclear Information System (INIS)

Ghosh, Sushil Kumar

2016-01-01

The present investigation is the flow and heat transfer of a viscous fluid through a rotating channel about the vertical axis under the influence of transverse magnetic field. The linear temperature dependent density has been introduced along with the induced magnetic field in horizontal directions. To study the temperature distribution, the energy equation consisting of viscous dissipation and joule heating term is solved analytically. The velocity distribution in axial and vertical directions is found to be interesting such as the magnetic Reynolds number and the parameter appears due to buoyancy forces have a substantial contribution to influence the flow pattern. Also the results obtained in the study for magnetic induction variables as well as temperature distribution put forward some significant insight in the fluid flow and heat transfer. The important observation of the present study is that the temperature distribution takes the higher values in the vicinity of the upper wall and this happens due to the fact of buoyancy force and channel rotation. This is a key parameter to worm up or cool down the fluid in a useful purposes. - Highlights: • The important observation of the present study is that the temperature distribution takes the higher values in the vicinity of the upper wall and this happens due to the fact of buoyancy force and channel rotation. • Buoyancy is a key parameter to worm up or cool down the fluid in useful purposes. • It may be predicted that the effect of buoyancy force and magnetic induction force suppress the flow at the lower wall and the effect of the forces lost its potential at the layers near to the upper walls. • It may suggest that the bouncy effect has more prominent role in the fluid flow phenomena as well as heat transfer than magnetic induction and Lorentz force. • The rotation enhances the advantage of circulation of fluid in up and down and tries to make the heat balance within the layers. Our result is true

15. Shear flow driven counter rotating vortices in an inhomogeneous dusty magnetoplasma

Science.gov (United States)

Masood, W.; Mirza, Arshad M.; Ijaz, Aisha; Haque, Q.

2014-02-01

The coupling of Shukla-Varma (SV) and convective cell modes is discussed in the presence of non-Boltzmannian electron response and parallel equilibrium shear flow. In the linear case, a new dispersion relation is derived and analyzed. It is found that the coupled SV and convective cell modes destabilize in the presence of electron shear flow. On the other hand, in the nonlinear regime, it is shown that Shukla-Varma mode driven counter rotating vortices can be formed for the system under consideration. It is found that these vortices move slowly by comparison with the ion acoustic or electron drift-wave driven counter rotating vortices. The relevance of the present investigation with regard to space plasmas is also pointed out.

16. Large eddy simulation of spanwise rotating turbulent channel flow with dynamic variants of eddy viscosity model

Science.gov (United States)

Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi

2018-04-01

A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.

17. A numerical study for off-centered stagnation flow towards a rotating disc

Directory of Open Access Journals (Sweden)

M. Heydari

2015-09-01

Full Text Available In this investigation, a semi-numerical method based on Bernstein polynomials for solving off-centered stagnation flow towards a rotating disc is introduced. This method expands the desired solutions in terms of a set of Bernstein polynomials over a closed interval and then makes use of the tau method to determine the expansion coefficients to construct approximate solutions. This method can satisfy boundary conditions at infinity. The properties of Bernstein polynomials are presented and are utilized to reduce the solution of governing nonlinear equations and their associated boundary conditions to the solution of algebraic equations. Graphical results are presented to investigate the influence of the rotation ratio α on the radial velocity, azimuthal velocity and the induced velocities. A comparative study with the previous results of viscous fluid flow in the literature is made.

18. Local instabilities in magnetized rotational flows: A short-wavelength approach

OpenAIRE

Kirillov, Oleg N.; Stefani, Frank; Fukumoto, Yasuhide

2014-01-01

We perform a local stability analysis of rotational flows in the presence of a constant vertical magnetic field and an azimuthal magnetic field with a general radial dependence. Employing the short-wavelength approximation we develop a unified framework for the investigation of the standard, the helical, and the azimuthal version of the magnetorotational instability, as well as of current-driven kink-type instabilities. Considering the viscous and resistive setup, our main focus is on the cas...

19. Derivation of Inviscid Quasi-geostrophic Equation from Rotational Compressible Magnetohydrodynamic Flows

Science.gov (United States)

Kwon, Young-Sam; Lin, Ying-Chieh; Su, Cheng-Fang

2018-04-01

In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.

20. Thermal radiation influence on MHD flow of a rotating fluid with heat transfer through EFGM solutions

Science.gov (United States)

Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa

2018-05-01

The aim of this research work is to find the EFGM solutions of the unsteady magnetohydromagnetic natural convection heat transfer flow of a rotating, incompressible, viscous, Boussinesq fluid is presented in this study in the presence of radiative heat transfer. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. Numerical results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t is increased. These findings are in quantitative agreement with earlier reported studies.

1. Entropy Generation in a Rotating Couette Flow with Suction/Injection

Directory of Open Access Journals (Sweden)

S. Das

2015-05-01

Full Text Available The present paper is concerned with an analytical study of entropy generation in viscous incompressible Couette flow with suction/injection in a rotating frame of reference. One of the plate is held at rest and the other one moves with an uniform velocity.The flow induced by the moving plate. An exact solution of governing equations has been obtained in closed form. The entropy generation number and the Bejan number are also obtained. The influences of each of the governing parameters on velocity, temperature, entropy generation and Bejan number are discussed with the help of graphs.

2. Droplet rotation model apply in steam uniform flow and gravitational field

International Nuclear Information System (INIS)

Zhang Jinyi; Bo Hanliang; Sun Yuliang; Wang Dazhong

2012-01-01

The mechanism droplet movement behavior and the qualitative description of droplet trajectory in the steam uniform flow field in the gravitational field were researched with droplet rotation model. According to the mechanism of gravitational field and uniform flow fields, the effects on droplets movement were analyzed and the importance of lift forces was also discussed. Finally, a general trajectory and mechanism of the droplets movement was derived which lays the groundwork for the qualitative analysis of the single-drop model and could be general enough to be used in many applications. (authors)

3. Flow Field Characteristics and Lift Changing Mechanism for Half-Rotating Wing in Hovering Flight

Science.gov (United States)

Li, Q.; Wang, X. Y.; Qiu, H.; Li, C. M.; Qiu, Z. Z.

2017-12-01

Half-rotating wing (HRW) is a new similar-flapping wing system based on half-rotating mechanism which could perform rotating-type flapping instead of oscillating-type flapping. The characteristics of flow field and lift changing mechanism for HRW in hovering flight are important theoretical basis to improve the flight capability of HRW aircraft. The driving mechanism and work process of HRW were firstly introduced in this paper. Aerodynamic simulation model of HRW in hovering flight was established and solved using XFlow software, by which lift changing rule of HRW was drawn from the simulation solution. On the other hand, the development and shedding of the distal vortex throughout one stroke would lead to the changes of the lift force. Based on analyzing distribution characteristics of vorticity, velocity and pressure around wing blade, the main features of the flow field for HRW were further given. The distal attached vortex led to the increase of the lift force, which would gradually shed into the wake with a decline of lift in the later downstroke. The wake ring directed by the distal end of the blade would generate the downward accelerating airflow which produced the upward anti-impulse to HRW. The research results mentioned above illustrated that the behavior characteristics of vortex formed in flow field were main cause of lift changing for HRW.

4. CFD Modeling of Flow and Ion Exchange Kinetics in a Rotating Bed Reactor System

DEFF Research Database (Denmark)

Larsson, Hilde Kristina; Schjøtt Andersen, Patrick Alexander; Byström, Emil

2017-01-01

A rotating bed reactor (RBR) has been modeled using computational fluid dynamics (CFD). The flow pattern in the RBR was investigated and the flow through the porous material in it was quantified. A simplified geometry representing the more complex RBR geometry was introduced and the simplified...... model was able to reproduce the main characteristics of the flow. Alternating reactor shapes were investigated, and it was concluded that the use of baffles has a very large impact on the flows through the porous material. The simulations suggested, therefore, that even faster reaction rates could...... be achieved by making the baffles deeper. Two-phase simulations were performed, which managed to reproduce the deflection of the gas–liquid interface in an unbaffled system. A chemical reaction was implemented in the model, describing the ion-exchange phenomena in the porous material using four different...

5. Calibrationless rotating Lorentz-force flowmeters for low flow rate applications

Science.gov (United States)

Hvasta, M. G.; Dudt, D.; Fisher, A. E.; Kolemen, E.

2018-07-01

A ‘weighted magnetic bearing’ has been developed to improve the performance of rotating Lorentz-force flowmeters (RLFFs). Experiments have shown that the new bearing reduces frictional losses within a double-sided, disc-style RLFF to negligible levels. Operating such an RLFF under ‘frictionless’ conditions provides two major benefits. First, the steady-state velocity of the RLFF magnets matches the average velocity of the flowing liquid at low flow rates. This enables an RLFF to make accurate volumetric flow measurements without any calibration or prior knowledge of the fluid properties. Second, due to minimized frictional losses, an RLFF is able to measure low flow rates that cannot be detected when conventional, high-friction bearings are used. This paper provides a brief background on RLFFs, gives a detailed description of weighted magnetic bearings, and compares experimental RLFF data to measurements taken with a commercially available flowmeter.

6. Asymptotic structure of viscous incompressible flow around a rotating body, with nonvanishing flow field at infinity

Czech Academy of Sciences Publication Activity Database

Deuring, P.; Kračmar, S.; Nečasová, Šárka

2017-01-01

Roč. 68, č. 1 (2017), č. článku 16. ISSN 0044-2275 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : asymptotic profile * Pointwise decay * rotating body * stationary incompressible Navier–Stokes system Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.687, year: 2016 http://link.springer.com/article/10.1007%2Fs00033-016-0760-x

7. Asymptotic structure of viscous incompressible flow around a rotating body, with nonvanishing flow field at infinity

Czech Academy of Sciences Publication Activity Database

Deuring, P.; Kračmar, S.; Nečasová, Šárka

2017-01-01

Roč. 68, č. 1 (2017), č. článku 16. ISSN 0044-2275 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : asymptotic profile * Pointwise decay * rotating body * stationary incompressible Navier–Stokes system Subject RIV: BA - General Math ematics OBOR OECD: Pure math ematics Impact factor: 1.687, year: 2016 http://link.springer.com/article/10.1007%2Fs00033-016-0760-x

8. Precise position control of a helical magnetic robot in pulsatile flow using the rotating frequency of the external magnetic field

Directory of Open Access Journals (Sweden)

Jongyul Kim

2017-05-01

Full Text Available We propose a position control method for a helical magnetic robot (HMR that uses the rotating frequency of the external rotating magnetic field (ERMF to minimize the position fluctuation of the HMR caused by pulsatile flow in human blood vessels. We prototyped the HMR and conducted several experiments in pseudo blood vessel environments with a peristaltic pump. We experimentally obtained the relation between the flow rate and the rotating frequency of the ERMF required to make the HMR stationary in a given pulsatile flow. Then we approximated the pulsatile flow by Fourier series and applied the required ERMF rotating frequency to the HMR in real time. Our proposed position control method drastically reduced the position fluctuation of the HMR under pulsatile flow.

9. The influence of the tangential velocity of inner rotating wall on axial velocity profile of flow through vertical annular pipe with rotating inner surface

Directory of Open Access Journals (Sweden)

Sharf Abdusalam M.

2014-03-01

Full Text Available In the oil and gas industries, understanding the behaviour of a flow through an annulus gap in a vertical position, whose outer wall is stationary whilst the inner wall rotates, is a significantly important issue in drilling wells. The main emphasis is placed on experimental (using an available rig and computational (employing CFD software investigations into the effects of the rotation speed of the inner pipe on the axial velocity profiles. The measured axial velocity profiles, in the cases of low axial flow, show that the axial velocity is influenced by the rotation speed of the inner pipe in the region of almost 33% of the annulus near the inner pipe, and influenced inversely in the rest of the annulus. The position of the maximum axial velocity is shifted from the centre to be nearer the inner pipe, by increasing the rotation speed. However, in the case of higher flow, as the rotation speed increases, the axial velocity is reduced and the position of the maximum axial velocity is skewed towards the centre of the annulus. There is a reduction of the swirl velocity corresponding to the rise of the volumetric flow rate.

10. Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo

Science.gov (United States)

Takahashi, F.

2011-12-01

Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.

11. A numerical study on the flow development around a rotating square-sectioned U-Bend( II )

International Nuclear Information System (INIS)

Lee, Gong Hee; Baek, Je Hyun

2002-01-01

The present study investigates in detail the combined effects of the Coriolis force and centrifugal force on the development of turbulent flows in a square-sectioned U-bend rotating about an axis parallel to the center of bend curvature. When a viscous fluid flows through a curved region of U-bend, two types of secondary flow occur. One is caused by the Coriolis force due to the rotation of U-bend and the other by the centrifugal force due to the curvature of U-bend. For positive rotation, where the rotation is in the same direction as that of the main flow, both the Coriolis force and the centrifugal force act radially outwards. Therefore, the flow structure is qualitatively similar to that observed in a stationary curved duct. On the other hand, under negative rotation, where these two forces act in opposite direction, more complex flow fields can be observed depending on the relative magnitudes of the forces. Under the condition that the value of Rossby number and curvature ratio is large, the flow field in a rotating U-bend can be represented by two dimensionless parameters : K LC = Re 1/4 / √ λ and a body force ratio F= λ/Ro. Here, K TC has the same dynamical meaning as K LC = Re/√ λ for laminar flow

12. Multi-relaxation-time Lattice Boltzman model for uniform-shear flow over a rotating circular cylinder

Directory of Open Access Journals (Sweden)

Nemati Hasan

2011-01-01

Full Text Available A numerical investigation of the two-dimensional laminar flow and heat transfer a rotating circular cylinder with uniform planar shear, where the free-stream velocity varies linearly across the cylinder using Multi-Relaxation-Time Lattice Boltzmann method is conducted. The effects of variation of Reynolds number, rotational speed ratio at shear rate 0.1, blockage ratio 0.1 and Prandtl number 0.71 are studied. The Reynolds number changing from 50 to 160 for three rotational speed ratios of 0, 0.5, 1 is investigated. Results show that flow and heat transfer depends significantly on the rotational speed ratio as well as the Reynolds number. The effect of Reynolds number on the vortex-shedding frequency and period-surface Nusselt numbers is overall very strong compared with rotational speed ratio. Flow and heat conditions characteristics such as lift and drag coefficients, Strouhal number and Nusselt numbers are studied.

13. Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow

Science.gov (United States)

Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph

2016-04-01

We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin - Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10-5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the most

14. Two dimensional numerical analysis of aerodynamic characteristics for rotating cylinder on concentrated air flow

Science.gov (United States)

Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.

2017-12-01

Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.

15. Breakdown of the large-scale circulation in $\\Gamma = 1/2$ rotating Rayleigh-Bénard flow

NARCIS (Netherlands)

Stevens, Richard Johannes Antonius Maria; Clercx, H.J.H.; Lohse, Detlef

2012-01-01

Experiments and simulations of rotating Rayleigh-Bénard convection in cylindrical samples have revealed an increase in heat transport with increasing rotation rate. This heat transport enhancement is intimately related to a transition in the turbulent flow structure from a regime dominated by a

16. The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates

Science.gov (United States)

Shah, Zahir; Islam, Saeed; Gul, Taza; Bonyah, Ebenezer; Altaf Khan, Muhammad

2018-06-01

The current research aims to examine the combined effect of magnetic and electric field on micropolar nanofluid between two parallel plates in a rotating system. The nanofluid flow between two parallel plates is taken under the influence of Hall current. The flow of micropolar nanofluid has been assumed in steady state. The rudimentary governing equations have been changed to a set of differential nonlinear and coupled equations using suitable similarity variables. An optimal approach has been used to acquire the solution of the modelled problems. The convergence of the method has been shown numerically. The impact of the Skin friction on velocity profile, Nusslet number on temperature profile and Sherwood number on concentration profile have been studied. The influences of the Hall currents, rotation, Brownian motion and thermophoresis analysis of micropolar nanofluid have been mainly focused in this work. Moreover, for comprehension the physical presentation of the embedded parameters that is, coupling parameter N1 , viscosity parameter Re , spin gradient viscosity parameter N2 , rotating parameter Kr , Micropolar fluid constant N3 , magnetic parameter M , Prandtl number Pr , Thermophoretic parameter Nt , Brownian motion parameter Nb , and Schmidt number Sc have been plotted and deliberated graphically.

17. On the phase lag of turbulent dissipation in rotating tidal flows

Science.gov (United States)

Zhang, Qianjiang; Wu, Jiaxue

2018-03-01

Field observations of rotating tidal flows in a shallow tidally swept sea reveal that a notable phase lag of both shear production and turbulent dissipation increases with height above the seafloor. These vertical delays of turbulent quantities are approximately equivalent in magnitude to that of squared mean shear. The shear production approximately equals turbulent dissipation over the phase-lag column, and thus a main mechanism of phase lag of dissipation is mean shear, rather than vertical diffusion of turbulent kinetic energy. By relating the phase lag of dissipation to that of the mean shear, a simple formulation with constant eddy viscosity is developed to describe the phase lag in rotating tidal flows. An analytical solution indicates that the phase lag increases linearly with height subjected to a combined effect of tidal frequency, Coriolis parameter and eddy viscosity. The vertical diffusion of momentum associated with eddy viscosity produces the phase lag of squared mean shear, and resultant delay of turbulent quantities. Its magnitude is inhibited by Earth's rotation. Furthermore, a theoretical formulation of the phase lag with a parabolic eddy viscosity profile can be constructed. A first-order approximation of this formulation is still a linear function of height, and its magnitude is approximately 0.8 times that with constant viscosity. Finally, the theoretical solutions of phase lag with realistic viscosity can be satisfactorily justified by realistic phase lags of dissipation.

18. Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk

Science.gov (United States)

Thomas, S.; Faghri, A.; Hankey, W.

1991-01-01

The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.

19. Identification of dominant flow structures in rapidly rotating convection of liquid metals using Dynamic Mode Decomposition

Science.gov (United States)

Horn, S.; Schmid, P. J.; Aurnou, J. M.

2016-12-01

The Earth's metal core acts as a dynamo whose efficiency in generating and maintaining the magnetic field is essentially determined by the rotation rate and the convective motions occurring in its outer liquid part. For the description of the primary physics in the outer core the idealized system of rotating Rayleigh-Bénard convection is often invoked, with the majority of studies considering only working fluids with Prandtl numbers of Pr ≳ 1. However, liquid metals are characterized by distinctly smaller Prandtl numbers which in turn result in an inherently different type of convection. Here, we will present results from direct numerical simulations of rapidly rotating convection in a fluid with Pr ≈ 0.025 in cylindrical containers and Ekman numbers as low as 5 × 10-6. In this system, the Coriolis force is the source of two types of inertial modes, the so-called wall modes, that also exist at moderate Prandtl numbers, and cylinder-filling oscillatory modes, that are a unique feature of small Prandtl number convection. The obtained flow fields were analyzed using the Dynamic Mode Decomposition (DMD). This technique allows to extract and identify the structures that govern the dynamics of the system as well as their corresponding frequencies. We have investigated both the regime where the flow is purely oscillatory and the regime where wall modes and oscillatory modes co-exist. In the purely oscillatory regime, high and low frequency oscillatory modes characterize the flow. When both types of modes are present, the DMD reveals that the wall-attached modes dominate the flow dynamics. They precess with a relatively low frequency in retrograde direction. Nonetheless, also in this case, high frequency oscillations have a significant contribution.

20. Numerical Analysis of Rotating Pumping Flows in Inter-Coil Rotor Cavities and Short Cooling Grooves of a Generator

Directory of Open Access Journals (Sweden)

Wei Tong

2001-01-01

Full Text Available An important characteristic of wall rotating-driven flows is the tendency of fluid with high angular momentum to be flung radially outward. For a generator, the rotor rotating-driven flow, usually referred to as the rotating pumping flow, plays an important role in rotor winding cooling. In this study, three-dimensional numerical analyzes are presented for turbulent pumping flow in the inter-coil rotor cavity and short cooling grooves of a generator. Calculations of the flow field and the mass flux distribution through the grooves were carried out in a sequence of four related cases Under an isothermal condition: (a pumping flow, which is the self-generated flow resulted from the rotor pumping action; (b mixing flow, which is the combination of the ventilating flow and pumping flow, under a constant density condition; (c mixing flow, with density modeled by the ideal gas law; and (d mixing flow, with different pressure differentials applied on the system. The comparisons of the results from these cases can provide useful information regarding the impacts of the ventilating flow, gas density, and system pressure differential on the mass flux distribution in the short cooling grooves. Results show that the pumping effect is strong enough to generate the cooling flow for rotor winding cooling. Therefore, for small- or mid-size generators ventilation fans may be eliminated. It also suggests that increasing the chimney dimension can improve the distribution uniformity of mass flux through the cooling grooves.

1. The effects of curvature on the flow field in rapidly rotating gas centrifuges

International Nuclear Information System (INIS)

Wood, H.G.; Jordan, J.A.

1984-01-01

The effects of curvature on the fluid dynamics of rapidly rotating gas centrifuges are studied. A governing system of a linear partial differential equation and boundary conditions is derived based on a linearization of the equations for viscous compressible flow. This system reduces to the Onsager pancake model if the effects of curvature are neglected. Approximations to the solutions of the governing equations with and without curvature terms are obtained via a finite-element method. Two examples are considered: first where the flow is driven by a thermal gradient at the wall of the centrifuge, and then for the flow being driven by the introduction and removal of mass through the ends of the centrifuge. Comparisons of the results obtained show that, especially for the second example, the inclusion of the terms due to curvature in the model can have an appreciable effect on the solution. (author)

2. Unsteady magnetohydrodynamics mixed convection flow in a rotating medium with double diffusion

Energy Technology Data Exchange (ETDEWEB)

Jiann, Lim Yeou; Ismail, Zulkhibri; Khan, Ilyas; Shafie, Sharidan [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

2015-05-15

Exact solutions of an unsteady Magnetohydrodynamics (MHD) flow over an impulsively started vertical plate in a rotating medium are presented. The effects of thermal radiative and thermal diffusion on the fluid flow are also considered. The governing equations are modelled and solved for velocity, temperature and concentration using Laplace transforms technique. Expressions of velocity, temperature and concentration profiles are obtained and their numerical results are presented graphically. Skin friction, Sherwood number and Nusselt number are also computed and presented in tabular forms. The determined solutions can generate a large class of solutions as special cases corresponding to different motions with technical relevance. The results obtained herein may be used to verify the validation of obtained numerical solutions for more complicated fluid flow problems.

3. Temporal flow instability for Magnus-Robins effect at high rotation rates

Science.gov (United States)

Sengupta, T. K.; Kasliwal, A.; de, S.; Nair, M.

2003-06-01

The lift and drag coefficients of a circular cylinder, translating and spinning at a supercritical rate is studied theoretically to explain the experimentally observed violation of maximum mean lift coefficient principle, that was proposed heuristically by Prandtl on the basis of inviscid flow model. It is also noted experimentally that flow past a rotating and translating cylinder experiences temporal instability-a fact not corroborated by any theoretical studies so far. In the present paper we report very accurate solution of Navier-Stokes equation that displays the above-mentioned instability and the violation of the maximum limit. The calculated lift coefficient exceeds the limit of /4π, instantaneously as well as in time-averaged sense. The main purpose of the present paper is to explain the observed temporal instability sequence in terms of a new theory of instability based on full Navier-Stokes equation that does not require making any assumption about the flow field, unlike other stability theories.

4. Wall shear stress from a rotating cylinder in cross flow using the electrochemical technique

International Nuclear Information System (INIS)

Labraga, L.; Bourabaa, N.; Berkah, T.

2002-01-01

The wall shear rate from a rotating cylinder in a uniform flow was measured with flush-mounted electrochemical mass transfer probes. The experiments were performed using two rectangular electrodes in a sandwich arrangement. Initially, the frequency response of that probe was numerically studied using an inverse mass transfer method in order to restore the whole wall shear stress in the time domain starting from the measured transfer coefficients given by the split probe. The experiments were performed in the range of velocity ratios 0 4, points of zero shear stress on the rotating cylinder vanish, which is in fact consistent with the previous arguments that the cylinder is surrounded by a set of closed streamlines. This experimental study shows that, when their dynamic behaviour is known, the electrochemical probes are able to sense complex fine structures not observed up to now by previous analytical, numerical or experimental methods, even when non-linear effects are not negligible. (orig.)

5. Unsteady flow field in a mini VAWT with relative rotation blades: analysis of temporal results

International Nuclear Information System (INIS)

Bayeul-Lainé, A C; Simonet, S; Bois, G

2013-01-01

The present wind turbine is a small one which can be used on roofs or in gardens. This turbine has a vertical axis. Each turbine blade combines a rotating movement around its own axis and around the main rotor axis. Due to this combination of movements, flow around this turbine is highly unsteady and needs to be modelled by unsteady calculation. The present work is an extended study starting in 2009. The benefits of combined rotating blades have been shown. The performance coefficient of this kind of turbine is very good for some blade stagger angles. Spectral analysis of unsteady results on specific points in the domain and temporal forces on blades was already presented for elliptic blades. The main aim here is to compare two kinds of blades in case of the best performances

6. Measurement of the translation and rotation of a sphere in fluid flow

Science.gov (United States)

Barros, Diogo; Hiltbrand, Ben; Longmire, Ellen K.

2018-06-01

The problem of determining the translation and rotation of a spherical particle moving in fluid flow is considered. Lagrangian tracking of markers printed over the surface of a sphere is employed to compute the center motion and the angular velocity of the solid body. The method initially calculates the sphere center from the 3D coordinates of the reconstructed markers, then finds the optimal rotation matrix that aligns a set of markers tracked at sequential time steps. The parameters involved in the experimental implementation of this procedure are discussed, and the associated uncertainty is estimated from numerical analysis. Finally, the proposed methodology is applied to characterize the motion of a large spherical particle released in a turbulent boundary layer developing in a water channel.

7. Fluorescence Imaging of Rotational and Vibrational Temperature in a Shock Tunnel Nozzle Flow

Science.gov (United States)

Palma, Philip C.; Danehy, Paul M.; Houwing, A. F. P.

2003-01-01

Two-dimensional rotational and vibrational temperature measurements were made at the nozzle exit of a free-piston shock tunnel using planar laser-induced fluorescence. The Mach 7 flow consisted predominantly of nitrogen with a trace quantity of nitric oxide. Nitric oxide was employed as the probe species and was excited at 225 nm. Nonuniformities in the distribution of nitric oxide in the test gas were observed and were concluded to be due to contamination of the test gas by driver gas or cold test gas.The nozzle-exit rotational temperature was measured and is in reasonable agreement with computational modeling. Nonlinearities in the detection system were responsible for systematic errors in the measurements. The vibrational temperature was measured to be constant with distance from the nozzle exit, indicating it had frozen during the nozzle expansion.

8. Mathematical modeling and exact solutions to rotating flows of a Burgers' fluid

International Nuclear Information System (INIS)

Hayat, T.

2005-12-01

The aim of this study is to provide the modeling and exact analytic solutions for hydromagnetic oscillatory rotating flows of an incompressible Burgers' fluid bounded by a plate. The governing time-dependent equation for the Burgers' fluid is different than those from the Navier-Stokes' equation. The entire system is assumed to rotate around an axis normal to the plate. The governing equations for this investigation are solved analytically for two physical problems. The solutions for the three cases, when the two times angular velocity is greater than the frequency of oscillation or it is smaller than the frequency or it is equal to the frequency (resonant case), are discussed in second problem. In Burgers' fluid, it is also found that hydromagnetic solution in the resonant case satisfies the boundary condition at infinity. Moreover, the obtained analytical results reduce to several previously published results as the special cases. (author)

9. Effect of wall conductances on hydromagnetic flow and heat transfer in a rotating channel

International Nuclear Information System (INIS)

Mazumder, B.S.

1977-01-01

Wall conductance effects on the hydromagnetic flow and heat transfer between two parallel plates in a rotating frame of reference has been studied when the liquid is permeated by a transverse magnetic field. An exact solution of the governing equation has been obtained. It is found that the velocity current density and the temperature depend only on the sum of the wall conductances phi 1 + phi 2 = phi but magnetic field depends on the individual values of phi 1 and phi 2 where phi 1 and phi 2 are respectively the wall conductance ratios of the upper and lower walls. (Auth.)

10. Flow of Giesekus viscoelastic fluid in a concentric annulus with inner cylinder rotation

International Nuclear Information System (INIS)

Ravanchi, Maryam Takht; Mirzazadeh, Mahmoud; Rashidi, Fariborz

2007-01-01

An approximate analytical solution is derived for the steady state, purely tangential flow of a viscoelastic fluid obeying the Giesekus constitutive equation in a concentric annulus with inner cylinder rotation. An approximation is used for the estimation of radial normal stress. The effect of Weissenberg number (We), radius ratio (κ) and mobility factor (α) on velocity distribution and fRe are investigated. The results show that the velocity gradient near the inner cylinder increases as the fluid elasticity increases. The results also show that fRe decreases with increasing fluid elasticity

11. Effects of curvature on rarefied gas flows between rotating concentric cylinders

Science.gov (United States)

Dongari, Nishanth; White, Craig; Scanlon, Thomas J.; Zhang, Yonghao; Reese, Jason M.

2013-05-01

The gas flow between two concentric rotating cylinders is considered in order to investigate non-equilibrium effects associated with the Knudsen layers over curved surfaces. We investigate the nonlinear flow physics in the near-wall regions using a new power-law (PL) wall-scaling approach. This PL model incorporates Knudsen layer effects in near-wall regions by taking into account the boundary limiting effects on the molecular free paths. We also report new direct simulation Monte Carlo results covering a wide range of Knudsen numbers and accommodation coefficients, and for various outer-to-inner cylinder radius ratios. Our simulation data are compared with both the classical slip flow theory and the PL model, and we find that non-equilibrium effects are not only dependent on Knudsen number and accommodation coefficient but are also significantly affected by the surface curvature. The relative merits and limitations of both theoretical models are explored with respect to rarefaction and curvature effects. The PL model is able to capture some of the nonlinear trends associated with Knudsen layers up to the early transition flow regime. The present study also illuminates the limitations of classical slip flow theory even in the early slip flow regime for higher curvature test cases, although the model does exhibit good agreement throughout the slip flow regime for lower curvature cases. Torque and velocity profile comparisons also convey that a good prediction of integral flow properties does not necessarily guarantee the accuracy of the theoretical model used, and it is important to demonstrate that field variables are also predicted satisfactorily.

12. Kinematic morphology of large-scale structure: evolution from potential to rotational flow

International Nuclear Information System (INIS)

Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L.

2014-01-01

As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.

13. Kinematic morphology of large-scale structure: evolution from potential to rotational flow

Energy Technology Data Exchange (ETDEWEB)

Wang, Xin; Szalay, Alex; Aragón-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

2014-09-20

As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.

14. Flow field investigations in rotating facilities by means of stationary PIV systems

International Nuclear Information System (INIS)

Armellini, A; Mucignat, C; Casarsa, L; Giannattasio, P

2012-01-01

The flow field inside rotating test sections can be investigated by means of particle image velocimetry (PIV) operated in the phase-locked mode. With this experimental approach, the measurement system is kept fixed and it is synchronized with the periodical passage of the test section. Therefore, the direct output of the PIV measurements is the absolute velocity field, while the relative one is indirectly obtained from proper data processing that relies on accurate knowledge of the peripheral velocity field. This work provides an uncertainty analysis about the evaluation of the peripheral displacement field in phase-locked PIV measurements. The analysis leads to the detection of the levels of accuracy required in the estimation of both the angular velocity and the position of the center of rotation to ensure correct evaluation of the peripheral displacement field. In this regard, a simple methodology is proposed to evaluate the center of rotation position with an accuracy below 1 px. Finally, a procedure to pre-process the PIV images by subtracting the peripheral displacement is described. The advantages of its implementation are highlighted by the comparison with the performance of a more standard methodology where the peripheral field is subtracted from the absolute velocity field and not directly from the PIV raw data

15. Impact of chemical reaction in fully developed radiated mixed convective flow between two rotating disk

Science.gov (United States)

Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Waqas, M.; Alsaedi, A.

2018-06-01

Flow of magnetohydrodynamic (MHD) viscous fluid between two rotating disks is modeled. Angular velocities of two disks are different. Flow is investigated for nonlinear mixed convection. Heat transfer is analyzed for nonlinear thermal radiation and heat generation/absorption. Chemical reaction is also implemented. Convective conditions of heat and mass transfer are studied. Transformations used lead to reduction of PDEs into the ODEs. The impacts of important physical variables like Prandtl number, Reynold number, Hartman number, mixed convection parameter, chemical reaction and Schmidt number on velocities, temperature and concentration are elaborated. In addition velocity and temperature gradients are physically interpreted. Our obtained results indicate that radial, axial and tangential velocities decrease for higher estimation of Hartman number.

16. Analysis of high-speed rotating flow inside gas centrifuge casing

Science.gov (United States)

2017-11-01

The generalized analytical model for the radial boundary layer inside the gas centrifuge casing in which the inner cylinder is rotating at a constant angular velocity Ωi while the outer one is stationary, is formulated for studying the secondary gas flow field due to wall thermal forcing, inflow/outflow of light gas along the boundaries, as well as due to the combination of the above two external forcing. The analytical model includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in an axisymmetric (r - z) plane. The linearization approximation is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional approximations in the analytical model include constant temperature in the base state (isothermal compressible Couette flow), high aspect ratio (length is large compared to the annular gap), high Reynolds number, but there is no limitation on the Mach number. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order in the radial direction for the generalized analytical equation) are obtained. The solutions for the secondary flow is determined in terms of these eigenvalues and eigenfunctions. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations and found excellent agreement (with a difference of less than 15%) between the predictions of the analytical model and the DSMC simulations, provided the boundary conditions in the analytical model are accurately specified.

17. Instability modes on a solid-body-rotation flow in a finite-length pipe

Science.gov (United States)

Feng, Chunjuan; Liu, Feng; Rusak, Zvi; Wang, Shixiao

2017-09-01

Numerical solutions of the incompressible Navier-Stokes equations are obtained to study the time evolution of both axisymmetric and three-dimensional perturbations to a base solid-body-rotation flow in a finite-length pipe with non-periodic boundary conditions imposed at the pipe inlet and outlet. It is found that for a given Reynolds number there exists a critical swirl number beyond which the initial perturbations grow, in contrast to the solid-body rotation flow in an infinitely-long pipe or a finite-length pipe with periodic inlet and exit boundary conditions for which the classical Kelvin analysis and Rayleigh stability criterion affirm neutrally stable for all levels of swirl. This paper uncovers for the first time the detailed evolution of the perturbations in both the axisymmetric and three-dimensional situations. The computations reveal a linear growth stage of the perturbations with a constant growth rate after a brief initial period of decay of the imposed initial perturbations. The fastest growing axisymmetric and three-dimensional instability modes and the associated growth rates are identified numerically for the first time. The computations show that the critical swirl number increases and the growth rate of instability decreases at the same swirl number with decreasing Reynolds number. The growth rate of the axisymmetric mode at high Reynolds number agrees well with previous stability theory for inviscid flow. More importantly, three-dimensional simulations uncover that the most unstable mode is the spiral type m = 1 mode, which appears at a lower critical swirl number than that for the onset of the axisymmetric mode. This spiral mode grows faster than the unstable axisymmetric mode at the same swirl. Moreover, the computations reveal that after the linear growing stage of the perturbation the flow continues to evolve nonlinearly to a saturated axisymmetric vortex breakdown state.

18. Instability modes on a solid-body-rotation flow in a finite-length pipe

Directory of Open Access Journals (Sweden)

Chunjuan Feng

2017-09-01

Full Text Available Numerical solutions of the incompressible Navier-Stokes equations are obtained to study the time evolution of both axisymmetric and three-dimensional perturbations to a base solid-body-rotation flow in a finite-length pipe with non-periodic boundary conditions imposed at the pipe inlet and outlet. It is found that for a given Reynolds number there exists a critical swirl number beyond which the initial perturbations grow, in contrast to the solid-body rotation flow in an infinitely-long pipe or a finite-length pipe with periodic inlet and exit boundary conditions for which the classical Kelvin analysis and Rayleigh stability criterion affirm neutrally stable for all levels of swirl. This paper uncovers for the first time the detailed evolution of the perturbations in both the axisymmetric and three-dimensional situations. The computations reveal a linear growth stage of the perturbations with a constant growth rate after a brief initial period of decay of the imposed initial perturbations. The fastest growing axisymmetric and three-dimensional instability modes and the associated growth rates are identified numerically for the first time. The computations show that the critical swirl number increases and the growth rate of instability decreases at the same swirl number with decreasing Reynolds number. The growth rate of the axisymmetric mode at high Reynolds number agrees well with previous stability theory for inviscid flow. More importantly, three-dimensional simulations uncover that the most unstable mode is the spiral type m = 1 mode, which appears at a lower critical swirl number than that for the onset of the axisymmetric mode. This spiral mode grows faster than the unstable axisymmetric mode at the same swirl. Moreover, the computations reveal that after the linear growing stage of the perturbation the flow continues to evolve nonlinearly to a saturated axisymmetric vortex breakdown state.

19. Reconstruction of 3D flow structures in a cylindrical cavity with a rotating lid using time-resolved stereo PIV

DEFF Research Database (Denmark)

Meyer, Knud Erik; Sørensen, Jens Nørkær; Naumov, Igor

2009-01-01

variations. The flow in a cylindrical cavity with a rotating lid of a height of three radii and a Reynolds number of about 3500 is used as example. The reconstruction identifies a series of flow structures including axisymmetric vortex breakdown and distinct vortex structures along the cylinder wall....

20. Numerical tackling for viscoelastic fluid flow in rotating frame considering homogeneous-heterogeneous reactions

Directory of Open Access Journals (Sweden)

Najwa Maqsood

Full Text Available This study provides a numerical treatment for rotating flow of viscoelastic (Maxwell fluid bounded by a linearly deforming elastic surface. Mass transfer analysis is carried out in the existence of homogeneous-heterogeneous reactions. By means of usual transformation, the governing equations are changed into global similarity equations which have been tackled by an expedient shooting approach. A contemporary numerical routine bvp4c of software MATLAB is also opted to develop numerical approximations. Both methods of solution are found in complete agreement in all the cases. Velocity and concentration profiles are computed and elucidated for certain range of viscoelastic fluid parameter. The solutions contain a rotation-strength parameter λ that has a considerable impact on the flow fields. For sufficiently large value of λ, the velocity fields are oscillatory decaying function of the non-dimensional vertical distance. Concentration distribution at the surface is found to decrease upon increasing the strengths of chemical reactions. A comparison of present computations is made with those of already published ones and such comparison appears convincing. Keywords: Maxwell fluid, Similarity solution, Numerical method, Chemical reaction, Stretching sheet

1. Numerical analysis of MHD Casson Navier's slip nanofluid flow yield by rigid rotating disk

Science.gov (United States)

Rehman, Khalil Ur; Malik, M. Y.; Zahri, Mostafa; Tahir, M.

2018-03-01

An exertion is perform to report analysis on Casson liquid equipped above the rigid disk for z bar > 0 as a semi-infinite region. The flow of Casson liquid is achieve through rotation of rigid disk with constant angular frequency Ω bar . Magnetic interaction is consider by applying uniform magnetic field normal to the axial direction. The nanosized particles are suspended in the Casson liquid and rotation of disk is manifested with Navier's slip condition, heat generation/absorption and chemical reaction effects. The obtain flow narrating differential equations subject to MHD Casson nanofluid are transformed into ordinary differential system. For this purpose the Von Karman way of scheme is executed. To achieve accurate trends a computational algorithm is develop rather than to go on with usual build-in scheme. The effects logs of involved parameters, namely magnetic field parameter, Casson fluid parameter, slip parameter, thermophoresis and Brownian motion parameters on radial, tangential velocities, temperature, nanoparticles concentration, Nusselt and Sherwood numbers are provided by means of graphical and tabular structures. It is observed that both tangential and radial velocities are decreasing function of Casson fluid parameter.

2. Numerical tackling for viscoelastic fluid flow in rotating frame considering homogeneous-heterogeneous reactions

Science.gov (United States)

Maqsood, Najwa; Mustafa, M.; Khan, Junaid Ahmad

This study provides a numerical treatment for rotating flow of viscoelastic (Maxwell) fluid bounded by a linearly deforming elastic surface. Mass transfer analysis is carried out in the existence of homogeneous-heterogeneous reactions. By means of usual transformation, the governing equations are changed into global similarity equations which have been tackled by an expedient shooting approach. A contemporary numerical routine bvp4c of software MATLAB is also opted to develop numerical approximations. Both methods of solution are found in complete agreement in all the cases. Velocity and concentration profiles are computed and elucidated for certain range of viscoelastic fluid parameter. The solutions contain a rotation-strength parameter λ that has a considerable impact on the flow fields. For sufficiently large value of λ , the velocity fields are oscillatory decaying function of the non-dimensional vertical distance. Concentration distribution at the surface is found to decrease upon increasing the strengths of chemical reactions. A comparison of present computations is made with those of already published ones and such comparison appears convincing.

3. Flow and Heat Transfer of Bingham Plastic Fluid over a Rotating Disk with Variable Thickness

Science.gov (United States)

Liu, Chunyan; Pan, Mingyang; Zheng, Liancun; Ming, Chunying; Zhang, Xinxin

2016-11-01

This paper studies the steady flow and heat transfer of Bingham plastic fluid over a rotating disk of finite radius with variable thickness radially in boundary layer. The boundary layer flow is caused by the rotating disk when the extra stress is greater than the yield stress of the Bingham fluid. The analyses of the velocity and temperature field related to the variable thickness disk have not been investigated in current literatures. The governing equations are first simplified into ordinary differential equations owing to the generalized von Kármán transformation for seeking solutions easily. Then semi-similarity approximate analytical solutions are obtained by using the homotopy analysis method for different physical parameters. It is found that the Bingham number clearly influences the velocity field distribution, and the skin friction coefficient Cfr is nonlinear growth with respect to the shape parameter m. Additionally, the effects of the involved parameters (i.e. shape parameter m, variable thickness parameter β, Reynolds number Rev, and Prandtl number Pr) on velocity and temperature distribution are investigated and analyzed in detail.

4. The flow and hydrodynamic stability of a liquid film on a rotating disc

International Nuclear Information System (INIS)

Kim, Tae-Sung; Kim, Moon-Uhn

2009-01-01

The flow of a liquid film on a rotating disc is investigated in the case where a liquid is supplied at a constant flow rate. We propose thin film equations by the integral method with a simple approach to satisfy the boundary conditions on a disc and a free surface, and the results are compared with those of the Navier-Stokes equations. The radial film velocity is assumed to be a quartic profile in our analysis, whereas it was assumed to be a quadratic one, neglecting the inertia force so that the boundary conditions were not completely satisfied, in the analysis of Sisoev et al (2003 J. Fluid Mech. 229 531-54). The basic flow and its stability are analyzed using the thin film equations even in the region where the inertia force is not negligible. A local stability analysis of the flow is conducted using the linearized disturbance equations and correctly predicts Needham's simple instability criterion. The present thin film equations give a good approximation of the Navier-Stokes equations.

5. Chemical Kinetics in the expansion flow field of a rotating detonation-wave engine

Science.gov (United States)

Kailasanath, Kazhikathra; Schwer, Douglas

2014-11-01

Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. A key step towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release.

6. Three-dimensional analytic probabilities of coupled vibrational-rotational-translational energy transfer for DSMC modeling of nonequilibrium flows

International Nuclear Information System (INIS)

2014-01-01

A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic Oscillator–Free Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes

7. Anisotropic turbulence and zonal jets in rotating flows with a β-effect

Directory of Open Access Journals (Sweden)

B. Galperin

2006-01-01

Full Text Available Numerical studies of small-scale forced, two-dimensional turbulent flows on the surface of a rotating sphere have revealed strong large-scale anisotropization that culminates in the emergence of quasi-steady sets of alternating zonal jets, or zonation. The kinetic energy spectrum of such flows also becomes strongly anisotropic. For the zonal modes, a steep spectral distribution, E(n=CZ (Ω/R2 n-5, is established, where CZ=O(1 is a non-dimensional coefficient, Ω is the angular velocity, and R is the radius of the sphere, respectively. For other, non-zonal modes, the classical, Kolmogorov-Batchelor-Kraichnan, spectral law is preserved. This flow regime, referred to as a zonostrophic regime, appears to have wide applicability to large-scale planetary and terrestrial circulations as long as those are characterized by strong rotation, vertically stable stratification and small Burger numbers. The well-known manifestations of this regime are the banded disks of the outer planets of our Solar System. Relatively less known examples are systems of narrow, subsurface, alternating zonal jets throughout all major oceans discovered in state-of-the-art, eddy-permitting simulations of the general oceanic circulation. Furthermore, laboratory experiments recently conducted using the Coriolis turntable have basically confirmed that the lateral gradient of ''planetary vorticity'' (emulated via the topographic β-effect is the primary cause of the zonation and that the latter is entwined with the development of the strongly anisotropic kinetic energy spectrum that tends to attain the same zonal and non-zonal distributions, −5 and , respectively, in both the slope and the magnitude, as the corresponding spectra in other environmental conditions. The non-dimensional coefficient CZ in the −5 spectral law appears to be invariant, , in a variety of simulated and natural flows. This paper provides a brief review of the zonostrophic regime. The review includes the

8. Flow study in the formatted channel for two disks in rotation; Estudo do escoamento no canal formado por dois discos em rotacao

Energy Technology Data Exchange (ETDEWEB)

Barbosa, Marcos Pinotti

1992-07-01

Flow study in the formatted channel for two disks in rotation is discussed including the following main issues: flow description between disks in rotation; computational model; and numerical results. The parametric studies accomplished of the spacing between disks, of the diameter, and of the rotor angular speed allowed the influence analysis of these variables in the flow inside the channel and in the generated pressure difference. The disks rotation, evaluated through Reynolds' rotational number, is the main parameter that influences the pressure difference between channel entrance and exit. It verified although how much larger the rotation larger the pressure difference.

9. Flow study in the formatted channel for two disks in rotation; Estudo do escoamento no canal formado por dois discos em rotacao

Energy Technology Data Exchange (ETDEWEB)

Barbosa, Marcos Pinotti

1992-07-01

Flow study in the formatted channel for two disks in rotation is discussed including the following main issues: flow description between disks in rotation; computational model; and numerical results. The parametric studies accomplished of the spacing between disks, of the diameter, and of the rotor angular speed allowed the influence analysis of these variables in the flow inside the channel and in the generated pressure difference. The disks rotation, evaluated through Reynolds' rotational number, is the main parameter that influences the pressure difference between channel entrance and exit. It verified although how much larger the rotation larger the pressure difference.

10. One-dimensional analysis of the hydrodynamic and thermal characteristics of thin film flows including the hydraulic jump and rotation

Science.gov (United States)

Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.

1990-01-01

The flow of a thin liquid film with a free surface along a horizontal plane that emanates from a pressurized vessel is examined numerically. In one g, a hydraulic jump was predicted in both plane and radial flow, which could be forced away from the inlet by increasing the inlet Froude number or Reynolds number. In zero g, the hydraulic jump was not predicted. The effect of solid-body rotation for radial flow in one g was to 'wash out' the hydraulic jump and to decrease the film height on the disk. The liquid film heights under one g and zero g were equal under solid-body rotation because the effect of centrifugal force was much greater than that of the gravitational force. The heat transfer to a film on a rotating disk was predicted to be greater than that of a stationary disk because the liquid film is extremely thin and is moving with a very high velocity.

11. Effect of rotating magnetic field on thermocapillary flow stability and the FZ crystal growth on the ground and in space

Science.gov (United States)

Feonychev, A. I.

It is well known that numerous experiments on crystal growth by the Bridgman method in space had met with only limited success. Because of this, only floating zone method is promising at present. However, realization of this method demands solution of some problems, in particular reduction of dopant micro- and macrosegregation. Rotating magnetic field is efficient method for control of flow in electrically conducting fluid and transfer processes. Investigation of rotating magnetic field had initiated in RIAME MAI in 1994 /3/. Results of the last investigations had been presented in /4/. Mathematical model of flow generated by rotating magnetic field and computer program were verified by comparison with experiment in area of developed oscillatory flow. Nonlinear analysis of flow stability under combination of thermocapillary convection and secondary flow generated by rotating magnetic field shows that boundary of transition from laminar to oscillatory flow is nonmonotone function in the plane of Marangoni number (Ma) - combined parameter Reω Ha2 (Ha is Hartman number, Reω is dimensionless velocity of magnetic field rotation). These data give additional knowledge of mechanism of onset of oscillations. In this case, there is reason to believe that the cause is Eckman's viscous stresses in rotating fluid on solid end-walls. It was shown that there is a possibility to increase stability of thermocapillary convection and in doing so to remove the main cause of dopant microsegregation. In doing so, if parameters of rotating magnetic field had been incorrectly chosen the dangerous pulsating oscillations are to develop. Radial macrosegregation of dopant can result from correct choosing of parameters of rotating magnetic field. As example, optimization of rotating magnetic field had been carried out for Ge(Ga) under three values of Marangoni number in weightlessness conditions. In the case when rotating magnetic field is used in terrestrial conditions, under combination of

12. Counter-rotating type axial flow pump unit in turbine mode for micro grid system

International Nuclear Information System (INIS)

Kasahara, R; Takano, G; Komaki, K; Murakami, T; Kanemoto, T

2012-01-01

Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.

13. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

Science.gov (United States)

Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

2017-10-01

Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

14. Methodology of heat transfer and flow resistance measurement for matrices of rotating regenerative heat exchangers

Directory of Open Access Journals (Sweden)

Butrymowicz Dariusz

2016-09-01

Full Text Available The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper. The methodology of this measurement approach dedicated to the matrix of the rotating regenerative gas heater was discussed in detail. The testing stand consisted of a dedicated experimental tunnel with auxiliary equipment and a measurement system are presented. Selected experimental results are presented and discussed for selected types of matrices of regenerative air preheaters for the wide range of Reynolds number of gas. The agreement between the theoretically predicted and measured temperature profiles was demonstrated. The exemplary dimensionless relationships between Colburn heat transfer factor, Darcy flow resistance factor and Reynolds number were presented for the investigated matrices of the regenerative gas heater.

15. Flow and heat transfer over a rotating disk with surface roughness

International Nuclear Information System (INIS)

Yoon, Myung Sup; Hyun, Jae Min; Park, Jun Sang

2007-01-01

A numerical study is made of flow and heat transfer near an infinite disk, which rotates steadily about the longitudinal axis. The surface of the disk is characterized by axisymmetric, sinusoidally-shaped roughness. The representative Reynolds number is large. Numerical solutions are acquired to the governing boundary-layer-type equations. The present numerical results reproduce the previous data for a flat disk. For a wavy surface disk, the radial distributions of local skin friction coefficient and local Nusselt number show double periodicity, which is in accord with the previous results. Physical explanations are provided for this finding. The surface-integrated torque coefficient and average Nusselt number increase as the surface roughness parameter increases. The effect of the Rossby number is also demonstrated

16. Low-density, radiatively inefficient rotating-accretion flow on to a black hole

Science.gov (United States)

Inayoshi, Kohei; Ostriker, Jeremiah P.; Haiman, Zoltán; Kuiper, Rolf

2018-05-01

We study low-density axisymmetric accretion flows on to black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the α-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disc within the Bondi radius (RB), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution around r ˜ RB, where the density follows ρ ∝ (1 + RB/r)3/2, surrounding a geometrically thick and optically thin accretion disc at the centrifugal radius RC(flows (ρ ∝ r-1/2). In the inner solution, the gas inflow rate decreases towards the centre due to convection (\\dot{M}∝ r), and the net accretion rate (including both inflows and outflows) is strongly suppressed by several orders of magnitude from the Bondi accretion rate \\dot{M}_B. The net accretion rate depends on the viscous strength, following \\dot{M}/\\dot{M}_B∝ (α /0.01)^{0.6}. This solution holds for low accretion rates of \\dot{M}_B/\\dot{M}_Edd≲ 10^{-3} having minimal radiation cooling, where \\dot{M}_Edd is the Eddington accretion rate. In a hot plasma at the bottom (r < 10-3 RB), thermal conduction would dominate the convective energy flux. Since suppression of the accretion by convection ceases, the final BH feeding rate is found to be \\dot{M}/\\dot{M}_B˜ 10^{-3}-10-2. This rate is as low as \\dot{M}/\\dot{M}_Edd˜ 10^{-7}-10-6 inferred for SgrA* and the nuclear BHs in M31 and M87, and can explain their low luminosities, without invoking any feedback mechanism.

17. Flow field analysis inside a gas turbine trailing edge cooling channel under static and rotating conditions: Effect of ribs

International Nuclear Information System (INIS)

Mucignat, C.; Armellini, A.; Casarsa, L.

2013-01-01

Highlights: • Detailed PIV and Stereo PIV investigation on a rotating test section. • Static channel: absence of guiding effect for inclined ribs. • Static channel: the ribs influence significantly the flow also at the trailing edge. • Rotating channel: opposite flow features with respect to the static case. • The analyzed flow features justify the previously observed thermal performances. -- Abstract: The present work is part of a wider research program which concerns the aero-thermal characterization of cooling channels for the trailing edge of gas turbine blades. The selected passage model is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. In this contribution, a new channel configuration provided with inclined ribs installed inside the radial development region is analyzed, extending the previous results and completing the already available data base, thus providing an overall review of the aero-thermal performance of the considered passage. The velocity field inside the channel was measured by means of 2D and Stereo-PIV techniques in multiple flow planes under static and rotating conditions. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers. Time averaged flow fields and velocity fluctuation data inside the stationary and rotating channels are analyzed and also critically compared with the data acquired without ribs. In this way the effects on the flow field induced by both rotation and ribs are clearly described. In particular, the ribs modify substantially both the flow field on the channel walls where they are installed and the 3D separation structures that surround the pedestals. If also rotation is taken into account, the relative flow field is characterized by a considerable guiding effect of the ribs coupled

18. A computational procedure to define the incidence angle on airfoils rotating around an axis orthogonal to flow direction

International Nuclear Information System (INIS)

Bianchini, Alessandro; Balduzzi, Francesco; Ferrara, Giovanni; Ferrari, Lorenzo

2016-01-01

Highlights: • New method to calculate the incidence angle from a computed CFD flow field. • Applicable to each airfoil rotating around an axis orthogonal to flow direction. • Composed by four, easily automatable steps explained in details. • Robustness of the model assessed on two Darrieus turbine study cases. - Abstract: Numerical simulations provided in the last few years a significant contribution for a better understanding of many phenomena connected to the flow past rotating blades. In case of airfoils rotating around an axis orthogonal to flow direction, one of the most critical issues is represented by the definition of the incidence angle on the airfoil from the computed flow field. Incidence indeed changes continuously as a function of the azimuthal position of the blade and a distribution of peripheral speed is experienced along the airfoil’s thickness due to radius variation. The possibility of reducing the flow to lumped parameters (relative speed modulus and direction), however, would be of capital relevance to transpose accurate CFD numerical results into effective inputs to low-order models that are often exploited for preliminary design analyses. If several techniques are available for this scope in the case of blades rotating around an axis parallel to flow direction (e.g., horizontal-axis wind turbines), the definition of a robust procedure in case the revolution axis is orthogonal to the flow is still missing. In the study, a novel technique has been developed using data from Darrieus-like rotating airfoils. The method makes use of the virtual camber theory to define a virtual airfoil whose pressure coefficient distributions in straight flow are used to match those of the real airfoil in curved flow. Even if developed originally for vertical-axis wind turbines, the method is of general validity and is thought to represent in the near future a valuable tool for researchers to get a new insight on many complex phenomena connected to flow

19. Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.

Science.gov (United States)

Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A

2013-11-01

This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced

20. Steady flow instability in an annulus with deflectors at rotational vibration

Energy Technology Data Exchange (ETDEWEB)

Kozlov, Nikolai V [Lab. Vibrational Hydromechanics, Perm State-Humanitarian Pedagogical University 24 Sibirskaya av., 614990 Perm (Russian Federation); Pareau, Dominique; Stambouli, Moncef [Lab. Chemical Engineering, CentraleSupélec-Université Paris Saclay, Grande Voie des Vignes, 92295 Châtenay-Malabry (France); Ivantsov, Andrey, E-mail: kozlov.n@icmm.ru [Lab. Computational Hydrodynamics Institute of Continuous Media Mechanics UB RAS1 Acad. Korolev st., 614013 Perm (Russian Federation)

2016-12-15

Experimental study and direct numerical simulation of the dynamics of an isothermal low-viscosity fluid are done in a coaxial gap of a cylindrical container making rotational vibrations relative to its axis. On the inner surface of the outer wall of the container, semicircular deflectors are regularly situated, playing the role of flow activators. As a result of vibrations, the activators oscillate tangentially. In the simulation, a 2D configuration is considered, excluding the end-wall effects. In the experiment, a container with a large aspect ratio is used. Steady streaming is generated in the viscous boundary layers on the activators. On each of the latter, beyond the viscous domain, a symmetric vortices pair is formed. The steady streaming in the annulus has an azimuthal periodicity. With an increase in the vibration intensity, a competition between the vortices occurs, as a result of which one of the vortices (let us call it even) approaches the activator and the other one (odd) rolls away and couples with the vortices from the neighbouring pairs. Streamlines of the odd vortices close on each other, forming a cog-wheel shaped flow that encircles the inner wall. Comparison of the experiment and the simulation reveals an agreement at moderate vibration intensity. (paper)

1. Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing over a Rotating Disk by Integral Method

Science.gov (United States)

Basu, S.; Cetegen, B. M.

2005-01-01

An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.

2. An Analysis of Flow in Rotating Passage of Large Radial-Inlet Centrifugal Compressor at Tip Speed of 700 Feet Per Second

National Research Council Canada - National Science Library

Prian, Vasily

1951-01-01

An analysis was made of the flow in the rotating passages of a 48-inch diameter radial-inlet centrifugal impeller at a tip speed of 700 feet per second in order to provide more knowledge on the flow...

3. Effect of flow rate and disc area increment on the efficiency of rotating biological contactor for treating greywater

International Nuclear Information System (INIS)

Pathan, A.A.

2015-01-01

The performance of greywater treatment through RBC (Rotating Biological Contactor) is related to many factors including rotational speed of disc, surface area of the media, thickness of biological film; quality and flow rate of influent. The plastic media provides surface for biological slime. The slime is rotated alternatively into the settled wastewater and then into atmosphere to provide aerobic conditions for the microorganisms. In this study the performance of RBC is investigated at different flow rates and disk areas of media by introducing additional discs on the shaft of RBC. Initially efficiency of the RBC was observed on six flow rates at the disc area of 9.78m/sup 2/. Furthermore optimized three flow rates were used to augment the disk area. The efficiency of RBC system was improved significantly at disk area of 11.76m/sup 2/ and flow rate of 20 L/h. Under these conditions the removal of BOD5 (Biochemical Oxygen Demand) COD (Chemical Oxygen Demand) and TSS (Total Suspended Solid) was observed 83, 57 and 90% respectively. (author)

4. Axisymmetric flow in a cylindrical tank over a rotating bottom. Part I. Analysis of boundary layers and vertical circulation

Energy Technology Data Exchange (ETDEWEB)

Iga, Keita, E-mail: iga@aori.u-tokyo.ac.jp [Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564 (Japan)

2017-12-15

Axisymmetric flow in a cylindrical tank over a rotating bottom is investigated and its approximate solution with an analytic expression is obtained. The interior region, comprising the majority of the fluid, consists of two sub-regions. It is easily shown that a rigid-body rotational flow with the same rotation rate as that of the bottom is formed in the inner interior and that a potential flow with constant angular momentum occurs in the outer interior sub-region. However, the radius that divides these two sub-regions has not been determined. To determine this radius, the structures of the boundary layers are investigated in detail. These boundary layers surround the interior regions, and include the boundaries between the interior region and the side wall of the tank, between the interior and the bottom, and between the inner and outer interior sub-regions. By connecting the flows in the boundary layers, the vertical circulation as a whole is established, and consequently the radius dividing the two interior sub-regions is successfully determined as a function of the aspect ratio of the water layer region. This axisymmetric flow will be utilized as the basic state for investigating theoretically various non-axisymmetric phenomena observed in laboratory experiments. (paper)

5. Propagation of a cylindrical shock wave in a rotational axisymmetric isothermal flow of a non-ideal gas in magnetogasdynamics

Directory of Open Access Journals (Sweden)

G. Nath

2012-12-01

Full Text Available Self-similar solutions are obtained for unsteady, one-dimensional isothermal flow behind a shock wave in a rotational axisymmetric non-ideal gas in the presence of an azimuthal magnetic field. The shock wave is driven out by a piston moving with time according to power law. The fluid velocities and the azimuthal magnetic field in the ambient medium are assumed to be varying and obeying a power law. The density of the ambient medium is assumed to be constant. The gas is assumed to be non-ideal having infinite electrical conductivity and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars. The effects of the non-idealness of the gas and the Alfven-Mach number on the flow-field are obtained. It is shown that the presence of azimuthal magnetic field and the rotation of the medium has decaying effect on the shock wave. Also, a comparison is made between rotating and non-rotating cases.

6. Counter-Rotatable Fan Gas Turbine Engine with Axial Flow Positive Displacement Worm Gas Generator

Science.gov (United States)

Giffin, Rollin George (Inventor); Murrow, Kurt David (Inventor); Fakunle, Oladapo (Inventor)

2014-01-01

A counter-rotatable fan turbine engine includes a counter-rotatable fan section, a worm gas generator, and a low pressure turbine to power the counter-rotatable fan section. The low pressure turbine maybe counter-rotatable or have a single direction of rotation in which case it powers the counter-rotatable fan section through a gearbox. The gas generator has inner and outer bodies having offset inner and outer axes extending through first, second, and third sections of a core assembly. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes and extending radially outwardly and inwardly respectively. The helical blades have first, second, and third twist slopes in the first, second, and third sections respectively. A combustor section extends through at least a portion of the second section.

7. Hall effects on MHD flow of heat generating/absorbing fluid through porous medium in a rotating parallel plate channel

Science.gov (United States)

Swarnalathamma, B. V.; Krishna, M. Veera

2017-07-01

We studied heat transfer on MHD convective flow of viscous electrically conducting heat generating/absorbing fluid through porous medium in a rotating channel under uniform transverse magnetic field normal to the channel and taking Hall current. The flow is governed by the Brinkman's model. The diagnostic solutions for the velocity and temperature are obtained by perturbation technique and computationally discussed with respect to flow parameters through the graphs. The skin friction and Nusselt number are also evaluated and computationally discussed with reference to pertinent parameters in detail.

8. Numerical research on rotating speed influence and flow state distribution of water-lubricated thrust bearing

International Nuclear Information System (INIS)

Deng Xiao; Deng Liping; Huang Wei

2015-01-01

Water-lubricated thrust bearing is one of the key parts in canned motor pump, for example, the RCP in AP1000, and it functions to balance axial loads. A calculation model which can handle all flow state lubrication performance for water-lubricated thrust bearing has been presented. The model first includes laminar and turbulent Reynolds' equation. Then to get continuous viscosity coefficients cross critical Reynolds number, a transition zone which ranges based on engineering experience is put up, through which Hermite interpolation is employed. The model is numerically solved in finite difference method with uniform grids. To accelerate the calculation process, multigrid method and line relaxation is adopted within the iteration procedure. A medium sized water-lubricated tilting pad thrust bearing is exampled to verify the calculation model. Results suggest that as rotating speed enlarges, lubrication state distribution of the thrust bearing gradually tends to turbulent lubrication from the intersection corner of pad outer diameter and pad inlet to the opposite, minimum water film thickness increases approximately linearly, maximum water film pressure has little change, meanwhile the friction power grows nearly in exponential law which could result in bad effect by yielding much more heat. (author)

9. Effects of Rotation at Different Channel Orientations on the Flow Field inside a Trailing Edge Internal Cooling Channel

Directory of Open Access Journals (Sweden)

Matteo Pascotto

2013-01-01

Full Text Available The flow field inside a cooling channel for the trailing edge of gas turbine blades has been numerically investigated with the aim to highlight the effects of channel rotation and orientation. A commercial 3D RANS solver including a SST turbulence model has been used to compute the isothermal steady air flow inside both static and rotating passages. Simulations were performed at a Reynolds number equal to 20000, a rotation number (Ro of 0, 0.23, and 0.46, and channel orientations of γ=0∘, 22.5°, and 45°, extending previous results towards new engine-like working conditions. The numerical results have been carefully validated against experimental data obtained by the same authors for conditions γ=0∘ and Ro = 0, 0.23. Rotation effects are shown to alter significantly the flow field inside both inlet and trailing edge regions. These effects are attenuated by an increase of the channel orientation from γ=0∘ to 45°.

10. Statistical mechanics and correlation properties of a rotating two-dimensional flow of like-sign vortices

International Nuclear Information System (INIS)

Viecelli, J.A.

1993-01-01

The Hamiltonian flow of a set of point vortices of like sign and strength has a low-temperature phase consisting of a rotating triangular lattice of vortices, and a normal temperature turbulent phase consisting of random clusters of vorticity that orbit about a common center along random tracks. The mean-field flow in the normal temperature phase has similarities with turbulent quasi-two-dimensional rotating laboratory and geophysical flows, whereas the low-temperature phase displays effects associated with quantum fluids. In the normal temperature phase the vortices follow power-law clustering distributions, while in the time domain random interval modulation of the vortex orbit radii fluctuations produces singular fractional exponent power-law low-frequency spectra corresponding to time autocorrelation functions with fractional exponent power-law tails. Enhanced diffusion is present in the turbulent state, whereas in the solid-body rotation state vortices thermally diffuse across the lattice. Over the entire temperature range the interaction energy of a single vortex in the field of the rest of the vortices follows positive temperature Fermi--Dirac statistics, with the zero temperature limit corresponding to the rotating crystal phase, and the infinite temperature limit corresponding to a Maxwellian distribution. Analyses of weather records dependent on the large-scale quasi-two-dimensional atmospheric circulation suggest the presence of singular fractional exponent power-law spectra and fractional exponent power-law autocorrelation tails, consistent with the theory

11. Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium

Directory of Open Access Journals (Sweden)

Nor Athirah Mohd Zin

Full Text Available In this article, the influence of thermal radiation on unsteady magnetohydrodynamics (MHD free convection flow of rotating Jeffrey nanofluid passing through a porous medium is studied. The silver nanoparticles (AgNPs are dispersed in the Kerosene Oil (KO which is chosen as conventional base fluid. Appropriate dimensionless variables are used and the system of equations is transformed into dimensionless form. The resulting problem is solved using the Laplace transform technique. The impact of pertinent parameters including volume fraction Ï, material parameters of Jeffrey fluid Î»1, Î», rotation parameter r, Hartmann number Ha, permeability parameter K, Grashof number Gr, Prandtl number Pr, radiation parameter Rd and dimensionless time t on velocity and temperature profiles are presented graphically with comprehensive discussions. It is observed that, the rotation parameter, due to the Coriolis force, tends to decrease the primary velocity but reverse effect is observed in the secondary velocity. It is also observed that, the Lorentz force retards the fluid flow for both primary and secondary velocities. The expressions for skin friction and Nusselt number are also evaluated for different values of emerging parameters. A comparative study with the existing published work is provided in order to verify the present results. An excellent agreement is found. Keywords: Jeffrey nanofluid, AgNPs, MHD and Porosity, Rotating flow, Laplace transform technique

12. Extension of the flow-rate-of-strain tensor formulation of plasma rotation theory to non-axisymmetric tokamaks

Energy Technology Data Exchange (ETDEWEB)

Stacey, W. M. [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Bae, C. [National Fusion Research Institute, Daejoen (Korea, Republic of)

2015-06-15

A systematic formalism for the calculation of rotation in non-axisymmetric tokamaks with 3D magnetic fields is described. The Braginskii Ωτ-ordered viscous stress tensor formalism, generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry, and the resulting fluid moment equations provide a systematic formalism for the calculation of toroidal and poloidal rotation and radial ion flow in tokamaks in the presence of various non-axisymmetric “neoclassical toroidal viscosity” mechanisms. The relation among rotation velocities, radial ion particle flux, ion orbit loss, and radial electric field is discussed, and the possibility of controlling these quantities by producing externally controllable toroidal and/or poloidal currents in the edge plasma for this purpose is suggested for future investigation.

13. Dynamic Time-Resolved Chirped-Pulse Rotational Spectroscopy of Vinyl Cyanide Photoproducts in a Room Temperature Flow Reactor

Science.gov (United States)

Zaleski, Daniel P.; Prozument, Kirill

2017-06-01

Chirped-pulsed (CP) Fourier transform rotational spectroscopy invented by Brooks Pate and coworkers a decade ago is an attractive tool for gas phase chemical dynamics and kinetics studies. A good reactor for such a purpose would have well-defined (and variable) temperature and pressure conditions to be amenable to accurate kinetic modeling. Furthermore, in low pressure samples with large enough number of molecular emitters, reaction dynamics can be observable directly, rather than mediated by supersonic expansion. In the present work, we are evaluating feasibility of in situ time-resolved CP spectroscopy in a room temperature flow tube reactor. Vinyl cyanide (CH_2CHCN), neat or mixed with inert gasses, flows through the reactor at pressures 1-50 μbar (0.76-38 mTorr) where it is photodissociated by a 193 nm laser. Millimeter-wave beam of the CP spectrometer co-propagates with the laser beam along the reactor tube and interacts with nascent photoproducts. Rotational transitions of HCN, HNC, and HCCCN are detected, with ≥10 μs time-steps for 500 ms following photolysis of CH_2CHCN. The post-photolysis evolution of the photoproducts' rotational line intensities is investigated for the effects of rotational and vibrational thermalization of energized photoproducts. Possible contributions from bimolecular and wall-mediated chemistry are evaluated as well.

14. Flow shear stabilization of rotating plasmas due to the Coriolis effect

NARCIS (Netherlands)

Haverkort, J. W.; de Blank, H. J.

2012-01-01

A radially decreasing toroidal rotation frequency can have a stabilizing effect on nonaxisymmetric magnetohydrodynamic (MHD) instabilities. We show that this is a consequence of the Coriolis effect that induces a restoring pressure gradient force when plasma is perturbed radially. In a rotating

15. Stress analysis of mixing of non-newtonian flows in cylindrical vessel induced by co-rotating stirrers

International Nuclear Information System (INIS)

Memon, R.A.; Solangi, M.A.

2013-01-01

The impacts of rotational velocity and inertia on velocity gradients and stresses are addressed under present study. The non-Newtonian behaviour of inelastic rotating flows is predicted by employing Power law model. A numerical model has been developed for mixing flow within a cylindrical vessel along a couple of stirrers. A time marching FEM (Finite Element Method) is employed to predict the required solution. Predicted solutions are presented for minimum to maximum values in terms of contour plots of velocity gradients and shear stresses, over the range. The long term application of this research will be used to improve the design of mixers and processing products. The predicted results are used to generate the capability and are in good agreement with numerical results to the mixer design that will ultimately effect the processing of dough products. (author)

16. Instabilities and spin-up behaviour of a rotating magnetic field driven flow in a rectangular cavity

Science.gov (United States)

Galindo, V.; Nauber, R.; Räbiger, D.; Franke, S.; Beyer, H.; Büttner, L.; Czarske, J.; Eckert, S.

2017-11-01

This study presents numerical simulations and experiments considering the flow of an electrically conducting fluid inside a cube driven by a rotating magnetic field (RMF). The investigations are focused on the spin-up, where a liquid metal (GaInSn) is suddenly exposed to an azimuthal body force generated by the RMF and the subsequent flow development. The numerical simulations rely on a semi-analytical expression for the induced electromagnetic force density in an electrically conducting medium inside a cuboid container with insulating walls. Velocity distributions in two perpendicular planes are measured using a novel dual-plane, two-component ultrasound array Doppler velocimeter with continuous data streaming, enabling long term measurements for investigating transient flows. This approach allows identifying the main emerging flow modes during the transition from stable to unstable flow regimes with exponentially growing velocity oscillations using the Proper Orthogonal Decomposition method. Characteristic frequencies in the oscillating flow regimes are determined in the super critical range above the critical magnetic Taylor number T ac≈1.26 ×1 05, where the transition from the steady double vortex structure of the secondary flow to an unstable regime with exponentially growing oscillations is detected. The mean flow structures and the temporal evolution of the flow predicted by the numerical simulations and observed in experiments are in very good agreement.

17. Unsteady hydromagnetic free-convection flow with radiative heat transfer in a rotating fluid - I: Incompressible optically thin fluid

International Nuclear Information System (INIS)

1987-11-01

We study the unsteady free convection flow near a moving infinite flat plate in a rotating medium by imposing a time dependent perturbation on a constant plate temperature. The temperatures involved are assumed to be very large so that radiative heat transfer is significant, which renders the problem very nonlinear even on the assumption of a differential approximation for the radiative flux. When the perturbation is small, the transient flow is tackled by the Laplace transform technique. Complete first order solutions are deduced for an impulsive motion. (author). 12 refs, 2 figs

18. Effect of Coriolis and centrifugal forces on flow and heat transfer at high rotation number and high density ratio in non orthogonally internal cooling channel

Directory of Open Access Journals (Sweden)

Brahim Berrabah

2017-02-01

Full Text Available Numerical predictions of three-dimensional flow and heat transfer are performed for a two-pass square channel with 45° staggered ribs in non-orthogonally mode-rotation using the second moment closure model. At Reynolds number of 25,000, the rotation numbers studied were 0, 0.24, 0.35 and 1.00. The density ratios were 0.13, 0.23 and 0.50. The results show that at high buoyancy parameter and high rotation number with a low density ratio, the flow in the first passage is governed by the secondary flow induced by the rotation whereas the secondary flow induced by the skewed ribs was almost distorted. As a result the heat transfer rate is enhanced on both co-trailing and co-leading sides compared to low and medium rotation number. In contrast, for the second passage, the rotation slightly reduces the heat transfer rate on co-leading side at high rotation number with a low density ratio and degrades it significantly on both co-trailing and co-leading sides at high buoyancy parameter compared to the stationary, low and medium rotation numbers. The numerical results are in fair agreement with available experimental data in the bend region and the second passage, while in the first passage were overestimated at low and medium rotation numbers.

19. Chemical reaction effects on unsteady MHD free convective flow in a rotating porous medium with mass transfer

Directory of Open Access Journals (Sweden)

Govindarajan Arunachalam

2014-01-01

Full Text Available An investigation of unsteady MHD free convective flow and mass transfer during the motion of a viscous incompressible fluid through a porous medium, bounded by an infinite vertical porous surface, in a rotating system is presented. The porous plane surface and the porous medium are assumed to rotate in a solid body rotation. The vertical surface is subjected to uniform constant suction perpendicular to it and the temperature at this surface fluctuates in time about a non-zero constant mean. Analytical expressions for the velocity, temperature and concentration fields are obtained using the perturbation technique. The effects of R (rotation parameter, k0 (permeability parameter, M (Hartmann number and w (frequency parameter on the flow characteristics are discussed. It is observed that the primary velocity component decreases with the increase in either of the rotation parameter R, the permeability parameter k0, or the Hartmann number M. It is also noted that the primary skin friction increases whenever there is an increase in the Grashof number Gr or the modified Grashof number Gm. It is clear that the heat transfer coefficient in terms of the Nusselt number decreases in the case of both air and water when there is an increase in the Hartmann number M. It is observed that the magnitude of the secondary velocity profiles increases whenever there is an increase in either of the Grashof number or the modified Grashof number for mass transfer or the permeability of the porous media. Concentration profiles decreases with an increase in the Schmidt number.

20. Breakdown of the large-scale circulation in Γ=1/2 rotating Rayleigh-Bénard flow.

Science.gov (United States)

Stevens, Richard J A M; Clercx, Herman J H; Lohse, Detlef

2012-11-01

Experiments and simulations of rotating Rayleigh-Bénard convection in cylindrical samples have revealed an increase in heat transport with increasing rotation rate. This heat transport enhancement is intimately related to a transition in the turbulent flow structure from a regime dominated by a large-scale circulation (LSC), consisting of a single convection roll, at no or weak rotation to a regime dominated by vertically aligned vortices at strong rotation. For a sample with an aspect ratio Γ=D/L=1 (D is the sample diameter and L is its height) the transition between the two regimes is indicated by a strong decrease in the LSC strength. In contrast, for Γ=1/2, Weiss and Ahlers [J. Fluid Mech. 688, 461 (2011)] revealed the presence of a LSC-like sidewall temperature signature beyond the critical rotation rate. They suggested that this might be due to the formation of a two-vortex state, in which one vortex extends vertically from the bottom into the sample interior and brings up warm fluid while another vortex brings down cold fluid from the top; this flow field would yield a sidewall temperature signature similar to that of the LSC. Here we show by direct numerical simulations for Γ=1/2 and parameters that allow direct comparison with experiment that the spatial organization of the vertically aligned vortical structures in the convection cell do indeed yield (for the time average) a sinusoidal variation of the temperature near the sidewall, as found in the experiment. This is also the essential and nontrivial difference with the Γ=1 sample, where the vertically aligned vortices are distributed randomly.

1. von Kármán swirling flow between a rotating and a stationary smooth disk: Experiment

Science.gov (United States)

Mukherjee, Aryesh; Steinberg, Victor

2018-01-01

Precise measurements of the torque in a von Kármán swirling flow between a rotating and a stationary smooth disk in three Newtonian fluids with different dynamic viscosities are reported. From these measurements the dependence of the normalized torque, called the friction coefficient, on Re is found to be of the form Cf=1.17 (±0.03 ) Re-0.46±0.003 where the scaling exponent and coefficient are close to that predicted theoretically for an infinite, unshrouded, and smooth rotating disk which follows from an exact similarity solution of the Navier-Stokes equations, obtained by von Kármán. An error analysis shows that deviations from the theory can be partially caused by background errors. Measurements of the azimuthal Vθ and axial velocity profiles along radial and axial directions reveal that the flow core rotates at Vθ/r Ω ≃0.22 (up to z ≈4 cm from the rotating disk and up to r0/R ≃0.25 in the radial direction) in spite of the small aspect ratio of the vessel. Thus the friction coefficient shows scaling close to that obtained from the von Kármán exact similarity solution, but the observed rotating core provides evidence of the Batchelor-like solution [Q. J. Mech. Appl. Math. 4, 29 (1951), 10.1093/qjmam/4.1.29] different from the von Kármán [Z. Angew. Math. Mech. 1, 233 (1921), 10.1002/zamm.19210010401] or Stewartson [Proc. Camb. Philos. Soc. 49, 333 (1953), 10.1017/S0305004100028437] one.

2. Direct numerical simulation of rotating fluid flow in a closed cylinder

DEFF Research Database (Denmark)

Sørensen, Jens Nørkær; Christensen, Erik Adler

1995-01-01

, is validated against experimental visualizations of both transient and stable periodic flows. The complexity of the flow problem is illuminated numerically by injecting flow tracers into the flow domain and following their evolution in time. The vortex dynamics appears as stretching, folding and squeezing...

3. Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows

Science.gov (United States)

Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai

2016-09-01

We report results from a series of three-dimensional (3D) rotational core-collapse simulations for 11.2 and 27 M⊙ stars employing neutrino transport scheme by the isotropic diffusion source approximation. By changing the initial strength of rotation systematically, we find a rotation-assisted explosion for the 27 M⊙ progenitor , which fails in the absence of rotation. The unique feature was not captured in previous two-dimensional (2D) self-consistent rotating models because the growing non-axisymmetric instabilities play a key role. In the rapidly rotating case, strong spiral flows generated by the so-called low T/|W| instability enhance the energy transport from the proto-neutron star (PNS) to the gain region, which makes the shock expansion more energetic. The explosion occurs more strongly in the direction perpendicular to the rotational axis, which is different from previous 2D predictions.

4. Partial slip effect in flow of magnetite-Fe{sub 3}O{sub 4} nanoparticles between rotating stretchable disks

Energy Technology Data Exchange (ETDEWEB)

Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Qayyum, Sumaira [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Imtiaz, Maria, E-mail: mi_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alzahrani, Faris; Alsaedi, Ahmed [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

2016-09-01

This paper addresses the flow of magnetic nanofluid (ferrofluid) between two parallel rotating stretchable disks with different rotating and stretching velocities. Water based fluid comprising magnetite-Fe{sub 3}O{sub 4} nanoparticles is addressed. Velocity slip and temperature jump at solid–fluid interface are also taken into account. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are obtained. Effects of various pertinent parameters on the velocity and temperature profiles are shown and evaluated. Computations for skin friction coefficient and Nusselt number are presented and examined for the influence of involved parameters. It is noted that tangential velocity of fluid decreases for larger velocity slip parameter. Fluid temperature also reduces for increasing value of thermal slip parameter. Surface drag force and heat transfer rate at lower disk are enhanced when magnetic field strength is increased. - Highlights: • Flow and heat transfer of ferrofluid induced by two stretchable rotating disks with velocity and thermal slips are explored. • Fluid temperature increases for larger solid volume fraction of nanofluid. • Heat transfer rate decreases for increasing values of thermal slip parameter.

5. Rotation and Radiation Effects on MHD Flow through Porous Medium Past a Vertical Plate with Heat and Mass Transfer

Directory of Open Access Journals (Sweden)

Uday Singh Rajput

2017-11-01

Full Text Available Effects of rotation and radiation on unsteady MHD flow past a vertical plate with variable wall temperature and mass diffusion in the presence of Hall current is studied here. Earlier we studied chemical reaction effect on unsteady MHD flow past an exponentially accelerated inclined plate with variable temperature and mass diffusion in the presence of Hall current. We had obtained the results which were in agreement with the desired flow phenomenon. To study further, we are changing the model by considering radiation effect on fluid, and changing the geometry of the model. Here in this paper we are taking the plate positioned vertically upward and rotating with velocity Ω . Further, medium of the flow is taken as porous. The plate temperature and the concentration level near the plate increase linearly with time. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations under consideration have been solved by Laplace transform technique. The model contains equations of motion, diffusion equation and equation of energy. To analyze the solution of the model, desirable sets of the values of the parameters have been considered. The governing equations involved in the flow model are solved by the Laplace-transform technique. The results obtained have been analyzed with the help of graphs drawn for different parameters. The numerical values obtained for the drag at boundary and Nusselt number have been tabulated. We found that the values obtained for velocity, concentration and temperature are in concurrence with the actual flow of the fluid

6. Hall current and Joule heating effects on peristaltic flow of viscous fluid in a rotating channel with convective boundary conditions

Directory of Open Access Journals (Sweden)

Tasawar Hayat

Full Text Available The present article has been arranged to study the Hall current and Joule heating effects on peristaltic flow of viscous fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Convective conditions for heat transfer in the formulation are adopted. Viscous dissipation in energy expression is taken into account. Resulting differential systems after invoking small Reynolds number and long wavelength considerations are numerically solved. Runge-Kutta scheme of order four is implemented for the results of axial and secondary velocities, temperature and heat transfer coefficient. Comparison with previous limiting studies is shown. Outcome of new parameters of interest is analyzed. Keywords: Rotating frame, Hall current, Joule heating, Convective conditions, Wall properties

7. Flow curves of Sn and Sn-3.5Ag obtained by rotational viscometry using a stainless steel cone

International Nuclear Information System (INIS)

Yamazaki, Takahisa; Oishi, Shinya; Gamou, Hirosato; Ikeshoji, Toshi-Taka; Suzumura, Akio

2014-01-01

Corrosion of stainless steel in a flow soldering bath by a lead-free solder was investigated using a cone-plate-type rotational viscometer. The rotational torque of the stainless-steel cone in contact with a molten solder was measured at various shear rates. The delicate measured torque was related to the change of the viscosity of the solder owing to dissolution of materials originating from the cone. The estimated viscosity coefficient was ten times greater than the values which have been reported. The result was attributed to the tin content of the solder combined with oxygen from the passive state oxide film on the cone surface. The increase of the viscosity of the silver-containing solder was much greater than in case of pure Sn

8. Numerical simulation of the combination effect of external magnetic field and rotating workpiece on abrasive flow finishing

Energy Technology Data Exchange (ETDEWEB)

Kheradmand, Saeid; Esmailian, Mojtaba; Fatahy, A. [Malek-Ashtar University of Technology (MUT), Isfahan (Iran, Islamic Republic of)

2017-04-15

Finishing of a workpiece is a main process in the production. This affects the quality and lifetime. Finishing in order of nanometer, nowadays, is a main demand of the industries. Thus, some new finishing process, such as abrasive flow finishing, is introduced to respond this demand. This may be aided by rotating workpiece and imposing a magnetic field. Numerical simulation of this process can be beneficial to reduce the expense and predict the result in a minimum time. Accordingly, in this study, magnetorheological fluid finishing is numerically simulated. The working medium contains magnetic and abrasive particles, blended in a base fluid. Some hydrodynamic parameters and surface roughness variations are studied. It is found that combination of rotating a workpiece and imposing a magnetic field can improve the surface roughness up to 15 percent.

9. Scaling relations for plasma production and acceleration of rotating plasma flows

International Nuclear Information System (INIS)

Ikehata, Takashi; Tanabe, Toshio; Mase, Hiroshi; Sekine, Ryusuke; Hasegawa, Kazuyuki.

1989-01-01

Scaling relations are investigated theoretically and experimentally of the plasma production and acceleration in the rotating plasma gun which has been developed as a new means of plasma centrifuge. Two operational modes: the gas-discharge mode for gaseous elements and the vacuum-discharge mode for solid elements are studied. Relations of the plasma density and velocities to the discharge current and the magnetic field are derived. The agreement between experiment and theory is quite well. It is found that fully-ionized rotating plasmas produced in the gas-discharge mode is most advantageous to realize efficient plasma centrifuge. (author)

10. Large-Scale Flows and Magnetic Fields Produced by Rotating Convection in a Quasi-Geostrophic Model of Planetary Cores

Science.gov (United States)

Guervilly, C.; Cardin, P.

2017-12-01

Convection is the main heat transport process in the liquid cores of planets. The convective flows are thought to be turbulent and constrained by rotation (corresponding to high Reynolds numbers Re and low Rossby numbers Ro). Under these conditions, and in the absence of magnetic fields, the convective flows can produce coherent Reynolds stresses that drive persistent large-scale zonal flows. The formation of large-scale flows has crucial implications for the thermal evolution of planets and the generation of large-scale magnetic fields. In this work, we explore this problem with numerical simulations using a quasi-geostrophic approximation to model convective and zonal flows at Re 104 and Ro 10-4 for Prandtl numbers relevant for liquid metals (Pr 0.1). The formation of intense multiple zonal jets strongly affects the convective heat transport, leading to the formation of a mean temperature staircase. We also study the generation of magnetic fields by the quasi-geostrophic flows at low magnetic Prandtl numbers.

11. Flow shear stabilization of rotating plasmas due to the Coriolis effect

NARCIS (Netherlands)

J.W. Haverkort (Willem); H.J. de Blank

2012-01-01

htmlabstractA radially decreasing toroidal rotation frequency can have a stabilizing effect on nonaxisymmetric magnetohydrodynamic (MHD) instabilities. We show that this is a consequence of the Coriolis effect that induces a restoring pressure gradient force when plasma is perturbed radially. In a

12. On the relative rotational motion between rigid fibers and fluid in turbulent channel flow

Energy Technology Data Exchange (ETDEWEB)

Marchioli, C. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Zhao, L., E-mail: lihao.zhao@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Andersson, H. I. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway)

2016-01-15

In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin show that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)

13. Unsteady hydromagnetic free-convection flow with radiative heat transfer in a rotating fluid of arbitrary optical thickness

International Nuclear Information System (INIS)

1987-11-01

This paper investigates transient effect on the flow of a thermally radiating and electrically conducting compressible gas in a rotating medium bounded by a vertical flat plate. The transience is provoked by a time dependent perturbation on a constant plate temperature. The problem particularly focusses on an optically thick gas and a gas of arbitrary optical thickness when the difference between the wall and free stream temperatures is small. Analytical results are possible only for limiting values of time and these results are discussed quantitatively. Indeed the assumption of small temperature difference is more appropriate for plates which are opaque rather than transparent. (author). 3 refs

14. Modeling Chemically Reactive Flow of Sutterby Nanofluid by a Rotating Disk in Presence of Heat Generation/Absorption

Science.gov (United States)

Hayat, T.; Ahmad, Salman; Ijaz Khan, M.; Alsaedi, A.

2018-05-01

In this article we investigate the flow of Sutterby liquid due to rotating stretchable disk. Mass and heat transport are analyzed through Brownian diffusion and thermophoresis. Further the effects of magnetic field, chemical reaction and heat source are also accounted. We employ transformation procedure to obtain a system of nonlinear ODE’s. This system is numerically solved by Built-in-Shooting method. Impacts of different involved parameter on velocity, temperature and concentration are described. Velocity, concentration and temperature gradients are numerically computed. Obtained results show that velocity is reduced through material parameter. Temperature and concentration are enhanced with thermophoresis parameter.

15. Modeling and analyzing flow of third grade nanofluid due to rotating stretchable disk with chemical reaction and heat source

Science.gov (United States)

Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.

2018-05-01

This article addresses flow of third grade nanofluid due to stretchable rotating disk. Mass and heat transports are analyzed through thermophoresis and Brownian movement effects. Further the effects of heat generation and chemical reaction are also accounted. The obtained ODE's are tackled computationally by means of homotopy analysis method. Graphical outcomes are analyzed for the effects of different variables. The obtained results show that velocity reduces through Reynolds number and material parameters. Temperature and concentration increase with Brownian motion and these decrease by Reynolds number.

16. The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

Science.gov (United States)

Chashechkin, Yu. D.; Bardakov, R. N.

2018-02-01

By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.

17. Effect of pool rotation on three-dimensional flow in a shallow annular pool of silicon melt with bidirectional temperature gradients

Energy Technology Data Exchange (ETDEWEB)

Zhang, Quan-Zhuang; Peng, Lan; Liu, Jia [Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, College of Power Engineering, Chongqing University, Chongqing, 400044 (China); Wang, Fei, E-mail: penglan@cqu.edu.cn [Chongqing Special Equipment Inspection and Research Institute, Chongqing, 401121 (China)

2016-08-15

18. A SOLAR TORNADO OBSERVED BY AIA/SDO: ROTATIONAL FLOW AND EVOLUTION OF MAGNETIC HELICITY IN A PROMINENCE AND CAVITY

Energy Technology Data Exchange (ETDEWEB)

Li, Xing; Morgan, Huw; Leonard, Drew; Jeska, Lauren, E-mail: xxl@aber.ac.uk [Sefydliad Mathemateg a Ffiseg, Prifysgol Aberystwyth, Ceredigion, Cymru SY23 3BZ (United Kingdom)

2012-06-20

During 2011 September 24, as observed by the Atmospheric Imaging Assembly instrument of the Solar Dynamic Observatory and ground-based H{alpha} telescopes, a prominence and associated cavity appeared above the southwest limb. On 2011 September 25 8:00 UT, material flows upward from the prominence core along a narrow loop-like structure, accompanied by a rise ({>=}50,000 km) of the prominence core and the loop. As the loop fades by 10:00, small blobs and streaks of varying brightness rotate around the top part of the prominence and cavity, mimicking a cyclone. The most intense and coherent rotation lasts for over three hours, with emission in both hot ({approx}1 MK) and cold (hydrogen and helium) lines. We suggest that the cyclonic appearance and overall evolution of the structure can be interpreted in terms of the expansion of helical structures into the cavity, and the movement of plasma along helical structures which appears as a rotation when viewed along the helix axis. The coordinated movement of material between prominence and cavity suggests that they are structurally linked. Complexity is great due to the combined effect of these actions and the line-of-sight integration through the structure which contains tangled fields.

19. Computational manipulation of a radiative MHD flow with Hall current and chemical reaction in the presence of rotating fluid

Science.gov (United States)

Alias Suba, Subbu; Muthucumaraswamy, R.

2018-04-01

A numerical analysis of transient radiative MHD(MagnetoHydroDynamic) natural convective flow of a viscous, incompressible, electrically conducting and rotating fluid along a semi-infinite isothermal vertical plate is carried out taking into consideration Hall current, rotation and first order chemical reaction.The coupled non-linear partial differential equations are expressed in difference form using implicit finite difference scheme. The difference equations are then reduced to a system of linear algebraic equations with a tri-diagonal structure which is solved by Thomas Algorithm. The primary and secondary velocity profiles, temperature profile, concentration profile, skin friction, Nusselt number and Sherwood Number are depicted graphically for a range of values of rotation parameter, Hall parameter,magnetic parameter, chemical reaction parameter, radiation parameter, Prandtl number and Schmidt number.It is recognized that rate of heat transfer and rate of mass transfer decrease with increase in time but they increase with increasing values of radiation parameter and Schmidt number respectively.

20. Numerical Simulation of Turbulent Fluid Flow and Heat Transfer in a Ribbed Rotating Two-Pass Square Duct

Directory of Open Access Journals (Sweden)

Liou Tong-Miin

2005-01-01

Full Text Available The local turbulent fluid flow and heat transfer in a rotating two-pass square duct with 19 pairs of in-line 90 ∘ ribs have been investigated computationally. A Reynolds-averaged Navier-Stokes equation (RANS with a two-layer k − ϵ turbulence model was solved. The in-line 90 ∘ ribs were arranged on the leading and trailing walls with rib height-to-hydraulic diameter ratio and pitch-to-height ratio of 0.136 and 10, respectively. The Reynolds number, based on duct hydraulic diameter and bulk mean velocity, was fixed at 1.0 × 10 4 whereas the rotational number varied from 0 to 0.2 . Results are validated with previous measured velocity field and heat transfer coefficient distributions. The validation shows that the effect of rotation on the passage-averaged Nusselt number ratio can be predicted reasonably well; nevertheless, the transverse mean velocity and, in turn, the distribution of regional-averaged Nusselt number ratio are markedly underpredicted in the regions toward which the Coriolis force is directed. Further CFD studies are needed.

1. Comprehensive Study of the Flow Control Strategy in a Wirelessly Charged Centrifugal Microfluidic Platform with Two Rotation Axes.

Science.gov (United States)

Zhu, Yunzeng; Chen, Yiqi; Meng, Xiangrui; Wang, Jing; Lu, Ying; Xu, Youchun; Cheng, Jing

2017-09-05

Centrifugal microfluidics has been widely applied in the sample-in-answer-out systems for the analyses of nucleic acids, proteins, and small molecules. However, the inherent characteristic of unidirectional fluid propulsion limits the flexibility of these fluidic chips. Providing an extra degree of freedom to allow the unconstrained and reversible pumping of liquid is an effective strategy to address this limitation. In this study, a wirelessly charged centrifugal microfluidic platform with two rotation axes has been constructed and the flow control strategy in such platform with two degrees of freedom was comprehensively studied for the first time. Inductively coupled coils are installed on the platform to achieve wireless power transfer to the spinning stage. A micro servo motor is mounted on both sides of the stage to alter the orientation of the device around a secondary rotation axis on demand during stage rotation. The basic liquid operations on this platform, including directional transport of liquid, valving, metering, and mixing, are comprehensively studied and realized. Finally, a chip for the simultaneous determination of hexavalent chromium [Cr(VI)] and methanal in water samples is designed and tested based on the strategy presented in this paper, demonstrating the potential use of this platform for on-site environmental monitoring, food safety testing, and other life science applications.

2. MHD Mixed Convection Flow in a Rotating Channel in the Presence of an Inclined Magnetic Field with the Hall Effect

Science.gov (United States)

Mishra, A.; Sharma, B. K.

2017-11-01

A numerical study of an oscillatory unsteady MHD flow and heat and mass transfer in a vertical rotating channel with an inclined uniform magnetic field and the Hall effect is carried out. The conservation equations of momentum, energy, and species are formulated in a rotating frame of reference with inclusion of the buoyancy effects and Lorentz forces. The Lorentz forces are determined by using the generalized Ohm law with the Hall parameter taken into account. The obtained coupled partial differential equations are nondimensionalized and solved numerically by using the explicit finite difference method. The effects of various model parameters, like the Hall parameter, Hartmann number, wall suction/injection parameter, rotation parameter, angle of magnetic field inclination, Prandtl number, Schmidt number, etc., on the channel velocities, skin friction coefficients, Nusselt number, and the Sherwood number are examined. It is found that the influence of the Hartmann number and Hall parameter on the channel velocities and skin friction coefficients is dependent on the value of the wall suction/injection parameter.

3. Framing the features of Brownian motion and thermophoresis on radiative nanofluid flow past a rotating stretching sheet with magnetohydrodynamics

Directory of Open Access Journals (Sweden)

F. Mabood

Full Text Available This article addresses the combined effects of chemical reaction and viscous dissipation on MHD radiative heat and mass transfer of nanofluid flow over a rotating stretching surface. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis in the presence of heat source. Similarity transformation variables have been used to model the governing equations of momentum, energy, and nanoparticles concentration. Runge-Kutta-Fehlberg method with shooting technique is applied to solve the resulting coupled ordinary differential equations. Physical features for all pertinent parameters on the dimensionless velocity, temperature, skin friction coefficient, and heat and mass transfer rates are analyzed graphically. The numerical comparison has also presented for skin friction coefficient and local Nusselt number as a special case for our study. It is noted that fluid velocity enhances when rotational parameter is increased. Surface heat transfer rate enhances for larger values of Prandtl number and heat source parameter while mass transfer rate increases for larger values of chemical reaction parameter. Keywords: Nanofluid, MHD, Chemical reaction, Rotating stretching sheet, Radiation

4. An efficient numerical technique for solving navier-stokes equations for rotating flows

International Nuclear Information System (INIS)

Haroon, T.; Shah, T.M.

2000-01-01

This paper simulates an industrial problem by solving compressible Navier-Stokes equations. The time-consuming tri-angularization process of a large-banded matrix, performed by memory economical Frontal Technique. This scheme successfully reduces the time for I/O operations even for as large as (40, 000 x 40, 000) matrix. Previously, this industrial problem can solved by using modified Newton's method with Gaussian elimination technique for the large matrix. In the present paper, the proposed Frontal Technique is successfully used, together with Newton's method, to solve compressible Navier-Stokes equations for rotating cylinders. By using the Frontal Technique, the method gives the solution within reasonably acceptance computational time. Results are compared with the earlier works done, and found computationally very efficient. Some features of the solution are reported here for the rotating machines. (author)

5. Numerical study of swirling flow in a cylinder with rotating top and bottom

DEFF Research Database (Denmark)

Shen, Wen Zhong; Sørensen, Jens Nørkær; Michelsen, Jess

2006-01-01

(xi=Omega(bottom)/Omega(top)). Earlier linear stability analysis (LSA) using the Galerkin spectral method by Gelfgat [Phys. Fluids, 8, 2614 (1996)] revealed that the curve of the critical Reynolds number behaves like an "S" around xi=0.54 in the co-rotation branch and around xi=-0.63 in the counter...... that the S shape does exist. The S shape of the stability diagram predicted by LSA is thus confirmed by a finite-volume based Navier-Stokes solver. The additional computations at aspect ratio lambda=2 show that the curve of critical Reynolds number has a wider S shape in the co-rotating branch for xi about 0.7...

6. Linearized stationary incompressible flow around rotating and translating bodies- Leray solution

Czech Academy of Sciences Publication Activity Database

Deuring, P.; Kračmar, S.; Nečasová, Šárka

2014-01-01

Roč. 7, č. 5 (2014), s. 967-979 ISSN 1937-1632 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : stationary Oseen problem * rotating body * Leray solution Subject RIV: BA - General Mathematics Impact factor: 0.567, year: 2014 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=9874

7. Pointwise decay of stationary rotational viscous incompressible flows with nonzero velocity at infinity

Czech Academy of Sciences Publication Activity Database

Deuring, P.; Kračmar, S.; Nečasová, Šárka

2013-01-01

Roč. 255, č. 7 (2013), s. 1576-1606 ISSN 0022-0396 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : stationary incompressible Navier-Stokes system * rotating body * fundamental solution Subject RIV: BA - General Mathematics Impact factor: 1.570, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022039613002106

8. Flow-driven simulation on variation diameter of counter rotating wind turbines rotor

Directory of Open Access Journals (Sweden)

Littik Y. Fredrika

2018-01-01

Full Text Available Wind turbines model in this paper developed from horizontal axis wind turbine propeller with single rotor (HAWT. This research aims to investigating the influence of front rotor diameter variation (D1 with rear rotor (D2 to the angular velocity optimal (ω and tip speed ratio (TSR on counter rotating wind turbines (CRWT. The method used transient 3D simulation with computational fluid dynamics (CFD to perform the aerodynamics characteristic of rotor wind turbines. The counter rotating wind turbines (CRWT is designed with front rotor diameter of 0.23 m and rear rotor diameter of 0.40 m. In this research, the wind velocity is 4.2 m/s and variation ratio between front rotor and rear rotor (D1/D2 are 0.65; 0.80; 1.20; 1.40; and 1.60 with axial distance (Z/D2 0.20 m. The result of this research indicated that the variation diameter on front rotor influence the aerodynamics performance of counter rotating wind turbines.

9. Research of working pulsation in closed angle based on rotating-sleeve distributing-flow system

Science.gov (United States)

Zhang, Yanjun; Zhang, Hongxin; Zhao, Qinghai; Jiang, Xiaotian; Cheng, Qianchang

2017-08-01

In order to reduce negative effects including hydraulic impact, noise and mechanical vibration, compression and expansion of piston pump in closed volume are used to optimize the angle between valve port and chamber. In addition, the mathematical model about pressurization and depressurization in pump chamber are analyzed based on distributing-flow characteristic, and it is necessary to use simulation software Fluent to simulate the distributing-flow fluid model so as to select the most suitable closed angle. As a result, when compression angle is 3°, the angle is closest to theoretical analysis and has the minimum influence on flow and pump pressure characteristic. Meanwhile, cavitation phenomenon appears in pump chamber in different closed angle on different degrees. Besides the flow pulsation is increasingly smaller with increasing expansion angle. Thus when expansion angle is 2°, the angle is more suitable for distributing-flow system.

10. Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density.

Science.gov (United States)

Nath, G; Sahu, P K

2016-01-01

11. Rotation profile flattening and toroidal flow shear reversal due to the coupling of magnetic islands in tokamaks

Energy Technology Data Exchange (ETDEWEB)

Tobias, B.; Grierson, B. A.; Okabayashi, M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Chen, M.; Domier, C. W.; Luhmann, N. C.; Muscatello, C. M. [University of California at Davis, Davis, California 95616 (United States); Classen, I. G. J. [Dutch Institute for Fundamental Fusion Energy Research, DIFFER, Rhinjuizen (Netherlands); Fitzpatrick, R. [University of Texas at Austin, Austin, Texas 78705 (United States); Olofsson, K. E. J.; Paz-Soldan, C. [General Atomics, San Diego, California 92121 (United States)

2016-05-15

The electromagnetic coupling of helical modes, even those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. With increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lock to each other without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q{sub 95}, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. The additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor—a key issue for ITER.

12. Regional cerebral blood flow measurement using N-isopropyl-p-[123I] iodoamphetamine and rotating gamma camera emission computed tomography

International Nuclear Information System (INIS)

Matsuda, Hiroshi; Seki, Hiroyasu; Ishida, Hiroko

1985-01-01

Thirty-one regional cerebral blood flow (rCBF) measurements were performed on 26 patients with cerebrovascular accidents using N-Isopropyl-p-[ 123 I] Iodoamphetamine ( 123 I-IMP) and rotating gamma camera emission computed tomography (ECT). The equation for determining rCBF is as follows: F=100.R.Cb/(N.A), where F is rCBF in ml/100 g/min., R is the constant withdrawal rate of arterial blood in ml/min., Cb is the brain activity concentration in μCi/g, A is the total activity (5 min.) in the withdrawal arterial whole blood in μCi and N is the fraction of A that is true tracer activity (0.75). In determining Cb at 5 min. after injection, reconstructed counts from 35 min. to 59 min. were corrected to represent those from 4 min. to 5 min. with the use of time activity curve for the entire brain immediately after injection to 30 min. Reconstructed counts of central region in tomographic image were corrected 118% of the obtained values from the result of the countingrate ratio between peripheral and central regions of interests obtained from phantom study. Brain mean blood flow values were distributed from 11 to 39 ml/100 g/min. In 119 cortical regions obtained from 11 measurements in 9 patients, there was a significant correlation (r=0.41, p 123 I-IMP and rotating gamma camera ECT and those from 133 Xe inhalation method. rCBF measurement using 123 I-IMP and rotating gamma camera ECT is not only relatively noninvasive measurement for the entire brain but also three-dimensional evaluation. Besides, it is superior in spatial resolution and accuracy to conventional 133 Xe clearance method. (author)

13. Baroclinic instability of a symmetric, rotating, stratified flow: a study of the nonlinear stabilisation mechanisms in the presence of viscosity

Directory of Open Access Journals (Sweden)

R. Mantovani

2002-01-01

Full Text Available This paper presents the analysis of symmetric circulations of a rotating baroclinic flow, forced by a steady thermal wind and dissipated by Laplacian friction. The analysis is performed with numerical time-integration. Symmetric flows, vertically bound by horizontal walls and subject to either periodic or vertical wall lateral boundary conditions, are investigated in the region of parameter-space where unstable small amplitude modes evolve into stable stationary nonlinear solutions. The distribution of solutions in parameter-space is analysed up to the threshold of chaotic behaviour and the physical nature of the nonlinear interaction operating on the finite amplitude unstable modes is investigated. In particular, analysis of time-dependent energy-conversions allows understanding of the physical mechanisms operating from the initial phase of linear instability to the finite amplitude stable state. Vertical shear of the basic flow is shown to play a direct role in injecting energy into symmetric flow since the stage of linear growth. Dissipation proves essential not only in limiting the energy of linearly unstable modes, but also in selecting their dominant space-scales in the finite amplitude stage.

14. Rotating Turbulent Flow Simulation with LES and Vreman Subgrid-Scale Models in Complex Geometries

Directory of Open Access Journals (Sweden)

Tao Guo

2014-07-01

Full Text Available The large eddy simulation (LES method based on Vreman subgrid-scale model and SIMPIEC algorithm were applied to accurately capture the flowing character in Francis turbine passage under the small opening condition. The methodology proposed is effective to understand the flow structure well. It overcomes the limitation of eddy-viscosity model which is excessive, dissipative. Distributions of pressure, velocity, and vorticity as well as some special flow structure in guide vane near-wall zones and blade passage were gained. The results show that the tangential velocity component of fluid has absolute superiority under small opening condition. This situation aggravates the impact between the wake vortices that shed from guide vanes. The critical influence on the balance of unit by spiral vortex in blade passage and the nonuniform flow around guide vane, combined with the transmitting of stress wave, has been confirmed.

15. Hall effects on hydromagnetic Couette flow of Class-II in a rotating ...

African Journals Online (AJOL)

International Journal of Engineering, Science and Technology ... Couette flow of class-II of a viscous, incompressible and electrically conducting fluid with ... Numerical solution of energy equation and numerical values of rate of heat transfer at ...

16. Numerical analysis of the thermally induced flow in a strongly rotating gas centrifuge

Energy Technology Data Exchange (ETDEWEB)

Novelli, P.

1982-04-01

The present work is concerned with the numerical analysis of the thermally induced flow in a rapidly gas centrifuge. The primary purpose for this work is to investigate the dependence of the flow field on the thermal boundary conditions, angular speed, aspect ratio of the cylinder, holdup. Some of our results are compared with the predictions of asymptotic theories, particularly those of Sakurai-Mtsuda and Brouwers, and with the numerical results of Dickinson-Jones.

17. A general theory of two- and three-dimensional rotational flow in subsonic and transonic turbomachines

Science.gov (United States)

Wu, Chung-Hua

1993-01-01

This report represents a general theory applicable to axial, radial, and mixed flow turbomachines operating at subsonic and supersonic speeds with a finite number of blades of finite thickness. References reflect the evolution of computational methods used, from the inception of the theory in the 50's to the high-speed computer era of the 90's. Two kinds of relative stream surfaces, S(sub 1) and S(sub 2), are introduced for the purpose of obtaining a three-dimensional flow solution through the combination of two-dimensional flow solutions. Nonorthogonal curvilinear coordinates are used for the governing equations. Methods of computing transonic flow along S(sub 1) and S(sub 2) stream surfaces are given for special cases as well as for fully three-dimensional transonic flows. Procedures pertaining to the direct solutions and inverse solutions are presented. Information on shock wave locations and shapes needed for computations are discussed. Experimental data from a Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. (DFVLR) rotor and from a Chinese Academy of Sciences (CAS) transonic compressor rotor are compared with the computed flow properties.

18. Navier-Stokes flow around a rotating obstacle mathematical analysis of its asymptotic behavior

CERN Document Server

Necasova, Sarka

2016-01-01

The book provides a comprehensive, detailed and self-contained treatment of the fundamental mathematical properties of problems arising from the motion of viscous incompressible fluids around rotating obstacles. It offers a new approach to this type of problems. We derive the fundamental solution of the steady case and we give pointwise estimates of velocity and its gradient (first and second one). Each chapter is preceded by a thorough discussion of the investigated problems, along with their motivation and the strategy used to solve them. The book will be useful to researchers and graduate students in mathematics, in particular mathematical fluid mechanics and differential equations.

19. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method

Energy Technology Data Exchange (ETDEWEB)

Kwon, Kyung [Tuskegee Univ., Tuskegee, AL (United States); Fan, Liang-Shih [The Ohio State Univ., Columbus, OH (United States); Zhou, Qiang [The Ohio State Univ., Columbus, OH (United States); Yang, Hui [The Ohio State Univ., Columbus, OH (United States)

2014-09-30

A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a

20. Cuttings-liquid frictional pressure loss model for horizontal narrow annular flow with rotating drillpipe

International Nuclear Information System (INIS)

Ofei, T N; Irawan, S; Pao, W

2015-01-01

During oil and gas drilling operations, frictional pressure loss is experienced as the drilling fluid transports the drilled cuttings from the bottom-hole, through the annulus, to the surface. Estimation of these pressure losses is critical when designing the drilling hydraulic program. Two-phase frictional pressure loss in the annulus is very difficult to predict, and even more complex when there is drillpipe rotation. Accurate prediction will ensure that the correct equivalent circulating density (ECD) is applied in the wellbore to prevent formation fracture, especially in formations with narrow window between the pore pressure and fracture gradient. Few researchers have attempted to propose cuttings-liquid frictional pressure loss models, nevertheless, these models fail when they are applied to narrow wellbores such as in casing- while-drilling and slimhole applications. This study proposes improved cuttings-liquid frictional pressure loss models for narrow horizontal annuli with drillpipe rotation using Dimensional Analysis. Both Newtonian and non-Newtonian fluids were considered. The proposed model constants were fitted by generated data from a full-scale simulation study using ANSYS-CFX. The models showed improvement over existing cuttings-liquid pressure loss correlations in literature. (paper)

1. Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions

Science.gov (United States)

Mushtaq, A.; Mustafa, M.

In this paper, the classical Von Kármán problem of infinite disk is extended when an electrically conducting nanofluid fills the space above the rotating disk which also stretches uniformly in the radial direction. Buongiorno model is considered in order to incorporate the novel Brownian motion and thermophoresis effects. Heat transport mechanism is modeled through more practically feasible convective conditions while Neumann type condition for nanoparticle concentration is adopted. Modified Von Kármán transformations are utilized to obtain self-similar differential system which is treated through a numerical method. Stretching phenomenon yields an additional parameter c which compares the stretch rate with the swirl rate. The effect of parameter c is to reduce the temperature and nanoparticle concentration profiles. Torque required to main steady rotation of the disk increases for increasing values of c while an improvement in cooling rate is anticipated in case of radial stretching, which is important in engineering processes. Brownian diffusion does not influence the heat flux from the stretching wall. Moreover, the wall heat flux has the maximum value for the situation in which thermoporetic force is absent.

2. Examination of forced unsteady separated flow fields on a rotating wind turbine blade

Energy Technology Data Exchange (ETDEWEB)

Huyer, S [Univ. of Colorado, Boulder, CO (US)

1993-04-01

The wind turbine industry faces many problems regarding the construction of efficient and predictable wind turbine machines. Steady state, two-dimensional wind tunnel data are generally used to predict aerodynamic loads on wind turbine blades. Preliminary experimental evidence indicates that some of the underlying fluid dynamic phenomena could be attributed to dynamic stall, or more specifically to generation of forced unsteady separated flow fields. A collaborative research effort between the University of Colorado and the National Renewable Energy Laboratory was conducted to systematically categorize the local and global effects of three- dimensional forced unsteady flow fields.

3. Numerical simulation of fluid flow and heat transfer in a thin liquid film over a stationary and rotating disk and comparison with experimental data

Science.gov (United States)

Faghri, Amir; Swanson, Theodore D.

1990-01-01

In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.

4. PIV and Rotational Raman-Based Temperature Measurements for CFD Validation in a Single Injector Cooling Flow

Science.gov (United States)

Wernet, Mark P.; Georgiadis, Nicholas J.; Locke, Randy J.

2018-01-01

Film cooling is used in a wide variety of engineering applications for protection of surfaces from hot or combusting gases. The design of more efficient thin film cooling geometries/configurations could be facilitated by an ability to accurately model and predict the effectiveness of current designs using computational fluid dynamics (CFD) code predictions. Hence, a benchmark set of flow field property data were obtained for use in assessing current CFD capabilities and for development of better turbulence models. Both Particle Image Velocimetry (PIV) and spontaneous rotational Raman scattering (SRS) spectroscopy were used to acquire high quality, spatially-resolved measurements of the mean velocity, turbulence intensity and also the mean temperature and normalized root mean square (rms) temperatures in a single injector cooling flow arrangement. In addition to flowfield measurements, thermocouple measurements on the plate surface enabled estimates of the film effectiveness. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 68.07 mm square nozzle blowing heated air over a range of temperatures and Mach numbers, across a 30.48cm long plate equipped with a single injector cooling hole. In addition, both centerline streamwise 2-component PIV and cross-stream 3-component Stereo PIV data at 15 axial stations were collected in the same flows. The velocity and temperature data were then compared against Wind-US CFD code predictions for the same flow conditions. The results of this and planned follow-on studies will support NASA's development and assessment of turbulence models for heated flows.

5. A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries

Science.gov (United States)

Dong, S.; Wang, X.

2016-01-01

Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909

6. Weighted L2 and Lq approaches to fluid flow past a rotating body

Czech Academy of Sciences Publication Activity Database

Farwig, R.; Kračmar, S.; Krbec, Miroslav; Nečasová, Šárka; Penel, P.

2009-01-01

Roč. 86, - (2009), s. 59-81 ISSN 0137-6934 R&D Projects: GA AV ČR IAA100190505; GA AV ČR IAA100190804 Institutional research plan: CEZ:AV0Z10190503 Keywords : variational approach * maximal operator * Littlewood-Paley theory * Oseen flow Subject RIV: BA - General Mathematics

7. The effect of shear flow on the rotational diffusivity of a single axisymmetric particle

Science.gov (United States)

Leahy, Brian; Koch, Donald; Cohen, Itai

2014-11-01

Colloidal suspensions of nonspherical particles abound in the world around us, from red blood cells in arteries to kaolinite discs in clay. Understanding the orientation dynamics of these particles is important for suspension rheology and particle self-assembly. However, even for the simplest case of dilute suspensions in simple shear flow, the orientation dynamics of Brownian nonspherical particles are poorly understood at large shear rates. Here, we analytically calculate the time-dependent orientation distributions of particles confined to the flow-gradient plane when the rotary diffusion is small but nonzero. For both startup and oscillatory shear flows, we find a coordinate change that maps the convection-diffusion equation to a simple diffusion equation with an enhanced diffusion constant, simplifying the orientation dynamics. For oscillatory shear, this enhanced diffusion drastically alters the quasi-steady orientation distributions. Our theory of the unsteady orientation dynamics provides an understanding of a nonspherical particle suspension's rheology for a large class of unsteady flows. For particles with aspect ratio 10 under oscillatory shear, the rotary diffusion and intrinsic viscosity vary with amplitude by a factor of ~ 40 and ~ 2 , respectively.

8. Locally-rotationally-symmetric Bianchi type-V cosmology with heat flow

LRS) Bianchi type-V cosmological model with perfect fluid and heat flow. A general approach is introduced to solve Einstein's field equations using a law of variation for the mean Hubble parameter, which is related to average scale factor of the ...

9. Experimental investigation of three-dimensional flow instabilities in a rotating lid-driven cavity

DEFF Research Database (Denmark)

Sørensen, Jens Nørkær; Naumov, I.; Mikkelsen, Robert Flemming

2006-01-01

liquid. For the first time the onset of three-dimensionality and transition are analysed by combining the high spatial resolution of Particle Image Velocimetry (PIV) and the temporal accuracy of Laser Doppler Anemometry (LDA). A detailed mapping of the transition from steady and axisymmetric flow...

10. Role of symmetry-breaking induced by Er × B shear flows on developing residual stresses and intrinsic rotation in the TEXTOR tokamak

International Nuclear Information System (INIS)

Xu, Y.; Shesterikov, I.; Berte, M.; Dumortier, P.; Van Schoor, M.; Vergote, M.; Hidalgo, C.; Krämer-Flecken, A.; Koslowski, R.

2013-01-01

Direct measurements of residual stress (force) have been executed at the edge of the TEXTOR tokamak using multitip Langmuir and Mach probes, together with counter-current NBI torque to balance the existing toroidal rotation. Substantial residual stress and force have been observed at the plasma boundary, confirming the existence of a finite residual stress as possible mechanisms to drive the intrinsic toroidal rotation. In low-density discharges, the residual stress displays a quasi-linear dependence on the local pressure gradient, consistent with theoretical predictions. At high-density shots the residual stress and torque are strongly suppressed. The results show close correlation between the residual stress and the E r × B flow shear rate, suggesting a minimum threshold of the E × B flow shear required for the k ∥ symmetry breaking. These findings provide the first experimental evidence of the role of E r × B sheared flows in the development of residual stresses and intrinsic rotation. (letter)

11. Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating cone-plate shear cell

International Nuclear Information System (INIS)

Derks, Didi; Wisman, Hans; Blaaderen, Alfons van; Imhof, Arnout

2004-01-01

We report on novel possibilities for studying colloidal suspensions in a steady shear field in real space. Fluorescence confocal microscopy is combined with the use of a counter-rotating cone-plate shear cell. This allows imaging of individual particles in the bulk of a sheared suspension in a stationary plane. Moreover, this plane of zero velocity can be moved in the velocity gradient direction while keeping the shear rate constant. The colloidal system under study consists of rhodamine labelled PMMA spheres in a nearly density and refractive index matched mixture of cyclohexylbromide and cis-decalin. We show measured flow profiles in both the fluid and the crystalline phase and find indications for shear banding in the case of a sheared crystal. Furthermore, we show that, thanks to the counter-rotating principle of the cone-plate shear cell, a layer of particles in the bulk of a sheared crystalline suspension can be imaged for a prolonged time, with the result that their positions can be tracked

12. Effects of rotation on MHD flow past an accelerated isothermal vertical plate with heat and mass diffusion

Directory of Open Access Journals (Sweden)

Muthucumaraswamy R.

2010-01-01

Full Text Available An exact analysis of rotation effects on unsteady flow of an incompressible and electrically conducting fluid past a uniformly accelerated infinite isothermal vertical plate, under the action of transversely applied magnetic field has been presented. The plate temperature is raised to Tw and the concentration level near the plate is also raised to C′w . The dimensionless governing equations are solved using Laplace-transform technique. The velocity profiles, temperature and concentration are studied for different physical parameters like thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing magnetic field parameter.

13. Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition

Science.gov (United States)

Mahanthesh, B.; Gireesha, B. J.; Shehzad, S. A.; Rauf, A.; Kumar, P. B. Sampath

2018-05-01

This research is made to visualize the nonlinear radiated flow of hydromagnetic nano-fluid induced due to rotation of the disk. The considered nano-fluid is a mixture of water and Ti6Al4V or AA7072 nano-particles. The various shapes of nanoparticles like lamina, column, sphere, tetrahedron and hexahedron are chosen in the analysis. The irregular heat source and nonlinear radiative terms are accounted in the law of energy. We used the heat flux condition instead of constant surface temperature condition. Heat flux condition is more relativistic and according to physical nature of the problem. The problem is made dimensionless with the help of suitable similarity constraints. The Runge-Kutta-Fehlberg scheme is adopted to find the numerical solutions of governing nonlinear ordinary differential systems. The solutions are plotted by considering the various values of emerging physical constraints. The effects of various shapes of nanoparticles are drawn and discussed.

14. Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations

Science.gov (United States)

Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin

2018-04-01

In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.

15. A study of energy dissipation and critical speed of granular flow in a rotating cylinder

Science.gov (United States)

Dragomir, Sergiu C.; Sinnott, Mathew D.; Semercigil, S. Eren; Turan, Özden F.

2014-12-01

Tuned vibration absorbers may improve the safety of flexible structures which are prone to excessive oscillation magnitudes under dynamic loads. A novel absorber design proposes sloshing of granular material in a rotating cylinder where the granular material is the energy dissipating agent. As the conventional dissipative elements require maintenance due to the nature of their function, the new design may represent a virtually maintenance free alternative. The angular speed of the cylinder containing particles has a critical centrifuging speed, after which particles remain permanently in contact with the walls and there can be no further dissipation. Until the critical speed, however, dissipation increases proportionally with the angular speed. It is then vital to know the value of the critical speed as the limit of dissipation. The focus of the present study is on determination of the critical centrifuge speed. This critical speed is also of practical importance in bulk-material handling rotary mills, such as dryers and crushers. Experiments and numerical simulations, using Discrete Element Method, are used to determine the critical centrifuging speed. In addition, predictions are given and guidelines are offered for the choice of material properties to maximize the energy dissipation. As a result of a parametric study, the coefficient of friction is found to have the greatest significance on the centrifuging speed.

16. Stefan blowing effect on bioconvective flow of nanofluid over a solid rotating stretchable disk

Directory of Open Access Journals (Sweden)

N.A. Latiff

2016-12-01

Full Text Available A mathematical model for the unsteady forced convection over rotating stretchable disk in nanofluid containing micro-organisms and taking into account Stefan blowing effect is presented theoretically and numerically. Appropriate transformations are used to transform the governing boundary layer equations into non-linear ordinary differential equations, before being solved numerically using the Runge-Kutta-Fehlberg method. The effect of the governing parameters on the dimensionless velocities, temperature, nanoparticle volume fraction (concentration, density of motile microorganisms as well as on the local skin friction, local Nusselt, Sherwood number and motile microorganisms numbers are thoroughly examined via graphs. It is observed that the Stefan blowing increases the local skin friction and reduces the heat transfer, mass transfer and microorganism transfer rates. The numerical results are in good agreement with those obtained from previous literature. Physical quantities results from this investigation show that the effects of higher disk stretching strength and suction case provides a good medium to enhance the heat, mass and microorganisms transfer compared to blowing case.

17. N loss to drain flow and N2O emissions from a corn-soybean rotation with winter rye.

Science.gov (United States)

Gillette, K; Malone, R W; Kaspar, T C; Ma, L; Parkin, T B; Jaynes, D B; Fang, Q X; Hatfield, J L; Feyereisen, G W; Kersebaum, K C

2018-03-15

Anthropogenic perturbation of the global nitrogen cycle and its effects on the environment such as hypoxia in coastal regions and increased N 2 O emissions is of increasing, multi-disciplinary, worldwide concern, and agricultural production is a major contributor. Only limited studies, however, have simultaneously investigated NO 3 - losses to subsurface drain flow and N 2 O emissions under corn-soybean production. We used the Root Zone Water Quality Model (RZWQM) to evaluate NO 3 - losses to drain flow and N 2 O emissions in a corn-soybean system with a winter rye cover crop (CC) in central Iowa over a nine year period. The observed and simulated average drain flow N concentration reductions from CC were 60% and 54% compared to the no cover crop system (NCC). Average annual April through October cumulative observed and simulated N 2 O emissions (2004-2010) were 6.7 and 6.0kgN 2 O-Nha -1 yr -1 for NCC, and 6.2 and 7.2kgNha -1 for CC. In contrast to previous research, monthly N 2 O emissions were generally greatest when N loss to leaching were greatest, mostly because relatively high rainfall occurred during the months fertilizer was applied. N 2 O emission factors of 0.032 and 0.041 were estimated for NCC and CC using the tested model, which are similar to field results in the region. A local sensitivity analysis suggests that lower soil field capacity affects RZWQM simulations, which includes increased drain flow nitrate concentrations, increased N mineralization, and reduced soil water content. The results suggest that 1) RZWQM is a promising tool to estimate N 2 O emissions from subsurface drained corn-soybean rotations and to estimate the relative effects of a winter rye cover crop over a nine year period on nitrate loss to drain flow and 2) soil field capacity is an important parameter to model N mineralization and N loss to drain flow. Published by Elsevier B.V.

18. Investigation of the Unsteady Total Pressure Profile Corresponding to Counter-Rotating Vortices in an Internal Flow Application

Science.gov (United States)

Gordon, Kathryn; Morris, Scott; Jemcov, Aleksandar; Cameron, Joshua

2013-11-01

The interaction of components in a compressible, internal flow often results in unsteady interactions between the wakes and moving blades. A prime example in which this flow feature is of interest is the interaction between the downstream rotor blades in a transonic axial compressor with the wake vortices shed from the upstream inlet guide vane (IGV). Previous work shows that a double row of counter-rotating vortices convects downstream into the rotor passage as a result of the rotor blade bow shock impinging on the IGV. The rotor-relative time-mean total pressure distribution has a region of high total pressure corresponding to the pathline of the vortices. The present work focuses on the relationship between the magnitude of the time-mean rotor-relative total pressure profile and the axial spacing between the IGV and the rotor. A survey of different axial gap sizes is performed in a two-dimensional computational study to obtain the sensitivity of the pressure profile amplitude to IGV-rotor axial spacing.

19. The unsteady flow of a nanofluid in the stagnation point region of a time-dependent rotating sphere

Directory of Open Access Journals (Sweden)

Malvandi Amir

2015-01-01

Full Text Available This paper deals with the unsteady boundary layer flow and heat transfer of nanofluid over a time-dependent rotating sphere where the free stream velocity varies continuously with time. The boundary layer equations were normalized via similarity variables and solved numerically. Best accuracy of the results has been obtained for regular fluid with previous studies. The nanofluid is treated as a two-component mixture (base fluid+nanoparticles that incorporates the effects of Brownian diffusion and thermophoresis simultaneously as the two most important mechanisms of slip velocity in laminar flows. Our outcomes indicated that as A and λ increase, surface shear stresses, heat transfer and concentration rates, climb up. Also, Increasing the thermophoresis Nt is found to decrease in the both values of heat transfer and concentration rates. This decrease supresses for higher thermophoresis number. In addition, it was observed that unlike the heat transfer rate, a rise in Brownian motion Nb, leads to an increase in concentration rate.

20. Comparative investigation of five nanoparticles in flow of viscous fluid with Joule heating and slip due to rotating disk

Science.gov (United States)

Qayyum, Sumaira; Khan, Muhammad Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

2018-04-01

Present article addresses the comparative study for flow of five water based nanofluids. Flow in presence of Joule heating is generated by rotating disk with variable thickness. Nanofluids are suspension of Silver (Ag), Copper (Cu), Copper oxide (CuO), Aluminum oxide or Alumina (Al2O3), Titanium oxide or titania (TiO2) and water. Boundary layer approximation is applied to partial differential equations. Using Von Karman transformations the partial differential equations are converted to ordinary differential equations. Convergent series solutions are obtained. Graphical results are presented to examine the behaviors of axial, radial and tangential velocities, temperature, skin friction and Nusselt number. It is observed that radial, axial and tangential velocities decay for slip parameters. Axial velocity decays for larger nanoparticle volume fraction. Effect of nanofluids on velocities dominant than base material. Temperature rises for larger Eckert number and temperature of silver water nanofluid is more because of its higher thermal conductivity. Surface drag force reduces for higher slip parameters. Transfer of heat is more for larger disk thickness index.

1. A study on the annular leakage-flow-induced vibrations. 1st report. Stability for translational and rotational single-degree-of-freedom systems

International Nuclear Information System (INIS)

Li, Dong-Wei; Kaneko, Shigehiko; Hayama, Shinji

1999-01-01

This study reports the stability of annular leakage-flow-induced vibrations. The pressure distribution of fluid between a fixed outer cylinder and a vibrating inner cylinder was obtained in the case of a translationally and rotationally coupled motion of the inner cylinder. The unsteady fluid force acting on the inner cylinder in the case of translational and rotational single-degree-of-freedom vibrations was then expressed in terms proportional to the acceleration, velocity, and displacement. Then the critical flow rate (at which stability was lost) was determined for an annular leakage-flow-induced vibration. Finally, the stability was investigated theoretically. It is known that instability will occur in the case of a divergent passage, but the critical flow rate depends on the passage increment in a limited range: the eccentricity of the passage and the pressure loss factor at the inlet of the passage lower the stability. (author)

2. Determination of the Three-Dimensional Rate of Cancer Cell Rotation in an Optically-Induced Electrokinetics Chip Using an Optical Flow Algorithm

Directory of Open Access Journals (Sweden)

Yuliang Zhao

2018-03-01

Full Text Available Our group has reported that Melan-A cells and lymphocytes undergo self-rotation in a homogeneous AC electric field, and found that the rotation velocity of these cells is a key indicator to characterize their physical properties. However, the determination of the rotation properties of a cell by human eyes is both gruesome and time consuming, and not always accurate. In this paper, a method is presented to more accurately determine the 3D cell rotation velocity and axis from a 2D image sequence captured by a single camera. Using the optical flow method, we obtained the 2D motion field data from the image sequence and back-project it onto a 3D sphere model, and then the rotation axis and velocity of the cell were calculated. After testing the algorithm on animated image sequences, experiments were also performed on image sequences of real rotating cells. All of these results indicate that this method is accurate, practical, and useful. Furthermore, the method presented there can also be used to determine the 3D rotation velocity of other types of spherical objects that are commonly used in microfluidic applications, such as beads and microparticles.

3. Cross-flow filtration of yeast extract with multi-tubular membrane module and rotating-disk membrane module; Makukaitengata heibanmaku module to tankanjomaku module ni yoru kobo hasaieki no cross flow roka

Energy Technology Data Exchange (ETDEWEB)

Matsushita, K.; Shimizu, Y.; Watanabe, a. [Toto Ltd., Kitakyushu (Japan)

1994-09-15

A membrane separation experiment was made with multi-tubular membrane module and rotating-disk membrane module to study the cross-flow filtration of yeast extract. The membrane was an alumina precision filtration membrane with 0.15 micron m diameter pores. A multi-tubular membrane which was 19 in number of channels and 0.113{sup 2} in effective membrane area was fitted to the multi-tubular membrane module. A rotating-disk membrane which was 0.071m{sup 2} in effective membrane area was fitted to the rotating-disk membrane module. Judging from the concentration speed and factor, the rotating-disk type is more advantageous in concentrating the suspension than the multi-tubular type. The soluble high-molecular component was more easily filtrated through the rotating-disk type, which is judged attributable to its possible operation at a high flow rate on the membrane surface without necessitating a high-flow rate circulation pump. As compared with the conventional cross-filtration type, the rotating-disk type gives a high permeate flux even at a high concentration factor. 11 refs., 5 figs.

4. Annual and Intra-Annual Water Balance Components of a Short Rotation Poplar Coppice Based on Sap Flow and Micrometeorological and Hydrological Approaches

Czech Academy of Sciences Publication Activity Database

Fischer, Milan; Orság, Matěj; Trnka, Miroslav; Pohanková, Eva; Hlavinka, Petr; Tripathi, Abishek; Žalud, Zdeněk

2013-01-01

Roč. 991, JUN 04-07 (2013), s. 401-408 ISSN 0567-7572 Institutional support: RVO:67179843 Keywords : short rotation poplar coppice * water balance * sap flow * Bowen ratio and energy balance method * modeling Subject RIV: EH - Ecology, Behaviour

5. Rotational motion in nuclei

International Nuclear Information System (INIS)

Bohr, A.

1976-01-01

Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

6. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

KAUST Repository

Fiscaletti, D.; Elsinga, G. E.; Attili, Antonio; Bisetti, Fabrizio; Buxton, O. R. H.

2016-01-01

The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.

7. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

KAUST Repository

Fiscaletti, D.

2016-10-24

The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.

8. Current flow and pair creation at low altitude in rotation-powered pulsars' force-free magnetospheres: space charge limited flow

Science.gov (United States)

Timokhin, A. N.; Arons, J.

2013-02-01

We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs. We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc2/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/jGJ > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/jGJ generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be

9. Effects of fast ions and an external inductive electric field on the neoclassical parallel flow, current, and rotation in general toroidal systems

International Nuclear Information System (INIS)

Nakajima, Noriyoshi; Okamoto, Masao.

1992-05-01

Effects of external momentum sources, i.e., fast ions produced by the neutral beam injection and an external inductive electric field, on the neoclassical ion parallel flow, current, and rotation are analytically investigated for a simple plasma in general toroidal systems. It is shown that the contribution of the external sources to the ion parallel flow becomes large as the collision frequency of thermal ions increases because of the momentum conservation of Coulomb collisions and sharply decreasing viscosity coefficients, with collision frequency. As a result, the beam-driven parallel flow of thermal ions becomes comparable to that of electrons in the Pfirsh-Schluter collisionality regime, whereas in the 1/μ or banana regime it is smaller than that of electrons by the order of √(m e /m i ) (m e and m i are electron and ion masses). This beam-driven ion parallel flow can not produce a large beam-driven current because of the cancellation with electron parallel flow, but produces a large toroidal rotation of ions. As both electrons and ions approach the Pfirsh-Schluter collisionality regime the contribution of thermodynamical forces becomes negligibly small and the large toroidal rotation of ions is predominated by the beam-driven component in the non-axisymmetric configuration with large helical ripples. (author)

10. Thermal-diffusion and diffusion-thermo effects on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation

Directory of Open Access Journals (Sweden)

S. Srinivas

2016-01-01

Full Text Available The present work investigates the effects of thermal-diffusion and diffusion-thermo on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation. The partial differential equations governing the flow problem under consideration have been transformed by a similarity transformation into a system of coupled nonlinear ordinary differential equations. An analytical approach, namely the homotopy analysis method is employed in order to obtain the solutions of the ordinary differential equations. The effects of various emerging parameters on flow variables have been discussed numerically and explained graphically. Comparison of the HAM solutions with the numerical solutions is performed.

11. Biomass flow in Tifton-85 bermudagrass canopy subjected to different management strategies under rotational grazing with dairy goats

Directory of Open Access Journals (Sweden)

José Antonio Alves Cutrim Junior

2013-02-01

Full Text Available Biomass flow characteristics and forage accumulation were evaluated in Bermudagrass (Tifton 85 pasture managed under intermittent stocking with different management strategies. The management levels utilized were conventional (10 cm residual height and unfertilized, light (20 cm residual height and unfertilized, moderate (20 cm residual height with fertilization of 300 kg N/ha.year and intensive (10 cm residual height with fertilization of 600 kg N/ha.year. A randomized design was used with repeated measurements over time, in two periods of the year, with four replicates. There was significant effect of management × period of the year on the leaf elongation rate (LER. The management levels under fertilization (0.59 and 0.60 cm/tiller.day for the intensive and moderate management, respectively and the rainy season (0.49 cm/tiller.day showed the greatest stem elongation rate. Leaf senescence rate (LSR before and after and total LSR were modified by the management × period of the year interaction. The intensive management, with 0.38 leaves/tiller.day, as well as the dry period, with 0.27 leaves/tiller.day, showed higher leaf appearance rate. The lowest phyllochron was observed in intensive management and dry periods, as well as an interaction with the management of the same periods of the year. There was management × period of year interaction effect on leaf lifespan; the highest value was found under conventional management and dry period. Both production and forage accumulation rates were higher in the intensive and moderate management levels and dry season, and there was interaction of the intensive management system with the seasons. Managing pastures under moderate and intensive rotational stocking, which occurred mainly in the rainy and dry seasons, respectively, maximizes the flow of tissues and consequently production and accumulation of forage.

12. Three-dimensional rotating flow of MHD single wall carbon nanotubes over a stretching sheet in presence of thermal radiation

Science.gov (United States)

Nasir, Saleem; Islam, Saeed; Gul, Taza; Shah, Zahir; Khan, Muhammad Altaf; Khan, Waris; Khan, Aurang Zeb; Khan, Saima

2018-05-01

In this article the modeling and computations are exposed to introduce the new idea of MHD three-dimensional rotating flow of nanofluid through a stretching sheet. Single wall carbon nanotubes (SWCNTs) are utilized as a nano-sized materials while water is used as a base liquid. Single-wall carbon nanotubes (SWNTs) parade sole assets due to their rare structure. Such structure has significant optical and electronics features, wonderful strength and elasticity, and high thermal and chemical permanence. The heat exchange phenomena are deliberated subject to thermal radiation and moreover the impact of nanoparticles Brownian motion and thermophoresis are involved in the present investigation. For the nanofluid transport mechanism, we implemented the Xue model (Xue, Phys B Condens Matter 368:302-307, 2005). The governing nonlinear formulation based upon the law of conservation of mass, quantity of motion, thermal field and nanoparticles concentrations is first modeled and then solved by homotopy analysis method (HAM). Moreover, the graphical result has been exposed to investigate that in what manner the velocities, heat and nanomaterial concentration distributions effected through influential parameters. The mathematical facts of skin friction, Nusselt number and Sherwood number are presented through numerical data for SWCNTs.

13. Sheared Rotation Effects on Kinetic Stability in Enhanced Confinement Tokamak Plasmas, and Nonlinear Dynamics of Fluctuations and Flows in Axisymmetric Plasmas

International Nuclear Information System (INIS)

Beer, M.A.; Chance, M.S.; Hahm, T.S.; Lin, Z.; Rewoldt, G.; Tang, W.M.

1997-01-01

Sheared rotation dynamics are widely believed to have signficant influence on experimentally observed confinement transitions in advanced operating modes in major tokamak experiments, such as the Tokamak Fusion Test Reactor (TFTR) [D.J. Grove and D.M. Meade, Nuclear Fusion 25, 1167 (1985)], with reversed magnetic shear regions in the plasma interior. The high-n toroidal drift modes destabilized by the combined effects of ion temperature gradients and trapped particles in toroidal geometry can be strongly affected by radially sheared toroidal and poloidal plasma rotation. In previous work with the FULL linear microinstability code, a simplified rotation model including only toroidal rotation was employed, and results were obtained. Here, a more complete rotation model, that includes contributions from toroidal and poloidal rotation and the ion pressure gradient to the total radial electric field, is used for a proper self-consistent treatment of this key problem. Relevant advanced operating mode cases for TFTR are presented. In addition, the complementary problem of the dynamics of fluctuation-driven E x B flow is investigated by an integrated program of gyrokinetic simulation in annulus geometry and gyrofluid simulation in flux tube geometry

14. Rayleigh- and Prandtl-number dependence of the large-scale flow-structure in weakly-rotating turbulent thermal convection

Science.gov (United States)

Weiss, Stephan; Wei, Ping; Ahlers, Guenter

2015-11-01

Turbulent thermal convection under rotation shows a remarkable variety of different flow states. The Nusselt number (Nu) at slow rotation rates (expressed as the dimensionless inverse Rossby number 1/Ro), for example, is not a monotonic function of 1/Ro. Different 1/Ro-ranges can be observed with different slopes ∂Nu / ∂ (1 / Ro) . Some of these ranges are connected by sharp transitions where ∂Nu / ∂ (1 / Ro) changes discontinuously. We investigate different regimes in cylindrical samples of aspect ratio Γ = 1 by measuring temperatures at the sidewall of the sample for various Prandtl numbers in the range 3 Deutsche Forschungsgemeinschaft.

15. Finite element and network electrical simulation of rotating magnetofluid flow in nonlinear porous media with inclined magnetic field and hall currents

Directory of Open Access Journals (Sweden)

Bég Anwar O.

2014-01-01

Full Text Available A mathematical model is presented for viscous hydromagnetic flow through a hybrid non-Darcy porous media rotating generator. The system is simulated as steady, incompressible flow through a nonlinear porous regime intercalated between parallel plates of the generator in a rotating frame of reference in the presence of a strong, inclined magnetic field A pressure gradient term is included which is a function of the longitudinal coordinate. The general equations for rotating viscous magnetohydrodynamic flow are presented and neglecting convective acceleration effects, the two-dimensional viscous flow equations are derived incorporating current density components, porous media drag effects, Lorentz drag force components and Hall current effects. Using an appropriate group of dimensionless variables, the momentum equations for primary and secondary flow are rendered nondimensional and shown to be controlled by six physical parameters-Hartmann number (Ha, Hall current parameter (Nh, Darcy number (Da, Forchheimer number (Fs, Ekman number (Ek and dimensionless pressure gradient parameter (Np, in addition to one geometric parameter-the orientation of the applied magnetic field (θ . Several special cases are extracted from the general model, including the non-porous case studied earlier by Ghosh and Pop (2006. A numerical solution is presented to the nonlinear coupled ordinary differential equations using both the Network Simulation Method and Finite Element Method, achieving excellent agreement. Additionally very good agreement is also obtained with the earlier analytical solutions of Ghosh and Pop (2006. for selected Ha, Ek and Nh values. We examine in detail the effects of magnetic field, rotation, Hall current, bulk porous matrix drag, second order porous impedance, pressure gradient and magnetic field inclination on primary and secondary velocity distributions and also frictional shear stresses at the plates. Primary velocity is seen to decrease

16. Experimental data and numerical predictions of a single-phase flow in a batch square stirred tank reactor with a rotating cylinder agitator

Science.gov (United States)

Escamilla-Ruíz, I. A.; Sierra-Espinosa, F. Z.; García, J. C.; Valera-Medina, A.; Carrillo, F.

2017-09-01

Single-phase flows in stirred tank reactors have useful characteristics for a wide number of industrial applications. Usually, reactors are cylindrical vessels and complex impeller designs, which are often highly energy consuming and produce complicated flow patterns. Therefore, a novel configuration consisting of a square stirred tank reactor is proposed in this study with potential advantages over conventional reactors. In the present work hydrodynamics and turbulence have been studied for a single-phase flow in steady state operating in batch condition. The flow was induced by drag from a rotating cylinder with two diameters. The effects of drag from the stirrer as well as geometrical parameters of the system on the hydrodynamic behavior were investigated using Computational Fluids Dynamics (CFD) and non-intrusive Laser Doppler Anemometry, (LDA). Data obtained from LDA measurements were used for the validation of the CFD simulations, and to detecting the macro-instabilities inside the tank, based on the time series analysis for three rotational speeds N = 180, 1000 and 2000 rpm. The numerical results revealed the formation of flow patterns and macro-vortex structures in the upper part of the tank as consequence of the Reynolds number and the stream discharge emanated from the cylindrical stirrer. Moreover, increasing the cylinder diameter has an impact on the number of recirculation loops as well as the energy consumption of the entire system showing better performance in the presence of turbulent flows.

17. A study of coronary artery rotational motion with dense scale-space optical flow in intravascular ultrasound

Energy Technology Data Exchange (ETDEWEB)

Danilouchkine, M G; Mastik, F; Steen, A F W van der [Department of Biomedical Engineering, Erasmus Medical Center, Ee2302, PO Box 2040, 3000 CA, Rotterdam (Netherlands)], E-mail: m.danilouchkine@ErasmusMC.nl, E-mail: f.mastik@ErasmusMC.nl, E-mail: a.vandersteen@ErasmusMC.nl

2009-03-21

This paper describes a novel method for estimating tissue motion in two-dimensional intravascular ultrasound (IVUS) images of a coronary artery. It is based on the classical Lukas-Kanade (LK) algorithm for optical flow (OF). The OF vector field quantifies the amount of misalignment between two consecutive frames in a sequence of images. From the theoretical standpoint, two fundamental improvements are proposed in this paper. First, using a simplified representation of the vessel wall as a medium with randomly distributed scatterers, it was shown that the OF equation satisfies the integral brightness conservation law. Second, a scale-space embedding for the OF equation was derived under the assumption of spatial consistency in IVUS acquisitions. The spatial coherence is equivalent to a locally affine motion model. The latter effectively captures and appropriately describes a complex deformation pattern of the coronary vessel wall under the varying physiological conditions (i.e. pulsatile blood pressure). The accuracy of OF tracking was estimated on the tissue-mimicking phantoms subjected to the controlled amount of angular deviation. Moreover, the performance of the classical LK and proposed approach was compared using the simulated IVUS images with an atherosclerotic lesion. The experimental results showed robust and reliable performance of up to 5{sup 0} of rotation, which is within the plausible range of circumferential displacement of the coronary arteries. Subsequently, the algorithm was used to analyze vessel wall motion in 18 IVUS pullbacks from 16 patients. The in vivo experiments revealed that the motion of coronary arteries is primarily determined by the cardiac contraction.

18. A molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions

DEFF Research Database (Denmark)

De Luca, Sergio; Todd, Billy; Hansen, Jesper Schmidt

2014-01-01

by an external spatially uniform rotating electric field and confined between two planar surfaces exposing different degrees of hydrophobicity. The permanent dipole moment of water follows the rotating field, thus inducing the molecules to spin, and the torque exerted by the field is continuously injected...... into the fluid, enabling a steady conversion of spin angular momentum into linear momentum. The translational–rotational coupling is a sensitive function of the rotating electric field parameters. In this work, we have found that there exists a small energy dissipation region attainable when the frequency...... of the rotating electric field matches the inverse of the dielectric relaxation time of water and when its amplitude lies in a range just before dielectric saturation effects take place. In this region, that is, when the frequency lies in a small window of the microwave region around ∼20 GHz and amplitude ∼0.03 V...

19. Linearized stationary incompressible flow around rotating and translating bodies: Asymptotic profile of the velocity gradient and decay estimate of the second derivatives of the velocity

Czech Academy of Sciences Publication Activity Database

Deuring, P.; Kračmar, S.; Nečasová, Šárka

2012-01-01

Roč. 252, č. 1 (2012), s. 459-476 ISSN 0022-0396 R&D Projects: GA AV ČR IAA100190804; GA ČR(CZ) GAP201/11/1304 Institutional research plan: CEZ:AV0Z10190503 Keywords : viscous incompressible flow * rotating body * rundamental solution * decay * asymptotic profile * Navier-Stokes system Subject RIV: BA - General Mathematics Impact factor: 1.480, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022039611003573

20. Counter-rotating type tidal stream power unit boarded on pillar (performances and flow conditions of tandem propellers)

Science.gov (United States)

Usui, Yuta; Kanemoto, Toshiaki; Hiraki, Koju

2013-12-01

The authors have invented the unique counter-rotating type tidal stream power unit composed of the tandem propellers and the double rotational armature type peculiar generator without the traditional stator. The front and the rear propellers counter-drive the inner and the outer armatures of the peculiar generator, respectively. The unit has the fruitful advantages that not only the output is sufficiently higher without supplementary equipment such as a gearbox, but also the rotational moment hardly act on the pillar because the rotational torque of both propellers/armatures are counter-balanced in the unit. This paper discusses experimentally the performances of the power unit and the effects of the propeller rotation on the sea surface. The axial force acting on the pillar increases naturally with the increase of not only the stream velocity but also the drag of the tandem propellers. Besides, the force vertical to the stream also acts on the pillar, which is induced from the Karman vortex street and the dominant frequencies appear owing to the front and the rear propeller rotations. The propeller rotating in close to the sea surface brings the abnormal wave and the amplitude increases as the stream velocity is faster and/or the drag is stronger.

1. Eulerian derivation of non-inertial Navier-Stokes equations for compressible flow in constant, pure rotation

CSIR Research Space (South Africa)

Combrinck, ML

2015-07-01

Full Text Available be either inertial or non-inertial depending on the cases analyzed. This frame shares an origin with the rotational frame Ô. Frame Ô is the non-inertial, rotational frame and is therefore not orientation preserving. Now consider a point P which can... Descriptions This point is described in frame O from where a modified Galilean transformation, GM, will be used to describe it in frame O’. The rotational transform, RΩt, will then be used to transform the resulting equations (as described in frame O...

2. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

International Nuclear Information System (INIS)

Abd-Alla, A.M.; Abo-Dahab, S.M.; Al-Simery, R.D.

2013-01-01

In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient

3. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

Energy Technology Data Exchange (ETDEWEB)

Abd-Alla, A.M., E-mail: mohmrr@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Abo-Dahab, S.M., E-mail: sdahb@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Maths Department, Faculty of Science, SVU, Qena 83523 (Egypt); Al-Simery, R.D. [Maths Department, Faculty of Science, Taif University (Saudi Arabia)

2013-12-15

In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient.

4. Three dimensional rotating flow of Powell-Eyring nanofluid with non-Fourier's heat flux and non-Fick's mass flux theory

Science.gov (United States)

Ibrahim, Wubshet

2018-03-01

This article numerically examines three dimensional boundary layer flow of a rotating Powell-Eyring nanofluid. In modeling heat transfer processes, non-Fourier heat flux theory and for mass transfer non-Fick's mass flux theory are employed. This theory is recently re-initiated and it becomes the active research area to resolves some drawback associated with the famous Fourier heat flux and mass flux theory. The mathematical model of the flow problem is a system of non-linear partial differential equations which are obtained using the boundary layer analysis. The non-linear partial differential equations have been transformed into non-linear high order ordinary differential equations using similarity transformation. Employing bvp4c algorithm from matlab software routine, the numerical solution of the transformed ordinary differential equations is obtained. The governing equations are constrained by parameters such as rotation parameter λ , the non-Newtonian parameter N, dimensionless thermal relaxation and concentration relaxation parameters δt and δc . The impacts of these parameters have been discussed thoroughly and illustrated using graphs and tables. The findings show that thermal relaxation time δt reduces the thermal and concentration boundary layer thickness. Further, the results reveal that the rotational parameter λ has the effect of decreasing the velocity boundary layer thickness in both x and y directions. Further examination pinpoints that the skin friction coefficient along x-axis is an increasing and skin friction coefficient along y-axis is a decreasing function of rotation parameter λ . Furthermore, the non-Newtonian fluid parameter N has the characteristic of reducing the amount of local Nusselt numbers -f″ (0) and -g″ (0) both in x and y -directions.

5. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams

DEFF Research Database (Denmark)

Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.

2012-01-01

flow upon tight focusing of the beam, usually applied for energy flow detection by means of the mechanical action upon probe particles. We propose a two-beam interference technique that results in an appreciable level of spin flow in moderately focused beams and detection of the orbital motion of probe...... particles within a field where the transverse energy circulation is associated exclusively with the spin flow. This result can be treated as the first demonstration of mechanical action of the spin flow of a light field....

6. Experimental and numerical investigations of aerodynamic loads and 3D flow over non-rotating MEXICO blades

NARCIS (Netherlands)

Zhang, Y.; Gillebaart, T.; van Zuijlen, A.H.; van Bussel, G.J.W.; Bijl, H.

2017-01-01

This paper presents the experimental and numerical study on MEXICO wind turbine blades. Previous work by other researchers shows that large deviations exist in the loads comparison between numerical predictions and experimental data for the rotating MEXICO wind turbine. To reduce complexities and

7. Low-diffusion rotated upwind schemes, multigrid and defect correction for steady, multi-dimensional Euler flows

NARCIS (Netherlands)

Koren, B.; Hackbusch, W.; Trottenberg, U.

1991-01-01

Two simple, multi-dimensional upwind discretizations for the steady Euler equations are derived, with the emphasis Iying on bath a good accuracy and a good solvability. The multi-dimensional upwinding consists of applying a one-dimensional Riemann solver with a locally rotated left and right state,

8. Aligned Magnetic Field, Radiation, and Rotation Effects on Unsteady Hydromagnetic Free Convection Flow Past an Impulsively Moving Vertical Plate in a Porous Medium

Directory of Open Access Journals (Sweden)

Sandeep Naramgari

2014-01-01

Full Text Available We analyse the effects of aligned magnetic field, radiation, and rotation on unsteady hydromagnetic free convection flow of a viscous incompressible electrically conducting fluid past an impulsively moving vertical plate in a porous medium in presence of heat source. An exact solution of the governing equations in dimensionless form is obtained by Laplace transform technique in ramped temperature case. To compare the results obtained in this case with that of isothermal plate, the exact solution of the governing equations is also obtained for isothermal plate and results are discussed graphically in both ramped temperature and isothermal cases.

9. A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: improved decay estimates of the velocity and its gradient

Czech Academy of Sciences Publication Activity Database

Deuring, P.; Kračmar, S.; Nečasová, Šárka

2011-01-01

Roč. 2011, - (2011), s. 351-361 ISSN 1078-0947. [8th AIMS International Conference. Dresden, 25.05.2010-28.05.2010] R&D Projects: GA AV ČR IAA100190804; GA ČR(CZ) GAP201/11/1304 Institutional research plan: CEZ:AV0Z10190503 Keywords : viscous incompressible flow * rotating body * fundamental solution Subject RIV: BA - General Mathematics Impact factor: 0.913, year: 2011 http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=6978

10. Axisymmetric flow in a cylindrical tank over a rotating bottom. Part II. Deformation of the water surface and experimental verification of the theory

Energy Technology Data Exchange (ETDEWEB)

Iga, Keita; Watanabe, Shunichi; Niino, Hiroshi; Misawa, Nobuhiko [Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564 (Japan); Yokota, Sho [Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052 (Japan); Ikeda, Takashi, E-mail: iga@aori.u-tokyo.ac.jp [Japan Patent Office, 3-4-3 Kasumigaseki, Chiyoda, Tokyo 100-8915 (Japan)

2017-12-15

The theory of axisymmetric flow in a cylindrical container with a rotating bottom, as described in Part I, is validated against the results of previous and our own laboratory experiments. First, deformation of the water surface is derived using the velocity distribution of the axisymmetric flow obtained by the theory. The form of the water surface is classified into three regimes, and the rotation rates of the transitions between these regimes are determined. The parameters predicted from this theory are compared with the results measured in laboratory experiments and also with data from previous experimental studies. The theory predicts the experimental data well, but a slight difference was found in the narrow region close to the side wall. Corrections estimated by considering the fluid behavior around the side wall boundary layer successfully explain most of the discrepancies. This theory appears to predict the results of the laboratory experiments very well, much better than a theory using an assumption of quadratic drag as a model of turbulent boundary layers. (paper)

11. Regional cerebral blood flow measurement using N-isopropyl-p-(/sup 123/I) iodoamphetamine and rotating gamma camera emission computed tomography

Energy Technology Data Exchange (ETDEWEB)

Matsuda, Hiroshi; Seki, Hiroyasu; Ishida, Hiroko (Kanazawa Univ. (Japan). School of Medicine)

1985-01-01

Thirty-one regional cerebral blood flow (rCBF) measurements were performed on 26 patients with cerebrovascular accidents using N-Isopropyl-p-(/sup 123/I) Iodoamphetamine (/sup 123/I-IMP) and rotating gamma camera emission computed tomography (ECT). The equation for determining rCBF is as follows: F=100.R.Cb/(N.A), where F is rCBF in ml/100 g/min., R is the constant withdrawal rate of arterial blood in ml/min., Cb is the brain activity concentration in ..mu..Ci/g, A is the total activity (5 min.) in the withdrawal arterial whole blood in ..mu..Ci and N is the fraction of A that is true tracer activity (0.75). In determining Cb at 5 min. after injection, reconstructed counts from 35 min. to 59 min. were corrected to represent those from 4 min. to 5 min. with the use of time activity curve for the entire brain immediately after injection to 30 min. Reconstructed counts of central region in tomographic image were corrected 118% of the obtained values from the result of the counting rate ratio between peripheral and central regions of interest obtained from phantom study. Brain mean blood flow values were distributed from 11 to 39 ml/100 g/min. In 119 cortical regions obtained from 11 measurements in 9 patients, there was a significant correlation (r=0.41, p < 0.001) between rCBF values obtained from /sup 123/I-IMP and rotating gamma camera ECT and those from /sup 133/Xe inhalation method. rCBF measurement using /sup 123/I-IMP and rotating gamma camera ECT is not only relatively noninvasive measurement for the entire brain but also three-dimensional evaluation. Besides, it is superior in spatial resolution and accuracy to conventional /sup 133/Xe clearance method.

12. Analytical and Numerical Modelling of Newtonian and non-Newtonian Liquid in a Rotational Cross-flow MBR

DEFF Research Database (Denmark)

Bentzen, Thomas Ruby; Ratkovich, Nicolas Rios; Madsen, S.

2012-01-01

Fouling is the main bottleneck of the widespread use of MBR systems. One way to decrease and/or control fouling is by process hydrodynamics. This can be achieved by the increase of liquid cross- ﬂow velocity. In rotational cross-ﬂow MBR systems, this is attained by the spinning of, for example, i......-weighted average shear stress was developed for water and AS as a function of the angular velocity and the total suspended solids concentration. These relationships can be linked to the energy consumption of this type of systems.......Fouling is the main bottleneck of the widespread use of MBR systems. One way to decrease and/or control fouling is by process hydrodynamics. This can be achieved by the increase of liquid cross- ﬂow velocity. In rotational cross-ﬂow MBR systems, this is attained by the spinning of, for example......, impellers. Validation of the CFD (computational ﬂuid dynamics) model was made against laser Doppler anemometry (LDA) tangential velocity measurements (error less than 8%) using water as a ﬂuid. The shear stress over the membrane surface was inferred from the CFD simulations for water. However, activated...

13. Stream function method for computing steady rotational transonic flows with application to solar wind-type problems

International Nuclear Information System (INIS)

Kopriva, D.A.

1982-01-01

A numerical scheme has been developed to solve the quasilinear form of the transonic stream function equation. The method is applied to compute steady two-dimensional axisymmetric solar wind-type problems. A single, perfect, non-dissipative, homentropic and polytropic gas-dynamics is assumed. The four equations governing mass and momentum conservation are reduced to a single nonlinear second order partial differential equation for the stream function. Bernoulli's equation is used to obtain a nonlinear algebraic relation for the density in terms of stream function derivatives. The vorticity includes the effects of azimuthal rotation and Bernoulli's function and is determined from quantities specified on boundaries. The approach is efficient. The number of equations and independent variables has been reduced and a rapid relaxation technique developed for the transonic full potential equation is used. Second order accurate central differences are used in elliptic regions. In hyperbolic regions a dissipation term motivated by the rotated differencing scheme of Jameson is added for stability. A successive-line-overrelaxation technique also introduced by Jameson is used to solve the equations. The nonlinear equation for the density is a double valued function of the stream function derivatives. The velocities are extrapolated from upwind points to determine the proper branch and Newton's method is used to iteratively compute the density. This allows accurate solutions with few grid points

14. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

Science.gov (United States)

Yeung, Chung-Hei (Simon)

The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are

15. Dissipative particle dynamics simulation of flow generated by two rotating concentric cylinders: II. Lateral dissipative and random forces

International Nuclear Information System (INIS)

Filipovic, N; Haber, S; Kojic, M; Tsuda, A

2008-01-01

Traditional DPD methods address dissipative and random forces exerted along the line connecting neighbouring particles. Espanol (1998 Phys. Rev. E 57 2930-48) suggested adding dissipative and random force components in a direction perpendicular to this line. This paper focuses on the advantages and disadvantages of such an addition as compared with the traditional DPD method. Our benchmark system comprises fluid initially at rest occupying the space between two concentric cylinders rotating with various angular velocities. The effect of the lateral force components on the time evolution of the simulated velocity profile was also compared with that of the known analytical solution. The results show that (i) the solution accuracy at steady state has improved and the error has been reduced by at least 30% (in one case by 75%), (ii) the DPD time to reach steady state has been halved, (iii) the CPU time has increased by only 30%, and (iv) no significant differences exist in density and temperature distributions

16. Tuple image multi-scale optical flow for detailed cardiac motion extraction: Application to left ventricle rotation analysis

NARCIS (Netherlands)

Assen, van H.C.; Florack, L.M.J.; Westenberg, J.J.M.; Haar Romenij, ter B.M.; Hamarneh, G.; Abugharbieh, R.

2008-01-01

We present a new method for detailed tracking of cardiac motion based on MR-tagging imaging, multi-scale optical flow, and HARP-like image filtering.In earlier work, we showed that the results obtained with our method correlate very well with Phase Contrast MRI. In this paper we combine the

17. Mixing by rotary jet heads: Indications of the benefits of head rotation under turbulent and transitional flow conditions

DEFF Research Database (Denmark)

Nordkvist, Mikkel; Vognsen, Marie; Nienow, Alfred W.

2008-01-01

Mixing times were obtained by the iodine-thiosulphate decolorization technique using rotary jet heads (RJH) for mixing in a Perspex tank with an inner diameter of 0.75 m and an aspect ratio of 2.5 using both water (turbulent flow) and shear-thinning, carboxymethyl cellulose (CMC) solutions...

18. A study on rotational augmentation using CFD analysis of flow in the inboard region of the MEXICO rotor blades

DEFF Research Database (Denmark)

Guntur, Srinivas; Sørensen, Niels N.

2015-01-01

This work presents an analysis of data from existing as well as new full-rotor computational fluid dynamics computations on the MEXICO rotor, with focus on the flow around the inboard parts of the blades. The boundary layer separation characteristics on the airfoil sections in the inboard parts...

19. Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux

Science.gov (United States)

Bajargaan, Ruchi; Patel, Arvind

2018-04-01

One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier's law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.

20. Report on research and development achievements in fiscal 1980 in Sunshine Project. Development of a total flow electric power plant(Two-phase rotation inflator); 1980 nendo total flow hatsuden plant no kaihatsu seika hokokusho. Niso kaiten bochoki

Energy Technology Data Exchange (ETDEWEB)

NONE

1981-03-01

Out of the development of a total flow power plant in the Sunshine Project, this paper describes a two-phase rotatry inflator. It reports the achievements in fiscal 1980. It is intended to utilize effectively the energy of gas-liquid two-phase fluid (containing a great amount of hot water) often seen in geothermal resources in Japan. Therefore, development is considered on a two-phase rotary inflator as a total flow power generation technology to inflate the gas-liquid fluid as it is without performing separation thereof, and convert it to an external work to draw out output. The inflator is a volume type rotary engine, which has the highest efficiency theoretically, but has not been put into practical use worldwide. Based on the result obtained in the previous fiscal year, development is made on a most suitable seal to be applied to circumferential seal of an external rotor, apex seal, and intake port seal. A rotary inflation performance testing machine is fabricated to study inflation of the gas-liquid two-phase fluid. Setting the engine efficiency of 60% or higher as the target, detailed design, fabrication and assembly shall be completed on two-phase rotation inflators of volume type and self-rotation type of 300 kW class. (NEDO)

1. Unsteady MHD Heat Transfer in Couette Flow of Water at 4°C in a Rotating System with Ramped Temperature via Finite Element Method

Directory of Open Access Journals (Sweden)

Reddy G.J.

2017-02-01

Full Text Available An unsteady magnetohydromagnetic natural convection on the Couette flow of electrically conducting water at 4°C (Pr = 11.40 in a rotating system has been considered. A Finite Element Method (FEM was employed to find the numerical solutions of the dimensionless governing coupled boundary layer partial differential equations. The primary velocity, secondary velocity and temperature of water at 4°C as well as shear stresses and rate of heat transfer have been obtained for both ramped temperature and isothermal plates. The results are independent of the mesh (grid size and the present numerical solutions through the Finite Element Method (FEM are in good agreement with the existing analytical solutions by the Laplace Transform Technique (LTT. These are shown in tabular and graphical forms.

2. Capture of fixation by rotational flow; a deterministic hypothesis regarding scaling and stochasticity in fixational eye movements

Directory of Open Access Journals (Sweden)

Nicholas Mansel Wilkinson

2014-02-01

Full Text Available Visual scan paths exhibit complex, stochastic dynamics. Even during visual fixation, the eye is in constant motion. Fixational drift and tremor are thought to reflect fluctuations in the persistent neural activity of neural integrators in the oculomotor brainstem, which integrate sequences of transient saccadic velocity signals into a short term memory of eye position. Despite intensive research and much progress, the precise mechanisms by which oculomotor posture is maintained remain elusive. Drift exhibits a stochastic statistical profile which has been modelled using random walk formalisms. Tremor is widely dismissed as noise. Here we focus on the dynamical profile of fixational tremor, and argue that tremor may be a signal which usefully reflects the workings of the oculomotor postural control. We identify signatures reminiscent of a certain flavour of transient neurodynamics; toric travelling waves which rotate around a central phase singularity. Spiral waves play an organisational role in dynamical systems at many scales throughout nature, though their potential functional role in brain activity remains a matter of educated speculation. Spiral waves have a repertoire of functionally interesting dynamical properties, including persistence, which suggest that they could in theory contribute to persistent neural activity in the oculomotor postural control system. Whilst speculative, the singularity hypothesis of oculomotor postural control implies testable predictions, and could provide the beginnings of an integrated dynamical framework for eye movements across scales.

3. Rotational seismology

Science.gov (United States)

Lee, William H K.

2016-01-01

Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

4. Hall effects on unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel

Science.gov (United States)

Krishna, M. Veera; Swarnalathamma, B. V.

2017-07-01

We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.

5. A method to quantitate cerebral blood flow using a rotating gamma camera and iodine-123 iodoamphetamine with one blood sampling

International Nuclear Information System (INIS)

Iida, Hidehiro; Itoh, Hiroshi; Bloomfield, P.M.; Munaka, Masahiro; Higano, Shuichi; Murakami, Matsutaro; Inugami, Atsushi; Eberl, S.; Aizawa, Yasuo; Kanno, Iwao; Uemura, Kazuo

1994-01-01

A method has been developed to quantitate regional cerebral blood blow (rCBF) using iodine-123-labelled N-isopropyl-p-iodoamphetamine (IMP). This technique requires only two single-photon emission tomography (SPET) scans and one blood sample. Based on a two-compartment model, radioactivity concentrations in the brain for each scan time are calculated. A standard input function has been generated by combining the input functions from 12 independent studies prior to this work to avoid frequent arterial blood sampling, and one blood sample is taken at 10 min following IMP administration for calibration of the standard arterial input function. This calibration time was determined such that the integration of the first 40 min of the calibrated, combined input function agreed best with those from 12 individual input functions (the difference was 5.3% on average). This method was applied to eight subjects (two normals and six patients with cerebral infarction), and yielded rCBF values which agreed well with those obtained by a positron emission tomography H 2 15 O autoradiography method. This method was also found to provide rCBF values that were consistent with those obtained by the non-linear least squares fitting technique and those obtained by conventional microsphere model analysis. The optimum SPET scan times were found to be 40 and 180 min for the early and delayed scans, respectively. These scan times allow the use of a conventional rotating gamma camera for clinical purposes. V d values ranged between 10 and 40 ml/g depending on the pathological condition, thereby suggesting the importance of measuring V d for each ROI. In conclusion, optimization of the blood sampling time and the scanning time enabled quantitative measurement of rCBF with two SPET scans and one blood sample. (orig.)

6. Study on the annular leakage-flow-induced vibrations. 1st Report. Stability for translational and rotational single-degree-of-freedom systems; Kanjo sukimaryu reiki shindo ni kansuru kenkyu. 1. Heishin oyobi kaiten 1 jiyudokei no anteise

Energy Technology Data Exchange (ETDEWEB)

Li, D.W. [Hitachi, Ltd., Tokyo (Japan); Kaneko, S. [The University of Tokyo, Tokyo (Japan); Hayama, S. [Toyama Prefectural University, Toyama (Japan)

1999-07-25

This study reports the stability of annular leakage-flow-induced vibrations. The pressure distribution of fluid between a fixed outer cylinder and a vibrating inner cylinder was obtained in the case of a translationally and rotationally coupled motion of the inner cylinder. The unsteady fluid force acting on the inner cylinder in the case of translational and rotational single-degree-of-freedom vibrations was then expressed in terms proportional to the acceleration, velocity, and displacement. Then the critical flow rate (at which stability was lost) was determined for an annular leakage-flow-induced vibration. Finally, the stability was investigated theoretically. It is known that instability will occur in the case of a divergent passage, but the critical flow rate depends on the passage increment in a limited range: the eccentricity of the passage and the pressure loss factor at the inlet of the passage lower the stability. (author)

7. Size-induced axial band structure and directional flow of a ternary-size granular material in a 3-D horizontal rotating drum

Science.gov (United States)

Yang, Shiliang; Sun, Yuhao; Ma, Honghe; Chew, Jia Wei

2018-05-01

Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.

8. Global rotation

International Nuclear Information System (INIS)

Rosquist, K.

1980-01-01

Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

9. CISM Course on Rotating Fluids

CERN Document Server

1992-01-01

The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

10. Decreased CSF-flow artefacts in T2 imaging of the cervical spine with periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER/BLADE)

International Nuclear Information System (INIS)

Ragoschke-Schumm, Andreas; Schmidt, Peter; Mayer, Thomas E.; Schumm, Julia; Reimann, Georg; Mentzel, Hans-Joachim; Kaiser, Werner A.

2011-01-01

11. A comparison of the electrochemical recovery of palladium using a parallel flat plate flow-by reactor and a rotating cylinder electrode reactor

International Nuclear Information System (INIS)

Terrazas-Rodriguez, J.E.; Gutierrez-Granados, S.; Alatorre-Ordaz, M.A.; Ponce de Leon, C.; Walsh, F.C.

2011-01-01

The production of catalytic converters generates large amounts of waste water containing Pd 2+ , Rh 3+ and Nd 3+ ions. The electrochemical treatment of these solutions offers an economic and effective alternative to recover the precious metals in comparison with other traditional metal recovery technologies. The separation of palladium from this mixture of metal ions by catalytic deposition was carried out using a rotating cylinder electrode reactor (RCER) and a parallel plate reactor (FM01-LC) with the same cathode area (64 cm 2 ) and electrolyte volume (300 cm 3 ). The study was carried out at mean linear flow velocities of 1.27 -1 (120 e /v -1 (7390 2+ ions in the parallel plate electrode reactor was 35% while the recovery of 97% of Pd 2+ in the RCER was 62%. The volumetric energy consumption during the electrolysis was 0.56 kW h m -3 and 2.1 kW h m -3 for the RCER and the FM01-LC reactors, respectively. Using a three-dimensional stainless steel electrode in the FM01-LC laboratory reactor, 99% of palladium ions were recovered after 30 min of electrolysis while in the RCER, 120 min were necessary.

12. Excitation of higher radial modes of azimuthal surface waves in the electron cyclotron frequency range by rotating relativistic flow of electrons in cylindrical waveguides partially filled by plasmas

Science.gov (United States)

Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred

2018-05-01

Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-dielectric waveguides which propagate azimuthally nearby the plasma-dielectric interface across an axial external stationary magnetic field. Their eigenfrequency in particular can belong to the electron cyclotron frequency range. Excitation of azimuthal surface waves by rotating relativistic electron flows was studied in detail recently in the case of the zeroth radial mode for which the waves' radial phase change within the layer where the electrons gyrate is small. In this case, just the plasma parameters cause the main influence on the waves' dispersion properties. In the case of the first and higher radial modes, the wave eigenfrequency is higher and the wavelength is shorter than in the case of the zeroth radial mode. This gain being of interest for practical applications can be achieved without any change in the device design. The possibility of effective excitation of the higher order radial modes of azimuthal surface waves is demonstrated here. Getting shorter wavelengths of the excited waves in the case of higher radial modes is shown to be accompanied by decreasing growth rates of the waves. The results obtained here are of interest for developing new sources of electromagnetic radiation, in nano-physics and in medical physics.

13. Dissipative slip flow along heat and mass transfer over a vertically rotating cone by way of chemical reaction with Dufour and Soret effects

Directory of Open Access Journals (Sweden)

S. Bilal

2016-12-01

Full Text Available An attempt has been constructed in the communication to envision heat and mass transfer characteristics of viscous fluid over a vertically rotating cone. Thermal transport in the fluid flow is anticipated in the presence of viscous dissipation. Whereas, concentration of fluid particles is contemplated by incorporating the diffusion-thermo (Dufour and thermo-diffusion (Soret effects. The governing equations for concerning problem is first modelled and then nondimensionalized by implementing compatible transformations. The utilization of these transformations yields ordinary differential system which is computed analytically through homotopic procedure. Impact of velocity, temperature and concentration profiles are presented through fascinating graphics. The influence of various pertinent parameters on skin friction coefficient, Nusselt number and Sherwood number are interpreted through graphical and tabular display. After comprehensive examination of analysis, it is concluded that temperature of fluid deescalates for growing values of Soret parameter whereas it shows inciting attitude towards Dufour parameter and similar agreement is observed for the behavior of concentration profile with respect to these parameters. Furthermore, the affirmation of present work is established by developing comparison with previously published literature. An excellent agreement is found which shows the credibility and assurance of present analysis.

14. Rotation, Stability and Transport

Energy Technology Data Exchange (ETDEWEB)

Connor, J. W.

2007-07-01

Tokamak plasmas can frequently exhibit high levels of rotation and rotation shear. This can usually be attributed to various sources: injection of momentum, e.g. through neutral beams, flows driven by plasma gradients or torques resulting from non-ambipolar particle loss; however, the source sometimes remains a mystery, such as the spontaneous rotation observed in Ohmic plasmas. The equilibrium rotation profile is given by the balance of these sources with transport and other losses; the edge boundary conditions can play an important role in determining this profile . Such plasma rotation, particularly sheared rotation, is predicted theoretically to have a significant influence on plasma behaviour. In the first place, sonic flows can significantly affect tokamak equilibria and neoclassical transport losses. However, the influence of rotation on plasma stability and turbulence is more profound. At the macroscopic level it affects the behaviour of the gross MHD modes that influence plasma operational limits. This includes sawteeth, the seeding of neoclassical tearing modes, resistive wall modes and the onset of disruptions through error fields, mode locking and reconnection. At the microscopic level it has a major effect on the stability of ballooning modes, both ideal MHD and drift wave instabilities such as ion temperature gradient (ITG) modes. In the non-linear state, as unstable drift waves evolve into turbulent structures, sheared rotation also tears apart eddies, thereby reducing the resulting transport. There is considerable experimental evidence for these effects on both MHD stability and plasma confinement. In particular, the appearance of improved confinement modes with transport barriers, such as edge H-mode barriers and internal transport barriers (ITBs) appears to correlate well with the presence of sheared plasma rotation. This talk will describe the theory underlying some of these phenomena involving plasma rotation, on both macroscopic and microscopic

15. Rotating Wavepackets

Science.gov (United States)

Lekner, John

2008-01-01

Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

16. Rotating dryer

International Nuclear Information System (INIS)

Noe, C.

1984-01-01

Products to dry are introduced inside a rotating tube placed in an oven, the cross section of the tube is an arc of spiral. During clockwise rotation of the tube products are maintained inside and mixed, during anticlockwise products are removed. Application is made to drying of radioactive wastes [fr

17. On the gravitational instability of an ionized magnetized rotating plasma flowing through a porous medium with other transport processes and the suspended particles

International Nuclear Information System (INIS)

Vyas, M.K.; Chhajlani, R.K.

1989-01-01

The effects of suspended particles and the finite thermal and electrical conductivities on the magnetogravitational instability of an ionized rotating plasma through a porous medium have been investigated, under varying assumptions of the rotational axis and the modes of propagation. In all the cases it is observed that the Jeans' criterion determines the condition of instability with some modifications due to various parameters. The effects of rotation, the medium porosity, and the mass concentration of the suspended particles on instability condition have been removed by (1) magnetic field for longitudinal mode of propagation with perpendicular rotational axis, and (2) viscosity for transverse propagation with rotational axis parallel to the magnetic field. The mass concentration reduces the effects of rotation. Thermal conductivity replaces the adiabatic velocity of sound by the isothermal one, whereas the effect of the finite electrical conductivity is to delink the alignment between the magnetic field and the plasma. Porosity reduces the effects of both the magnetic field and the rotation, on Jeans' criterion. (author)

18. Rotating preventers

International Nuclear Information System (INIS)

Tangedahl, M.J.; Stone, C.R.

1992-01-01

This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs

19. Earth Rotation

Science.gov (United States)

Dickey, Jean O.

1995-01-01

The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

20. Effect of rotation on convective mass transfer in rotating channels

International Nuclear Information System (INIS)

Pharoah, J.G.; Djilali, N.

2002-01-01

Laminar flow and mass transfer in rotating channels is investigated in the context of centrifugal membrane separation. The effect of orientation with respect to the rotational axis is examined for rectangular channels of aspect ratio 3 and the Rossby number is varied from 0.3 to 20.9. Both Ro and the channel orientation are found to have a significant effect on the flow. Mass transfer calculations corresponding to reverse osmosis desalination are carried out at various operating pressures and all rotating cases exhibit significant process enhancements at relatively low rotation rates. Finally, while it is common in the membrane literature to correlate mass transfer performance with membrane shear rates this is shown not to be valid in the cases presented herein. (author)

1. An Lq-approach with generalized anisotropic weight of the weak solution of the Oseen flow around a rotating body in the whole space

Czech Academy of Sciences Publication Activity Database

Kračmar, S.; Krbec, Miroslav; Nečasová, Šárka; Penel, P.; Schumacher, K.

2009-01-01

Roč. 71, č. 12 (2009), e2940-e2957 ISSN 0362-546X R&D Projects: GA AV ČR IAA100190804 Institutional research plan: CEZ:AV0Z10190503 Keywords : littlewood-Paley theory * maximal operators * rotating body * Muckenhoupt weights * one-sided weights Subject RIV: BA - General Mathematics Impact factor: 1.487, year: 2009

2. MHD equilibrium with toroidal rotation

International Nuclear Information System (INIS)

Li, J.

1987-03-01

The present work attempts to formulate the equilibrium of axisymmetric plasma with purely toroidal flow within ideal MHD theory. In general, the inertial term Rho(v.Del)v caused by plasma flow is so complicated that the equilibrium equation is completely different from the Grad-Shafranov equation. However, in the case of purely toroidal flow the equilibrium equation can be simplified so that it resembles the Grad-Shafranov equation. Generally one arbitrary two-variable functions and two arbitrary single variable functions, instead of only four single-variable functions, are allowed in the new equilibrium equations. Also, the boundary conditions of the rotating (with purely toroidal fluid flow, static - without any fluid flow) equilibrium are the same as those of the static equilibrium. So numerically one can calculate the rotating equilibrium as a static equilibrium. (author)

3. Development of Laser Velocimetry for the Measurements of Turbulence Intensity and Flow Velocity Ahead of a NGV Row in a Full-Stage Rotating Turbine

Science.gov (United States)

1993-09-01

INTRODUCTION This document represents a letter final report for the Caispan UB Research Center ( CUBRC ) contract no. F33615-85-C-2566. There have been many...was that CUBRC would design, construct, and calibrate heat-flux gage inserts for the Advanced High Work Turbine (AHWT) vane which is the next...Row in a Full-Stage Rotating Turbine (Unsolicited Proposal No. 102)" is herein incorporated by reference. The CUBRC proposal to which SECTION C refers

4. Effects of zonal flows on correlation between energy balance and energy conservation associated with nonlinear nonviscous atmospheric dynamics in a thin rotating spherical shell

Science.gov (United States)

Ibragimov, Ranis N.

2018-03-01

The nonlinear Euler equations are used to model two-dimensional atmosphere dynamics in a thin rotating spherical shell. The energy balance is deduced on the basis of two classes of functorially independent invariant solutions associated with the model. It it shown that the energy balance is exactly the conservation law for one class of the solutions whereas the second class of invariant solutions provides and asymptotic convergence of the energy balance to the conservation law.

5. Mid-section of a can-annular gas turbine engine with an improved rotation of air flow from the compressor to the turbine

Science.gov (United States)

Little, David A.; Schilp, Reinhard; Ross, Christopher W.

2016-03-22

A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the air flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).

6. Polygons on a rotating fluid surface

DEFF Research Database (Denmark)

Jansson, Thomas R.N.; Haspang, Martin P.; Jensen, Kåre H.

2006-01-01

We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon...... rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating...

7. Autonomous quantum rotator

DEFF Research Database (Denmark)

Fogedby, Hans C.; Imparato, Alberto

2018-01-01

to a directed rotary motion. At variance with the classical case, the thermal fluctuations in the baths give rise to a non-vanishing average torque contribution; this is a genuine quantum effect akin to the Casimir effect. In the steady state the heat current flowing between the two baths is systematically......, the rotator cannot work either as a heat pump or as a heat engine. We finally use our exact results to extend an ab initio quantum simulation algorithm to the out-of-equilibrium regime. Copyright (C) EPLA, 2018...

8. Visual perception of axes of head rotation

Science.gov (United States)

Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.

2013-01-01

9. From Newton's bucket to rotating polygons

DEFF Research Database (Denmark)

Bach, B.; Linnartz, E. C.; Vested, Malene Louise Hovgaard

2014-01-01

We present an experimental study of 'polygons' forming on the free surface of a swirling water flow in a partially filled cylindrical container. In our set-up, we rotate the bottom plate and the cylinder wall with separate motors. We thereby vary rotation rate and shear strength independently...... and move from a rigidly rotating 'Newton's bucket' flow to one where bottom and cylinder wall are rotating oppositely and the surface is strongly turbulent but flat on average. Between those two extremes, we find polygonal states for which the rotational symmetry is spontaneously broken. We investigate...... the phase diagram spanned by the two rotational frequencies at a given water filling height and find polygons in a regime, where the two frequencies are sufficiently different and, predominantly, when they have opposite signs. In addition to the extension of the family of polygons found with the stationary...

10. Polygons on a rotating fluid surface.

Science.gov (United States)

Jansson, Thomas R N; Haspang, Martin P; Jensen, Kåre H; Hersen, Pascal; Bohr, Tomas

2006-05-05

We report a novel and spectacular instability of a fluid surface in a rotating system. In a flow driven by rotating the bottom plate of a partially filled, stationary cylindrical container, the shape of the free surface can spontaneously break the axial symmetry and assume the form of a polygon rotating rigidly with a speed different from that of the plate. With water, we have observed polygons with up to 6 corners. It has been known for many years that such flows are prone to symmetry breaking, but apparently the polygonal surface shapes have never been observed. The creation of rotating internal waves in a similar setup was observed for much lower rotation rates, where the free surface remains essentially flat [J. M. Lopez, J. Fluid Mech. 502, 99 (2004). We speculate that the instability is caused by the strong azimuthal shear due to the stationary walls and that it is triggered by minute wobbling of the rotating plate.

11. Current status of rotational atherectomy.

Science.gov (United States)

Tomey, Matthew I; Kini, Annapoorna S; Sharma, Samin K

2014-04-01

12. Project subsidized by the Sunshine Project in fiscal 1982. Report on achievements in the project commissioned from NEDO for development of a total flow power generation plant (Two-phase rotation inflator); 1982 nendo total flow hatsuden plant no kaihatsu seika hokokusho. Niso kaiten bochoki

Energy Technology Data Exchange (ETDEWEB)

NONE

1983-07-01

Developmental research has been performed on a two-phase rotation inflator in the total flow power generation technology to inflate gas-liquid two-phase fluid containing a great amount of hot water in the form as it is to draw out output. Subsequently from the previous fiscal year, the present fiscal year has improved the performance of a 300-kW class two-phase rotation inflator. The factory test data acquired in the previous fiscal year were analyzed, and an investigation was given on the cause of leakage loss and machine loss which were greater than what has been expected initially. The result revealed leakage from the circumferential seal grooves and leakage due to increase in the side seal clearance as a result of deformation of the external rotor flange. In addition, the static pressure bearing was found to have small displacement in the shaft center, but have large loss. Small modifications on these deficiencies raised the engine efficiency by about 44% at a rotation speed of 1,200 rpm, proving the effect of the improvement. However, the inflator showed a trend that, at the rotation speed higher than 1,600 rpm, air intake amount has increased, and the output has decreased. Therefore, analyses and investigations were carried out on water film loss, bearing loss and machine loss, and total modification was given on the inner and outer rotors, the inner wheel chamber, the sealing device, and the bearings. (NEDO)

13. Rotational effects on turbine blade cooling

Energy Technology Data Exchange (ETDEWEB)

Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L. [Massachusetts Institute of Technology, Cambridge, MA (United States)

1995-10-01

An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

14. Visual perception of axes of head rotation

Directory of Open Access Journals (Sweden)

David Mattijs Arnoldussen

2013-02-01

15. Ash-flow tuff distribution and fault patterns as indicators of rotation of late-tertiary regional extension, Nevada test site

International Nuclear Information System (INIS)

Ander, H.D.

1983-01-01

Isopach and structure contour maps generated for Yucca Flat as well as fault pattern analyses of the Nevada Test Site (NTS) can aid in more efficient site selection and site characterization necessary for containment. Furthermore, these geologic studies indicate that most of the alluvial deposition in Yucca Flat was controlled by north-trending faults responding to a regional extension direction oriented approximately 20 0 to 30 0 west of the N50 0 W direction observed today. The Yucca Flat basin-forming Carpetbag and Yucca fault systems seem to be deflected at their southern ends into the northeast-trending Cane Spring and Mine Mountain fault systems. Left-lateral strike-slip displacement of approx. 1.4 km found on these northeasterly faults requires that most of the displacement on the combined fault systems occurred in an extension field oriented approximately N80 0 W. Fault movement in this extensional field postdates the Ammonia Tanks tuff (approx. 11 My) and was strongly active during deposition of some 1100 meters of alluvium in Yucca Flat. Time of rotation of regional extension to the presently active N50 0 W direction is unknown; however, it occurred so recently that it has not greatly modified fault displacement patterns extant at the NTS

16. Rotator cuff exercises

Science.gov (United States)

... 25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder MRI scan Shoulder pain Patient Instructions Rotator cuff - self-care Shoulder surgery - discharge Using your ...

17. Finite element analysis of heat and mass transfer of an unsteady MHD natural convection flow of a rotating fluid past a vertical porous plate in the presence of radiative heat transfer

International Nuclear Information System (INIS)

Anand Rao, J.; Prabhakar Reddy, B.

2010-01-01

The numerical solution of unsteady hydro-magnetic natural convection heat and mass transfer flow of a rotating, incompressible, viscous Boussinesq fluid is presented in this study in the presence of radiative heat transfer and a first order chemical reaction between the fluid and diffusing species. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. The solutions for velocity, temperature and concentration fields have been obtained by using Ritz finite element method. The results obtained are discussed for Grashof number(G r > 0) corresponding to cooling of the plate and (G r r , Sc, M, N, K, G r , G c and t with the help of graphs and tables. The numerical values of skin-friction coefficient entered in the tables. Results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t, is increased. These findings are in quantitative agreement with earlier reported studies. (author)

18. Rotational motion in nuclei

International Nuclear Information System (INIS)

Bohr, A.

1977-01-01

History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

19. Tokamak rotation and charge exchange

International Nuclear Information System (INIS)

Hazeltine, R.D.; Rowan, W.L.; Solano, E.R.; Valanju, P.M.

1991-01-01

In the absence of momentum input, tokamak toroidal rotation rates are typically small - no larger in particular than poloidal rotation - even when the radial electric field is strong, as near the plasma edge. This circumstance, contradicting conventional neoclassical theory, is commonly attributed to the rotation damping effect of charge exchange, although a detailed comparison between charge-exchange damping theory and experiment is apparently unavailable. Such a comparison is attempted here in the context of recent TEXT experiments, which compare rotation rates, both poloidal and toroidal, in helium and hydrogen discharges. The helium discharges provide useful data because they are nearly free of ion-neutral charge exchange; they have been found to rotate toroidally in reasonable agreement with neoclassical predictions. The hydrogen experiments show much smaller toroidal motion as usual. The theoretical calculation uses the full charge-exchange operator and assumes plateau collisionality, roughly consistent with the experimental conditions. The authors calculate the ion flow as a function of v cx /v c , where v cx is the charge exchange rate and v c the Coulomb collision frequency. The results are in reasonable accord with the observations. 1 ref

20. Neoclassical poloidal and toroidal rotation in tokamaks

International Nuclear Information System (INIS)

Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

1991-01-01

Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite to that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation

1. Rotationally invariant correlation filtering

International Nuclear Information System (INIS)

Schils, G.F.; Sweeney, D.W.

1985-01-01

A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

2. The residual zonal dynamics in a toroidally rotating tokamak

International Nuclear Information System (INIS)

Zhou Deng

2015-01-01

Zonal flows, initially driven by ion-temperature-gradient turbulence, may evolve due to the neoclassic polarization in a collisionless tokamak plasma. In this presentation, the form of the residual zonal flow is presented for tokamak plasmas rotating toroidally at arbitrary velocity. The gyro-kinetic equation is analytically solved to give the expression of residual zonal flows with arbitrary rotating velocity. The zonal flow level decreases as the rotating velocity increases. The numerical evaluation is in good agreement with the previous simulation result for high aspect ratio tokamaks. (author)

3. Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels with Film Coolant Extraction

Directory of Open Access Journals (Sweden)

James A. Parsons

2001-01-01

Full Text Available The effect of channel rotation on jet impingement cooling by arrays of circular jets in twin channels was studied. Impinging jet flows were in the direction of rotation in one channel and opposite to the direction of rotation in the other channel. The jets impinged normally on the smooth, heated target wall in each channel. The spent air exited the channels through extraction holes in each target wall, which eliminates cross flow on other jets. Jet rotation numbers and jet Reynolds numbers varied from 0.0 to 0.0028 and 5000 to 10,000, respectively. For the target walls with jet flow in the direction of rotation (or opposite to the direction of rotation, as rotation number increases heat transfer decreases up to 25% (or 15% as compared to corresponding results for non-rotating conditions. This is due to the changes in flow distribution and rotation induced Coriolis and centrifugal forces.

4. Rotating anode X-ray tubes

International Nuclear Information System (INIS)

Webley, R.S.

1981-01-01

In a rotating anode x-ray tube it is proposed to mount the rotating anode, or means such as a shaft affixed to it, to rotate on bearings in a race the seating for which is cooled by a suitable coolant flow. A suitable bellows arrangement allows the coolant pressure to determine the contact pressure of the seating on the bearings. This allows the thermal impedance to be varied and the bearing wear to be optimised therewith as well as allowing adjustment for wear. The use of two bellows allows the seating section therebetween to move towards the other section as the rollers wear. (author)

5. Parameterization of rotational spectra

International Nuclear Information System (INIS)

Zhou Chunmei; Liu Tong

1992-01-01

The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

6. Rotating reactors : a review

NARCIS (Netherlands)

Visscher, F.; Schaaf, van der J.; Nijhuis, T.A.; Schouten, J.C.

2013-01-01

This review-perspective paper describes the current state-of-the-art in the field of rotating reactors. The paper has a focus on rotating reactor technology with applications at lab scale, pilot scale and industrial scale. Rotating reactors are classified and discussed according to their geometry:

7. Magneto-rotational instability in differentially rotating liquid metals

International Nuclear Information System (INIS)

Velikhov, E.P.; Ivanov, A.A.; Lakhin, V.P.; Serebrennikov, K.S.

2006-01-01

We study the stability of Couette flow between two cylinders in the presence of axial magnetic field in local WKB approximation. We find the analytical expression of the critical angular velocity minimized over the wave number and the imposed magnetic field as a function of the measure of deviation of the rotation law from the Rayleigh line. The result found is in a good agreement with the previously known numerical results based on the global analysis. We perform a minimization of the critical Reynolds number over the wave number at fixed magnetic field both analytically and numerically. We show that a compromise between resistive suppression of magneto-rotational instability at weak magnetic field and the increase of the critical Reynolds number with the increase of magnetic field is possible. It takes place at moderate values of magnetic field of order 3x10 2 gauss giving the critical Reynolds number of order 4x10 4

8. Table-top rotating turbulence : an experimental insight through Particle Tracking

NARCIS (Netherlands)

Castello, Del L.

2010-01-01

The influence of the Earth background rotation on oceanic and atmospheric currents, as well as the effects of a rapid rotation on the flow inside industrial machineries like mixers, turbines, and compressors, are only the most typical examples of fluid flows affected by rotation. Despite the

9. Rotating Stars in Relativity

Directory of Open Access Journals (Sweden)

Stergioulas Nikolaos

2003-01-01

Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

10. On Averaging Rotations

DEFF Research Database (Denmark)

Gramkow, Claus

1999-01-01

In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belo...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion......In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

11. Study on the annular leakage-flow-induced vibrations. 2nd Report. Stability analysis and experiments for translationally and rotationally coupled two-degree-of-freedom systems; Kanjo sukimaryu reiki shindo ni kansuru kenkyu. 2. heishin kaiten 2 jiyudo renseikei no anteisei kaiseki oyobi jikken

Energy Technology Data Exchange (ETDEWEB)

Li, D.W. [Hitachi, Ltd., Tokyo (Japan); Kaneko, S. [The University of Tokyo, Tokyo (Japan); Hayama, S. [Toyama Prefectural University, Toyama (Japan)

1999-07-25

In this study, the stability of annular leakage-flow-induced vibrations was investigated theoretically and experimentally for a translationally and rotationally coupled two-degree-of-freedom system. The critical flow rate was both theoretically and experimentally obtained as a function of the passage increment ratio and the eccentricity of the passage. A good agreement between the theoretical and experimental results was obtained. It was discovered both theoretically and from the experiments that instability will occur in the case of a divergent passage: the eccentricity of the passage lowers the stability of the systems. (author)

12. Rotation vectors for homeomorphisms of non-positively curved manifolds

International Nuclear Information System (INIS)

Lessa, Pablo

2011-01-01

Rotation vectors, as defined for homeomorphisms of the torus that are isotopic to the identity, are generalized to such homeomorphisms of any complete Riemannian manifold with non-positive sectional curvature. These generalized rotation vectors are shown to exist for almost every orbit of such a dynamical system with respect to any invariant measure with compact support. The concept is then extended to flows and, as an application, it is shown how non-null rotation vectors can be used to construct a measurable semi-conjugacy between a given flow and the geodesic flow of a manifold

13. Nonmodal phenomena in differentially rotating dusty plasmas

Science.gov (United States)

Poedts, Stefaan; Rogava, Andria D.

2000-10-01

In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior-shear-dust-acoustic vortices-are generated. The presence of self-gravity and the nonzero Coriolis parameter (`epicyclic shaking'') makes these collective modes transiently unstable. .

14. Nonmodal phenomena in differentially rotating dusty plasmas

International Nuclear Information System (INIS)

Poedts, Stefaan; Rogava, Andria D.

2000-01-01

In this paper the foundation is layed for the nonmodal investigation of velocity shear induced phenomena in a differentially rotating flow of a dusty plasma. The simplest case of nonmagnetized flow is considered. It is shown that, together with the innate properties of the dusty plasma, the presence of differential rotation, Coriolis forces, and self-gravity casts a considerable richness on the nonmodal dynamics of linear perturbations in the flow. In particular: (i) dust-acoustic waves acquire the ability to extract energy from the mean flow and (ii) shear-induced, nonperiodic modes of collective plasma behavior--shear-dust-acoustic vortices--are generated. The presence of self-gravity and the nonzero Coriolis parameter ('epicyclic shaking') makes these collective modes transiently unstable

15. Dynamics of Tidally Locked, Ultrafast Rotating Atmospheres

Science.gov (United States)

2017-10-01

Tidally locked gas giants, which exhibit a novel regime of day-night thermal forcing and extreme stellar irradiation, are typically in several-day orbits, implying slow rotation and a modest role for rotation in the atmospheric circulation. Nevertheless, there exist a class of gas-giant, highly irradiated objects - brown dwarfs orbiting white dwarfs in extremely tight orbits - whose orbital and hence rotation periods are as short as 1-2 hours. Spitzer phase curves and other observations have already been obtained for this fascinating class of objects, which raise fundamental questions about the role of rotation in controlling the circulation. So far, most modeling studies have investigated rotation periods exceeding a day, as appropriate for typical hot Jupiters. In this work we investigate the dynamics of tidally locked atmospheres in shorter rotation periods down to about two hours. With increasing rotation rate (decreasing rotation period), we show that the width of the equatorial eastward jet decreases, consistent with the narrowing of wave-mean-flow interacting region due to decrease of the equatorial deformation radius. The eastward-shifted equatorial hot spot offset decreases accordingly, and the westward-shifted hot regions poleward of the equatorial jet associated with Rossby gyres become increasingly distinctive. At high latitudes, winds becomes weaker and more geostrophic. The day-night temperature contrast becomes larger due to the stronger influence of rotation. Our simulated atmospheres exhibit small-scale variability, presumably caused by shear instability. Unlike typical hot Jupiters, phase curves of fast-rotating models show an alignment of peak flux to secondary eclipse. Our results have important implications for phase curve observations of brown dwarfs orbiting white dwarfs in ultra tight orbits.

16. Rotations with Rodrigues' vector

International Nuclear Information System (INIS)

Pina, E

2011-01-01

The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears to be a fundamental matrix that is used to express the components of the angular velocity, the rotation matrix and the angular momentum vector. The Hamiltonian formalism of rotational dynamics in terms of this vector uses the same matrix. The quantization of the rotational dynamics is performed with simple rules if one uses Rodrigues' vector and similar formal expressions for the quantum operators that mimic the Hamiltonian classical dynamics.

17. On Averaging Rotations

DEFF Research Database (Denmark)

Gramkow, Claus

2001-01-01

In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong ...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation.......In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

18. Equilibrium of current driven rotating liquid metal

International Nuclear Information System (INIS)

Velikhov, E.P.; Ivanov, A.A.; Zakharov, S.V.; Zakharov, V.S.; Livadny, A.O.; Serebrennikov, K.S.

2006-01-01

In view of great importance of magneto-rotational instability (MRI) as a fundamental mechanism for angular momentum transfer in magnetized stellar accretion disks, several research centers are involved in experimental study of MRI under laboratory conditions. The idea of the experiment is to investigate the rotation dynamics of well conducting liquid (liquid metal) between two cylinders in axial magnetic field. In this Letter, an experimental scheme with immovable cylinders and fluid rotation driven by radial current is considered. The analytical solution of a stationary flow was found taking into account the external current. Results of axially symmetric numerical simulations of current driven fluid dynamics in experimental setup geometry are presented. The analytical solution and numerical simulations show that the current driven fluid rotation in axial magnetic field provides the axially homogeneous velocity profile suitable for MRI study in classical statement

19. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

International Nuclear Information System (INIS)

Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol

2014-01-01

The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested

20. Development of NTD Hydraulic Rotation System for Kijang Research Reactor

Energy Technology Data Exchange (ETDEWEB)

Kang, Hanok; Park, Kijung; Park, Yongsoo; Kim, Seong Hoon; Park, Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

2014-05-15

The KJRR will be mainly utilized for isotope production, NTD (Neutron Transmutation Doping) production, and related research activities. During irradiation for the NTD process, the irradiation rigs containing the silicon ingot rotate at a constant speed to ensure precisely defined homogeneity of the irradiation. The NTDHRS requires only hydraulic piping conveniently routed to the rotating devices inside the reactor pool. The resulting layout leaves the pool area clear of obstructions which might obscure vision and hinder target handling for operators. Pump banks and control valves are located remotely in a dedicated plant room allowing easy access and online maintenance. The necessities and major characteristic of NTD hydraulic rotation system are described in this study. A new NTD hydraulic rotation system are being developed to rotate the irradiation rigs at a constant speed and supply cooling flow for the irradiation rigs and reflector assembly. The configuration of the NTD hydraulic rotation device is discussed and practical methods to improve the rotational performance are suggested.

1. Asteroid rotation rates

International Nuclear Information System (INIS)

Binzel, R.P.; Farinella, P.

1989-01-01

Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties

2. The spatial rotator

DEFF Research Database (Denmark)

Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard

2013-01-01

This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...

3. Superconducting rotating machines

International Nuclear Information System (INIS)

Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.

1975-01-01

The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed

4. Fundamental Relativistic Rotator

International Nuclear Information System (INIS)

Staruszkiewicz, A.

2008-01-01

Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

Science.gov (United States)

Le Vine, David

2016-01-01

Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

6. Units of rotational information

Science.gov (United States)

Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

2017-12-01

Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

7. Analysis of macroscopic and microscopic rotating motions in rotating jets: A direct numerical simulation

Directory of Open Access Journals (Sweden)

Xingtuan Yang

2015-05-01

Full Text Available A direct numerical simulation study of the characteristics of macroscopic and microscopic rotating motions in swirling jets confined in a rectangular flow domain is carried out. The different structures of vortex cores for different swirl levels are illustrated. It is found that the vortex cores of low swirl flows are of regular cylindrical-helix patterns, whereas those of the high swirl flows are characterized by the formation of the bubble-type vortex breakdown followed by the radiant processing vortex cores. The results of mean velocity fields show the general procedures of vortex origination. Moreover, the effects of macroscopic and microscopic rotating motions with respect to the mean and fluctuation fields of the swirling flows are evaluated. The microscopic rotating effects, especially the effects with respect to the turbulent fluctuation motion, are increasingly intermittent with the increase in the swirl levels. In contrast, the maximum value of the probability density functions with respect to the macroscopic rotating effects of the fluctuation motion occurs at moderate swirl levels since the macroscopic rotating effects are attenuated by the formation of the bubble vortex breakdown with a region of stagnant fluids at supercritical swirl levels.

8. Transitions in rapidly rotating convection dynamos

Science.gov (United States)

Tilgner, A.

2013-12-01

It is commonly assumed that buoyancy in the fluid core powers the geodynamo. We study here the minimal model of a convection driven dynamo, which is a horizontal plane layer in a gravity field, filled with electrically conducting fluid, heated from below and cooled from above, and rotating about a vertical axis. Such a plane layer may be viewed as a local approximation to the geophysically more relevant spherical geometry. The numerical simulations have been run on graphics processing units with at least 960 cores. If the convection is driven stronger and stronger at fixed rotation rate, the flow behaves at some point as if it was not rotating. This transition shows in the scaling of the heat transport which can be used to distinguish slow from rapid rotation. One expects dynamos to behave differently in these two flow regimes. But even within the convection flows which are rapidly rotating according to this criterion, it will be shown that different types of dynamos exist. In one state, the magnetic field strength obeys a scaling indicative of a magnetostrophic balance, in which the Lorentz force is in equilibrium with the Coriolis force. The flow in this case is helical. A different state exists at higher magnetic Reynolds numbers, in which the magnetic energy obeys a different scaling law and the helicity of the flow is much reduced. As one increases the Rayleigh number, all other parameters kept constant, one may find both types of dynamos separated by an interval of Rayleigh numbers in which there are no dynamos at all. The effect of these transitions on energy dissipation and mean field generation have also been studied.

9. The rotating universe

International Nuclear Information System (INIS)

Ruben, G.; Treder, H.J.

1987-01-01

For a long time the question whether the universe rotates or not is discussed. Aspects of Huygens, Newton, Mach and other important historical scientists in this field are reported. The investigations of the mathematician Kurt Groedel in order to prove the rotation of the universe are illustrated. Kurt Groedel has shown that Einstein's gravitational equations of general relativity theory and the cosmological postulate of global homogeneity of cosmic matter (that is the Copernical principle) are not contradictionary to a rotating universe. Abberation measurements, position determination by means of radiointerferometry and methods for the determination of the rotation of the universe from the isotropy of the background radiation are presented. From these experiments it can be concluded that the universe seems not to rotate as already Einstein expected

10. Rotation sensor switch

International Nuclear Information System (INIS)

Sevec, J.B.

1978-01-01

A protective device to provide a warning if a piece of rotating machinery slows or stops is comprised of a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal

11. Rotating stars in relativity.

Science.gov (United States)

Paschalidis, Vasileios; Stergioulas, Nikolaos

2017-01-01

Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

12. Extension of the PSE code NOLOT for transition analysis in rotating reference frames

OpenAIRE

Dechamps, Xavier; Hein, Stefan

2016-01-01

The present work aims at contributing to a better understanding of the effect of rotation on the stability properties of boundary layers. For this purpose, the Parabolized-Stability-Equations based NOLOT code was extended to rotating reference frames through the inclusion of the centrifugal and Coriolis forces. Stability analyses of three flow configurations were then considered for verification: the rotating Blasius Profile, the flow along a curved wall and the three-dimensional flow due to ...

13. The analysis on centrifugal compressor rotating stall

International Nuclear Information System (INIS)

Kim, Ji Hwan; Kim, Kwang Ho; Shin, You Hwan

2003-01-01

In the present study, the performance characteristics and the number of stall cell during rotating stall of a centrifugal air compressor were experimentally investigated. Rotating stall in the vaneless diffuser were investigated by measuring unsteady pressure fluctuations at several different diffuser radius using a high frequency pressure transducer. The number of stall cell and their rotational speeds are distinctive features of the rotating stall phenomenon. The present study is mainly forced on the analysis for the stall cell number and its propagation speed unstable operating region of the compressor. The interpretation method of visualization is based on the pressure distribution in the circumference pressure fields while plotting the pressure and its harmonics variations in time in polar coordinates. To obtain the visualize the existence rotating stall, auto-correlation function and the frequency spectra of the pressure fluctuations were measured at r/r2=1.52. When the flow coefficient is lower than 0.150, the static pressure at impeller inlet is higher than that at inlet duct of the compressor. And the flow coefficient is lower than 0.086, several stall cell groups of discrete frequencies are observed

14. The bathtub vortex in a rotating container

DEFF Research Database (Denmark)

Andersen, Anders Peter; Bohr, Tomas; Stenum, B.

2006-01-01

We study the time-independent free-surface flow which forms when a fluid drains out of a container, a so-called bathtub vortex. We focus on the bathtub vortex in a rotating container and describe the free-surface shape and the complex flow structure using photographs of the free surface, flow...... expansion approximation of the central vortex core and reduce the model to a single first-order equation. We solve the equation numerically and find that the axial velocity depends linearly on height whereas the azimuthal velocity is almost independent of height. We discuss the model of the bathtub vortex...

15. On Job Rotation

OpenAIRE

Metin M. Cosgel; Thomas J. Miceli

1998-01-01

A fundamental principle of economics with which Adam Smith begins The Wealth of Nations is the division of labor. Some firms, however, have been pursuing a practice called job rotation, which assigns each worker not to a single and specific task but to a set of several tasks among which he or she rotates with some frequency. We examine the practice of job rotation as a serious alternative to specialization, with three objectives. The first is to consider current and historical examples of job...

16. Rotator cuff - self-care

Science.gov (United States)

... this page: //medlineplus.gov/ency/patientinstructions/000358.htm Rotator cuff - self-care To use the sharing features on ... and shoulder exercises may help ease your symptoms. Rotator Cuff Problems Common rotator cuff problems include: Tendinitis , which ...

17. Rotating universe models

International Nuclear Information System (INIS)

Tozini, A.V.

1984-01-01

A review is made of some properties of the rotating Universe models. Godel's model is identified as a generalized filted model. Some properties of new solutions of the Einstein's equations, which are rotating non-stationary Universe models, are presented and analyzed. These models have the Godel's model as a particular case. Non-stationary cosmological models are found which are a generalization of the Godel's metrics in an analogous way in which Friedmann is to the Einstein's model. (L.C.) [pt

18. Rotation Invariance Neural Network

OpenAIRE

Li, Shiyuan

2017-01-01

Rotation invariance and translation invariance have great values in image recognition tasks. In this paper, we bring a new architecture in convolutional neural network (CNN) named cyclic convolutional layer to achieve rotation invariance in 2-D symbol recognition. We can also get the position and orientation of the 2-D symbol by the network to achieve detection purpose for multiple non-overlap target. Last but not least, this architecture can achieve one-shot learning in some cases using thos...

19. Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas

International Nuclear Information System (INIS)

Artun, M.; Tang, W.M.

1994-03-01

The influence of sheared equilibrium flows on the confinement properties of tokamak plasmas is a topic of much current interest. A proper theoretical foundation for the systematic kinetic analysis of this important problem has been provided here by presented the derivation of a set of nonlinear electromagnetic gyrokinetic equations applicable to low frequency microinstabilities in a rotating axisymmetric plasma. The subsonic rotation velocity considered is in the direction of symmetry with the angular rotation frequency being a function of the equilibrium magnetic flux surface. In accordance with experimental observations, the rotation profile is chosen to scale with the ion temperature. The results obtained represent the shear flow generalization of the earlier analysis by Frieman and Chen where such flows were not taken into account. In order to make it readily applicable to gyrokinetic particle simulations, this set of equations is cast in a phase-space-conserving continuity equation form

20. Rotational discontinuities and the structure of the magnetopause

International Nuclear Information System (INIS)

Swift, D.W.; Lee, L.C.

1983-01-01

Symmetric and asymmetric rotational discontinuities are studied by means of a one-dimensional computer simulation and by single-particle trajectory calculations. The numerical simulations show the symmetric rotation to be stable for both ion and electron senses of rotation with a thickness of the order of a few ion gyroradii when the rotation angle of the tangential field is 180 0 or less. Larger rotation angles tend to be unstable. In an expansive discontinuity, when the magnetic field on the downstream side of the discontinuity is larger, an expanding transition layer separating the high-field from a low-field region develops on the downstream side, and a symmetric rotational discontinuity forms at the upstream edge. The implication of these results for magnetopause structure and energy flow through the magnetopause is described

1. Theory of inertial waves in rotating fluids

Science.gov (United States)

Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir

2017-04-01

The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E

2. Rotating positron tomographs revisited

International Nuclear Information System (INIS)

Townsend, D.; Defrise, M.; Geissbuhler, A.

1994-01-01

We have compared the performance of a PET scanner comprising two rotating arrays of detectors with that of the more conventional stationary-ring design. The same total number of detectors was used in each, and neither scanner had septa. For brain imaging, we find that the noise-equivalent count rate is greater for the rotating arrays by a factor of two. Rotating arrays have a sensitivity profile that peaks in the centre of the field of view, both axially and transaxially. In the transaxial plane, this effect offsets to a certain extent the decrease in the number of photons detected towards the centre of the brain due to self-absorption. We have also compared the performance of a rotating scanner to that of a full-ring scanner with the same number of rings. We find that a full-ring scanner with an axial extent of 16.2 cm (24 rings) is a factor of 3.5 more sensitive than a rotating scanner with 40% of the detectors and the same axial extent. (Author)

3. Actomyosin contractility rotates the cell nucleus.

Science.gov (United States)

Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

2014-01-21

The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

4. Neoclassical rotation velocities in multispecies plasmas

International Nuclear Information System (INIS)

Houlberg, W.A.; Hirshman, S.P.; Shaing, K.C.

1996-01-01

We examine the relationships between the poloidal, toroidal and parallel rotation velocities for typical plasma conditions in existing tokamak experiments. The radial force balance, neoclassical solution to the poloidal flow from the parallel force balance, and anomalous toroidal rotation axe included. A full multispecies formulation of the neoclassical transport theory is implemented in the NCLASS code (which includes arbitrary axisymmetric geometries and plasma collisionalities) to determine the poloidal rotation velocities. Comparisons are made with analytic relationships derived from a single impurity formulation of the problem. The roles of the radial electric field and species density and pressure gradients are evaluated. The determination of the radial electric field using the NCLASS solution for poloidal rotation and a local measurement of the toroidal rotation in conjunction with measured plasma profiles is discussed; it has been used in analysis of TFTR enhanced reverse shear plasmas. The ordering of banana orbit size small relative to local minor radius and gradients (as incorporated into initial versions of NCLASS) are examined for typical negative shear plasmas. We show the degree to which these constraints axe violated and demonstrate that finite orbit corrections axe required for better determination of the bootstrap current, particle fluxes and ion heat fluxes, i.e., the conditions r much-lt Δ b much-lt r n , r T , r E are significantly violated. Progress in relaxing these constraints is discussed

5. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

Energy Technology Data Exchange (ETDEWEB)

Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

2014-06-10

Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

6. The optical rotator

DEFF Research Database (Denmark)

Tandrup, T; Gundersen, Hans Jørgen Gottlieb; Jensen, Eva B. Vedel

1997-01-01

further discuss the methods derived from this principle and present two new local volume estimators. The optical rotator benefits from information obtained in all three dimensions in thick sections but avoids over-/ underprojection problems at the extremes of the cell. Using computer-assisted microscopes......The optical rotator is an unbiased, local stereological principle for estimation of cell volume and cell surface area in thick, transparent slabs, The underlying principle was first described in 1993 by Kieu Jensen (T. Microsc. 170, 45-51) who also derived an estimator of length, In this study we...... the extra measurements demand minimal extra effort and make this estimator even more efficient when it comes to estimation of individual cell size than many of the previous local estimators, We demonstrate the principle of the optical rotator in an example (the cells in the dorsal root ganglion of the rat...

7. Vibrations of rotating machinery

CERN Document Server

Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

2017-01-01

This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

8. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.

Science.gov (United States)

Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C

2014-01-01

Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.

9. Rotating gravity currents. Part 1. Energy loss theory

Science.gov (United States)

Martin, J. R.; Lane-Serff, G. F.

2005-01-01

A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.

10. Comparative erythrocyte deformability investigations by filtrometry, slit-flow and rotational ektacytometry in a long-term follow-up animal study on splenectomy and different spleen preserving operative techniques: Partial or subtotal spleen resection and spleen autotransplantation.

Science.gov (United States)

Miko, Iren; Nemeth, Norbert; Sogor, Viktoria; Kiss, Ferenc; Toth, Eniko; Peto, Katalin; Furka, Andrea; Vanyolos, Erzsebet; Toth, Laszlo; Varga, Jozsef; Szigeti, Krisztian; Benkő, Ilona; Olah, Anna V; Furka, Istvan

2017-01-01

Partial or subtotal spleen resection or spleen autotransplantation can partly preserve/restore the splenic filtration function, as previous studies demonstrated. For better evaluation and follow-up of the various spleen-preserving operative techniques' effectiveness versus splenectomy, a composite methodological approach was applied in a canine experimental model. Beagle dogs were subjected to control (n = 6), splenectomy (SE, n = 4), partial and subtotal spleen resection (n = 4/each) or spleen autotransplantation groups (AU, Furka's spleen-chip method, n = 8). The follow-up period was 18 postoperative (p.o.) months. Erythrocyte deformability was determined in parallel by bulk filtrometry (Carat FT-1 filtrometer), slit-flow ektacytometry (RheoScan D-200) and rotational ektacytometry (LoRRca MaxSis Osmoscan). By filtrometry, relative cell transit time increased in the SE group (mostly in animal Nr. SE-3), showing the highest values on the 3rd, 9th and in 18th p.o. months. Elongation index values decreased in this group (both by slit-flow and rotational ektacytometers). In general, AU and two resection groups' values were lower versus control and higher than in SE. Forasmuch in the circulation both elongation by shear stress and filtration occur, these various erythrocyte deformability testing methods together may describe better the alterations. Considering the possible complications related to functional asplenic-hyposplenic conditions, individual analysis of cases is highly important.

11. Effect of Rotational Speed on the Stability of Two Rotating Side-by-side Circular Cylinders at Low Reynolds Number

Science.gov (United States)

Dou, Huashu; Zhang, Shuo; Yang, Hui; Setoguchi, Toshiaki; Kinoue, Yoichi

2018-04-01

Flow around two rotating side-by-side circular cylinders of equal diameter D is numerically studied at the Reynolds number 40≤ Re ≤200 and various rotation rate θ i . The incoming flow is assumed to be two-dimensional laminar flow. The governing equations are the incompressible Navier-Stokes equations and solved by the finite volume method (FVM). The ratio of the center-to-center spacing to the cylinder diameter is T/D=2. The objective of the present work is to investigate the effect of rotational speed and Reynolds number on the stability of the flow. The simulation results are compared with the experimental data and a good agreement is achieved. The stability of the flow is analyzed by using the energy gradient theory, which produces the energy gradient function K to identify the region where the flow is the most prone to be destabilized and the degree of the destabilization. Numerical results reveal that K is the most significant at the separated shear layers of the cylinder pair. With Re increases, the length of the wake is shorter and the vortex shedding generally exhibits a symmetrical distribution for θ i < θ crit . It is also shown that the unsteady vortex shedding can be suppressed by rotating the cylinders in the counter-rotating mode.

12. Coarsening dynamics of binary liquids with active rotation.

Science.gov (United States)

Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M

2015-11-21

Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.

13. Rotating quantum states

International Nuclear Information System (INIS)

Ambruş, Victor E.; Winstanley, Elizabeth

2014-01-01

We revisit the definition of rotating thermal states for scalar and fermion fields in unbounded Minkowski space–time. For scalar fields such states are ill-defined everywhere, but for fermion fields an appropriate definition of the vacuum gives thermal states regular inside the speed-of-light surface. For a massless fermion field, we derive analytic expressions for the thermal expectation values of the fermion current and stress–energy tensor. These expressions may provide qualitative insights into the behaviour of thermal rotating states on more complex space–time geometries

Science.gov (United States)

Webb, Brent J.; Coomes, Edmund P.

1988-12-06

A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

15. Simulating Lahars Using A Rotating Drum

Science.gov (United States)

Neather, Adam; Lube, Gert; Jones, Jim; Cronin, Shane

2014-05-01

A large (0.5 m in diameter, 0.15 m wide) rotating drum is used to investigate the erosion and deposition mechanics of lahars. To systematically simulate the conditions occurring in natural mass flows our experimental setup differs from the common rotating drum employed in industrial/engineering studies. Natural materials with their typical friction properties are used, as opposed to the frequently employed spherical glass beads; the drum is completely water-proof, so solid/air and solid/liquid mixtures can be investigated; the drum velocity and acceleration can be precisely controlled using a software interface to a micro-controller, allowing for the study of steady, unsteady and intermediate flow regimes. The drum has a toughened glass door, allowing high-resolution, high-speed video recording of the material inside. Vector maps of the velocities involved in the flows are obtained using particle image velocimetry (PIV). The changes in velocity direction and/or magnitude are used to locate the primary internal boundaries between layers of opposite flow direction, as well as secondary interfaces between shear layers. A range of variables can be measured: thickness and number of layers; the curvature of the free surface; frequency of avalanching; position of the centre of mass of the material; and the velocity profiles of the flowing material. Experiments to date have focussed on dry materials, and have had a fill factor of approximately 0.3. Combining these measured variables allows us to derive additional data of interest, such as mass and momentum flux. It is these fluxes that we propose will allow insight into the erosion/deposition mechanics of a lahar. A number of conclusions can be drawn to date. A primary interface separates flowing and passive region (this interface has been identified in previous studies). As well as the primary interface, the flowing layer separates into individual shear layers, with individual erosion/deposition and flow histories. This

16. Arterial secondary blood flow patterns visualized with vector flow ultrasound

DEFF Research Database (Denmark)

Pedersen, Mads Møller; Pihl, Michael Johannes; Hansen, Jens Munk

2011-01-01

This study presents the first quantification and visualisation of secondary flow patterns with vector flow ultrasound. The first commercial implementation of the vector flow method Transverse Oscillation was used to obtain in-vivo, 2D vector fields in real-time. The hypothesis of this study...... was that the rotational direction is constant within each artery. Three data sets of 10 seconds were obtained from three main arteries in healthy volunteers. For each data set the rotational flow patterns were identified during the diastole. Each data set contains a 2D vector field over time and with the vector angles...

17. Rotations and angular momentum

International Nuclear Information System (INIS)

Nyborg, P.; Froyland, J.

1979-01-01

This paper is devoted to the analysis of rotational invariance and the properties of angular momentum in quantum mechanics. In particular, the problem of addition of angular momenta is treated in detail, and tables of Clebsch-Gordan coefficients are included

18. Negative Rotation Cinch Strap.

Science.gov (United States)

This project discloses an improved unitary parachute torso harness, having a single fastening means, wherein an auxillary tightening strap is...attached to the groin straps of said harness. Said auxillary straps are used to prevent torso rotation or harness slippage and to prevent harness elongation

19. A rotating string

International Nuclear Information System (INIS)

Jensen, B.

1993-06-01

The author presents a global solution of Einstein's equations which represents a rotating cosmic string with a finite coreradius. The importance of pressure for the generation of closed timelike curves outside the coreregion of such strings is clearly displayed in this model due to the simplicity of the source. 10 refs

20. Rotator Cuff Injuries.

Science.gov (United States)

Connors, G. Patrick

Many baseball players suffer from shoulder injuries related to the rotator cuff muscles. These injuries may be classified as muscular strain, tendonitis or tenosynovitis, and impingement syndrome. Treatment varies from simple rest to surgery, so it is important to be seen by a physician as soon as possible. In order to prevent these injuries, the…

1. Rotational dynamics with Tracker

International Nuclear Information System (INIS)

2012-01-01

We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia (I) of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction (b) for our system. By omitting the effect of such friction, we derive I for a cylindrical plate rotated around its central axis from the other two experiments based on the relation between torque and angular acceleration of rotational motion and conservation of energy. Movies of the rotating plate and hung masses are recorded. As a result, we have the deviation of I from its theoretical value of 0.4% and 3.3%, respectively. Our setup is completely constructed from locally available inexpensive materials and the experimental results indicate that the system is highly reliable. This work should pave the way for those who prefer to build a similar setup from scratch at relatively low cost compared to commercial units. (paper)

2. The Axial Curve Rotator.

Science.gov (United States)

Hunter, Walter M.

This document contains detailed directions for constructing a device that mechanically produces the three-dimensional shape resulting from the rotation of any algebraic line or curve around either axis on the coordinate plant. The device was developed in response to student difficulty in visualizing, and thus grasping the mathematical principles…

3. Can planetary nebulae rotate

International Nuclear Information System (INIS)

Grinin, V.P.

1982-01-01

It is shown that the inclination of spectral lines observed in a number of planetary nebulae when the spectrograph slit is placed along the major axis, which is presently ascribed to nonuniform expansion of the shells, actually may be due to rotation of the nebulae about their minor axes, as Campbell and Moore have suggested in their reports. It is assumed that the rotation of the central star (or, if the core is a binary system, circular motions of gas along quasi-Keplerian orbits) serves as the source of the original rotation of a protoplanetary nebula. The mechanism providing for strengthening of the original rotation in the process of expansion of the shell is the tangential pressure of L/sub α/ radiation due to the anisotropic properties of the medium and radiation field. The dynamic effect produced by them is evidently greatest in the epoch when the optical depth of the nebula in the L/sub c/ continuum becomes on the order of unity in the course of its expansion

4. Wave-driven Rotation in Supersonically Rotating Mirrors

Energy Technology Data Exchange (ETDEWEB)

A. Fetterman and N.J. Fisch

2010-02-15

Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

5. Wave-driven Rotation in Supersonically Rotating Mirrors

International Nuclear Information System (INIS)

Fetterman, A.; Fisch, N.J.

2010-01-01

Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

6. The use of rotating electric arc for spherical particle production

International Nuclear Information System (INIS)

Bica, I.

2000-01-01

This work presents and experimental device designed to obtain spherical particles by mans of a rotating electric arc. A rotation frequency of the electric arc of 750 s''-1, a voltage of 50 V(dc) and a current of 100 A was used. The mass flow rate was 3 g.min''-1. Under these conditions particles of 15 to 20 μm in diameter were obtained. (Author) 8 refs

7. Rotator Cuff Injuries - Multiple Languages

Science.gov (United States)

... Are Here: Home → Multiple Languages → All Health Topics → Rotator Cuff Injuries URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Rotator Cuff Injuries - Multiple Languages To use the sharing features ...

8. Rotation of a single vortex in dusty plasma

International Nuclear Information System (INIS)

Yan Jia; Feng Fan; Liu Fu-Cheng; He Ya-Feng

2017-01-01

A single vortex is obtained in radio-frequency capacitive discharge in argon gas. The dust subsystem is confined in the horizontal plane with an asymmetrical saw structure placed on the lower electrode. The vortex rotates as a whole along the long side of the saw-teeth. Asymmetry of the saw structure plays an important role in the rotation of the vortex. Nonzero curl of the total force resulting from the local ion flow and the electric field in the plasma sheath could be attributed to the persistent rotation of vortex. (paper)

9. Generation of plasma rotation by ICRH in tokamaks

International Nuclear Information System (INIS)

Chang, C.; Phillips, C.K.; White, R.B.; Zweben, S.; Bonoli, P.T.; Rice, J.; Greenwald, M.; Grassie, J.S. de

2001-01-01

A physical mechanism to generate plasma rotation by ICRH is presented in a tokamak geometry. By breaking the omnigenity of resonant ion orbits, ICRH can induce a non-ambipolar minor-radial flow of resonant ions. This induces a return current j p r in the plasma, which then drives plasma rotation through the j p r xB force. It is estimated that the fast-wave power in the present-day tokamak experiments can be strong enough to give a significant modification to plasma rotation. (author)

10. Asteroid rotation. IV

International Nuclear Information System (INIS)

Harris, A.W.; Young, J.W.

1983-01-01

The results from the year 1979 of an ongoing program of asteroid photometry at Table Mountain Observatory are presented. The results for 53 asteroids are summarized in a table, showing the number, name, opposition date, taxonomic class, diameter, absolute magnitude, mean absolute magnitude at zero phase angle and values of the absolute magnitude and linear phase coefficient derived from it, the rotation period in hours, peak-to-peak amplitude of variation, difference between mean and maximum brightness, and reliability index. Another table presents data on aspect and comparison stars, including brightness and distance data. Reliable rotation periods are reported for 22 asteroids for which no previous values are known. For seven asteroids, periods are reported which are revisions of previously reported values

11. Rotatable seal assembly

International Nuclear Information System (INIS)

Garibaldi, J.L.; Logan, C.M.

1982-01-01

An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an oring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers

12. Rotator cuff disease

International Nuclear Information System (INIS)

Ziatkin, M.B.; Iannotti, J.P.; Roberts, M.; Dalinka, M.K.; Esterhai, J.L.; Kressel, H.Y.; Lenkinski, R.E.

1988-01-01

A dual-surface-coil array in a Helmholtz configuration was used to evaluate th rotator cuff in ten normal volunteers and 44 patients. Studies were performed with a General Electric 1.5-T MR imager. Thirty-two patients underwent surgery, 25 of whom also underwent arthrography. In comparison with surgery, MR imaging was more sensitive than arthrography for rotator cuff tears (91% vs 71%). The specificity and accuracy of MR imaging were 88% and 91%. The accuracy increased with use of an MR grading system. MR findings correlated with surgical findings with regard to the size and site of tears. MR findings of cuff tears were studied with multivariate analysis. Correlation was also found between a clinical score, the MR grade, and the clinical outcome

13. The Spatiale Rotator

DEFF Research Database (Denmark)

Rasmusson, Allan

2009-01-01

it is embedded and sectioned. This has the unfortunate side effect that all information about positioning within the object is lost for blocks and sections. For complex tissue, like the mammalian brain, this information is of utmost importance to ensure measurements are performed in the correct region......The inherent demand for unbiasedness for some stereological estimators imposes a demand of not only positional uniform randomness but also isotropic randomness, i.e. directional uniform randomness. In order to comply with isotropy, one must perform a random rotation of the object of interest before...... is obeyed by randomizing the orientation of the virtual probe itself within the thick section. Overall, the benefit is that positional information is kept for any block and section of the specimen. As the Spatial Rotator is a 3D probe, data must be gathered from sections thicker than 25 micro meters to form...

14. Rotational spectrum of tryptophan

Energy Technology Data Exchange (ETDEWEB)

Sanz, M. Eugenia, E-mail: maria.sanz@kcl.ac.uk; Cabezas, Carlos, E-mail: ccabezas@qf.uva.es; Mata, Santiago, E-mail: santiago.mata@uva.es; Alonso, Josè L., E-mail: jlalonso@qf.uva.es [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico Uva, Universidad de Valladolid, 47011 Valladolid (Spain)

2014-05-28

The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

15. Rotator cuff tendon connections with the rotator cable.

Science.gov (United States)

2017-07-01

The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

Science.gov (United States)

Pate, Brooks

2014-06-01

The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

17. Analogies between oscillation and rotation of bodies induced or influenced by vortex shedding

Science.gov (United States)

Lugt, H. J.

Vortex-induced or vortex-influenced rotation and oscillation of bodies in a parallel flow are discussed. A steady flow occurs if the body axis is parallel to the flow or if the axis of rotation is perpendicular to the flow. Flows around an oscillating body are quasi-steady only if the Strougal number is much smaller than unity. The connection between rotation and oscillation is demonstrated in terms of the autorotation of a Lanchester propeller, and conditions for stable autorotation are defined. The Riabouchinsky curve is shown to be typical of forces and torques on bodies with vortical wakes, including situations with fixed body axes perpendicular to the flow. A differential equation is formulated for rotational and oscillating bodies that shed vortices by extending the pendulum equation to include vortical effects expressed as a fifth-order polynomial.

18. Influence of rotation on the near-wake development behind an impulsively started circular cylinder

Science.gov (United States)

Coutanceau, M.; Menard, C.

1985-09-01

A rotating body, travelling through a fluid in such a way that the rotation axis is at right angles to the translational path, experiences a transverse force, called the Magnus force. The present study is concerned with a rotating cylinder which is in a state of translational motion. In the considered case, the existence of a lift force may be explained easily on the basis of the theory of inviscid fluids. An experimental investigation provides new information regarding the mechanism of the near-wake development of the classical unsteady flow and the influence of the rotational effects. Attention is given to the experimental technique, aspects of flow topology and notation, the time development of the wake flow pattern, the time evolution of certain flow properties, the flow structure in the neighborhood of the front stagnation point, and the influence of the Reynolds number on flow establishment.

19. The rotational spectrum of IBr

International Nuclear Information System (INIS)

Tiemann, E.; Moeller, T.

1975-01-01

The microwave spectrum of IBr was measured in the low rotational transition J = 3 → 2 in order to resolve the hyperfine structure as completely as possible. Rotational constants and quadrupole coupling constants were derived for both nuclei. The observation of the rotational spectrum in different vibrational states yields the vibrational dependence of the rotational constants as well as of the hyperfine parameters. The Dunham potential coefficients α 0 , α 1 , α 2 , α 3 are given. (orig.) [de

20. Snakes and spin rotators

International Nuclear Information System (INIS)

Lee, S.Y.

1990-01-01

The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10 -4 will be significant. 2 refs., 5 figs

1. Turbulent heat transfer studies in annulus with inner cylinder rotation

International Nuclear Information System (INIS)

Kuzay, T.M.; Scott, C.J.

1977-01-01

Experimental investigations of turbulent heat transfer are made in a large-gap annulus with both rotating and nonrotating inner cylinder. The vertical annular channel has an electrically heated outer wall; the inner wall i thermally and electrically insulated. The axial air flow is allowed to develop before rotation and heating are imparted. The resulting temperature fields are investigated using thermocouple probes located near the channel exit. The wall heat flux, wall axial temperature development, and radial temperature profiles are measured. For each axial Reynolds number, three heat flux rates are used. Excellent correlation is established between rotational and nonrotational Nusselt number. The proper correlation parameter is a physical quantity characterizing the flow helix. This parameter is the inverse of the ratio of axial travel of the flow helix in terms of hydraulic diameter, per half revolution of the spinning wall

2. Streaming potential near a rotating porous disk.

Science.gov (United States)

Prieve, Dennis C; Sides, Paul J

2014-09-23

Theory and experimental results for the streaming potential measured in the vicinity of a rotating porous disk-shaped sample are described. Rotation of the sample on its axis draws liquid into its face and casts it from the periphery. Advection within the sample engenders streaming current and streaming potential that are proportional to the zeta potential and the disk's major dimensions. When Darcy's law applies, the streaming potential is proportional to the square of the rotation at low rate but becomes invariant with rotation at high rate. The streaming potential is invariant with the sample's permeability at low rate and is proportional to the inverse square of the permeability at high rate. These predictions were tested by determining the zeta potential and permeability of the loop side of Velcro, a sample otherwise difficult to characterize; reasonable values of -56 mV for zeta and 8.7 × 10(-9) m(2) for the permeability were obtained. This approach offers the ability to determine both the zeta potential and the permeability of materials having open structures. Compressing them into a porous plug is unnecessary. As part of the development of the theory, a convenient formula for a flow-weighted volume-averaged space-charge density of the porous medium, -εζ/k, was obtained, where ε is the permittivity, ζ is the zeta potential, and k is the Darcy permeability. The formula is correct when Smoluchowski's equation and Darcy's law are both valid.

3. An experimental study of rotational pressure loss in rotor-stator gap

Directory of Open Access Journals (Sweden)

Yew Chuan Chong

2017-06-01

Full Text Available The annular gap between rotor and stator is an inevitable flow path of a throughflow ventilated electrical machine, but the flow entering the rotor-stator gap is subjected to the effects of rotation. The pressure loss and volumetric flow rate across the rotor-stator gap were measured and compared between rotating and stationary conditions. The experimental measurements found that the flow entering the rotor-stator gap is affected by an additional pressure loss. In the present study, the rotational pressure loss at the entrance of rotor-stator gap is characterised. Based upon dimensional analysis, the coefficient of entrance loss can be correlated with a dimensionless parameter, i.e. rotation ratio. The investigation leads to an original correlation for the entrance loss coefficient of rotor-stator gap arisen from the Coriolis and centrifugal effects in rotating reference frame.

4. Plasma rotation study in Tore Supra radio frequency heated plasmas

International Nuclear Information System (INIS)

Chouli, Bilal

2014-01-01

Toroidal flows are found to improve the performance of the magnetic confinement devices with increase of the plasma stability and confinement. In ITER or future reactors, the torque from NBI should be less important than in present-day tokamaks. Consequently, it is of interest to study other intrinsic mechanisms that can give rise to plasma rotation in order to predict the rotation profile in experiments. Intriguing observations of plasmas rotation have been made in radio frequency (RF) heated plasmas with little or no external momentum injection. Toroidal rotation in both the direction of the plasma current (co-current) and in the opposite direction (counter-current) has been observed depending on the heating schemes and plasma performance. In Tore Supra, most observations in L-mode plasmas have been in the counter-current direction. However, in this thesis, we show that in lower hybrid current drive (LHCD), the core toroidal rotation increment is in co- or counter-current direction depending on the plasma current amplitude. At low plasma current the rotation change is in the co-current direction while at high plasma current, the change is in the counter-current direction. In both low and high plasma current cases, rotation increments are found to increase linearly with the injected LH power. Several mechanisms in competition which can induce co- or counter-current rotation in Tore Supra LHCD plasmas are investigated and typical order of magnitude are discussed in this thesis. (author) [fr

5. Visualization study of flow in axial flow inducer.

Science.gov (United States)

Lakshminarayana, B.

1972-01-01

A visualization study of the flow through a three ft dia model of a four bladed inducer, which is operated in air at a flow coefficient of 0.065, is reported in this paper. The flow near the blade surfaces, inside the rotating passages, downstream and upstream of the inducer is visualized by means of smoke, tufts, ammonia filament, and lampblack techniques. Flow is found to be highly three dimensional, with appreciable radial velocity throughout the entire passage. The secondary flows observed near the hub and annulus walls agree with qualitative predictions obtained from the inviscid secondary flow theory.

6. COMMISSIONING SPIN ROTATORS IN RHIC

International Nuclear Information System (INIS)

MACKAY, W.W.; AHRENS, L.; BAI, M.; COURANT, E.D.; FISCHER, W.; HUANG, H.; LUCCIO, A.; MONTAG, C.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; VANZIEJTS, J.

2003-01-01

During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX

7. Contrasting the solar rotation rate of cycles 23 and 24

International Nuclear Information System (INIS)

Antia, H M; Basu, Sarbani

2013-01-01

The minimum between solar cycles 23 and 24 was quite unusual compared with other minima for which detailed data are available and this pointed to the possibility that cycle 24 will be unusual. Cycle 24 is almost at its maximum now and we take this opportunity to compare and contrast the solar rotation rate and zonal flows between the two cycles. We find that the rotation rate during cycle 24 is slightly lower than that during cycle 23. Additionally we find that the poleward branch of the zonal flow that is believed to be the harbinger of the next solar cycle is very week in cycle 24.

8. The influence of chamfering and corner radiusing on the discharge coefficient of rotating axial orifices

International Nuclear Information System (INIS)

Idris, A; Pullen, K

2013-01-01

The effects of chamfering and corner radiusing on the discharge coefficient of rotating axial orifices are presented in this paper. Both experimental and CFD results show that chamfering and corner radiusing improve the discharge coefficient of rotating orifices. For non-inclined rotating orifices, the discharge coefficient reduces with increasing speed, but chamfered and radiused orifices manage to have higher discharge coefficient (C d ) than the straight edge orifices. Comparing between chamfering and corner radiusing, the radiused corner orifice has the highest C d at every rotational speed. This is because the inlet radius helps guiding the flow into the orifice and avoiding flow separation at the inlet.

9. Numerical simulation of the temperature effects on the performance of rotational supercavitating evaporator

International Nuclear Information System (INIS)

Zheng, Z Y; Cheng, J P; Li, F C; Zhang, M; Li, Q; Kulagin, V A

2015-01-01

With the application of supercavitation effect, a novel device named Rotational Supercavitating Evaporator (RSCE) has been designed for desalination. In order to study the effect of temperature on the performance of RSCE and then direct the experimental study on RSCE for the next step, numerical simulations are conducted on the supercavitating flows in RSCE under different temperatures and rotational speeds. The results show that the rotational speed, resistance moment and mechanical energy consumed by the rotational cavitator under the critical state with the largest supercavity, decrease with the increase of temperature. And the area and volume of the supercavity increase exponentially with the increase of temperature under the same rotational speed

10. CONFERENCE: Muon spin rotation

Energy Technology Data Exchange (ETDEWEB)

Karlsson, Erik

1986-11-15

An international physics conference centred on muons without a word about leptons, weak interactions, EMC effects, exotic decay modes or any other standard high energy physics jargon. Could such a thing even have been imagined ten years ago? Yet about 120 physicists and chemists from 16 nations gathered at the end of June in Uppsala (Sweden) for their fourth meeting on Muon Spin Rotation, Relaxation and Resonance, without worrying about the muon as an elementary particle. This reflects how the experimental techniques based on the muon spin interactions have reached maturity and are widely recognized by condensed matter physicists and specialized chemists as useful tools.

11. Rotating specimen rack repair

International Nuclear Information System (INIS)

Miller, G.E.; Rogers, P.J.; Nabor, W.G.; Bair, H.

1984-01-01

In 1980, an operator at the UCI TRIGA Reactor noticed difficulties with the rotation of the specimen rack. Investigations showed that the drive bearing in the rack had failed and allowed the bearings to enter the rack. After some time of operation in static mode it was decided that installation of a bearing substitute - a graphite sleeve - would be undertaken. Procedures were written and approved for removal of the rack, fabrication and installation of the sleeve, and re-installation of the rack. This paper describes these procedures in some detail. Detailed drawings of the necessary parts may be obtained from the authors

12. Rotational anomalies without anyons

International Nuclear Information System (INIS)

Hagen, C.R.

1985-01-01

A specific field theory is proposed in two spatial dimensions which has anomalous rotational properties. Although this might be expected to lead to a concrete realization of what Wilczek refers to as the anyon, it is shown by utilizing the transformation properties of the system and the statistics of the underlying charge fields that anyonic interpolations between bosons and fermions do not occur. This leads to the suggestion that anyons inferred from semiclassical considerations will not survive the transition to a fully relativistic field theory

13. Rotating electrical machines

CERN Document Server

Le Doeuff, René

2013-01-01

In this book a general matrix-based approach to modeling electrical machines is promulgated. The model uses instantaneous quantities for key variables and enables the user to easily take into account associations between rotating machines and static converters (such as in variable speed drives).   General equations of electromechanical energy conversion are established early in the treatment of the topic and then applied to synchronous, induction and DC machines. The primary characteristics of these machines are established for steady state behavior as well as for variable speed scenarios. I

14. Oscillatory Convection in Rotating Liquid Metals

Science.gov (United States)

Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

2016-11-01

We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

15. Rotating stall simulation for axial and centrifugal compressors

Science.gov (United States)

2017-05-01

This study presents a numerical simulation of the rotating stall phenomenon in axial and centrifugal compressors with detailed descriptions of stall precursors and its development with time. Results showed that the vaneless region of the centrifugal compressor is the most critical location affected by stall. It was found that the tip leakage flow and the back flow impingement are the main cause of the stall development at the impeller exit area for centrifugal compressors. The results of the axial compressor simulations indicated that the early separated flow combined with the tip leakage flow can block the impeller passages during stall.

16. Energy transfer in turbulence under rotation

Science.gov (United States)

Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz

2018-03-01

It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.

17. Influence of the shaft rotation on the stability of magnetic fluid shaft seal characteristics

Science.gov (United States)

Krakov, M. S.; Nikiforov, I. V.

2008-12-01

Distribution of the magnetic particles concentration in a magnetic fluid shaft seal is studied numerically for a rotating shaft. It is revealed that the shaft rotation causes not only an azimuthal flow of the magnetic fluid, but a meridional flow as well. This meridional flow prevents the growth of magnetic particle concentration in the gap of the magnetic fluid shaft seal. As a result, the burst pressure of the magnetic fluid shaft seal for the rotating shaft is stable and does not change with time. Figs 6, Refs 7.

18. Observation of plasma hole in a rotating plasma

International Nuclear Information System (INIS)

Nagaoka, Kenichi; Ishihara, Tatsuzo; Okamoto, Atsushi; Yoshimura, Shinji; Tanaka, Masayoshi Y.

2001-01-01

Plasma hole, a cylindrical density cavity, formed in a rotating plasma has been investigated experimentally. The plasma hole is characterized by large aspect ratio (length/radius ≥ 30), steep boundary layer between the hole and the ambient plasma (10 ion Larmor radius), and extremely high positive potential (130 V). The flow velocity field associated with plasma hole structure has been measured, and is found to have interesting features: (1) plasma rotates in azimuthal direction at a maximum velocity of order of ion sound speed, (2) plasma flows radially inward across the magnetic field line, (3) there present an axial flow reversal between core and peripheral region. It is found that the flow pattern of the plasma hole is very similar to the that of well-developed typhoon with core. (author)

19. Resistive wall mode stabilization in slowly rotating high beta plasmas

Energy Technology Data Exchange (ETDEWEB)

Reimerdes, H [Columbia University, New York, NY 10027 (United States); Garofalo, A M [Columbia University, New York, NY 10027 (United States); Okabayashi, M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Strait, E J [General Atomics, San Diego, CA 92186-5608 (United States); Betti, R [University of Rochester, Rochester, NY 14627 (United States); Chu, M S [General Atomics, San Diego, CA 92186-5608 (United States); Hu, B [University of Rochester, Rochester, NY 14627 (United States); In, Y [FAR-TECH, Inc., San Diego, CA 92121 (United States); Jackson, G L [General Atomics, San Diego, CA 92186-5608 (United States); La Haye, R J [General Atomics, San Diego, CA 92186-5608 (United States); Lanctot, M J [Columbia University, New York, NY 10027 (United States); Liu, Y Q [Chalmers University of Technology, S-412 96 Goeteborg (Sweden); Navratil, G A [Columbia University, New York, NY 10027 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Takahashi, H [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Groebner, R J [General Atomics, San Diego, CA 92186-5608 (United States)

2007-12-15

DIII-D experiments show that the resistive wall mode (RWM) can remain stable in high {beta} scenarios despite a low net torque from nearly balanced neutral beam injection heating. The minimization of magnetic field asymmetries is essential for operation at the resulting low plasma rotation of less than 20 krad s{sup -1} (measured with charge exchange recombination spectroscopy using C VI emission) corresponding to less than 1% of the Alfven velocity or less than 10% of the ion thermal velocity. In the presence of n = 1 field asymmetries the rotation required for stability is significantly higher and depends on the torque input and momentum confinement, which suggests that a loss of torque-balance can lead to an effective rotation threshold above the linear RWM stability threshold. Without an externally applied field the measured rotation can be too low to neglect the diamagnetic rotation. A comparison of the instability onset in plasmas rotating with and against the direction of the plasma current indicates the importance of the toroidal flow driven by the radial electric field in the stabilization process. Observed rotation thresholds are compared with predictions for the semi-kinetic damping model, which generally underestimates the rotation required for stability. A more detailed modeling of kinetic damping including diamagnetic and precession drift frequencies can lead to stability without plasma rotation. However, even with corrected error fields and fast plasma rotation, plasma generated perturbations, such as edge localized modes, can nonlinearly destabilize the RWM. In these cases feedback control can increase the damping of the magnetic perturbation and is effective in extending the duration of high {beta} discharges.

20. Magnetospheric structure of rotation powered pulsars

Energy Technology Data Exchange (ETDEWEB)

Arons, J. (California Univ., Berkeley, CA (USA) California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics)

1991-01-07

I survey recent theoretical work on the structure of the magnetospheres of rotation powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research. 106 refs., 4 figs., 2 tabs.

1. Accelerated rotation with orbital angular momentum modes

CSIR Research Space (South Africa)

Schulze, C

2015-01-01

Full Text Available where tight focusing is required, e.g., optical trapping and tweezing and optically driven flow for optofluidics. II. THEORY We recall that light fields with a phase factor of exp(i�ϕ), where ϕ is the azimuthal angle and � the topological charge... out that the total optical field may be viewed as two separate structures that perform independent rigid rotations. The dominant structure with the petal pattern is located in the central region of the beam. The other structure, which has rings, has a...

2. Rotating anode x-ray tube

International Nuclear Information System (INIS)

Hueschen, R.E.; Jens, R.A.

1980-01-01

A solid low thermal conductivity columbium metal stem supports heavy refractory metal x-ray target and adjoins high thermal conductivity rotor hub fastened to rotor with low thermally conductive bearing hub fastened to a shaft journaled for rotation in bearings. The rotor is coated to enhance heat dissipation and the arrangement promotes thermal isolation of the bearings from the hot rotor hub and hot target. The hub is of Mo or Mo based alloy, and hub of Ni based alloy. Specific compositions with additives are detailed. Hub additionally restricts heat flow due to its maximised length and minimised cross-section, the reduced area bosses further restricting surface contact. (author)

3. Lunar Rotation, Orientation and Science

Science.gov (United States)

Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.

2004-12-01

The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.

4. A compact rotating dilution refrigerator

Science.gov (United States)

Fear, M. J.; Walmsley, P. M.; Chorlton, D. A.; Zmeev, D. E.; Gillott, S. J.; Sellers, M. C.; Richardson, P. P.; Agrawal, H.; Batey, G.; Golov, A. I.

2013-10-01

We describe the design and performance of a new rotating dilution refrigerator that will primarily be used for investigating the dynamics of quantized vortices in superfluid 4He. All equipment required to operate the refrigerator and perform experimental measurements is mounted on two synchronously driven, but mechanically decoupled, rotating carousels. The design allows for relative simplicity of operation and maintenance and occupies a minimal amount of space in the laboratory. Only two connections between the laboratory and rotating frames are required for the transmission of electrical power and helium gas recovery. Measurements on the stability of rotation show that rotation is smooth to around 10-3 rad s-1 up to angular velocities in excess of 2.5 rad s-1. The behavior of a high-Q mechanical resonator during rapid changes in rotation has also been investigated.

5. A numerical strategy for modelling rotating stall in core compressors

Science.gov (United States)

Vahdati, M.

2007-03-01

The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary

6. Wormholes immersed in rotating matter

Directory of Open Access Journals (Sweden)

Christian Hoffmann

2018-03-01

Full Text Available We demonstrate that rotating matter sets the throat of an Ellis wormhole into rotation, allowing for wormholes which possess full reflection symmetry with respect to the two asymptotically flat spacetime regions. We analyze the properties of this new type of rotating wormholes and show that the wormhole geometry can change from a single throat to a double throat configuration. We further discuss the ergoregions and the lightring structure of these wormholes.

7. Internal rotation of the Sun

International Nuclear Information System (INIS)

Duvall, T.L. Jr.; Goode, P.R.; Gouch, D.O.

1984-01-01

The frequency difference between prograde and retrograde sectoral solar oscillations is analysed to determine the rotation rate of the solar interior, assuming no latitudinal dependence. Much of the solar interior rotates slightly less rapidly than the surface, while the innermost part apparently rotates more rapidly. The resulting solar gravitational quadrupole moment is J 2 = (1.7 +- 0.4) x 10 -7 and provides a negligible contribution to current planetary tests of Einstein's theory of general relativity. (author)

8. Comparison of Theory with Rotation Measurements in JET ICRH Plasmas

International Nuclear Information System (INIS)

R.V. Budny; C.S. Chang; C. Giroud; R.J. Goldston; D. McCune; J. Ongena; F.W. Perkins; R.B. White; K.-D. Zastrow; and contributors to the EFDA-JET work programme

2001-01-01

Plasma rotation appears to improve plasma performance by increasing the E x B flow shearing rate, thus decreasing radial correlations in the microturbulence. Also, plasma rotation can increase the stability to resistive MHD modes. In the Joint European Torus (JET), toroidal rotation rates omega (subscript ''tor'') with high Mach numbers are generally measured in NBI-heated plasmas (since the neutral beams aim in the co-plasma current direction). They are considerably lower with only ICRH (and Ohmic) heating, but still surprisingly large considering that ICRH appears to inject relatively small amounts of angular momentum. Either the applied torques are larger than naively expected, or the anomalous transport of angular momentum is smaller than expected. Since ICRH is one of the main candidates for heating next-step tokamaks, and for creating burning plasmas in future tokamak reactors, this paper attempts to understand ICRH-induced plasma rotation

9. Linear instability and nonlinear motion of rotating plasma

International Nuclear Information System (INIS)

Liu, J.

1985-01-01

Two coupled nonlinear equations describing the flute dynamics of the magnetically confined low-β collisionless rotating plasma are derived. The linear instability and nonlinear dynamics of the rotating column are analyzed theoretically. In the linear stability analysis, a new sufficient condition of stability is obtained. From the exact solution of eigenvalue equation for Gaussian density profile and uniform rotation of the plasma, the stability of the system strongly depends on the direction of plasma rotation, FLR effect and the location of the conducting wall. An analytic expression showing the finite wall effect on different normal modes is obtained and it explains the different behavior of (1,0) normal mode from other modes. The sheared rotation driven instability is investigated by using three model equilibrium profiles, and the analytic expressions of eigenvalues which includes the wall effect are obtained. The analogy between shear rotation driven instability and the instability driven by sheared plane parallel flow in the inviscid fluid is analyzed. Applying the linear analysis to the central cell of tandem mirror system, the trapped particle instability with only passing electronics is analyzed. For uniform rotation and Gaussian density profile, an analytic expression that determines the stability boundary is found. The nonlinear analysis shows that the nonlinear equations have a solitary vortex solution which is very similar to the vortex solution of nonlinear Rossby wave equation

10. Preliminary Test on Hydraulic Rotation Device for Neutron Transmutation Doping

International Nuclear Information System (INIS)

Park, Ki-Jung; Kang, Han-Ok; Kim, Seong Hoon; Park, Cheol

2014-01-01

The Korea Atomic Energy Research Institute (KAERI) is developing a new Research Reactor (KJRR) which will be located at KIJANG in the south-eastern province of Korea. The KJRR will be mainly utilized for isotope production, NTD production, and the related research activities. During the NTD process, the irradiation rig containing the silicon ingot rotates at the constant speed to ensure precisely defined homogeneity of the irradiation. A new NTD Hydraulic Rotation Device (NTDHRD) is being developed to rotate the irradiation rigs at the required speed. In this study, the preliminary test and the analysis for the rotation characteristic of the NTDHRD, which is developed through the conceptual design, are described. A new NTD hydraulic rotation device is being developed for the purpose of application to the KIJANG research reactor (KJRR). The preliminary test and analysis for the rotation characteristic of the NTDHRD, which is developed through the conceptual design, are conducted in experimental apparatus. The film thickness by the thrust bearing is measured and the minimum required mass flow rate for stable rotation is determined

11. Earth's variable rotation

Science.gov (United States)

Hide, Raymond; Dickey, Jean O.

1991-01-01

Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

12. Sporcularda rotator cuff problemleri

OpenAIRE

Guven, Osman; Guven, Zeynep; Gundes, Hakan; Yalcin, Selim

2004-01-01

Rotator cuff tendinitinin etyolojisinde genellikle birden çok faktörün kombinasyonu görülür. Yüzme, raket sporları ve fırlatma sporlarının özellikle gelişmiş ülkelerde giderek yaygınlaşması bu konuya olan ilginin artmasına sebep olmuştur. Eski konseptlerde aktif bir sporcuda tedavinin başarısı genellikle eski atletik seviyesine dönmesi ile ölçülürdü. Son zamanlarda atletik tekniklerin analizi, atroskopik evaluasyon gibi yeni bir Iükse sahip olmamız ve Iiteratürün yeniden gözden geçirilmesi il...

13. Topology of vortex Breakdown bubbles in a cylinder with rotating bottom and Free surface

DEFF Research Database (Denmark)

Brøns, Morten; Voigt, Lars Peter Kølgaard; Sørensen, Jens Nørkær

2001-01-01

The flow patterns in the steady, viscous flow in a cylinder with a rotating bottom and a free surface are investigated by a combination of topological and numerical methods. Assuming the flow is axisymmetric, we derive a list of possible bifurcations of streamline structures on varying two...

DEFF Research Database (Denmark)

Holtegård Nielsen, Steen Morten

to produce coastal currents flowing cyclonically through the Kattegat.Off the headland Skagen, the lightvessel observations together with earlier studies suggest that strong wind-driven currents are responsible for the location of the Kattegat/Skagerrak frontin this area.Observations from the interior...

15. Study on the Contra-Rotating Propeller system design and full-scale performance prediction method

Directory of Open Access Journals (Sweden)

Keh-Sik Min

2009-09-01

Full Text Available A ship's screw-propeller produces thrust by rotation and, at the same time, generates rotational flow behind the propeller. This rotational flow has no contribution to the generation of thrust, but instead produces energy loss. By recovering part of the lost energy in the rotational flow, therefore, it is possible to improve the propulsion efficiency. The contra-rotating propeller (CRP system is the representing example of such devices. Unfortunately, however, neither a design method nor a full-scale performance prediction procedure for the CRP system has been well established yet. The authors have long performed studies on the CRP system, and some of the results from the authors’ studies shall be presented and discussed.

16. Airfoil flow instabilities induced by background flow oscillations

Energy Technology Data Exchange (ETDEWEB)

Selerowicz, W.C.; Szumowski, A.P. [Technical Univ. Warsaw (Poland)

2002-04-01

The effect of background flow oscillations on transonic airfoil (NACA 0012) flow was investigated experimentally. The oscillations were generated by means of a rotating plate placed downstream of the airfoil. Owing to oscillating chocking of the flow caused by the plate, the airfoil flow periodically accelerated and decelerated. This led to strong variations in the surface pressure and the airfoil loading. The results are presented for two angles of attack, {alpha}=4 and {alpha}=8.5 , which correspond to the attached and separated steady airfoil flows, respectively. (orig.)

17. Stabilization of thin shell modes by a rotating secondary wall

International Nuclear Information System (INIS)

Gimblett, C.G.

1989-01-01

A simple model is developed to investigate if and under what circumstances the thin shell instabilities of a Reverse Field Pinch can be stabilized by a rotating secondary wall. The principles may be applicable to reactor designs that utilize a flowing liquid blanket (author)

18. Economic investigations of short rotation intensively cultured hybrid poplars

Science.gov (United States)

David C. Lothner

1983-01-01

The history of the economic analyses is summarized for short rotation intensively cultured hybrid poplar at the North Central Forest Experiment Station. Early break-even analyses with limited data indicated that at a price of \$25-30 per dry ton for fiber and low to medium production costs, several systems looked profitable. Later cash flow analyses indicated that two...

19. Extension and comparison of neoclassical models for poloidal rotation in tokamaks

International Nuclear Information System (INIS)

Stacey, W. M.

2008-01-01

Several neoclassical models for the calculation of poloidal rotation in tokamaks were rederived within a common framework, extended to include additional physics and numerically compared. The importance of new physics phenomena not usually included in poloidal rotation calculations (e.g., poloidal electric field, VxB force resulting from enhanced radial particle flow arising from the ionization of recycling neutrals) was examined. Extensions of the Hirshman-Sigmar, Kim-Diamond-Groebner, and Stacey-Sigmar poloidal rotation models are presented

20. Rotational instability in a linear theta pinch

International Nuclear Information System (INIS)

Ekdahl, C.; Bartsch, R.R.; Commisso, R.J.; Gribble, R.F.; McKenna, K.F.; Miller, G.; Siemon, R.E.

1980-01-01

The m=1 ''wobble'' instability of the plasma column in a 5-m linear theta pinch has been studied using an axial array of orthogonally viewing position detectors to resolve the wavelength and frequency of the column motion. The experimental results are compared with recent theoretical predictions that include finite Larmor orbit effects. The frequency and wavelength characteristics at saturation agree with the predicted dispersion relation for a plasma rotating faster than the diamagnetic drift speed. Measurements of the magnetic fields at the ends of the pinch establish the existence of currents flowing in such a way that they short out the radial electric fields in the plasma column. The magnitude of rotation, the observed delay in the onset of m=1 motion, and the magnitude of end-shorting currents can all be understood in terms of the torsional Alfven waves that communicate to the central plasma column the information that the ends have been shorted. The same waves are responsible for the torque which rotates the plasma and leads to the observed m=1 instability. Observations of the plasma in the presence of solid end plugs indicate a stabilization of high-m number modes and a reduction of the m=1 amplitude