Classical simulations of heavy-ion fusion reactions and weakly-bound projectile breakup reactions
Indian Academy of Sciences (India)
S S Godre
2014-05-01
Heavy-ion collision simulations in various classical models are discussed. Heavy-ion reactions with spherical and deformed nuclei are simulated in a classical rigid-body dynamics (CRBD) model which takes into account the reorientation of the deformed projectile. It is found that the barrier parameters depend not only on the initial orientations of the deformed nucleus, but also on the collision energy and the moment of inertia of the deformed nucleus. Maximum reorientation effect occurs at near- and below-barrier energies for light deformed nuclei. Calculated fusion crosssections for 24Mg + 208Pb reaction are compared with a static-barrier-penetration model (SBPM) calculation to see the effect of reorientation. Heavy-ion reactions are also simulated in a 3-stage classical molecular dynamics (3S-CMD) model in which the rigid-body constraints are relaxed when the two nuclei are close to the barrier thus, taking into account all the rotational and vibrational degrees of freedom in the same calculation. This model is extended to simulate heavy-ion reactions such as 6Li + 209Bi involving the weakly-bound projectile considered as a weakly-bound cluster of deuteron and 4He nuclei, thus, simulating a 3-body system in 3S-CMD model. All the essential features of breakup reactions, such as complete fusion, incomplete fusion, no-capture breakup and scattering are demonstrated.
Interplay of projectile breakup and target excitation in reactions induced by weakly bound nuclei
Gómez-Ramos, M.; Moro, A. M.
2017-03-01
Background: Reactions involving weakly bound nuclei require formalisms able to deal with continuum states. The majority of these formalisms struggle to treat collective excitations of the systems involved. For continuum-discretized coupled channels (CDCC), extensions to include target excitation have been developed but have only been applied to a small number of cases. Purpose: In this work, we reexamine the extension of the CDCC formalism to include target excitation and apply it to a variety of reactions to study the effect of breakup on inelastic cross sections. Methods: We use a transformed oscillator basis to discretize the continuum of the projectiles in the different reactions and use the extended CDCC method developed in this work to solve the resulting coupled differential equations. A new code has been developed to perform the calculations. Results: Reactions 58Ni(d ,d )*58Ni , 24Mg(d ,d )*24Mg , 144Sm(6Li,6Li)*144Sm , and 9Be(6Li,6Li)*9Be are studied. Satisfactory agreement is found between experimental data and extended CDCC calculations. Conclusions: The studied CDCC method has proven to be an accurate tool to describe target excitation in reactions with weakly bound nuclei. Moderate effects of breakup on inelastic observables are found for the reactions studied. Cross-section magnitudes are not modified much, but angular distributions present smoothing when opposed to calculations without breakup.
Interplay of projectile breakup and target excitation in reactions induced by weakly-bound nuclei
Gomez-Ramos, M
2016-01-01
In this work, we reexamine the extension of the CDCC formalism to include target excitation and apply it to a variety of reactions to study the effect of breakup on inelastic cross sections. We use a transformed oscillator basis to discretize the continuum of the projectiles in the different reactions and use the extended CDCC method developed in this work to solve the resulting coupled differential equations. A new code has been developed to perform the calculations. Reactions 58Ni(d, d) 58Ni*, 24Mg(d, d) 24Mg* , 144Sm( 6Li, 6Li) 144Sm* and 9Be( 6Li, 6Li) 9Be* are studied. Satisfactory agreement is found between experimental data and extended CDCC calculations. The studied CDCC method is proved to be an accurate tool to describe target excitation in reactions with weakly-bound nuclei. Moderate effects of breakup on inelastic observables are found for the reactions studied. Cross section magnitudes are not modified much, but angular distributions present smoothing when opposed to calculations without breakup.
Breakup Effect of Weakly Bound Projectile on the Barrier Distribution Around Coulomb Barrier
Institute of Scientific and Technical Information of China (English)
贾会明; 林承键; 张焕乔; 刘祖华; 喻宁; 杨峰; 徐新星; 贾飞; 吴振东; 张世涛
2012-01-01
The excitation function of quasi-elastic （QEL） scattering at a backward angle has been measured for 9^Be＋208^Pb. The barrier distribution was extracted by means of the first derivative of the measured excitation function and calculated with the coupled-channel model. The present work shows that the experimental barrier distribution extracted from QEL scattering is shifted to the low energy side by 1.5 MeV as compared with the theoretical one. This energy discrepancy indicates that breakup is important in the colliding processes of the weakly bound nucleus system.
Energy Technology Data Exchange (ETDEWEB)
Woodard, A.E., E-mail: awoodard@nd.edu [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Figueira, J.M. [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Ciudad de Buenos Aires (Argentina); Otomar, D.R. [Instituto de Fisica, Universidade Federal Fluminense, Gragoata, Niteroi, R. J., 24210-340 (Brazil); Fernandez Niello, J.O. [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Ciudad de Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, B1650BWA San Martin, Buenos Aires (Argentina); Lubian, J. [Instituto de Fisica, Universidade Federal Fluminense, Gragoata, Niteroi, R. J., 24210-340 (Brazil)
2012-01-01
Angular distributions for the inelastic scattering of the weakly bound {sup 6}Li nucleus from a {sup 144}Sm target (associated with the contributions of both the 2{sub 1}{sup +} and 3{sub 1}{sup -144}Sm excited states together) were measured at bombarding energies close to the Coulomb barrier. The experimental data were compared with expected results based on continuum discretized coupled-channel (CDCC) calculations. The results confirm that it is essential to include continuum-continuum couplings to reproduce the experimental data. The analysis demonstrates that inelastic scattering data can be a critical tool in testing full CDCC calculations involving weakly bound nuclei.
Collisional properties of weakly bound heteronuclear dimers
Marcelis, B.; Kokkelmans, S.J.J.M.F.; Shlyapnikov, G.V.; Petrov, D.S.
2008-01-01
We consider collisional properties of weakly bound heteronuclear molecules (dimers) formed in a two-species mixture of atoms with a large mass difference. We focus on dimers containing light fermionic atoms as they manifest collisional stability due to an effective dimer-dimer repulsion originating
Weakly bound systems, continuum effects, and reactions
Jaganathen, Y; Ploszajczak, M
2012-01-01
Structure of weakly bound/unbound nuclei close to particle drip lines is different from that around the valley of beta stability. A comprehensive description of these systems goes beyond standard Shell Model and demands an open quantum system description of the nuclear many-body system. We approach this problem using the Gamow Shell Model which provides a fully microscopic description of bound and unbound nuclear states, nuclear decays, and reactions. We present in this paper the first application of the GSM for a description of the elastic and inelastic scattering of protons on 6He.
Infrared spectroscopy of weakly bound molecular ions
Energy Technology Data Exchange (ETDEWEB)
Yeh, Lisa I-Ching
1988-11-01
The infrared spectra of a series of hydrated hydronium cluster ions and of protonated ethane ion are presented. A tandem mass spectrometer is ideally suited to obtaining the spectra of such weakly bound molecular ions. Traditional absorption spectroscopy is not feasible in these situations, so the techniques described in this thesis make use of some consequence of photon absorption with higher sensitivity than simply attenuation of laser power. That consequence is dissociation. By first mass selecting the parent ion under study and then mass selecting the fragment ion formed from dissociation, the near unit detection efficiency of ion counting methods has been used to full advantage.
Electron Capture Dissociation of Weakly Bound Polypeptide Polycationic Complexes
DEFF Research Database (Denmark)
Haselmann, Kim F; Jørgensen, Thomas J D; Budnik, Bogdan A;
2002-01-01
We have previously reported that, in electron capture dissociation (ECD), rupture of strong intramolecular bonds in weakly bound supramolecular aggregates can proceed without dissociation of weak intermolecular bonds. This is now illustrated on a series of non-specific peptide-peptide dimers...... as well as specific complexes of modified glycopeptide antibiotics with their target peptide. The weak nature of bonding is substantiated by blackbody infrared dissociation, low-energy collisional excitation and force-field simulations. The results are consistent with a non-ergodic ECD cleavage mechanism....
Continuum Coupling and Pair Correlation in Weakly Bound Deformed Nuclei
Oba, Hiroshi
2009-01-01
We formulate a new Hartree-Fock-Bogoliubov method applicable to weakly bound deformed nuclei using the coordinate-space Green's function technique. An emphasis is put on treatment of quasiparticle states in the continuum, on which we impose the correct boundary condition of the asymptotic out-going wave. We illustrate this method with numerical examples.
Energy Technology Data Exchange (ETDEWEB)
Santhosh, K.P., E-mail: drkpsanthosh@gmail.com; Bobby Jose, V.
2014-02-15
The total fusion cross sections for the fusion of weakly bound {sup 9}Be on {sup 27}Al and {sup 64}Zn targets at near and above the barrier have been calculated using one dimensional barrier penetration model, taking scattering potential as the sum of Coulomb and proximity potential and the calculated values are compared with experimental data. For the purpose of comparison of the fusion of weakly bound projectiles and strongly bound projectiles, the total fusion cross sections for the reaction of tightly bound nucleus {sup 16}O on {sup 64}Zn have also been computed using a similar procedure. The calculated values of total fusion cross sections in all cases are compared with coupled channel calculations using the code CCFULL. The computed cross sections using Coulomb and proximity potential explain the fusion reactions well in both cases of weakly bound and strongly bound projectiles. Reduced reaction cross sections for the systems {sup 9}Be+{sup 27}Al, {sup 9}Be+{sup 64}Zn and {sup 16}O+{sup 64}Zn have also been described.
Santhosh, K P
2013-01-01
The total fusion cross sections for the fusion of weakly bound $^{9}$Be on $^{27}$Al and $^{64}$Zn targets at near and above the barrier have been calculated using one dimensional barrier penetration model, taking scattering potential as the sum of Coulomb and proximity potential and the calculated values are compared with experimental data. For the purpose of comparison of the fusion of weakly bound projectiles and strongly bound projectiles, the total fusion cross sections for the reaction of tightly bound nucleus $^{16}$O on $^{64}$Zn have also been computed using a similar procedure. The calculated values of total fusion cross sections in all cases are compared with coupled channel calculations using the code CCFULL. The computed cross sections using Coulomb and proximity potential explain the fusion reactions well in both cases of weakly bound and strongly bound projectiles. Reduced reaction cross sections for the systems $^{9}$Be + $^{27}$Al, $^{9}$Be+ $^{64}$Zn and $^{16}$O + $^{64}$Zn have also been d...
Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Dasso, C.H. [Niels Bohr Institute, Copenhagen (Denmark); Lenzi, S.M.; Vitturi, A. [Universita di Padova (Italy)
1996-12-31
Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.
Weakly bound states with spin-isospin symmetry
Kievsky, A.; Gattobigio, M.
2016-03-01
We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, a0, and triplet, a1, n - p scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about a0/a1 ≈ -4.31. This value defines a plane in which a0 and a1 can be varied up to the unitary limit, 1/a0 = 0 and 1/a1 = 0, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three 1/2-spin-isospin fermions.
Weakly bound states with spin-isospin symmetry
Kievsky, A
2015-01-01
We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, $a_0$, and triplet, $a_1$, $n-p$ scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about $a_0/a_1\\approx-4.31$. This value defines a plane in which $a_0$ and $a_1$ can be varied up to the unitary limit, $1/a_0=0$ and $1/a_1=0$, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three $1/2$-spin-isospin fermions.
Weakly bound states with spin-isospin symmetry
Directory of Open Access Journals (Sweden)
Kievsky A.
2016-01-01
Full Text Available We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, a0, and triplet, a1, n − p scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about a0/a1 ≈ −4.31. This value defines a plane in which a0 and a1 can be varied up to the unitary limit, 1/a0 = 0 and 1/a1 = 0, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three 1/2-spin-isospin fermions.
Continuum discretized BCS approach for weakly bound nuclei
Lay, J A; Fortunato, L; Vitturi, A
2015-01-01
The Bardeen-Cooper-Schrieffer (BCS) formalism is extended by including the single-particle continuum, thus enabling the analysis of an isotopic chain from stability up to the drip line. We propose a continuum discretized generalized BCS based on single-particle pseudostates (PS). These PS are generated from the diagonalization of the single-particle Hamiltonian within a Transformed Harmonic Oscillator (THO) basis. The consistency of the results versus the size of the basis is studied. The method is applied to neutron rich Oxygen and Carbon isotopes and compared with similar previous works and available experimental data. We make use of the flexibility of the proposed model in order to study the evolution of the occupation of the low-energy continuum when the system becomes weakly bound. We find a larger influence of the non-resonant continuum as long as the Fermi level approaches zero.
Far-Infrared Spectroscopy of Weakly Bound Hydrated Cluster Molecules
DEFF Research Database (Denmark)
Andersen, Jonas
-sized molecular clusters with water by means of far-infrared and terahertz neon matrix isolation spectroscopy. The embedding of non-covalent cluster molecules in solid cryogenic neon matrices at 2.8 K ensures a high sensitivity for direct spectroscopic observations of the large-amplitude intermolecular...... vibrational bands of the cluster molecules in the challenging far-infrared and terahertz spectral regions.A key parameter in the validation of the performance of theoretical predictions for weak non-covalent intermolecular interactions is the dissociation energy D0 that depends heavily on the class of large...
Bounds on the Capacity of Weakly constrained two-dimensional Codes
DEFF Research Database (Denmark)
Forchhammer, Søren
2002-01-01
Upper and lower bounds are presented for the capacity of weakly constrained two-dimensional codes. The maximum entropy is calculated for two simple models of 2-D codes constraining the probability of neighboring 1s as an example. For given models of the coded data, upper and lower bounds...
Weakly and strongly associated nonfreezable water bound in bones.
Turov, V V; Gun'ko, V M; Zarko, V I; Leboda, R; Jablonski, M; Gorzelak, M; Jagiello-Wojtowicz, E
2006-03-15
Water bound in bone of rat tail vertebrae was investigated by 1H NMR spectroscopy at 210-300 K and by the thermally stimulated depolarization current (TSDC) method at 190-265 K. The 1H NMR spectra of water clusters were calculated by the GIAO method with the B3LYP/6-31G(d,p) basis set, and the solvent effects were analyzed by the HF/SM5.45/6-31G(d) method. The 1H NMR spectra of water in bone tissue include two signals that can be assigned to typical water (chemical shift of proton resonance deltaH=4-5 ppm) and unusual water (deltaH=1.2-1.7 ppm). According to the quantum chemical calculations, the latter can be attributed to water molecules without the hydrogen bonds through the hydrogen atoms, e.g., interacting with hydrophobic environment. An increase in the amount of water in bone leads to an increase in the amount of typical water, which is characterized by higher associativity (i.e., a larger average number of hydrogen bonds per molecule) and fills larger pores, cavities and pockets in bone tissue.
Energy Technology Data Exchange (ETDEWEB)
Beck, C. [Institut Pluridisciplinaire Hubert Curien, UMR 7178, IN2P3-CNRS et Universite Louis Pasteur (Strasbourg I), 23 rue du Loess - BP28, F-67037 Strasbourg Cedex 2 (France); Keeley, N. [DSM/DAPNIA/SPhN CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Diaz-Torres, A. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2007-03-15
The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for {sup 6,7}Li+{sup 59}Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with {sup 6}Li (as compared to {sup 7}Li) indicates the significant role of breakup for weakly bound projectiles. A study of {sup 4,6}He induced fusion reactions with a three-body CDCC method for the {sup 6}He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed. (authors)
Weak Precompactness in the Space of Vector-Valued Measures of Bounded Variation
Directory of Open Access Journals (Sweden)
Ioana Ghenciu
2015-01-01
Full Text Available For a Banach space X and a measure space (Ω,Σ, let M(Ω,X be the space of all X-valued countably additive measures on (Ω,Σ of bounded variation, with the total variation norm. In this paper we give a characterization of weakly precompact subsets of M(Ω,X.
Weakly regular fluid flows with bounded variation on a Schwarzschild background
LeFloch, Philippe G
2015-01-01
We study the global dynamics of isothermal fluids evolving in the domain of outer communication of a Schwarzschild black hole. We first formulate the initial value problem within a class of weak solutions with bounded variation (BV), possibly containing shock waves. We then introduce a version of the random choice method and establish a global-in-time existence theory for the initial value problem within the proposed class of weakly regular fluid flows. The initial data may have arbitrary large bounded variation and can possibly blow up near the horizon of the black hole. Furthermore, we study the class of possibly discontinuous, equilibrium solutions and design a version of the random choice method in which these fluid equilibria are exactly preserved. This leads us to a nonlinear stability property for fluid equilibria under small perturbations with bounded variation. Furthermore, we can also encompass several limiting regimes (stiff matter, non-relativistic flows, extremal black hole) by letting the physic...
Exotic Behaviour of Angular Dispersion of Weakly Bound Nucleus 17F at Small Angles
Institute of Scientific and Technical Information of China (English)
WANG Qi; YUAN Xiao-Hua; XU Zhi-Guo; ZHAO Tie-Cheng; ZHANG Hong-Bin; XU Hua-Gen; QI Hui-Rong; WANG Yue; JIA Fei; WU Li-Jie; DING Xian-Li; HAN Jian-Long; GAO Qi; GAO Hui; LI Song-Lin; BAI Zhen; XIAO Guo-Qing; JIN Gen-Ming; REN Zhong-Zhou; ZHOU Shan-Gui; SERGEY Yu-Kun; XIAO Zhi-Gang; XU Hu-Shan; SUN Zhi-Yu; HU Zheng-Guo; ZHANG Xue-Ying; WANG Hong-Wei; MAO Rui-Shi
2006-01-01
@@ The differential cross sections of 17 F and 17 O elastic scattering products on 208Pb have been measured at the Radioactive Ion Beam Line at Lanzhou (RIBLL). Two angular dispersion plots ofln( dσ/ dθ ) versus θ2 are obtained from the angular distribution of the elastic scattering differential cross sections. The angular dispersion plot exhibits a clear turning point for 17F in the range of small scattering angles 6°-20° due to its exotic structure,but for 17 O, the turning point is not observed in the same angular range. The experimental results have been compared with previous data of other groups. Systematical analysis on the available data supports the above conclusion that there is an exotic behaviour of the angular dispersion plot of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the turning point of the angular dispersion plot appears at small angle for weakly bound nuclei with halo or skin structure, and can be used as a new probe to investigate the halo and skin phenomena of weakly bound nuclei.
Approaching the Cramer-Rao Bound in Weak Lensing with PDF Symmetrization
Zhang, Jun
2016-01-01
Weak lensing statistics is typically measured as weighted sum of shear estimators or their products (shear-shear correlation). The weighting schemes are designed in the hope of minimizing the statistical error without introducing systematic errors. It would be ideal to approach the Cramer-Rao bound (the lower bound of the statistical uncertainty) in shear statistics, though it is generally difficult to do so in practice. The reasons may include: difficulties in galaxy shape measurement, inaccurate knowledge of the probability-distribution-function (PDF) of the shear estimator, misidentification of point sources as galaxies, etc.. Using the shear estimators defined in Zhang et al. (2015), we show that one can overcome all these problems, and allow shear measurement accuracy to approach the Cramer-Rao bound. This can be achieved by symmetrizing the PDF of the shear estimator, or the joint PDF of shear estimator pairs (for shear-shear correlation), without any prior knowledge of the PDF. Using simulated galaxy i...
Short-lived two-soliton bound states in weakly perturbed nonlinear Schrodinger equation.
Dmitriev, Sergey V.; Shigenari, Takeshi
2002-06-01
Resonant soliton collisions in the weakly discrete nonlinear Schrodinger equation are studied numerically. The fractal nature of the soliton scattering, described in our previous works, is investigated in detail. We demonstrate that the fractal scattering pattern is related to the existence of the short-lived two-soliton bound states. The bound state can be regarded as a two-soliton quasiparticle of a new type, different from the breather. We establish that the probability P of a bound state with the lifetime L follows the law P approximately L(-3). In the frame of a simple two-particle model, we derive the nonlinear map, which generates the fractal pattern similar to that observed in the numerical study of soliton collisions. (c) 2002 American Institute of Physics.
The weak psuedoscalar coupling of the free and the bound protons
Energy Technology Data Exchange (ETDEWEB)
Gorringe, T.P. [Univ. of Kentucky, Lexington, KY (United States)
1995-10-01
The proton`s weak pseudoscalar coupling, g{sub p} is induced by the effects of its strong interaction on its weak interaction. In the Partially Conserved Axial Current hypothesis g{sub p} is due to single pion exchange between the leptonic and nucleonic currents in semi-leptonic weak processes. It predicts g{sub p} = 8.4 {plus_minus} 0.2 for the free proton but modifications of g{sub p}for the bound proton, due to modifications of the pion field of the bound proton, are possible. We will review the available data on g{sub p} for both the free and the bound proton. In the case of the free proton g{sub p} has been determined from measurements of ordinary (OMC) and radiative muon capture (RMC) on hydrogen. We will discuss the extraction of g{sub p} from the data, the importance of various {mu}-atomic and molecular processes in extracting g{sub p }and compare the results obtained from the OMC and RMC data and experiments in gaseous and liquid H{sub 2}. In the case of the bound proton we will discuss the measurements of ordinary and radiative {mu}{sup -} capture on complex nuclei and the extraction of g{sub p} from these data. The comparison of inclusive RMC and OMC rates on nuclei has led to speculations of a large enhancement of g{sub p} in light nuclei and a large quenching of g{sub p} in heavy nuclei. We will discuss the evidence for and against the renormalization, of g{sub p}in nuclei and the problems of extracting g{sub p} from the nuclear RMC and OMC data.
Kaur, Mandeep; Sharma, Manoj K; Gupta, Raj K
2015-01-01
The dynamics of the reactions forming compound nuclei using loosely bound projectiles is analysed within the framework of dynamical cluster decay model (DCM) of Gupta and Collaborators. We have analysed different reactions with $^{7}Li$, $^{9}Be$ and $^{7}Be$ as neutron rich and neutron deficient projectiles, respectively, on different targets at the three $E_{lab}$ values, forming compound nuclei within the mass region A$\\sim 30-200$. The contributions of light particles LPs ($A\\le4$) cross sections $\\sigma_{LP}$, energetically favoured intermediate mass fragments IMFs ($5 \\le A_2 \\le 20$) cross sections $\\sigma_{IMF}$ as well as fusion-fission $\\it{ff}$ cross sections $\\sigma_{ff}$ constitute the $\\sigma_{fus}$ (=$\\sigma_{LP}$+$\\sigma_{IMF}$+$\\sigma_{ff}$) for these reactions. The contribution of the emitted LPs, IMFs and ff fragments is added for all the angular momentum upto the $\\ell_{max}$ value, for the resepctive reactions. Interestingly, we find that the $\\Delta R^{emp}$, the only parameter of model ...
Recent Results on Fusion and Direct Reactions with Weakly Bound Stable Nuclei
Directory of Open Access Journals (Sweden)
Shrivastava A.
2011-10-01
Full Text Available Recent measurements of fusion and direct reactions in case of weakly bound stable nuclei at extreme sub-barrier energies using a sensitive off beam technique are presented. Deviation in slope of the fusion excitation function, as observed in case of medium heavy systems, is absent in the present asymmetric systems at these low energies. These results along with the study of capture reaction of the breakup fragments using particle- gamma coincidences is presented, thereby giving the current status of the ﬁeld.
A weakly monotonic backward induction algorithm on finite bounded subsets of vector lattices
Dragut, A. B.
2004-03-01
We present a new efficient and robust backward induction algorithm, which is weakly monotonic, working on bounded subsets without holes of lattices. We prove all its properties, give examples of applications, and illustrate its behavior, comparing it with the natural extension of the unidimensional algorithm presented in Puterman (Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, New York, 1994), in the sense of Topkis (Frontiers of Economic Research Series, Princeton University Press, Princeton, NJ, 1998) and White (Recent Developments in Markov Decision Processes, Academic Press, New York, 1980, 261) and showing, also experimentally, that it is much more efficient.
Control of Optical Transitions with Magnetic Fields in Weakly Bound Molecules
McGuyer, B H; Iwata, G Z; Skomorowski, W; Moszynski, R; Zelevinsky, T
2015-01-01
Forbidden optical transitions in weakly bound $^{88}$Sr$_2$ molecules become strongly enabled with moderate applied magnetic fields. We report the control of transition strengths by five orders of magnitude and measurements of highly nonlinear Zeeman shifts, which we explain with an accurate {\\it ab initio} model. Mixed quantization in an optical lattice enables the experimental procedure. Our observation of formerly inaccessible $f$-parity excited states offers a new avenue for improving theoretical models for divalent atom dimers. Furthermore, magnetically enabled transitions may lead to an extremely precise subradiant molecular lattice clock.
Inclusive breakup of three-fragment weakly bound and Borromean nuclei
Carlson, Brett V; Hussein, Mahir S
2016-01-01
The inclusive breakup of three-fragment projectiles is discussed within a four-body spectator model. Both the elastic breakup and the non-elastic breakup are obtained in a unified framework. Originally developed in the 80's for two-fragment projectiles such as the deuteron, the theory is successfully generalized to Borromean projectiles. The expression obtained for the inclusive cross section allows the extraction of the incomplete fusion cross section, and accordingly generalizes the surrogate method to cases such as (t,p) and (t,n) reactions. It is found that two-fragment correlations inside the projectile affect in a conspicuous way the elastic breakup cross section. The inclusive non-elastic breakup cross section is found to contain the contribution of a three-body absorption term that is also strongly influenced by the two-fragment correlations.
Systematics of the breakup probability function for {sup 6}Li and {sup 7}Li projectiles
Energy Technology Data Exchange (ETDEWEB)
Capurro, O.A., E-mail: capurro@tandar.cnea.gov.ar [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); Pacheco, A.J.; Arazi, A. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Carnelli, P.F.F. [CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); Fernández Niello, J.O. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Instituto de Investigación e Ingeniería Ambiental, Universidad Nacional de San Martín, 25 de Mayo y Francia, B1650BWA San Martín, Buenos Aires (Argentina); and others
2016-01-15
Experimental non-capture breakup cross sections can be used to determine the probability of projectile and ejectile fragmentation in nuclear reactions involving weakly bound nuclei. Recently, the probability of both type of dissociations has been analyzed in nuclear reactions involving {sup 9}Be projectiles onto various heavy targets at sub-barrier energies. In the present work we extend this kind of systematic analysis to the case of {sup 6}Li and {sup 7}Li projectiles with the purpose of investigating general features of projectile-like breakup probabilities for reactions induced by stable weakly bound nuclei. For that purpose we have obtained the probabilities of projectile and ejectile breakup for a large number of systems, starting from a compilation of the corresponding reported non-capture breakup cross sections. We parametrize the results in accordance with the previous studies for the case of beryllium projectiles, and we discuss their systematic behavior as a function of the projectile, the target mass and the reaction Q-value.
Evolution of Surface Deformations of Weakly-Bound Nuclei in the Continuum
Pei, J C; Xu, F R
2013-01-01
We study weakly-bound deformed nuclei based on coordinate-space Skyrme Hartree-Fock-Bogoliubov approach , in which a large box is employed for treating the continuum and surface diffuseness. Approaching the limit of core-halo deformation decoupling, calculations found an exotic "egg"-like structure consisting of a spherical core plus a prolate halo in $^{38}$Ne, in which the resonant continuum plays an essential role. Generally the halo probability and the decoupling effect in heavy nuclei are reduced compared to light nuclei, due to denser level densities around Fermi surfaces. However, deformed halos in medium-mass nuclei are possible with sparse levels of negative parity, for example, in $^{110}$Ge. The surface deformations of pairing density distributions are also influenced by the decoupling effect and are sensitive to the effective pairing Hamiltonian.
Directory of Open Access Journals (Sweden)
Sukjung Hwang
2015-11-01
Full Text Available Here we generalize quasilinear parabolic p-Laplacian type equations to obtain the prototype equation $$ u_t - \\hbox{div} \\Big(\\frac{g(|Du|}{|Du|} Du\\Big = 0, $$ where g is a nonnegative, increasing, and continuous function trapped in between two power functions $|Du|^{g_0 -1}$ and $|Du|^{g_1 -1}$ with $1
Structure Effects in Collisions Induced by Halo and Weakly Bound Nuclei Around the Coulomb Barrier
Scuderi, V; Torresi, D; Fisichella, M; Borge, M J G; Randisi, G; Milin, M; Figuera, P; Raabe, R; Di Pietro, A; Amorini, F; Fraile, L M; Vidal, A M; Rizzo, F; Zadro, M; Gomez-Camacho, J; Pellegriti, M G; Papa, M; Jeppesen, H; Santonocito, D; Sanchez, E M R; Acosta, L; Tengblad, O; Lattuada, M; Musumarra, A; Scalia, G
2010-01-01
In this contribution, results concerning different reaction channels for the collisions induced by the three Be isotopes, Be-9,Be-10,Be-11, on a Zn-64 target at energies around the Coulomb barrier will be presented. The experiments with the radioactive Be-10,Be-11 beams were performed at REX-ISOLDE (CERN) whereas the experiment with the stable weakly bound Be-9 beam was performed at LNS Catania. Elastic scattering angular distributions have been measured for the three systems Be-9,Be-10,Be-11 + Zn-64 at the same center of mass energy. The angular distributions were analyzed with optical potentials and reaction cross sections were obtained from optical model calculations, performed with the code PTOLEMY. For the Be-11 + Zn-64 reaction, the break-up angular distribution was also measured.
Universality of weakly bound dimers and Efimov trimers close to Li-Cs Feshbach resonances
Ulmanis, J.; Häfner, S.; Pires, R.; Kuhnle, E. D.; Weidemüller, M.; Tiemann, E.
2015-05-01
We study the interspecies scattering properties of ultracold Li-Cs mixtures in their two energetically lowest spin channels in the magnetic field range between 800 and 1000 G. Close to two broad Feshbach resonances (FR) we create weakly bound LiCs dimers by radio-frequency association and measure the dependence of their binding energy on the external magnetic field strength. Based on the binding energies and complementary atom loss spectroscopy of three other Li-Cs s-wave FRs we construct precise molecular singlet and triplet electronic ground state potentials using a coupled-channels calculation. We extract the Li-Cs interspecies scattering length as a function of the external field and obtain almost a ten-fold improvement in the precision of the values for the pole positions and widths of the s-wave FRs as compared to our previous work (Pires et al 2014 Phys. Rev. Lett. 112 250404). We discuss implications on the Efimov scenario and the universal geometric scaling for LiCsCs trimers.
Hyperaccretion during Tidal Disruption Events: Weakly Bound Debris Envelopes and Jets
Coughlin, Eric R.; Begelman, Mitchell C.
2014-02-01
After the destruction of the star during a tidal disruption event (TDE), the cataclysmic encounter between a star and the supermassive black hole (SMBH) of a galaxy, approximately half of the original stellar debris falls back onto the hole at a rate that can initially exceed the Eddington limit by orders of magnitude. We argue that the angular momentum of this matter is too low to allow it to attain a disk-like configuration with accretion proceeding at a mildly super-Eddington rate, the excess energy being carried away by a combination of radiative losses and radially distributed winds. Instead, we propose that the infalling gas traps accretion energy until it inflates into a weakly bound, quasi-spherical structure with gas extending nearly to the poles. We study the structure and evolution of such "zero-Bernoulli accretion" flows as a model for the super-Eddington phase of TDEs. We argue that such flows cannot stop extremely super-Eddington accretion from occurring, and that once the envelope is maximally inflated, any excess accretion energy escapes through the poles in the form of powerful jets. We compare the predictions of our model to Swift J1644+57, the putative super-Eddington TDE, and show that it can qualitatively reproduce some of its observed features. Similar models, including self-gravity, could be applicable to gamma-ray bursts from collapsars and the growth of SMBH seeds inside quasi-stars.
Hyperaccretion during tidal disruption events: weakly bound debris envelopes and jets
Coughlin, Eric R
2013-01-01
After the destruction of the star during a tidal disruption event (TDE), the cataclysmic encounter between a star and the supermassive black hole (SMBH) of a galaxy, approximately half of the original stellar debris falls back onto the hole at a rate that can initially exceed the Eddington limit by orders of magnitude. We argue that the angular momentum of this matter is too low to allow it to attain a disk-like configuration with accretion proceeding at a mildly super-Eddington rate, the excess energy being carried away by a combination of radiative losses and radially distributed winds. Instead, we propose that the infalling gas traps accretion energy until it inflates into a weakly-bound, quasi-spherical structure with gas extending nearly to the poles. We study the structure and evolution of such "Zero-Bernoulli accretion" flows (ZEBRAs) as a model for the super-Eddington phase of TDEs. We argue that such flows cannot stop extremely super-Eddington accretion from occurring, and that once the envelope is m...
Photodissociation dynamics of weakly bound He H2 + in intense light fields
Szidarovszky, Tamás; Yamanouchi, Kaoru
2016-12-01
Photoinduced dynamics of a weakly bound triatomic molecule He H2 + exposed to electromagnetic radiation is investigated by time-dependent quantum wave-packet propagation. Adopting a two-dimensional linear H-H-He model, the three lowest-lying potential energy surfaces (PESs) and corresponding dipole moment surfaces are constructed. One of the two characteristic excited PESs of He H2 + leads to the charge-transfer reaction H2 ++He → H2+H e+ and the other corresponds to the first excited state of H2 + perturbed by the presence of He. When He H2 + is exposed to a femtosecond intense ultraviolet light pulse (I =4 ×1014W c m-2 , λ =400 nm ), both of the two excited PESs are found to be coupled with the light field and a variety of reaction pathways become opened so that HeH, He H+ , H2, H2 +,H , H+ , He, and H e+ are produced. Simulations also show that the anharmonic coupling between the two stretching vibrational modes in He H2 + leads to the stabilization of the H2 + moiety against the decomposition into H + H+ compared with bare H2 +. The theoretical findings of the formation of He H+ composed of the most abundant elements in the universe are also discussed in view of the theoretical modeling of the chemical reactions proceeding in the primordial gas and in the interstellar medium.
Infrared Spectrum of CO-O2, a 'new' Weakly-Bound Complex
McKellar, Bob; Barclay, A. J.; Michaelian, K. H.; Moazzen-Ahmadi, Nasser
2016-06-01
Only a few weakly-bound complexes containing the O2 molecule have been characterized by high-resolution spectroscopy, notably N2O-O2 [1] and HF-O2 [2]. This neglect is no doubt due in part to the complications added by the oxygen unpaired electron spin. Here we report an extensive infrared spectrum of CO-O2, as observed in the CO fundamental band region (˜2150 wn) using a tunable quantum cascade laser to probe a pulsed supersonic jet expansion. The derived energy level pattern consists of 'stacks' characterized by K, the projection of the total angular momentum on the intermolecular axis. Five such stacks are observed in the ground vibrational state, and ten in the excited state, v(CO) = 1. They are divided into two groups, with no observed transitions between groups, and we believe these groups correlate with the two lowest rotational states of O2, namely (N, J) = (1, 0) and (1, 2). In many ways, the spectrum and energy levels are similar to those of CO-N2 [3], and we use the same approach for analysis, simply fitting each stack with its own origin, B-value, and distortion constants. The rotational constant of the lowest stack in the ground state (with K = 0) implies an effective intermolecular separation of 3.82 Å, but this should be interpreted with caution since it ignores possible effects of electron spin. [1] H.-B. Qian, D. Seccombe, and B.J. Howard, J. Chem. Phys. 107, 7658 (1997). [2] W.M. Fawzy, C.M. Lovejoy, D.J. Nesbitt, and J.T. Hougen, J. Chem. Phys. 117, 693 (2002); S. Wu, G. Sedo, E.M. Grumstrup, and K.R. Leopold, J. Chem. Phys. 127, 204315 (2007). [3] M. Rezaei, K.H. Michaelian, N. Moazzen-Ahmadi, and A.R.W. McKellar, J. Phys. Chem. A 117, 13752 (2013), and references therein.
Near-barrier Fusion and Breakup/Transfer induced by Weakly Bound and Exotic Halo Nuclei
Beck, C
2007-01-01
The influence on the fusion process of coupling to collective degrees of freedom has been explored. The significant enhancement of the fusion cross section at sub-barrier energies was compared to predictions of one-dimensional barrier penetration models. This was understood in terms of the dynamical processes arising from strong couplings to collective inelastic excitations of the target and projectile. However, in the case of reactions where at least one of the colliding nuclei has a sufficiently low binding energy, for breakup to become an important process, conflicting model predictions and experimental results have been reported in the literature. Excitation functions for sub- and near-barrier total (complete + incomplete) fusion cross sections have been measured for the $^{6,7}$Li+$^{59}$Co reactions. Elastic scattering as well as breakup/transfer yields have also been measured at several incident energies. Results of Continuum-Discretized Coupled-Channel ({\\sc Cdcc}) calculations describe reasonably wel...
Okołowicz, J.; Lam, Y. H.; Płoszajczak, M.; Macchiavelli, A. O.; Smirnova, N. A.
2016-06-01
There is a considerable interest in understanding the dependence of one-nucleon removal cross sections on the asymmetry of the neutron Sn and proton Sp separation energies, following a large amount of experimental data and theoretical analyses in a framework of sudden and eikonal approximations of the reaction dynamics. These theoretical calculations involve both the single-particle cross section and the shell-model description of the projectile initial state and final states of the reaction residues. The configuration mixing in shell-model description of nuclear states depends on the proximity of one-nucleon decay threshold but does it depend sensitively on Sn -Sp? To answer this question, we use the shell model embedded in the continuum to investigate the dependence of one-nucleon spectroscopic factors on the asymmetry of Sn and Sp for mirror nuclei 24Si, 24Ne and 28S, 28Mg and for a series of neon isotopes (20 ≤ A ≤ 28).
Regularity of weak solutions to the Landau-Lifshitz system in bounded regular domains
Directory of Open Access Journals (Sweden)
Kevin Santugini-Repiquet
2007-10-01
Full Text Available In this paper, we study the regularity, on the boundary, of weak solutions to the Landau-Lifshitz system in the framework of the micromagnetic model in the quasi-static approximation. We establish the existence of global weak solutions to the Landau-Lifshitz system whose tangential space gradient on the boundary is square integrable.
Okołowicz, J; Płoszajczak, M; Macchiavelli, A O; Smirnova, N A
2015-01-01
There is a considerable interest in understanding the dependence of one-nucleon removal cross sections on the asymmetry of the neutron $S_n$ and proton $S_p$ separation energies, following a large amount of experimental data and theoretical analyses in a framework of sudden and eikonal approximations of the reaction dynamics. These theoretical calculations involve both the single-particle cross section and the shell-model description of the projectile initial state and final states of the reaction residues. The configuration mixing in shell-model description of nuclear states depends on the proximity of one-nucleon decay threshold but does it depend sensitively on $S_n - S_p$? To answer this question, we use the shell model embedded in the continuum to investigate the dependence of one-nucleon spectroscopic factors on the asymmetry of $S_n$ and $S_p$ for mirror nuclei $^{24}$Si, $^{24}$Ne and $^{28}$S, $^{28}$Mg and for a series of neon isotopes ($20 \\leq A \\leq 28$).
Graphical Method for Determining Projectile Trajectory
Moore, J. C.; Baker, J. C.; Franzel, L.; McMahon, D.; Songer, D.
2010-01-01
We present a nontrigonometric graphical method for predicting the trajectory of a projectile when the angle and initial velocity are known. Students enrolled in a general education conceptual physics course typically have weak backgrounds in trigonometry, making inaccessible the standard analytical calculation of projectile range. Furthermore,…
Graphical Method for Determining Projectile Trajectory
Moore, J. C.; Baker, J. C.; Franzel, L.; McMahon, D.; Songer, D.
2010-01-01
We present a nontrigonometric graphical method for predicting the trajectory of a projectile when the angle and initial velocity are known. Students enrolled in a general education conceptual physics course typically have weak backgrounds in trigonometry, making inaccessible the standard analytical calculation of projectile range. Furthermore,…
Institute of Scientific and Technical Information of China (English)
Lin Feng; Zhang Wei; Zhao Ze-Yu; Cong Shu-Lin
2012-01-01
The photoassociation dynamics of ultracold lithium atoms controlled by a cut-off pulse has been investigated theoretically by solving numerically the time-dependent Schr(o)dinger equation using the mapped Fourier grid method.The frequency components of the laser pulse close to the atomic resonance are partly cut off.Compared with the typical Gauss-type pulses,the cut-off pulse is helpful to suppress efficiently the weakly bound states and prepare the associated molecules in the lower vibrational states.Especially,the dependence of photoassociation probability on the cut-off position of the laser pulse is explored.
Cook, K J; Luong, D H; Kalkal, Sunil; Dasgupta, M; Hinde, D J
2016-01-01
Complete fusion cross sections in collisions of light, weakly bound nuclei and high Z targets show above-barrier suppression of complete fusion. This has been interpreted as resulting from breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete fusion. This paper investigates how these conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance is much longer than the fusion timescale, then its breakup cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on predictions of fusion suppression. Coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb and 209Bi at energies below the barrie...
Energy Technology Data Exchange (ETDEWEB)
Labbe, Nicole J.; Sivaramakrishnan, Raghu; Goldsmith, C. Franklin; Georgievskii, Yuri; Miller, James A.; Klippenstein, Stephen J.
2016-01-07
Weakly bound free radicals have low-dissociation thresholds such that at high temperatures, timescales for dissociation and collisional relaxation become comparable, leading to significant dissociation during the vibrational-rotational relaxation process. Here we characterize this “prompt” dissociation of formyl (HCO), an important combustion radical, using direct dynamics calculations for OH + CH2O and H + CH2O (key HCO-forming reactions). For all other HCO-forming reactions, presumption of a thermal incipient HCO distribution was used to derive prompt dissociation fractions. Inclusion of these theoretically derived HCO prompt dissociation fractions into combustion kinetics models provides an additional source for H-atoms that feeds chain branching reactions. Simulations using these updated combustion models are therefore shown to enhance flame propagation in 1,3,5-trioxane and acetylene. The present results suggest that HCO prompt dissociation should be included when simulating flames of hydrocarbons and oxygenated molecules and that prompt dissociations of other weakly bound radicals may also impact combustion simulations
Labbe, Nicole J; Sivaramakrishnan, Raghu; Goldsmith, C Franklin; Georgievskii, Yuri; Miller, James A; Klippenstein, Stephen J
2016-01-01
Weakly bound free radicals have low-dissociation thresholds such that at high temperatures, time scales for dissociation and collisional relaxation become comparable, leading to significant dissociation during the vibrational-rotational relaxation process. Here we characterize this "prompt" dissociation of formyl (HCO), an important combustion radical, using direct dynamics calculations for OH + CH2O and H + CH2O (key HCO-forming reactions). For all other HCO-forming reactions, presumption of a thermal incipient HCO distribution was used to derive prompt dissociation fractions. Inclusion of these theoretically derived HCO prompt dissociation fractions into combustion kinetics models provides an additional source for H-atoms that feeds chain-branching reactions. Simulations using these updated combustion models are therefore shown to enhance flame propagation in 1,3,5-trioxane and acetylene. The present results suggest that HCO prompt dissociation should be included when simulating flames of hydrocarbons and oxygenated molecules and that prompt dissociations of other weakly bound radicals may also impact combustion simulations.
Dynamics of fragment capture for cluster structures of weakly bound 7Li
Directory of Open Access Journals (Sweden)
Shrivastava A.
2013-12-01
Full Text Available Role of cluster structures of 7Li on reaction dynamics have been studied by performing exclusive measurements of prompt-γ rays from residues with scattered particles at energy, E/Vb = 1.6, with 198Pt target. Yields of the residues resulting after capture of t and 4,5,6He, corresponding to different excitation energies of the composite system were estimated. The results were compared with three body classical-dynamical model for breakup fusion, constrained by the measured fusion, α and t capture cross-sections. The cross-section of residues from capture of α and t agreed well with the prediction of the model showing dominance of the two step process - breakup fusion, while those from tightly bound 6He showed massive transfer to be the dominant mechanism.
Quantum Defect Theory description of weakly bound levels and Feshbach resonances in LiRb
Pérez-Ríos, Jesús; Chen, Yong P; Greene, Chris H
2014-01-01
The multichannel quantum defect theory (MQDT) in combination with the frame transformation (FT) approach is applied to model the Fano-Feshbach resonances measured for $^{7}$Li$^{87}$Rb and $^{6}$Li$^{87}$Rb [Marzok {\\it et al.} Phys. Rev. A {\\bf 79} 012717 (2009)]. The MQDT results show a level of accuracy comparable to that of previous models based on direct, fully numerical solutions of the the coupled channel Schr\\"odinger equations (CC). Here, energy levels deduced from 2-photon photoassociation spectra for $^{7}$Li$^{85}$Rb are assigned by applying the MQDT approach, obtaining the bound state energies for the coupled channel problem. Our results confirm that MQDT yields a compact description of photoassociation observables as well as the Fano-Feshbach resonance positions and widths.
Keswani, Neelam; Choudhary, Sinjan; Kishore, Nand
2010-07-01
The thermodynamics of interaction of neomycin and lincomycin with bovine serum albumin (BSA) and human serum albumin (HSA) has been studied using isothermal titration calorimetry (ITC), in combination with UV-visible, steady state and time resolved fluorescence spectroscopic measurements. Neomycin is observed to bind weakly to BSA and HSA whereas lincomycin did not show any evidence for binding with the native state of these proteins, rather it interacts in the presence of surfactants. The ITC results suggest 1 : 1 binding stoichiometry for neomycin in the studied temperature range. The values of the van't Hoff enthalpy do not agree with the calorimetric enthalpy in the case of neomycin, suggesting conformational changes in the protein upon ligand binding, as well as with the rise in the temperature. Experiments at different ionic strengths, and in the presence of tetrabutyl ammonium bromide and surfactants suggest the predominant involvement of electrostatic interactions in the complexation process of neomycin with BSA and HSA, and non-specific interaction behaviour of lincomycin with these proteins.
Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions.
Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim
2016-08-01
Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes.
Medveď, Miroslav; Budzák, Šimon; Laurent, Adèle D; Jacquemin, Denis
2015-03-26
Direct (electronic) and indirect (geometrical) modifications of the molecular properties of weakly interacting complexes between the push-pull p-aminobenzoic acid (pABA) molecule and the nonpolar benzene (Bz) have been studied with a large panel of wave function (WF) and density functional theory (DFT) based methods using carefully selected atomic basis sets. For pABA, both the canonical (pABA-c) and zwitterionic (pABA-z) forms have been investigated. Owing to strongly distinct charge distributions, the two forms of pABA enable us to mimic different interaction modes with Bz. In this work, we assessed the performances of dispersion-corrected DFT methods, as well as of long-range corrected exchange-correlation functionals. It follows from the SAPT analysis that both the structure and the interaction energy of the first complex (pABA-c···Bz) is mainly controlled by dispersion interactions whereas, in the second complex (pABA-z···Bz), electrostatic and induction forces play also an important role. Our results suggest that the (non)linear electric properties of push-pull and zwitterionic molecules can be significantly reduced by the presence of a nonpolar compound. We also show that even for a complex with stability strongly determined by dispersion forces, the direct dispersion contributions to its electric properties can be small. Nevertheless, the intersystem distance is influenced by dispersion forces, which, in turn indirectly tune the induced properties. The zwitterionic derivative appears to be more challenging in the context of molecular properties.
Weakly bound states of two- and three-boson systems in the crossover from two to three dimensions
DEFF Research Database (Denmark)
Yamashita, Marcelo; Bellotti, Filipe Furlan; Frederico, Tobias
2015-01-01
. In this paper we study weakly bound states of non-relativistic two and three boson systems when passing continuously from a three (3D) to a two-dimensional (2D) regime within a 'squeezed dimension' model. We use periodic boundary conditions to derive a surprisingly simple form of the three-boson Schr{\\"o}dinger...... equation in momentum space that we solve numerically. Our results show a distinct dimensional crossover as three-boson states will either disappear into the continuum or merge with a 2D counterpart, and also a series of sharp transitions in the ratios of three-body and two-body energies from being purely 2...
Ohkubo, S
2016-01-01
We present for the first time evidence for the existence of a dynamically refracted primary bow for $^{9}$Be+$^{16}$O scattering. This is demonstrated through the use of coupled channel calculations with an extended double folding potential derived from the density-dependent effective two-body force and precise microscopic cluster wave functions for $^{9}$Be. The calculations reproduce the experimental Airy structure in $^{9}$Be+$^{16}$O scattering well.It is found that coupling of a weakly bound $^{9}$Be nucleus to excited states plays the role of a booster lens, dynamically enhancing the refraction over the {\\it static} refraction due to the Luneburg lens mean field potential between the ground states of $^{9}$Be and $^{16}$O.
Topic, Wendy C.; Jäger, Wolfgang
2005-08-01
Rotational spectra of the weakly bound He-HCCCN and He-DCCCN van der Waals complexes were observed using a pulsed-nozzle Fourier-transform microwave spectrometer in the 7-26-GHz frequency region. Nuclear quadrupole hyperfine structures due to the N14 and D nuclei (both with nuclear-spin quantum number I =1) were resolved and assigned. Both strong a and weaker b-type transitions were observed and the assigned transitions were used to fit the parameters of a distortable asymmetric rotor model. The dimers are floppy, near T-shaped complexes. Three intermolecular potential-energy surfaces were calculated using the coupled-cluster method with single and double excitations and noniterative inclusion of triple excitations. Bound-state rotational energy levels supported by these surfaces were determined. The quality of the potential-energy surfaces was assessed by comparing the experimental and calculated transition frequencies and also the corresponding spectroscopic parameters. Simple scaling of the surfaces improved both the transition frequencies and spectroscopic constants. Five other recently reported surfaces [O. Akin-Ojo, R. Bukowski, and K. Szalewicz, J. Chem. Phys. 119, 8379 (2003)], calculated using a variety of methods, and their agreement with spectroscopic properties of He-HCCCN are discussed.
Jiang, Song
2011-01-01
We prove the existence of a weak solution to the three-dimensional steady compressible isentropic Navier-Stokes equations in bounded domains for any specific heat ratio \\gamma > 1. Generally speaking, the proof is based on the new weighted estimates of both pressure and kinetic energy for the approximate system which result in some higher integrability of the density, and the method of weak convergence. Comparing with [12] where the spatially periodic case was studied, here we have to control the additional integral terms of both pressure and kinetic energy involving with the points near the boundary which become degenerate when the points approach the boundary. Such integral terms are estimated using some new techniques, i.e., we use the techniques of the mirror image and boundary straightening to prove that the weighted estimates of both pressure and kinetic energy for the points near the boundary can be controlled by the weighted estimates for the points on the boundary. Moreover, we prove that once the we...
1984-10-01
Suiza tubular projectile 20 9. Inspection of Hispano Suiza sabot 21 10. Inspection of GAU-8 sabot 22 11. Firing data - 30-rn tubular projectile (Hispano... Suiza 23 copper banded) 12. Firing data - 30-m tubular projectile (GAU-8 plastic 24 banded) 13. Firing data - 30-m tubular projectile (GAU-8 copper 25...42 13. In-flight Hispano Suiza tubular projectiles 43 14. In-flight C4U-8 (plastic) tubular projectile 44 15. In-flight GCU-8 (copper) tubular
Pietrow, M; Misiak, L E; Kornarzynski, K; Szurkowski, J; Rochowski, P; Grzegorczyk, M
2014-01-01
It is generally assumed that weakly bound (trapped) electrons in organic solids come only from radiolytical (or photochemical) processes like ionization caused by an excited positron entering the sample. This paper presents an evidence for the presence of these electrons in non-irradiated samples of docosane. We argue that these electrons can be located (trapped) either in interlamellar gaps or in spaces made by non-planar conformers. The electrons from the former ones are bound more weakly than those from the latter ones. The origin of Vis absorption for the samples is explained. These spectra can be used as a probe indicating differences in the solid structures of hydrocarbons.
On the Weak* Drop Property for Polar of Closed Bounded Convex Sets%关于有界闭凸集的极上的弱滴性
Institute of Scientific and Technical Information of China (English)
张子厚
2004-01-01
We define and study the weak* drop property for the polar of a closed bounded convex set in a Banach space which is both a generalization of the weak* drop property for dual norm in a Banach space and a characterization of the sub-differential mappingx→αp(x) from S(X) into 2S(X*) that is norm upper semi-countinuous and norm compact-valued.
Schnick, Jeffrey W.
1994-01-01
Presents an exercise that attempts to correct for the common discrepancies between theoretical and experimental predictions concerning projectile motion using a spring-loaded projectile ball launcher. Includes common correction factors for student use. (MVL)
Energy Technology Data Exchange (ETDEWEB)
Roncaratti, L. F., E-mail: lz@fis.unb.br; Leal, L. A.; Silva, G. M. de [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Pirani, F. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, V. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Instituto de Física, Universidade Federal da Bahia, 40210 Salvador (Brazil); Gargano, R. [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Departments of Chemistry and Physics, University of Florida, Quantum Theory Project, Gainesville, Florida 32611 (United States)
2014-10-07
We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry of the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.
Zou, Luyao; Hays, Brian M; Weaver, Susanna L Widicus
2016-02-11
The emergence of chemical complexity during star and planet formation is largely guided by the chemistry of unstable molecules that are reaction intermediates in terrestrial chemistry. Our knowledge of these intermediates is limited by both the lack of laboratory studies and the difficulty in their astronomical detection. In this work, we focus on the weakly bound cluster HO3 as an example of the connection between laboratory spectroscopic study and astronomical observations. Here, we present a fast-sweep spectroscopic technique in the millimeter and submillimeter range to facilitate the laboratory search for trans-HO3 and DO3 transitions in a discharge supersonic jet and report their rotational spectra from 70 to 450 GHz. These new measurements enable full determination of the molecular constants of HO3 and DO3. We also present a preliminary search for trans-HO3 in 32 star-forming regions using this new spectroscopic information. HO3 is not detected, and column density upper limits are reported. This work provides additional benchmark information for computational studies of this intriguing radical, as well as a reliable set of molecular constants for extrapolation of the transition frequencies of HO3 for future astronomical observations.
Wang, Bing; Diaz-Torres, Alexis; Zhao, En-Guang; Zhou, Shan-Gui
2016-01-01
Complete fusion excitation functions of reactions involving breakup are studied by using the empirical coupled-channel (ECC) model with breakup effects considered. An exponential function with two parameters is adopted to describe the prompt-breakup probability in the ECC model. These two parameters are fixed by fitting the measured prompt-breakup probability or the complete fusion cross sections. The suppression of complete fusion at energies above the Coulomb barrier is studied by comparing the data with the predictions from the ECC model without the breakup channel considered. The results show that the suppression of complete fusion are roughly independent of the target for the reactions involving the same projectile.
Energy Technology Data Exchange (ETDEWEB)
Goble, J.H. Jr.
1982-05-01
Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.
Energy Technology Data Exchange (ETDEWEB)
Pietrow, M., E-mail: mrk@kft.umcs.lublin.pl; Misiak, L. E. [Institute of Physics, M. Curie-Skłodowska University, ul. Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Gagoś, M. [Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin (Poland); Kornarzyński, K. [Department of Physics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin (Poland); Szurkowski, J.; Grzegorczyk, M. [Institute of Experimental Physics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk (Poland); Rochowski, P. [Institute of Experimental Physics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk (Poland); Pomeranian University in Słupsk, Arciszewskiego 22b, 76-200 Słupsk (Poland)
2015-02-14
It is generally assumed that weakly bound (trapped) electrons in organic solids come only from radiolytical (or photochemical) processes like ionization caused by an excited positron entering the sample. This paper presents evidence for the presence of these electrons in non-irradiated samples of docosane. This can be due to the triboelectrification process. We argue that these electrons can be located (trapped) either in interlamellar gaps or in spaces made by non-planar conformers. Electrons from the former ones are bound more weakly than electrons from the latter ones. The origin of Vis absorption for the samples is explained. These spectra can be used as a probe indicating differences in the solid structures of hydrocarbons.
Summers, M. K.
1977-01-01
Described is a novel approach to the teaching of projectile motion of sixth form level. Students are asked to use an analogue circuit to observe projectile motion and to graph the experimental results. Using knowledge of basic dynamics, students are asked to explain the shape of the curves theoretically. (Author/MA)
Lucie, Pierre
1979-01-01
Analyzes projectile motion using symmetry and simple geometry. Deduces the direction of velocity at any point, range, time of flight, maximum height, safety parabola, and maximum range for a projectile launched upon a plane inclined at any angle with respect to the horizontal. (Author/GA)
Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.
1993-01-01
A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.
Weakly bound states of two- and three-boson systems in the crossover from two to three dimensions
DEFF Research Database (Denmark)
Yamashita, Marcelo; Bellotti, Filipe Furlan; Frederico, Tobias
2015-01-01
The spectrum and properties of quantum bound states is strongly dependent on the dimensionality of space. How this comes about and how one may theoretically and experimentally study the interpolation between different dimensions is a topic of great interest in different fields of physics. In this...
Hydrodynamic Drag on Streamlined Projectiles and Cavities
Jetly, Aditya
2016-04-19
The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.
Energy Technology Data Exchange (ETDEWEB)
Zhang, J.; Dulligan, M.; Segall, J.; Wen, Y.; Wittig, C. [Univ. of Southern California, Los Angeles, CA (United States)
1995-09-14
This paper reports results obtained with (HI){sub 2} clusters under molecular beam conditions that are strongly biased in favor of the formation of binary clusters over higher-than- binary clusters. A preliminary account has been given previously. Pulsed laser photolysis at 266 nm is used to dissociate HI moieties, thereby initiating intracluster reactions, and elastic and inelastic scattering as well as forming weakly-bound radical-molecule clusters. Additionally high laser fluences are used to effect the efficient sequential removal of both hydrogen atoms, opening the door to several intriguing interactions. 34 refs., 15 figs.
Projectile Motion with Mathematica.
de Alwis, Tilak
2000-01-01
Describes how to use the computer algebra system (CAS) Mathematica to analyze projectile motion with and without air resistance. These experiments result in several conjectures leading to theorems. (Contains 17 references.) (Author/ASK)
Lamb, William G.
1985-01-01
Explains a projectile motion experiment involving a bow and arrow. Procedures to measure "muzzle" velocity, bow elastic potential energy, range, flight time, wind resistance, and masses are considered. (DH)
Projectile Demilitarization Facilities
Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...
Jayalakshmi, V.; Rama Krishna, N.
2004-05-01
We describe an intensity-restrained optimization procedure for refining approximate structures of ligands within the protein binding pockets using STD-NMR intensity data on reversibly forming weak complexes. In this approach, the global minimum for the bound-ligand conformation is obtained by a hybrid structure refinement method involving CORCEMA calculation of intensities and simulated annealing optimization of torsion angles of the bound ligand using STD-NMR intensities as experimental constraints and the NOE R-factor as the pseudo-energy function to be minimized. This method is illustrated using simulated STD data sets for typical carbohydrate and peptide ligands. Our procedure also allows for the optimization of side chain torsion angles of protein residues within the binding pocket. This procedure is useful in refining and improving initial models based on crystallography or computer docking or other algorithms to generate models for the bound ligand (e.g., a lead compound) within the protein binding pocket compatible with solution STD-NMR data. This method may facilitate structure-based drug design efforts.
Oteri, Francesco; Ciaccafava, Alexandre; de Poulpiquet, Anne; Baaden, Marc; Lojou, Elisabeth; Sacquin-Mora, Sophie
2014-06-21
[NiFe] hydrogenases from Aquifex aeolicus (AaHase) and Desulfovibrio fructosovorans (DfHase) have been mainly studied to characterize physiological electron transfer processes, or to develop biotechnological devices such as biofuel cells. In this context, it remains difficult to control the orientation of AaHases on electrodes to achieve a fast interfacial electron transfer. Here, we study the electrostatic properties of these two proteins based on microsecond-long molecular dynamics simulations that we compare to voltammetry experiments. Our calculations show weak values and large fluctuations of the dipole direction in AaHase compared to DfHase, enabling the AaHase to absorb on both negatively and positively charged electrodes, with an orientation distribution that induces a spread in electron transfer rates. Moreover, we discuss the role of the transmembrane helix of AaHase and show that it does not substantially impact the general features of the dipole moment.
Institute of Scientific and Technical Information of China (English)
Hua WANG
2016-01-01
In this paper, we first introduce Lσ 1-(log L)σ 2 conditions satisfied by the variable kernelsΩ (x, z) for 0 ≤ σ 1 ≤ 1 and σ 2 ≥ 0. Under these new smoothness conditions, we will prove the boundedness properties of singular integral operators TΩ , fractional integrals TΩ ,α and parametric Marcinkiewicz integralsμρΩ with variable kernels on the Hardy spaces Hp(Rn) and weak Hardy spaces WHp(Rn). Moreover, by using the interpolation arguments, we can get some corresponding results for the above integral operators with variable kernels on Hardy–Lorentz spaces Hp,q(Rn) for all p
Projectile spectator proton production in 84Kr-emulsion interactions at 1.7 A GeV
Institute of Scientific and Technical Information of China (English)
BAI Cai-Yan; ZHANG Dong-Hai
2011-01-01
The multiplicity distribution of projectile protons and multiplicity correlations between black particles, grey particles, shower particles, compound particles, heavily ionized track particles, projectile helium fragments and projectile spectator protons in Kr-emulsion collisions at 1.7 A GeV are investigated. It is found that the projectile spectator proton multiplicity distribution becomes broader with increasing target mass. The average multiplicity of shower particles and compound particles strongly depends on the number of projectile spectator protons, but the average multiplicity of black particles, grey particles and heavily ionized track particles weakly depends on the number of projectile spectator protons. The average multiplicity of projectile helium fragments increases linearly with increasing numbers of projectile spectator protons. Finally, the multiplicity distribution of projectile spectator protons obeys a KNO type of scaling law.
Calabrese, Camilla; Vigorito, Annalisa; Maris, Assimo; Mariotti, Sergio; Fathi, Pantea; Geppert, Wolf D; Melandri, Sonia
2015-12-03
The weakly bound 1:1 complex between acrylonitrile (CH2═CHCN) and water has been characterized spectroscopically in the millimeter wave range (59.6-74.4 GHz) using a Free Jet Absorption Millimeter Wave spectrometer. Precise values of the rotational and quartic centrifugal distortion constants have been obtained from the measured frequencies of the normal and isotopically substituted water moiety (DOH, DOD, H(18)OH). Structural parameters have been estimated from the rotational constants and their differences among isotopologues: the complex has a planar structure with the two subunits held together by a O-H···N (2.331(3) Å) and a C-H···O (2.508(4) Å) interaction. The ab initio intermolecular binding energy, obtained at the counterpoise corrected MP2/aug-cc-pVTZ level of calculation, is De = 24.4 kJ mol(-1).
Molina, M. I.
2000-01-01
Mathematically explains why the range of a projectile is most insensitive to aiming errors when the initial angle is close to 45 degrees, whereas other observables such as maximum height or flight time are most insensitive for near-vertical launching conditions. (WRM)
Energy Technology Data Exchange (ETDEWEB)
Trabelsi, T.; Ajili, Y.; Ben Yaghlane, S.; Jaidane, N.-E. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications–LSAMA, Université de Tunis El Manar, Tunis (Tunisia); Mogren Al-Mogren, M. [Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Francisco, J. S. [Department of Chemistry and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47906 (United States); Hochlaf, M., E-mail: hochlaf@univ-mlv.fr [Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Blvd. Descartes, 77454 Marne-la-Vallée (France)
2015-07-21
We investigate the lowest electronic states of doublet and quartet spin multiplicity states of HNS{sup −} and HSN{sup −} together with their parent neutral triatomic molecules. Computations were performed using highly accurate ab initio methods with a large basis set. One-dimensional cuts of the full-dimensional potential energy surfaces (PESs) along the interatomic distances and bending angle are presented for each isomer. Results show that the ground anionic states are stable with respect to the electron detachment process and that the long range parts of the PESs correlating to the SH{sup −} + N, SN{sup −} + H, SN + H{sup −}, NH + S{sup −}, and NH{sup −} + S are bound. In addition, we predict the existence of long-lived weakly bound anionic complexes that can be formed after cold collisions between SN{sup −} and H or SH{sup −} and N. The implications for the reactivity of these species are discussed; specifically, it is shown that the reactions involving SH{sup −}, SN{sup −}, and NH{sup −} lead either to the formation of HNS{sup −} or HSN{sup −} in their electronic ground states or to autodetachment processes. Thus, providing an explanation for why the anions, SH{sup −}, SN{sup −}, and NH{sup −}, have limiting detectability in astrophysical media despite the observation of their corresponding neutral species. In a biological context, we suggest that HSN{sup −} and HNS{sup −} should be incorporated into H{sub 2}S-assisted heme-catalyzed reduction mechanism of nitrites in vivo.
2007-11-02
S) AND ADDRESS(ES) DCW Industries, Inc. 5354 Palm Drive La Canada, CA 91011 8. PERFORMING ORGANIZATION...REPORT NUMBER DCW -38-R-05 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office...Turbulence Modeling for CFD, Second Edition, DCW Industries, Inc., La Cañada, CA. Wilcox, D. C. (2001), “Projectile Base Flow Analysis,” DCW
Skirted projectiles for railguns
Hawke, Ronald S.; Susoeff, Allan R.
1994-01-01
A single skirt projectile (20) having an insulating skirt (22) at its rear, or a dual trailing skirt projectile (30, 40, 50, 60) having an insulating skirt (32, 42, 52, 62) succeeded by an arc extinguishing skirt (34, 44, 54, 64), is accelerated by a railgun accelerator 10 having a pair of parallel conducting rails (1a, 1b) which are separated by insulating wall spacers (11). The insulating skirt (22, 32, 42, 52, 62) includes a plasma channel (38). The arc extinguishing skirt (34, 44, 54, 64) interrupts the conduction that occurs in the insulating skirt channel (38) by blocking the plasma arc (3) from conducting current from rail to rail (1a, 1b) at the rear of the projectile (30, 40, 50, 60). The arc extinguishing skirt may be comprised of two plates (36a, 36b) which form a horseshoe wherein the plates are parallel to the rails (1a, b); a chisel-shape design; cross-shaped, or it may be a cylindrical (64). The length of the insulating skirt channel is selected such that there is sufficient plasma in the channel to enable adequate current conduction between the rails (1a, 1b).
Nedukha, E. M.
The pyroantimonate method was used to study the localization of free and weakly bound calcium in cells of moss protonema of Funaria hygrometrica Hedw. cultivated on a clinostat (2 rev/min). Electroncytochemical study of control cells cultivated at 1 g revealed that granular precipitate marked chloroplasts, mitochondria, Golgi apparatus, lipid drops, nucleoplasma, nucleolus, nucleus membranes, cell walls and endoplasmic reticulum. In mitochondria the precipitate was revealed in stroma, in chloroplast it was found on thylakoids and envelope membranes. The cultivation of protonema on clinostat led to the intensification in cytochemical reaction product deposit. A considerable intensification of the reaction was noted in endomembranes, vacuoles, periplasmic space and cell walls. At the same time analysis of pectinase localization was made using the electroncytochemical method. A high reaction intensity in walls in comparison to that in control was found out to be a distinctive pecularity of the cells cultivated on clinostat. It testifies to the fact that increasing of freee calcium concentrations under conditions of clinostation is connected with pectinic substances hydrolysis and breaking of methoxy groups of pectins. Data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance of plant cells and the role of cell walls in gomeostasis of cell grown under conditions of simulated weighlessness.
Measurement of Spin of Projectiles
Directory of Open Access Journals (Sweden)
S. R. Verma
1989-01-01
Full Text Available Hitherto the spin of the projectile has been measured with the help of spin loop method (for magnetised projectiles and Multishot Ballistic Synchro method (for magnetised and non-magnetised projectiles. This paper discusses the method of measurement of spinwith a single ballistic synchro picture; the advantage of this method is that it dispenses with elaborate and precise optical alignment, required for Multishot Ballistic Synchro method.
Concrete structures under projectile impact
Fang, Qin
2017-01-01
In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.
Truscott, Tadd T.; Epps, Brenden P.; Belden, Jesse
2014-01-01
The free-surface impact of solid objects has been investigated for well over a century. This canonical problem is influenced by many physical parameters, including projectile geometry, material properties, fluid properties, and impact parameters. Through advances in high-speed imaging and visualization techniques, discoveries about the underlying physics have improved our understanding of these phenomena. Improvements to analytical and numerical models have led to critical insights into cavity formation, the depth and time of pinch-off, forces, and trajectories for myriad different impact parameters. This topic spans a wide range of regimes, from low-speed entry phenomena dominated by surface tension to high-speed ballistics, for which cavitation is important. This review surveys experimental, theoretical, and numerical studies over this broad range, utilizing canonical images where possible to enhance intuition and insight into the rich phenomena.
Chemical modification of projectile residues and target material in a MEMIN cratering experiment
Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas
2013-01-01
In the context of the MEMIN project, a hypervelocity cratering experiment has been performed using a sphere of the iron meteorite Campo del Cielo as projectile accelerated to 4.56 km s-1, and a block of Seeberger sandstone as target material. The ejecta, collected in a newly designed catcher, are represented by (1) weakly deformed, (2) highly deformed, and (3) highly shocked material. The latter shows shock-metamorphic features such as planar deformation features (PDF) in quartz, formation of diaplectic quartz glass, partial melting of the sandstone, and partially molten projectile, mixed mechanically and chemically with target melt. During mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co yielding a Fe/Ni that is generally higher than Fe/Ni in the projectile. This fractionation results from the differing siderophile properties, specifically from differences in reactivity of Fe, Ni, and Co with oxygen during projectile-target interaction. Projectile matter was also detected in shocked quartz grains. The average Fe/Ni of quartz with PDF (about 20) and of silica glasses (about 24) are in contrast to the average sandstone ratio (about 422), but resembles the Fe/Ni-ratio of the projectile (about 14). We briefly discuss possible reasons of projectile melting and vaporization in the experiment, in which the calculated maximum shock pressure does not exceed 55 GPa.
Protection from high-velocity projectiles
Gerasimov, A.; Pashkov, S.
2012-08-01
Creation of reliable system of target protection demands research of various ways of counteraction high-speed elongated projectiles. This paper considers the interaction of projectiles with plates and rods thrown towards by explosion. At contact projectiles and rods form a crosswise configuration. Deformation and destruction of projectiles reduce their penetrability and capacity to strike armor-target.
1943-11-01
model designed for the 20,-^nm Hispano- Suiza cannon. Let Ms be the mass of the sabot in pounds; M . "the mass of the subcali- ber projectile in...its projectile. This model xs designed for the 20-mm Hispano- Suiza cannon, but as with all deep-cup sabots tested, does not prove successful in...the 20-mm Hispano- Suiza , for example, the f. maximum pressure is I48OOO lb/in? and for the 37-mm A.T. gun it is • ^0000 lb/in?). V i Attention
Projectile Motion Gets the Hose
Goff, John Eric; Liyanage, Chinthaka
2011-01-01
Students take a weekly quiz in our introductory physics course. During the week in which material focused on projectile motion, we not-so-subtly suggested what problem the students would see on the quiz. The quiz problem was an almost exact replica of a homework problem we worked through in the class preceding the quiz. The goal of the problem is…
Novice Rules for Projectile Motion.
Maloney, David P.
1988-01-01
Investigates several aspects of undergraduate students' rules for projectile motion including general patterns; rules for questions about time, distance, solids and liquids; and changes in rules when asked to ignore air resistance. Reports approach differences by sex and high school physics experience, and that novice rules are situation…
Sydorenko, D; Kaganovich, I; Raitses, Y; Smolyakov, A
2009-10-02
A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.
The Projectile inside the Loop
Varieschi, Gabriele U.
2005-01-01
In this paper we describe an alternative use of the loop-the-loop apparatus, which can be used to study an interesting case of projectile motion. We also present an effective way to perform and analyze these experiments, by using video capture software together with a digital video camera. These experiments can be integrated into classroom demonstrations for general physics courses, or become part of laboratory activities.
Projectiles, pendula, and special relativity
Price, R H
2005-01-01
The kind of flat-earth gravity used in introductory physics appears in an accelerated reference system in special relativity. From this viewpoint, we work out the special relativistic description of a ballistic projectile and a simple pendulum, two examples of simple motion driven by earth-surface gravity. The analysis uses only the basic mathematical tools of special relativity typical of a first-year university course.
Projectiles, pendula, and special relativity
Price, Richard H.
2005-05-01
The kind of flat-earth gravity used in introductory physics appears in an accelerated reference system in special relativity. From this viewpoint, we work out the special relativistic description of a ballistic projectile and a simple pendulum, two examples of simple motion driven by earth-surface gravity. The analysis uses only the basic mathematical tools of special relativity typical of a first-year university course.
Wind-influenced projectile motion
Bernardo, Reginald Christian; Perico Esguerra, Jose; Day Vallejos, Jazmine; Jerard Canda, Jeff
2015-03-01
We solved the wind-influenced projectile motion problem with the same initial and final heights and obtained exact analytical expressions for the shape of the trajectory, range, maximum height, time of flight, time of ascent, and time of descent with the help of the Lambert W function. It turns out that the range and maximum horizontal displacement are not always equal. When launched at a critical angle, the projectile will return to its starting position. It turns out that a launch angle of 90° maximizes the time of flight, time of ascent, time of descent, and maximum height and that the launch angle corresponding to maximum range can be obtained by solving a transcendental equation. Finally, we expressed in a parametric equation the locus of points corresponding to maximum heights for projectiles launched from the ground with the same initial speed in all directions. We used the results to estimate how much a moderate wind can modify a golf ball’s range and suggested other possible applications.
Projectile Balloting Attributable to Gun Tube Curvature
Directory of Open Access Journals (Sweden)
Michael M. Chen
2010-01-01
Full Text Available Transverse motion of a projectile during launch is detrimental to firing accuracy, structural integrity, and/or on-board electronics performance of the projectile. One manifest contributing factor to the undesired motion is imperfect bore centerline straightness. This paper starts with the presentation of a deterministic barrel model that possesses both vertical and lateral deviations from centerline in accordance with measurement data, followed by a novel approach to simulating comprehensive barrel centerline variations for the investigation of projectile balloting^1 motions. A modern projectile was adopted for this study. In-bore projectile responses at various locations of the projectile while traveling through the simulated gun tubes were obtained. The balloting was evaluated in both time and frequency domains. Some statistical quantities and the significance were outlined.
Sequential injection gas guns for accelerating projectiles
Lacy, Jeffrey M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID
2011-11-15
Gas guns and methods for accelerating projectiles through such gas guns are described. More particularly, gas guns having a first injection port located proximate a breech end of a barrel and a second injection port located longitudinally between the first injection port and a muzzle end of the barrel are described. Additionally, modular gas guns that include a plurality of modules are described, wherein each module may include a barrel segment having one or more longitudinally spaced injection ports. Also, methods of accelerating a projectile through a gas gun, such as injecting a first pressurized gas into a barrel through a first injection port to accelerate the projectile and propel the projectile down the barrel past a second injection port and injecting a second pressurized gas into the barrel through the second injection port after passage of the projectile and to further accelerate the projectile are described.
Reliability estimates for flawed mortar projectile bodies
Energy Technology Data Exchange (ETDEWEB)
Cordes, J.A. [US Army ARDEC, AMSRD-AAR-MEF-E, Analysis and Evaluation Division, Fuze and Precision Armaments Technology Directorate, US Army Armament Research Development and Engineering Center, Picatinny Arsenal, NJ 07806-5000 (United States)], E-mail: jennifer.cordes@us.army.mil; Thomas, J.; Wong, R.S.; Carlucci, D. [US Army ARDEC, AMSRD-AAR-MEF-E, Analysis and Evaluation Division, Fuze and Precision Armaments Technology Directorate, US Army Armament Research Development and Engineering Center, Picatinny Arsenal, NJ 07806-5000 (United States)
2009-12-15
The Army routinely screens mortar projectiles for defects in safety-critical parts. In 2003, several lots of mortar projectiles had a relatively high defect rate, 0.24%. Before releasing the projectiles, the Army reevaluated the chance of a safety-critical failure. Limit state functions and Monte Carlo simulations were used to estimate reliability. Measured distributions of wall thickness, defect rate, material strength, and applied loads were used with calculated stresses to estimate the probability of failure. The results predicted less than one failure in one million firings. As of 2008, the mortar projectiles have been used without any safety-critical incident.
Stopping power: Effect of the projectile deceleration
Energy Technology Data Exchange (ETDEWEB)
Kompaneets, Roman, E-mail: kompaneets@mpe.mpg.de; Ivlev, Alexei V.; Morfill, Gregor E. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching (Germany)
2014-11-15
The stopping force is the force exerted on the projectile by its wake. Since the wake does not instantly adjust to the projectile velocity, the stopping force should be affected by the projectile deceleration caused by the stopping force itself. We address this effect by deriving the corresponding correction to the stopping force in the cold plasma approximation. By using the derived expression, we estimate that if the projectile is an ion passing through an electron-proton plasma, the correction is small when the stopping force is due to the plasma electrons, but can be significant when the stopping force is due to the protons.
INTERACTION MEAN FREE PATH OF He PROJECTILE FRAGMENTS FROM 16O-EM COLLISION AT 60 A GeV
Institute of Scientific and Technical Information of China (English)
ZHANG DONG-HA1; SUN HAN-CHENG; G.GHARIBI
2001-01-01
The interaction mean free path of He projectile fragments, produced by the collisions of 16O at 60 A GeV in a nuclear emulsion, has been investigated. In the present analysis, 1555 He projectile fragments, giving rise to 320 secondary interactions, have been used. At a level of 3% a very weak signal of anomalons is observed, which comes mainly from the 3×He channel.
Inductiveless Rail Launchers for Long Projectiles
2001-04-26
electromagnetic acceleration has remained unrealized. While long armatures could be readily designed for most projectiles, railguns cannot use them to... railgun concept is not readily applicable to tactical guns because it is hard to integrate sizable storage capacitors into the barrel. To circumvent...having substantially higher efficiency than railguns and much lower mechanical stresses in projectiles and launch tubes. Based on novel - inductiveless
Efficient Calculation of Earth Penetrating Projectile Trajectories
2006-09-01
CALCULATION OF EARTH PENETRATING PROJECTILE TRAJECTORIES by Daniel F . Youch September 2006 Thesis Advisor: Joshua Gordis... Daniel F . Youch 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING...EFFICIENT CALCULATION OF EARTH PENETRATING PROJECTILE TRAJECTORIES Daniel F . Youch Lieutenant Commander, United States Navy B.S., Temple
Plastic Guidance Fins for Long Rod Projectiles .
Directory of Open Access Journals (Sweden)
Mark L. Bundy
1997-10-01
Full Text Available Projectile tail fins on long rod kinetic energy (KE penetrators serve the same purpose as fletchings (feathers on an arrow, namely, they help align the projectile axis with its velocity vector. This reduces the projectile's yaw and hence reduces its aerodynamic drag. In addition, a low yaw angle at target impact helps to maximise the projectile's target penetration. It is typical for projectiles to exit the gun muzzle and enter free flight at some ndn-zero yaw angle. Aerodynamic forces acting on yawed tail fins create a stabilising torque about the projectile's centre of gravity (CG. This torque can be increased by making the fin material lighter. Most conventional long rod penetrators fired from high performance guns have tail fins made from aluminium. However, aluminium can undergo catastrophic oxidation (rapid burning in-bore. Coating aluminium with Al/sub 2/O/sub 3/ {hardcoat prevents ignition of the substrate, provided solid propellant grain impacts do not chip the brittle hardcoat off the surface. Plastic is lighter than aluminium and less exothermic when oxidized. Therefore, other factors aside, it is conceivable that plastic fins could increase projectile stability while incurring less thermal erosion than aluminium. However, thermal loads are not the only concern when considering plastic as an alternative tail fin material. The mechanical strength of plastic is also a critical factor. This paper discusses some of the successes and failures of plastic fins, at least relatively thin fins, for use as KE stabilisers.
Geochemical identification of projectiles in impact rocks
Tagle, Roald; Hecht, Lutz
2006-11-01
The three major geochemical methods for impactor identification are evaluated with respect to their potential and limitations with regards to the precise detection and identification of meteoritic material in impactites. The identification of a projectile component in impactites can be achieved by determining certain isotopic and elemental ratios in contaminated impactites. The isotopic methods are based on Os and Cr isotopic ratios. Osmium isotopes are highly sensitive for the detection of minute amounts of extraterrestrial components of even isotopic method requires the relatively highest projectile contamination (several wt%) in order to detect an extraterrestrial component, but may allow the identification of three different groups of extraterrestrial materials, ordinary chondrites, an enstatite chondrites, and differentiated achondrites. A significant advantage of this method is its independence of the target lithology and post-impact alteration. The use of elemental ratios, including platinum group elements (PGE: Os, Ir, Ru, Pt, Rh, Pd), in combination with Ni and Cr represents a very powerful method for the detection and identification of projectiles in terrestrial and lunar impactites. For most projectile types, this method is almost independent of the target composition, especially if PGE ratios are considered. This holds true even in cases of terrestrial target lithologies with a high component of upper mantle material. The identification of the projectile is achieved by comparison of the "projectile elemental ratio" derived from the slope of the mixing line (target-projectile) with the elemental ratio in the different types of possible projectiles (e.g., chondrites). However, this requires a set of impactite samples of various degree of projectile contamination.
Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles
Gaite, José
2017-09-01
The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.
Hypervelocity High Speed Projectile Imagery and Video
Henderson, Donald J.
2009-01-01
This DVD contains video showing the results of hypervelocity impact. One is showing a projectile impact on a Kevlar wrapped Aluminum bottle containing 3000 psi gaseous oxygen. One video show animations of a two stage light gas gun.
Projectile Balloting Attributable to Gun Tube Curvature
Chen, Michael M.
2010-01-01
Transverse motion of a projectile during launch is detrimental to firing accuracy, structural integrity, and/or on-board electronics performance of the projectile. One manifest contributing factor to the undesired motion is imperfect bore centerline straightness. This paper starts with the presentation of a deterministic barrel model that possesses both vertical and lateral deviations from centerline in accordance with measurement data, followed by a novel approach to simulating comprehensive...
Batch Computed Tomography Analysis of Projectiles
2016-05-01
component densities and their relative shapes and locations in space. Currently, surrogate BS41 projectiles are manufactured for the US Army Research...single core of an Intel Xeon X5650 processor operating at 2.67 GHz. To batch process the (210) projectiles, a Matlab script was written to parallelize...understand manufacturing variability, and to obtain a subgroup of the most similar for later ballistic testing, while omitting outliers. These
Weak martingale Hardy spaces and weak atomic decompositions
Institute of Scientific and Technical Information of China (English)
HOU; Youliang; REN; Yanbo
2006-01-01
In this paper we define some weak martingale Hardy spaces and three kinds of weak atoms. They are the counterparts of martingale Hardy spaces and atoms in the classical martingale Hp-theory. And then three atomic decomposition theorems for martingales in weak martingale Hardy spaces are proved. With the help of the weak atomic decompositions of martingale, a sufficient condition for a sublinear operator defined on the weak martingale Hardy spaces to be bounded is given. Using the sufficient condition, we obtain a series of martingale inequalities with respect to the weak Lp-norm, the inequalities of weak (p ,p)-type and some continuous imbedding relationships between various weak martingale Hardy spaces. These inequalities are the weak versions of the basic inequalities in the classical martingale Hp-theory.
Projectile-breakup-induced fission-fragment angular distributions in the 6Li+232Th reaction
Pal, A.; Santra, S.; Chattopadhyay, D.; Kundu, A.; Ramachandran, K.; Tripathi, R.; Roy, B. J.; Nag, T. N.; Sawant, Y.; Sarkar, D.; Nayak, B. K.; Saxena, A.; Kailas, S.
2017-08-01
Background: Experimental anisotropy in fission-fragment (FF) angular distribution in reactions involving weakly bound stable projectiles with actinide targets are enhanced compared to statistical saddle-point model (SSPM) predictions. Contributions from breakup- or transfer-induced fission to total fission are cited as possible reasons for such enhancement. Purpose: To identify the breakup- or transfer-induced fission channels in 6Li+232Th reaction and to investigate their effects on FF angular anisotropy. Methods: The FF angular distributions have been measured exclusively at three beam energies (28, 32, and 36 MeV) around the Coulomb barrier in coincidence with projectile breakup fragments like α , d , and p using Si strip detectors. The angular anisotropy obtained for different exclusive breakup- or transfer-induced fission channels are compared with that for total fission. SSPM and pre-equilibrium fission models have been employed to obtain theoretical FF angular anisotropy. Results: Angular anisotropy of the fission fragments produced by different transfer- or breakup-induced fission reactions have been obtained separately in the rest frame of respective recoiling nuclei. Some of these anisotropies were found to be stronger than those of the inclusive fission. Overall angular distributions of transfer or breakup fission, integrated over all possible recoil angles with weight factor proportional to differential cross section of the complementary breakup fragment emitted in coincidence in all possible directions, were obtained. It was observed that the overall FF angular anisotropy for each of these fission channels is less than or equal to the anisotropy of total fission at all the measured energies. Assuming isotropic out-of-plane correlations between the fission fragments and light-charged particles, the overall breakup- or transfer-induced fission fragment angular distributions do not explain the observed enhancement in FF anisotropy of total fission. Pre
Three Dimensional CAPP Technology of Projectile Based on MBD
Directory of Open Access Journals (Sweden)
Hongzhi Zhao
2013-07-01
Full Text Available This study aims at the research goal of three-dimensional digital process design of projectile, which adopts three-dimensional computer-aided process design technology based on MBD and uses MBD to conduct parametric modeling of projectile that can reduce the input of projectile’s process information and data conversion and produce reasonable, feasible and three-dimensional projectile manufacturing process to realize paperless three-dimensional process design of projectile. The application of three-dimensional computer-assisted process design technology of projectile based on model definition can shorten the design cycle of projectile, thus improving rapid manufacturing capacity of product and reducing cost.
Bound entanglement and entanglement bounds
Energy Technology Data Exchange (ETDEWEB)
Sauer, Simeon [Physikalisch-Astronomische Fakultaet, Friedrich-Schiller-Univesitaet Jena (Germany)]|[Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany); Melo, Fernando de; Mintert, Florian; Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany)]|[Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str.38, D-01187 Dresden (Germany); Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea); Hiesmayr, Beatrix [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)
2008-07-01
We investigate the separability of Bell-diagonal states of two qutrits. By using lower bounds to algebraically estimate concurrence, we find convex regions of bound entangled states. Some of these regions exactly coincide with the obtained results when employing optimal entanglement witnesses, what shows that the lower bound can serve as a precise detector of entanglement. Some hitherto unknown regions of bound entangled states were discovered with this approach, and delimited efficiently.
Weak Convergence and Weak Convergence
Directory of Open Access Journals (Sweden)
Narita Keiko
2015-09-01
Full Text Available In this article, we deal with weak convergence on sequences in real normed spaces, and weak* convergence on sequences in dual spaces of real normed spaces. In the first section, we proved some topological properties of dual spaces of real normed spaces. We used these theorems for proofs of Section 3. In Section 2, we defined weak convergence and weak* convergence, and proved some properties. By RNS_Real Mizar functor, real normed spaces as real number spaces already defined in the article [18], we regarded sequences of real numbers as sequences of RNS_Real. So we proved the last theorem in this section using the theorem (8 from [25]. In Section 3, we defined weak sequential compactness of real normed spaces. We showed some lemmas for the proof and proved the theorem of weak sequential compactness of reflexive real Banach spaces. We referred to [36], [23], [24] and [3] in the formalization.
The representational dynamics of remembered projectile locations.
De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Oliveira, Armando Mónica
2013-12-01
When people are instructed to locate the vanishing location of a moving target, systematic errors forward in the direction of motion (M-displacement) and downward in the direction of gravity (O-displacement) are found. These phenomena came to be linked with the notion that physical invariants are embedded in the dynamic representations generated by the perceptual system. We explore the nature of these invariants that determine the representational mechanics of projectiles. By manipulating the retention intervals between the target's disappearance and the participant's responses, while measuring both M- and O-displacements, we were able to uncover a representational analogue of the trajectory of a projectile. The outcomes of three experiments revealed that the shape of this trajectory is discontinuous. Although the horizontal component of such trajectory can be accounted for by perceptual and oculomotor factors, its vertical component cannot. Taken together, the outcomes support an internalization of gravity in the visual representation of projectiles.
Projectile-Borne Video Reconnaissance System
Institute of Scientific and Technical Information of China (English)
王海福; 张锋; 李向荣
2004-01-01
Aiming at applications as a projectile-borne video reconnaissance system, the overall design and prototype in principle of a mortar video reconnaissance system bomb were developed. Mortar launched test results show that the initial integrated system was capable of transmitting images through tens of kilometers with the image resolution identifying effectively tactical targets such as roads, hills, caverns, trees and rivers. The projectile-borne video reconnaissance system is able to meet the needs of tactical target identification and battle dage assessment for tactical operations. The study will provide significant technological support for further independent development.
Angular Momentum Population in Projectile Fragmentation
Podolyák, Zs.; Gladnishki, K. A.; Gerl, J.; Hellström, M.; Kopatch, Y.; Mandal, S.; Górska, M.; Regan, P. H.; Wollersheim, H. J.; Schmidt, K.-H.; Gsi-Isomer Collaboration
2004-02-01
Isomeric states in neutron-deficient nuclei around A ≈190 have been identified following the projectile fragmentation of a relativistic energy 238U beam. The deduced isomeric ratios are compared with a model based on the abrasion-ablation description. The experimental isomeric ratios are lower by a factor of ≈2 than the calculated ones assuming the `sharp cutoff' approximation. The observation of the previously reported isomeric Iπ=43/2- state in 215Ra represents the current record for the highest discrete spin state observed following a projectile fragmentation reaction.
Grenade-launched imaging projectile system (GLIMPS)
Nunan, Scott C.; Coakley, Peter G.; Niederhaus, Gregory A.; Lum, Chris
2001-09-01
A system has been developed for delivering and attaching a sensor payload to a target using a standard 40-mm grenade launcher. The projectile incorporates an attachment mechanism, a shock mitigation system, a power source, and a video-bandwidth transmitter. Impact and launch g-loads have been limited to less than 10,000 g's, enabling sensor payloads to be assembled using Commercial Off-The-Shelf components. The GLIMPS projectile is intended to be a general-purpose delivery system for a variety of sensor payloads under the Unattended Ground Sensors program. Test results and development issues are presented.
Isoscaling of projectile-like fragments
Institute of Scientific and Technical Information of China (English)
Zhong Chen; Chen Jin-Hui; Guo Wei; Ma Chun-Wang; Ma Guo-Liang; Su Qian-Min; Yan Ting-Zhi; Zuo Jia-Xu; Ma Yu-Gang; Fang De-Qing; Cai Xiang-Zhou; Chen Jin-Gen; Shen Wen-Qing; Tian Wen-Dong; Wang Kun; Wei Yi-Bin
2006-01-01
In this paper, the isotopic and isotonic distributions of projectile fragmentation products have been simulated by a modified statistical abrasion-ablation model and the isoscaling behaviour of projectile-like fragments has been discussed. The isoscaling parameters α andβ have been extracted respectively, for hot fragments before evaporation and cold fragments after evaporation. It looks that the evaporation has stronger effect on α than β. For cold fragments,a monotonic increase of α and |β| with the increase of Z and N is observed. The relation between isoscaling parameter and the change of isospin content is discussed.
Energy Technology Data Exchange (ETDEWEB)
Rabern, D.A.
1991-12-31
Three-dimensional numerical simulations were performed to determine the effect of an asymmetric base pressure on kinetic energy projectiles during launch. A matrix of simulations was performed in two separate launch environments. One launch environment represented a severe lateral load environment, while the other represented a nonsevere lateral load environment based on the gun tube straightness. The orientation of the asymmetric pressure field, its duration, the projectile`s initial position, and the tube straightness were altered to determine the effects of each parameter. The pressure asymmetry translates down the launch tube to exit parameters and is washed out by tube profile. Results from the matrix of simulations are presented.
High School Students' Understanding of Projectile Motion Concepts
Dilber, Refik; Karaman, Ibrahim; Duzgun, Bahattin
2009-01-01
The aim of this study was to investigate the effectiveness of conceptual change-based instruction and traditionally designed physics instruction on students' understanding of projectile motion concepts. Misconceptions related to projectile motion concepts were determined by related literature on this subject. Accordingly, the Projectile Motion…
A note on stability of motion of a projectile
Indian Academy of Sciences (India)
S D Naik
2001-08-01
A projectile is stabilised using either gyroscopic or aerodynamic stability. But subcalibre projectiles with sabot have both spin and ﬁns. Separate stability criteria are researched generally for each type of projectile. In this paper a stability criterion which can be used for all such bodies has been developed through the Liapunov second method.
An Inexpensive Mechanical Model for Projectile Motion
Kagan, David
2011-01-01
As experienced physicists, we see the beauty and simplicity of projectile motion. It is merely the superposition of uniform linear motion along the direction of the initial velocity vector and the downward motion due to the constant acceleration of gravity. We see the kinematic equations as just the mathematical machinery to perform the…
Comment on "The envelope of projectile trajectories"
Butikov, E I
2003-01-01
Several simple alternative methods to obtain the equation of the envelope of the family of projectile trajectories corresponding to the same initial speed are suggested, including methods in which the boundary of the region occupied by the parabolic trajectories is found as an envelope of a set of circles. Two possible generalizations of the discussed problem are also suggested. (letters and comments)
Teaching Projectile Motion to Eliminate Misconceptions
Prescott, Anne; Mitchelmore, Michael
2005-01-01
Student misconceptions of projectile motion are well documented, but their effect on the teaching and learning of the mathematics of motion under gravity has not been investigated. An experimental unit was designed that was intended to confront and eliminate misconceptions in senior secondary school students. The approach was found to be…
Bulldozing Your Way Through Projectile Motion.
Lamb, William G.
1983-01-01
Presents two models and two demonstrations targeted at student understanding of projectile motion as the sum of two independent, perpendicular vectors. Describes materials required, construction, and procedures used. Includes a discussion of teaching points appropriate to each demonstration or model. (JM)
Phenomenological model for light-projectile breakup
Kalbach, C.
2017-01-01
Background: Projectile breakup can make a large contribution to reactions induced by projectiles with mass numbers 2, 3, and 4, yet there is no global model for it and no clear agreement on the details of the reaction mechanism. Purpose: This project aims to develop a phenomenological model for light-projectile breakup that can guide the development of detailed theories and provide a useful tool for applied calculations. Method: An extensive database of double-differential cross sections for the breakup of deuterons, 3He ions, and α particles was assembled from the literature and analyzed in a consistent way. Results: Global systematics for the centroid energies, peak widths, and angular distributions of the breakup peaks have been extracted from the data. The dominant mechanism appears to be absorptive breakup, where the unobserved projectile fragment fuses with the target nucleus during the initial interaction. The global target-mass-number and incident-energy dependencies of the absorptive breakup cross section have also been determined, along with channel-specific normalization constants. Conclusions: Results from the model generally agree with the original data after subtraction of a reasonable underlying continuum. Absorptive breakup can account for as much as 50%-60% of the total reaction cross section.
Fatal lawn mower related projectile injury
DEFF Research Database (Denmark)
Colville-Ebeling, Bonnie; Lynnerup, Niels; Banner, Jytte
2014-01-01
the operator or a bystander is impacted by an object mobilized from the grass by the rotating mower blades. This type of injury often leaves only modest external trauma, which increases the risk of overlooking an entry wound. In this paper we present a case of a fatal lawn mower related projectile injury which...
Maximizing the Range of a Projectile.
Brown, Ronald A.
1992-01-01
Discusses solutions to the problem of maximizing the range of a projectile. Presents three references that solve the problem with and without the use of calculus. Offers a fourth solution suitable for introductory physics courses that relies more on trigonometry and the geometry of the problem. (MDH)
Predicting the Accuracy of Unguided Artillery Projectiles
2016-09-01
Unstable (right) Projectiles. Source: [4]..........................13 Figure 6. Direction of Lift and Gravitational Forces in a Spinning Top ...14 Figure 8. Precession of a Spinning Top . Source: [7...the gyroscopic effect, which tends to maintain the orientation of the axis of spin . This effect is commonly observed in spinning tops , which stay
Speed, Acceleration, Chameleons and Cherry Pit Projectiles
Planinsic, Gorazd; Likar, Andrej
2012-01-01
The paper describes the mechanics of cherry pit projectiles and ends with showing the similarity between cherry pit launching and chameleon tongue projecting mechanisms. The whole story is written as an investigation, following steps that resemble those typically taken by scientists and can therefore serve as an illustration of scientific…
Launching a Projectile into Deep Space
Maruszewski, Richard F., Jr.
2004-01-01
As part of the discussion about Newton's work in a history of mathematics course, one of the presentations calculated the amount of energy necessary to send a projectile into deep space. Afterwards, the students asked for a recalculation with two changes: First the launch under study consisted of a single stage, but the students desired to…
Without the weak force, the sun wouldn't shine. The weak force causes beta decay, a form of radioactivity that triggers nuclear fusion in the heart of the sun. The weak force is unlike other forces: it is characterised by disintegration. In beta decay, a down quark transforms into an up quark and an electron is emitted. Some materials are more radioactive than others because the delicate balance between the strong force and the weak force varies depending on the number of particles in the atomic nucleus. We live in the midst of a natural radioactive background that varies from region to region. For example, in Cornwall where there is a lot of granite, levels of background radiation are much higher than in the Geneva region. Text for the interactive: Move the Geiger counter to find out which samples are radioactive - you may be surprised. It is the weak force that is responsible for the Beta radioactivity here. The electrons emitted do not cross the plastic cover. Why do you think there is some detected radioa...
Investigates on Aerodynamic Characteristics of Projectile with Triangular Cross Section
Institute of Scientific and Technical Information of China (English)
YI Wen-jun; WANG Zhong-yuan; LI Yan; QIAN Ji-sheng
2009-01-01
The aerodynamic characteristics of projectiles with triangular and circular cross sections are investigated respectively by use of free-flight experiment. Processed the experiment data, curves of flight velocity variation and nutation of both projectiles are obtained, based on the curves, their aerodynamic force and moment coefficients are found out by data fitting, and their aerodynamic performances are compared and analyzed. Results show that the projectile with triangular cross section has smaller resistance, higher lift-drag ratio, better static stability, higher stability capability and more excellent maneuverability than those of the projectile with circular cross section, therefore it can be used in the guided projectiles; under lower rotation speed, the triangular section projectile has greater Magnus moment leading to bigger projectile distribution.
Directory of Open Access Journals (Sweden)
J. Adam
2016-01-01
Full Text Available We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible Λn‾ bound state. The search is performed with the ALICE detector in central (0–10% Pb–Pb collisions at sNN=2.76 TeV, by invariant mass analysis in the decay modes Λn‾→d‾π+ and H-dibaryon →Λpπ−. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.
Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym
2016-01-10
We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible $\\overline{\\Lambda\\mathrm{n}}$ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at $ \\sqrt{s_{\\rm{NN}}} = 2.76$ TeV, by invariant mass analysis in the decay modes $\\overline{\\Lambda\\mathrm{n}} \\rightarrow \\overline{\\mathrm{d}} \\pi^{+} $ and H-dibaryon $\\rightarrow \\Lambda \\mathrm{p} \\pi^{-}$. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.
Adam, Jaroslav; Adamova, Dagmar; Aiola, Salvatore; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Ajaz, Muhammad; Bombara, Marek
2016-01-01
We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible Λn‾ bound state. The search is performed with the ALICE detector in central (0–10%) Pb–Pb collisions at sNN=2.76 TeV , by invariant mass analysis in the decay modes Λn‾→d‾π+ and H-dibaryon →Λpπ− . No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results ...
Minimum and terminal velocities in projectile motion
Miranda, E N; Riba, R
2012-01-01
The motion of a projectile with horizontal initial velocity V0, moving under the action of the gravitational field and a drag force is studied analytically. As it is well known, the projectile reaches a terminal velocity Vterm. There is a curious result concerning the minimum speed Vmin; it turns out that the minimum velocity is lower than the terminal one if V0 > Vterm and is lower than the initial one if V0 < Vterm. These results show that the velocity is not a monotonous function. If the initial speed is not horizontal, there is an angle range where the velocity shows the same behavior mentioned previously. Out of that range, the volocity is a monotonous function. These results come out from numerical simulations.
Electrical parameters of projectile stun guns.
McDaniel, Wayne C; Benwell, Andrew; Kovaleski, Scott
2009-01-01
Projectile stun guns have been developed as less-lethal devices that law enforcement officers can use to control potentially violent subjects, as an alternative to using firearms. These devices apply high voltage, low amperage, pulsatile electric shocks to the subject, which causes involuntary skeletal muscle contraction and renders the subject unable to further resist. In field use of these devices, the electric shock is often applied to the thorax, which raises the issue of cardiac safety of these devices. An important determinant of the cardiac safety of these devices is their electrical output. Here the outputs of three commercially available projectile stun guns were evaluated with a resistive load and in a human-sized animal model (a 72 kg pig).
Excalibur Precision 155mm Projectiles (Excalibur)
2015-12-01
Acquisition Management Information Retrieval DoD - Department of Defense DSN - Defense Switched Network EMD - Engineering and Manufacturing Development...Inc Ia-2 projectile was delivered to inventory in April 2014. In total, PM Excalibur procured and delivered 2,132 Excalibur Inc Ia-1 ( Department of...funds are included in this report as Non- Treasury RDT&E (9999). Procurement Appn BA PE Army 2034 01 0210600A Line Item Name E80103 Excalibur
The Envelope of Projectile Trajectories in Midair
Chudinov, P
2005-01-01
A classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. Analytic approach is used for investigation. Simple analytical formulas are used for the constructing the envelope of the family of the point mass trajectories. The equation of envelope is applied for determination of maximum range of flight. The motion of a baseball is presented as an example.
On the Stability of a Spinning Projectile
Directory of Open Access Journals (Sweden)
P. C. Rath
1965-10-01
Full Text Available Stability problem both for small and large yawing of a spinning projectile has been discussed. In the latter case criterion for stability of steady conically yawing motion has been obtained. Particularly it has been proved that with a tilting moment coefficient of the type micro(delta-betaohm/sup2/4[1-4qs(1-cosdelta] the motion of a shell in steady state is stable like an equivalent top only when q>=0.
Projectile Ullage Inspection Technique: Laboratory Demonstration Apparatus.
1983-08-01
inspection of projectiles was feasible. The mercury manometer was used because it was the only gauge readily available in the laboratory that was...pres- sure. It is suggested that the mercury manometer be replaced by a panel-mounted diaphragm or Bourdon tube gauge. The full-scale pressure range of...When the mercury manometer is used, the volume of the pressure indicator changes linearly with pres- sure (it is assumed that the manometer tube
Intuitive Mechanics: Inferences of Vertical Projectile Motion
Directory of Open Access Journals (Sweden)
Milana Damjenić
2016-07-01
Full Text Available Our intuitive knowledge of physics mechanics, i.e. knowledge defined through personal experience about velocity, acceleration, motion causes, etc., is often wrong. This research examined whether similar misconceptions occur systematically in the case of vertical projectiles launched upwards. The first experiment examined inferences of velocity and acceleration of the ball moving vertically upwards, while the second experiment examined whether the mass of the thrown ball and force of the throw have an impact on the inference. The results showed that more than three quarters of the participants wrongly assumed that maximum velocity and peak acceleration did not occur at the initial launch of the projectile. There was no effect of object mass or effect of the force of the throw on the inference relating to the velocity and acceleration of the ball. The results exceed the explanatory reach of the impetus theory, most commonly used to explain the naive understanding of the mechanics of object motion. This research supports that the actions on objects approach and the property transmission heuristics may more aptly explain the dissidence between perceived and actual implications in projectile motion.
Energy Technology Data Exchange (ETDEWEB)
Rabern, D.A.
1991-01-01
Three-dimensional numerical simulations were performed to determine the effect of an asymmetric base pressure on kinetic energy projectiles during launch. A matrix of simulations was performed in two separate launch environments. One launch environment represented a severe lateral load environment, while the other represented a nonsevere lateral load environment based on the gun tube straightness. The orientation of the asymmetric pressure field, its duration, the projectile's initial position, and the tube straightness were altered to determine the effects of each parameter. The pressure asymmetry translates down the launch tube to exit parameters and is washed out by tube profile. Results from the matrix of simulations are presented.
Selleri, Franco
2015-01-01
Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.
Oblique Impact of Projectile on Thin Aluminium Plates
Directory of Open Access Journals (Sweden)
W.U. Khan
2003-04-01
Full Text Available Experiments were performed, wherein cylindrical projectiles made of hardened steel were impacted on commercially available aluminium plates at different angles. Projectiles were of 12.8 mm diameter and plates were of 0.81 mm, 1.52mm and 1.91mm thicknesses. Based on the experimental results, an analytical model has been developed to predict the residual velocity of the projectile and the ballistic limit of the plate.
Design and testing of high-pressure railguns and projectiles
Peterson, D. R.; Fowler, C. M.; Cummings, C. E.; Kerrisk, J. F.; Parker, J. V.; Marsh, S. P.; Adams, D. F.
1984-01-01
Attention is given to the results of high-pressure tests involving four railgun designs and four projectile types. Explosive magnetic-flux compression generators were employed to power the railguns. On the basis of the experimental data, it appears that the high-strength projectiles have lower resistance to acceleration than low-strength projectiles, which expand against the bore during acceleration. While confined in the bore, polycarbonate projectiles can be subjected to pressures as high as 1.3 GPa without shattering. In multishot railguns, it is important to prevent an accumulation of sooty material from the plasma armature in railgun seams.
Dynamic analysis of a guided projectile during engraving process
Institute of Scientific and Technical Information of China (English)
Tao XUE; Xiao-bing ZHANG; Dong-hua CUI
2014-01-01
The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile. The engraving process plays a crucial role on determining the ballistic performance and projectile stability. This paper analyzes the dynamic response of a guided projectile during the engraving process. By considering the projectile center of gravity moving during the engraving process, a dynamics model is established with the coupling of interior ballistic equations. The results detail the stress situation of a guided projectile band during its engraving process. Meanwhile, the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched. To further explore how the different performance of the engraving band can affect the dynamics of guided projectile, this paper focuses on these two aspects:(a) the effects caused by the different band geometry;and (b) the effects caused by different band materials. The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width. A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.
Microcraters formed in glass by low density projectiles
Mandeville, J.-C.; Vedder, J. F.
1971-01-01
Microcraters were produced in soda-lime glass by the impact of low density projectiles of polystyrene with masses between 0.7 and 62 picograms and velocities between 2 and 14 kilometers per second. The morphology of the craters depends on the velocity and angle of incidence of the projectiles. The transitions in morphology of the craters formed by polystyrene spheres occur at higher velocities than they do for more dense projectiles. For oblique impact, the craters are elongated and shallow with the spallation threshold occuring at higher velocity. For normal incidence, the total displaced mass of the target material per unit of projectile kinetic energy increases slowly with the energy.
Work on Sabot-Projectiles and Supplements, 1942-1944
1946-10-01
Projectiles by C. L. Critchfield. NDRC Report A-233 (OSRD No. 2067), "Development of Subcaliber Projectiles for the Hispano- Suiza Gun" by C. L. Critchfield...Millar, "Development of Subcaliber Projectiles for the Hispano- Suiza Gun," NDRC Report A-233 (OSRD No. 2067). C 0 N F I D F N T I A L - 18 - however...jectiles for the Hisnano- Suiza Gun," by C. L. Critchfield snd J. -McG. Millnr. * Projectile Test Report AD-P99 Ordnance Research Center, A.P.G. Report on
Electric rail gun projectile acceleration to high velocity
Bauer, D. P.; Mccormick, T. J.; Barber, J. P.
1982-01-01
Electric rail accelerators are being investigated for application in electric propulsion systems. Several electric propulsion applications require that the rail accelerator be capable of launching projectiles at velocities above 10 km/s. An experimental program was conducted to develop rail accelerator technology for high velocity projectile launch. Several 6 mm bore, 3 m long rail accelerators were fabricated. Projectiles with a mass of 0.2 g were accelerated by plasmas, carrying currents up to 150 kA. Experimental design and results are described. Results indicate that the accelerator performed as predicted for a fraction of the total projectile acceleration. The disparity between predicted and measured results are discussed.
Dynamic analysis of a guided projectile during engraving process
Directory of Open Access Journals (Sweden)
Tao Xue
2014-06-01
Full Text Available The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile. The engraving process plays a crucial role on determining the ballistic performance and projectile stability. This paper analyzes the dynamic response of a guided projectile during the engraving process. By considering the projectile center of gravity moving during the engraving process, a dynamics model is established with the coupling of interior ballistic equations. The results detail the stress situation of a guided projectile band during its engraving process. Meanwhile, the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched. To further explore how the different performance of the engraving band can affect the dynamics of guided projectile, this paper focuses on these two aspects: (a the effects caused by the different band geometry; and (b the effects caused by different band materials. The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width. A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.
On high explosive launching of projectiles for shock physics experiments.
Swift, Damian C; Forest, Charles A; Clark, David A; Buttler, William T; Marr-Lyon, Mark; Rightley, Paul
2007-06-01
The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure
Al Kaissi, Ali; Ryabykh, Sergey; Ochirova, Polina; Kenis, Vladimir; Hofstätter, Jochen G.; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit
2017-01-01
Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years) were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl) were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome). And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A) as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations. PMID:28210640
Corrected Launch Speed for a Projectile Motion Laboratory
Sanders, Justin M.; Boleman, Michael W.
2013-01-01
At our university, students in introductory physics classes perform a laboratory exercise to measure the range of a projectile fired at an assigned angle. A set of photogates is used to determine the initial velocity of the projectile (the launch velocity). We noticed a systematic deviation between the experimentally measured range and the range…
’Fused-on’ Rotating Bands for Projectiles
1974-12-01
casting alloys, might be preferable for the procese or as rotating band materials depending on projectile requirements. METHODS AND PROCEDURES In this in...has fractured on impact (left projectile) all parts of the band have remained attached to the steel. Problem Areas One of the problems encountered in
Microcraters formed in glass by projectiles of various densities
Vedder, J. F.; Mandeville, J.-C.
1974-01-01
An experiment was conducted investigating the effect of projectile density on the structure and size of craters in soda lime glass and fused quartz. The projectiles were spheres of polystyrene-divinylbenzene (PS-DVB), aluminum, and iron with velocities between 0.5 and 15 km/sec and diameters between 0.4 and 5 microns. The projectile densities spanned the range expected for primary and secondary particles of micrometer size at the lunar surface, and the velocities spanned the lower range of micrometeoroid velocities and the upper range of secondary projectile velocities. There are changes in crater morphology as the impact velocity increases, and the transitions occur at lower velocities for the projectiles of higher density. The sequence of morphological features of the craters found for PS-DVB impacting soda lime glass for increasing impact velocity, described in a previous work (Mandeville and Vedder, 1971), also occurs in fused quartz and in both targets with the more dense aluminum and iron projectiles. Each transition in morphology occurs at impact velocities generating a certain pressure in the target. High density projectiles require a lower velocity than low-density projectiles to generate a given shock pressure.
Stability of Liquid-Filled Projectiles with Unusual Coning Frequencies.
1986-07-01
INTRODUCTION .................. . .. ......... ... ...... 5 11. INVISCID LIQUID MOMENTo ......... s....................... 6 III. VISCOUS MODIFICATIONS...1966. (AD 489687) 3. Murphy, C. H., " Angular Motion of a Spinn Projectile inth a Viscous Liquid Payload," Ballistic Research Laboratory, Aberdeen...stability. II. INVISCID LIQUID MOMENT We will consider a spinning projectile** performing a coning or spiraling motion. In nonrolling coordinates the angular
Energy Technology Data Exchange (ETDEWEB)
Benhacine, H. [LRPCSI, University of 20 Août 1955 Skikda, Route El-Hadaeik, 21000 Skikda (Algeria); Département de physique Université Constantine 1, Route Ain El-Bey 25000 (Algeria); Sorokin, M.V., E-mail: m40@lab2.ru [National Research Centre ‘Kurchatov Institute’, Kurchatov Square 1, 123182 Moscow (Russian Federation); Schwartz, K. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Meftah, A. [LRPCSI, University of 20 Août 1955 Skikda, Route El-Hadaeik, 21000 Skikda (Algeria)
2015-09-15
Lithium fluoride crystals were irradiated with lead ions of different energies, having the electronic energy loss of 10–20 keV/nm. Accumulation of F centers with fluence was studied by absorption UV–VIS spectroscopy. It was found that the average F-center concentration is mainly determined by the average absorbed energy density with a weak decrease above 10{sup 23} eV/cm{sup 3}. A defect accumulation model, taking into account the recombination processes, is proposed for a seamless description of the F-center concentration fluence dependences for various projectiles and energy losses.
Wake effects of a charged projectile flying above a magnetized metal film
Jafari, M. R.
2017-03-01
This research deals with covering of a metal film on the semi-infinite dielectric in the presence of a weak external magnetic field. A charged projectile has been considered flying above the thin film. The surface wave frequencies of the system were derived by means of the quantum hydrodynamic theory through the appropriate boundary conditions. The energy loss of charged particle in the present system was also investigated. It is found that the external magnetic field modifies the distribution of electron gas density as well as the energy loss of flying charged particle.
Locating the source of projectile fluid droplets
Varney, Christopher R
2011-01-01
The ballistically ill-posed projectile problem of finding source height from spattered droplets of viscous fluid is a longstanding obstacle to accident reconstruction and crime scene analysis. It is widely known how to infer the impact angle of droplets on a surface from the elongation of their impact profiles. Due to missing velocity information, however, finding the height of origin from impact position and angle of individual drops is not possible. Turning to aggregate statistics of the spatter and basic equations of projectile motion familiar to physics students, we introduce a reciprocal correlation plot that is effective when the polar angle of launch is concentrated in a narrow range. The horizontal plot coordinate is twice the reciprocal of impact distance, and the vertical coordinate depends on the orientation of the spattered surface; for a level surface this is the tangent of impact angle. In all cases one infers source height as the slope of data points in the reciprocal correlation plot. Such plo...
Penetration of projectiles into granular targets
Ruiz-Suárez, J. C.
2013-06-01
Energetic collisions of subatomic particles with fixed or moving targets have been very valuable to penetrate into the mysteries of nature. But the mysteries are quite intriguing when projectiles and targets are macroscopically immense. We know that countless debris wandering in space impacted (and still do) large asteroids, moons and planets; and that millions of craters on their surfaces are traces of such collisions. By classifying and studying the morphology of such craters, geologists and astrophysicists obtain important clues to understand the origin and evolution of the Solar System. This review surveys knowledge about crater phenomena in the planetary science context, avoiding detailed descriptions already found in excellent papers on the subject. Then, it examines the most important results reported in the literature related to impact and penetration phenomena in granular targets obtained by doing simple experiments. The main goal is to discern whether both schools, one that takes into account the right ingredients (planetary bodies and very high energies) but cannot physically reproduce the collisions, and the other that easily carries out the collisions but uses laboratory ingredients (small projectiles and low energies), can arrive at a synergistic intersection point.
Locating the source of projectile fluid droplets
Varney, Christopher R.; Gittes, Fred
2011-08-01
The ill-posed projectile problem of finding the source height from spattered droplets of viscous fluid is a longstanding obstacle to accident reconstruction and crime-scene analysis. It is widely known how to infer the impact angle of droplets on a surface from the elongation of their impact profiles. However, the lack of velocity information makes finding the height of the origin from the impact position and angle of individual drops not possible. From aggregate statistics of the spatter and basic equations of projectile motion, we introduce a reciprocal correlation plot that is effective when the polar launch angle is concentrated in a narrow range. The vertical coordinate depends on the orientation of the spattered surface and equals the tangent of the impact angle for a level surface. When the horizontal plot coordinate is twice the reciprocal of the impact distance, we can infer the source height as the slope of the data points in the reciprocal correlation plot. If the distribution of launch angles is not narrow, failure of the method is evident in the lack of linear correlation. We perform a number of experimental trials, as well as numerical calculations and show that the height estimate is relatively insensitive to aerodynamic drag. Besides its possible relevance for crime investigation, reciprocal-plot analysis of spatter may find application to volcanism and other topics and is most immediately applicable for undergraduate science and engineering students in the context of crime-scene analysis.
Impact effects of explosively formed projectiles on normal strength concrete
Bookout, Laurin; Baird, Jason
2012-03-01
This paper will address the experimental results of the impact of 101.6 mm (4 in) explosively formed projectiles on normal strength concrete targets. Five projectiles were recovered using a soft recovery system to determine the average mass and nose shape of the projectiles. Velocity data for each test was measured with a high speed camera. The average projectile nose shape and mass plus the striking velocity, and the penetration depths from ten tests were compared to existing penetration equations to see if one or more of the equations is applicable for this type of projectile impact. The coarse aggregate gradation used in the concrete mix has Hugoniot data available. The Hugoniot data allows comparison of any observed spalling with the theoretical predictions.
Weakly tight functions and their decomposition
Directory of Open Access Journals (Sweden)
Mona Khare
2005-01-01
Full Text Available The present paper deals with the study of a weakly tight function and its relation to tight functions. We obtain a Jordan-decomposition-type theorem for a locally bounded weakly tight real-valued function defined on a sublattice of IX, followed by the notion of a total variation.
Positive Root Bounds and Root Separation Bounds
Herman, Aaron Paul
In this thesis, we study two classes of bounds on the roots of a polynomial (or polynomial system). A positive root bound of a polynomial is an upper bound on the largest positive root. A root separation bound of a polynomial is a lower bound on the distance between the roots. Both classes of bounds are fundamental tools in computer algebra and computational real algebraic geometry, with numerous applications. In the first part of the thesis, we study the quality of positive root bounds. Higher quality means that the relative over-estimation (the ratio of the bound and the largest positive root) is smaller. We find that all known positive root bounds can be arbitrarily bad. We then show that a particular positive root bound is tight for certain important classes of polynomials. In the remainder of the thesis, we turn to root separation bounds. We observe that known root separation bounds are usually very pessimistic. To our surprise, we also find that known root separation bounds are not compatible with the geometry of the roots (unlike positive root bounds). This motivates us to derive new root separation bounds. In the second part of this thesis, we derive a new root separation for univariate polynomials by transforming a known bound into a new improved bound. In the third part of this thesis, we use a similar strategy to derive a new improved root separation bound for polynomial systems.
Weak, strong, and uniform quantum simulations
Wang, Dong-Sheng
2015-01-01
In this work, we introduce different types of quantum simulations according to different operator topologies on a Hilbert space, namely, uniform, strong, and weak quantum simulations. We show that they have the same computational power that the efficiently solvable problems are in bounded-error quantum polynomial time. For the weak simulation, we formalize a general weak quantum simulation problem and construct an algorithm which is valid for all instances. Also, we analyze the computational power of quantum simulations by proving the query lower bound for simulating a general quantum process.
Key Techniques of Terminal Correction Mortar Projectiles
Institute of Scientific and Technical Information of China (English)
XU Jin-xiang
2007-01-01
The operational principle, the impulse force and terminal guidance laws of terminal correction mortar projectiles(TCMP) are researched in this paper, by using the TCMP simulation program, key techniques such as the miss distance influenced by the acting point of impulse force, the impulse force value, the correction threshold, and the number of impulse rockets are researched in this paper.And the dual pulse control scheme is also studied.Simulation results indicate that the best acting point is near the center of gravity, sufficient correction resources are needed, the miss distance is insentive to the correction threshold, increasing the number of impulse rockets properly is beneficial to increase the hit precision, the velocity pursuit guidance law has less miss distance, the change of the attack angle is milder and the transient time becomes less in the dual impulse control scheme.These conclusions are important for choosing parameters and impulse correction schemes designed for TCMP.
Isospin dependent multifragmentation of relativistic projectiles
Ogul, R; Atav, U; Buyukcizmeci, N; Mishustin, I N; Adrich, P; Aumann, T; Bacri, C O; Barczyk, T; Bassini, R; Bianchin, S; Boiano, C; Boudard, A; Brzychczyk, J; Chbihi, A; Cibor, J; Czech, B; De Napoli, M; Ducret, J -E; Emling, H; Frankland, J D; Hellstrom, M; Henzlova, D; Imme, G; Iori, I; Johansson, H; Kezzar, K; Lafriakh, A; Le Fèvre, A; Gentil, E Le; Leifels, Y; Luhning, J; Lukasik, J; Lynch, W G; Lynen, U; Majka, Z; Mocko, M; Muller, W F J; Mykulyak, A; Orth, H; Otte, A N; Palit, R; Pawlowski, P; Pullia, A; Raciti, G; Rapisarda, E; Sann, H; Schwarz, C; Sfienti, C; Simon, H; Summerer, K; Trautmann, W; Tsang, M B; Verde, G; Volant, C; Wallace, M; Weick, H; Wiechula, J; Wieloch, A; Zwieglinski, B
2010-01-01
The N/Z dependence of projectile fragmentation at relativistic energies has been studied with the ALADIN forward spectrometer at SIS. Stable and radioactive Sn and La beams with an incident energy of 600 MeV per nucleon have been used in order to explore a wide range of isotopic compositions. For the interpretation of the data, calculations with the Statistical Multifragmentation Model for a properly chosen ensemble of excited sources were performed. The parameters of the ensemble, representing the variety of excited spectator nuclei expected in a participant-spectator scenario, are determined empirically by searching for an optimum reproduction of the measured fragment charge distributions and correlations. An overall very good agreement is obtained. The possible modification of the liquid-drop parameters of the fragment description in the hot freeze-out environment is studied, and a significant reduction of the symmetry-term coefficient is found necessary to reproduce the mean neutron-to-proton ratios /Z an...
Influence of projectile breakup on complete fusion
Indian Academy of Sciences (India)
A Mukherjee; M K Pradhan
2010-07-01
Complete fusion excitation functions for 11,10B+159Tb and 6,7Li+159Tb have been reported at energies around the respective Coulomb barriers. The measurements show significant suppression of complete fusion cross-sections at energies above the barrier for 10B+159Tb and 6,7Li+159Tb reactions, when compared to those for 11B+159Tb. The comparison shows that the extent of suppression of complete fusion cross-sections is correlated with the -separation energies of the projectiles. Also, the measured incomplete fusion cross-sections show that the -particle emanating channel is the favoured incomplete fusion process. Inclusive measurement of the -particles produced in 6Li+159Tb reaction has been carried out. Preliminary CDCC calculations carried out to estimate the - yield following 6Li breaking up into + fail to explain the measured -yield. Transfer processes seem to be important contributors.
Experimental and numerical study on fragmentation of steel projectiles
Directory of Open Access Journals (Sweden)
Hopperstad O.S.
2012-08-01
Full Text Available A previous experimental study on penetration and perforation of circular Weldox 460E target plates with varying thicknesses struck by blunt-nose projectiles revealed that fragmentation of the projectile occurred if the target thickness or impact velocity exceeded a certain value. Thus, numerical simulations that do not account for fragmentation during impact can underestimate the perforation resistance of protective structures. Previous numerical studies have focused primarily on the target plate behaviour. This study considers the behaviour of the projectile and its possible fragmentation during impact. Hardened steel projectiles were launched at varying velocities in a series of Taylor tests. The impact events were captured using a high-speed camera. Fractography of the fragmented projectiles showed that there are several fracture mechanisms present during the fragmentation process. Tensile tests of the projectile material revealed that the hardened material has considerable variations in yield stress and fracture stress and strain. In the finite element model, the stress-strain behaviour from tensile tests was used to model the projectile material with solid elements and the modified Johnson-Cook constitutive relation. Numerical simulations incorporating the variations in material properties are capable of reproducing the experimental fracture patterns, albeit the predicted fragmentation velocities are too low.
Directory of Open Access Journals (Sweden)
Ballester Pla, Coralio
2012-03-01
Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.
La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.
NUMERICAL SIMULATION FOR FORMED PROJECTILE OF DEPLETED URANIUM ALLOY
Institute of Scientific and Technical Information of China (English)
宋顺成; 高平; 才鸿年
2003-01-01
The numerical simulation for forming projectile of depleted uranium alloy with the SPH ( Smooth Particle Hydrodynamic ) algorithm was presented. In the computations the artificial pressures of detonation were used, i. e. , the spatial distribution and time distribution were given artificially. To describe the deformed behaviors of the depleted uranium alloy under high pressure and high strain rate, the Johnson-Cook model of materials was introduced. From the numerical simulation the formed projectile velocity,projectile geometry and the minimum of the height of detonation are obtained.
Uniform Projectile Motion: Dynamics, Symmetries and Conservation Laws
Swaczyna, Martin; Volný, Petr
2014-04-01
A geometric nonholonomic theory is applied to the problem of uniform projectile motion, i.e. motion of a projectile with constant instantaneous speed. The problem is investigated from the kinematic and dynamic point of view. Corresponding kinematic parameters of classical and uniform projectile motion are compared, nonholonomic Hamilton equations are derived and their solvability is discussed. Symmetries and conservation laws of the considered system are studied, the nonholonomic formulation of a conservation law of generalized energy is found as one of the corresponding Noetherian first integrals of this nonholonomic system.
The projectile-wall interface in rail launchers
Thio, Y. C.; Huerta, M. A.; Boynton, G. C.; Tidman, D. A.; Wang, S. Y.; Winsor, N. K.
1993-01-01
At sufficiently high velocity, an energetic gaseous interface is formed between the projectile and the gun wall. We analyze the flow in this interface in the regime of moderately high velocity. The effect of this gaseous interface is to push the gun wall radially outward and shrink the projectile radially inward. Our studies show that significant plasma blow-by can be expected in most experimental railguns in which organic polymers are used as insulators. Since plasma leakage may result in the reduction of propulsion pressure and possibly induce the separation of the primary, the results point to the importance of having sufficiently stiff barrels and structurally stiff but 'ballistically compliant' projectile designs.
Energy Technology Data Exchange (ETDEWEB)
Caliebe, D.; Arp, O.; Piel, A. [Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet, Kiel (Germany)
2011-07-15
The penetration of a dusty plasma by fast charged projectiles is studied under microgravity conditions. The mass and charge of the projectiles are larger than those of the target particles. A projectile generates a dust-free cavity in its wake, whose shape strongly depends on the projectile velocity. The faster the projectile the more elongated becomes the cavity while its cross-section decreases. The opening time of the cavity is found independent of the projectile velocity. For supersonic projectiles, the dynamics of the cavity can be decomposed into an initial impulse and a subsequent elastic response that can be modeled by a damped harmonic oscillator.
A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight
2014-07-01
motions of the projectile about the trajectory due to the angular motion of the projectile . For a stable projectile , these motions are typically small...A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight by Paul Weinacht ARL-TR-6998 July 2014...Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight Paul Weinacht Weapons and Materials Research Directorate, ARL
Penetration analysis of projectile with inclined concrete target
Kim, S. B.; Kim, H. W.; Yoo, Y. H.
2015-09-01
This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.
Impact of Thin-Walled Projectiles with Concrete Targets
Directory of Open Access Journals (Sweden)
Rayment E. Moxley
1995-01-01
Full Text Available An experimental program to determine the response of thin-walled steel projectiles to the impact with concrete targets was recently conducted. The projectiles were fired against 41-MPa concrete targets at an impact velocity of 290 m/s. This article contains an outline of the experimental program, an examination of the results of a typical test, and predictions of projectile deformation by classical shell theory and computational simulation. Classical shell analysis of the projectile indicated that the predicted impact loads would result in circumferential buckling. A computational simulation of a test was conducted with an impact/penetration model created by linking a rigid-body penetration trajectory code with a general-purpose finite element code. Scientific visualization of the resulting data revealed that circumferential buckling was induced by the impact conditions considered.
Penetration analysis of projectile with inclined concrete target
Directory of Open Access Journals (Sweden)
Kim S.B.
2015-01-01
Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.
Light projectile scattering off the Color Glass Condensate
Fukushima, Kenji
2007-01-01
We systematically compute the expectation value of Wilson lines in the McLerran-Venugopalan model, which provides useful formulae for evaluation of the scattering aimplitude in the collision of a light projectile and a heavy target.
Visualization Techniques Applied to 155-mm Projectile Analysis
2014-11-01
demonstrated via these numerical calculations. The ability to understand the physics that impact the flight dynamics of the projectile through...properties Projectile Physical Properties Value Diameter, d (m) 0.155 Length, L (mm) 0.9814 Mass, m (kg) 44.197 Center of gravity, Xcg 0.5976 Axial...characteristics-based inflow/outflow boundary condition, which is based on solving a Riemann problem at the boundary. 2.3 Numerics Rolling/spinning is the
Thrusters Pairing Guidelines for Trajectory Corrections of Projectiles
2011-01-12
Gill, J., “Experimental Investigation of Super- and Hypersonic Jet Interaction on Missile Configurations,” Journal of Spacecraft and Rockets, Vol. 35...Thrusters Pairing Guidelines for Trajectory Corrections of Projectiles Daniel Corriveau∗ Canadian Department of National Defence , Quebec City, Quebec...course correction process for a 30-mm fin-stabilized air- defense projectile and a standard 105-mm spin-stabilized artillery shell are presented
Numerical Prediction of Pitch Damping Stability Derivatives for Finned Projectiles
2013-11-01
spinner rocket, but not to a finned projectile. This study presents the first combined application of these methods for finned projectiles in which...and the U.S. Air Force Research Laboratory (AFRL) Aeroballistic Research Facility (ARF) (29) at Eglin Air Force Base in Florida. 2. Theoretical...numerical convergence, the results of which are presented in section4.2.2. 2.2 Steady Lunar Coning Method Murphy (24), Schiff (15, 16), Tobak and Schiff
Weak Galois and Weak Cocleft Coextensions
Institute of Scientific and Technical Information of China (English)
J.N. Alonso (A)lvarez; J.M. Fernández Vilaboa; R. González Rodríguez; A.B. Rodríguez Raposo
2007-01-01
For a weak entwining structure (A, C,ψ) living in a braided monoidal category with equalizers and coequalizers, we formulate the notion of weak A-Galois coextension with normal basis and we show that these Galois coextensions are equivalent to the weak A-cocleft coextensions introduced by the authors.
N/Z Dependence of Projectile Fragmentation
Trautmann, W; Aumann, T; Bacri, C O; Barczyk, T; Bassini, R; Bianchin, S; Boiano, C; Botvina, A S; Boudard, A; Brzychczyk, J; Chbihi, A; Cibor, J; Czech, B; De Napoli, M; Ducret, J -E; Emling, H; Frankland, J D; Hellström, M; Henzlova, D; Imme, G; Iori, I; Johansson, H; Kezzar, K; Lafriakh, A; Le Fèvre, A; Gentil, E Le; Leifels, Y; Lühning, J; Lukasik, J; Lynch, W G; Lynen, U; Majka, Z; Mocko, M; Müller, W F J; Mykulyak, A; Orth, H; Otte, A N; Palit, R; Pawlowski, P; Pullia, A; Raciti, G; Rapisarda, E; Sann, H; Schwarz, C; Sfienti, C; Simon, H; Sümmerer, K; Tsang, M B; Verde, G; Volant, C; Wallace, M; Weick, H; Wiechula, J; Wieloch, A; Zwieglinski, B
2007-01-01
The N/Z dependence of projectile fragmentation at relativistic energies has been studied in a recent experiment at the GSI laboratory with the ALADiN forward spectrometer coupled to the LAND neutron detector. Besides a primary beam of 124Sn, also secondary beams of 124La and 107Sn delivered by the FRS fragment separator have been used in order to extend the range of isotopic compositions of the produced spectator sources. With the achieved mass resolution of \\Delta A/A \\approx 1.5%, lighter isotopes with atomic numbers Z \\le 10 are individually resolved. The presently ongoing analyses of the measured isotope yields focus on isoscaling and its relation to the properties of hot fragments at freeze-out and on the derivation of chemical freeze-out temperatures which are found to be independent of the isotopic composition of the studied systems. The latter result is at variance with the predictions for limiting temperatures as obtained with finite-temperature Hartree-Fock calculations.
Optimising LISA orbits: The projectile solution
Dhurandhar, S V; Vinet, J-Y
2008-01-01
LISA is a joint space mission of the NASA and the ESA for detecting low frequency gravitational waves (GW) in the band $10^{-5} - 0.1$ Hz. The proposed mission will use coherent laser beams which will be exchanged between three identical spacecraft forming a giant (almost) equilateral triangle of side $5 \\times 10^6$ kilometres. The plane of the triangle will make an angle of $\\sim 60^{\\circ}$ with the plane of the ecliptic. The spacecraft constituting LISA will be freely floating in the ambient gravitational field of the Sun and other celestial bodies. To achieve the requisite sensitivity, the spacecraft formation should remain stable, one requirement being, the distances between spacecraft should remain as constant as possible - that is the flexing of the arms should be minimal. In this paper we present a solution - the projectile solution - which constrains the flexing of the arms to below 5.5 metres/sec in a three year mission period. This solution is obtained in the field of the Sun and Earth only, which...
Impact Behaviour of Soft Body Projectiles
Kalam, Sayyad Abdul; Rayavarapu, Vijaya Kumar; Ginka, Ranga Janardhana
2017-04-01
Bird strike analysis is a common type of analysis done during the design and analysis of primary structures such as engine cowlings or fuselage panels. These simulations are done in order to predict whether various designs will pass the necessary certification tests. Composite materials are increasingly being used in aerospace industry and bird strike is a major threat which may lead to serious structural damage of those materials. Such phenomenon may arise from numerous impact scenarios. The focus of current study is on the finite element modeling for composite structures and simulation of high velocity impact loads from soft body projectiles with an explicit dynamics code AUTODYN. This paper investigates the methodology which can be utilized to certify an aircraft for bird strike resistance using computational technique by first demonstrating the accuracy of the method for bird impact on rigid target modeling and then applies the developed model to a more complex problem. The model developed for bird strike threat assessment incorporates parameters of bird number (bird density), bird body mass, equation of state (EOS) and bird path during impact.
NianSong Zhang; Dong; Wang; Bei Peng; Yong He
2015-01-01
A study on the dynamic response of a projectile penetrating concrete is conducted. The evolutional process of projectile mass loss and the effect of mass loss on penetration resistance are investigated using theoretical methods. A projectile penetration model considering projectile mass loss is established in three stages, namely, cratering phase, mass loss penetration phase, and remainder rigid projectile penetration phase.
Quantum-memory-assisted entropic uncertainty relations under weak measurements
Li, Lei; Wang, Qing-Wen; Shen, Shu-Qian; Li, Ming
2017-08-01
We investigate quantum-memory-assisted entropic uncertainty relations (EURs) based on weak measurements. It is shown that the lower bound of EUR revealed by weak measurements is always larger than that revealed by the corresponding projective measurements. A series of lower bounds of EUR under both weak measurements and projective measurements are presented. Interestingly, the quantum-memory-assisted EUR based on weak measurements is a monotonically decreasing function of the strength parameter. Furthermore, some information-theoretic inequalities associated with weak measurements are also derived.
On Weakly Singular Versions of Discrete Nonlinear Inequalities and Applications
Directory of Open Access Journals (Sweden)
Kelong Cheng
2014-01-01
Full Text Available Some new weakly singular versions of discrete nonlinear inequalities are established, which generalize some existing weakly singular inequalities and can be used in the analysis of nonlinear Volterra type difference equations with weakly singular kernels. A few applications to the upper bound and the uniqueness of solutions of nonlinear difference equations are also involved.
On weakly D-differentiable operators
DEFF Research Database (Denmark)
Christensen, Erik
2016-01-01
Let DD be a self-adjoint operator on a Hilbert space HH and aa a bounded operator on HH. We say that aa is weakly DD-differentiable, if for any pair of vectors ξ,ηξ,η from HH the function 〈eitDae−itDξ,η〉〈eitDae−itDξ,η〉 is differentiable. We give an elementary example of a bounded operator aa, suc...
Study of Exotic Weakly Bound Nuclei Using Magnetic Analyzer Mavr
Maslov, V. A.; Kazacha, V. I.; Kolesov, I. V.; Lukyanov, S. M.; Melnikov, V. N.; Osipov, N. F.; Penionzhkevich, Yu. E.; Skobelev, N. K.; Sobolev, Yu. G.; Voskoboinik, E. I.
2016-06-01
A project of the high-resolution magnetic analyzer MAVR is proposed. The analyzer will comprise new magnetic optical and detecting systems for separation and identification of reaction products in a wide range of masses (5-150) and charges (1-60). The magnetic optical system consists of the MSP-144 magnet and a doublet of quadrupole lenses. This will allow the solid angle of the spectrometer to be increased by an order of magnitude up to 30 msr. The magnetic analyzer will have a high momentum resolution (10-4) and high focal-plane dispersion (1.9 m). It will allow products of nuclear reactions at energies up to 30 MeV/nucleon to be detected with the charge resolution ∼1/60. Implementation of the project is divided into two stages: conversion of the magnetic analyzer proper and construction of the nuclear reaction products identification system. The MULTI detecting system is being developed for the MAVR magnetic analyzer to allow detection of nuclear reaction products and their identification by charge Q, atomic number Z, and mass A with a high absolute accuracy. The identification will be performed by measuring the energy loss (ΔE), time of flight (TOF), and total kinetic energy (TKE) of reaction products. The particle trajectories in the analyzer will also be determined using the drift chamber developed jointly with GANIL. The MAVR analyzer will operate in both primary beams of heavy ions and beams of radioactive nuclei produced by the U400 - U400M acceleration complex. It will also be used for measuring energy spectra of nuclear reaction products and as an energy monochromator.
Temperature programmed desorption of weakly bound adsorbates on Au(111)
Engelhart, Daniel P.; Wagner, Roman J. V.; Meling, Artur; Wodtke, Alec M.; Schäfer, Tim
2016-08-01
We have performed temperature programmed desorption (TPD) experiments to analyze the desorption kinetics of Ar, Kr, Xe, C2H2, SF6, N2, NO and CO on Au(111). We report desorption activation energies (Edes), which are an excellent proxy for the binding energies. The derived binding energies scale with the polarizability of the molecules, consistent with the conclusion that the surface-adsorbate bonds arise due to dispersion forces. The reported results serve as a benchmark for theories of dispersion force interactions of molecules at metal surfaces.
Institute of Scientific and Technical Information of China (English)
BAI Cai-Yan; ZHANG Dong-Hai
2011-01-01
The multiplicity distribution of projectile protons and multiplicity correlations between black particles, grey particles, shower particles, compound particles, heavily ionized track particles, projectile helium fragments and projectile spectator protons
Elastic recovery in targets impacted by low-velocity projectiles*%信息动态
Institute of Scientific and Technical Information of China (English)
2011-01-01
By taking into account the whole plastic deformation and elastic deformation recovery of targets during the penetration of the rigid, sharp-nose projectiles, the ANSYS/LS-DYNA code was used to calculate the rebound velocities of the projectiles and targets in the cases that the projectiles at the same velocities penetrated into the targets with different widths and thicknesses. Influences of the sizes of the targets and the impact velocities of the projectiles on the elastic recovery of the targets and the rebound of the projectiles were analyzed. The researched results are helpful for the engineering and experimental designs of the projectiles with low velocities penetrating into the targets.
Electromagnetic and Weak transitions in light nuclei
Energy Technology Data Exchange (ETDEWEB)
M. Viviani; L.E. Marcucci; A. Kievsky; S. Rosati; R. Schiavilla
2002-09-01
Recent advances in the study of the p -- d radiative and mu -- {sup 3}He weak capture processes by our group are presented and discussed. The trinucleon bound and scattering states have been obtained from variational calculations by expanding the corresponding wave functions in terms of correlated hyper-spherical harmonic functions. The electromagnetic and weak transition currents include one- and two-body operators. The accuracy achieved in these calculations allows for interesting comparisons with experimental data.
Numerical Simulation for the External Combustion of Base-Bleed Projectile Using Gridless Method
Institute of Scientific and Technical Information of China (English)
Wei Wu; HouQian Xu; Liang Wang; Rui Xue
2014-01-01
The gridless method coupled with finite rate chemistry model is employed to simulate the external combustion flow fields of M864 base bleed projectile. The fluid dynamics process is described by Euler Equation in 2-D axisymmetric coordinate. The numerical method is based on least-square gridless method, and the inviscid flux is calculated by multi-component HLLC ( Harten-Lax-van Leer-Contact) scheme, and a H2-CO reaction mechanism involving 9 species and 11 reactions is used. The computations are performed for the full projectile configuration of Ma = 1�5, 2, and 3. The hot air injection cases and inert cases are simulated for comparison. The numerical results show that due to the combustion in the weak region, the recirculation zone enlarges and moves downstream, the base pressure increases and the total drag force coefficient decreases. At Ma = 3�0, the rear stagnation point shifts downstream approximate 0�26 caliber, and the base pressure increases about 53�4%, and the total drag force coefficient decreases to 0�182 which agrees well with the trajectory model prediction. Due to neglecting the effects of viscosity and turbulence, there exists a certain difference at Ma = 1�5, 2�0.
Set Down Study of Projectile in Flight Through Imaging
Directory of Open Access Journals (Sweden)
Suman Kumar Choudhury
2014-11-01
Full Text Available Deformation study of projectile immediately after firing is essential for its successful impact. A projectile that undergoes more than the tolerated amount of deformation in the barrel may not produce the requisite results. The study of projectile deformation before its impact requires it to be imaged in flight and perform some computation on the acquired image. Often the deformation tolerance is of the order of tens of micrometer and the acquired image cannot produce image with such accuracy because of photographic limitations. Therefore, it demands sub-pixel manipulation of the captured projectile image. In this work the diameter of a projectile is estimated from its image which became blur because of slow shutter speed. First the blurred image is restored and then various interpolation methods are used for sub-pixel measurement. Two adaptive geometrical texture based interpolation schemes are also proposed in this research. The proposed methods produce very good results as compared to the existing methods.Science Journal, Vol. 64, No. 6, November 2014, pp.530-535, DOI:http://dx.doi.org/10.14429/dsj.64.8114
Study of Trajectory of Spin-Stabilised Artillery Projectiles
Directory of Open Access Journals (Sweden)
M. Krishnamurthy
1991-10-01
Full Text Available Equations of motion for conventional spin-stabilised artillery projectile have been derived using a pseudo-stability axes system in addition to body-fixed and space-fixed axes systems. The aerodynamic forces and moments have been represented by their respective coefficients and the effects of Mach number and Reynolds number have been suitably accounted. The magnus terms which are significant at high rates of spin are estimated using a simple model. The set of equations have been partly linearised and solved numerically for a typical projectile using NAG system routines. Various trajectory parameters are computed and compared with the range-table data for the projectile. A parametric study had been carried out varying the aerodynamic coefficients to understand the sensitivity of the results obtained.
Using Tracker as a Pedagogical Tool for Understanding Projectile Motion
Wee, Loo Kang; Goh, Giam Hwee; Tan, Samuel; Lee, Tat Leong
2012-01-01
This paper reports the use of Tracker as a pedagogical tool in the effective learning and teaching of projectile motion in physics. When computer model building learning processes is supported and driven by video analysis data, this free Open Source Physics (OSP) tool can provide opportunities for students to engage in active inquiry-based learning. We discuss the pedagogical use of Tracker to address some common misconceptions of projectile motion by allowing students to test their hypothesis by juxtaposing their mental models against the analysis of real life videos. Initial research findings suggest that allowing learners to relate abstract physics concepts to real life through coupling computer modeling with traditional video analysis could be an innovative and effective way to learn projectile motion.
Breakup reaction models for two- and three-cluster projectiles
Baye, D
2010-01-01
Breakup reactions are one of the main tools for the study of exotic nuclei, and in particular of their continuum. In order to get valuable information from measurements, a precise reaction model coupled to a fair description of the projectile is needed. We assume that the projectile initially possesses a cluster structure, which is revealed by the dissociation process. This structure is described by a few-body Hamiltonian involving effective forces between the clusters. Within this assumption, we review various reaction models. In semiclassical models, the projectile-target relative motion is described by a classical trajectory and the reaction properties are deduced by solving a time-dependent Schroedinger equation. We then describe the principle and variants of the eikonal approximation: the dynamical eikonal approximation, the standard eikonal approximation, and a corrected version avoiding Coulomb divergence. Finally, we present the continuum-discretized coupled-channel method (CDCC), in which the Schroed...
In situ characterization of projectile penetration into sand targets
Borg, John P.; Sable, Peter; Sandusky, Harold; Felts, Joshua
2017-01-01
This work presents the results from dynamic penetration experiments in which long rod projectiles were launched into Ottawa sand at velocities ranging from 90 m/s to 350 m/s. A unique aspect of these experiments was that the sand targets were visually accessible, which allowed for the penetration event recorded using high-speed digital photography. The images were processed using two different correlation methods. In addition, stress measurements of the transmitted waveforms were simultaneously collected from a piezoelectric load cell that was buried in the sand at various locations relative to the shot line. The results indicate that impact results in two waves: one similar to a detached bow shock and one near the projectile that forms force chains. Grains are damaged and broken by the force chains which allows the projectile to penetrate the target.
Oblique perforation of thick metallic plates by rigid projectiles
Institute of Scientific and Technical Information of China (English)
Xiaowei Chen; Qingming Li; Saucheong Fan
2006-01-01
Oblique perforation of thick metallic plates by rigid Drojectiles with various nose shapes is studied in this paper.Two perforation mechanisms,i.e., the hole enlargement for a sharp projectile nose and the plugging formation for a blunt projectile nose,are considered in the proposed analytical model.It is shown that the perforation of a thick plate is dominated by several non-dimensional numbers,i.e., the impact function,the geometry function of projectile,the non-dimensional thickness of target and the impact obliquity.Explicit formulae are obtained to predict the ballistic limit.residual velocity and directional change for the oblique perforation of thick metallic plates.The proposed model is able to predict the critical condition for the occurrence of ricochet.The proposed model is validated by comparing the predictions with other existing models and independent experimental data.
Fragmentation of Pb-Projectiles at SPS Energies
2002-01-01
% EMU17 \\\\ \\\\ We have exposed stacks consisting of solid state nuclear track detectors (CR-39 plastic and BP-1 glass) and different target materials at the SPS to beams of Pb projectiles. Our detectors record tracks of relativistic nuclei with charge numbers of Z~$\\geq$~6 for CR-39 and Z~$\\geq$75 for BP-1. After development of the tracks by etching they are detected and measured using completely automated microscope systems. Thus experiments with high statistics are possible. \\\\ \\\\BP-1 detectors were exposed to measure total charge changing cross sections and elemental production cross sections for heavy projectile fragments. These experiments were performed for different targets CH$ _{2} $, C, Al, Cu, Ag and Pb. Comparison of the results for different targets allows to investigate contributions to charge changing reactions by electromagnetic dissociation. Multifragmentation events in which several intermediate mass fragments are emitted from the heavy Pb projectile are studied using stacks containing CR-39 d...
Institute of Scientific and Technical Information of China (English)
Yong Hua LI; Hai Bin KAN; Bing Jun YU
2004-01-01
In this paper, a special kind of partial algebras called projective partial groupoids is defined.It is proved that the inverse image of all projections of a fundamental weak regular *-semigroup under the homomorphism induced by the maximum idempotent-separating congruence of a weak regular *-semigroup has a projective partial groupoid structure. Moreover, a weak regular *-product which connects a fundamental weak regular *-semigroup with corresponding projective partial groupoid is defined and characterized. It is finally proved that every weak regular *-product is in fact a weak regular *-semigroup and any weak regular *-semigroup is constructed in this way.
Energy Technology Data Exchange (ETDEWEB)
Lapoux, V
2005-09-15
Information on the structure, spectroscopy and target interaction potentials of exotic nuclei can be inferred by interpreting measured data from direct reactions on proton such as elastic or inelastic scattering of proton (p,p') or one-nucleon transfer reaction (p,d). A series of experimental results has been obtained at the GANIL facilities on the setting composed of the MUST telescope array used for the detection of light charged-particles and of CATS beam detectors. This setting aims at measuring reactions on light proton or deuteron targets through reverse kinematics. Particularly, results on C{sup 10}, C{sup 11} and on direct reactions with the He{sup 8} beam of Spiral are presented. The first chapter is dedicated to the description of the most important theories concerning the nucleus. The experimental tools used to probe the nucleus are reported in the second chapter. The third and fourth chapters present the framework that has allowed us to analyse results from (p,p') and (p,d) reactions on weakly bound exotic nuclei. The last chapter is dedicated to the description of future experimental programs. (A.C.)
The traumatic potential of a projectile shot from a sling.
Borovsky, Igor; Lankovsky, Zvi; Kalichman, Leonid; Belkin, Victor
2017-03-01
Herein, we analyze the energy parameters of stones of various weights and shapes shot from a sling and based on this data evaluate its traumatic potential. Four police officers proficient in the use of a sling participated in the trials. The following projectile types, shot using an overhead technique at a target 100m away were: round steel balls of different sizes and weights (24mm, 57g; 32mm, 135g; 38mm, 227g); different shaped stones weighing 100-150g and 150-200g and a golf ball (47g). Our data indicated that projectiles shot from unconventional weapons such as a sling, have serious traumatic potential for unprotected individuals and can cause blunt trauma of moderate to critical severity such as fractures of the trunk, limb, and facial skull bone, depending on the weight and shape of the projectile and the distance from the source of danger. Asymmetrically shaped projectiles weighing more than 100g were the most dangerous. Projectiles weighing more than 100g can cause bone fractures of the trunk and limbs at distances of up to 60m from the target and may cause serious head injuries to an unprotected person (Abbreviated Injury Scale 4-5) at distances up to 200m from the target. Due to the traumatic potential of projectiles shot from a sling, the police must wear full riot gear and keep at a distance of at least 60m from the source of danger in order to avoid serious injury. Furthermore, given the potential for serious head injuries, wearing a helmet with a visor is mandatory at distances up to 200m from the source of danger.
A Simple General Solution for Maximal Horizontal Range of Projectile Motion
Busic, B
2005-01-01
A convenient change of variables in the problem of maximizing the horizontal range of the projectile motion, with an arbitrary initial vertical position of the projectile, provides a simple, straightforward solution.
Saturation Effect of Projectile Excitation in Ion-Atom Collisions
Mukoyama, Takeshi; Lin, Chii-Dong
Calculations of projectile K-shell electron excitation cross sections for He-like ions during ion-atom collisions have been performed in the distortion approximation by the use of Herman-Skillman wave functions. The calculated results are compared with the experimental data for several targets. The excitation cross sections deviate from the first-Born approximation and show the saturation effect as a function of target atomic number. This effect can be explained as the distortion of the projectile electronic states by the target nucleus.
PERFORATION OF PLASTIC SPHERICAL SHELLS UNDER IMPACT BY CYLINDRICAL PROJECTILES
Institute of Scientific and Technical Information of China (English)
NING Jian-guo; SONG Wei-dong
2006-01-01
The objective is to study the perforation of a plastic spherical shell impacted by a cylindrical projectile. First, the deformation modes of the shell were given by introducing an isometric transformation. Then, the perforation mechanism of the shell was analyzed and an analytical model was advanced. Based on Hamilton principle, the governing equation was obtained and solved using Runge-Kuta method. Finally, some important theoretical predictions were given to describe the perforation mechanism of the shell. The results will play an important role in understanding the perforation mechanism of spherical shells impacted by a projectile.
Dispersion Analysis of the XM881APFSDS Projectile
Directory of Open Access Journals (Sweden)
Thomas F. Erline
2001-01-01
Full Text Available This study compares the results of a dispersion test with mathematical modeling. A 10-round group of modified 25-mm XM881 Armor Piercing Fin Stabilized Discarding Sabot projectiles was fired from the M242 chain gun into a designated target. The mathematical modeling results come from BALANS, a product of Arrow Tech Associates. BALANS is a finite-element lumped parameter code that has the capability to model a flexible projectile being fired from a flexible gun. It also has the unique feature of an automated statistical evaluation of dispersion. This study represents an effort to evaluate a simulation approach with experiment.
Optimization of Construction of the rocket-assisted projectile
Directory of Open Access Journals (Sweden)
Arkhipov Vladimir
2017-01-01
Full Text Available New scheme of the rocket motor of rocket-assisted projectile providing the increase in distance of flight due to controlled and optimal delay time of ignition of the solid-propellant charge of the SRM and increase in reliability of initiation of the SRM by means of the autonomous system of ignition excluding the influence of high pressure gases of the propellant charge in the gun barrel has been considered. Results of the analysis of effectiveness of using of the ignition delay device on motion characteristics of the rocket-assisted projectile has been presented.
Perturbation of Initial Stability of an FSAPDS Projectile
Directory of Open Access Journals (Sweden)
R. S. Acharya
2006-11-01
Full Text Available For a spinning projectile, the initial stability condition is 2 = 1+ (4 K3 / K22 > 0. In the presentstudy, this condition has been modified for the malalignments arising due to pressure gradientand damping moment for an FSAPDS projectile. The equations of motion are established for thefirst phase of motion. A mathematical model for the first phase of motion has been developed.The effect of perturbation on the trajectory and stability of motion are discussed. It is provedthat if 3 K(a parameter appearing due to perturbation(-K22 2 /4 , the initial stability ofmotion will breakdown.
Livingstone, I.H.G.; Verolme, K.; Hayhurst, C.J.
2001-01-01
For cubes and spheres under high velocity impact there exists for each system of projectile and target, a threshold velocity that is just sufficient to shatter the projectile. This velocity, usually above 2km/s for metallic projectiles, is known as the fragmentation onset velocity. To determine the
BOOM: A Computer-Aided Engineering Tool for Exterior Ballistics of Smart Projectiles
2011-06-01
run on PC, Unix, or Mac systems. 15. SUBJECT TERMS projectiles, trajectory , aeroballistics, flight mechanics, smart projectiles 16. SECURITY...system model are provided. The procedure for running BOOM is also outlined, with input data files described in the appendices. Example trajectories ...in equation 9, the aerodynamic forces on the projectile are split into standard steady (SA) and Magnus (MA) terms as follows
On interpretations of bounded arithmetic and bounded set theory
Pettigrew, Richard
2008-01-01
In a recent paper, Kaye and Wong proved the following result, which they considered to belong to the folklore of mathematical logic. THEOREM: The first-order theories of Peano arithmetic and ZF with the axiom of infinity negated are mutually interpretable with interpretations that are inverse to each other. In this note, I describe a theory of sets that stands in the same relation to the bounded arithmetic IDelta0 + exp. Because of the weakness of this theory of sets, I cannot straightforwardly adapt Kaye and Wong's interpretation of the arithmetic in the set theory. Instead, I am forced to produce a different interpretation.
Physics with loosely bound nuclei
Indian Academy of Sciences (India)
Chhanda Samanta
2001-08-01
The essential aspect of contemporary physics is to understand properties of nucleonic matter that constitutes the world around us. Over the years research in nuclear physics has provided strong guidance in understanding the basic principles of nuclear interactions. But, the scenario of nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare nuclei are posing new challenges to both theory and experiments. Fortunately, nature has provided a few loosely bound stable nuclei that have been studied thoroughly for decades. Attempts are being made to ﬁnd a consistent picture for the unstable nuclei starting from their stable counterparts. Some signiﬁcant differences in the structure and reaction mechanisms are found.
3D Numerical Simulation of Projectile Penetration into Concrete Target
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Basing on the explicit instantaneous dynamics software MSC-Dytran and the general coupling arithmetic, the process of the projectile penetration into concrete target was simulated with the point-line-surface-body modeling method. Simulation results are in agreement with experimental results. The simulated data could provide design reference for the defense engineering construction and penetrator design.
Apparatus for Teaching Physics: A Versatile Projectile Motion Board.
Prigo, Robert B.; Korda, Anthony
1984-01-01
Describes the design and use of a projectile motion apparatus to illustrate a variety of projective motion results typically discussed in an introductory course. They include independence of horizontal (constant speed) and vertical (constant acceleration) motions, parabolic path shape, and other types of motion. (JN)
The Long Decay Model of One-Dimensional Projectile Motion
Lattery, Mark Joseph
2008-01-01
This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…
Using Tracker as a Pedagogical Tool for Understanding Projectile Motion
Wee, Loo Kang; Chew, Charles; Goh, Giam Hwee; Tan, Samuel; Lee, Tat Leong
2012-01-01
This article reports on the use of Tracker as a pedagogical tool in the effective learning and teaching of projectile motion in physics. When a computer model building learning process is supported and driven by video analysis data, this free Open Source Physics tool can provide opportunities for students to engage in active enquiry-based…
Projectile Motion in the "Language" of Orbital Motion
Zurcher, Ulrich
2011-01-01
We consider the orbit of projectiles launched with arbitrary speeds from the Earth's surface. This is a generalization of Newton's discussion about the transition from parabolic to circular orbits, when the launch speed approaches the value [image omitted]. We find the range for arbitrary launch speeds and angles, and calculate the eccentricity of…
Motion of a projectile in a rotating earth
Directory of Open Access Journals (Sweden)
B. K. Banerjee
1957-10-01
Full Text Available Semi-theoretical expressions for the corrections to be included in the Range Tables for rotation of the earth have been deduced and numerical values for 25 pd.., streamlined projectile fired with super charge have been calculated. The expressions are in good agreement with similar attempts by other workers.
High performance projectile seal development for non perfect railgun bores
Energy Technology Data Exchange (ETDEWEB)
Wolfe, T.R.; Vine, F.E. Le; Riedy, P.E.; Panlasigui, A. [Maxwell Labs., Inc., San Diego, CA (United States); Hawke, R.S.; Susoeff, A.R. [Lawrence Livermore National Lab., CA (United States)
1997-01-01
The sealing of high pressure gas behind an accelerating projectile has been developed over centuries of use in conventional guns and cannons. The principal concern was propulsion efficiency and trajectory accuracy and repeatability. The development of guns for use as high pressure equation-of-state (EOS) research tools, increased the importance of better seals to prevent gas leakage from interfering with the experimental targets. The development of plasma driven railguns has further increased the need for higher quality seals to prevent gas and plasma blow-by. This paper summarizes more than a decade of effort to meet these increased requirements. In small bore railguns, the first improvement was prompted by the need to contain the propulsive plasma behind the projectile to avoid the initiation of current conducting paths in front of the projectile. The second major requirements arose from the development of a railgun to serve as an EOS tool where it was necessary to maintain an evacuated region in front of the projectile throughout the acceleration process. More recently, the techniques developed for the small bore guns have been applied to large bore railguns and electro-thermal chemical guns in order to maximize their propulsion efficiency. Furthermore, large bore railguns are often less rigid and less straight than conventional homogeneous material guns. Hence, techniques to maintain seals in non perfect, non homogeneous material launchers have been developed and are included in this paper.
Projectile remnants in central peaks of lunar impact craters
Yue, Z.; Johnson, B. C.; Minton, D. A.; Melosh, H. J.; di, K.; Hu, W.; Liu, Y.
2013-06-01
The projectiles responsible for the formation of large impact craters are often assumed to melt or vaporize during the impact, so that only geochemical traces or small fragments remain in the final crater. In high-speed oblique impacts, some projectile material may survive, but this material is scattered far down-range from the impact site. Unusual minerals, such as magnesium-rich spinel and olivine, observed in the central peaks of many lunar craters are therefore attributed to the excavation of layers below the lunar surface. Yet these minerals are abundant in many asteroids, meteorites and chondrules. Here we use a numerical model to simulate the formation of impact craters and to trace the fate of the projectile material. We find that for vertical impact velocities below about 12kms-1, the projectile may both survive the impact and be swept back into the central peak of the final crater as it collapses, although it would be fragmented and strongly deformed. We conclude that some unusual minerals observed in the central peaks of many lunar impact craters could be exogenic in origin and may not be indigenous to the Moon.
Projectile General Motion in a Vacuum and a Spreadsheet Simulation
Benacka, Jan
2015-01-01
This paper gives the solution and analysis of projectile motion in a vacuum if the launch and impact heights are not equal. Formulas for the maximum horizontal range and the corresponding angle are derived. An Excel application that simulates the motion is also presented, and the result of an experiment in which 38 secondary school students…
Shedding Phenomenon of Ventilated Partial Cavitation around an Underwater Projectile
Institute of Scientific and Technical Information of China (English)
WANG Yi-Wei; HUANG Chen-Guang; DU Te-Zhuan; WU Xian-Qian; FANG Xin; LIANG Nai-Gang; WEI Yan-Peng
2012-01-01
A new shedding phenomenon of ventilated partial cavitations is observed around an axisymmetric projectile in a horizontal launching experiment. The experiment system is established based on SHPB launching and high speed photography. A numerical simulation is carried out based on the homogeneous mixture approach, and its predicted evolutions of cavities are compared with the experimental results. The cavity breaks off by the interaction between the gas injection and the re-entry jet at the middle location of the projectile, which is obviously different from natural cavitation. The mechanism of cavity breaking and shedding is investigated, and the influences of important factors are also discussed.%A new shedding phenomenon of ventilated partial cavitations is observed around an axisymmetric projectile in a horizontal launching experiment.The experiment system is established based on SHPB launching and high speed photography.A numerical simulation is carried out based on the homogeneous mixture approach,and its predicted evolutions of cavities are compared with the experimental results.The cavity breaks off by the interaction between the gas injection and the re-entry jet at the middle location of the projectile,which is obviously different from natural cavitation.The mechanism of cavity breaking and shedding is investigated,and the influences of important factors are also discussed.
On the Trajectories of Projectiles Depicted in Early Ballistic Woodcuts
Stewart, Sean M.
2012-01-01
Motivated by quaint woodcut depictions often found in many late 16th and 17th century ballistic manuals of cannonballs fired in air, a comparison of their shapes with those calculated for the classic case of a projectile moving in a linear resisting medium is made. In considering the asymmetrical nature of such trajectories, the initial launch…
Using Tracker as a Pedagogical Tool for Understanding Projectile Motion
Wee, Loo Kang; Chew, Charles; Goh, Giam Hwee; Tan, Samuel; Lee, Tat Leong
2012-01-01
This article reports on the use of Tracker as a pedagogical tool in the effective learning and teaching of projectile motion in physics. When a computer model building learning process is supported and driven by video analysis data, this free Open Source Physics tool can provide opportunities for students to engage in active enquiry-based…
Flight Performance of a Man Portable Guided Projectile Concept
2014-02-01
investigating the mechatronics , control, and performance of the maneuver technology (27). 4 3. Aerodynamic Characterization The projectile geometry is...efforts focus on understanding the effects of the transient wing exposure to the airstream on the flight behavior. Additionally, mechatronic design and
Viscosity bound versus the universal relaxation bound
Hod, Shahar
2017-10-01
For gauge theories with an Einstein gravity dual, the AdS/CFT correspondence predicts a universal value for the ratio of the shear viscosity to the entropy density, η / s = 1 / 4 π. The holographic calculations have motivated the formulation of the celebrated KSS conjecture, according to which all fluids conform to the lower bound η / s ≥ 1 / 4 π. The bound on η / s may be regarded as a lower bound on the relaxation properties of perturbed fluids and it has been the focus of much recent attention. In particular, it was argued that for a class of field theories with Gauss-Bonnet gravity dual, the shear viscosity to entropy density ratio, η / s, could violate the conjectured KSS bound. In the present paper we argue that the proposed violations of the KSS bound are strongly constrained by Bekenstein's generalized second law (GSL) of thermodynamics. In particular, it is shown that physical consistency of the Gauss-Bonnet theory with the GSL requires its coupling constant to be bounded by λGB ≲ 0 . 063. We further argue that the genuine physical bound on the relaxation properties of physically consistent fluids is ℑω(k > 2 πT) > πT, where ω and k are respectively the proper frequency and the wavenumber of a perturbation mode in the fluid.
Cofinitely weak supplemented modules
Alizade, Rafail; Büyükaşık, Engin
2003-01-01
We prove that a module M is cofinitely weak supplemented or briefly cws (i.e., every submodule N of M with M/N finitely generated, has a weak supplement) if and only if every maximal submodule has a weak supplement. If M is a cws-module then every M-generated module is a cws-module. Every module is cws if and only if the ring is semilocal. We study also modules, whose finitely generated submodules have weak supplements.
Nearest-neighbor Entropy Estimators with Weak Metrics
Timofeev, Evgeniy
2012-01-01
A problem of improving the accuracy of nonparametric entropy estimation for a stationary ergodic process is considered. New weak metrics are introduced and relations between metrics, measures, and entropy are discussed. Based on weak metrics, a new nearest-neighbor entropy estimator is constructed and has a parameter with which the estimator is optimized to reduce its bias. It is shown that estimator's variance is upper-bounded by a nearly optimal Cramer-Rao lower bound.
Institute of Scientific and Technical Information of China (English)
丁夏畦; 罗佩珠
2004-01-01
In this paper the authors introduce some new ideas on generalized numbers and generalized weak functions. They prove that the product of any two weak functions is a generalized weak function. So in particular they solve the problem of the multiplication of two generalized functions.
A Characterization of Complete Bounded Domain
Institute of Scientific and Technical Information of China (English)
殷慰萍; 苏简兵; 赵振刚
2002-01-01
@@ 1 IntroductionThis paper is concerned with biholomorphic mappings between two bounded domains D and G both in Cn.Consequently,an important question is whether the domain D is biholomorphic to G? We give an answer for this question under a very weak condition.
Functions of bounded variation
Lind, Martin
2006-01-01
The paper begins with a short survey of monotone functions. The functions of bounded variation are introduced and some basic properties of these functions are given. Finally the jump function of a function of bounded variation is defined.
Felker, Susan B.
2005-01-01
Robert Cobb Jr., of Greensboro, N.C., a 1986-89 participant in the Virginia Tech Upward Bound program, was recently named Virginia's TRIO Achiever for 2004. Federal TRIO programs include Upward Bound and Educational Talent Search.
Experimental Research on Behavior of Composite Material Projectile Penetrating Concrete Target
Institute of Scientific and Technical Information of China (English)
ZHONG Weizhou; SONG Shuncheng; ZHANG Fangju; ZHANG Qingping; HUANG Xicheng; LI Sizhong; LU Yonggang
2008-01-01
Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336 m/s, 447 m/s and 517 m/s.The angles between the perpendicular of target surface and projectile axis are 0° and 30° .The thickness of concrete target is 200 mm and the compression strength is 30 MPa.The experimental results indicate that the strength of composite material structure is high.Composite projectile can go through concrete target without fiber segregation and breakage.The percent fill is 18.5% in the composite material projectile.It is about twice as that of metal projectile, if the density of metal is taken as 7.8 g/cm3.Comparing with metal projectile, low-density, high-strength composite material can lessen projectile weight, improve charge-weight ratio of detonator and enhance destructive powder.
Developmental changes in children's understanding of horizontal projectile motion.
Mou, Yi; Zhu, Liqi; Chen, Zhe
2015-08-01
This study investigated 5- to 13-year-old children's performance in solving horizontal projectile motion problems, in which they predicted the trajectory of a carried object released from a carrier in three different contexts. The results revealed that 5- and 8-year-olds' trajectory predictions were easily distracted by salient contextual features (e.g. the relative spatial locations between objects), whereas a proportion of 11- and 13-year-olds' performance suggested the engagement of the impetus concept in trajectory prediction. The impetus concept is a typical misconception of inertial motion that assumes that motion is caused by force. Children's performance across ages suggested that their naïve knowledge of projectile motion was neither well-developed and coherent nor completely fragmented. Instead, this study presented the dynamic process in which children with age gradually overcame the influences of contextual features and consistently used the impetus concept across motion problems.
Developmental changes of misconception and misperception of projectiles.
Kim, In-Kyeong
2012-12-01
This study investigated the developmental changes of perceptual and cognitive commonsense physical knowledge. Children 4 to 9 years old (N = 156; 79 boys, 77 girls) participated. Each child was asked to predict the landing positions of balls that rolled down and fell off a virtual ramp and to choose the most natural-looking motion from different projectile motions depicted. The landing position of the most natural-looking projectile was compared with the predicted landing position and also compared with the actual landing position. The results showed children predicted the ball's landing position closer to the ramp than the actual position. Children also chose the depiction in which the ball fell closer to the ramp than the accurate position, although the error in the prediction task was larger than in the perception task and decreased with age. The results indicated the developmental convergence of explicit reasoning and implicit perception, which suggest a single knowledge system with representational re-description.
Electron loss of fast projectiles in the collisions with molecules
Matveev, V I; Rakhimov, Kh Yu
2011-01-01
The single and multiple electron loss of fast highly charged projectiles in the collisions with neutral molecules are studied within the framework of a nonperturbative approach. The cross sections for single, double, and triple electron losses are calculated for the collision system $Fe^{q+}\\to N_2$ ($q$=24, 25, 26) at the collision energies 10, 100, and 1000 MeV/u. The effects caused by the collision multiplicity and the orientation of the axis of target molecule are treated. It is shown that collision multiplicity effect leads to considerable differences for the cases of perpendicular and parallel orientations of the molecular axes with respect to the direction of the projectile motion, while for chaotic orientation such effect is negligible.
Two dimensional fractional projectile motion in a resisting medium
Rosales, Juan; Guía, Manuel; Gómez, Francisco; Aguilar, Flor; Martínez, Juan
2014-07-01
In this paper we propose a fractional differential equation describing the behavior of a two dimensional projectile in a resisting medium. In order to maintain the dimensionality of the physical quantities in the system, an auxiliary parameter k was introduced in the derivative operator. This parameter has a dimension of inverse of seconds (sec)-1 and characterizes the existence of fractional time components in the given system. It will be shown that the trajectories of the projectile at different values of γ and different fixed values of velocity v 0 and angle θ, in the fractional approach, are always less than the classical one, unlike the results obtained in other studies. All the results obtained in the ordinary case may be obtained from the fractional case when γ = 1.
Breakup Conditions of Projectile Spectators from Dynamical Observables
Begemann-Blaich, M L
1998-01-01
Momenta and masses of heavy projectile fragments (Z >= 8), produced in collisions of 197Au with C, Al, Cu and Pb targets at E/A = 600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. An analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. The data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. Classical trajectory calculations reproduce the dynamical observables. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found ...
Constant factor approximation to the bounded genus instances of ATSP
Gharan, Shayan Oveis
2009-01-01
We give a constant factor approximation algorithm for the asymmetric traveling salesman problem when the underlying undirected graph of the Held-Karp linear programming relaxation of the problem has orientable bounded genus. Our result also implies the weak version Goddyn's conjecture on the existence of thin trees on graphs with orientable bounded genus.
On Weakly Semicommutative Rings*
Institute of Scientific and Technical Information of China (English)
CHEN WEI-XING; CUI SHU-YING
2011-01-01
A ring R is said to be weakly scmicommutative if for any a, b ∈ R,ab = 0 implies aRb C_ Nil(R), where Nil(R) is the set of all nilpotcnt elements in R.In this note, we clarify the relationship between weakly semicommutative rings and NI-rings by proving that the notion of a weakly semicommutative ring is a proper generalization of NI-rings. We say that a ring R is weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical, and prove that if R is a weakly 2-primal ring which satisfies oα-condition for an endomorphism α of R (that is, ab = 0 （←→） aα(b) ＝ 0 where a, b ∈ R) then the skew polynomial ring R[π; αα]is a weakly 2-primal ring, and that if R is a ring and I is an ideal of R such that I and R/I are both weakly semicommutative then R is weakly semicommutative.Those extend the main results of Liang et al. 2007 (Taiwanese J. Math., 11(5)(2007),1359-1368) considerably. Moreover, several new results about weakly semicommutative rings and NI-rings are included.
Strategies to protect ram accelerator projectiles from in-tube gasdynamic heating
Energy Technology Data Exchange (ETDEWEB)
Bogdanoff, D.W. [Eloret, Sunnyvale, CA (United States)
2000-11-01
A serious problem in advancing ram accelerator technology is the very high in-tube heat transfer rate to the projectile. Herein, we examine a number of strategies for protecting the projectile from gasdynamic heating. Radiation cooling of the projectile and flying the projectile through alternating regions of fuel-oxidizer-diluent drive gas and pure hydrogen are found to be totally unworkable. The ablative cooling technique has serious problems with a substantial retreat of the projectile surface. A transpiration cooling technique using liquid ammonia is calculated to provide adequate protection of the projectile for ram accelerator missions from 3 to 7 or 8 km/sec. Techniques for flying the projectile in pure hydrogen are also examined. One may have a vortex arrangement with a pure hydrogen core surrounded by a fuel-oxidizer-diluent mixture. The projectile may also fly in pure hydrogen while the driving energy is supplied by a deflagrating or detonating solid coating on the tube wall or by electrical energy input. The techniques for flying the projectile in pure hydrogen are judged to be extremely complex and expensive to implement. The transpiration technique appears to be the most viable way to protect projectiles flying in the 4 - 7 km/sec range. (orig.)
Multiplicative Quaternion Extended Kalman Filtering for Nonspinning Guided Projectiles
2013-07-01
micro- electromechanical system ( MEMS ) gyroscopes have been able to measure the spin-rates of fin- stabilized projectiles such as mortars, which...model, the statistics of the gyroscope and accelerometer noise are measureable, and can be easily incorporated into an extended Kalman filtering...tradeoff between affordability, durability, and performance. Automotive-grade MEMS components have been used in the harsh gun-launch environment for
Aerodynamic loads on a ball-obturated tubular projectile
Bry, William Arthur
1982-01-01
Approved for public release, distribution unlimited A tubular projectile is one with a hole bored along its longitudinal axis. The hole presents a problem in getting the round expelled from a gun. Some means of sealing the hole until the round clears the muzzle is required. A ball -obturator offers one practical means of accomplishing this without any accompanying FOD hazard. The ball-obturator, analogous to a common ballvalve, remains closed under the force of the expand...
Measuring the Effects of Lift and Drag on Projectile Motion
Cross, Rod
2012-01-01
The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms[superscript -1] (89.5 mph), it experiences a drag force of about 1.5 N.…
Guiding Supersonic Projectiles Using Optically Generated Air Density Channels
2015-03-24
ideal case, when ( ) (0)T T , the collapse point of the laser spot goes off to infinity as the pulse power approaches the critical power, i.e. 0.6...laser pulse . We propose changing the laser pulse energy from shot-to-shot to build longer effective channels. We find that current femtosecond lasers...systems with multi-millijoules laser pulses could provide trajectory correction of several meters on 5 km trajectories for sub-kilogram projectiles
Projectile - Mass asymmetry systematics for low energy incomplete fusion
Directory of Open Access Journals (Sweden)
Singh Pushpendra P.
2015-01-01
Full Text Available In the present work, low energy incomplete fusion (ICF in which only a part of projectile fuses with target nucleus has been investigated in terms of various entrance channel parameters. The ICF strength function has been extracted from the analysis of experimental excitation functions (EFs measured for different projectile-target combinations from near- to well above- barrier energies in 12C,16O(from 1.02Vb to 1.64Vb+169Tm systems. Experimental EFs have been analysed in the framework statistical model code PACE4 based on the idea of equilibrated compound nucleus decay. It has been found that the value of ICF fraction (FICF increases with incident projectile energy. A substantial fraction of ICF (FICF ≈ 7 % has been accounted even at energy as low as ≈ 7.5% above the barrier (at relative velocity νrel ≈0.027 in 12C+169Tm system, and FICF ≈ 10 % at νrel ≈0.014 in 16O+169Tm system. The probability of ICF is discussed in light of the Morgenstern’s mass-asymmetry systematics. The value of FICF for 16O+169Tm systems is found to be 18.3 % higher than that observed for 12C+169Tm systems. Present results together with the re-analysis of existing data for nearby systems conclusively demonstrate strong competition of ICF with CF even at slightly above barrier energies, and strong projectile dependence that seems to supplement the Morgenstern’s systematics.
Numerical simulation of multiphase cavitating flows around an underwater projectile
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The present simulation investigates the multiphase cavitating flow around an underwater projectile.Based on the Homogeneous Equilibrium Flow assumption,a mixture model is applied to simulate the multiphase cavitating flow including ventilated cavitation caused by air injection as well as natural cavitation that forms in a region where the pressure of liquid falls below its vapor pressure. The transport equation cavitating model is applied.The calculations are executed based on a suite of CFD code.The hyd...
Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation
Norbury, John W.; Adamczyk, Anne; Dick, Frank
2008-01-01
Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.
Structural Analysis of a Cannon-Caliber Electromagnetic Projectile
1993-09-01
Plasma Armature Railgun." IEEE Transactions on Magnetics, vol. 25, no. 1, pp. 256-261, January 1989. Mongeau, P. P. " Inductively Commutated Coilguns ...of the Army position, unless so designated by other authorized documents. The use of trade names or manufacturers’ names in this report does not...electromagnetic (EM) projectile design is evaluated by adopting finite element procedures similar to those employed in the analysis of kinetic energy
Magnus Force of Common Projectile Bodies with Turbulent Layers
Institute of Scientific and Technical Information of China (English)
CHEN Jun
2005-01-01
Calculating formulae of Magnus force on common projectile bodies (cone-shaped and parabola-shaped) with turbulent layers were built based on Magnus theory. The effects of temperature exponential were considered, and curve-fitting approaches were adopted in the research that could give more exact result data. Both flow layer constants and shape constants are presented in Magnus force formulae, which are useful to evaluate Magnus force in different states.
A projectile for a rectangular barreled rail gun
Juanche, Francisco M.
1999-01-01
The Physics Department at the Naval Postgraduate School is developing a concept to overcome the problems that keep present rail guns from being practical weapons. The rails must be replaced often if the rail gun operation is to be continuous. Replacing the rails in present rail gun configurations is time consuming. The Physics Department's design concept uses a rectangular barrel as part of the solution to the problem of replacing the rails. The projectile will require flat surfaces to mainta...
Chunk projectile launch using the Sandia Hypervelocity Launcher Facility
Energy Technology Data Exchange (ETDEWEB)
Chhabildas, L.C.; Trucano, T.G.; Reinhart, W.D.; Hall, C.A.
1994-07-01
An experimental technique is described to launch an intact ``chunk,`` i.e. a 0.3 cm thick by 0.6 cm diameter cylindrical titanium alloy (Ti-6Al-4V) flyer, to 10.2 km/s. The ability to launch fragments having such an aspect ratio is important for hypervelocity impact phenomenology studies. The experimental techniques used to accomplish this launch were similar but not identical to techniques developed for the Sandia HyperVelocity Launcher (HVL). A confined barrel impact is crucial in preventing the two-dimensional effects from dominating the loading response of the projectile chunk. The length to diameter ratio of the metallic chunk that is launched to 10.2 km/s is 0.5 and is an order of magnitude larger than those accomplished using the conventional hypervelocity launcher. The multi-dimensional, finite-difference (finite-volume), hydrodynamic code CTH was used to evaluate and assess the acceleration characteristics i.e., the in-bore ballistics of the chunky projectile launch. A critical analysis of the CTH calculational results led to the final design and the experimental conditions that were used in this study. However, the predicted velocity of the projectile chunk based on CTH calculations was {approximately} 6% lower than the measured velocity of {approximately}10.2 km/S.
Initiation of Detonation in Explosives by Impact of Projectiles
Directory of Open Access Journals (Sweden)
H.S. Yadav
2006-04-01
Full Text Available This paper presents a study of initiation of detonation in explosives by the impact ofprojectiles. The shock wave produced by the impact of projectiles has been considered as thestimulus for initiation of detonation. Three types of projectiles, namely (i flyer plate, (ii flatendedrod, and (iii round-ended rod or a shaped charge jet, have been considered to impact andproduce a shock wave in the explosives. Deriving relations for the parameters of impact-generatedshock wave in the explosives and projectiles, and the sound velocity in the compressed explosives,it has been shown that the difference of kinetic energy of the flyer plate before and after theimpact, which is equal to the total energy of the shock wave in the explosives, leads to criticalenergy criterion for shock initiation of explosives. In this study, the critical criterion has beenused to derive the relations for initiation of explosives by a shaped charge jet, Vj2 D = K0 , whereV j and D denote the velocity and diameter of the jet, and K0 is a constant of the explosive.
Physical Uncertainty Bounds (PUB)
Energy Technology Data Exchange (ETDEWEB)
Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-19
This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.
McDermott, K. H.; Price, M. C.; Cole, M.; Burchell, M. J.
2016-04-01
During hypervelocity impact (>a few km s-1) the resulting cratering and/or disruption of the target body often outweighs interest on the outcome of the projectile material, with the majority of projectiles assumed to be vaporised. However, on Earth, fragments, often metallic, have been recovered from impact sites, meaning that metallic projectile fragments may survive a hypervelocity impact and still exist within the wall, floor and/or ejecta of the impact crater post-impact. The discovery of the remnant impactor composition within the craters of asteroids, planets and comets could provide further information regarding the impact history of a body. Accordingly, we study in the laboratory the survivability of 1 and 2 mm diameter copper projectiles fired onto ice at speeds between 1.00 and 7.05 km s-1. The projectile was recovered intact at speeds up to 1.50 km s-1, with no ductile deformation, but some surface pitting was observed. At 2.39 km s-1, the projectile showed increasing ductile deformation and broke into two parts. Above velocities of 2.60 km s-1 increasing numbers of projectile fragments were identified post impact, with the mean size of the fragments decreasing with increasing impact velocity. The decrease in size also corresponds with an increase in the number of projectile fragments recovered, as with increasing shock pressure the projectile material is more intensely disrupted, producing smaller and more numerous fragments. The damage to the projectile is divided into four classes with increasing speed and shock pressure: (1) minimal damage, (2) ductile deformation, start of break up, (3) increasing fragmentation, and (4) complete fragmentation. The implications of such behaviour is considered for specific examples of impacts of metallic impactors onto Solar System bodies, including LCROSS impacting the Moon, iron meteorites onto Mars and NASA's "Deep Impact" mission where a spacecraft impacted a comet.
Idiopathic isolated orbicularis weakness
MacVie, O P; Majid, M A; Husssin, H M; Ung, T; Manners, R M; Ormerod, I; Pawade, J; Harrad, R A
2012-01-01
Purpose Orbicularis weakness is commonly associated with seventh nerve palsy or neuromuscular and myopathic conditions such as myotonic dystrophy and myasethenia gravis. We report four cases of idiopathic isolated orbicularis weakness. Methods All four cases were female and the presenting symptoms of ocular irritation and epiphora had been present for over 7 years in three patients. All patients had lagophthalmos and three had ectropion. Three patients underwent full investigations which excluded known causes of orbicularis weakness. Two patients underwent oribularis oculi muscle biopsy and histological confirmation of orbicularis atrophy. Results All patients underwent surgery to specifically address the orbicularis weakness with satisfactory outcomes and alleviation of symptoms in all cases. Isolated orbicularis weakness may be a relatively common entity that is frequently overlooked. Conclusion Early recognition of this condition may lead to better management and prevent patients undergoing unnecessary surgical procedures. PMID:22322997
Strain Measurement for Hollow Projectiles During Its Penetration of Concrete Targets
Institute of Scientific and Technical Information of China (English)
王琳; 王富耻; 王鲁; 李树奎
2004-01-01
Gives a new technique to measure the dynic deformation behavior and strain development of a hollow steel projectile during its penetration of concrete targets. Direct strain measurement was performed by applying strain gages attached to the inner walls of the hollow projectile, linked with on-board testing and storage recorder. This on-board test-record system is easy to operate, cost-effective and can provide reasonable, accurate and detailed information. Obverse ballistic experiments were carried out on ogival-nose hollow projectiles normally impacting concrete targets at velocities from 150 m/s to 300 m/s. The deformation process of projectiles was measured, recorded and played back. Profiles of voltage-time relationship were successively obtained and transfered to strain-time relationship with the aid of calibration tables. It was found that projectiles go through a series of compression and tension deformations intermittently. Relationships between strain development and projectile deformation process were discussed.
Singh, V; Pathak, Ramji
2010-01-01
The emission of projectile fragments alpha has been studied in ^{84}Kr interactions with nuclei of the nuclear emulsion detector composition at relativistic energy below 2 GeV per nucleon. The angular distribution of projectile fragments alpha in terms of transverse momentum could not be explained by a straight and clean-cut collision geometry hypothesis of Participant - Spectator (PS) Model. Therefore, it is assumed that projectile fragments alpha were produced from two separate sources that belong to the projectile spectator region differing drastically in their temperatures. It has been clearly observed that the emission of projectile fragments alpha are from two different sources. The contribution of projectile fragments alpha from contact layer or hot source is a few percent of the total emission of projectile fragments alphas. Most of the projectile fragments alphas are emitted from the cold source. It has been noticed that the temperature of hot and cold regions are dependent on the projectile mass num...
Learning within bounds and dream sleep
Geszti, T.; Pazmandi, F.
1987-12-01
In a bounded-synapses version of Hopfield's model (1984) for neural networks the quasienergy of a given memory, which is approximately equal to the depth of the corresponding energy well is calculated exactly by treating the change of a synaptic strength on learning as a random walk within bounds. Attractors corresponding to stored memories are found to be considerably flattened before serious retrieval errors arise. This allows dream sleep to be interpreted as random recall and relearning of fresh strong memories, in order to stack them on top of weak incidental memory imprints of a day.
Institute of Scientific and Technical Information of China (English)
Evgeny A. KHMELNIKOV; Alexey V. STYROV; Konstantin V. SMAGIN; Natalia S. KRAVCHENKO; Valery L. RUDENKO; Vladimir I. FALALEEV; Sergey S. SOKOLOV; Artem V. SVIDINSKY; Natalia F. SVIDINSKAYA
2015-01-01
The experimental results and numerical modeling of penetration process of fluoropolymer projectiles in aluminum-based targets are pre-sented. Analysis of mathematical models for interaction of elastoplastic projectile and target without taking additional energy released during interaction of fluoropolymer and aluminum into consideration is carried out. Energy fraction which is spent effectively on the increase in cavity volume is determined. The experimental and calculated results of penetration by combined and inert projectiles are compared.
Dissociation of relativistic projectiles with the continuum-discretized coupled-channels method
Ogata, K
2008-01-01
Relativistic effects in the breakup of weakly-bound nuclei at intermediate energies are studied and compared with non-relativistic calculations. We show that relativistic corrections lead to larger breakup cross sections. Since many of these reactions can only be treated correctly if one accounts for the coupling between states in the continuum, we show that continuum-discretized coupled-channels calculations are also be strongly influenced by relativistic effects.
Dynamics of drag and force distributions for projectile impact in a granular medium
Ciamarra, M P; Lee, A T; Goldman, D I; Swinney, H L; Ciamarra, Massimo Pica; Lara, Antonio H.; Lee, Andrew T.; Goldman, Daniel I.; Swinney, Harry L.
2003-01-01
Our experiments and molecular dynamics simulations on a projectile penetrating a two-dimensional granular medium reveal that the mean deceleration of the projectile is constant and proportional to the impact velocity. Thus, the time taken for a projectile to decelerate to a stop is independent of its impact velocity. The simulations show that the probability distribution function of forces on grains is time-independent during a projectile's penetration of the medium. At all times the force distribution function decreases exponentially for large forces.
Weak decays. [Lectures, phenomenology
Energy Technology Data Exchange (ETDEWEB)
Wojcicki, S.
1978-11-01
Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references
Weakly asymptotically hyperbolic manifolds
Allen, Paul T; Lee, John M; Allen, Iva Stavrov
2015-01-01
We introduce a class of "weakly asymptotically hyperbolic" geometries whose sectional curvatures tend to $-1$ and are $C^0$, but are not necessarily $C^1$, conformally compact. We subsequently investigate the rate at which curvature invariants decay at infinity, identifying a conformally invariant tensor which serves as an obstruction to "higher order decay" of the Riemann curvature operator. Finally, we establish Fredholm results for geometric elliptic operators, extending the work of Rafe Mazzeo and John M. Lee to this setting. As an application, we show that any weakly asymptotically hyperbolic metric is conformally related to a weakly asymptotically hyperbolic metric of constant negative curvature.
de Rham, Claudia; Tolley, Andrew J; Zhou, Shuang-Yong
2016-01-01
Recently, aLIGO has announced the first direct detections of gravitational waves, a direct manifestation of the propagating degrees of freedom of gravity. The detected signals GW150914 and GW151226 have been used to examine the basic properties of these gravitational degrees of freedom, particularly setting an upper bound on their mass. It is timely to review what the mass of these gravitational degrees of freedom means from the theoretical point of view, particularly taking into account the recent developments in constructing consistent massive gravity theories. Apart from the GW150914 mass bound, a few other observational bounds have been established from the effects of the Yukawa potential, modified dispersion relation and fifth force that are all induced when the fundamental gravitational degrees of freedom are massive. We review these different mass bounds and examine how they stand in the wake of recent theoretical developments and how they compare to the bound from GW150914.
Bounding species distribution models
Directory of Open Access Journals (Sweden)
Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE
2011-10-01
Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].
Bounding Species Distribution Models
Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.
2011-01-01
Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].
Hosoya, Akio
2010-01-01
We develop a formal theory of the weak values with emphasis on the consistency conditions and a probabilistic interpretation in the counter-factual processes. We present the condition for the choice of the post-selected state to give a negative weak value of a given projection operator and strange values of an observable in general. The general framework is applied to Hardy's paradox and the spin $1/2$ system to explicitly address the issues of counter-factuality and strange weak values. The counter-factual arguments which characterize the paradox specifies the pre-selected state and a complete set of the post-selected states clarifies how the strange weak values emerge.
Mayorov, D. A.; Werke, T. A.; Alfonso, M. C.; Bennett, M. E.; Folden, C. M., III
2013-04-01
Evaporation residue excitation functions for ^48Ca, ^50Ti + ^159Tb and ^48Ca, ^54Cr + ^162 Dy were measured at Texas A&M University using the vacuum spectrometer MARS. The produced residues are weakly deformed nuclei near the N = 126 shell closure. However, the production cross sections are insensitive to the associated shell stabilization to the fission barrier, an observation previously reported in literature. The ratio of maximum production cross sections between the ^48Ca/^50Ti and ^48Ca/^54Cr reactions is 47 and 7100, respectively. These substantial differences can be reproduced in theoretical calculations by inclusion of collective enhancements during de-excitation of the compound nucleus. The competition between quasifission and complete fusion further contributes to the observed separation in the excitation functions. Model-dependent estimates of the compound nucleus formation probability, PCN, yield ratios of PCN(^48Ca + ^159 Tb) / PCN(^50Ti + ^159 Tb) 2.5 and PCN(^48Ca + ^162Dy) / PCN(^54Cr + ^162Dy) 5. Heavy-ion fusion reactions with ^48Ca, ^50Ti, and ^54Cr projectiles are of interest due to modern-day efforts to synthesize superheavy elements 119 and 120 in warm fusion reactions with projectiles having Z 20.
Ihani, J. S.; Luna, H.; Wolff, W.; Montenegro, E. C.
2013-06-01
Neq + (q = 1,2,3,4) ionization and charge exchange cross sections (total electron capture, single electron capture and transfer ionization) in the collisions with Li3+, with energies between 100 and 900 keV amu-1, and C3+, with energies between 250 and 500 keV amu-1 are reported. Bare Li3+ projectiles give a key benchmark to study the role of projectile screening in collisions involving dressed projectile ions, and the measurements have shown a strong screening effect for all n-fold recoil ion charge states in the ionization channel which, unexpectedly, does not appear for transfer ionization.
Multicolor Bound Soliton Molecule
Luo, Rui; Lin, Qiang
2015-01-01
We show a new class of bound soliton molecule that exists in a parametrically driven nonlinear optical cavity with appropriate dispersion characteristics. The composed solitons exhibit distinctive colors but coincide in time and share a common phase, bound together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor bound soliton molecule shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which may open up a great avenue towards versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy.
Fracture of the humerus caused by a slingshot projectile
Directory of Open Access Journals (Sweden)
Dar Tahir Ahmed
2012-02-01
Full Text Available 【Abstract】Unconventional and 憂on-lethal?weapons are being used in crowd control regularly nowadays. The use of these arms is not risk-free. The paramilitary forces in 2010 used the old fashioned slingshots for crowd control in Kashmir. A young male suffered from a fracture of the distal humerus due to a marble from a slingshot. He was managed by debridement and plaster splintage. Use of apparently innocuous weapons for crowd control is not without risk, as the projectiles fired from them can achieve high velocities and cause significant damage. Kew words: Humeral fractures; Conducted energy weapon injuries; Firearms
Analysis of vertical projectile penetration in granular soils
Boguslavskii, Yu; Drabkin, S.; Salman, A.
1996-03-01
A model of vertical dynamic penetration of projectiles in granular soils was developed based on known experiments and the theory of dimensions. The depth of penetration is derived as a function of initial velocity and material properties. Velocity and acceleration are obtained as functions of time and depth of penetration. Under certain conditions two acceleration peaks are observed, an initial one due to dynamic and a second one due to static characteristics of penetration. Static properties of soils are derived using dynamic measurements. Numerical examples are provided. Theoretical and experimental results coincide reasonably well.
Comment on ‘Wind-influenced projectile motion’
Winther Andersen, Poul
2015-11-01
We comment on the article ‘Wind-influenced projectile motion’ by Bernardo et al (2015 Eur. J. Phys. 36 025016) where they examine the trajectory of a particle that is subjected to gravity and a linear air resistance plus the influence from the wind. They find by using the Lambert W function that the particle's trajectory for a special angle, the critical angle {θ }{{C}}, between the initial velocity and the horizontal is part of a straight line. In this comment we will show that this result can be proved without using the Lambert W function which is not that well known to beginning students of physics.
Aerodynamic Jump: A Short Range View for Long Rod Projectiles
Mark Bundy
2001-01-01
It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift ...
Fracture of the humerus caused by a slingshot projectile
Institute of Scientific and Technical Information of China (English)
Tahir Ahmed Dar; Riyaz Ahmed Dar; Mubashir Rashid; Shabir Ahmed Dhar
2011-01-01
Unconventional and 'non-lethal' weapons are being used in crowd control regularly nowadays. The use of these arms is not risk-free. The paramilitary forces in 2010 used the old fashioned slingshots for crowd control in Kashmir. A young male suffered from a fracture of the distal humerus due to a marble from a slingshot. He was managed by debridement and plaster splintage. Use of apparently innocuous weapons for crowd control is not without risk, as the projectiles fired from them can achieve high velocities and cause significant damage.
Development of Subcaliber Projectiles for the Hispano-Suiza Gun
1943-11-01
SUBOALIBER PRO JECTILES FOR THE HISPANO- SUIZA GUN TECMEPUC-lT, TJ 0 ABERDEEN P i7 CiiTDM. ST~lU-TL A T, 1?7,, by CTa * UG r C. L. Critchfield I P I, 2...FOR THE HISPANO- SUIZA GUN by C. L. Critchfield and J. McG. Millar TECiN•IcAr LITPP.py ABERDE " , :PT’- , Approved on November 12, 1943 for submission...Hispano- Suiza gun ....... 6 2. 20-ram sabot-projectiles of Series B and C ......... ... 12 3. Type C2 at h ft from the muzzle . .......... . 13 h. The 20
Response of composite laminates on impact of high velocity projectiles
Energy Technology Data Exchange (ETDEWEB)
Siva Kumar, K.; Balakrishna Bhat, T. [Defence Metallurgical Research Lab., Hyderabad (India)
1998-05-01
Past work on damage of composites subjected to low velocity and hypervelocity impact has been briefly reviewed and some new results on the glass fibre reinforced plastic composite laminates impacted with high velocity projectiles are presented. The effect of thickness of the laminates and the angle of attack on the energy absorption by the composite laminates and the area of damage caused by impact are described. A correlation is made between the energy absorption and the area of damage. Also described is a new method called infiltration radiography useful for assessing the damage in laminated composites upon ballistic impact. (orig.) 28 refs.
Secondary lead poisoning a projectile housed in the human body
Directory of Open Access Journals (Sweden)
Juan Bernardo Gerstner Garcés
2012-09-01
Full Text Available 72 1024x768 Normal 0 21 false false false ES X-NONE X-NONE With the increase of violence and use of firearms in Colombia, we may see more cases of lead poisoning in our environment, and must be prepared to diagnose and treat them. Subtle signs and symptoms as unexplained anemia, gastro-intestinal discomfort and abdominal cramps, and severe as changes in behavior and neurological status, nephropathy, and unexplained death, may be associated with a history of gunshot wounds and projectiles in the human body, and must offer the patient knowledge and management strategies of pathology.
Bimodal pattern in the fragmentation of Au quasi-projectiles
Bruno, M; D'Agostino, M; Gramegna, F; Gulminelli, F; Vannini, G
2006-01-01
Signals of bimodality have been investigated in experimental data of quasi-projectile decay produced in Au+Au collisions at 35 AMeV. This same data set was already shown to present several signals characteristic of a first order, liquid-gas-like phase transition. For the present analysis, events are sorted in bins of transverse energy of light charged particles emitted by the quasi-target source. A sudden change in the fragmentation pattern is observed from the distributions of the asymmetry of the two largest fragments, and the charge of the largest fragment. This latter distribution shows a bimodal behavior. The interpretation of this signal is discussed.
Increasing Student Engagement and Enthusiasm: A Projectile Motion Crime Scene
Bonner, David
2010-05-01
Connecting physics concepts with real-world events allows students to establish a strong conceptual foundation. When such events are particularly interesting to students, it can greatly impact their engagement and enthusiasm in an activity. Activities that involve studying real-world events of high interest can provide students a long-lasting understanding and positive memorable experiences, both of which heighten the learning experiences of those students. One such activity, described in depth in this paper, utilizes a murder mystery and crime scene investigation as an application of basic projectile motion.
Joyal, André
2009-01-01
We define weak units in a semi-monoidal 2-category $\\CC$ as cancellable pseudo-idempotents: they are pairs $(I,\\alpha)$ where $I$ is an object such that tensoring with $I$ from either side constitutes a biequivalence of $\\CC$, and $\\alpha: I \\tensor I \\to I$ is an equivalence in $\\CC$. We show that this notion of weak unit has coherence built in: Theorem A: $\\alpha$ has a canonical associator 2-cell, which automatically satisfies the pentagon equation. Theorem B: every morphism of weak units is automatically compatible with those associators. Theorem C: the 2-category of weak units is contractible if non-empty. Finally we show (Theorem E) that the notion of weak unit is equivalent to the notion obtained from the definition of tricategory: $\\alpha$ alone induces the whole family of left and right maps (indexed by the objects), as well as the whole family of Kelly 2-cells (one for each pair of objects), satisfying the relevant coherence axioms.
Energy Technology Data Exchange (ETDEWEB)
Della-Negra, S.; Gardes, D.; Le Beyec, Y.; Waast, B.
1991-12-31
Metal clusters and molecules are the one mean to realize simultaneous impacts of several atoms on a reduced surface({approx}100A). The interaction characteristics is the non-linearity of energy deposition; the perturbation that the cluster produces, is above than the sum of the perturbation induced by its components, taken separately. The purpose of ORION project is to accelerate these new projectiles at ORSAY Tandem. The considered mass range is from 100 Daltons to 100 000 Daltons and energy range from MeV to GeV.
DEFF Research Database (Denmark)
Jensen, Jens Højgaard
2014-01-01
are independent of the Reynolds number and proportional to the square of the projectile's velocity. In this paper, by dimensional analysis, the latter assumption is shown to be incorrect for forces dependent on the angular velocity of the projectile, e.g. the lift force....
Semi-theoretical analyses of the concrete plate perforated by a rigid projectile
Institute of Scientific and Technical Information of China (English)
Hao Wu; Qin Fang; Ya-Dong Zhang; Zi-Ming Gong
2012-01-01
Based on the three-stage perforation model,a semi-theoretical analysis is conducted for the ballistic performances of a rigid kinetic projectile impacting on concrete plates.By introducing the projectile resistance coefficients,dimensionless formulae are proposed for depth of penetration (DOP),perforation limit thickness,ballistic limit velocity,residual velocity and perforation ratio,with the projectile nosed geometries and projectile-target interfacial friction taken into account.Based on the proposed formula for DOP and lots of penetration tests data of normal and high strength concrete targets,a new expression is obtained for target strength parameter.By comparisons between the results of the proposed formulae and existing empirical formulae and large amount of projectile penetration or perforation tests data for monolithic and segmented concrete targets,the validations of the proposed formulae are verified.It is found that the projectile-target interfacial friction can be neglected in the predictions of characteristic ballistic parameters.The dimensionless DOP for low-to-mid speed impacts of non-flat nosed projectiles increases almost linearly with the impact factor by a coefficient of 2/(πS).The anti-perforation ability of the multilayered concrete plates is dependent on both the target plate thickness and the projectile impact velocity.The variation range of the perforation ratio is 1-3.5 for concrete targets.
An Analytic Approach to Projectile Motion in a Linear Resisting Medium
Stewart, Sean M.
2006-01-01
The time of flight, range and the angle which maximizes the range of a projectile in a linear resisting medium are expressed in analytic form in terms of the recently defined Lambert W function. From the closed-form solutions a number of results characteristic to the motion of the projectile in a linear resisting medium are analytically confirmed,…
Projectile Motion on an Inclined Misty Surface: I. Capturing and Analysing the Trajectory
Ho, S. Y.; Foong, S. K.; Lim, C. H.; Lim, C. C.; Lin, K.; Kuppan, L.
2009-01-01
Projectile motion is usually the first non-uniform two-dimensional motion that students will encounter in a pre-university physics course. In this article, we introduce a novel technique for capturing the trajectory of projectile motion on an inclined Perspex plane. This is achieved by coating the Perspex with a thin layer of fine water droplets…
Solution to Projectile Motion with Quadratic Drag and Graphing the Trajectory in Spreadsheets
Benacka, Jan
2010-01-01
This note gives the analytical solution to projectile motion with quadratic drag by decomposing the velocity vector to "x," "y" coordinate directions. The solution is given by definite integrals. First, the impact angle is estimated from above, then the projectile coordinates are computed, and the trajectory is graphed at various launch angles and…
Benacka, Jan
2015-01-01
This paper provides the formula for the elevation angle at which a projectile has to be fired in a vacuum from a general position to hit a target at a given distance. A spreadsheet application that models the trajectory is presented, and the problem of finding the points of shot and impact of a projectile moving in a vacuum if three points of the…
Primer Output and Initial Projectile Motion for 5.56- and 7.62-mm Ammunition
2015-09-01
ARL-TR-7479 ● SEP 2015 US Army Research Laboratory Primer Output and Initial Projectile Motion for 5.56- and 7.62-mm Ammunition...Output and Initial Projectile Motion for 5.56- and 7.62-mm Ammunition by John J Ritter and Richard A Beyer Weapons and Materials Research...
Reaction dynamics of {sup 34-38}Mg projectile with carbon target using Glauber model
Energy Technology Data Exchange (ETDEWEB)
Shama, Mahesh K., E-mail: maheshphy82@gmail.com [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Department of Applied Sciences, Chandigarh Engineering College, Landran Mohali-140307 (India); Panda, R. N. [Department of Physics, ITER, Shiksha O Anusandhan University, Bhubaneswar-751030 (India); Sharma, Manoj K. [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Patra, S. K. [Institute of Physics, Sachivalaya marg Bhubneswar-751005 (India)
2015-08-28
We have studied nuclear reaction cross-sections for {sup 34-38}Mg isotopes as projectile with {sup 12}C target at projectile energy 240AMeV using Glauber model with the conjunction of densities from relativistic mean filed formalism. We found good agreement with the available experimental data. The halo status of {sup 37}Mg is also investigated.
Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction
Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.
2009-01-01
We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…
Projectile Nose Mass Abrasion of High-Speed Penetration into Concrete
Directory of Open Access Journals (Sweden)
Haijun Wu
2012-01-01
Full Text Available Based on the dynamic spherical cavity expansion theory of concrete and the analysis of experimental data, a mass abrasion model of projectile considering the hardness of aggregates, the relative strength of target and projectile, and the initial impact velocity is constructed in this paper. Furthermore, the effect of mass abrasion on the penetration depth of projectile and the influence of hardness of aggregates and strength of projectile on penetration depth and mass loss are also analyzed. The results show that, for the ogive-nose projectile with the CRH of 3 and aspect ratio of 7 penetrating the concrete of 35 MPa, the “rigid-body penetration” model is available when the initial impact velocity is lower than 800 m/s. However, when the initial impact velocity is higher than 800 m/s, the “deforming/eroding body penetration” model should be adopted. Through theoretical analysis and numerical calculation, the results indicate that the initial impact velocity is the most important factor of mass abrasion. The hardness of aggregates and the strength of projectile are also significant factors. But relatively speaking, the sensitivity of strength of projectile to mass abrasion is higher, which indicates that the effect of projectile material on mass abrasion is more dramatic than the hardness of aggregates.
Real-time estimation of projectile roll angle using magnetometers: in-lab experimental validation
Changey, S.; Pecheur, E.; Wey, P.; Sommer, E.
2013-12-01
The knowledge of the roll angle of a projectile is decisive to apply guidance and control law. For example, the goal of ISL's project GSP (Guided Supersonic Projectile) is to change the flight path of an airdefence projectile in order to correct the aim error due to the target manoeuvres. The originality of the concept is based on pyrotechnical actuators and onboard sensors which control the angular motion of the projectile. First of all, the control of the actuators requires the precise control of the roll angle of the projectile. To estimate the roll angle of the projectile, two magnetometers are embedded in the projectile to measure the projection of the Earth magnetic field along radial axes of the projectiles. Then, an extended Kalman filter (EKF) is used to compute the roll angle estimation. As the rolling frequency of the GSP is about 22 Hz, it was easy to test the navigation algorithm in laboratory. In a previous paper [1], the In-Lab demonstration of this concept showed that the roll angle estimation was possible with an accuracy of about 1◦ . In this paper, the demonstration is extended to high-speed roll rate, up to 1000 Hz. Thus, two magnetometers, a DSP (Digital Signal Processor) and a LED (Light Eminent Diode), are rotated using a pneumatic motor; the DSP runs an EKF and a guidance algorithm to compute the trigger times of the LED. By using a high-speed camera, the accuracy of the method can be observed and improved.
Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction
Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.
2009-01-01
We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…
Impact perforation of polymer–metal laminates: Projectile nose shape sensitivity
National Research Council Canada - National Science Library
Mohagheghian, I; McShane, G.J; Stronge, W.J
2016-01-01
... into the influence of a polymer coating on the resistance to projectile perforation of a target plate remain relatively limited. It has been shown by Mohagheghian et al., in press that a polymer layer can significantly enhance the impact perforation resistance of a thin metallic plate struck by a blunt-nosed projectile. When placed on the impacted (proximal) fa...
Projectile charge state dependent sputtering of solid surfaces
Hayderer, G
2000-01-01
dependence on the ion kinetic energy. This new type of potential sputtering not only requires electronic excitation of the target material, but also the formation of a collision cascade within the target in order to initiate the sputtering process and has therefore been termed kinetically assisted potential sputtering. In order to study defects induced by potential sputtering on the atomic scale we performed measurements of multiply charged Ar ion irradiated HOPG (highly oriented pyrolitic graphite) samples with scanning tunneling microscopy (STM). The only surface defects found in the STM images are protrusions. The mean diameter of the defects increases with projectile charge state while the height of the protrusions stays roughly the same indicating a possible pre-equilibrium effect of the stopping of slow multiply charged projectiles in HOPG. Total sputter yields for impact of slow singly and multiply charged ions on metal- (Au), oxide- (Al2O3, MgO) and alkali-halide surfaces (LiF) have been measured as a...
Fiber-interferometric detection of gun-launched projectiles
Goodwin, Peter M.; Marshall, Bruce R.; Gustavsen, Richard L.; Lang, John M.; Pacheco, Adam H.; Loomis, Eric N.; Dattelbaum, Dana M.
2017-01-01
We are developing a new diagnostic useful for the non-invasive detection of projectile passage in the launch tube of a gas gun. The sensing element consists of one or more turns of single-mode optical fiber that is epoxy-bonded around the external circumference of the launch tube. The hoop strain induced in the launch tube by the passage of the projectile causes a momentary expansion of the fiber loop. This transient change in path length is detected with high sensitivity using a fiber optic-based interferometer developed by the NSTec Special Technologies Laboratory. We have fielded this new diagnostic, along with fiber optic Bragg grating (FBG) strain gauges we previously used for this purpose, on a variety of gas guns used for shock compression studies at Los Alamos and Sandia National Laboratories. We anticipate that, when coupled with a broad-range analog demodulator circuit, the fiber optic interferometer will have improved dynamic range over that of the FBG strain gauge approach. Moreover, in contrast to the FBG strain gauge which is somewhat temperature sensitive, the interferometric approach requires no alignment immediately prior to the experiment and is therefore easier to implement. Both approaches provide early, pre-event signals useful for triggering high-latency diagnostics.
Study on Overall Concept Planning of Terminal Correction Mortar Projectiles
Institute of Scientific and Technical Information of China (English)
XU Jin-xiang
2008-01-01
The system composition, the operational principle of terminal correction mortar projectiles (TCMP) and the concept planning design of TCMP are researched in this paper. An overall design and aerodynamic configuration layout for TCMP are made in this paper, and its aerodynamic coefficients are calculated by using computational fluid dynamics (CFD) software. Test results of TCMP simulated ballistic projectiles indicate the designed TCMP can satisfy the interior ballistic demand and has a fine flight stability. The drag coefficients identified from the radar velocity-time data are in accord with the CFD computed results. According to the exposure frequency of the ground laser designator, a four-quadrant impulse correction scheme and a high exposure frequency impulse correction scheme are brought. The latter can calculate the target azimuth angle by counting the times of the facula passing through one quadrant. Simulation results also show that the guidance precision of the velocity pursuit is higher than that of the body pursuit, and the detector axis is less circuitous. Researches on the typical trajectory indicate that the terminal impulse correction can improve the hit precision of TCMP remarkably.
Target and Projectile: Material Effects on Crater Excavation and Growth
Anderson, J. L. B.; Burleson, T.; Cintala, Mark J.
2010-01-01
Scaling relationships allow the initial conditions of an impact to be related to the excavation flow and final crater size and have proven useful in understanding the various processes that lead to the formation of a planetary-scale crater. In addition, they can be examined and tested through laboratory experiments in which the initial conditions of the impact are known and ejecta kinematics and final crater morphometry are measured directly. Current scaling relationships are based on a point-source assumption and treat the target material as a continuous medium; however, in planetary-scale impacts, this may not always be the case. Fragments buried in a megaregolith, for instance, could easily approach or exceed the dimensions of the impactor; rubble-pile asteroids could present similar, if not greater, structural complexity. Experiments allow exploration into the effects of target material properties and projectile deformation style on crater excavation and dimensions. This contribution examines two of these properties: (1) the deformation style of the projectile, ductile (aluminum) or brittle (soda-lime glass) and (2) the grain size of the target material, 0.5-1 mm vs. 1-3 mm sand.
A new calibration algorithms of spinning projectile aerodynamic parameters
Institute of Scientific and Technical Information of China (English)
CONG Ming-yu; ZHANG Wei; WANG Li-ping
2005-01-01
This paperdemonstrates that the application of calibration algorithms of aerodynamic parameters for the trajectory of spinning projectile is successful. First, from the point of view of the trajectory simulation, a general summary of well-known trajectory models is given. A five degrees of freedom (5 DOF) model is developed that can match the projectile motion essentially in the vertex region, and the results obtained by 5 DOF model are in close agreement with those of a more sophisticated 6 DOF model for elevation angles above 45 degrees. Secondly, the calibration algorithms have been developed and are summarized. The methods of calibrating the flight trajectory models are compared, and these methods are shown to be effective in the representative cases. In addition, the method of Mach number calibration (MNC) is presented; some possible areas in MNC for further investigation are indicated together with benefits to be gained. The utilization of MNC schemes not only allow a worthwhile reduction of calibration rounds firing in range and accuracy (R&A) trial and production of firing tables (PFT) test, but also make PFT and fire control data (FCD) more cost effective.
Evidence for a large radius of the 11Be projectile
So, W. Y.; Choi, K. S.; Cheoun, Myung-Ki; Kim, K. S.
2016-05-01
We investigate ratios of the elastic scattering cross section to Rutherford cross section, PE, and angular distributions of breakup cross section by using an optical model which exploits various long-range dynamic polarization potentials as well as short-range nuclear bare potentials for the 11Be projectile. From these simultaneous analyses, we extract a large radius of a halo projectile from the experimental data for PE and the angular distribution of the breakup cross section of the 11Be + 64Zn and 11 + 120Sn systems. It results from the fact that a large radius for the long-range nuclear potential is more reasonable for properly explaining these data simultaneously. The extracted reduced interaction radius turns out to be r0=3.18 ˜3.61 fm for 11Be nucleus, which is larger than the conventional value of r0=1.1 ˜1.5 fm used in the standard radius form R =r0A1 /3 . Furthermore, the larger radius as well as the normalization constant N is shown to be important for understanding Coulomb dipole strength distribution.
A projectile-oriented, design study for a cannon-caliber electromagnetic launcher
Zielinski, Alexander E.
1993-01-01
In the design of an efficient gun system the terminal performance must be considered in conjunction with the required input energy. Power conversion for EM acceleration can involve an arduous assessment of numerous, complex components. Results for integrating a finned-rod with a solid armature are here presented. An evaluation is conducted for a rod-projectile launched from a 23 mm, round-bore augmented railgun. We evaluate the projectile design by considering launch, flight, and terminal effects. Four capacitor-based pulsed power supply systems are considered for the launcher. The host vehicle weight limit and largest number of projectiles stowed provide guidance in selecting the optimum configuration. System weight is estimated. Simple scaling for power components is provided to further appraise launcher feasibility. Projectile effectiveness is evaluated at the target using a weapons simulation code and a similar-caliber, conventionally launched projectile.
Design and performance of Sandia`s contactless coilgun for 50 mm projectiles
Energy Technology Data Exchange (ETDEWEB)
Kaye, R.J.; Cnare, E.C.; Cowan, M.; Duggin, B.W.; Lipinski, R.J.; Marder, B.M. [Sandia National Labs., Albuquerque, NM (United States); Douglas, G.M. [Rockwell Power Systems Co., Albuquerque, NM (United States); Shimp, K.J. [EG and G, Inc., Albuquerque, NM (United States)
1991-12-31
A multi-stage, contactless coilgun is being designed to demonstrate the applicability of this technology to accelerate nominal 50 mm (2 inch) diameter projectiles to velocities of 3 km/s. Forty stages of this design (Phase 1 coilgun) will provide a testbed for coil designs and system components while accelerating 200 to 400 gram projectiles to 1 km/s. We have successfully qualified the Phase 1 gun by operating 40 stages at half energy (10 kJ stored/stage) accelerating 340 gram, room-temperature, aluminum-armature projectiles to 406 m/s. We expect to accelerate 200 gram projectiles cooled to {minus}196{degrees}C to three times this velocity when operating at full energy. This paper describes the design and performance of the Phase 1 coilgun and includes discussion of coil development, projectile design, capacitor banks, firing system, and integration. 10 refs.
Design and performance of Sandia's contactless coilgun for 50 mm projectiles
Energy Technology Data Exchange (ETDEWEB)
Kaye, R.J.; Cnare, E.C.; Cowan, M.; Duggin, B.W.; Lipinski, R.J.; Marder, B.M. (Sandia National Labs., Albuquerque, NM (United States)); Douglas, G.M. (Rockwell Power Systems Co., Albuquerque, NM (United States)); Shimp, K.J. (EG and G, Inc., Albuquerque, NM (United States))
1991-01-01
A multi-stage, contactless coilgun is being designed to demonstrate the applicability of this technology to accelerate nominal 50 mm (2 inch) diameter projectiles to velocities of 3 km/s. Forty stages of this design (Phase 1 coilgun) will provide a testbed for coil designs and system components while accelerating 200 to 400 gram projectiles to 1 km/s. We have successfully qualified the Phase 1 gun by operating 40 stages at half energy (10 kJ stored/stage) accelerating 340 gram, room-temperature, aluminum-armature projectiles to 406 m/s. We expect to accelerate 200 gram projectiles cooled to {minus}196{degrees}C to three times this velocity when operating at full energy. This paper describes the design and performance of the Phase 1 coilgun and includes discussion of coil development, projectile design, capacitor banks, firing system, and integration. 10 refs.
Morales, Roberto; Casas, David
2016-01-01
The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann \\textit{et al.} in the 90's. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections, and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections, and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experime...
Mathematical Model to Simulate the Trajectory Elements ofan Artillery Projectile Proof Shot
Directory of Open Access Journals (Sweden)
K.K. Chand
2007-01-01
Full Text Available In external ballistics of a conventional spin-stabilised artillery projectile, there are a numberof trajectory models developed for computing trajectory elements having varying degrees ofcomplexity. The present study attempts to propose a single mathematical model, viz., simplifiedpoint-mass/simple particle trajectory model to simulate the trajectory elements of a typical spin-stabilised flat-head artillery projectile proof shot. Due to difficulties in the projectile shape andsize, and the complicated nature of air resistance, an accurate mathematical prediction of thetrajectory is difficult. To simplify the computations, the governing equations of motion of theprojectile have been simplified and assumed that the projectile is a particle and the only forcesacting on the projectile are drag and gravity. With this model, trajectory elements have beengenerated and compared with experimental results obtained in the field test. The measuringinstrument used in this case is a Doppler radar.
Earliest stone-tipped projectiles from the Ethiopian rift date to >279,000 years ago.
Sahle, Yonatan; Hutchings, W Karl; Braun, David R; Sealy, Judith C; Morgan, Leah E; Negash, Agazi; Atnafu, Balemwal
2013-01-01
Projectile weapons (i.e. those delivered from a distance) enhanced prehistoric hunting efficiency by enabling higher impact delivery and hunting of a broader range of animals while reducing confrontations with dangerous prey species. Projectiles therefore provided a significant advantage over thrusting spears. Composite projectile technologies are considered indicative of complex behavior and pivotal to the successful spread of Homo sapiens. Direct evidence for such projectiles is thus far unknown from >80,000 years ago. Data from velocity-dependent microfracture features, diagnostic damage patterns, and artifact shape reported here indicate that pointed stone artifacts from Ethiopia were used as projectile weapons (in the form of hafted javelin tips) as early as >279,000 years ago. In combination with the existing archaeological, fossil and genetic evidence, these data isolate eastern Africa as a source of modern cultures and biology.
Design and performance of Sandia's contactless coilgun for 50 mm projectiles
Kaye, Ronald J.; Cnare, Eugene C.; Cowan, M.; Duggin, Billy W.; Lipinski, Ronald J.; Marder, Barry M.; Douglas, Gary M.; Shimp, Kenneth J.
1991-10-01
A multi-stage, contactless coilgun is being designed to demonstrate the applicability of this technology to accelerate nominal 50 mm (2 inch) diameter projectiles to velocities of 3 km/s. Forty stages of this design (Phase 1 coilgun) will provide a testbed for coil designs and system components while accelerating 200 to 400 gram projectiles to 1 km/s. We have successfully qualified the Phase 1 gun by operating 40 stages at half energy (10 kJ stored/stage) accelerating 340 gram, room-temperature, aluminum-armature projectiles to 406 m/s. We expect to accelerate 200 gram projectiles cooled to -196 C to three times this velocity when operating at full energy. This paper describes the design and performance of the Phase 1 coilgun and includes discussion of coil development, projectile design, capacitor banks, firing system, and integration.
Weak gravity conjecture and effective field theory
Saraswat, Prashant
2017-01-01
The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.
The weak gravity conjecture and scalar fields
Palti, Eran
2017-08-01
We propose a generalisation of the Weak Gravity Conjecture in the presence of scalar fields. The proposal is guided by properties of extremal black holes in N=2 supergravity, but can be understood more generally in terms of forbidding towers of stable gravitationally bound states. It amounts to the statement that there must exist a particle on which the gauge force acts more strongly than gravity and the scalar forces combined. We also propose that the scalar force itself should act on this particle stronger than gravity. This implies that generically the mass of this particle decreases exponentially as a function of the scalar field expectation value for super-Planckian variations, which is behaviour predicted by the Refined Swampland Conjecture. In the context of N=2 supergravity the Weak Gravity Conjecture bound can be tied to bounds on scalar field distances in field space. Guided by this, we present a general proof that for any linear combination of moduli in any Calabi-Yau compactification of string theory the proper field distance grows at best logarithmically with the moduli values for super-Planckian distances.
Finite Element Modeling of Transient Temperatures in a Small-Caliber Projectile
Directory of Open Access Journals (Sweden)
M. B. Thomas
2010-01-01
Full Text Available Problem statement: Future generations of intelligent munitions will use Microelectromechanical Systems (MEMS for guidance, fuzing logic and assessment of the battlefield environment. The temperatures fund in a gun system, however, are sufficient to damage some materials used in the fabrication of MEMS. The motivation of this study is to model the dynamic temperature distribution in a typical small-caliber projectile. Approach: An axisymmetric finite-element model of a projectile is developed to simulate temperatures through internal ballistics (the projectile is in the gun barrel and external ballistics (the projectile travels in a free trajectory towards the target. Accuracy of the simulation is confirmed through comparison to analytical models and to payloads attached to experimental projectiles. In the simulation, the exact values for some boundary conditions are unknown and/or unknowable. A sensitivity analysis determines the effect of these uncertain parameters. Results: The simulation shows that friction at the projectile-gun barrel interface is primarily responsible for elevated temperatures in a gun system. Other factors have much smaller effects. The short duration of the internal ballistics prevents the frictional heat from diffusing into the bulk of the projectile. As a result, the projectile has a shallow, high-temperature zone at its bearing surface as it leaves the gun barrel. During external ballistics, this heat will diffuse through the projectile, but most of the projectile experiences temperatures of 56°C or lower. Simulation shows that the polymer package around a MEMS device will further attenuate heat flow, limiting temperatures in the device to less than 30°C. Conclusion: The finite element model demonstrates that a MEMS device may be engineered to survive temperatures expected in the ballistic environment.
Ruizenaar, M.G.A.
2011-01-01
The invention relates to a method of guiding a salvo of guided projectiles to a target. The method comprises the steps of generating a beam defining a common reference coordinate system, determining the position of each projectile relative to the beam, and providing to each projectile: position
WEAK CONVERGENCE OF SOME SERIES
Institute of Scientific and Technical Information of China (English)
2000-01-01
This paper continues the study of [1] on weak functions.The weak convergence theory is investigated in complex analysis,Fourier transform and Mellin transform.A Mobius inverse formula of weak functions is obtained.
DEFF Research Database (Denmark)
Kohlenbach, Ulrich Wilhelm
2002-01-01
We show that the so-called weak Markov's principle (WMP) which states that every pseudo-positive real number is positive is underivable in E-HA + AC. Since allows one to formalize (atl eastl arge parts of) Bishop's constructive mathematics, this makes it unlikely that WMP can be proved within the...
On closed weak supplemented modules
Institute of Scientific and Technical Information of China (English)
ZENG Qing-yi; SHI Mei-hua
2006-01-01
A module M is called closed weak supplemented if for any closed submodule N of M, there is a submodule K of M such that M=K+N and K(c)N＜＜M. Any direct summand of closed weak supplemented module is also closed weak supplemented.Any nonsingular image of closed weak supplemented module is closed weak supplemented. Nonsingular V-rings in which all nonsingular modules are closed weak supplemented are characterized in Section 4.
Hoyer, Paul
2016-01-01
Even a first approximation of bound states requires contributions of all powers in the coupling. This means that the concept of "lowest order bound state" needs to be defined. In these lectures I discuss the "Born" (no loop, lowest order in $\\hbar$) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. As a check of the method, Positronium states of any momentum are determined as eigenstates of the QED Hamiltonian, quantized at equal time. Analogously, states bound by a strong external field $A^\\mu(\\xv)$ are found as eigenstates of the Dirac Hamiltonian. Their Fock states have dynamically created $e^+e^-$ pairs, whose distribution is determined by the Dirac wave function. The linear potential of $D=1+1$ dimensions confines electrons but repels positrons. As a result, the mass spectrum is continuous and the wave functions have features of both bound states and plane waves. The classical solutions of Gauss' law are explored for hadrons in QCD. A non-vanishing bo...
Bounding species distribution models
Institute of Scientific and Technical Information of China (English)
Thomas J. STOHLGREN; Catherine S. JARNEVICH; Wayne E. ESAIAS; Jeffrey T. MORISETTE
2011-01-01
Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern.Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development,yet there is no recommended best practice for “clamping” model extrapolations.We relied on two commonly used modeling approaches:classification and regression tree (CART) and maximum entropy (Maxent) models,and we tested a simple alteration of the model extrapolations,bounding extrapolations to the maximum and minimum values of primary environmental predictors,to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States.Findings suggest that multiple models of bounding,and the most conservative bounding of species distribution models,like those presented here,should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5):642-647,2011].
Information, Utility & Bounded Rationality
Ortega, Pedro A
2011-01-01
Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here we employ an axiomatic framework for bounded rational decision-making based on a thermodynamic interpretation of resource costs as information costs. This leads to a variational "free utility" principle akin to thermodynamical free energy that trades off utility and information costs. We show that bounded optimal control solutions can be derived from this variational principle, which leads in general to stochastic policies. Furthermore, we show that risk-sensitive and robust (minimax) control schemes fall out naturally from this framework if the environment is considered as a bounded rational and perfectly rational opponent, respectively. When resource costs are ignored, the maximum expected utility principle is recovered.
Bounded Computational Capacity Equilibrium
Hernandez, Penelope
2010-01-01
We study repeated games played by players with bounded computational power, where, in contrast to Abreu and Rubisntein (1988), the memory is costly. We prove a folk theorem: the limit set of equilibrium payoffs in mixed strategies, as the cost of memory goes to 0, includes the set of feasible and individually rational payoffs. This result stands in sharp contrast to Abreu and Rubisntein (1988), who proved that when memory is free, the set of equilibrium payoffs in repeated games played by players with bounded computational power is a strict subset of the set of feasible and individually rational payoffs. Our result emphasizes the role of memory cost and of mixing when players have bounded computational power.
Bachoc, Christine; Cohen, Gerard; Sole, Patrick; Tchamkerten, Aslan
2010-01-01
The maximum size of a binary code is studied as a function of its length N, minimum distance D, and minimum codeword weight W. This function B(N,D,W) is first characterized in terms of its exponential growth rate in the limit as N tends to infinity for fixed d=D/N and w=W/N. The exponential growth rate of B(N,D,W) is shown to be equal to the exponential growth rate of A(N,D) for w <= 1/2, and equal to the exponential growth rate of A(N,D,W) for 1/2< w <= 1. Second, analytic and numerical upper bounds on B(N,D,W) are derived using the semidefinite programming (SDP) method. These bounds yield a non-asymptotic improvement of the second Johnson bound and are tight for certain values of the parameters.
Carlson, C E; Lebed, R F; Carlson, Carl E.; Carone, Christopher D.; Lebed, Richard F.
2001-01-01
Jurco, Moller, Schraml, Schupp, and Wess have shown how to construct noncommutative SU(N) gauge theories from a consistency relation. Within this framework, we present the Feynman rules for noncommutative QCD and compute explicitly the most dangerous Lorentz-violating operator generated through radiative corrections. We find that interesting effects appear at the one-loop level, in contrast to conventional noncommutative U(N) gauge theories, leading to a stringent bound. Our results are consistent with others appearing recently in the literature that suggest collider limits are not competitive with low-energy tests of Lorentz violation for bounding the scale of spacetime noncommutativity.
Weak Polarized Electron Scattering
Erler, Jens; Mantry, Sonny; Souder, Paul A
2014-01-01
Scattering polarized electrons provides an important probe of the weak interactions. Precisely measuring the parity-violating left-right cross section asymmetry is the goal of a number of experiments recently completed or in progress. The experiments are challenging, since A_{LR} is small, typically between 10^(-4) and 10^(-8). By carefully choosing appropriate targets and kinematics, various pieces of the weak Lagrangian can be isolated, providing a search for physics beyond the Standard Model. For other choices, unique features of the strong interaction are studied, including the radius of the neutron density in heavy nuclei, charge symmetry violation, and higher twist terms. This article reviews the theory behind the experiments, as well as the general techniques used in the experimental program.
Energy Technology Data Exchange (ETDEWEB)
Suzuki, M.
1988-04-01
Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.
Li, Hanshan; Lei, Zhiyong
2013-01-01
To improve projectile coordinate measurement precision in fire measurement system, this paper introduces the optical fiber coding fire measurement method and principle, sets up their measurement model, and analyzes coordinate errors by using the differential method. To study the projectile coordinate position distribution, using the mathematical statistics hypothesis method to analyze their distributing law, firing dispersion and probability of projectile shooting the object center were put under study. The results show that exponential distribution testing is relatively reasonable to ensure projectile position distribution on the given significance level. Through experimentation and calculation, the optical fiber coding fire measurement method is scientific and feasible, which can gain accurate projectile coordinate position.
Expert Systems Aimed at General Design of Projectiles
Institute of Scientific and Technical Information of China (English)
YUAN Zhi-hua; HOU Ni-na; HU Yu-hui
2007-01-01
Expert systems aimed at the general design of projectiles can implement a series of intelligent designs, such as the design of HE shell, the scheme expounded and proved, the emulation analysis and calculation, etc. Aiming at the product design feature, the expert system adopts the object-oriented knowledge representation and all kinds of inference control engines to describe and reason the relevant knowledge regarding the product through the microcomputer. It embodies the foundation of emulation analysis and simulated manufacturing of the shell. It makes use of the method that knowledge expression is combined with condition of inference to carry out the overall design and emulation and reference.The paper gives the ways through which the functions can be achieved, gives the modularization of reference and the design methods of systematization, puts forward the method of knowledge expression and working interface, and supplies a platform for similar products of the shell category that can be quickly designed.
Adolescents' cognition of projectile motion: a pilot study.
Zhao, Jun-Yan; Yu, Guoliang
2009-04-01
Previous work on the development of intuitive knowledge about projectile motion has shown a dissociation between action knowledge expressed on an action task and conceptual knowledge expressed on a judgment task for young children. The research investigated the generality of dissociation for adolescents. On the action task, participants were asked to swing Ball A of a bifilar pendulum to some height then release it to collide with Ball B, which was projected to hit a target. On the judgment task, participants indicated orally the desired swing angle at which Ball A should be released so that Ball B would strike a target. Unlike previous findings with adults, the adolescents showed conceptual difficulties on the judgment task and well-developed action knowledge on the action task, which suggests dissociation between the two knowledge systems is also present among adolescents. The result further supports the hypothesis that the two knowledge systems follow different developmental trajectories and at different speeds.
Aerodynamic Jump: A Short Range View for Long Rod Projectiles
Directory of Open Access Journals (Sweden)
Mark Bundy
2001-01-01
Full Text Available It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift due to yaw over the relatively short region from entry into free flight until the yaw reaches its first maximum. A rigorous proof of this statement is provided, but the primary objective of this paper is to provide answers to the questions: what is aerodynamic jump, what does it mean, and what aspects of the flight trajectory does it refer to, or account for.
Mandibular fracture wounded by a projectile of a firearm
Directory of Open Access Journals (Sweden)
Juan Carlos Quintana Díaz
2015-08-01
Full Text Available A case of a male Yemenite 20 year-old-patient from Ibb city that was attended by a team of interdisciplinary Cuban professors at the Hospital of Al Waheda belonging to Thamar University, who received a maxillofacial wounded by a projectile of a firearm, which caused him great destruction of the tissues of the jawbone region is presented. A reduction and fixing of the fracture was performed with excellent esthetical and functional results. In this work, it is set out how the life of this patient was saved and the maxillofacial wound was reconstructed, thanks to the arduous work of the Cuban professors that gave the patient back to the society alive, with an excellent esthetical and functional rehabilitation, demonstrating one more time the humanitarian work of the Cuban medicine in other countries.
Polymer Recovery from Auto Shredder Residue by Projectile Separation Method
Directory of Open Access Journals (Sweden)
Dong Yang Wu
2012-04-01
Full Text Available The number of vehicles on the road has been increasing at an enormous rate over the last decade. By 2015, the number of vehicles that reach the end of their life will be close to a million per year in Australia. Most metallic parts of the vehicle can be recycled but the plastic components and components of other materials are normally shredded and disposed in landfills. As more vehicles are using composite materials, the percentage of materials sent to landfill is alarming. This paper reviews existing polymer recycling techniques for End-of-Life Vehicles (ELVs and proposes a more efficient electrostatic based projectile separation method. The test rig is at the preliminary stage of development and initial outcomes are promising.
Effect of neutron skin thickness on projectile fragmentation
Dai, Z T; Ma, Y G; Cao, X G; Zhang, G Q; Shen, W Q
2015-01-01
The fragment production in collisions of $^{48,50}$Ca+$^{12}$C at 50 MeV/nucleon are simulated via the Isospin-Dependent Quantum Molecular Dynamics (IQMD) model followed by the {GEMINI code}. {By changing the diffuseness parameter of neutron density distribution to obtain different neutron skin size, the effects of neutron skin thickness (${\\delta}_{np}$) on projectile-like fragments (PLF) are investigated. The sensitivity of isoscaling behavior to neutron skin size is studied, from which it is found that the isoscaling parameter $\\alpha$ has a linear dependence on ${\\delta}_{np}$. A linear dependence between ${\\delta}_{np}$ and the mean $N/Z$ [N(Z) is neutron(proton) number] of PLF is obtained as well.} The results show that thicker neutron skin will lead to smaller {isoscaling parameter} $\\alpha$ and N/Z. Therefore, it may be probable to extract information of neutron skin thickness from {isoscaling parameter} $\\alpha$ and N/Z.
Reaction of Projectiles with Targets during Hypervelocity Impact
Russell, Rod; Bless, Stephan; Persad, Chadee; Manthiram, Karthish
2009-06-01
Hollow tungsten projectiles were filled with bismuth oxide or copper and shot into aluminum blocks at 2200 m/s. The blocks were cut open, and the contents and morphology of the penetration channels were examined. In the case of copper fill, the channel was found to be filled with a black foam containing closed-cell bubbles. X-ray diffraction revealed the presence of CuAl2, indicating reaction with the aluminum target. In the case of bismuth oxide, there was little foam, but the penetration channel walls had many craters, which contained nodules of bismuth metal, again indicating reaction with the target. There were variations in crater diameter apparently corresponding to the onset and termination of the reactions. The exothermic nature of the reactions produced cracks in the target blocks.
Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics
Kohanoff, Jorge
2017-01-01
Water radiolysis by low-energy carbon projectiles is studied by first-principles molecular dynamics. Carbon projectiles of kinetic energies between 175 eV and 2.8 keV are shot across liquid water. Apart from translational, rotational and vibrational excitation, they produce water dissociation. The most abundant products are H and OH fragments. We find that the maximum spatial production of radiolysis products, not only occurs at low velocities, but also well below the maximum of energy deposition, reaching one H every 5 Å at the lowest speed studied (1 Bohr/fs), dissociative collisions being more significant at low velocity while the amount of energy required to dissociate water is constant and much smaller than the projectile’s energy. A substantial fraction of the energy transferred to fragments, especially for high velocity projectiles, is in the form of kinetic energy, such fragments becoming secondary projectiles themselves. High velocity projectiles give rise to well-defined binary collisions, which should be amenable to binary approximations. This is not the case for lower velocities, where multiple collision events are observed. H secondary projectiles tend to move as radicals at high velocity, as cations when slower. We observe the generation of new species such as hydrogen peroxide and formic acid. The former occurs when an O radical created in the collision process attacks a water molecule at the O site. The latter when the C projectile is completely stopped and reacts with two water molecules. PMID:28267804
Non-invasive timing of gas gun projectiles with light detection and ranging
Goodwin, P. M.; Bartram, B. D.; Gibson, L. L.; Wu, M.; Dattelbaum, D. M.
2014-05-01
We have developed a Light Detection and Ranging (LIDAR) diagnostic to track the position of a projectile inside of a gas gun launch tube in real-time. This capability permits the generation of precisely timed trigger pulses useful for triggering high-latency diagnostics such as a flash lamp-pumped laser. An initial feasibility test was performed using a 72 mm bore diameter single-stage gas gun routinely used for dynamic research at Los Alamos. A 655 nm pulsed diode laser operating at a pulse repetition rate of 100 kHz was used to interrogate the position of the moving projectile in real-time. The position of the projectile in the gun barrel was tracked over a distance of ~ 3 meters prior to impact. The position record showed that the projectile moved at a velocity of 489 m/s prior to impacting the target. This velocity was in good agreement with independent measurements of the projectile velocity by photon Doppler velocimetry and timing of the passage of the projectile through optical marker beams positioned at the muzzle of the gun. The time-to-amplitude conversion electronics used enable the LIDAR data to be processed in real-time to generate trigger pulses at preset separations between the projectile and target.
Study of the projectile impact on aluminum targets divided by water
Saburi, Tei; Kubota, Shiro; Ogata, Yuji; Wada, Yuji; Nakanishi, Toshikazu
2007-06-01
The impact behavior of a projectile into aluminum alloy targets divided by water was experimentally observed using high-speed video camera, and a numerical simulation was conducted using LS-DYNA. The target size was 5mm in thick, 200mm in height and width. Two target plates were positioned parallel at a distance of 120-180mm, and the space between targets was filled up with water. A SNCM steel projectile was 10mm in height, and 10mm in diameter. The projectile was accelerated by a compact accelerator using an explosive, and impacted on the first target. Impact experiments without water in the gap space were also conducted. In case without water, the projectile penetrated both two targets. On the other hand, in case that water fills up in the gap, The projectile did not penetrate the second target plate, and the both target plates were entirely and largely deformed compared with the case that water is absent. Numerical simulation of the projectile impact was conducted using a finite element code of LS-DYNA. ALE(Arbitrary Lagrangian Eulerian) method was adopted to simulate fluid-structure interaction problem. The deformation behavior of targets was confirmed by the simulation, and the importance of water effect on the deformation of the targets and the de-acceleration of the projectile velocity was shown.
Wilder, M. C.; Bogdanoff, D. W.
2005-01-01
A research effort to advance techniques for determining transition location and measuring surface temperatures on graphite-tipped projectiles in hypersonic flight in a ballistic range is described. Projectiles were launched at muzzle velocities of approx. 4.7 km/sec into air at pressures of 190-570 Torr. Most launches had maximum pitch and yaw angles of 2.5-5 degrees at pressures of 380 Torr and above and 3-6 degrees at pressures of 190-380 Torr. Arcjet-ablated and machined, bead-blasted projectiles were launched; special cleaning techniques had to be developed for the latter class of projectiles. Improved methods of using helium to remove the radiating gas cap around the projectiles at the locations where ICCD (intensified charge coupled device) camera images were taken are described. Two ICCD cameras with a wavelength sensitivity range of 480-870 nm have been used in this program for several years to obtain images. In the last year, a third camera, with a wavelength sensitivity range of 1.5-5 microns [in the infrared (IR)], has been added. ICCD and IR camera images of hemisphere nose and 70 degree sphere-cone nose projectiles at velocities of 4.0-4.7 km/sec are presented. The ICCD images clearly show a region of steep temperature rise indicative of transition from laminar to turbulent flow. Preliminary temperature data for the graphite projectile noses are presented.
Upper bounds for domination related parameters in graphs on surfaces
Directory of Open Access Journals (Sweden)
Vladimir Samodivkin
2016-08-01
Full Text Available In this paper we give tight upper bounds on the total domination number, the weakly connected domination number and the connected domination number of a graph in terms of order and Euler characteristic. We also present upper bounds for the restrained bondage number, the total restrained bondage number and the restricted edge connectivity of graphs in terms of the orientable/nonorientable genus and maximum degree.
Breakup conditions of projectile spectators from dynamical observables
Energy Technology Data Exchange (ETDEWEB)
Begemann-Blaich, M.; Lindenstruth, V.; Pochodzalla, J. [and others
1998-03-01
Momenta and masses of heavy projectile fragments (Z {>=} 8), produced in collisions of {sup 197}Au with C, Al, Cu and Pb targets at E/A=600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. Using these informations, an analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. For a quantitative investigation, the data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. With classical trajectory calculations, where the charges and masses of the fragments are taken from a Monte Carlo sampling of the experimental events, the dynamical observables can be reproduced. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75 {Dirac_h}/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. (orig.)
Appell, Jürgen; Merentes Díaz, Nelson José
2013-01-01
This monographis a self-contained exposition of the definition and properties of functionsof bounded variation and their various generalizations; the analytical properties of nonlinear composition operators in spaces of such functions; applications to Fourier analysis, nonlinear integral equations, and boundary value problems. The book is written for non-specialists. Every chapter closes with a list of exercises and open problems.
DEFF Research Database (Denmark)
Emiris, Ioannis Z.; Mourrain, Bernard; Tsigaridas, Elias
2010-01-01
of variables. One application is to the bitsize of the eigenvalues and eigenvectors of an integer matrix, which also yields a new proof that the problem is polynomial. We also compare against recent lower bounds on the absolute value of the root coordinates by Brownawell and Yap [5], obtained under...
Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas; Wirth, Richard; Berndt, Jasper
2014-05-01
The possibility of fractionation processes between projectile and target matter is critical with regard to the classification of the impactor type from geochemical analysis of impactites from natural craters. Here we present results of five hypervelocity MEMIN impact experiments (Poelchau et al., 2013) using the Cr-V-Co-Mo-W-rich steel D290-1 as projectile and two different silica-rich lithologies (Seeberger sandstone and Taunus quartzite) as target materials. Our study is focused on geochemical target-projectile interaction occurring in highly shocked and projectile-rich ejecta fragments. In all of the investigated impact experiments, whether sandstone or quartzite targets, the ejecta fragments show (i) shock-metamorphic features e.g., planar-deformation features (PDF) and the formation of silica glasses, (ii) partially melting of projectile and target, and (iii) significant mechanical and chemical mixing of the target rock with projectile material. The silica-rich target melts are strongly enriched in the "projectile tracer elements" Cr, V, and Fe, but have just minor enrichments of Co, W, and Mo. Inter-element ratios of these tracer elements within the contaminated target melts differ strongly from the original ratios in the steel. The fractionation results from differences in the reactivity of the respective elements with oxygen during interaction of the metal melt with silicate melt. Our results indicate that the principles of projectile-target interaction and associated fractionation do not depend on impact energies (at least for the selected experimental conditions) and water-saturation of the target. Partitioning of projectile tracer elements into the silicate target melt is much more enhanced in experiments with a non-porous quartzite target compared with the porous sandstone target. This is mainly the result of higher impact pressures, consequently higher temperatures and longer reaction times at high temperatures in the experiments with quartzite as
Asymptotic theory of weakly dependent random processes
Rio, Emmanuel
2017-01-01
Presenting tools to aid understanding of asymptotic theory and weakly dependent processes, this book is devoted to inequalities and limit theorems for sequences of random variables that are strongly mixing in the sense of Rosenblatt, or absolutely regular. The first chapter introduces covariance inequalities under strong mixing or absolute regularity. These covariance inequalities are applied in Chapters 2, 3 and 4 to moment inequalities, rates of convergence in the strong law, and central limit theorems. Chapter 5 concerns coupling. In Chapter 6 new deviation inequalities and new moment inequalities for partial sums via the coupling lemmas of Chapter 5 are derived and applied to the bounded law of the iterated logarithm. Chapters 7 and 8 deal with the theory of empirical processes under weak dependence. Lastly, Chapter 9 describes links between ergodicity, return times and rates of mixing in the case of irreducible Markov chains. Each chapter ends with a set of exercises. The book is an updated and extended ...
DEFF Research Database (Denmark)
Haagerup, Uffe; Knudby, Søren
2015-01-01
The weak Haagerup property for locally compact groups and the weak Haagerup constant were recently introduced by the second author [27]. The weak Haagerup property is weaker than both weak amenability introduced by Cowling and the first author [9] and the Haagerup property introduced by Connes [6......] and Choda [5]. In this paper, it is shown that a connected simple Lie group G has the weak Haagerup property if and only if the real rank of G is zero or one. Hence for connected simple Lie groups the weak Haagerup property coincides with weak amenability. Moreover, it turns out that for connected simple...... Lie groups the weak Haagerup constant coincides with the weak amenability constant, although this is not true for locally compact groups in general. It is also shown that the semidirect product R2 × SL(2,R) does not have the weak Haagerup property....
Refractive effects in the scattering of loosely bound nuclei
Cãrstoiu, F; Tribble, R E; Gagliardi, C A
2004-01-01
A study of the interaction of loosely bound nuclei 6,7Li at 9 and 19 AMeV with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction 13C(7Li,8Li)12C have been measured on a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a "plateau" in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier farside scattering subamplitudes.
Klevgard, Paul A
2015-01-01
The classical (Newtonian) concept of projectile motion underwent a series of seemingly minor changes and adjustments between the discovery of the quantum (Planck, 1900) and the early codification of quantum theory (Dirac, 1928). The goal of physicists in this period was to keep change to a minimum and preserve as much as possible of the traditional projectile paradigm (TPP). These adjustments were successful in masking an all-out projectile paradigm crisis, but they have left us with a conceptual muddle. This has been especially deleterious for special relativity and our understanding of space contraction and time dilation.
Projectile motion in real-life situation: Kinematics of basketball shooting
Changjan, A.; Mueanploy, W.
2015-06-01
Basketball shooting is a basic practice for players. The path of the ball from the players to the hoop is projectile motion. For undergraduate introductory physics courses student must be taught about projectile motion. Basketball shooting can be used as a case study for learning projectile motion from real-life situation. In this research, we discuss the relationship between optimal angle, minimum initial velocity and the height of the ball before the player shoots the ball for basketball shooting problem analytically. We found that the value of optimal angle and minimum initial velocity decreases with increasing the height of the ball before the player shoots the ball.
A Micro-Doppler Modulation of Spin Projectile on CW Radar
Directory of Open Access Journals (Sweden)
Liu Zhi-Xue
2017-01-01
Full Text Available To obtain the spin speed of projectile effectively, a micro-Doppler modulation model of rotating projectile measured by continuous-wave radar (CW radar is introduced. High spin speed of projectile brings micro-Doppler modulation on echoes of CW radar, and there are many micro-Doppler modulation harmonic waves in the zero intermediate frequency (ZIF echoes. The frequency interval of the adjacent harmonic waves is several times of rotational frequency, but the integral multiple is unknown. The simulation results prove correctness of the proposed mathematic model.
On properties of (weakly) small groups
Milliet, Cédric
2011-01-01
A group is small if it has countably many complete $n$-types over the empty set for each natural number n. More generally, a group $G$ is weakly small if it has countably many complete 1-types over every finite subset of G. We show here that in a weakly small group, subgroups which are definable with parameters lying in a finitely generated algebraic closure satisfy the descending chain conditions for their traces in any finitely generated algebraic closure. An infinite weakly small group has an infinite abelian subgroup, which may not be definable. A small nilpotent group is the central product of a definable divisible group with a definable one of bounded exponent. In a group with simple theory, any set of pairwise commuting elements is contained in a definable finite-by-abelian subgroup. First corollary : a weakly small group with simple theory has an infinite definable finite-by-abelian subgoup. Secondly, in a group with simple theory, a normal solvable group A of derived length n is contained in an A-def...
On Entropy Bounds and Holography
Halyo, Edi
2009-01-01
We show that the holographic entropy bound for gravitational systems and the Bekenstein entropy bound for nongravitational systems are holographically related. Using the AdS/CFT correspondence, we find that the Bekenstein bound on the boundary is obtained from the holographic bound in the bulk by minimizing the boundary energy with respect the AdS radius or the cosmological constant. This relation may also ameliorate some problems associated with the Bekenstein bound.
Inversion assuming weak scattering
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus
2013-01-01
The study of weak scattering from inhomogeneous media or interface roughness has long been of interest in sonar applications. In an acoustic backscattering model of a stationary field of volume inhomogeneities, a stochastic description of the field is more useful than a deterministic description...... due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...
Erler, Jens
2013-01-01
This is a review of electroweak precision physics with particular emphasis on low-energy precision measurements in the neutral current sector of the electroweak theory and includes future experimental prospects and the theoretical challenges one faces to interpret these observables. Within the minimal Standard Model they serve as determinations of the weak mixing angle which are competitive with and complementary to those obtained near the Z-resonance. In the context of new physics beyond the Standard Model these measurements are crucial to discriminate between models and to reduce the allowed parameter space within a given model. We illustrate this for the minimal supersymmetric Standard Model with or without R-parity.
Measurement of weak radioactivity
Theodorsson , P
1996-01-01
This book is intended for scientists engaged in the measurement of weak alpha, beta, and gamma active samples; in health physics, environmental control, nuclear geophysics, tracer work, radiocarbon dating etc. It describes the underlying principles of radiation measurement and the detectors used. It also covers the sources of background, analyzes their effect on the detector and discusses economic ways to reduce the background. The most important types of low-level counting systems and the measurement of some of the more important radioisotopes are described here. In cases where more than one type can be used, the selection of the most suitable system is shown.
Weakly broken galileon symmetry
Energy Technology Data Exchange (ETDEWEB)
Pirtskhalava, David [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Santoni, Luca; Trincherini, Enrico [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); INFN, Sezione di Pisa, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Vernizzi, Filippo [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, Gif-sur-Yvette cédex, F-91191 (France)
2015-09-01
Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.
Bounded Satisfiability for PCTL
Bertrand, Nathalie; Schewe, Sven
2012-01-01
While model checking PCTL for Markov chains is decidable in polynomial-time, the decidability of PCTL satisfiability, as well as its finite model property, are long standing open problems. While general satisfiability is an intriguing challenge from a purely theoretical point of view, we argue that general solutions would not be of interest to practitioners: such solutions could be too big to be implementable or even infinite. Inspired by bounded synthesis techniques, we turn to the more applied problem of seeking models of a bounded size: we restrict our search to implementable -- and therefore reasonably simple -- models. We propose a procedure to decide whether or not a given PCTL formula has an implementable model by reducing it to an SMT problem. We have implemented our techniques and found that they can be applied to the practical problem of sanity checking -- a procedure that allows a system designer to check whether their formula has an unexpectedly small model.
Alberico, W M
2004-01-01
The focus of these Lectures is on the weak decay modes of hypernuclei, with special attention to Lambda-hypernuclei. The subject involves many fields of modern theoretical and experimental physics, from nuclear structure to the fundamental constituents of matter and their interactions. The various weak decay modes of Lambda-hypernuclei are described: the mesonic mode and the non-mesonic ones. The latter are the dominant decay channels of medium--heavy hypernuclei, where, on the contrary, the mesonic decay is disfavoured by Pauli blocking effect on the outgoing nucleon. In particular, one can distinguish between one-body and two-body induced decays. Theoretical models employed to evaluate the (partial and total) decay widths of hypernuclei are illustrated, and their results compared with existing experimental data. Open problems and recent achievements are extensively discussed, in particular the determination of the ratio Gamma_n/Gamma_p, possible tests of the Delta I=1/2 rule in non-mesonic decays and the pu...
Jolley, Sarah E; Bunnell, Aaron E; Hough, Catherine L
2016-11-01
Survivorship after critical illness is an increasingly important health-care concern as ICU use continues to increase while ICU mortality is decreasing. Survivors of critical illness experience marked disability and impairments in physical and cognitive function that persist for years after their initial ICU stay. Newfound impairment is associated with increased health-care costs and use, reductions in health-related quality of life, and prolonged unemployment. Weakness, critical illness neuropathy and/or myopathy, and muscle atrophy are common in patients who are critically ill, with up to 80% of patients admitted to the ICU developing some form of neuromuscular dysfunction. ICU-acquired weakness (ICUAW) is associated with longer durations of mechanical ventilation and hospitalization, along with greater functional impairment for survivors. Although there is increasing recognition of ICUAW as a clinical entity, significant knowledge gaps exist concerning identifying patients at high risk for its development and understanding its role in long-term outcomes after critical illness. This review addresses the epidemiologic and pathophysiologic aspects of ICUAW; highlights the diagnostic challenges associated with its diagnosis in patients who are critically ill; and proposes, to our knowledge, a novel strategy for identifying ICUAW. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Reaching Fleming's dicrimination bound
Gruebl, Gebhard
2012-01-01
Any rule for identifying a quantum system's state within a set of two non-orthogonal pure states by a single measurement is flawed. It has a non-zero probability of either yielding the wrong result or leaving the query undecided. This also holds if the measurement of an observable $A$ is repeated on a finite sample of $n$ state copies. We formulate a state identification rule for such a sample. This rule's probability of giving the wrong result turns out to be bounded from above by $1/n\\delta_{A}^{2}$ with $\\delta_{A}=|_{1}-_{2}|/(\\Delta_{1}A+\\Delta_{2}A).$ A larger $\\delta_{A}$ results in a smaller upper bound. Yet, according to Fleming, $\\delta_{A}$ cannot exceed $\\tan\\theta$ with $\\theta\\in(0,\\pi/2) $ being the angle between the pure states under consideration. We demonstrate that there exist observables $A$ which reach the bound $\\tan\\theta$ and we determine all of them.
PSPACE Bounds for Rank-1 Modal Logics
Schröder, Lutz
2007-01-01
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.
AN EXPERIMENTAL TECHNIQUE TO MEASURE PROJECTILE DECELERATION HISTORY DURING NORMAL PENETRATION
Institute of Scientific and Technical Information of China (English)
INTO PLAIN; Liu Xiaohu; Liu Ji; Wang Cheng
2000-01-01
The present paper presents a new experimental method to measure the deceleration time his tory of projectiles penetrating into concrete in full-size test. The experiment can be carried out by using an onboard accelerometer to measure the projectile deceleration history and the data are transmitted to a ground recording system. With this experimental method, a series of tests on hemisphere-nose steel projectiles pene trating normally into plain concrete at the velocity region 150 - 400 m/s have been executed and the deceler ation histories obtained. The high frequency portion in the deceleration data has been investigated and proved to be the structure response of projectile. The characteristics of deceleration history have also been analyzed and discussed.
Time of flight and range of the motion of a projectile in a constant gravitational field
Directory of Open Access Journals (Sweden)
P. A. Karkantzakos
2009-01-01
Full Text Available In this paper we study the classical problem of the motion of a projectile in a constant gravitational field under the influenceof a retarding force proportional to the velocity. Specifically, we express the time of flight, the time of fall and the range ofthe motion as a function of the constant of resistance per unit mass of the projectile. We also prove that the time of fall isgreater than the time of rise with the exception of the case of zero constant of resistance where we have equality. Finally weprove a formula from which we can compute the constant of resistance per unit mass of the projectile from time of flight andrange of the motion when the acceleration due to gravity and the initial velocity of the projectile are known.
A Web-Based Video Digitizing System for the Study of Projectile Motion.
Chow, John W.; Carlton, Les G.; Ekkekakis, Panteleimon; Hay, James G.
2000-01-01
Discusses advantages of a video-based, digitized image system for the study and analysis of projectile motion in the physics laboratory. Describes the implementation of a web-based digitized video system. (WRM)
'The Monkey and the Hunter' and Other Projectile Motion Experiments with Logo.
Kolodiy, George Oleh
1988-01-01
Presents the LOGO computer language as a source to experience and investigate scientific laws. Discusses aspects and uses of LOGO. Lists two LOGO programs, one to simulate a gravitational field and the other projectile motion. (MVL)
A New Simple Model for the Mushrooming Deformation of Projectile Impacting on A Deformable Target
Institute of Scientific and Technical Information of China (English)
Zhang Xiaoqing; Yang Guitong
2004-01-01
Based on Taylor's model and Hawkyard's model, a new simple model for the mushrooming deformation of projectile impacting on a deformable target is installed considering the penetration of the projectile to the deformable target. In the model, the following time-dependent variables are involved in: the extent and the particle velocity in the rigid zone; the extent, the cross-section area and the particle velocity in plastic zone; the velocity and depth of the penetrating of projectile to the target. Solving the set of equations, analytic solution is given. The profiles of deformed projectile and shape parameters for different initial impact velocities are shown. The duration time of deformation increases with increasing the impact velocity. The analytical results by using this model are coincident with experimental result.
Target-projectile interaction during impact melting at Kamil Crater, Egypt
Fazio, Agnese; D'Orazio, Massimo; Cordier, Carole; Folco, Luigi
2016-05-01
In small meteorite impacts, the projectile may survive through fragmentation; in addition, it may melt, and chemically and physically interact with both shocked and melted target rocks. However, the mixing/mingling between projectile and target melts is a process still not completely understood. Kamil Crater (45 m in diameter; Egypt), generated by the hypervelocity impact of the Gebel Kamil Ni-rich ataxite on sandstone target, allows to study the target-projectile interaction in a simple and fresh geological setting. We conducted a petrographic and geochemical study of macroscopic impact melt lapilli and bombs ejected from the crater, which were collected during our geophysical campaign in February 2010. Two types of glasses constitute the impact melt lapilli and bombs: a white glass and a dark glass. The white glass is mostly made of SiO2 and it is devoid of inclusions. Its negligible Ni and Co contents suggest derivation from the target rocks without interaction with the projectile (<0.1 wt% of projectile contamination). The dark glass is a silicate melt with variable contents of Al2O3 (0.84-18.7 wt%), FeOT (1.83-61.5 wt%), and NiO (<0.01-10.2 wt%). The dark glass typically includes fragments (from few μm to several mm in size) of shocked sandstone, diaplectic glass, lechatelierite, and Ni-Fe metal blebs. The metal blebs are enriched in Ni compared to the Gebel Kamil meteorite. The dark glass is thus a mixture of target and projectile melts (11-12 wt% of projectile contamination). Based on recently proposed models for target-projectile interaction and for impact glass formation, we suggest a scenario for the glass formation at Kamil. During the transition from the contact and compression stage and the excavation stage, projectile and target liquids formed at their interface and chemically interact in a restricted zone. Projectile contamination affected only a shallow portion of the target rocks. The SiO2 melt that eventually solidified as white glass behaved as
2011-01-01
This thesis was supervised by Professor Jean-Marie Kauffmann of the University of Franche-Comté. The co-director at the Royal Military Academy was Dr. Johan Gallant and the experiments at Franch-German Research Institute ISL were directed by Dr. Markus Schneider. A conventional electromagnetic railgun is composed of two conducting rails connected by a projectile. The magnetic field generated by the current in the rails interacts in the projectile resulting in an electromagnetic force accelera...
[A sign of the rotational impact of the gunshot projectile on the flat bone].
Leonov, S V
2014-01-01
The objective of the present work was to study the mechanisms of formation of the gunshot fracture of the flat bones with special reference to the translational and rotational motion of the projectile. A total of 120 real and experimental injuries of this type were available for the investigation with the use of simulation by the finite-elemental analysis. A set of morphological features has been identified that make it possible to determine the direction of rotation of the gunshot projectile.
Jensen, Jens Højgaard
2014-01-01
In a recent paper (Robinson G and Robinson I 2013 Phys. Scr. 88 018101) the authors developed the differential equations which govern the motion of a spherical projectile rotating about an arbitrary axis in the presence of an arbitrary wind, assuming that both the drag force and the lift force are independent of the Reynolds number and proportional to the square of the projectile's velocity. In this paper, by dimensional analysis, the latter assumption is shown to be incorrect for forces depe...
Numeric Computation of the Radar Cross Section of In flight Projectiles
2016-11-01
the motion of a spinning ballistic projectile in the mobile i-j-k frame and that of a spinning top in the fixed x-y-z ground frame. The pitch and yaw...right). When no spin , pitch, and yaw motions are accounted for, these pictures describe the radar-projectile relative orientation in the AFDTD radar... top of one another. ....................................................................41 Fig. 19 Dynamic RCS vs. time curves obtained for the
2016-12-01
ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector...not return it to the originator. ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a ...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street
Hyperquarks and bosonic preon bound states
Schmid, Michael L.; Buchmann, Alfons J.
2009-11-01
In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin-(1)/(2) preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular, those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on, respectively, the effective gauge groups SU(6)P and SU(9)G. This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.
Hyperquarks and bosonic preon bound states
Schmid, Michael L
2013-01-01
In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin 1/2 preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on respectively the effective gauge groups SU(6)_P and SU(9)_G. This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.
BOUNDING PYRAMIDS AND BOUNDING CONES FOR TRIANGULAR BEZIER SURFACES
Institute of Scientific and Technical Information of China (English)
Jian-song Deng; Fa-lai Chen; Li-li Wang
2000-01-01
This paper describes practical approaches on how to construct bounding pyramids and bounding cones for triangular Bézier surfaces. Examples are provided to illustrate the process of construction and comparison is made between various surface bounding volumes. Furthermore, as a starting point for the construction,we provide a way to compute hodographs of triangular Bézier surfaces and improve the algorithm for computing the bounding cone of a set of vectors.
Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes
Park, C.; Bowen, S. W.
1981-01-01
The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In order to study complicated interacting flow field over projectile with lateral jets. External interacting turbulence flow over projectile with lateral jets was numerically simulated firstly in supersonic speed and zero attack angle. The three dimensional Reynolds-averaged NavierStokes equations and implicit finite volume TVD scheme grid of single zone including projectile base was produced by algebraic arithmetic. Body-fitted grid was generated for the lateral nozzle exit successfully so that the nozzle exit can be simulated more accurately. The high Reynolds number two-equation κ-ε turbulence models were used.The main features of the complex flow are captured. The two kinds of flow field over projectile with and without lateral jets are compared from shock structure, pressure of body and base, etc. It shows that lateral jets not only can provide push force, but also change aerodynamics characteristic of projectile significantly. The results are very important for the study of projectile with lateral rocket boosters.``
Fairly direct hit. Advances in imaging of shotgun projectiles in MRI
Energy Technology Data Exchange (ETDEWEB)
Eggert, Sebastian [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Kubik-Huch, Rahel A.; Peters, Alexander [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); Klarhoefer, Markus [Siemens Healthcare, Zurich (Switzerland); Bolliger, Stephan A.; Thali, Michael J. [University of Zurich, Institute of Forensic Medicine, Zurich (Switzerland); Anderson, Suzanne [Kantonsspital Baden AG, Department of Radiology, Baden (Switzerland); University of Notre Dame Australia, Radiology, Sydney School of Medicine, Sydney, NSW (Australia); Froehlich, Johannes M. [Federal Institute of Technology, Pharmaceutical Sciences, Zurich (Switzerland)
2015-09-15
To investigate the magnetic properties of different types of projectiles and qualify the metal artefact reduction technique for diagnostic and/or forensic MRI. Ten different projectiles embedded in ordnance gelatine blocks underwent an in vitro 1.5-T MR study with seven sequences including a recently developed metal artefact reduction sequence (Advanced WARP) combining VAT (view-angle-tilting) and SEMAC (slice-encoding metal-artefact-correction). Resulting image quality (five-point scale: 1=best; 5=worst) was scored. Quantifiable magnetic characteristics were correlated with qualitative rating of the MR sequences and torque dislodgment. Metal artefact reduction sequence (median: 2.5) significantly (p < 0.001) improves depiction of projectiles in comparison to all other MR pulse sequences (median: 4.75). Images from diamagnetic composed bullets (median: 2) are much less disturbed compared to magnetic attracted ones (median: 5). Correlation (0.623) between deflection angle measurement (ferromagnetic mean 84.2 ; paramagnetic 62 ; diamagnetic mean 0 ) and median qualitative image quality was highly significant (p = 0.027). Torque dislodgement was distinct for elongated magnetic attracted projectiles. Significant improvement of MR imaging of projectiles using metal artefact reduction techniques has important implications for diagnostic/forensic work-up. The correlations between magnetic attraction force, deflection-angle results and image properties demonstrate that the MR safety of projectiles can be estimated with one of these methods. (orig.)
Zhang, Wei; Qi, Yafei; Huang, Wei; Gao, Yubo
2017-01-01
The investigation on free-surface impact of projectiles has last for more than one hundred years due to its noticeable significance on improving defensive weapon technology. Laboratory-scaled water entry experiments for trajectory stability had been performed with four kinds of projectiles at a speed range of 20˜200 m/s. The nose shapes of the cylindrical projectiles were designed into flat, ogive, hemi-sphere and cone to make comparisons on the trajectory deviation when they were launched into water at a certain angle of 0˜20°. Two high-speed cameras positioned orthogonal to each other and normal to the water tank were employed to capture the entire process of projectiles' penetration. From the experimental results, the consecutive images in two planes were presented to display the general process of the trajectory deviation. Compared with the effect of impact velocities and nose shape on trajectory deviation, it merited conclude that flat projectiles had a better trajectory stability, while ogival projectiles experienced the largest attitude change. The characteristics of pressure waves were also investigated.
Energy Technology Data Exchange (ETDEWEB)
Delcorte, Arnaud [PCPM Laboratory, Universite catholique de Louvain, Croix du Sud 1, B-1348 Louvain-la-Neuve (Belgium)]. E-mail: delcorte@pcpm.ucl.ac.be; Garrison, Barbara J. [Chemistry Department, Pennsylvania State University, University Park, PA (United States)
2007-02-15
The physics of energetic fullerene projectile penetration, damage creation and sputtering in organic solids is investigated via molecular dynamics simulations. Two models are used, the first one based on a full atomistic description of the target and the second one, using a coarse-grain prescription that was recently developed and tested for a benzene molecular crystal [E. Smiley, Z. Postawa, I.A. Wojciechowski, N. Winograd, B. J. Garrison, Appl. Surf. Sci. 252 (2006) 6436]. The results explore the mechanism of energy transfer from the C{sub 60} projectile to the organic target atoms/molecules through the comparison with significantly different projectiles (Argon) and samples (Ag crystal). The effects of the projectile energy on the penetration and fast energy transfer processes (200 fs) are also delineated. The second part of the results investigates the 'long term' consequences (20-50 ps) of fullerene impacts in hydrocarbon sample surfaces. In an icosane (C{sub 20}H{sub 42}) solid, a 5 keV C{sub 60} projectile induces a crater of {approx}10 nm diameter surrounded by a {approx}4 nm wide rim and ejects {approx}70 intact molecules. More than 75% of the fragments generated by the fullerene in the surface are also sputtered away by the end of the event. The perspective considers the capabilities of fullerene projectiles for depth profile analysis of molecular samples by particle-induced desorption mass spectrometry.
Kaplan, L
1998-01-01
We examine the consequences of classical ergodicity for the localization properties of individual quantum eigenstates in the classical limit. We note that the well known Schnirelman result is a weaker form of quantum ergodicity than the one implied by random matrix theory. This suggests the possibility of systems with non-gaussian random eigenstates which are nonetheless ergodic in the sense of Schnirelman and lead to ergodic transport in the classical limit. These we call "weakly quantum ergodic.'' Indeed for a class of "slow ergodic" classical systems, it is found that each eigenstate becomes localized to an ever decreasing fraction of the available state space, in the semiclassical limit. Nevertheless, each eigenstate in this limit covers phase space evenly on any classical scale, and long-time transport properties betwen individual quantum states remain ergodic due to the diffractive effects which dominate quantum phase space exploration.
DECAY ESTIMATES FOR ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN BOUNDED DOMAIN
Institute of Scientific and Technical Information of China (English)
Mohamed Ahmed Abdallah; Jiang Fei; Tan Zhong
2012-01-01
In this paper,under the hypothesis that (o) is upper bounded,we construct a Lyapunov functional for the multidimensional isentropic compressible magnetohydrodynamic equations and show that the weak solutions decay exponentially to the equilibrium state in L2 norm.Our result verifies that the method of Daoyuan Fang,Ruizhao Zi and Ting Zhang [1] can be adapted to magnetohydrodynamic equations.
Critical SQG in bounded domains
Constantin, Peter; Ignatova, Mihaela
2016-01-01
We consider the critical dissipative SQG equation in bounded domains, with the square root of the Dirichlet Laplacian dissipation. We prove global a priori interior $C^{\\alpha}$ and Lipschitz bounds for large data.
Energy Technology Data Exchange (ETDEWEB)
Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States); Shenker, Stephen H. [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA (United States); Stanford, Douglas [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States)
2016-08-17
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ{sub L}≤2πk{sub B}T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
DEFF Research Database (Denmark)
Faupin, Jeremy; Møller, Jacob Schach; Skibsted, Erik
2011-01-01
We study regularity of bound states pertaining to embedded eigenvalues of a self-adjoint operator H, with respect to an auxiliary operator A that is conjugate to H in the sense of Mourre. We work within the framework of singular Mourre theory which enables us to deal with confined massless Pauli–......–Fierz models, our primary example, and many-body AC-Stark Hamiltonians. In the simpler context of regular Mourre theory, our results boil down to an improvement of results obtained recently in [8, 9]....
Maldacena, Juan; Stanford, Douglas
2015-01-01
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent $\\lambda_L \\le 2 \\pi k_B T/\\hbar$. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
Study of Hypervelocity Projectile Impact on Thick Metal Plates
Directory of Open Access Journals (Sweden)
Shawoon K. Roy
2016-01-01
Full Text Available Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This study proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments: Lagrangian-based smooth particle hydrodynamics (SPH and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. The results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.
Delay Bounds for Multiclass FIFO
Jiang, Yuming; Misra, Vishal
2016-01-01
FIFO is perhaps the simplest scheduling discipline. For single-class FIFO, its delay guarantee performance has been extensively studied: The well-known results include a stochastic delay bound for $GI/GI/1$ by Kingman and a deterministic delay bound for $D/D/1$ by Cruz. However, for multiclass FIFO, few such results are available. To fill the gap, we prove delay bounds for multiclass FIFO in this work, considering both deterministic and stochastic cases. Specifically, delay bounds are present...
Anomalously Weak Solar Convection
Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.
2012-01-01
Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.
2011-02-07
are summarized as follows: Sands around the penetrated projectile were smashed to fine powder of 5 µm or less like a potato starch . Circumferential...Distribution Sands around the penetrated projectile were smashed to fine powder of 5 µm or less like a potato starch as shown in Fig.11. It was found that...The major results are summarized as follows: 1. Sands around the penetrated projectile were smashed to fine powder of 5 µm or less like a potato
DEFF Research Database (Denmark)
Nielson, Hanne Riis; Nielson, Flemming
1992-01-01
they obtain a quadratic bound. These bounds are shown to be tight. Specializing the case of strict and additive functions to functionals of a form that would correspond to iterative programs they show that a linear bound is tight. This is related to several analyses studied in the literature (including...
Error bounds for set inclusions
Institute of Scientific and Technical Information of China (English)
ZHENG; Xiyin(郑喜印)
2003-01-01
A variant of Robinson-Ursescu Theorem is given in normed spaces. Several error bound theorems for convex inclusions are proved and in particular a positive answer to Li and Singer's conjecture is given under weaker assumption than the assumption required in their conjecture. Perturbation error bounds are also studied. As applications, we study error bounds for convex inequality systems.
The Weak Expectation Property and Riesz Interpolation
Kavruk, Ali S
2012-01-01
We show that Lance's weak expectation property is connected to tight Riesz interpolations in lattice theory. More precisely we first prove that if A \\subset B(H) is a unital C*-subalgebra, where B(H) is the bounded linear operators on a Hilbert space H, then A has (2,2) tight Riesz interpolation property in B(H) (defined below). An extension of this requires an additional assumption on A: A has (2,3) tight Riesz interpolation property in B(H) at every matricial level if and only if A has the weak expectation property. Let $J = span{(1,1,-1,-1,-1)}$ in $C^5$ . We show that a unital C*-algebra A has the weak expectation property if and only if $A \\otimesmin (C^5/J) = A \\otimesmax (C^5/J)$ (here \\otimesmin and \\otimesmax are the minimal and the maximal operator system tensor products, respectively, and $C^5/J$ is the operator system quotient of $C^5$ by $J$). We express the Kirchberg conjecture (KC) in terms of a four dimensional operator system problem. We prove that KC has an affirmative answer if and only if ...
Multifunctions of bounded variation
Vinter, R. B.
2016-02-01
Consider control systems described by a differential equation with a control term or, more generally, by a differential inclusion with velocity set F (t , x). Certain properties of state trajectories can be derived when it is assumed that F (t , x) is merely measurable w.r.t. the time variable t. But sometimes a refined analysis requires the imposition of stronger hypotheses regarding the time dependence. Stronger forms of necessary conditions for minimizing state trajectories can be derived, for example, when F (t , x) is Lipschitz continuous w.r.t. time. It has recently become apparent that significant addition properties of state trajectories can still be derived, when the Lipschitz continuity hypothesis is replaced by the weaker requirement that F (t , x) has bounded variation w.r.t. time. This paper introduces a new concept of multifunctions F (t , x) that have bounded variation w.r.t. time near a given state trajectory, of special relevance to control. We provide an application to sensitivity analysis.
Dosen, K
2010-01-01
An operad (this paper deals with non-symmetric operads) may be conceived as a partial algebra with a family of insertion operations, Gerstenhaber's circle-i products, which satisfy two kinds of associativity, one of them involving commutativity. A Cat-operad is an operad enriched over the category Cat of small categories, as a 2-category with small hom-categories is a category enriched over Cat. The notion of weak Cat-operad is to the notion of Cat-operad what the notion of bicategory is to the notion of 2-category. The equations of operads like associativity of insertions are replaced by isomorphisms in a category. The goal of this paper is to formulate conditions concerning these isomorphisms that ensure coherence, in the sense that all diagrams of canonical arrows commute. This is the sense in which the notions of monoidal category and bicategory are coherent. The coherence proof in the paper is much simplified by indexing the insertion operations in a context-independent way, and not in the usual manner. ...
2014-06-01
position cameras and the mortars follow a ballistic path, the motion of the projectile should follow a straight line in the undistorted field of view...angle of attack estimates that ranged from 0.72 to 12.03 deg. Spin-stabilized projectiles exhibit epicyclic motion behavior at high frequencies...UNCLASSIFIED AD-E403 531 Technical Report ARMET-TR-13042 MEASURING THE VELOCITY AND ORIENTATION OF MORTAR SHAPED PROJECTILES
The influence of aerodynamic coefficients on the elements of classic projectile paths
Directory of Open Access Journals (Sweden)
Damir D. Jerković
2011-04-01
Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile
Weak Total Resolvability In Graphs
Directory of Open Access Journals (Sweden)
Casel Katrin
2016-02-01
Full Text Available A vertex v ∈ V (G is said to distinguish two vertices x, y ∈ V (G of a graph G if the distance from v to x is di erent from the distance from v to y. A set W ⊆ V (G is a total resolving set for a graph G if for every pair of vertices x, y ∈ V (G, there exists some vertex w ∈ W − {x, y} which distinguishes x and y, while W is a weak total resolving set if for every x ∈ V (G−W and y ∈ W, there exists some w ∈ W −{y} which distinguishes x and y. A weak total resolving set of minimum cardinality is called a weak total metric basis of G and its cardinality the weak total metric dimension of G. Our main contributions are the following ones: (a Graphs with small and large weak total metric bases are characterised. (b We explore the (tight relation to independent 2-domination. (c We introduce a new graph parameter, called weak total adjacency dimension and present results that are analogous to those presented for weak total dimension. (d For trees, we derive a characterisation of the weak total (adjacency metric dimension. Also, exact figures for our parameters are presented for (generalised fans and wheels. (e We show that for Cartesian product graphs, the weak total (adjacency metric dimension is usually pretty small. (f The weak total (adjacency dimension is studied for lexicographic products of graphs.
Nowak, K.; Kästner, M.; Miltner, A.
2009-04-01
During degradation of organic pollutants in soil, metabolites, microbial biomass, CO2and "bound" residues ("non-extractable" residues in soil organic matter) are formed. Enhanced transformation of these contaminants into "bound" residues has been proposed as an alternative remediation method for polluted soils. However, this kind of residues may pose a potential risk for the environment due to their chemical structure and possible remobilization under different conditions. Therefore particular attention is given actually to "bound" residues. Part of these non-extractable residues may be "biogenic," because microorganisms use the carbon from the pollutant to form their biomass components (fatty acids, amino acids, amino sugars), which subsequently may be incorporated into soil organic matter. Furthermore, the CO2 originating from mineralization of xenobiotics, can be re-assimilated by microorganisms and also incorporated into "biogenic residue". The hazard posed by "bound" residues may be overestimated because they are "biogenic" (contain microbial fatty acids and amino acids). The knowledge about the pathways of "biogenic residue" formation is necessary for a proper assessment of the fate of tested pollutants and their turnover in the soil environment. Moreover, these data are needed to establish the realistic degradation rates of the contaminants in soil. The main objectives of this study are: to quantify the extent of "biogenic residue" (fatty acids, amino acids, amino sugars) formation during the degradation of a model pollutant (2,4-dichlorophenoxyacetic acid = 2,4-D) and during CO2 assimilation by microorganisms and to evaluate which components are mainly incorporated into "bound" residues. To investigate the extent of "biogenic residue" formation in soil during the degradation of 2,4-D, experiments with either 14C-U-ring and 13C6-2,4-D or carboxyl-14C 2,4-D were performed. The incubation experiments were performed according to OECD test guideline 307, in the
Existence of global weak solution for a reduced gravity two and a half layer model
Energy Technology Data Exchange (ETDEWEB)
Guo, Zhenhua, E-mail: zhenhua.guo.math@gmail.com; Li, Zilai, E-mail: lizilai0917@163.com; Yao, Lei, E-mail: yaolei1056@hotmail.com [Department of Mathematics and CNS, Northwest University, Xi' an 710127 (China)
2013-12-15
We investigate the existence of global weak solution to a reduced gravity two and a half layer model in one-dimensional bounded spatial domain or periodic domain. Also, we show that any possible vacuum state has to vanish within finite time, then the weak solution becomes a unique strong one.
Space group constraints on weak indices in topological insulators
Varjas, Dániel; de Juan, Fernando; Lu, Yuan-Ming
2017-07-01
Lattice translation symmetry gives rise to a large class of "weak" topological insulators (TIs), characterized by translation-protected gapless surface states and dislocation bound states. In this work we show that space group symmetries lead to constraints on the weak topological indices that define these phases. In particular, we show that screw rotation symmetry enforces the Hall conductivity in planes perpendicular to the screw axis to be quantized in multiples of the screw rank, which generally applies to interacting systems. We further show that certain 3D weak indices associated with quantum spin Hall effects (class AII) are forbidden by the Bravais lattice and by glide or even-fold screw symmetries. These results put strong constraints on weak TI candidates in the experimental and numerical search for topological materials, based on the crystal structure alone.
Elastic breakup cross sections of well-bound nucleons
Wimmer, K; Gade, A; Tostevin, J A; Baugher, T; Chajecki, Z; Coupland, D; Famiano, M A; Ghosh, T K; Howard, G F Grinyer M E; Kilburn, M; Lynch, W G; Manning, B; Meierbachtol, K; Quarterman, P; Ratkiewicz, A; Sanetullaev, A; Showalter, R H; Stroberg, S R; Tsang, M B; Weisshaar, D; Winkelbauer, J; Winkler, R; Youngs, M
2014-01-01
The 9Be(28Mg,27Na) one-proton removal reaction with a large proton separation energy of Sp(28Mg)=16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the re- moval of more weakly-bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.
Chemical projectile-target interaction during hypervelocity cratering experiments (MEMIN project).
Ebert, M.; Hecht, L.; Deutsch, A.; Kenkmann, T.
2012-04-01
The detection and identification of meteoritic components in impact-derived rocks are of great value for confirming an impact origin and reconstructing the type of extraterrestrial material that repeatedly stroke the Earth during geologic evolution [1]. However, little is known about processes that control the projectile distribution into the various impactites that originate during the cratering and excavation process, and inter-element fractionation between siderophile elements during impact cratering. In the context of the MEMIN project, cratering experiments have been performed using spheres of Cr-V-Co-Mo-W-rich steel and of the iron meteorite Campo del Cielo (IAB) as projectiles accelerated to about 5 km/s, and blocks of Seeberger sandstone as target. The experiments were carried out at the two-stage acceleration facilities of the Fraunhofer Ernst-Mach-Institute (Freiburg). Our results are based on geochemical analyses of highly shocked ejecta material. The ejecta show various shock features including multiple sets of planar deformations features (PDF) in quartz, diaplectic quartz, and partial melting of the sandstone. Melting is concentrated in the phyllosilicate-bearing sandstone matrix but involves quartz, too. Droplets of molten projectile have entered the low-viscosity sandstone melt but not quartz glass. Silica-rich sandstone melts are enriched in the elements that are used to trace the projectile, like Fe, Ni, Cr, Co, and V (but no or little W and Mo). Inter-element ratios of these "projectile" tracer elements within the contaminated sandstone melt may be strongly modified from the original ratios in the projectiles. This fractionation most likely result from variation in the lithophile or siderophile character and/or from differences in reactivity of these tracer elements with oxygen [2] during interaction of metal melt with silicate melt. The shocked quartz with PDF is also enriched in Fe and Ni (experiment with a meteorite iron projectile) and in Fe
Directory of Open Access Journals (Sweden)
Stuart Leigh Phoenix
2017-03-01
Full Text Available Yarn shooting experiments were conducted to determine the ballistically-relevant, Young’s modulus and tensile strength of ultra-high molecular weight polyethylene (UHMWPE fiber. Target specimens were Dyneema® SK76 yarns (1760 dtex, twisted to 40 turns/m, and initially tensioned to stresses ranging from 29 to 2200 MPa. Yarns were impacted, transversely, by two types of cylindrical steel projectiles at velocities ranging from 150 to 555 m/s: (i a reverse-fired, fragment simulating projectile (FSP where the flat rear face impacted the yarn rather than the beveled nose; and (ii a ‘saddle-nosed projectile’ having a specially contoured nose imparting circular curvature in the region of impact, but opposite curvature transversely to prevent yarn slippage off the nose. Experimental data consisted of sequential photographic images of the progress of the triangular transverse wave, as well as tensile wave speed measured using spaced, piezo-electric sensors. Yarn Young’s modulus, calculated from the tensile wave-speed, varied from 133 GPa at minimal initial tension to 208 GPa at the highest initial tensions. However, varying projectile impact velocity, and thus, the strain jump on impact, had negligible effect on the modulus. Contrary to predictions from the classical Cole-Smith model for 1D yarn impact, the critical velocity for yarn failure differed significantly for the two projectile types, being 18% lower for the flat-faced, reversed FSP projectile compared to the saddle-nosed projectile, which converts to an apparent 25% difference in yarn strength. To explain this difference, a wave-propagation model was developed that incorporates tension wave collision under blunt impact by a flat-faced projectile, in contrast to outward wave propagation in the classical model. Agreement between experiment and model predictions was outstanding across a wide range of initial yarn tensions. However, plots of calculated failure stress versus yarn pre
Weak Interaction Neutron Production Rates in Fully Ionized Plasmas
Widom, A; Srivastava, Y N
2013-01-01
Employing the weak interaction reaction wherein a heavy electron is captured by a proton to produce a neutron and a neutrino, the neutron production rate for neutral hydrogen gases and for fully ionized plasmas is computed. Using the Coulomb atomic bound state wave functions of a neutral hydrogen gas, our production rate results are in agreement with recent estimates by Maiani {\\it et al}. Using Coulomb scattering state wave functions for the fully ionized plasma, we find a substantially enhanced neutron production rate. The scattering wave function should replace the bound state wave function for estimates of the enhanced neutron production rate on water plasma drenched cathodes of chemical cells.
CO2 Cluster Ion Beam, an Alternative Projectile for Secondary Ion Mass Spectrometry
Tian, Hua; Maciążek, Dawid; Postawa, Zbigniew; Garrison, Barbara J.; Winograd, Nicholas
2016-09-01
The emergence of argon-based gas cluster ion beams for SIMS experiments opens new possibilities for molecular depth profiling and 3D chemical imaging. These beams generally leave less surface chemical damage and yield mass spectra with reduced fragmentation compared with smaller cluster projectiles. For nanoscale bioimaging applications, however, limited sensitivity due to low ionization probability and technical challenges of beam focusing remain problematic. The use of gas cluster ion beams based upon systems other than argon offer an opportunity to resolve these difficulties. Here we report on the prospects of employing CO2 as a simple alternative to argon. Ionization efficiency, chemical damage, sputter rate, and beam focus are investigated on model compounds using a series of CO2 and Ar cluster projectiles (cluster size 1000-5000) with the same mass. The results show that the two projectiles are very similar in each of these aspects. Computer simulations comparing the impact of Ar2000 and (CO2)2000 on an organic target also confirm that the CO2 molecules in the cluster projectile remain intact, acting as a single particle of m/z 44. The imaging resolution employing CO2 cluster projectiles is improved by more than a factor of two. The advantage of CO2 versus Ar is also related to the increased stability which, in addition, facilitates the operation of the gas cluster ion beams (GCIB) system at lower backing pressure.
Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept
Directory of Open Access Journals (Sweden)
Ahmed Elsaadany
2014-01-01
Full Text Available Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake and the second is devoted to drift correction (canard based-correction fuze. The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.
Accuracy improvement capability of advanced projectile based on course correction fuze concept.
Elsaadany, Ahmed; Wen-jun, Yi
2014-01-01
Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion.
Experimental investigation on ballistic stability of high-speed projectile in sand
Zhang, Wei; Huang, Xianglin; Qi, Yafei; Li, Dacheng; Tao, Jialiang; Huang, Wei
2017-01-01
The investigation on ballistic stability of high-speed projectile in granular materials is important to study the EPW (earth-penetrating weapon). Laboratory-scaled sand entry experiments for the trajectory in the sand have been performed at a range of velocities from 30 m/s to 150 m/s. In addition, pressure sensor was embedded in the sand to record the sand stress which reflects the penetration performance of projectile during the impact. The slender projectiles were designed into flat nose shape with three kinds of L/D (length-diameter ratio) to make comparisons on the trajectory when those projectiles were launched at normal and oblique impact angles (0˜25deg) along a view window. A high-speed camera beside window was employed to capture the entire process of projectiles' penetration. Basing on the comparison of different tests, theoretical analysis is carried out on the relationship between ballistic stability and associated conditions. By utilizing DIC technique, the vector field of sand velocity was acquired, and the spreading direction of the impacting energy was observed. It can be concluded that the sand stress is the function of penetrating velocity, L/D and the shot angle. It increases with the growing of penetrating velocity and L/D, decreases with the shot angle. To a certain extent, the biggest initial velocity leads to the highest stress.
A Six Degree of Freedom Trajectory Analysis of Spin-Stabilized Projectiles
Gkritzapis, Dimitrios N.; Panagiotopoulos, Elias E.; Margaris, Dionissios P.; Papanikas, Dimitrios G.
2007-12-01
A full six degrees of freedom (6-DOF) flight dynamics model is proposed for the accurate prediction of short and long-range trajectories of high and low spin-stabilized projectiles via atmospheric flight to final impact point. The projectile is assumed to be both rigid (non-flexible), and rotationally symmetric about its spin axis launched at low and high pitch angles. The projectile maneuvering motion depends on the most significant force and moment variations in addition to gravity and Magnus Effect. The computational flight analysis takes into consideration the Mach number and total angle of attack effects by means of the variable aerodynamic coefficients. For the purposes of the present work, linear interpolation has been applied from the tabulated database of McCoy's book. The aforementioned variable flight model is compared with a trajectory atmospheric motion based on appropriate constant mean values of the aerodynamic projectile coefficients. Static stability, also called gyroscopic stability, is examined as a necessary condition for stable flight motion in order to locate the initial spinning projectile rotation. Static stability examination takes into account the overturning moment variations with Mach number flight motion. The developed method gives satisfactory results compared with published data of verified experiments and computational codes on atmospheric dynamics model analysis.
Numerical Investigation of Bending-Body Projectile Aerodynamics for Maneuver Control
Youn, Eric; Silton, Sidra
2015-11-01
Precision munitions are an active area of research for the U.S. Army. Canard-control actuators have historically been the primary mechanism used to maneuver fin-stabilized, gun-launched munitions. Canards are small, fin-like control surfaces mounted at the forward section of the munition to provide the pitching moment necessary to rotate the body in the freestream flow. The additional lift force due to the rotated body and the canards then alters the flight path toward the intended target. As velocity and maneuverability requirements continue to increase, investigation of other maneuver mechanisms becomes necessary. One option for a projectile with a large length-to-diameter ratio (L/D) is a bending-body design, which imparts a curvature to the projectile body along its axis. This investigation uses full Navier-Stokes computational fluid dynamics simulations to evaluate the effectiveness of an 8-degree bent nose tip on an 8-degree bent forward section of an L/D =10 projectile. The aerodynamic control effectiveness of the bending-body concept is compared to that of a standard L/D =10 straight-body projectile as well as that of the same projectile with traditional canards. All simulations were performed at supersonic velocities between Mach 2-4.
Hussain, G.; Hameed, A.; Hetherington, J. G.; Barton, P. C.; Malik, A. Q.
2013-04-01
The formation of mild steel (MS) and copper (Cu) explosively formed projectiles (EFPs) was simulated in AUTODYN using both the Johnson-Cook (JC) and modified Johnson-Cook (JCM) constitutive models. The JC model was modified by increasing the hardening constant by 10%. The previously established semi-empirical equations for diameter, length, velocity, and depth of penetration were used to verify the design of the EFP. The length-to-diameter (L/D) ratio of the warhead used in the simulation varied between 1 projectile distortion or breakup for large standoff applications, the design of the EFP warhead was modified to obtain a lower L/D ratio. Simulations from the JC model underestimated the EFP diameter, resulting in an unrealistically elongated projectile. This shortcoming was resolved by employing the JCM model, giving good agreement with the experimental results. The projectile velocity and hole characteristics in 10-mm-thick aluminum target plates were studied for both models. The semi-empirical equations and the JC model overestimated the projectile velocity, whereas the JCM model underestimated the velocity slightly when compared to the experimental results. The depths of penetration calculated by the semi-empirical equations in the aluminum (Al) target plate were 55 and 52 mm for Cu and MS EFPs, respectively.
Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates
Directory of Open Access Journals (Sweden)
Aizik F.
2012-08-01
Full Text Available In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by matching simulated and experimental velocity profiles of planar impact. A series of oblique ballistic experiments with x-ray monitoring was carried out to study the effect of obliquity angle and armor steel plate thickness on shattering behavior of the 14.5 mm API projectile. According to analysis of x-ray images the fragmentation level increases with both steel plate thickness and angle of inclination. The numerical modeling of the ballistic experiments was done using commercial finite element code, LS-DYNA. Dynamic response of high hardness (HH armor steel was described using a modified Johnson-Cook strength and failure model. A series of simulations with various values of maximal principal tensile stress was run in order to capture the overall fracture behavior of the projectile’s core. Reasonable agreement between simulated and x-ray failure pattern of projectile core has been observed.
Weak compactness of biharmonic maps
Directory of Open Access Journals (Sweden)
Shenzhou Zheng
2012-10-01
Full Text Available This article shows that if a sequence of weak solutions of a perturbed biharmonic map satisfies $Phi_ko 0$ in $(W^{2,2}^*$ and $u_kightharpoonup u$ weakly in $W^{2,2}$, then $u$ is a biharmonic map. In particular, we show that the space of biharmonic maps is sequentially compact under the weak-$W^{2,2}$ topology.
Xu, Xing; Zhang, Yu-hu; Xu, Hu-shan; Shuai, Peng; Tu, Xiao-lin; Litvinov, Yuri A; Zhou, Xiao-hong; Sun, Bao-hua; Yuan, You-jin; Xia, Jia-wen; Yang, Jian-cheng; Blaum, KLaus; Chen, Rui-jiu; Chen, Xiang-cheng; Fu, Chao-yi; Ge, Zhuang; Hu, Zheng-guo; Huang, Wen-jia; Liu, Da-wei; Lam, Yi-hua; Ma, Xin-wen; Mao, Rui-shi; Uesaka, T; Xiao, Guo-ging; Xing, Yuan-ming; Yamaguchi, T; Yamaguchi, Y; Zeng, Qi; Yan, Xin-liang; Zhao, Hong-wei; Zhao, Tie-cheneg; Zhang, Wei; Zhan, Wen-long
2016-01-01
In this paper, we present direct mass measurements of neutron-rich $^{86}$Kr projectile fragments conducted at the HIRFL-CSR facility in Lanzhou by employing the Isochronous Mass Spectrometry (IMS) method. The new mass excesses of $^{52-54}$Sc nuclides are determined to be -40492(82), -38928(114), -34654(540) keV, which show a significant increase of binding energy compared to the reported ones in the Atomic Mass Evaluation 2012 (AME12). In particular, $^{53}$Sc and $^{54}$Sc are more bound by 0.8 MeV and 1.0 MeV, respectively. The behavior of the two neutron separation energy with neutron numbers indicates a strong sub-shell closure at neutron number $N$ = 32 in Sc isotopes.
General gauge mediation at the weak scale
Knapen, Simon; Redigolo, Diego; Shih, David
2016-03-01
We completely characterize General Gauge Mediation (GGM) at the weak scale by solving all IR constraints over the full parameter space. This is made possible through a combination of numerical and analytical methods, based on a set of algebraic relations among the IR soft masses derived from the GGM boundary conditions in the UV. We show how tensions between just a few constraints determine the boundaries of the parameter space: electroweak symmetry breaking (EWSB), the Higgs mass, slepton tachyons, and left-handed stop/sbottom tachyons. While these constraints allow the left-handed squarks to be arbitrarily light, they place strong lower bounds on all of the right-handed squarks. Meanwhile, light EW superpartners are generic throughout much of the parameter space. This is especially the case at lower messenger scales, where a positive threshold correction to m h coming from light Higgsinos and winos is essential in order to satisfy the Higgs mass constraint.
General Gauge Mediation at the Weak Scale
Knapen, Simon; Shih, David
2015-01-01
We completely characterize General Gauge Mediation (GGM) at the weak scale by solving all IR constraints over the full parameter space. This is made possible through a combination of numerical and analytical methods, based on a set of algebraic relations among the IR soft masses derived from the GGM boundary conditions in the UV. We show how tensions between just a few constraints determine the boundaries of the parameter space: electroweak symmetry breaking (EWSB), the Higgs mass, slepton tachyons, and left-handed stop/sbottom tachyons. While these constraints allow the left-handed squarks to be arbitrarily light, they place strong lower bounds on all of the right-handed squarks. Meanwhile, light EW superpartners are generic throughout much of the parameter space. This is especially the case at lower messenger scales, where a positive threshold correction to $m_h$ coming from light Higgsinos and winos is essential in order to satisfy the Higgs mass constraint.
Completely Continuous and Weakly Completely Continuous Abstract Segal Algebras
Indian Academy of Sciences (India)
Fatemeh Abtahi
2013-11-01
Let $\\mathcal{A}$ be a Banach algebra. It is obtained a necessary and sufficient condition for the complete continuity and also weak complete continuity of symmetric abstract Segal algebras with respect to $\\mathcal{A}$, under the condition of the existence of an approximate identity for $\\mathcal{B}$, bounded in $\\mathcal{A}$. In addition, a necessary condition for the weak complete continuity of $\\mathcal{A}$ is given. Moreover, the applications of these results about some group algebras on locally compact groups are obtained.
A Weak Comparison Principle for Reaction-Diffusion Systems
Directory of Open Access Journals (Sweden)
José Valero
2012-01-01
Full Text Available We prove a weak comparison principle for a reaction-diffusion system without uniqueness of solutions. We apply the abstract results to the Lotka-Volterra system with diffusion, a generalized logistic equation, and to a model of fractional-order chemical autocatalysis with decay. Moreover, in the case of the Lotka-Volterra system a weak maximum principle is given, and a suitable estimate in the space of essentially bounded functions L∞ is proved for at least one solution of the problem.
A weak comparison principle for reaction-diffusion systems
Valero, José
2012-01-01
In this paper we prove a weak comparison principle for a reaction-diffusion system without uniqueness of solutions. We apply the abstract results to the Lotka-Volterra system with diffusion, a generalized logistic equation and to a model of fractional-order chemical autocatalysis with decay. Morever, in the case of the Lotka-Volterra system a weak maximum principle is given, and a suitable estimate in the space of essentially bounded functions $L^{\\infty}$ is proved for at least one solution of the problem.
Bounding approaches to system identification
Norton, John; Piet-Lahanier, Hélène; Walter, Éric
1996-01-01
In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.
On functions of bounded variation
Aistleitner, Christoph; Pausinger, Florian; Svane, Anne Marie; Tichy, Robert F.
2015-01-01
The recently introduced concept of $\\mathcal{D}$-variation unifies previous concepts of variation of multivariate functions. In this paper, we give an affirmative answer to the open question from Pausinger \\& Svane (J. Complexity, 2014) whether every function of bounded Hardy--Krause variation is Borel measurable and has bounded $\\mathcal{D}$-variation. Moreover, we show that the space of functions of bounded $\\mathcal{D}$-variation can be turned into a commutative Banach algebra.
Bukh, Boris
2011-01-01
In 2008, Bukh, Matousek, and Nivasch conjectured that for every n-point set S in R^d and every k, 0 <= k <= d-1, there exists a k-flat f in R^d (a "centerflat") that lies at "depth" (k+1) n / (k+d+1) - O(1) in S, in the sense that every halfspace that contains f contains at least that many points of S. This claim is true and tight for k=0 (this is Rado's centerpoint theorem), as well as for k = d-1 (trivial). Bukh et al. showed the existence of a (d-2)-flat at depth (d-1) n / (2d-1) - O(1) (the case k = d-2). In this paper we concentrate on the case k=1 (the case of "centerlines"), in which the conjectured value for the leading constant is 2/(d+2). We prove that 2/(d+2) is an *upper bound* for the leading constant. Specifically, we show that for every fixed d and every n there exists an n-point set in R^d for which no line in R^d lies at depth larger than 2n/(d+2) + o(n). This point set is the "stretched grid"---a set which has been previously used by Bukh et al. for other related purposes.
A study of the perforation of stiffened plates by rigid projectiles
Institute of Scientific and Technical Information of China (English)
Jianguo Ning; Weidong Song; Jing Wang
2005-01-01
In the present paper, a four-stage perforation model that accurately predicts the residual velocity is developed by adopting an energy method. The four stages are plug formation, dishing formation, petal formation and projectile exit. In addition, some important experimental results are presented and analyzed to validate the present perforation model. In the experiments, high speed camera system is used to record the perforation process. Observations on target damage and measurements of initial velocities and residual velocities with the aid of the system are presented. Numerical simulations are carried out for projectiles against single and layered plates adopted in the experiments. The perforation process is studied and the deformation and failure modes are obtained. The predictions of numerical simulations and analytical model are found in reasonably good agreement with those of experiments, and can be used to predict the ballistic limit and residual velocity of stiffened plates perforated by rigid projectiles.
Projectile motion of a once rotating object: physical quantities at the point of return
Arabasi, Sameer
2016-09-01
Vertical circular motion is a widely used example to explain non-uniform circular motion in most undergraduate general physics textbooks. However, most of these textbooks do not elaborate on the case when this motion turns into projectile motion under certain conditions. In this paper, we describe thoroughly when a mass attached to a cord, moving in a vertical circular motion, turns into a projectile and its location and velocity when it rejoins the circular orbit. This paper provides an intuitive understanding, supported by basic kinematic equations, to give an interesting elegant connection between circular motion and projectile motion—something lacking in most physics textbooks—and will be very useful to present to an undergraduate class to deepen their understanding of both models of motion.
On the non-equilibrium dynamics of cavitation around the underwater projectile in variable motion
Chen, Y.; Lu, C. J.; Li, J.; Chen, X.; Gong, Z. X.
2015-12-01
In this work, the dynamic behavior of the non-equilibrium cavitation occurring around the underwater projectiles navigating with variable speed was numerically and theoretically investigated. The cavity collapse induced by the decelerating motion of the projectiles can be classified into two types: periodic oscillation and damped oscillation. In each type the evolution of the total mass of vapor in cavity are found to have strict correlation with the pressure oscillation in far field. By defining the equivalent radius of cavity, we introduce the specific kinetic energy of collapse and demonstrate that its change-rate is in good agreement with the pressure disturbance. We numerically investigated the influence of angle of attack on the collapse effect. The result shows that when the projectile decelerates, an asymmetric-focusing effect of the pressure induced by collapse occurs on its pressure side. We analytically explained such asymmetric-focusing effect.
Numerical Computations of Transonic Critical AerodynamicBehavior of a Realistic Artillery Projectile
Directory of Open Access Journals (Sweden)
Ahmed F. M. Kridi
2009-01-01
Full Text Available The determination of aerodynamic coefficients by shell designers is a critical step in the development of any projectile design. Of particular interest is the determination of the aerodynamic coefficients at transonic speeds. It is in this speed regime that the critical aerodynamic behavior occurs and a rapid change in the aerodynamic coefficients is observed. Two-dimensional, transonic, flow field computations over projectiles have been made using Euler equations which were used for solution with no special treatment required. In this work a solution algorithm is based on finite difference MacCormacks technique for solving mixed subsonic-supersonic flow problem. Details of the asymmetrically located shock waves on the projectiles have been determined. Computed surface pressures have been compared with experimental data and are found to be in good agreement. The pitching moment coefficient, determined from the computed flow fields, shows the critical aerodynamic behavior observed in free flights.
Probable projectile-target combinations for the synthesis of super heavy nucleus $^{286}$112
Santhosh, K P
2014-01-01
The fusion cross sections for the reactions of all the projectile-target combinations found in the cold valleys of $^{286}$112 have been studied using scattering potential as the sum of Coulomb and proximity potential, so as to predict the most probable projectile-target combinations in heavy ion fusion reactions for the synthesis of super heavy nucleus $^{286}$112. While considering the nature of potential pockets and half lives of the colliding nuclei, the systems $^{82}$Ge + $^{204}$Hg, $^{80}$Ge + $^{206}$Hg and $^{78}$Zn + $^{208}$Pb found in the deep cold valley region and the systems $^{48}$Ca+$^{238}$U, $^{38}$S+$^{248}$Cm and $^{44}$Ar+$^{242}$Pu in the cold valleys are predicted to be the better optimal projectile-target combinations for the synthesis of super heavy nucleus $^{286}$112.
Evaluating simulant materials for understanding cranial backspatter from a ballistic projectile.
Das, Raj; Collins, Alistair; Verma, Anurag; Fernandez, Justin; Taylor, Michael
2015-05-01
In cranial wounds resulting from a gunshot, the study of backspatter patterns can provide information about the actual incidents by linking material to surrounding objects. This study investigates the physics of backspatter from a high-speed projectile impact and evaluates a range of simulant materials using impact tests. Next, we evaluate a mesh-free method called smoothed particle hydrodynamics (SPH) to model the splashing mechanism during backspatter. The study has shown that a projectile impact causes fragmentation at the impact site, while transferring momentum to fragmented particles. The particles travel along the path of least resistance, leading to partial material movement in the reverse direction of the projectile motion causing backspatter. Medium-density fiberboard is a better simulant for a human skull than polycarbonate, and lorica leather is a better simulant for a human skin than natural rubber. SPH is an effective numerical method for modeling the high-speed impact fracture and fragmentations.
Treatment of ion-atom collisions using a partial-wave expansion of the projectile wavefunction
Energy Technology Data Exchange (ETDEWEB)
Foster, M [Los Alamos National Laboratory; Colgan, J [Los Alamos National Laboratory; Wong, T G [SANTA CLARA U; Madison, D H [MISSOURI U
2008-01-01
We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge scattering quantities. Here we show that such calculations are possible using modern high-performance computing. We demonstrate the utility of our method by examining elastic scattering of protons by hydrogen and helium atoms, problems familiar to undergraduate students of atomic scattering. Application to ionization of helium using partial-wave expansions of the projectile wavefunction, which has long been desirable in heavy-ion collision physics, is thus quite feasible.
Extended Range of a Gun Launched Smart Projectile Using Controllable Canards
Directory of Open Access Journals (Sweden)
Mark Costello
2001-01-01
Full Text Available This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and aerodynamic loads from the body and canards are Mach number and angle of attack dependent. The projectile body aerodynamic moments include unsteady aerodynamic damping. The focus of the study is directed toward low cost competent munitions that extend range and as such a simple flight control system is considered which utilizes only timer, roll rate, and roll attitude inputs.
Probable Projectile-Target Combinations for the Synthesis of Super Heavy Nucleus 286112
Directory of Open Access Journals (Sweden)
K. P. Santhosh
2014-02-01
Full Text Available The fusion cross sections for the reactions of all the projectile-target combinations found in the cold valleys of 286112 have been studied using scattering potential as the sum of Coulomb and proximity potential, so as to predict the most probable projectile-target combinations in heavy ion fusion reactions for the synthesis of super heavy nucleus 286112. While considering the nature of potential pockets and half lives of the colliding nuclei, the systems 82Ge + 204Hg, 80Ge + 206Hg and 78Zn + 208Pb found in the deep cold valley region and the systems 48Ca+238U, 38S+248Cm and 44Ar+242Pu in the cold valleys are predicted to be the better optimal projectile-target combinations for the synthesis of super heavy nucleus 286112.
Ground target localization algorithm for semi-active laser terminal correction projectile
Directory of Open Access Journals (Sweden)
Xing-long Li
2016-06-01
Full Text Available A target localization algorithm, which uses the measurement information from onboard GPS and onboard laser detector to acquire the target position, is proposed to obtain the accurate position of ground target in real time in the trajectory correction process of semi-active laser terminal correction projectile. A target localization model is established according to projectile position, attitude and line-of-sight angle. The effects of measurement errors of projectile position, attitude and line-of-sight angle on localization accuracy at different quadrant elevation angles are analyzed through Monte-Carlo simulation. The simulation results show that the measurement error of line-of-sight angle has the largest influence on the localization accuracy. The localization accuracy decreases with the increase in quadrant elevation angle. However, the maximum localization accuracy is less than 7 m. The proposed algorithm meets the accuracy and real-time requirements of target localization.
Taylor, Emma A.; Kay, Laurie; Shrine, Nick R. G.
Hypervelocity impact on brittle materials produces features not observed on ductile targets. Low fracture toughness and high yield strength produce a range of fracture morphologies including cracking, spallation and shatter. For sub-mm diameter projectiles, impact features are characterised by petaloid spallation separated by radial cracks. The conchoidal or spallation diameter is a parameter in current cratering equations. An alternative method for interpreting hypervelocity impacts on glass targets of semi-infinite thickness is tested against impact data produced using the Light Gas Gun (LGG) facility at the University of Kent at Canterbury (UKC), U.K. Spherical projectiles of glass and other materials with diameters 30-300 μm were fired at ~5 km s^-1 at a glass target of semi-infinite thickness. The data is used to test a power law relationship between projectile diameter and crack length. The results of this work are compared with published cratering/spallation equations for brittle materials.
ANALYTICAL MODEL OF CERAMIC/METAL ARMOR IMPACTED BY DEFORMABLE PROJECTILE
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A new analytical model was established to describe the complex behavior of ceramic/metal armor under impact of deformable projectile by assuming some hypotheses.Three aspects were taken into account: the mushrooming deformation of the projectile,the fragment of ceramic tile and the formation and change of ceramic conoid and the deformation of the metal backup plate. Solving the set of equations, all the variables were obtained for the different impact velocities: the extent and particle velocity in rigid zone; the extent, cross-section area and particle velocity in plastic zone; the velocity and depth of penetration of projectile to the target; the reduction in volume and compressive strength of the fractured ceramic conoid; the displacement and movement velocity of the effective zone of backup plate. Agreement observed among analytical result, numerical simulation and experimental result confirms the validity of the model, suggesting the model developed can be a useful tool for ceramic/metal armor design.
Energy Technology Data Exchange (ETDEWEB)
Vidovic, Zvonimir [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)
1997-06-24
This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H{sup 0}, H{sub 2}{sup +} and H{sub 3}{sup +} projectiles in the 0.25 - 2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. Phenomenological and theoretical descriptions as well as a summary of the main theoretical models are the subjects of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of the thin carbon foils crossed by an energetic projectile is described in the chapter two. In this chapter there are also presented the method and the algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H{sup 0} atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H{sub 2}{sup +} and H{sub 3}{sup +} polyatomic ions. The results are interpreted in terms of collective effects in the interactions of the ions with solids. The role of the proximity of the protons, molecular ions fragments, upon the amplitude of these collected effects is evidenced from the study of the statistics of forward emission. The experiments allowed us to shed light on various aspects of atom and polyatomic ion interactions with solid surfaces. (author) 136 refs., 41 figs., 3 tabs.
[Systemic lupus erythematosus and weakness].
Vinagre, Filipe; Santos, Maria José; da Silva, José Canas
2006-01-01
We report a case of a 13-year old young girl, with Juvenile Systemic Lupus Erythematosus and recent onset of muscle weakness. Investigations lead to the diagnosis of Myasthenia Gravis. The most important causes of muscle weakness in lupus patients are discussed.
Study on measurement method for projectile location based on light screen
Han, Feng; Liu, QunHua; Sun, GuoBin
2008-09-01
In weapon-ammunition system, firing accuracy of projectile is major characteristic parameter weighing fire effect and capability of weapon-ammunition system for target. At present, firing accuracy of projectile is obtained by measuring the two-dimensional coordinates of projectile for target. In order to measure the parameters of two-dimensional coordinates of projectile for target, a new type of measurement system is proposed. The measurement system is composed of four high sensitivity light screens (known as target) with special geometrical frame. Light source of the screens is formed by special infrared LED array. The PIN infrared photodiodes array is used as the sensors. The longest effective distance between light source and sensors is 4m. It is impossible to achieve using traditional methods. Four light screens and high-precision timers are combined in order to acquire the value of time when the projectile flies across the position of four light screens. The real-time data acquirement and processing and display of two-dimensional coordinates and the projectile velocity can be realized. The principle of measurement system and the design of high sensitivity light screen are introduced emphatically. The measurement system was verified by using five kinds of small caliber pellets. As compared with the paper target sheet, the measurement system designed can meet the demand of check-up test of gun, bullet and ammunition. The firing testing in the target field has proved that the measurement system has the advantages of simple construction, easy operation and high precision and high sensitivity.
Santhosh, K. P.; Safoora, V.
2016-08-01
Probable projectile-target combinations for the synthesis of the superheavy element 302120 have been studied taking the Coulomb and proximity potential as the interaction barrier. The probabilities of the compound nucleus formation PCN for the projectile-target combinations found in the cold reaction valley of 302120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion, and evaporation residue cross sections for the reactions of all probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of the superheavy element 302120 in heavy-ion fusion reactions. The calculated fusion and evaporation cross sections for the more asymmetric ("hotter") projectile-target combination is found to be higher than the less asymmetric ("colder") combination. It can be seen from the nature of the quasifission barrier height, mass asymmetry, the probability of compound nucleus formation, survival probability, and excitation energy, the systems 44Ar+258No , 46Ar+256No , 48Ca+254Fm , 50Ca+252Fm , 54Ti+248Cf , and 58Cr+244Cm in deep region I of the cold reaction valley and the systems 62Fe+240Pu , 64Fe+238Pu , 68Ni+234U , 70Ni+232U , 72Ni+230U , and 74Zn+228Th in the other cold valleys are identified as the better projectile-target combinations for the synthesis of 302120. Our predictions on the synthesis of 302120 superheavy nuclei using the combinations 54Cr+248Cm , 58Fe+244Pu , 64Ni+238U , and 50Ti+249Cf are compared with available experimental data and other theoretical predictions.
Penetration experiments in aluminum 1100 targets using soda-lime glass projectiles
Horz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William E.; Haynes, Gerald; See, Thomas H.; Winkler, Jerry L.
1995-01-01
The cratering and penetration behavior of annealed aluminum 1100 targets, with thickness varied from several centimeters to ultra-thin foils less than 1 micrometer thick, were experimentally investigated using 3.2 mm diameter spherical soda-lime glass projectiles at velocities from 1 to 7 km/s. The objective was to establish quantitative, dimensional relationships between initial impact conditions (impact velocity, projectile diameter, and target thickness) and the diameter of the resulting crater or penetration hole. Such dimensional relationships and calibration experiments are needed to extract the diameters and fluxes of hypervelocity particles from space-exposed surfaces and to predict the performance of certain collisional shields. The cratering behavior of aluminum 1100 is fairly well predicted. However, crater depth is modestly deeper for our silicate impactors than the canonical value based on aluminum projectiles and aluminum 6061-T6 targets. The ballistic-limit thickness was also different. These differences attest to the great sensitivity of detailed crater geometry and penetration behavior on the physical properties of both the target and impactor. Each penetration experiment was equipped with a witness plate to monitor the nature of the debris plume emanating from the rear of the target. This plume consists of both projectile fragments and target debris. Both penetration hole and witness-plate spray patterns systematically evolve in response to projectile diameter/target thickness. The relative dimensions of the projectile and target totally dominate the experimental products documented in this report; impact velocity is an important contributor as well to the evolution of penetration holes, but is of subordinate significance for the witness-plate spray patterns.
Hutem, Artit; Kerdmee, Supoj
2013-01-01
The propose of this study is to study Physics Learning Achievement, projectile motion, using the Mathematica program of Faculty of Science and Technology Phetchabun Rajabhat University students, comparing with Faculty of Science and Technology Phetchabun Rajabhat University students who study the projectile motion experiment set. The samples are…
Signature of fractionally charged projectile fragments in /sup 24/Mg-emulsion interaction
Energy Technology Data Exchange (ETDEWEB)
Ghosh, D.; Roy, J.; Mukherjee, A.; Ghosh, A.
1987-07-01
From the measurement of charge of the projectile fragments produced in /sup 24/Mg-emulsion nuclei at 4.5 (GeV/c)/N, an indication of the existence of charges Z = 8/3 and 5/3 among the projectile fragments was obtained. The measurement was based on the lacunarity study of the linear structure of the ionizing track, and the percentage abundance of Z = 8/3 and 5/3 has found to be consistent with the relative abundance of anomalons.
Institute of Scientific and Technical Information of China (English)
陈沿海; 张庆明; 黄风雷
2004-01-01
Tests of hypervelocity projectile impact on double-wall structure were performed with the front wall ranging from 0.5 mm to 2.0 mm thick and different impact velocities. Smooth particle hydrodynamics (SPH) code in LS-DYNA was employed for the simulation of hypervelocity impact on the double-wall structure. By using elementary shock wave theory, the experimental results above are analyzed. The analysis can provide an explanation for the penetration mechanism of hypervelocity projectile impact on double-wall structure about the effect of front wall thickness and impact velocity.
On the geometrical place formed by the maximum heights of projectile motion with air resistance
Hernández-Saldaña, H
2010-01-01
We present an analysis on the geometrical place formed by the set of maxima of the orbits of a projectile launched in a media with linear drag. Such a place is written in term of the Lambert W function in polar coordinates, confirming the special role played by this function in the problem. In order to characterize it, a study of the curvature is presented in two parameterizations, in terms of the launching angle and in the polar one. The angles of maximum curvature are compared with other important angles in the projectile problem.
Estimating 3D positions and velocities of projectiles from monocular views.
Ribnick, Evan; Atev, Stefan; Papanikolopoulos, Nikolaos P
2009-05-01
In this paper, we consider the problem of localizing a projectile in 3D based on its apparent motion in a stationary monocular view. A thorough theoretical analysis is developed, from which we establish the minimum conditions for the existence of a unique solution. The theoretical results obtained have important implications for applications involving projectile motion. A robust, nonlinear optimization-based formulation is proposed, and the use of a local optimization method is justified by detailed examination of the local convexity structure of the cost function. The potential of this approach is validated by experimental results.
Distorted wave theories for dressed-ion-atom collisions with GSZ projectile potentials
Energy Technology Data Exchange (ETDEWEB)
Monti, J M; Rivarola, R D [Instituto de Fisica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario (Argentina); Fainstein, P D, E-mail: monti@ifir-conicet.gov.ar [Comision Nacional de EnergIa Atomica, Centro Atomico Bariloche, 8400 San Carlos de Bariloche (Argentina)
2011-10-14
The continuum distorted wave and the continuum distorted wave-eikonal initial state approximations for electron emission in ion-atom collisions are generalized to the case of dressed projectiles. The interaction between the dressed projectile and the active electron is represented by the analytic Green-Sellin-Zachor (GSZ) potential. Doubly differential cross sections as a function of the emitted electron energy and angle are computed. The region of the binary encounter peak is analysed in detail. Interference structures appear in agreement with the experimental data and are interpreted as arising from the coherent interference between short- and long-range scattering amplitudes.
Double excitation of Ar{sup 16+} projectiles in the intermediate velocity regime
Energy Technology Data Exchange (ETDEWEB)
Adoui, L.; Chetioui, A.; Despiney, I.; L`hoir, A.; Rozet, J.P.; Schmaus, D.; Touati, A.; Vernhet, D.; Wohrer, K. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique des Solides; Cassimi, A.; Grandin, J.P.; Ramillon, J.M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Stephan, C. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire
1993-12-31
The double excitation of Ar{sup 16+} projectiles is observed at GANIL with Ar{sup 16+} projectiles of 13.6 MeV/u (v=23 a.u.) by looking at the radiative decay of the double excited states, thus avoiding the interference effect. Moreover, double excitation together with single excitation in very similar systems (Ar{sup 16+} {yields} He, N{sub 2}, Ne, Ar, Kr, Xe) have been studied, thus allowing to a real test of the two-electron mechanism. 1 fig., 4 refs.
Directory of Open Access Journals (Sweden)
Y. L. Xue
2017-01-01
Full Text Available A new type of composite concrete which can be called corundum-rubble concrete (CRC was presented to improve the resistance of protective structure to the projectile impact. Comparative experiments were conducted between CRC and reinforced concrete, and a modified Taylor model was proposed to predict the penetration depth of CRC targets. Experimental results show that CRC is much higher than reinforced concrete in both strength and hardness and shows excellent resistance to the 0.125 m-diameter projectile impact. Theoretical analyses demonstrated that the modified Taylor model’s predicted results were in good agreement with the measured values.
Institute of Scientific and Technical Information of China (English)
Peng XU; Jing ZU; Jing-biao FAN
2010-01-01
A kind of novel on-boand memory acceleratian measure equipment, self-developed, had been employed in recent field test to obtain the acceleration of projectile penetrating many kinds of concrete target. At the same time, the aluminum foam with different density and pore-diameters had been utilized to protect cirruit modules. Fur-thermore, with the theoretical analysis, computer simulation and field test, the high frequency's impact on the tested acceleration of the projectile had been discussed; At last, the analysis on output signal tested the validity of test data.
Effectiveness of projectile screening in single and multiple ionization of Ne by B{sup 2+}
Energy Technology Data Exchange (ETDEWEB)
Wolff, W.; Luna, H.; Santos, A. C. F.; Montenegro, E. C. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, 21945-970 RJ (Brazil); DuBois, R. D. [Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Montanari, C. C.; Miraglia, J. E. [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, C1428EGA, Buenos Aires (Argentina)
2011-10-15
Pure multiple ionization cross sections of Ne by B{sup 2+} projectiles have been measured in the energy range of 0.75 to 4.0 MeV and calculated using the continuum distorted wave-eikonal initial state approximation. The experiment and calculations show that the ionization cross sections by B{sup 2+}, principally for the production of highly charged recoils, is strongly enhanced when compared to the bare projectile with the same charge state, He{sup 2+}, at the same velocities.
Quantitative functional analysis of Late Glacial projectile points from northern Europe
DEFF Research Database (Denmark)
Dev, Satya; Riede, Felix
2012-01-01
This paper discusses the function of Late Glacial arch-backed and tanged projectile points from northern Europe in general and southern Scandinavia in particular. Ballistic requirements place clear and fairly well understood constraints on the design of projectile points. We outline the argument...... surely fully serviceable, diverged considerably from the functional optimum predicated by ballistic theory. These observations relate directly to southern Scandinavian Late Glacial culture-history which is marked by a sequence of co-occurrence of arch-backed and large tanged points in the earlier part...
Existence of Weak Solutions for the Incompressible Euler Equations
Wiedemann, Emil
2011-01-01
Using a recent result of C. De Lellis and L. Sz\\'{e}kelyhidi Jr. we show that, in the case of periodic boundary conditions and for dimension greater or equal 2, there exist infinitely many global weak solutions to the incompressible Euler equations with initial data $v_0$, where $v_0$ may be any solenoidal $L^2$-vectorfield. In addition, the energy of these solutions is bounded in time.
Weak Interaction Neutron Production Rates in Fully Ionized Plasmas
Widom, A.; Swain, J.; Srivastava, Y. N.
2013-01-01
Employing the weak interaction reaction wherein a heavy electron is captured by a proton to produce a neutron and a neutrino, the neutron production rate for neutral hydrogen gases and for fully ionized plasmas is computed. Using the Coulomb atomic bound state wave functions of a neutral hydrogen gas, our production rate results are in agreement with recent estimates by Maiani {\\it et al}. Using Coulomb scattering state wave functions for the fully ionized plasma, we find a substantially enha...
Variational Study of Weakly Coupled Triply Heavy Baryons
Jia, Y
2006-01-01
Baryons made of three heavy quarks become weakly coupled, when all the quarks are sufficiently heavy such that the typical momentum transfer is much larger than Lambda_QCD. We use variational method to estimate masses of the lowest-lying bcc, ccc, bbb and bbc states by assuming they are Coulomb bound states. Our predictions for these states are systematically lower than those made long ago by Bjorken.
Eternal Chaotic Inflation is Prohibited by Weak Gravity Conjecture
Huang, Qing-Guo; Wang, Yi
2007-01-01
We investigate whether the eternal chaotic inflation can be achieved when the weak gravity conjecture is taken into account. We show that even the assisted chaotic inflation with potential $\\lambda\\phi^4$ or $m^2\\phi^2$ can not be eternal. The effective field theory description for the inflaton field breaks down before inflation reaches the eternal regime. We also find that the total number of e-folds is still bounded by the inflationary entropy for the assisted inflation.
Test of weak and strong factorization in nucleus-nucleuscollisions atseveral hundred MeV/nucleon
Energy Technology Data Exchange (ETDEWEB)
La Tessa, Chiara; Sihver, Lembit; Zeitlin, Cary; Miller, Jack; Guetersloh, Stephen; Heilbronn, Lawrence; Mancusi, Davide; Iwata,Yoshiuki; Murakami, Takeshi
2006-06-21
Total and partial charge-changing cross sections have been measured for argon projectiles at 400 MeV/nucleon in carbon, aluminum, copper, tin and lead targets; cross sections for hydrogen were also obtained, using a polyethylene target. The validity of weak and strong factorization properties has been investigated for partial charge-changing cross sections; preliminary cross section values obtained for carbon, neon and silicon at 290 and 400 MeV/nucleon and iron at 400 MeV/nucleon, in carbon, aluminum, copper, tin and lead targets have been also used for testing these properties. Two different analysis methods were applied and both indicated that these properties are valid, without any significant difference between weak and strong factorization. The factorization parameters have then been calculated and analyzed in order to find some systematic behavior useful for modeling purposes.
Sisk, Matthew L; Shea, John J
2011-01-01
Despite a body of literature focusing on the functionality of modern and stylistically distinct projectile points, comparatively little attention has been paid to quantifying the functionality of the early stages of projectile use. Previous work identified a simple ballistics measure, the Tip Cross-Sectional Area, as a way of determining if a given class of stone points could have served as effective projectile armatures. Here we use this in combination with an alternate measure, the Tip Cross-Sectional Perimeter, a more accurate proxy of the force needed to penetrate a target to a lethal depth. The current study discusses this measure and uses it to analyze a collection of measurements from African Middle Stone Age pointed stone artifacts. Several point types that were rejected in previous studies are statistically indistinguishable from ethnographic projectile points using this new measure. The ramifications of this finding for a Middle Stone Age origin of complex projectile technology is discussed.
Directory of Open Access Journals (Sweden)
Matthew L. Sisk
2011-01-01
Full Text Available Despite a body of literature focusing on the functionality of modern and stylistically distinct projectile points, comparatively little attention has been paid to quantifying the functionality of the early stages of projectile use. Previous work identified a simple ballistics measure, the Tip Cross-Sectional Area, as a way of determining if a given class of stone points could have served as effective projectile armatures. Here we use this in combination with an alternate measure, the Tip Cross-Sectional Perimeter, a more accurate proxy of the force needed to penetrate a target to a lethal depth. The current study discusses this measure and uses it to analyze a collection of measurements from African Middle Stone Age pointed stone artifacts. Several point types that were rejected in previous studies are statistically indistinguishable from ethnographic projectile points using this new measure. The ramifications of this finding for a Middle Stone Age origin of complex projectile technology is discussed.
Santhosh, K P
2016-01-01
Probable projectile-target combinations for the synthesis of superheavy element $^{302}$120 have been studied taking Coulomb and proximity potential as the interaction barrier. The probabilities of compound nucleus formation, PCN for the projectile-target combinations found in the cold reaction valley of $^{302}$120 are estimated. At energies near and above the Coulomb barrier, we have calculated the capture, fusion and evaporation residue cross sections for the reactions of all the probable projectile-target combinations so as to predict the most promising projectile-target combinations for the synthesis of SHE $^{302}$120 in heavy ion fusion reactions. The calculated fusion and evaporation cross section for the more asymmetric (hotter) projectile-target combination is found to be higher than the less asymmetric (colder) combination. It can be seen from the nature of quasi-fission barrier height, mass asymmetry, probability of compound nucleus formation, survival probability and excitation energy, the system...
Institute of Scientific and Technical Information of China (English)
LIU Li-Guo; TIAN Cheng-Lin; CHEN Ping-Xing; YUAN Nai-Chang
2009-01-01
We derive an analytical lower bound on the concurrence for bipartite quantum systems with an improved computable cross norm or realignment criterion and an improved positive partial transpose criterion respectively.Furthermore we demonstrate that our bound is better than that obtained from the local uncertainty relations criterion with optimal local orthogonal observables which is known as one of the best estimations of concurrence.
Bounds for Asian basket options
Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle
2008-09-01
In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.
Anaphoric Pronouns and Bound Variables
Wasow, Thomas
1975-01-01
Deals with certain problems inherent in deriving anaphoric pronouns from bound variables. Syntactic rules applied to determine anaphora relations cannot be applied if anaphoric pronouns and their antecedents have identical underlying forms. An approach to anaphora which preserves some advantages of the bound-variable theory without the problems is…
Market Access through Bound Tariffs
DEFF Research Database (Denmark)
Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal
on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive......WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and long...
Market access through bound tariffs
DEFF Research Database (Denmark)
Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal
2010-01-01
on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive......WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and longterm...
Asynchronous Bounded Expected Delay Networks
Bakhshi, Rena; Fokkink, Wan; Pang, Jun
2010-01-01
The commonly used asynchronous bounded delay (ABD) network models assume a fixed bound on message delay. We propose a probabilistic network model, called asynchronous bounded expected delay (ABE) model. Instead of a strict bound, the ABE model requires only a bound on the expected message delay. While the conditions of ABD networks restrict the set of possible executions, in ABE networks all asynchronous executions are possible, but executions with extremely long delays are less probable. In contrast to ABD networks, ABE networks cannot be synchronised efficiently. At the example of an election algorithm, we show that the minimal assumptions of ABE networks are sufficient for the development of efficient algorithms. For anonymous, unidirectional ABE rings of known size N we devise a probabilistic leader election algorithm having average message and time complexity O(N).
Development of odd-Z-projectile reactions for transactinide element synthesis
Energy Technology Data Exchange (ETDEWEB)
Folden, III, Charles Marvin [Univ. of California, Berkeley, CA (United States)
2004-01-01
The development of new odd-Z-projectile reactions leading to the production of transactinide elements is described. The cross section of the even-Z-projectile ^{208}Pb(^{64}Ni, n)^{271}Ds reaction was measured at two new energies using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. In total, seven decay chains attributable to ^{271}Ds were observed. These data, combined with previous results, establish an excitation function for the production of ^{271}Ds. The maximum cross section was 20 +15 -11 pb at a center-of-target energy of 311.5 MeV in the laboratory frame.The data from the^{ 27}1Ds experiments were used to estimate the optimum beam energy for the new odd-Z-projectile ^{208}Pb(^{65}Cu, n)272-111 reaction using the Fusion by Diffusion theory proposed by Swiatecki, Siwek-Wilczynska, and Wilczynski. A cross section for this reaction was measured for the first time, at a center-of-target energy of 321.1 MeV in the laboratory frame. The excitation energy f or compound nuclei formed at the target center was 13.2 MeV. One decay chain was observed, resulting in a measured cross section of 1.7 +3.9 -1.4 pb. This decay chain is in good agreement with previously published data on the decay of 272-111.The new odd-Z-projectile ^{208}Pb(^{55}Mn, n)^{26}2Bh reaction was studied at three different projectile energies, and 33 decay chains of ^{262}Bh were observed. The existence of a previously reported alpha-decaying isomeric state in this nuclide was confirmed. Production of the ground state was preferred at all three beam energies. The maximum cross section was 540 +180 -150 pb at a projectile center-of-target energy of 264.0 MeV. This cross section is much larger than that previously reported for the even-Z-projectile ^{209}Bi(^{54}Cr, n)^{262}Bh reaction, which may be because the 54Cr projectile
Shape Effect Analysis of Aluminum Projectile Impact on Whipple Shields
Carrasquilla, Maria J.; Miller, Joshua E.
2017-01-01
respect to their mass, size, and material composition needs to be summarized in a form that can be used in MMOD analysis. The mechanism that brings these fragment traits into MMOD analysis is through ballistic limit equations (BLE) that have been developed largely for a few types of materials1. As a BLE provides the failure threshold for a shield or spacecraft component based on parameters such as the projectile impact velocity and size, and the target's materials, thickness, and configuration, it is used to design protective shields for spacecraft such as Whipple shields (WS) to an acceptable risk level. The majority of experiments and simulations to test shields and validate BLEs have, heretofore, largely used spheres as the impactor, not properly reflecting the irregular shapes of MMOD. This shortfall has motivated a numerical impact analysis study of HVI involving non-spherical geometries to identify key parameters that environment models should provide.
Probing Andreev bound states in one-atom superconducting contacts
Energy Technology Data Exchange (ETDEWEB)
Pothier, Hugues; Janvier, Camille; Tosi, Leandro; Girit, Caglar; Goffman, Marcelo; Esteve, Daniel; Urbina, Cristian [Quantronics Group, SPEC, CEA-Saclay (France)
2015-07-01
Superconductors are characterized by a dissipationless current. Since the work of Josephson 50 years ago, it is known that a supercurrent can even flow through tunnel junctions between superconductors. This Josephson effect also occurs through any type of ''weak links'' between superconductors: non-superconducting materials, constrictions,.. A unified understanding of the Josephson effect has emerged from a mesoscopic description of weak links. It relies on the existence of doublets of localized states that have energies below the superconducting gap: the Andreev bound states. I will present experiments performed on the simplest conductor possible, a single-atom contact between superconductors, that illustrate these concepts. The most recent work demonstrates time-domain manipulation of quantum superpositions of Andreev bound states.
Effects of QCD bound states on dark matter relic abundance
Liew, Seng Pei; Luo, Feng
2017-02-01
We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by ˜ 30-100% with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach ˜ 2.5 TeV, even though the potential between the stop and antistop prior to forming a bound state is repulsive. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the BBN constraints and the abundance of a super-weakly interacting DM. The corrections for the bound-state effect when the exotic massive colored particles also carry electric charges, and the collider bounds are also discussed.
Gravitational Interaction of Higgs Boson and Weak Boson Scattering
Xianyu, Zhong-Zhi; He, Hong-Jian
2013-01-01
With the LHC discovery of a 125GeV Higgs-like particle, we study gravitational interaction of Higgs boson via the unique dimension-4 operator involving Higgs doublet and scalar curvature, \\xi H^\\dag H R, with nonminimal coupling \\xi. This Higgs portal term can be transformed away in Einstein frame and induces gauge-invariant effective interactions in the Higgs sector. We study the weak boson scattering in Einstein frame, and explicitly demonstrate the longitudinal-Goldstone boson equivalence theorem in the presence of \\xi coupling. With these, we derive unitarity bound on the Higgs gravitational coupling \\xi in Einstein frame, which is stronger than that inferred from the LHC Higgs measurements. We further analyze \\xi-dependent weak boson scattering cross sections at TeV scale, and study the LHC probe of \\xi coupling via weak boson scattering experiments.
AB-Net Method of Protection from Projectiles (city, military base, battle-front, etc.)
Bolonkin, Alexander
2008-01-01
The author suggests a low cost special AB-Net from artificial fiber, which may protect cities and important objects from rockets, artillery and mortar shells, projectiles, bullets, and strategic weapons. The idea is as follows: The offered AB-Net joins an incoming projectile to a small braking parachute and this incoming projectile loses speed by air braking after a drag distance of 50 - 150 meters. A following interception net after the first may serve to collect the slowed projectiles and their fragments or bomblets so that they do not reach the aimpoint. The author offers the design of AB-Net, a developed theory of snagging with a small braking parachute by AB-Net; and sample computations. These nets may be used for defense of a town, city, military base, battle-front line, road (from terrorists), or any important objects or installations (for example nuclear electric station, government buildings, etc.). Computed projects are: Net to counter small rockets (for example, from Qassam), net to counter artille...
Eulerian simulation of the perforation of aluminum plates by nondeforming projectiles
Energy Technology Data Exchange (ETDEWEB)
Silling, S.A.
1992-03-01
A new algorithm for the treatment of sliding interfaces between solids with or without friction in an Eulerian wavecode is described. The algorithm has been implemented in the two-dimensional version of the CTH code. The code was used to simulate penetration and perforation of aluminum plates by rigid, conical-nosed tungsten projectiles. Comparison with experimental data is provided.
Satellite Splat: An Inelastic Collision with a Surface-launched Projectile
2015-04-23
Satellite splat: an inelastic collision with a surface-launched projectile Philip R Blanco1 and Carl E Mungan2 1Department of Physics and Astronomy ...orbital motion, inelastic collision, momentum conservation, energy conservation 1. Introduction Introductory physics courses cover momentum conservation
Projectile Motion with a Drag Force: Were the Medievals Right After All?
La Rocca, Paola; Riggi, Francesco
2009-01-01
An educational and historical study of the projectile motion with drag forces dependent on speed shows, by simple results, that trajectories quite similar to those depicted before the Galilean era may be obtained with a realistic choice of quantities involved. Numerical simulations of the trajectory in space and velocity coordinates help us to…
On the Locus Formed by the Maximum Heights of Projectile Motion with Air Resistance
Hernandez-Saldana, H.
2010-01-01
We present an analysis on the locus formed by the set of maxima of the trajectories of a projectile launched in a medium with linear drag. Such a place, the locus of apexes, is written in terms of the Lambert "W" function in polar coordinates, confirming the special role played by this function in the problem. To characterize the locus, a study of…
Hynd, Cynthia; And Others
1997-01-01
Investigates changes in preservice teachers' conceptions about projectile motion brought about by a combination of reading and demonstration and appeal to usefulness. Results indicate the effectiveness of a combined Demo-Text condition on immediate posttests and effectiveness of text in producing long-term change. Analysis also indicates an…
Approximate Formula for the Vertical Asymptote of Projectile Motion in Midair
Chudinov, Peter Sergey
2010-01-01
The classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. An analytical approach is used for the investigation. An approximate formula is obtained for one of the characteristics of the motion--the vertical…
Directory of Open Access Journals (Sweden)
Mostafa Khalil
2013-01-01
Full Text Available Any trajectory calculation method has three primary sources of errors, which are model error, parameter error, and initial state error. In this paper, based on initial projectile flight trajectory data measured using Doppler radar system; a new iterative method is developed to estimate the projectile attitude and the corresponding impact point to improve the second shot hit probability. In order to estimate the projectile initial state, the launch dynamics model of practical 155 mm self-propelled artillery is defined, and hence, the vibration characteristics of the self-propelled artillery is obtained using the transfer matrix method of linear multibody system MSTMM. A discrete time transfer matrix DTTM-4DOF is developed using the modified point mass equations of motion to compute the projectile trajectory and set a direct algebraic relation between any two successive radar data. During iterations, adjustments to the repose angle are made until an agreement with acceptable tolerance occurs between the Doppler radar measurements and the estimated values. Simulated Doppler radar measurements are generated using the nonlinear six-degree-of-freedom trajectory model using the resulted initial disturbance. Results demonstrate that the data estimated using the proposed algorithm agrees well with the simulated Doppler radar data obtained numerically using the nonlinear six-degree-of-freedom model.
Kibirige, Israel; Lehong, Moyahabo Jeridah
2016-01-01
The study explored the effect of cooperative learning on Grade 12 learners' performance in projectile motions. A quasi-experimental research design with non-equivalent control group was used. Two schools were purposively selected from Maleboho Central circuit in South Africa based on their performance in Physical Sciences Grade 12 results of 2011.…
Enhanced RAMAC performance in subdetonative propulsion mode with semi-combustible projectile
Energy Technology Data Exchange (ETDEWEB)
Legendre, J.F.; Giraud, M. [French-German Res. Inst., Saint-Louis (France)
2000-11-01
Investigations are carried out at ISL to determine the experimental conditions required to accelerate a projectile in the mass range from 1.5 to 2 kg up to a muzzle velocity of 3 km/s while keeping the maximum acceleration below 40,000 g. Therefore, two smooth-bore ram-accelerators denoted RAMAC 30-II and RAMAC 90, in caliber 30 and 90 mm respectively, are being operated in the thermally choked propulsion mode. Different material configurations for the projectile afterbody have been investigated, while keeping an aluminum nose cone. Besides afterbodies made of aluminum or magnesium alloy only, a third configuration is presented relying on a short magnesium part fitted to the base of an aluminum afterbody. This configuration denoted as ''semi-combustible'' is designed so that magnesium particles are steadily injected and burnt-out within the combustion zone at the base, therefore providing an additional heat release and consequently a significantly greater forward thrust. Experimental results achieved in both 30 and 90 mm along a 300-caliber-long ram-section and using up to three different gaseous mixtures are presented. To date, for a given semi-combustible projectile and an injection velocity into the ram-section of 1380 m/s, a maximum muzzle velocity of 2380 m/s has been achieved in RAMAC 30-II and 2180 m/s in RAMAC 90, the initial projectile mass being 69 g and 1608 g respectively. (orig.)
The scaling and dynamics of a projectile obliquely impacting a granular medium.
Wang, Dengming; Ye, Xiaoyan; Zheng, Xiaojing
2012-01-01
In this paper, the dynamics of a spherical projectile obliquely impacting into a two-dimensional granular bed is numerically investigated using the discrete element method. The influences of projectile's initial velocities and impacting angles are mainly considered. Numerical results show that the relationship between the final penetration depth and the initial impact velocity is very similar to that in the vertical-impact case. However, the dependence of the stopping time on the impact velocity of the projectile exhibits critical characteristics at different impact angles: the stopping time approximately increases linearly with the impact velocity for small impact angles but decreases in an exponential form for larger impact angles, which demonstrates the existence of two different regimes at low and high impact angles. When the impact angle is regarded as a parametric variable, a phenomenological force model at large impact angles is eventually proposed based on the simulation results, which can accurately describe the nature of the resistance force exerted on the projectile by the granular medium at different impact angels during the whole oblique-impact process. The degenerate model agrees well with the existing experimental results in the vertical-impact cases.
Experimental characterisation of sprays resulting from impacts of liquid-containing projectiles
Energy Technology Data Exchange (ETDEWEB)
Hostikka, Simo, E-mail: simo.hostikka@aalto.fi [Aalto University, Espoo (Finland); Silde, Ari; Sikanen, Topi; Vepsä, Ari; Paajanen, Antti [VTT Technical Research Centre of Finland Ltd, Espoo (Finland); Honkanen, Markus [Pixact Oy, Tampere (Finland)
2015-12-15
Highlights: • Detailed characterisation of sprays resulting from the impacts of water-filled metal projectiles on a hard wall. • Experimental measurements of spray speed, direction and droplet size. • Detailed analysis of overall spray evolution. • The spray characterisation information can be used in CFD analyses of aircraft impact fires. - Abstract: Modelling and analysing fires following aircraft impacts requires information about the behaviour of liquid fuel. In this study, we investigated sprays resulting from the impacts of water-filled metal projectiles on a hard wall. The weights of the projectiles were in the range of 38–110 kg, with 8.6–68 kg water, and the impact speeds varied between 96 and 169 m/s. The overall spray behaviour was observed with high-speed video cameras. Ultra-high-speed cameras were used in backlight configuration for measuring the droplet size and velocity distributions. The results indicate that the liquid leaves the impact position as a thin sheet of spray in a direction perpendicular to the projectile velocity. The initial spray speeds were 1.5–2.5 times the impact speed, and the Sauter mean diameters were in the 147–344 μm range. This data can be used as boundary conditions in CFD fire analyses, considering the two-phase fuel flow. The overall spray observations, including the spray deceleration rate, can be used for validating the model.
Tissue simulant response at projectile impact on flexible fabric armour systems
Bree, J.L.M.J. van; Volker, A.; Heiden, N. van der
2006-01-01
Behind Armour Blunt Trauma is a phenomenon which has been studied extensively for rigid personal protective armour systems. These systems used in e.g. bullet proof vests manage to defeat high velocity small arms projectiles. Tissue simulants are used to study behind armour effects. At high velocity
Fast-projectile stopping power of quantal multicomponent strongly coupled plasmas.
Ballester, D; Tkachenko, I M
2008-08-15
The Bethe-Larkin formula for the fast-projectile stopping power is extended to multicomponent plasmas. The results are to contribute to the correct interpretation of the experimental data, which could permit us to test existing and future models of thermodynamic, static, and dynamic characteristics of strongly coupled Coulomb systems.
Projectile atomic-number effect on ion-induced fragmentation and ionization of fullerenes
Hadjar, O; Hoekstra, R; Morgenstern, R; Schlatholter, T
2001-01-01
The delocalized pi electrons of a C-60 cluster can be well described as an electron gas. Electronic friction experienced by a multicharged ion colliding with a fullerene might then be modeled in terms of the electronic stopping power. We investigated such collisions for projectile atomic numbers Z r
Timing the flight of the projectile in the classical ballistic pendulum experiment
Peterson, F. C.
1983-07-01
An apparatus has been designed and constructed to measure the time of flight of the projectile fired by the Blackwood pendulum apparatus. Microphones mounted on the pendulum base and on a metal target plate yield signals, which after amplification and shaping by custom designed circuitry, start and stop a commercial digital timer. The purpose, use, and design of these accessories are described.
Directory of Open Access Journals (Sweden)
James O’Daniel
2011-01-01
Full Text Available Simulating fragment penetration into steel involves complicated modeling of severe behavior of the materials through multiple phases of response. Penetration of a fragment-like projectile was simulated using finite element (FE and meshfree particle formulations. Extreme deformation and failure of the material during the penetration event were modeled with several approaches to evaluate each as to how well it represents the actual physics of the material and structural response. A steel Fragment Simulating Projectile (FSP – designed to simulate a fragment of metal from a weapon casing – was simulated for normal impact into a flat square plate. A range of impact velocities was used to examine levels of exit velocity ranging from relatively small to one on the same level as the impact velocity. The numerical code EPIC, used for all the simulations presented herein, contains the element and particle formulations, as well as the explicit methodology and constitutive models needed to perform these simulations. These simulations were compared against experimental data, evaluating the damage caused to the projectile and the target plates, as well as comparing the residual velocity when the projectile perforated the target.
Energy Technology Data Exchange (ETDEWEB)
Engelage, J.; Crawford, H.J.; Greiner, L.; Kuo, C. [and others
1996-06-01
The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed.
Energy Technology Data Exchange (ETDEWEB)
Denton, Cristian D. [Departament de Física Aplicada, Universitat d’Alacant, Apartat 99, E-03690 Alacant (Spain); Moreno-Marín, Juan Carlos; Heredia-Avalos, Santiago [Departament de Física, Enginyeria de Sistemes i Teoria de la Senyal, Universitat d’Alacant, Apartat 99, E-03690 Alacant (Spain)
2015-06-01
The idea of using carbon nanotubes (CNTs) as masks against irradiation has recently emerged, because of the region of a given material covered by a CNT can be protected from the effects of irradiation, creating nanowires. In this case, it is interesting to know in detail the number of generated recoils and their energy. In order to obtain these data, we simulate the irradiation of CNTs with carbon ions using a molecular dynamics code. To describe the interaction between carbon ions we use the Brenner potential joined smoothly to the Universal ZBL potential at short distances. We have analyzed the energy distributions of the carbon atoms emerging from the CNT for single projectile irradiation with incident energies from 30 eV to 5 keV. Our results show that the number and the energy of the recoil carbon atoms emerging from the CNT increases with the projectile incident energy. In average, each projectile with incident energy of 1 keV produces ∼3.6 recoils, which have a mean energy of 150 eV, while projectiles with 5 keV produce ∼7 recoils with a mean energy of 400 eV.
Amazing Physics: Learning about Work, Energy and Projectile Motion in a Historical Context
Tural, Guner
2013-01-01
Teaching physics through a historical context provides effective learning and increases students' motivation for and interest in physics. For example, trebuchets and mangonels may be interesting historical contexts for learning about energy, work, and projectile motion. In this study, the implementation of physics lessons related to these subjects…
Tissue simulant response at projectile impact on flexible fabric armour systems
Bree, J.L.M.J. van; Volker, A.; Heiden, N. van der
2006-01-01
Behind Armour Blunt Trauma is a phenomenon which has been studied extensively for rigid personal protective armour systems. These systems used in e.g. bullet proof vests manage to defeat high velocity small arms projectiles. Tissue simulants are used to study behind armour effects. At high velocity