Continuum Coupling and Pair Correlation in Weakly Bound Deformed Nuclei
Oba, Hiroshi
2009-01-01
We formulate a new Hartree-Fock-Bogoliubov method applicable to weakly bound deformed nuclei using the coordinate-space Green's function technique. An emphasis is put on treatment of quasiparticle states in the continuum, on which we impose the correct boundary condition of the asymptotic out-going wave. We illustrate this method with numerical examples.
Continuum discretized BCS approach for weakly bound nuclei
Lay, J A; Fortunato, L; Vitturi, A
2015-01-01
The Bardeen-Cooper-Schrieffer (BCS) formalism is extended by including the single-particle continuum, thus enabling the analysis of an isotopic chain from stability up to the drip line. We propose a continuum discretized generalized BCS based on single-particle pseudostates (PS). These PS are generated from the diagonalization of the single-particle Hamiltonian within a Transformed Harmonic Oscillator (THO) basis. The consistency of the results versus the size of the basis is studied. The method is applied to neutron rich Oxygen and Carbon isotopes and compared with similar previous works and available experimental data. We make use of the flexibility of the proposed model in order to study the evolution of the occupation of the low-energy continuum when the system becomes weakly bound. We find a larger influence of the non-resonant continuum as long as the Fermi level approaches zero.
Study of Exotic Weakly Bound Nuclei Using Magnetic Analyzer Mavr
Maslov, V. A.; Kazacha, V. I.; Kolesov, I. V.; Lukyanov, S. M.; Melnikov, V. N.; Osipov, N. F.; Penionzhkevich, Yu. E.; Skobelev, N. K.; Sobolev, Yu. G.; Voskoboinik, E. I.
2016-06-01
A project of the high-resolution magnetic analyzer MAVR is proposed. The analyzer will comprise new magnetic optical and detecting systems for separation and identification of reaction products in a wide range of masses (5-150) and charges (1-60). The magnetic optical system consists of the MSP-144 magnet and a doublet of quadrupole lenses. This will allow the solid angle of the spectrometer to be increased by an order of magnitude up to 30 msr. The magnetic analyzer will have a high momentum resolution (10-4) and high focal-plane dispersion (1.9 m). It will allow products of nuclear reactions at energies up to 30 MeV/nucleon to be detected with the charge resolution ∼1/60. Implementation of the project is divided into two stages: conversion of the magnetic analyzer proper and construction of the nuclear reaction products identification system. The MULTI detecting system is being developed for the MAVR magnetic analyzer to allow detection of nuclear reaction products and their identification by charge Q, atomic number Z, and mass A with a high absolute accuracy. The identification will be performed by measuring the energy loss (ΔE), time of flight (TOF), and total kinetic energy (TKE) of reaction products. The particle trajectories in the analyzer will also be determined using the drift chamber developed jointly with GANIL. The MAVR analyzer will operate in both primary beams of heavy ions and beams of radioactive nuclei produced by the U400 - U400M acceleration complex. It will also be used for measuring energy spectra of nuclear reaction products and as an energy monochromator.
Evolution of Surface Deformations of Weakly-Bound Nuclei in the Continuum
Pei, J C; Xu, F R
2013-01-01
We study weakly-bound deformed nuclei based on coordinate-space Skyrme Hartree-Fock-Bogoliubov approach , in which a large box is employed for treating the continuum and surface diffuseness. Approaching the limit of core-halo deformation decoupling, calculations found an exotic "egg"-like structure consisting of a spherical core plus a prolate halo in $^{38}$Ne, in which the resonant continuum plays an essential role. Generally the halo probability and the decoupling effect in heavy nuclei are reduced compared to light nuclei, due to denser level densities around Fermi surfaces. However, deformed halos in medium-mass nuclei are possible with sparse levels of negative parity, for example, in $^{110}$Ge. The surface deformations of pairing density distributions are also influenced by the decoupling effect and are sensitive to the effective pairing Hamiltonian.
Recent Results on Fusion and Direct Reactions with Weakly Bound Stable Nuclei
Directory of Open Access Journals (Sweden)
Shrivastava A.
2011-10-01
Full Text Available Recent measurements of fusion and direct reactions in case of weakly bound stable nuclei at extreme sub-barrier energies using a sensitive off beam technique are presented. Deviation in slope of the fusion excitation function, as observed in case of medium heavy systems, is absent in the present asymmetric systems at these low energies. These results along with the study of capture reaction of the breakup fragments using particle- gamma coincidences is presented, thereby giving the current status of the ﬁeld.
Interplay of projectile breakup and target excitation in reactions induced by weakly bound nuclei
Gómez-Ramos, M.; Moro, A. M.
2017-03-01
Background: Reactions involving weakly bound nuclei require formalisms able to deal with continuum states. The majority of these formalisms struggle to treat collective excitations of the systems involved. For continuum-discretized coupled channels (CDCC), extensions to include target excitation have been developed but have only been applied to a small number of cases. Purpose: In this work, we reexamine the extension of the CDCC formalism to include target excitation and apply it to a variety of reactions to study the effect of breakup on inelastic cross sections. Methods: We use a transformed oscillator basis to discretize the continuum of the projectiles in the different reactions and use the extended CDCC method developed in this work to solve the resulting coupled differential equations. A new code has been developed to perform the calculations. Results: Reactions 58Ni(d ,d )*58Ni , 24Mg(d ,d )*24Mg , 144Sm(6Li,6Li)*144Sm , and 9Be(6Li,6Li)*9Be are studied. Satisfactory agreement is found between experimental data and extended CDCC calculations. Conclusions: The studied CDCC method has proven to be an accurate tool to describe target excitation in reactions with weakly bound nuclei. Moderate effects of breakup on inelastic observables are found for the reactions studied. Cross-section magnitudes are not modified much, but angular distributions present smoothing when opposed to calculations without breakup.
Interplay of projectile breakup and target excitation in reactions induced by weakly-bound nuclei
Gomez-Ramos, M
2016-01-01
In this work, we reexamine the extension of the CDCC formalism to include target excitation and apply it to a variety of reactions to study the effect of breakup on inelastic cross sections. We use a transformed oscillator basis to discretize the continuum of the projectiles in the different reactions and use the extended CDCC method developed in this work to solve the resulting coupled differential equations. A new code has been developed to perform the calculations. Reactions 58Ni(d, d) 58Ni*, 24Mg(d, d) 24Mg* , 144Sm( 6Li, 6Li) 144Sm* and 9Be( 6Li, 6Li) 9Be* are studied. Satisfactory agreement is found between experimental data and extended CDCC calculations. The studied CDCC method is proved to be an accurate tool to describe target excitation in reactions with weakly-bound nuclei. Moderate effects of breakup on inelastic observables are found for the reactions studied. Cross section magnitudes are not modified much, but angular distributions present smoothing when opposed to calculations without breakup.
Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Dasso, C.H. [Niels Bohr Institute, Copenhagen (Denmark); Lenzi, S.M.; Vitturi, A. [Universita di Padova (Italy)
1996-12-31
Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.
Structure Effects in Collisions Induced by Halo and Weakly Bound Nuclei Around the Coulomb Barrier
Scuderi, V; Torresi, D; Fisichella, M; Borge, M J G; Randisi, G; Milin, M; Figuera, P; Raabe, R; Di Pietro, A; Amorini, F; Fraile, L M; Vidal, A M; Rizzo, F; Zadro, M; Gomez-Camacho, J; Pellegriti, M G; Papa, M; Jeppesen, H; Santonocito, D; Sanchez, E M R; Acosta, L; Tengblad, O; Lattuada, M; Musumarra, A; Scalia, G
2010-01-01
In this contribution, results concerning different reaction channels for the collisions induced by the three Be isotopes, Be-9,Be-10,Be-11, on a Zn-64 target at energies around the Coulomb barrier will be presented. The experiments with the radioactive Be-10,Be-11 beams were performed at REX-ISOLDE (CERN) whereas the experiment with the stable weakly bound Be-9 beam was performed at LNS Catania. Elastic scattering angular distributions have been measured for the three systems Be-9,Be-10,Be-11 + Zn-64 at the same center of mass energy. The angular distributions were analyzed with optical potentials and reaction cross sections were obtained from optical model calculations, performed with the code PTOLEMY. For the Be-11 + Zn-64 reaction, the break-up angular distribution was also measured.
Energy Technology Data Exchange (ETDEWEB)
Beck, C. [Institut Pluridisciplinaire Hubert Curien, UMR 7178, IN2P3-CNRS et Universite Louis Pasteur (Strasbourg I), 23 rue du Loess - BP28, F-67037 Strasbourg Cedex 2 (France); Keeley, N. [DSM/DAPNIA/SPhN CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Diaz-Torres, A. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2007-03-15
The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for {sup 6,7}Li+{sup 59}Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with {sup 6}Li (as compared to {sup 7}Li) indicates the significant role of breakup for weakly bound projectiles. A study of {sup 4,6}He induced fusion reactions with a three-body CDCC method for the {sup 6}He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed. (authors)
Cook, K J; Luong, D H; Kalkal, Sunil; Dasgupta, M; Hinde, D J
2016-01-01
Complete fusion cross sections in collisions of light, weakly bound nuclei and high Z targets show above-barrier suppression of complete fusion. This has been interpreted as resulting from breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete fusion. This paper investigates how these conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance is much longer than the fusion timescale, then its breakup cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on predictions of fusion suppression. Coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb and 209Bi at energies below the barrie...
Physics with loosely bound nuclei
Indian Academy of Sciences (India)
Chhanda Samanta
2001-08-01
The essential aspect of contemporary physics is to understand properties of nucleonic matter that constitutes the world around us. Over the years research in nuclear physics has provided strong guidance in understanding the basic principles of nuclear interactions. But, the scenario of nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare nuclei are posing new challenges to both theory and experiments. Fortunately, nature has provided a few loosely bound stable nuclei that have been studied thoroughly for decades. Attempts are being made to ﬁnd a consistent picture for the unstable nuclei starting from their stable counterparts. Some signiﬁcant differences in the structure and reaction mechanisms are found.
Near-barrier Fusion and Breakup/Transfer induced by Weakly Bound and Exotic Halo Nuclei
Beck, C
2007-01-01
The influence on the fusion process of coupling to collective degrees of freedom has been explored. The significant enhancement of the fusion cross section at sub-barrier energies was compared to predictions of one-dimensional barrier penetration models. This was understood in terms of the dynamical processes arising from strong couplings to collective inelastic excitations of the target and projectile. However, in the case of reactions where at least one of the colliding nuclei has a sufficiently low binding energy, for breakup to become an important process, conflicting model predictions and experimental results have been reported in the literature. Excitation functions for sub- and near-barrier total (complete + incomplete) fusion cross sections have been measured for the $^{6,7}$Li+$^{59}$Co reactions. Elastic scattering as well as breakup/transfer yields have also been measured at several incident energies. Results of Continuum-Discretized Coupled-Channel ({\\sc Cdcc}) calculations describe reasonably wel...
Weakly bound systems, continuum effects, and reactions
Jaganathen, Y; Ploszajczak, M
2012-01-01
Structure of weakly bound/unbound nuclei close to particle drip lines is different from that around the valley of beta stability. A comprehensive description of these systems goes beyond standard Shell Model and demands an open quantum system description of the nuclear many-body system. We approach this problem using the Gamow Shell Model which provides a fully microscopic description of bound and unbound nuclear states, nuclear decays, and reactions. We present in this paper the first application of the GSM for a description of the elastic and inelastic scattering of protons on 6He.
Weak pion production from nuclei
Indian Academy of Sciences (India)
S K Singh; M Sajjad Athar; Shakeb Ahmad
2006-04-01
The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of in the nuclear medium. The pion absorption effects have also been taken into account.
Electromagnetic and Weak transitions in light nuclei
Energy Technology Data Exchange (ETDEWEB)
M. Viviani; L.E. Marcucci; A. Kievsky; S. Rosati; R. Schiavilla
2002-09-01
Recent advances in the study of the p -- d radiative and mu -- {sup 3}He weak capture processes by our group are presented and discussed. The trinucleon bound and scattering states have been obtained from variational calculations by expanding the corresponding wave functions in terms of correlated hyper-spherical harmonic functions. The electromagnetic and weak transition currents include one- and two-body operators. The accuracy achieved in these calculations allows for interesting comparisons with experimental data.
Collisional properties of weakly bound heteronuclear dimers
Marcelis, B.; Kokkelmans, S.J.J.M.F.; Shlyapnikov, G.V.; Petrov, D.S.
2008-01-01
We consider collisional properties of weakly bound heteronuclear molecules (dimers) formed in a two-species mixture of atoms with a large mass difference. We focus on dimers containing light fermionic atoms as they manifest collisional stability due to an effective dimer-dimer repulsion originating
Infrared spectroscopy of weakly bound molecular ions
Energy Technology Data Exchange (ETDEWEB)
Yeh, Lisa I-Ching
1988-11-01
The infrared spectra of a series of hydrated hydronium cluster ions and of protonated ethane ion are presented. A tandem mass spectrometer is ideally suited to obtaining the spectra of such weakly bound molecular ions. Traditional absorption spectroscopy is not feasible in these situations, so the techniques described in this thesis make use of some consequence of photon absorption with higher sensitivity than simply attenuation of laser power. That consequence is dissociation. By first mass selecting the parent ion under study and then mass selecting the fragment ion formed from dissociation, the near unit detection efficiency of ion counting methods has been used to full advantage.
Mirror energy difference and the structure of loosely bound proton-rich nuclei around A = 20
Yuan, Cenxi; Xu, Furong; Suzuki, Toshio; Otsuka, Takaharu
2014-01-01
The properties of loosely bound proton-rich nuclei around A = 20 are investigated within the framework of nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1=2 orbit are significantly reduced in comparison with those in their mirror nuclei. We evaluate the reduction of the effective interaction by calculating the monopole-baseduniversal interaction (VMU) in the Woods-Saxon basis. The shell-model Hamiltonian in the sd shell, such as USD, can thus be modified to reproduce the binding energies and energy levels of the weakly bound proton-rich nuclei around A = 20. The effect of the reduction of the effective interaction on the structure and decay properties of these nuclei is also discussed.
Energy Technology Data Exchange (ETDEWEB)
Lapoux, V
2005-09-15
Information on the structure, spectroscopy and target interaction potentials of exotic nuclei can be inferred by interpreting measured data from direct reactions on proton such as elastic or inelastic scattering of proton (p,p') or one-nucleon transfer reaction (p,d). A series of experimental results has been obtained at the GANIL facilities on the setting composed of the MUST telescope array used for the detection of light charged-particles and of CATS beam detectors. This setting aims at measuring reactions on light proton or deuteron targets through reverse kinematics. Particularly, results on C{sup 10}, C{sup 11} and on direct reactions with the He{sup 8} beam of Spiral are presented. The first chapter is dedicated to the description of the most important theories concerning the nucleus. The experimental tools used to probe the nucleus are reported in the second chapter. The third and fourth chapters present the framework that has allowed us to analyse results from (p,p') and (p,d) reactions on weakly bound exotic nuclei. The last chapter is dedicated to the description of future experimental programs. (A.C.)
Spatial characteristics of borromean, tango, samba and all-bound halo nuclei
Yamashita, M. T.; Frederico, T.; Tomio, Lauro
2007-02-01
We report a renormalized zero-range interaction approach to estimate the size of generic weakly bound three-body systems where two particles are identical. We present results for the neutron-neutron root-mean-square distances of the halo nuclei 6He, 11Li, 14Be and 20C, where the systems are taken as two halo neutrons with an inert point-like core. We also report an approach to obtain the neutron-neutron correlation function in halo nuclei. In this case, our results suggest a review of the corresponding experimental data analysis.
Exotic Behaviour of Angular Dispersion of Weakly Bound Nucleus 17F at Small Angles
Institute of Scientific and Technical Information of China (English)
WANG Qi; YUAN Xiao-Hua; XU Zhi-Guo; ZHAO Tie-Cheng; ZHANG Hong-Bin; XU Hua-Gen; QI Hui-Rong; WANG Yue; JIA Fei; WU Li-Jie; DING Xian-Li; HAN Jian-Long; GAO Qi; GAO Hui; LI Song-Lin; BAI Zhen; XIAO Guo-Qing; JIN Gen-Ming; REN Zhong-Zhou; ZHOU Shan-Gui; SERGEY Yu-Kun; XIAO Zhi-Gang; XU Hu-Shan; SUN Zhi-Yu; HU Zheng-Guo; ZHANG Xue-Ying; WANG Hong-Wei; MAO Rui-Shi
2006-01-01
@@ The differential cross sections of 17 F and 17 O elastic scattering products on 208Pb have been measured at the Radioactive Ion Beam Line at Lanzhou (RIBLL). Two angular dispersion plots ofln( dσ/ dθ ) versus θ2 are obtained from the angular distribution of the elastic scattering differential cross sections. The angular dispersion plot exhibits a clear turning point for 17F in the range of small scattering angles 6°-20° due to its exotic structure,but for 17 O, the turning point is not observed in the same angular range. The experimental results have been compared with previous data of other groups. Systematical analysis on the available data supports the above conclusion that there is an exotic behaviour of the angular dispersion plot of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the turning point of the angular dispersion plot appears at small angle for weakly bound nuclei with halo or skin structure, and can be used as a new probe to investigate the halo and skin phenomena of weakly bound nuclei.
The weak psuedoscalar coupling of the free and the bound protons
Energy Technology Data Exchange (ETDEWEB)
Gorringe, T.P. [Univ. of Kentucky, Lexington, KY (United States)
1995-10-01
The proton`s weak pseudoscalar coupling, g{sub p} is induced by the effects of its strong interaction on its weak interaction. In the Partially Conserved Axial Current hypothesis g{sub p} is due to single pion exchange between the leptonic and nucleonic currents in semi-leptonic weak processes. It predicts g{sub p} = 8.4 {plus_minus} 0.2 for the free proton but modifications of g{sub p}for the bound proton, due to modifications of the pion field of the bound proton, are possible. We will review the available data on g{sub p} for both the free and the bound proton. In the case of the free proton g{sub p} has been determined from measurements of ordinary (OMC) and radiative muon capture (RMC) on hydrogen. We will discuss the extraction of g{sub p} from the data, the importance of various {mu}-atomic and molecular processes in extracting g{sub p }and compare the results obtained from the OMC and RMC data and experiments in gaseous and liquid H{sub 2}. In the case of the bound proton we will discuss the measurements of ordinary and radiative {mu}{sup -} capture on complex nuclei and the extraction of g{sub p} from these data. The comparison of inclusive RMC and OMC rates on nuclei has led to speculations of a large enhancement of g{sub p} in light nuclei and a large quenching of g{sub p} in heavy nuclei. We will discuss the evidence for and against the renormalization, of g{sub p}in nuclei and the problems of extracting g{sub p} from the nuclear RMC and OMC data.
Classical simulations of heavy-ion fusion reactions and weakly-bound projectile breakup reactions
Indian Academy of Sciences (India)
S S Godre
2014-05-01
Heavy-ion collision simulations in various classical models are discussed. Heavy-ion reactions with spherical and deformed nuclei are simulated in a classical rigid-body dynamics (CRBD) model which takes into account the reorientation of the deformed projectile. It is found that the barrier parameters depend not only on the initial orientations of the deformed nucleus, but also on the collision energy and the moment of inertia of the deformed nucleus. Maximum reorientation effect occurs at near- and below-barrier energies for light deformed nuclei. Calculated fusion crosssections for 24Mg + 208Pb reaction are compared with a static-barrier-penetration model (SBPM) calculation to see the effect of reorientation. Heavy-ion reactions are also simulated in a 3-stage classical molecular dynamics (3S-CMD) model in which the rigid-body constraints are relaxed when the two nuclei are close to the barrier thus, taking into account all the rotational and vibrational degrees of freedom in the same calculation. This model is extended to simulate heavy-ion reactions such as 6Li + 209Bi involving the weakly-bound projectile considered as a weakly-bound cluster of deuteron and 4He nuclei, thus, simulating a 3-body system in 3S-CMD model. All the essential features of breakup reactions, such as complete fusion, incomplete fusion, no-capture breakup and scattering are demonstrated.
Electron Capture Dissociation of Weakly Bound Polypeptide Polycationic Complexes
DEFF Research Database (Denmark)
Haselmann, Kim F; Jørgensen, Thomas J D; Budnik, Bogdan A;
2002-01-01
We have previously reported that, in electron capture dissociation (ECD), rupture of strong intramolecular bonds in weakly bound supramolecular aggregates can proceed without dissociation of weak intermolecular bonds. This is now illustrated on a series of non-specific peptide-peptide dimers...... as well as specific complexes of modified glycopeptide antibiotics with their target peptide. The weak nature of bonding is substantiated by blackbody infrared dissociation, low-energy collisional excitation and force-field simulations. The results are consistent with a non-ergodic ECD cleavage mechanism....
Refractive effects in the scattering of loosely bound nuclei
Cãrstoiu, F; Tribble, R E; Gagliardi, C A
2004-01-01
A study of the interaction of loosely bound nuclei 6,7Li at 9 and 19 AMeV with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction 13C(7Li,8Li)12C have been measured on a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a "plateau" in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier farside scattering subamplitudes.
Refractive effects in the scattering of loosely bound nuclei
Energy Technology Data Exchange (ETDEWEB)
Carstoiu, F.; Trache, L.; Tribble, R.E.; Gagliardi, C.A. [Texas A and M Univ., College Station, TX (United States). Cyclotron Inst; Carstoiu, F. [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, ISMRA, Universite de Caen, 14 - Caen (France); Carstoiu, F. [National Institute for Physics and Nuclear Engineering, Horia Hulubei, Bucharest-Magurele (Romania)
2004-07-01
A study of the interaction of the loosely bound nuclei {sup 6,7}Li at 9 and 19 MeV/nucleon with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron transfer reaction {sup 13}C({sup 7}Li,{sup 8}Li){sup 12}C have been measured over a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a 'plateau' in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and is interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier far-side scattering sub-amplitudes. (authors)
Weakly bound states with spin-isospin symmetry
Kievsky, A.; Gattobigio, M.
2016-03-01
We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, a0, and triplet, a1, n - p scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about a0/a1 ≈ -4.31. This value defines a plane in which a0 and a1 can be varied up to the unitary limit, 1/a0 = 0 and 1/a1 = 0, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three 1/2-spin-isospin fermions.
Weakly bound states with spin-isospin symmetry
Kievsky, A
2015-01-01
We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, $a_0$, and triplet, $a_1$, $n-p$ scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about $a_0/a_1\\approx-4.31$. This value defines a plane in which $a_0$ and $a_1$ can be varied up to the unitary limit, $1/a_0=0$ and $1/a_1=0$, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three $1/2$-spin-isospin fermions.
Weakly bound states with spin-isospin symmetry
Directory of Open Access Journals (Sweden)
Kievsky A.
2016-01-01
Full Text Available We discuss weakly bound states of a few-fermion system having spin-isospin symmetry. This corresponds to the nuclear physics case in which the singlet, a0, and triplet, a1, n − p scattering lengths are large with respect to the range of the nuclear interaction. The ratio of the two is about a0/a1 ≈ −4.31. This value defines a plane in which a0 and a1 can be varied up to the unitary limit, 1/a0 = 0 and 1/a1 = 0, maintaining its ratio fixed. Using a spin dependant potential model we estimate the three-nucleon binding energy along that plane. This analysis can be considered an extension of the Efimov plot for three bosons to the case of three 1/2-spin-isospin fermions.
Longitudinal vector form factors in weak decays of nuclei
Simkovic, F; Krivoruchenko, M I
2015-01-01
The longitudinal form factors of the weak vector current of particles with spin $ J = 1/2 $ and isospin $ I = 1/2 $ are determined by the mass difference and the charge radii of members of the isotopic doublets. The most promising reactions to measure these form factors are the reactions with large momentum transfers involving the spin-1/2 isotopic doublets with a maximum mass splitting. Numerical estimates of longitudinal form factors are given for nucleons and eight nuclear spin-1/2 isotopic doublets.
Eta bound states in nuclei: a probe of flavour-singlet dynamics
Energy Technology Data Exchange (ETDEWEB)
Steven D. Bass; Anthony W. Thomas
2005-07-01
We argue that eta bound states in nuclei are sensitive to the singlet component in the eta. The bigger the singlet component, the more attraction and the greater the binding. Thus, measurements of eta bound states will yield new information about axial U(1) dynamics and glue in mesons. Eta - etaprime mixing plays an important role in understanding the value of the eta-nucleon scattering length.
Energy Technology Data Exchange (ETDEWEB)
Woodard, A.E., E-mail: awoodard@nd.edu [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Figueira, J.M. [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Ciudad de Buenos Aires (Argentina); Otomar, D.R. [Instituto de Fisica, Universidade Federal Fluminense, Gragoata, Niteroi, R. J., 24210-340 (Brazil); Fernandez Niello, J.O. [Laboratorio Tandar, Comision Nacional de Energia Atomica, B1650KNA San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Ciudad de Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, Universidad de San Martin, B1650BWA San Martin, Buenos Aires (Argentina); Lubian, J. [Instituto de Fisica, Universidade Federal Fluminense, Gragoata, Niteroi, R. J., 24210-340 (Brazil)
2012-01-01
Angular distributions for the inelastic scattering of the weakly bound {sup 6}Li nucleus from a {sup 144}Sm target (associated with the contributions of both the 2{sub 1}{sup +} and 3{sub 1}{sup -144}Sm excited states together) were measured at bombarding energies close to the Coulomb barrier. The experimental data were compared with expected results based on continuum discretized coupled-channel (CDCC) calculations. The results confirm that it is essential to include continuum-continuum couplings to reproduce the experimental data. The analysis demonstrates that inelastic scattering data can be a critical tool in testing full CDCC calculations involving weakly bound nuclei.
The systematic study of deeply bound kaonic nuclei with antisymmetrized molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Dote, Akinobu; Akaishi, Yoshinori [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics; Yamazaki, Toshimitsu [Institute of Physical and Chemical Research, Wako, Saitama (Japan)
2002-09-01
We have investigated systematically kaonic nuclei which are ppnK{sup -}, pppK{sup -}, pppnK{sup -} and {sup 6}BeK{sup -}. In the present study we have improved the framework of antisymmetrized molecular dynamics (AMD) so that we can treat K{sup -} - K-bar{sup 0} mixing and perform not only angular-momentum projection but also isospin projection. As a result of our calculation with a new framework of AMD, all kaonic nuclei we calculated are deeply bound by about 100 MeV. We found interesting structures in pppK{sup -} and {sup 6}BeK{sup -}. (author)
Far-Infrared Spectroscopy of Weakly Bound Hydrated Cluster Molecules
DEFF Research Database (Denmark)
Andersen, Jonas
-sized molecular clusters with water by means of far-infrared and terahertz neon matrix isolation spectroscopy. The embedding of non-covalent cluster molecules in solid cryogenic neon matrices at 2.8 K ensures a high sensitivity for direct spectroscopic observations of the large-amplitude intermolecular...... vibrational bands of the cluster molecules in the challenging far-infrared and terahertz spectral regions.A key parameter in the validation of the performance of theoretical predictions for weak non-covalent intermolecular interactions is the dissociation energy D0 that depends heavily on the class of large...
Bounds on the Capacity of Weakly constrained two-dimensional Codes
DEFF Research Database (Denmark)
Forchhammer, Søren
2002-01-01
Upper and lower bounds are presented for the capacity of weakly constrained two-dimensional codes. The maximum entropy is calculated for two simple models of 2-D codes constraining the probability of neighboring 1s as an example. For given models of the coded data, upper and lower bounds...
Weakly and strongly associated nonfreezable water bound in bones.
Turov, V V; Gun'ko, V M; Zarko, V I; Leboda, R; Jablonski, M; Gorzelak, M; Jagiello-Wojtowicz, E
2006-03-15
Water bound in bone of rat tail vertebrae was investigated by 1H NMR spectroscopy at 210-300 K and by the thermally stimulated depolarization current (TSDC) method at 190-265 K. The 1H NMR spectra of water clusters were calculated by the GIAO method with the B3LYP/6-31G(d,p) basis set, and the solvent effects were analyzed by the HF/SM5.45/6-31G(d) method. The 1H NMR spectra of water in bone tissue include two signals that can be assigned to typical water (chemical shift of proton resonance deltaH=4-5 ppm) and unusual water (deltaH=1.2-1.7 ppm). According to the quantum chemical calculations, the latter can be attributed to water molecules without the hydrogen bonds through the hydrogen atoms, e.g., interacting with hydrophobic environment. An increase in the amount of water in bone leads to an increase in the amount of typical water, which is characterized by higher associativity (i.e., a larger average number of hydrogen bonds per molecule) and fills larger pores, cavities and pockets in bone tissue.
The Covering Factor of Warm Dust in Weak Emission-Line Active Galactic Nuclei
Zhang, Xudong
2016-01-01
Weak emission-line active galactic nuclei (WLAGNs) are radio-quiet active galactic nuclei (AGNs) that have nearly featureless optical spectra. We investigate the ultraviolet to mid-infrared spectral energy distributions of 73 WLAGNs (0.4
Contribution of excited states to stellar weak-interaction rates in odd-A nuclei
Sarriguren, Pedro
2016-01-01
Weak-interaction rates, including beta-decay and electron capture, are studied in several odd-A nuclei in the pf-shell region at various densities and temperatures of astrophysical interest. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus. The nuclear structure involved in the weak processes is studied within a quasiparticle random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. In the range of densities and temperatures considered, it is found that the total rates do not differ much from the rates of the ground state fully populated. In any case, the changes are not larger than the uncertainties due to the nuclear model dependence of the rates.
First Test of Lorentz Invariance in the Weak Decay of Polarized Nuclei
Müller, S E; Bekker, H; Berg, J E van den; Böll, O; Hoekstra, S; Jungmann, K; Meinema, C; Noordmans, J P; Portela, M Nuñez; Onderwater, C J G; Pijpker, C; van der Poel, A; Santra, B; Sytema, A; Timmermans, R G E; Versolato, O O; Willmann, L; Wilschut, H W; Yai, K
2013-01-01
A new test of Lorentz invariance in the weak interactions has been made by searching for variations in the decay rate of spin-polarized 20Na nuclei. This test is unique to Gamow-Teller transitions, as was shown in the framework of a recently developed theory that assumes a Lorentz symmetry breaking background field of tensor nature. The nuclear spins were polarized in the up and down direction, putting a limit on the amplitude of sidereal variations of the form |(\\Gamma_{up} - \\Gamma_{down})| / (\\Gamma_{up} + \\Gamma_{down}) < 3 * 10^{-3}. This measurement shows a possible route toward a more detailed testing of Lorentz symmetry in weak interactions.
Weak Precompactness in the Space of Vector-Valued Measures of Bounded Variation
Directory of Open Access Journals (Sweden)
Ioana Ghenciu
2015-01-01
Full Text Available For a Banach space X and a measure space (Ω,Σ, let M(Ω,X be the space of all X-valued countably additive measures on (Ω,Σ of bounded variation, with the total variation norm. In this paper we give a characterization of weakly precompact subsets of M(Ω,X.
Weakly regular fluid flows with bounded variation on a Schwarzschild background
LeFloch, Philippe G
2015-01-01
We study the global dynamics of isothermal fluids evolving in the domain of outer communication of a Schwarzschild black hole. We first formulate the initial value problem within a class of weak solutions with bounded variation (BV), possibly containing shock waves. We then introduce a version of the random choice method and establish a global-in-time existence theory for the initial value problem within the proposed class of weakly regular fluid flows. The initial data may have arbitrary large bounded variation and can possibly blow up near the horizon of the black hole. Furthermore, we study the class of possibly discontinuous, equilibrium solutions and design a version of the random choice method in which these fluid equilibria are exactly preserved. This leads us to a nonlinear stability property for fluid equilibria under small perturbations with bounded variation. Furthermore, we can also encompass several limiting regimes (stiff matter, non-relativistic flows, extremal black hole) by letting the physic...
Topic, Wendy C.; Jäger, Wolfgang
2005-08-01
Rotational spectra of the weakly bound He-HCCCN and He-DCCCN van der Waals complexes were observed using a pulsed-nozzle Fourier-transform microwave spectrometer in the 7-26-GHz frequency region. Nuclear quadrupole hyperfine structures due to the N14 and D nuclei (both with nuclear-spin quantum number I =1) were resolved and assigned. Both strong a and weaker b-type transitions were observed and the assigned transitions were used to fit the parameters of a distortable asymmetric rotor model. The dimers are floppy, near T-shaped complexes. Three intermolecular potential-energy surfaces were calculated using the coupled-cluster method with single and double excitations and noniterative inclusion of triple excitations. Bound-state rotational energy levels supported by these surfaces were determined. The quality of the potential-energy surfaces was assessed by comparing the experimental and calculated transition frequencies and also the corresponding spectroscopic parameters. Simple scaling of the surfaces improved both the transition frequencies and spectroscopic constants. Five other recently reported surfaces [O. Akin-Ojo, R. Bukowski, and K. Szalewicz, J. Chem. Phys. 119, 8379 (2003)], calculated using a variety of methods, and their agreement with spectroscopic properties of He-HCCCN are discussed.
Approaching the Cramer-Rao Bound in Weak Lensing with PDF Symmetrization
Zhang, Jun
2016-01-01
Weak lensing statistics is typically measured as weighted sum of shear estimators or their products (shear-shear correlation). The weighting schemes are designed in the hope of minimizing the statistical error without introducing systematic errors. It would be ideal to approach the Cramer-Rao bound (the lower bound of the statistical uncertainty) in shear statistics, though it is generally difficult to do so in practice. The reasons may include: difficulties in galaxy shape measurement, inaccurate knowledge of the probability-distribution-function (PDF) of the shear estimator, misidentification of point sources as galaxies, etc.. Using the shear estimators defined in Zhang et al. (2015), we show that one can overcome all these problems, and allow shear measurement accuracy to approach the Cramer-Rao bound. This can be achieved by symmetrizing the PDF of the shear estimator, or the joint PDF of shear estimator pairs (for shear-shear correlation), without any prior knowledge of the PDF. Using simulated galaxy i...
Short-lived two-soliton bound states in weakly perturbed nonlinear Schrodinger equation.
Dmitriev, Sergey V.; Shigenari, Takeshi
2002-06-01
Resonant soliton collisions in the weakly discrete nonlinear Schrodinger equation are studied numerically. The fractal nature of the soliton scattering, described in our previous works, is investigated in detail. We demonstrate that the fractal scattering pattern is related to the existence of the short-lived two-soliton bound states. The bound state can be regarded as a two-soliton quasiparticle of a new type, different from the breather. We establish that the probability P of a bound state with the lifetime L follows the law P approximately L(-3). In the frame of a simple two-particle model, we derive the nonlinear map, which generates the fractal pattern similar to that observed in the numerical study of soliton collisions. (c) 2002 American Institute of Physics.
Breakup Effect of Weakly Bound Projectile on the Barrier Distribution Around Coulomb Barrier
Institute of Scientific and Technical Information of China (English)
贾会明; 林承键; 张焕乔; 刘祖华; 喻宁; 杨峰; 徐新星; 贾飞; 吴振东; 张世涛
2012-01-01
The excitation function of quasi-elastic （QEL） scattering at a backward angle has been measured for 9^Be＋208^Pb. The barrier distribution was extracted by means of the first derivative of the measured excitation function and calculated with the coupled-channel model. The present work shows that the experimental barrier distribution extracted from QEL scattering is shifted to the low energy side by 1.5 MeV as compared with the theoretical one. This energy discrepancy indicates that breakup is important in the colliding processes of the weakly bound nucleus system.
A weakly monotonic backward induction algorithm on finite bounded subsets of vector lattices
Dragut, A. B.
2004-03-01
We present a new efficient and robust backward induction algorithm, which is weakly monotonic, working on bounded subsets without holes of lattices. We prove all its properties, give examples of applications, and illustrate its behavior, comparing it with the natural extension of the unidimensional algorithm presented in Puterman (Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, New York, 1994), in the sense of Topkis (Frontiers of Economic Research Series, Princeton University Press, Princeton, NJ, 1998) and White (Recent Developments in Markov Decision Processes, Academic Press, New York, 1980, 261) and showing, also experimentally, that it is much more efficient.
Control of Optical Transitions with Magnetic Fields in Weakly Bound Molecules
McGuyer, B H; Iwata, G Z; Skomorowski, W; Moszynski, R; Zelevinsky, T
2015-01-01
Forbidden optical transitions in weakly bound $^{88}$Sr$_2$ molecules become strongly enabled with moderate applied magnetic fields. We report the control of transition strengths by five orders of magnitude and measurements of highly nonlinear Zeeman shifts, which we explain with an accurate {\\it ab initio} model. Mixed quantization in an optical lattice enables the experimental procedure. Our observation of formerly inaccessible $f$-parity excited states offers a new avenue for improving theoretical models for divalent atom dimers. Furthermore, magnetically enabled transitions may lead to an extremely precise subradiant molecular lattice clock.
Gericke, M T; Carlini, R D; Chupp, T E; Coulter, K P; Dabaghyan, M; Dawkins, M; Desai, D; Freedman, S J; Gentile, T R; Gillis, R C; Greene, G L; Hersman, F W; Ino, T; Jones, G L; Kandes, M; Lauss, B; Leuschner, M; Lozowski, W R; Mahurin, R; Mason, M; Masuda, Y; Mitchell, G S; Muto, S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Santra, S; Seo, P N; Sharapov, E I; Smith, T B; Snow, W M; Wilburn, W S; Yuan, V; Zhu, H
2006-01-01
Parity-odd asymmetries in the electromagnetic decays of compound nuclei can sometimes be amplified above values expected from simple dimensional estimates by the complexity of compound nuclear states. In this work we use a statistical approach to estimate the root mean square (RMS) of the distribution of expected parity-odd correlations $\\vec{s_{n}} \\cdot \\vec{k_{\\gamma}}$, where $\\vec {s_{n}}$ is the neutron spin and $\\vec{k_{\\gamma}}$ is the momentum of the gamma, in the integrated gamma spectrum from the capture of cold polarized neutrons on Al, Cu, and In and we present measurements of the asymmetries in these and other nuclei. Based on our calculations, large enhancements of asymmetries were not predicted for the studied nuclei and the statistical estimates are consistent with our measured upper bounds on the asymmetries.
Pairing-induced localization of the particle continuum in weakly bound nuclei
Fayans, S A; Zawischa, D
2000-01-01
The Hartree-Fock-Bogolyubov (HFB) problem for the cutoff local energy-density functional is solved numerically by using the Gor'kov formalism with an exact treatment of the particle continuum. The contributions from the resonant and "gas" continuum to the spectral density of the HFB eigenstates as well as the shifting and broadening of the discrete HF hole orbitals are clearly demonstrated with the illustrative example of the drip-line nucleus ^{70}Ca. The structure of the neutron density distribution in the localized ground state is analyzed, and the formation of its extended tail ("halo") is shown to be a collective pairing effect.
Inclusive breakup of three-fragment weakly bound and Borromean nuclei
Carlson, Brett V; Hussein, Mahir S
2016-01-01
The inclusive breakup of three-fragment projectiles is discussed within a four-body spectator model. Both the elastic breakup and the non-elastic breakup are obtained in a unified framework. Originally developed in the 80's for two-fragment projectiles such as the deuteron, the theory is successfully generalized to Borromean projectiles. The expression obtained for the inclusive cross section allows the extraction of the incomplete fusion cross section, and accordingly generalizes the surrogate method to cases such as (t,p) and (t,n) reactions. It is found that two-fragment correlations inside the projectile affect in a conspicuous way the elastic breakup cross section. The inclusive non-elastic breakup cross section is found to contain the contribution of a three-body absorption term that is also strongly influenced by the two-fragment correlations.
Directory of Open Access Journals (Sweden)
Sukjung Hwang
2015-11-01
Full Text Available Here we generalize quasilinear parabolic p-Laplacian type equations to obtain the prototype equation $$ u_t - \\hbox{div} \\Big(\\frac{g(|Du|}{|Du|} Du\\Big = 0, $$ where g is a nonnegative, increasing, and continuous function trapped in between two power functions $|Du|^{g_0 -1}$ and $|Du|^{g_1 -1}$ with $1
Institute of Scientific and Technical Information of China (English)
Mukhtar Ahmed Rana; Gul Sher,Shahid Manzoor; M.I.Shahzad
2011-01-01
@@ Fission cross-sections of 119Sn and 209Bi induced by negative pions of two energies 500 and 672 MeV were measured using a CR-39 nuclear track detector.Target-detector stacks were exposed to pion beams at the Brookhaven National Laboratory(USA).Measurement results are compared with the corresponding calculations using the computer code CEM95.Agreement between measurements and calculations is fairly good for the 209Bi target nuclei whereas it is poor for 119Sn at both investigated energies of 500 and 672 MeV Fission cross-section results of 119Sn and 209Bi are explained using the equilibrium properties of these nuclides including nuclear electric quadrupole moments which determine the shapes of nuclei.A logarithmic dependence of fission cross-section on Z2/A is observed for the above-mentioned reactions and a critical limit of Z2/A is identified with the value of 30 which divides the curve of of versus Z2/A into two regimes,one with weak dependence and the other with strong dependence.%Fission cross-sections of 119Sn and 20gBi induced by negative pions of two energies 500 and 672 MeV were measured using a CR-39 nuclear track detector. Target-detector stacks were exposed to pion beams at the Brookhaven National Laboratory (USA). Measurement results are compared with the corresponding calculations using the computer code CEM95. Agreement between measurements and calculations is fairly good for the 209Bi target nuclei whereas it is poor for 119Sn at both investigated energies of 500 and 672 MeV. Fission cross-section results of 119Sn and 209Bi are explained using the equilibrium properties of these nuclides including nuclear electric quadrupole moments which determine the shapes of nuclei. A logarithmic dependence of fission cross-section on Z2/A is observed for the above-mentioned reactions and a critical limit of Z2/A is identified with the value of 30 which divides the curve of at versus Z2 /A into two regimes, one with weak dependence and the other with strong
Universality of weakly bound dimers and Efimov trimers close to Li-Cs Feshbach resonances
Ulmanis, J.; Häfner, S.; Pires, R.; Kuhnle, E. D.; Weidemüller, M.; Tiemann, E.
2015-05-01
We study the interspecies scattering properties of ultracold Li-Cs mixtures in their two energetically lowest spin channels in the magnetic field range between 800 and 1000 G. Close to two broad Feshbach resonances (FR) we create weakly bound LiCs dimers by radio-frequency association and measure the dependence of their binding energy on the external magnetic field strength. Based on the binding energies and complementary atom loss spectroscopy of three other Li-Cs s-wave FRs we construct precise molecular singlet and triplet electronic ground state potentials using a coupled-channels calculation. We extract the Li-Cs interspecies scattering length as a function of the external field and obtain almost a ten-fold improvement in the precision of the values for the pole positions and widths of the s-wave FRs as compared to our previous work (Pires et al 2014 Phys. Rev. Lett. 112 250404). We discuss implications on the Efimov scenario and the universal geometric scaling for LiCsCs trimers.
Hyperaccretion during Tidal Disruption Events: Weakly Bound Debris Envelopes and Jets
Coughlin, Eric R.; Begelman, Mitchell C.
2014-02-01
After the destruction of the star during a tidal disruption event (TDE), the cataclysmic encounter between a star and the supermassive black hole (SMBH) of a galaxy, approximately half of the original stellar debris falls back onto the hole at a rate that can initially exceed the Eddington limit by orders of magnitude. We argue that the angular momentum of this matter is too low to allow it to attain a disk-like configuration with accretion proceeding at a mildly super-Eddington rate, the excess energy being carried away by a combination of radiative losses and radially distributed winds. Instead, we propose that the infalling gas traps accretion energy until it inflates into a weakly bound, quasi-spherical structure with gas extending nearly to the poles. We study the structure and evolution of such "zero-Bernoulli accretion" flows as a model for the super-Eddington phase of TDEs. We argue that such flows cannot stop extremely super-Eddington accretion from occurring, and that once the envelope is maximally inflated, any excess accretion energy escapes through the poles in the form of powerful jets. We compare the predictions of our model to Swift J1644+57, the putative super-Eddington TDE, and show that it can qualitatively reproduce some of its observed features. Similar models, including self-gravity, could be applicable to gamma-ray bursts from collapsars and the growth of SMBH seeds inside quasi-stars.
Hyperaccretion during tidal disruption events: weakly bound debris envelopes and jets
Coughlin, Eric R
2013-01-01
After the destruction of the star during a tidal disruption event (TDE), the cataclysmic encounter between a star and the supermassive black hole (SMBH) of a galaxy, approximately half of the original stellar debris falls back onto the hole at a rate that can initially exceed the Eddington limit by orders of magnitude. We argue that the angular momentum of this matter is too low to allow it to attain a disk-like configuration with accretion proceeding at a mildly super-Eddington rate, the excess energy being carried away by a combination of radiative losses and radially distributed winds. Instead, we propose that the infalling gas traps accretion energy until it inflates into a weakly-bound, quasi-spherical structure with gas extending nearly to the poles. We study the structure and evolution of such "Zero-Bernoulli accretion" flows (ZEBRAs) as a model for the super-Eddington phase of TDEs. We argue that such flows cannot stop extremely super-Eddington accretion from occurring, and that once the envelope is m...
Photodissociation dynamics of weakly bound He H2 + in intense light fields
Szidarovszky, Tamás; Yamanouchi, Kaoru
2016-12-01
Photoinduced dynamics of a weakly bound triatomic molecule He H2 + exposed to electromagnetic radiation is investigated by time-dependent quantum wave-packet propagation. Adopting a two-dimensional linear H-H-He model, the three lowest-lying potential energy surfaces (PESs) and corresponding dipole moment surfaces are constructed. One of the two characteristic excited PESs of He H2 + leads to the charge-transfer reaction H2 ++He → H2+H e+ and the other corresponds to the first excited state of H2 + perturbed by the presence of He. When He H2 + is exposed to a femtosecond intense ultraviolet light pulse (I =4 ×1014W c m-2 , λ =400 nm ), both of the two excited PESs are found to be coupled with the light field and a variety of reaction pathways become opened so that HeH, He H+ , H2, H2 +,H , H+ , He, and H e+ are produced. Simulations also show that the anharmonic coupling between the two stretching vibrational modes in He H2 + leads to the stabilization of the H2 + moiety against the decomposition into H + H+ compared with bare H2 +. The theoretical findings of the formation of He H+ composed of the most abundant elements in the universe are also discussed in view of the theoretical modeling of the chemical reactions proceeding in the primordial gas and in the interstellar medium.
Infrared Spectrum of CO-O2, a 'new' Weakly-Bound Complex
McKellar, Bob; Barclay, A. J.; Michaelian, K. H.; Moazzen-Ahmadi, Nasser
2016-06-01
Only a few weakly-bound complexes containing the O2 molecule have been characterized by high-resolution spectroscopy, notably N2O-O2 [1] and HF-O2 [2]. This neglect is no doubt due in part to the complications added by the oxygen unpaired electron spin. Here we report an extensive infrared spectrum of CO-O2, as observed in the CO fundamental band region (˜2150 wn) using a tunable quantum cascade laser to probe a pulsed supersonic jet expansion. The derived energy level pattern consists of 'stacks' characterized by K, the projection of the total angular momentum on the intermolecular axis. Five such stacks are observed in the ground vibrational state, and ten in the excited state, v(CO) = 1. They are divided into two groups, with no observed transitions between groups, and we believe these groups correlate with the two lowest rotational states of O2, namely (N, J) = (1, 0) and (1, 2). In many ways, the spectrum and energy levels are similar to those of CO-N2 [3], and we use the same approach for analysis, simply fitting each stack with its own origin, B-value, and distortion constants. The rotational constant of the lowest stack in the ground state (with K = 0) implies an effective intermolecular separation of 3.82 Å, but this should be interpreted with caution since it ignores possible effects of electron spin. [1] H.-B. Qian, D. Seccombe, and B.J. Howard, J. Chem. Phys. 107, 7658 (1997). [2] W.M. Fawzy, C.M. Lovejoy, D.J. Nesbitt, and J.T. Hougen, J. Chem. Phys. 117, 693 (2002); S. Wu, G. Sedo, E.M. Grumstrup, and K.R. Leopold, J. Chem. Phys. 127, 204315 (2007). [3] M. Rezaei, K.H. Michaelian, N. Moazzen-Ahmadi, and A.R.W. McKellar, J. Phys. Chem. A 117, 13752 (2013), and references therein.
Weak interaction rates for Kr and Sr waiting-point nuclei under rp-process conditions
Energy Technology Data Exchange (ETDEWEB)
Sarriguren, P., E-mail: sarriguren@iem.cfmac.csic.e [Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain)
2009-10-12
Weak interaction rates are studied in neutron deficient Kr and Sr waiting-point isotopes in ranges of densities and temperatures relevant for the rp process. The nuclear structure is described within a microscopic model (deformed QRPA) that reproduces not only the half-lives but also the Gamow-Teller strength distributions recently measured. The various sensitivities of the decay rates to both density and temperature are discussed. Continuum electron capture is shown to contribute significantly to the weak rates at rp-process conditions.
Charmed mesic nuclei Bound D and over D states with 208Pb
Tsushima, K; Thomas, A W; Saitô, K; Landau, Rubin H
1999-01-01
We show that the $D^-$ meson will inevitably form narrow bound states with $^{208}$Pb. The experimental confirmation and comparison with the $\\bar{D}^0$ and $D^0$ will provide distinctive information on the nature of the interaction between the charmed meson and matter.
Regularity of weak solutions to the Landau-Lifshitz system in bounded regular domains
Directory of Open Access Journals (Sweden)
Kevin Santugini-Repiquet
2007-10-01
Full Text Available In this paper, we study the regularity, on the boundary, of weak solutions to the Landau-Lifshitz system in the framework of the micromagnetic model in the quasi-static approximation. We establish the existence of global weak solutions to the Landau-Lifshitz system whose tangential space gradient on the boundary is square integrable.
Energy Technology Data Exchange (ETDEWEB)
Lubian, J.; Gomes, P.R.S. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Canto, L.F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Hussein, M.S. [Universidade de Sao Paulo (USP), SP (Brazil)
2012-07-01
Full text: In the last two decades one has asked whether the complete fusion of weakly bound systems is enhanced or suppressed when compared with the situation where there is no break process. Recent systematic results [1] based on the reduction of cross section and the comparison to the Universal Fusion Function have shown that the complete fusion cross section is indeed enhanced at sub-barrier energies and suppressed at energies above the barrier, when compared with calculations which do not take into account the couplings to breakup channels. In this contribution we discuss and propose a method to explain this conclusion. We point out the importance of direct transfer and breakup processes and also the recently observed sequential breakup that follows the transfer. Different behaviors of the dynamic polarization potentials at different energy regions are used to explain the observed fusion excitation functions for several weakly bound systems. While the breakup polarization is the main reaction channel at above the Coulomb barrier energy regime, leading to repulsive polarization, the sequential breakup (transfer followed by breakup) seems to be the main reaction mechanism at below barrier energies. This last mechanism produces attractive polarization and for this reason it enhances the complete fusion cross section. [1] L.F. Canto et al., Nucl. Phys. A 821, 51 (2009); J. of Phys. G 36, 015109 (2009). (author)
Okołowicz, J.; Lam, Y. H.; Płoszajczak, M.; Macchiavelli, A. O.; Smirnova, N. A.
2016-06-01
There is a considerable interest in understanding the dependence of one-nucleon removal cross sections on the asymmetry of the neutron Sn and proton Sp separation energies, following a large amount of experimental data and theoretical analyses in a framework of sudden and eikonal approximations of the reaction dynamics. These theoretical calculations involve both the single-particle cross section and the shell-model description of the projectile initial state and final states of the reaction residues. The configuration mixing in shell-model description of nuclear states depends on the proximity of one-nucleon decay threshold but does it depend sensitively on Sn -Sp? To answer this question, we use the shell model embedded in the continuum to investigate the dependence of one-nucleon spectroscopic factors on the asymmetry of Sn and Sp for mirror nuclei 24Si, 24Ne and 28S, 28Mg and for a series of neon isotopes (20 ≤ A ≤ 28).
Institute of Scientific and Technical Information of China (English)
Lin Feng; Zhang Wei; Zhao Ze-Yu; Cong Shu-Lin
2012-01-01
The photoassociation dynamics of ultracold lithium atoms controlled by a cut-off pulse has been investigated theoretically by solving numerically the time-dependent Schr(o)dinger equation using the mapped Fourier grid method.The frequency components of the laser pulse close to the atomic resonance are partly cut off.Compared with the typical Gauss-type pulses,the cut-off pulse is helpful to suppress efficiently the weakly bound states and prepare the associated molecules in the lower vibrational states.Especially,the dependence of photoassociation probability on the cut-off position of the laser pulse is explored.
A new millimeter-wave observation of the weakly bound CO-N2 complex
Surin, L. A.; Potapov, A.; Müller, H. S. P.; Schlemmer, S.
2015-01-01
New millimeter-wave transitions of the CO-N2 van der Waals complex have been observed using the intracavity OROTRON jet spectrometer in the frequency range of 103-159 GHz. For the less abundant form, CO-paraN2, a total of 37 rotational transitions were assigned to three K = 0-0, 0-1, 2-1 subbands connecting the (jCO, jN2) = (1, 1) and (jCO, jN2) = (0, 1) internal rotor states. The upper K = 0 and K = 2 "stacks" of rotational levels were probed for the first time here by millimeter-wave spectroscopy following a recent infrared study by Rezaei et al. (2013). The observation of new subbands fixes with higher precision not only these upper K = 0 and K = 2 but also lower K = 1(f) levels, not linked with other stacks in earlier rotational studies. For the more abundant form, CO-orthoN2, five new P-branch rotational transitions of the K = 0-0 "CO bending" subband are reported, thus extending previous measurements. Nuclear quadrupole hyperfine structure due to the presence of two equivalent 14N nuclei was partly resolved and analyzed to give additional information about the angular orientation of the N2 molecule in the complex.
Okołowicz, J; Płoszajczak, M; Macchiavelli, A O; Smirnova, N A
2015-01-01
There is a considerable interest in understanding the dependence of one-nucleon removal cross sections on the asymmetry of the neutron $S_n$ and proton $S_p$ separation energies, following a large amount of experimental data and theoretical analyses in a framework of sudden and eikonal approximations of the reaction dynamics. These theoretical calculations involve both the single-particle cross section and the shell-model description of the projectile initial state and final states of the reaction residues. The configuration mixing in shell-model description of nuclear states depends on the proximity of one-nucleon decay threshold but does it depend sensitively on $S_n - S_p$? To answer this question, we use the shell model embedded in the continuum to investigate the dependence of one-nucleon spectroscopic factors on the asymmetry of $S_n$ and $S_p$ for mirror nuclei $^{24}$Si, $^{24}$Ne and $^{28}$S, $^{28}$Mg and for a series of neon isotopes ($20 \\leq A \\leq 28$).
Energy Technology Data Exchange (ETDEWEB)
Labbe, Nicole J.; Sivaramakrishnan, Raghu; Goldsmith, C. Franklin; Georgievskii, Yuri; Miller, James A.; Klippenstein, Stephen J.
2016-01-07
Weakly bound free radicals have low-dissociation thresholds such that at high temperatures, timescales for dissociation and collisional relaxation become comparable, leading to significant dissociation during the vibrational-rotational relaxation process. Here we characterize this “prompt” dissociation of formyl (HCO), an important combustion radical, using direct dynamics calculations for OH + CH2O and H + CH2O (key HCO-forming reactions). For all other HCO-forming reactions, presumption of a thermal incipient HCO distribution was used to derive prompt dissociation fractions. Inclusion of these theoretically derived HCO prompt dissociation fractions into combustion kinetics models provides an additional source for H-atoms that feeds chain branching reactions. Simulations using these updated combustion models are therefore shown to enhance flame propagation in 1,3,5-trioxane and acetylene. The present results suggest that HCO prompt dissociation should be included when simulating flames of hydrocarbons and oxygenated molecules and that prompt dissociations of other weakly bound radicals may also impact combustion simulations
Labbe, Nicole J; Sivaramakrishnan, Raghu; Goldsmith, C Franklin; Georgievskii, Yuri; Miller, James A; Klippenstein, Stephen J
2016-01-01
Weakly bound free radicals have low-dissociation thresholds such that at high temperatures, time scales for dissociation and collisional relaxation become comparable, leading to significant dissociation during the vibrational-rotational relaxation process. Here we characterize this "prompt" dissociation of formyl (HCO), an important combustion radical, using direct dynamics calculations for OH + CH2O and H + CH2O (key HCO-forming reactions). For all other HCO-forming reactions, presumption of a thermal incipient HCO distribution was used to derive prompt dissociation fractions. Inclusion of these theoretically derived HCO prompt dissociation fractions into combustion kinetics models provides an additional source for H-atoms that feeds chain-branching reactions. Simulations using these updated combustion models are therefore shown to enhance flame propagation in 1,3,5-trioxane and acetylene. The present results suggest that HCO prompt dissociation should be included when simulating flames of hydrocarbons and oxygenated molecules and that prompt dissociations of other weakly bound radicals may also impact combustion simulations.
Dynamics of fragment capture for cluster structures of weakly bound 7Li
Directory of Open Access Journals (Sweden)
Shrivastava A.
2013-12-01
Full Text Available Role of cluster structures of 7Li on reaction dynamics have been studied by performing exclusive measurements of prompt-γ rays from residues with scattered particles at energy, E/Vb = 1.6, with 198Pt target. Yields of the residues resulting after capture of t and 4,5,6He, corresponding to different excitation energies of the composite system were estimated. The results were compared with three body classical-dynamical model for breakup fusion, constrained by the measured fusion, α and t capture cross-sections. The cross-section of residues from capture of α and t agreed well with the prediction of the model showing dominance of the two step process - breakup fusion, while those from tightly bound 6He showed massive transfer to be the dominant mechanism.
Quantum Defect Theory description of weakly bound levels and Feshbach resonances in LiRb
Pérez-Ríos, Jesús; Chen, Yong P; Greene, Chris H
2014-01-01
The multichannel quantum defect theory (MQDT) in combination with the frame transformation (FT) approach is applied to model the Fano-Feshbach resonances measured for $^{7}$Li$^{87}$Rb and $^{6}$Li$^{87}$Rb [Marzok {\\it et al.} Phys. Rev. A {\\bf 79} 012717 (2009)]. The MQDT results show a level of accuracy comparable to that of previous models based on direct, fully numerical solutions of the the coupled channel Schr\\"odinger equations (CC). Here, energy levels deduced from 2-photon photoassociation spectra for $^{7}$Li$^{85}$Rb are assigned by applying the MQDT approach, obtaining the bound state energies for the coupled channel problem. Our results confirm that MQDT yields a compact description of photoassociation observables as well as the Fano-Feshbach resonance positions and widths.
Yesuf, Hassen; David C. Koo, S. M. Faber, J. Xavier Prochaska, Yicheng Guo, F. S. Liu, Emily C. Cunningham, Alison L. Coil, Puragra Guhathakurta
2017-01-01
A key physical manifestation of active galactic nuclei (AGN) feedback is predicted to be powerful galactic winds. However, the relative roles between AGN activity and star formation in driving such winds remain largely unexplored at high redshifts, near the peak of cosmic activity for both. We study winds in 12 X-ray AGN host galaxies at z ~ 1 in the CANDELS fields using deep Keck rest-frame UV spectroscopy. We find, using the low-ionization Fe II 2586 absorption in the stacked spectra, that the AGN show a median centroid velocity shift of -137 km/s and a median velocity dispersion of 103 km/ s. The centroid velocity and the velocity dispersions are obtained from a two component (ISM+wind) absorption line model. For comparison, a star-forming and X-ray undetected galaxies at a similar redshift, matched roughly in stellar mass and galaxy inclination, show the outflows to have a median centroid velocity of -135 km/s and a median velocity dispersion of 140 km/s. Thus, winds in the AGN are similar in velocities to those found in star-formation-driven winds, and are weak to escape and expel substantial cool gas from galaxies. A joint reanalysis of the z ~ 0.5 AGN sample and our sample yields a centroid velocity of -139 (+48, -87) km/s and a velocity dispersion of 82 (+47,-37) km/s. For the combined sample, about half the total equivalent width of the Fe II 2586 absorption is due to the wind. We do not observe winds with bulk velocities greater than 500 km/s predicted by some AGN feedback models.
Keswani, Neelam; Choudhary, Sinjan; Kishore, Nand
2010-07-01
The thermodynamics of interaction of neomycin and lincomycin with bovine serum albumin (BSA) and human serum albumin (HSA) has been studied using isothermal titration calorimetry (ITC), in combination with UV-visible, steady state and time resolved fluorescence spectroscopic measurements. Neomycin is observed to bind weakly to BSA and HSA whereas lincomycin did not show any evidence for binding with the native state of these proteins, rather it interacts in the presence of surfactants. The ITC results suggest 1 : 1 binding stoichiometry for neomycin in the studied temperature range. The values of the van't Hoff enthalpy do not agree with the calorimetric enthalpy in the case of neomycin, suggesting conformational changes in the protein upon ligand binding, as well as with the rise in the temperature. Experiments at different ionic strengths, and in the presence of tetrabutyl ammonium bromide and surfactants suggest the predominant involvement of electrostatic interactions in the complexation process of neomycin with BSA and HSA, and non-specific interaction behaviour of lincomycin with these proteins.
Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions.
Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim
2016-08-01
Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes.
Medveď, Miroslav; Budzák, Šimon; Laurent, Adèle D; Jacquemin, Denis
2015-03-26
Direct (electronic) and indirect (geometrical) modifications of the molecular properties of weakly interacting complexes between the push-pull p-aminobenzoic acid (pABA) molecule and the nonpolar benzene (Bz) have been studied with a large panel of wave function (WF) and density functional theory (DFT) based methods using carefully selected atomic basis sets. For pABA, both the canonical (pABA-c) and zwitterionic (pABA-z) forms have been investigated. Owing to strongly distinct charge distributions, the two forms of pABA enable us to mimic different interaction modes with Bz. In this work, we assessed the performances of dispersion-corrected DFT methods, as well as of long-range corrected exchange-correlation functionals. It follows from the SAPT analysis that both the structure and the interaction energy of the first complex (pABA-c···Bz) is mainly controlled by dispersion interactions whereas, in the second complex (pABA-z···Bz), electrostatic and induction forces play also an important role. Our results suggest that the (non)linear electric properties of push-pull and zwitterionic molecules can be significantly reduced by the presence of a nonpolar compound. We also show that even for a complex with stability strongly determined by dispersion forces, the direct dispersion contributions to its electric properties can be small. Nevertheless, the intersystem distance is influenced by dispersion forces, which, in turn indirectly tune the induced properties. The zwitterionic derivative appears to be more challenging in the context of molecular properties.
Weakly bound states of two- and three-boson systems in the crossover from two to three dimensions
DEFF Research Database (Denmark)
Yamashita, Marcelo; Bellotti, Filipe Furlan; Frederico, Tobias
2015-01-01
. In this paper we study weakly bound states of non-relativistic two and three boson systems when passing continuously from a three (3D) to a two-dimensional (2D) regime within a 'squeezed dimension' model. We use periodic boundary conditions to derive a surprisingly simple form of the three-boson Schr{\\"o}dinger...... equation in momentum space that we solve numerically. Our results show a distinct dimensional crossover as three-boson states will either disappear into the continuum or merge with a 2D counterpart, and also a series of sharp transitions in the ratios of three-body and two-body energies from being purely 2...
Ohkubo, S
2016-01-01
We present for the first time evidence for the existence of a dynamically refracted primary bow for $^{9}$Be+$^{16}$O scattering. This is demonstrated through the use of coupled channel calculations with an extended double folding potential derived from the density-dependent effective two-body force and precise microscopic cluster wave functions for $^{9}$Be. The calculations reproduce the experimental Airy structure in $^{9}$Be+$^{16}$O scattering well.It is found that coupling of a weakly bound $^{9}$Be nucleus to excited states plays the role of a booster lens, dynamically enhancing the refraction over the {\\it static} refraction due to the Luneburg lens mean field potential between the ground states of $^{9}$Be and $^{16}$O.
Jiang, Song
2011-01-01
We prove the existence of a weak solution to the three-dimensional steady compressible isentropic Navier-Stokes equations in bounded domains for any specific heat ratio \\gamma > 1. Generally speaking, the proof is based on the new weighted estimates of both pressure and kinetic energy for the approximate system which result in some higher integrability of the density, and the method of weak convergence. Comparing with [12] where the spatially periodic case was studied, here we have to control the additional integral terms of both pressure and kinetic energy involving with the points near the boundary which become degenerate when the points approach the boundary. Such integral terms are estimated using some new techniques, i.e., we use the techniques of the mirror image and boundary straightening to prove that the weighted estimates of both pressure and kinetic energy for the points near the boundary can be controlled by the weighted estimates for the points on the boundary. Moreover, we prove that once the we...
Samarin, V. V.
2016-05-01
The time-dependent Schrödinger equation and the coupled channel approach based on the method of perturbed stationary two-center states are used to describe nucleon transfers and fusion in low-energy nuclear reactions. Results of the cross sections calculation for the formation of the 198Au and fusion in the 6He+197Au reaction and for the formation of the 65Zn in 6He+64Zn reaction agree satisfactorily with the experimental data near the barrier. The Feynman's continual integrals calculations for a few-body systems were used for the proposal of the new form of the shell model mean field for helium isotopes.
Wang, Bing; Diaz-Torres, Alexis; Zhao, En-Guang; Zhou, Shan-Gui
2016-01-01
Complete fusion excitation functions of reactions involving breakup are studied by using the empirical coupled-channel (ECC) model with breakup effects considered. An exponential function with two parameters is adopted to describe the prompt-breakup probability in the ECC model. These two parameters are fixed by fitting the measured prompt-breakup probability or the complete fusion cross sections. The suppression of complete fusion at energies above the Coulomb barrier is studied by comparing the data with the predictions from the ECC model without the breakup channel considered. The results show that the suppression of complete fusion are roughly independent of the target for the reactions involving the same projectile.
Energy Technology Data Exchange (ETDEWEB)
Santhosh, K.P., E-mail: drkpsanthosh@gmail.com; Bobby Jose, V.
2014-02-15
The total fusion cross sections for the fusion of weakly bound {sup 9}Be on {sup 27}Al and {sup 64}Zn targets at near and above the barrier have been calculated using one dimensional barrier penetration model, taking scattering potential as the sum of Coulomb and proximity potential and the calculated values are compared with experimental data. For the purpose of comparison of the fusion of weakly bound projectiles and strongly bound projectiles, the total fusion cross sections for the reaction of tightly bound nucleus {sup 16}O on {sup 64}Zn have also been computed using a similar procedure. The calculated values of total fusion cross sections in all cases are compared with coupled channel calculations using the code CCFULL. The computed cross sections using Coulomb and proximity potential explain the fusion reactions well in both cases of weakly bound and strongly bound projectiles. Reduced reaction cross sections for the systems {sup 9}Be+{sup 27}Al, {sup 9}Be+{sup 64}Zn and {sup 16}O+{sup 64}Zn have also been described.
Santhosh, K P
2013-01-01
The total fusion cross sections for the fusion of weakly bound $^{9}$Be on $^{27}$Al and $^{64}$Zn targets at near and above the barrier have been calculated using one dimensional barrier penetration model, taking scattering potential as the sum of Coulomb and proximity potential and the calculated values are compared with experimental data. For the purpose of comparison of the fusion of weakly bound projectiles and strongly bound projectiles, the total fusion cross sections for the reaction of tightly bound nucleus $^{16}$O on $^{64}$Zn have also been computed using a similar procedure. The calculated values of total fusion cross sections in all cases are compared with coupled channel calculations using the code CCFULL. The computed cross sections using Coulomb and proximity potential explain the fusion reactions well in both cases of weakly bound and strongly bound projectiles. Reduced reaction cross sections for the systems $^{9}$Be + $^{27}$Al, $^{9}$Be+ $^{64}$Zn and $^{16}$O + $^{64}$Zn have also been d...
Pietrow, M; Misiak, L E; Kornarzynski, K; Szurkowski, J; Rochowski, P; Grzegorczyk, M
2014-01-01
It is generally assumed that weakly bound (trapped) electrons in organic solids come only from radiolytical (or photochemical) processes like ionization caused by an excited positron entering the sample. This paper presents an evidence for the presence of these electrons in non-irradiated samples of docosane. We argue that these electrons can be located (trapped) either in interlamellar gaps or in spaces made by non-planar conformers. The electrons from the former ones are bound more weakly than those from the latter ones. The origin of Vis absorption for the samples is explained. These spectra can be used as a probe indicating differences in the solid structures of hydrocarbons.
On the Weak* Drop Property for Polar of Closed Bounded Convex Sets%关于有界闭凸集的极上的弱滴性
Institute of Scientific and Technical Information of China (English)
张子厚
2004-01-01
We define and study the weak* drop property for the polar of a closed bounded convex set in a Banach space which is both a generalization of the weak* drop property for dual norm in a Banach space and a characterization of the sub-differential mappingx→αp(x) from S(X) into 2S(X*) that is norm upper semi-countinuous and norm compact-valued.
Energy Technology Data Exchange (ETDEWEB)
Roncaratti, L. F., E-mail: lz@fis.unb.br; Leal, L. A.; Silva, G. M. de [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Pirani, F. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, V. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Instituto de Física, Universidade Federal da Bahia, 40210 Salvador (Brazil); Gargano, R. [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Departments of Chemistry and Physics, University of Florida, Quantum Theory Project, Gainesville, Florida 32611 (United States)
2014-10-07
We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry of the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.
Zou, Luyao; Hays, Brian M; Weaver, Susanna L Widicus
2016-02-11
The emergence of chemical complexity during star and planet formation is largely guided by the chemistry of unstable molecules that are reaction intermediates in terrestrial chemistry. Our knowledge of these intermediates is limited by both the lack of laboratory studies and the difficulty in their astronomical detection. In this work, we focus on the weakly bound cluster HO3 as an example of the connection between laboratory spectroscopic study and astronomical observations. Here, we present a fast-sweep spectroscopic technique in the millimeter and submillimeter range to facilitate the laboratory search for trans-HO3 and DO3 transitions in a discharge supersonic jet and report their rotational spectra from 70 to 450 GHz. These new measurements enable full determination of the molecular constants of HO3 and DO3. We also present a preliminary search for trans-HO3 in 32 star-forming regions using this new spectroscopic information. HO3 is not detected, and column density upper limits are reported. This work provides additional benchmark information for computational studies of this intriguing radical, as well as a reliable set of molecular constants for extrapolation of the transition frequencies of HO3 for future astronomical observations.
Coupled-cluster computations of atomic nuclei
Hagen, G; Hjorth-Jensen, M; Dean, D J
2013-01-01
In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors.
Li, H.; Roux, S. J.
1992-01-01
A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.
Directory of Open Access Journals (Sweden)
Yuji Tokunaga
2017-09-01
Full Text Available The dynamic property of a ligand in the receptor-bound state is an important metric to characterize the interactions in the ligand–receptor interface, and the development of an experimental strategy to quantify the amplitude of motions in the bound state is of importance to introduce the dynamic aspect into structure-guided drug development (SGDD. Fluorine modifications are frequently introduced at the hit-to-lead optimization stage to enhance the binding potency and other characteristics of a ligand. However, the effects of fluorine modifications are generally difficult to predict, owing to the pleiotropic nature of the interactions. In this study, we report an NMR-based approach to experimentally evaluate the local dynamics of trifluoromethyl (CF3-containing ligands in the receptor-bound states. For this purpose, the forbidden coherence transfer (FCT analysis, which has been used to study the dynamics of methyl moieties in proteins, was extended to the 19F nuclei of CF3-containing ligands. By applying this CF3–FCT analysis to a model interaction system consisting of a ligand, AST-487, and a receptor, p38α, we successfully quantified the amplitude of the CF3 dynamics in the p38α-bound state. The strategy would bring the CF3-containing ligands within the scope of dynamic SGDD to improve the affinity and specificity for the drug-target receptors.
Amaro, J E; Nieves, J; Valverde, M; Vicente-Vacas, M J
2009-01-01
We present a microscopic model for neutrino induced one-pion production off the nucleon and its implementation for the purpose of calculating coherent pion production in nuclei. We further criticize the use of the Rein--Sehgal model for coherent pion production by low energy neutrinos. In particular, we show how the approximations in that model give rise to a much flatter differential cross section in the $\\eta=E_\\pi(1-\\cos\\theta_\\pi)$ variable. We discuss the limitations intrinsic to any approach based on the partial conservation of the axial current hypothesis and the inability of such models to properly determine the angular distribution of the outgoing pion with respect to the direction of the incoming neutrino. We show the effects of those limitation for the case of the $\\frac{d\\sigma}{d\\eta}$ differential cross section.
Energy Technology Data Exchange (ETDEWEB)
Goble, J.H. Jr.
1982-05-01
Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.
Energy Technology Data Exchange (ETDEWEB)
Pietrow, M., E-mail: mrk@kft.umcs.lublin.pl; Misiak, L. E. [Institute of Physics, M. Curie-Skłodowska University, ul. Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Gagoś, M. [Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin (Poland); Kornarzyński, K. [Department of Physics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin (Poland); Szurkowski, J.; Grzegorczyk, M. [Institute of Experimental Physics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk (Poland); Rochowski, P. [Institute of Experimental Physics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk (Poland); Pomeranian University in Słupsk, Arciszewskiego 22b, 76-200 Słupsk (Poland)
2015-02-14
It is generally assumed that weakly bound (trapped) electrons in organic solids come only from radiolytical (or photochemical) processes like ionization caused by an excited positron entering the sample. This paper presents evidence for the presence of these electrons in non-irradiated samples of docosane. This can be due to the triboelectrification process. We argue that these electrons can be located (trapped) either in interlamellar gaps or in spaces made by non-planar conformers. Electrons from the former ones are bound more weakly than electrons from the latter ones. The origin of Vis absorption for the samples is explained. These spectra can be used as a probe indicating differences in the solid structures of hydrocarbons.
Indian Academy of Sciences (India)
M MOUSAVI; M R SHOJAEI
2017-02-01
In this work, we have obtained energy levels and charge radius for the $\\beta$-stability line nucleus, in relativistic shell model. In this model, we considered a close shell for each nucleus containing double magicnumber and a single nucleon energy level. Here we have taken $^{41}$Ca with a single neutron in the $^{40}$Ca core as an illustrative example. Then we have selected the Eckart plus Hulthen potentials for interaction between the coreand the single nucleon. By using parametric Nikiforov–Uvarov (PNU) method, we have calculated the energy values and wave function. Finally, we have calculated the charge radius for 17O, $^{41}$Ca, $^{49}$Ca and $^{57}$Ni. Our results are in agreement with experimental values and hence this model can be applied for similar nuclei.
Kaur, Mandeep; Sharma, Manoj K; Gupta, Raj K
2015-01-01
The dynamics of the reactions forming compound nuclei using loosely bound projectiles is analysed within the framework of dynamical cluster decay model (DCM) of Gupta and Collaborators. We have analysed different reactions with $^{7}Li$, $^{9}Be$ and $^{7}Be$ as neutron rich and neutron deficient projectiles, respectively, on different targets at the three $E_{lab}$ values, forming compound nuclei within the mass region A$\\sim 30-200$. The contributions of light particles LPs ($A\\le4$) cross sections $\\sigma_{LP}$, energetically favoured intermediate mass fragments IMFs ($5 \\le A_2 \\le 20$) cross sections $\\sigma_{IMF}$ as well as fusion-fission $\\it{ff}$ cross sections $\\sigma_{ff}$ constitute the $\\sigma_{fus}$ (=$\\sigma_{LP}$+$\\sigma_{IMF}$+$\\sigma_{ff}$) for these reactions. The contribution of the emitted LPs, IMFs and ff fragments is added for all the angular momentum upto the $\\ell_{max}$ value, for the resepctive reactions. Interestingly, we find that the $\\Delta R^{emp}$, the only parameter of model ...
Weakly bound states of two- and three-boson systems in the crossover from two to three dimensions
DEFF Research Database (Denmark)
Yamashita, Marcelo; Bellotti, Filipe Furlan; Frederico, Tobias
2015-01-01
The spectrum and properties of quantum bound states is strongly dependent on the dimensionality of space. How this comes about and how one may theoretically and experimentally study the interpolation between different dimensions is a topic of great interest in different fields of physics. In this...
Yarmukhamedov, R
2016-01-01
Asymptotic expressions for the radial and full wave functions of a three{body bound halo nuclear system with two charged particles in relative coordinates are obtained in explicit form, when the relative distance between two particles tends to infinity. The obtained asymptotic forms are applied to the analysis of the asymptotic behavior of the three-body (pn?) wave functions for the halo ($E^*=3.562$ MeV, $J^{\\pi}=0^+$, $T=1$) state of $^6$Li derived by D. Baye within the Lagrange-mesh method for two forms of the $\\alpha N$ -potential. The agreement between the calculated wave function and the asymptotic formula is excellent for distances up to 30 fm. Information about the values of the three-body asymptotic normalization functions is extracted. It is shown that the extracted values of the three-body asymptotic normalization function are sensitive to the form of the $\\alpha N$ -potential. The mirror symmetry is revealed for the three-body asymptotic normalization functions derived for the isobaric ($^6$He, $^...
Energy Technology Data Exchange (ETDEWEB)
Zhang, J.; Dulligan, M.; Segall, J.; Wen, Y.; Wittig, C. [Univ. of Southern California, Los Angeles, CA (United States)
1995-09-14
This paper reports results obtained with (HI){sub 2} clusters under molecular beam conditions that are strongly biased in favor of the formation of binary clusters over higher-than- binary clusters. A preliminary account has been given previously. Pulsed laser photolysis at 266 nm is used to dissociate HI moieties, thereby initiating intracluster reactions, and elastic and inelastic scattering as well as forming weakly-bound radical-molecule clusters. Additionally high laser fluences are used to effect the efficient sequential removal of both hydrogen atoms, opening the door to several intriguing interactions. 34 refs., 15 figs.
Dynamical Relativistic Effects in Breakup Processes of Halo Nuclei
Ogata, Kazuyuki
2009-01-01
The continuum-discretized coupled-channels (CDCC) method is used to study the breakup of weakly-bound nuclei at intermediate energies collisions. For large impact parameters, the Eikonal CDCC (E-CDCC) method was applied. The effects of Lorentz contraction on the nuclear and Coulomb potentials have been investigated in details. Such effects tend to increase cross sections appreciably. We also show that, for loosely-bound nuclei, the contribution of the so-called close field is small and can be neglected.
Jayalakshmi, V.; Rama Krishna, N.
2004-05-01
We describe an intensity-restrained optimization procedure for refining approximate structures of ligands within the protein binding pockets using STD-NMR intensity data on reversibly forming weak complexes. In this approach, the global minimum for the bound-ligand conformation is obtained by a hybrid structure refinement method involving CORCEMA calculation of intensities and simulated annealing optimization of torsion angles of the bound ligand using STD-NMR intensities as experimental constraints and the NOE R-factor as the pseudo-energy function to be minimized. This method is illustrated using simulated STD data sets for typical carbohydrate and peptide ligands. Our procedure also allows for the optimization of side chain torsion angles of protein residues within the binding pocket. This procedure is useful in refining and improving initial models based on crystallography or computer docking or other algorithms to generate models for the bound ligand (e.g., a lead compound) within the protein binding pocket compatible with solution STD-NMR data. This method may facilitate structure-based drug design efforts.
Oteri, Francesco; Ciaccafava, Alexandre; de Poulpiquet, Anne; Baaden, Marc; Lojou, Elisabeth; Sacquin-Mora, Sophie
2014-06-21
[NiFe] hydrogenases from Aquifex aeolicus (AaHase) and Desulfovibrio fructosovorans (DfHase) have been mainly studied to characterize physiological electron transfer processes, or to develop biotechnological devices such as biofuel cells. In this context, it remains difficult to control the orientation of AaHases on electrodes to achieve a fast interfacial electron transfer. Here, we study the electrostatic properties of these two proteins based on microsecond-long molecular dynamics simulations that we compare to voltammetry experiments. Our calculations show weak values and large fluctuations of the dipole direction in AaHase compared to DfHase, enabling the AaHase to absorb on both negatively and positively charged electrodes, with an orientation distribution that induces a spread in electron transfer rates. Moreover, we discuss the role of the transmembrane helix of AaHase and show that it does not substantially impact the general features of the dipole moment.
Institute of Scientific and Technical Information of China (English)
Hua WANG
2016-01-01
In this paper, we first introduce Lσ 1-(log L)σ 2 conditions satisfied by the variable kernelsΩ (x, z) for 0 ≤ σ 1 ≤ 1 and σ 2 ≥ 0. Under these new smoothness conditions, we will prove the boundedness properties of singular integral operators TΩ , fractional integrals TΩ ,α and parametric Marcinkiewicz integralsμρΩ with variable kernels on the Hardy spaces Hp(Rn) and weak Hardy spaces WHp(Rn). Moreover, by using the interpolation arguments, we can get some corresponding results for the above integral operators with variable kernels on Hardy–Lorentz spaces Hp,q(Rn) for all p
Density-dependent potential for multi-neutron halo nuclei
Institute of Scientific and Technical Information of China (English)
CHEN Shuang; CHU Yan-Yun; REN Zhong-Zhou
2009-01-01
We apply a simple density-dependent potential model to the three-body calculation of the ground-state structure of drip-line nuclei with a weakly bound core. The hyperspherical harmonics method is used to solve the Faddeev equations. There are no undetermined potential parameters in this calculation. We find that for the halo nuclei with a weakly-bound core, the calculated properties of the ground-state structure are in better agreement with experimental data than the results calculated from the standard Woods-Saxon and Gauss type potentials. We also successfully reproduce the experimental cross sections by using the density calculated from this method. This may be explained by the fact that the simple Fermi or Gaussian function can not exactly describe the density distribution of the drip-line nuclei.
Calabrese, Camilla; Vigorito, Annalisa; Maris, Assimo; Mariotti, Sergio; Fathi, Pantea; Geppert, Wolf D; Melandri, Sonia
2015-12-03
The weakly bound 1:1 complex between acrylonitrile (CH2═CHCN) and water has been characterized spectroscopically in the millimeter wave range (59.6-74.4 GHz) using a Free Jet Absorption Millimeter Wave spectrometer. Precise values of the rotational and quartic centrifugal distortion constants have been obtained from the measured frequencies of the normal and isotopically substituted water moiety (DOH, DOD, H(18)OH). Structural parameters have been estimated from the rotational constants and their differences among isotopologues: the complex has a planar structure with the two subunits held together by a O-H···N (2.331(3) Å) and a C-H···O (2.508(4) Å) interaction. The ab initio intermolecular binding energy, obtained at the counterpoise corrected MP2/aug-cc-pVTZ level of calculation, is De = 24.4 kJ mol(-1).
Guichon, P A M; Thomas, A W
1996-01-01
We describe the development of a theoretical description of the structure of finite nuclei based on a relativistic quark model of the structure of the bound nucleons which interact through the (self-consistent) exchange of scalar and vector mesons.
Energy Technology Data Exchange (ETDEWEB)
Trabelsi, T.; Ajili, Y.; Ben Yaghlane, S.; Jaidane, N.-E. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications–LSAMA, Université de Tunis El Manar, Tunis (Tunisia); Mogren Al-Mogren, M. [Chemistry Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Francisco, J. S. [Department of Chemistry and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47906 (United States); Hochlaf, M., E-mail: hochlaf@univ-mlv.fr [Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Blvd. Descartes, 77454 Marne-la-Vallée (France)
2015-07-21
We investigate the lowest electronic states of doublet and quartet spin multiplicity states of HNS{sup −} and HSN{sup −} together with their parent neutral triatomic molecules. Computations were performed using highly accurate ab initio methods with a large basis set. One-dimensional cuts of the full-dimensional potential energy surfaces (PESs) along the interatomic distances and bending angle are presented for each isomer. Results show that the ground anionic states are stable with respect to the electron detachment process and that the long range parts of the PESs correlating to the SH{sup −} + N, SN{sup −} + H, SN + H{sup −}, NH + S{sup −}, and NH{sup −} + S are bound. In addition, we predict the existence of long-lived weakly bound anionic complexes that can be formed after cold collisions between SN{sup −} and H or SH{sup −} and N. The implications for the reactivity of these species are discussed; specifically, it is shown that the reactions involving SH{sup −}, SN{sup −}, and NH{sup −} lead either to the formation of HNS{sup −} or HSN{sup −} in their electronic ground states or to autodetachment processes. Thus, providing an explanation for why the anions, SH{sup −}, SN{sup −}, and NH{sup −}, have limiting detectability in astrophysical media despite the observation of their corresponding neutral species. In a biological context, we suggest that HSN{sup −} and HNS{sup −} should be incorporated into H{sub 2}S-assisted heme-catalyzed reduction mechanism of nitrites in vivo.
Nedukha, E. M.
The pyroantimonate method was used to study the localization of free and weakly bound calcium in cells of moss protonema of Funaria hygrometrica Hedw. cultivated on a clinostat (2 rev/min). Electroncytochemical study of control cells cultivated at 1 g revealed that granular precipitate marked chloroplasts, mitochondria, Golgi apparatus, lipid drops, nucleoplasma, nucleolus, nucleus membranes, cell walls and endoplasmic reticulum. In mitochondria the precipitate was revealed in stroma, in chloroplast it was found on thylakoids and envelope membranes. The cultivation of protonema on clinostat led to the intensification in cytochemical reaction product deposit. A considerable intensification of the reaction was noted in endomembranes, vacuoles, periplasmic space and cell walls. At the same time analysis of pectinase localization was made using the electroncytochemical method. A high reaction intensity in walls in comparison to that in control was found out to be a distinctive pecularity of the cells cultivated on clinostat. It testifies to the fact that increasing of freee calcium concentrations under conditions of clinostation is connected with pectinic substances hydrolysis and breaking of methoxy groups of pectins. Data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance of plant cells and the role of cell walls in gomeostasis of cell grown under conditions of simulated weighlessness.
Detnex Project: Dispersion, Structure and Tracking of Exotic Nuclei
Alvarez, M. A. G.; Gómez-Camacho, J.; Espino, J. M.; Mukha, I.; Martel, I.
2007-05-01
Since 1970's when double-folding model, based on M3Y interaction, had to be renormalized to fit the elastic scattering of weakly bound 6,7Li and 9Be nuclei, we learned that preconceptions based on the highly successful experience of the optical model on stable nuclei could not be simply extrapolated to the scattering of exotic nuclei. Recently, we have shown some evidences of long range mechanisms in 6He induced reactions that lead to the loss of flux in the elastic channel at kinematic conditions that suggest the nuclei are well beyond the strong absorption radius [O. R. Kakuee, M. A. G. Alvarez, M. V. Andrés, S. Cherubini, T. Davinson, A. Di Pietro, W. Galster, J. Gómez-Camacho, A. M. Laird, M. Lamehi-Rachti, I. Martel, A. M. Moro, J. Rahighi, A. M. Sánchez-Benitez, A. C. Shotter, W. B. Smith, J. Vervier, P. J. Woods. Nucl. Phys. A 765, (2006) 294]. Even so, the use of nuclear reactions as an spectroscopic tool to investigate the nuclear structure of weakly bound nuclei requires a deep understanding of the reactions induced by these nuclei. Therefore, precise experimental measurements of the elastic scattering of exotic nuclei on a variety of targets, as well as the measurements of the main reaction channels are required in order to converge experimentally and theoretically to this understanding. With this aim a campaign of experiments involving different institutions and collaborations is being carefully established and going ahead at several radioactive ion beam (RIB) facilities: ISOLDE (CERN), CRC (Be), GSI (Ge) and TRIUMPH (Ca). The main idea is to measure the scattering of He, Li, and Be isotopes, and perform an intensive theoretical treatment, besides promoting some necessary instrumental development. In particular we participate in the low energy branch of the FAIR project where we take part in the tracking studies and developments.
Detnex Project: Dispersion, Structure and Tracking of Exotic Nuclei
Energy Technology Data Exchange (ETDEWEB)
Alvarez, M.A.G. [Universidad de Sevilla, P.O. Box 1065, E-41080, Seville (Spain); Gomez-Camacho, J. [Universidad de Sevilla, P.O. Box 1065, E-41080, Seville (Spain); Espino, J.M. [Universidad de Sevilla, P.O. Box 1065, E-41080, Seville (Spain); Mukha, I. [Universidad de Sevilla, P.O. Box 1065, E-41080, Seville (Spain); Martel, I. [Universidad de Huelva, Departamento de Fisica Aplicada, E-21819 Huelva (Spain)
2007-05-01
Since 1970's when double-folding model, based on M3Y interaction, had to be renormalized to fit the elastic scattering of weakly bound {sup 6,7}Li and {sup 9}Be nuclei, we learned that preconceptions based on the highly successful experience of the optical model on stable nuclei could not be simply extrapolated to the scattering of exotic nuclei. Recently, we have shown some evidences of long range mechanisms in {sup 6}He induced reactions that lead to the loss of flux in the elastic channel at kinematic conditions that suggest the nuclei are well beyond the strong absorption radius [O. R. Kakuee, M. A. G. Alvarez, M. V. Andres, S. Cherubini, T. Davinson, A. Di Pietro, W. Galster, J. Gomez-Camacho, A. M. Laird, M. Lamehi-Rachti, I. Martel, A. M. Moro, J. Rahighi, A. M. Sanchez-Benitez, A. C. Shotter, W. B. Smith, J. Vervier, P. J. Woods. Nucl. Phys. A 765 (2006) 294]. Even so, the use of nuclear reactions as an spectroscopic tool to investigate the nuclear structure of weakly bound nuclei requires a deep understanding of the reactions induced by these nuclei. Therefore, precise experimental measurements of the elastic scattering of exotic nuclei on a variety of targets, as well as the measurements of the main reaction channels are required in order to converge experimentally and theoretically to this understanding. With this aim a campaign of experiments involving different institutions and collaborations is being carefully established and going ahead at several radioactive ion beam (RIB) facilities: ISOLDE (CERN), CRC (Be), GSI (Ge) and TRIUMPH (Ca). The main idea is to measure the scattering of He, Li, and Be isotopes, and perform an intensive theoretical treatment, besides promoting some necessary instrumental development. In particular we participate in the low energy branch of the FAIR project where we take part in the tracking studies and developments.
Multipole strength function of deformed superfluid nuclei made easy
Stoitsov, M; Nakatsukasa, T; Losa, C; Nazarewicz, W
2011-01-01
We present an efficient method for calculating strength functions using the finite amplitude method (FAM) for deformed superfluid heavy nuclei within the framework of the nuclear density functional theory. We demonstrate that FAM reproduces strength functions obtained with the fully self-consistent quasi-particle random-phase approximation (QRPA) at a fraction of computational cost. As a demonstration, we compute the isoscalar and isovector monopole strength for strongly deformed configurations in $^{240}$Pu by considering huge quasi-particle QRPA spaces. Our approach to FAM, based on Broyden's iterative procedure, opens the possibility for large-scale calculations of strength distributions in well-bound and weakly bound nuclei across the nuclear landscape.
Pairing correlations in exotic nuclei
Sagawa, H
2012-01-01
The BCS and HFB theories which can accommodate the pairing correlations in the ground states of atomic nuclei are presented. As an application of the pairing theories, we investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a 3-body model, respectively. We show that the odd-even staggering in the reaction cross sections of $^{30,31,32}$Ne and $^{14,15,16}$C are successfully reproduced, and thus the staggering can be attributed to the unique role of pairing correlations in nuclei far from the stability line. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for $s$- and p-waves using the HFB wave functions. We also propose effective density-dependent pairing interactions which reproduce both the neutron-neutron ($nn$) scattering length at zero density and the neutron pairing gap in uniform matter. Then, we apply these interactions to study pairing gaps in ...
Reactions with fast radioactive beams of neutron-rich nuclei
Energy Technology Data Exchange (ETDEWEB)
Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)
2005-11-01
The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)
Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I
2013-02-01
Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.
Elastic breakup cross sections of well-bound nucleons
Wimmer, K; Gade, A; Tostevin, J A; Baugher, T; Chajecki, Z; Coupland, D; Famiano, M A; Ghosh, T K; Howard, G F Grinyer M E; Kilburn, M; Lynch, W G; Manning, B; Meierbachtol, K; Quarterman, P; Ratkiewicz, A; Sanetullaev, A; Showalter, R H; Stroberg, S R; Tsang, M B; Weisshaar, D; Winkelbauer, J; Winkler, R; Youngs, M
2014-01-01
The 9Be(28Mg,27Na) one-proton removal reaction with a large proton separation energy of Sp(28Mg)=16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the re- moval of more weakly-bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.
Sáro, S
2003-01-01
Experiments leading to transuranium and far transuranium nuclei as far as element 106 (seaborgium) are described. Physical knowledge derived from experimental data at this stage of complete synthesis nuclear reactions since the 1980s is analyzed. The effect of the shell structure on the stability of the nuclei, the extra-push effect, and the effect of isospin are discussed. Experiments leading to the synthesis of nuclei with Z = 107 - 112 by cold fusion are also described, as are hot fusion reactions resulting in superheavy nuclei Z = 114, 116 where, however, confirmation is only pending. Current state of the art in this area is also highlighted
Energy Technology Data Exchange (ETDEWEB)
Quaglioni, S; Navratil, P; Roth, R
2009-12-15
The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.
Sydorenko, D; Kaganovich, I; Raitses, Y; Smolyakov, A
2009-10-02
A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.
Kelkar, N G; Moskal, P
2015-01-01
The possibility for the existence of unstable bound states of the S11 nucleon resonance N$^*$(1535) and nuclei is investigated. These quasibound states are speculated to be closely related to the existence of the quasibound states of the eta mesons and nuclei. Within a simple model for the N N$^*$ interaction involving a pion and eta meson exchange, N$^*$-nucleus potentials for N*-$^3$He and N*-$^{24}$Mg are evaluated and found to be of a Woods-Saxon like form which supports two to three bound states. In case of N*-$^3$He, one state bound by only a few keV and another by 4 MeV is found. The results are however quite sensitive to the N N$^*$ $\\pi$ and N N$^*$ $\\eta$ vertex parameters. A rough estimate of the width of these states, based on the mean free path of the exchanged mesons in the nuclei leads to very broad states with $\\Gamma \\sim$ 80 and 110 MeV for N*-$^3$He and N*-$^{24}$Mg respectively.
Cavitation inception from bubble nuclei
DEFF Research Database (Denmark)
Mørch, Knud Aage
2015-01-01
, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model......The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years...
Are cometary nuclei primordial rubble piles?
Weissman, P. R.
1986-01-01
Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.
How to Study Efimov States in Exotic Nuclei?
Macchiavelli, Augusto O.
2015-12-01
The existence of Efimov states in atomic nuclei has been predicted by several authors considering 3-body systems of the form Core-neutron-neutron. While these states appear elusive and very challenging experimentally, we discuss possible reactions that can be used to produce and study them in exotic (weakly-bound) nuclei. Following simple arguments, we show that cross-sections relative to the ground states should scale with the parameter {λ_0}, which is the same scale factor for binding energies and radii. We derive back of the envelope estimates for: one- and two-neutron transfer reactions, and inelastic scattering. The ( d, p) reaction appears as the most promising approach and we discuss in more detail some experimental considerations using the example of {^{19}C(d, p)^{20}C}. These initial estimates could serve as a starting point for more refined and realistic calculations, which will be required for careful experimental planning and further analysis.
Elastic scattering, fusion, and breakup of light exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Kolata, J.J. [University of Notre Dame, Physics Department, Notre Dame, IN (United States); Guimaraes, V. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil); Aguilera, E.F. [Instituto Nacional de Investigaciones Nucleares, Departamento de Aceleradores, Mexico, Distrito Federal (Mexico)
2016-05-15
The present status of fusion reactions involving light (A< 20) radioactive projectiles at energies around the Coulomb barrier (E<10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed. (orig.)
Effective field theory description of halo nuclei
Hammer, H.-W.; Ji, C.; Phillips, D. R.
2017-10-01
Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.
Weak martingale Hardy spaces and weak atomic decompositions
Institute of Scientific and Technical Information of China (English)
HOU; Youliang; REN; Yanbo
2006-01-01
In this paper we define some weak martingale Hardy spaces and three kinds of weak atoms. They are the counterparts of martingale Hardy spaces and atoms in the classical martingale Hp-theory. And then three atomic decomposition theorems for martingales in weak martingale Hardy spaces are proved. With the help of the weak atomic decompositions of martingale, a sufficient condition for a sublinear operator defined on the weak martingale Hardy spaces to be bounded is given. Using the sufficient condition, we obtain a series of martingale inequalities with respect to the weak Lp-norm, the inequalities of weak (p ,p)-type and some continuous imbedding relationships between various weak martingale Hardy spaces. These inequalities are the weak versions of the basic inequalities in the classical martingale Hp-theory.
Photoproduction of mesons off nuclei
Krusche, B
2011-01-01
Recent results for the photoproduction of mesons off nuclei are reviewed. These experiments have been performed for two major lines of research related to the properties of the strong interaction. The investigation of nucleon resonances requires light nuclei as targets for the extraction of the isospin composition of the electromagnetic excitations. This is done with quasi-free meson photoproduction off the bound neutron and supplemented with the measurement of coherent photoproduction reactions, serving as spin and/or isospin filters. Furthermore, photoproduction from light and heavy nuclei is a very efficient tool for the study of the interactions of mesons with nuclear matter and the in-medium properties of hadrons. Experiments are currently rapidly developing due to the combination of high quality tagged (and polarized) photon beams with state-of-the-art 4pi detectors and polarized targets.
Bound entanglement and entanglement bounds
Energy Technology Data Exchange (ETDEWEB)
Sauer, Simeon [Physikalisch-Astronomische Fakultaet, Friedrich-Schiller-Univesitaet Jena (Germany)]|[Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany); Melo, Fernando de; Mintert, Florian; Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79104 Freiburg (Germany)]|[Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str.38, D-01187 Dresden (Germany); Bae, Joonwoo [School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012 (Korea); Hiesmayr, Beatrix [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)
2008-07-01
We investigate the separability of Bell-diagonal states of two qutrits. By using lower bounds to algebraically estimate concurrence, we find convex regions of bound entangled states. Some of these regions exactly coincide with the obtained results when employing optimal entanglement witnesses, what shows that the lower bound can serve as a precise detector of entanglement. Some hitherto unknown regions of bound entangled states were discovered with this approach, and delimited efficiently.
Self-Consistent Description of Multipole Strength in Exotic Nuclei I: Method
Terasaki, J; Bender, M; Dobaczewski, J; Nazarewicz, W; Stoitsov, M V
2004-01-01
We use the canonical Hartree-Fock-Bogoliubov basis to implement a completely self-consistent quasiparticle-random-phase approximation with arbitrary Skyrme energy density functionals and density-dependent pairing functionals. The point of the approach is to accurately describe multipole strength functions in spherical even-even nuclei, including weakly-bound drip-line systems. We describe the method and carefully test its accuracy, particularly in handling spurious modes. To illustrate our approach, we calculate isoscalar and isovector monopole, dipole, and quadrupole strength functions in several Sn isotopes, both in the stable region and at the drip lines.
Weak Convergence and Weak Convergence
Directory of Open Access Journals (Sweden)
Narita Keiko
2015-09-01
Full Text Available In this article, we deal with weak convergence on sequences in real normed spaces, and weak* convergence on sequences in dual spaces of real normed spaces. In the first section, we proved some topological properties of dual spaces of real normed spaces. We used these theorems for proofs of Section 3. In Section 2, we defined weak convergence and weak* convergence, and proved some properties. By RNS_Real Mizar functor, real normed spaces as real number spaces already defined in the article [18], we regarded sequences of real numbers as sequences of RNS_Real. So we proved the last theorem in this section using the theorem (8 from [25]. In Section 3, we defined weak sequential compactness of real normed spaces. We showed some lemmas for the proof and proved the theorem of weak sequential compactness of reflexive real Banach spaces. We referred to [36], [23], [24] and [3] in the formalization.
Quark Degrees of Freedom in Finite Nuclei
Tsushima, K; Thomas, A W; Tsushima, Kazuo; Saito, Koichi; Thomas, Anthony W.
1996-01-01
Properties of finite nuclei are investigated based on relativistic Hartree equations which have been derived from a relativistic quark model of the structure of bound nucleons. Nucleons are assumed to interact through the (self-consistent) exchange of scalar ($\\sigma$) and vector ($\\omega$ and and the rms charge radius in $^{40}$Ca. Calculated properties of static, closed-shell nuclei, as well as symmetric nuclear matter are compared with experimental data and with the results of Quantum Hadrodynamics (QHD).
Weak Polarized Electron Scattering
Erler, Jens; Mantry, Sonny; Souder, Paul A
2014-01-01
Scattering polarized electrons provides an important probe of the weak interactions. Precisely measuring the parity-violating left-right cross section asymmetry is the goal of a number of experiments recently completed or in progress. The experiments are challenging, since A_{LR} is small, typically between 10^(-4) and 10^(-8). By carefully choosing appropriate targets and kinematics, various pieces of the weak Lagrangian can be isolated, providing a search for physics beyond the Standard Model. For other choices, unique features of the strong interaction are studied, including the radius of the neutron density in heavy nuclei, charge symmetry violation, and higher twist terms. This article reviews the theory behind the experiments, as well as the general techniques used in the experimental program.
Total Nuclear Reaction Cross Section Induced by Halo Nuclei and Stable Nuclei
Institute of Scientific and Technical Information of China (English)
GUO Wen-Jun; JIANG Huan-Qing; LIU Jian-Ye; ZUO Wei; REN Zhong-Zhou; LEE Xi-Guo
2003-01-01
We develop a method for calculation of the total reaction cross sections induced by the halo nuclei and stable. nuclei. This approach is based on the Glauber theory, which is valid for nuclear reactions at high energies. It is extended for nuclear reactions at low energies and intermediate energies by including both the quantum correction and Coulomb correction under the assumption of the effective nuclear density distribution. The calculated results of the total reaction cross section induced by stable nuclei agree well with 30 experimental data within 10 percent accuracy. The comparison between the numerical results and 20 experimental data for the total nuclear reaction cross section induced by the neutron halo nuclei and the proton halo nuclei indicates a satisfactory agreement after considering the halo structure of these nuclei, which implies quite different mean fields for the nuclear reactions induced by halo nuclei and stable nuclei. The halo nucleon distributions and the root-mean-square radii of these nuclei can be extracted from the above comparison based on the improved Glauber model, which indicates clearly the halo structures of these nuclei. Especially,it is clear to see that the medium correction of the nucleon-nucleon collision has little effect on the total reaction cross sections induced by the halo nuclei due to the very weak binding and the very extended density distribution.
Total Nuclear Reaction Cross Section Induced by Halo Nuclei and Stable Nuclei
Institute of Scientific and Technical Information of China (English)
GUOWen-Jun; JIANGHuan-Qing; LIUJian-Ye; ZUOWei; RENZhong-Zhou; LEEXi-Guo
2003-01-01
We develop a method for calculation of the total reaction cross sections induced by the halo nuclei and stable nuclei. This approach is based on the Glauber theory, which is valid for nuclear reactions at high energies. It is extended for nuclear reactions at low energies and intermediate energies by including both the quantum correction and Coulomb correction under the assumption of the effective nuclear density distribution. The calculated results of the total reaction cross section induced by stable nuclei agree well with 30 experimental data within 10 percent accuracy.The comparison between the numerical results and 20 experimental data for the total nuclear reaction cross section induced by the neutron halo nuclei and the proton halo nuclei indicates a satisfactory agreement after considering the halo structure of these nuclei, which implies quite digerent mean fields for the nuclear reactions induced by halo nuclei and stable nuclei. The halo nucleon distributions and the root-mean-square radii of these nuclei can be extracted from the above comparison based on the improved Glauber model, which indicates clearly the halo structures of these nuclei. Especially,it is clear to see that the medium correction of the nucleon-nucleon collision has little effect on the total reaction cross sections, induced by the halo nuclei due to the very weak binding and the very extended density distribution.
Without the weak force, the sun wouldn't shine. The weak force causes beta decay, a form of radioactivity that triggers nuclear fusion in the heart of the sun. The weak force is unlike other forces: it is characterised by disintegration. In beta decay, a down quark transforms into an up quark and an electron is emitted. Some materials are more radioactive than others because the delicate balance between the strong force and the weak force varies depending on the number of particles in the atomic nucleus. We live in the midst of a natural radioactive background that varies from region to region. For example, in Cornwall where there is a lot of granite, levels of background radiation are much higher than in the Geneva region. Text for the interactive: Move the Geiger counter to find out which samples are radioactive - you may be surprised. It is the weak force that is responsible for the Beta radioactivity here. The electrons emitted do not cross the plastic cover. Why do you think there is some detected radioa...
Directory of Open Access Journals (Sweden)
J. Adam
2016-01-01
Full Text Available We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible Λn‾ bound state. The search is performed with the ALICE detector in central (0–10% Pb–Pb collisions at sNN=2.76 TeV, by invariant mass analysis in the decay modes Λn‾→d‾π+ and H-dibaryon →Λpπ−. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.
Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym
2016-01-10
We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible $\\overline{\\Lambda\\mathrm{n}}$ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at $ \\sqrt{s_{\\rm{NN}}} = 2.76$ TeV, by invariant mass analysis in the decay modes $\\overline{\\Lambda\\mathrm{n}} \\rightarrow \\overline{\\mathrm{d}} \\pi^{+} $ and H-dibaryon $\\rightarrow \\Lambda \\mathrm{p} \\pi^{-}$. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.
Spin effects in the weak interaction
Energy Technology Data Exchange (ETDEWEB)
Freedman, S.J. (Argonne National Lab., IL (USA) Chicago Univ., IL (USA). Dept. of Physics Chicago Univ., IL (USA). Enrico Fermi Inst.)
1990-01-01
Modern experiments investigating the beta decay of the neutron and light nuclei are still providing important constraints on the theory of the weak interaction. Beta decay experiments are yielding more precise values for allowed and induced weak coupling constants and putting constraints on possible extensions to the standard electroweak model. Here we emphasize the implications of recent experiments to pin down the strengths of the weak vector and axial vector couplings of the nucleon.
Adam, Jaroslav; Adamova, Dagmar; Aiola, Salvatore; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Ajaz, Muhammad; Bombara, Marek
2016-01-01
We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible Λn‾ bound state. The search is performed with the ALICE detector in central (0–10%) Pb–Pb collisions at sNN=2.76 TeV , by invariant mass analysis in the decay modes Λn‾→d‾π+ and H-dibaryon →Λpπ− . No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results ...
Pre-equilibrium emission and its possible relation to α-clustering in nuclei
Directory of Open Access Journals (Sweden)
Marchi T.
2015-01-01
Full Text Available The study of nuclear states built on clusters bound by valence neutrons in their molecular configurations is a field of large interest. Clustering becomes particularly important at the dripline, where weakly bound systems prevail. For light nuclei, at an excitation energy close to the particle separation value, there are experimental evidences of such structure effects, but this is still not the case for heavier nuclear systems. Several theoretical efforts have been done in the development of pre-formation alpha-clustering models, but there is still a lack of experimental data capable to give a direct feedback. The search of alpha-cluster evidences in medium-mass systems is therefore a new challenge which can give new hints in this field of research.
Collective excitations in nuclei
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)
1998-12-31
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.
Few-Body Universality in Halo Nuclei
Directory of Open Access Journals (Sweden)
Hammer H.-W.
2016-01-01
Full Text Available Few-body systems with resonant S-wave interactions show universal properties which are independent of the interaction at short distances. These properties include a geometric spectrum of three- and higher-body bound states and universal correlations between few-body observables. They can be observed on a wide range of scales from hadrons and nuclei to ultracold atoms. In this contribution, we focus on few-body universality in halo nuclei which can be considered as effective few-body systems consisting of halo nucleons and a core. This concept provides a unifying framework for halo nuclei with calculable corrections. Recent progress in this field with an emphasis on the possibility of finding Efimov states in halo nuclei is discussed.
Few-Body Universality in Halo Nuclei
Hammer, H.-W.
2016-03-01
Few-body systems with resonant S-wave interactions show universal properties which are independent of the interaction at short distances. These properties include a geometric spectrum of three- and higher-body bound states and universal correlations between few-body observables. They can be observed on a wide range of scales from hadrons and nuclei to ultracold atoms. In this contribution, we focus on few-body universality in halo nuclei which can be considered as effective few-body systems consisting of halo nucleons and a core. This concept provides a unifying framework for halo nuclei with calculable corrections. Recent progress in this field with an emphasis on the possibility of finding Efimov states in halo nuclei is discussed.
Directory of Open Access Journals (Sweden)
D. Rose
2011-03-01
Full Text Available Size-resolved chemical composition, mixing state, and cloud condensation nucleus (CCN activity of aerosol particles in polluted mega-city air and biomass burning smoke were measured during the PRIDE-PRD2006 campaign near Guangzhou, China, using an aerosol mass spectrometer (AMS, a volatility tandem differential mobility analyzer (VTDMA, and a continuous-flow CCN counter (DMT-CCNC.
The size-dependence and temporal variations of the effective average hygroscopicity parameter for CCN-active particles (κ_{a} could be parameterized as a function of organic and inorganic mass fractions (f_{org}, f_{inorg} determined by the AMS: κ_{a,p}=κ_{org}·f_{org} + κ_{inorg}·f_{inorg}. The characteristic κ values of organic and inorganic components were similar to those observed in other continental regions of the world: κ_{org}≈0.1 and κ_{inorg}≈0.6. The campaign average κ_{a} values increased with particle size from ~0.25 at ~50 nm to ~0.4 at ~200 nm, while f_{org} decreased with particle size. At ~50 nm, f_{org} was on average 60% and increased to almost 100% during a biomass burning event.
The VTDMA results and complementary aerosol optical data suggest that the large fractions of CCN-inactive particles observed at low supersaturations (up to 60% at S≤0.27% were externally mixed weakly CCN-active soot particles with low volatility (diameter reduction <5% at 300 °C and effective hygroscopicity parameters around κ_{LV}≈0.01. A proxy for the effective average hygroscopicity of the total ensemble of CCN-active particles including weakly CCN-active particles (κ_{t} could be parameterized as a function of κ_{a,p} and the number fraction of low volatility particles determined by VTDMA (φ_{LV}: κ_{t,p}=κ_{a,p}−φ_{LV
}
Selleri, Franco
2015-01-01
Weak Relativity is an equivalent theory to Special Relativity according to Reichenbach’s definition, where the parameter epsilon equals to 0. It formulates a Neo-Lorentzian approach by replacing the Lorentz transformations with a new set named “Inertial Transformations”, thus explaining the Sagnac effect, the twin paradox and the trip from the future to the past in an easy and elegant way. The cosmic microwave background is suggested as a possible privileged reference system. Most importantly, being a theory based on experimental proofs, rather than mutual consensus, it offers a physical description of reality independent of the human observation.
Collective excitations in nuclei
Energy Technology Data Exchange (ETDEWEB)
Chomaz, Ph
1997-12-31
The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.
Eta nuclear bound states revisited
Friedman, E; Mareš, J
2013-01-01
The strong energy dependence of the s-wave eta-N scattering amplitude at and below threshold, as evident in coupled-channels K-matrix fits and chiral models that incorporate the S11 N*(1535) resonance, is included self consistently in eta-nuclear bound state calculations. This approach, applied recently in calculations of kaonic atoms and Kbar-nuclear bound states, is found to impose stronger constraints than ever on the onset of eta-nuclear binding, with a minimum value of Re a_{eta N} approximately 0.9 fm required to accommodate an eta-4He bound state. Binding energies and widths of eta-nuclear states are calculated within several underlying eta-N models for nuclei across the periodic table, including eta-25Mg for which some evidence was proposed in a recent COSY experiment.
Kaon-condensed hypernuclei as highly dense self-bound objects
Muto, Takumi
2008-01-01
The structure of $K^-$-condensed hypernuclei, which may be produced in the laboratory in strangeness-conserving processes, is investigated using an effective chiral Lagrangian for the kaon-baryon interaction, combined with a nonrelativistic baryon-baryon interaction model. It is shown that a large number of negative strangeness is needed for the formation of highly dense and deeply bound state with kaon condensates and that part of the strangeness should be carried by hyperons mixed in the nucleus. The properties of kaon-condensed hypernuclei such as the ground state energy and particle composition are discussed. Such a self-bound object has a long lifetime and may decay only through weak interaction processes. Comparison with other possible nuclear states is also made, such as kaon-condensed nuclei without mixing of hyperons and noncondensed multistrange hypernuclei. Implications of kaon-condensed hypernuclei for experiments are mentioned.
Al Kaissi, Ali; Ryabykh, Sergey; Ochirova, Polina; Kenis, Vladimir; Hofstätter, Jochen G.; Grill, Franz; Ganger, Rudolf; Kircher, Susanne Gerit
2017-01-01
Marked ligamentous hyperlaxity and muscle weakness/wasting associated with awkward gait are the main deficits confused with the diagnosis of myopathy. Seven children (6 boys and 1 girl with an average age of 8 years) were referred to our department because of diverse forms of skeletal abnormalities. No definitive diagnosis was made, and all underwent a series of sophisticated investigations in other institutes in favor of myopathy. We applied our methodology through the clinical and radiographic phenotypes followed by targeted genotypic confirmation. Three children (2 boys and 1 girl) were compatible with the diagnosis of progressive pseudorheumatoid chondrodysplasia. The genetic mutation was correlated with the WISP 3 gene actively expressed by articular chondrocytes and located on chromosome 6. Klinefelter syndrome was the diagnosis in 2 boys. Karyotyping confirmed 47,XXY (aneuploidy of Klinefelter syndrome). And 2 boys were finally diagnosed with Morquio syndrome (MPS type IV A) as both showed missense mutations in the N-acetylgalactosamine-sulfate sulfatase gene. Misdiagnosis can lead to the initiation of a long list of sophisticated investigations. PMID:28210640
Weakly tight functions and their decomposition
Directory of Open Access Journals (Sweden)
Mona Khare
2005-01-01
Full Text Available The present paper deals with the study of a weakly tight function and its relation to tight functions. We obtain a Jordan-decomposition-type theorem for a locally bounded weakly tight real-valued function defined on a sublattice of IX, followed by the notion of a total variation.
Hall, Lawrence J; Ruderman, Joshua T
2014-01-01
The measured values of the weak scale, $v$, and the first generation masses, $m_{u,d,e}$, are simultaneously explained in the multiverse, with all these parameters scanning independently. At the same time, several remarkable coincidences are understood. Small variations in these parameters away from their measured values lead to the instability of hydrogen, the instability of heavy nuclei, and either a hydrogen or a helium dominated universe from Big Bang Nucleosynthesis. In the 4d parameter space of $(m_u,m_d,m_e,v)$, catastrophic boundaries are reached by separately increasing each parameter above its measured value by a factor of $(1.4,1.3,2.5,\\sim5)$, respectively. The fine-tuning problem of the weak scale in the Standard Model is solved: as $v$ is increased beyond the observed value, it is impossible to maintain a significant cosmological hydrogen abundance for any values of $m_{u,d,e}$ that yield both hydrogen and heavy nuclei stability. For very large values of $v$ a new regime is entered where weak in...
Reflections on cavitation nuclei in water
DEFF Research Database (Denmark)
Mørch, Knud Aage
2007-01-01
The origin of cavitation bubbles, cavitation nuclei, has been a subject of debate since the early years of cavitation research. This paper presents an analysis of a representative selection of experimental investigations of cavitation inception and the tensile strength of water. At atmospheric...... on the surface of particles and bounding walls. Such nuclei can be related to the full range of tensile strengths measured, when differences of experimental conditions are taken into consideration. The absence or presence of contamination on surfaces, as well as the structure of the surfaces, are central...... to explaining why the tensile strength of water varies so dramatically between the experiments reported. A model for calculation of the critical pressure of skin-covered free gas bubbles as well as that of interfacial gaseous nuclei covered by a skin is presented. This model is able to bridge the apparently...
Spherical nuclei near the stability line and far from it
Energy Technology Data Exchange (ETDEWEB)
Isakov, V. I., E-mail: visakov@thd.pnpi.spb.ru [National Research Centre Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)
2016-11-15
Results of microscopic and semiphenomenological calculations of features of spherical nuclei lying near the stability line and far from it are presented. The reason why the nuclei being considered are spherical is that they are magic at least in one nucleon sort. The present analysis is performed for Z = 50 and Z = 28 isotopes and for N = 50 isotones, the region extending from neutron-rich to neutron-deficient nuclei being covered. The isotopic dependence of the mean-field spin–orbit nuclear potential is revealed; systematics of energies of levels and probabilities for electromagnetic transitions is examined; and root-mean-square radii of nuclei are calculated, along with the proton- and neutron-density distributions in them. Nuclei in the vicinity of closed shells are considered in detail, and the axial-vector weak coupling constant in nuclei is evaluated. A systematic comparison of the results of calculations with experimental data is performed.
Positive Root Bounds and Root Separation Bounds
Herman, Aaron Paul
In this thesis, we study two classes of bounds on the roots of a polynomial (or polynomial system). A positive root bound of a polynomial is an upper bound on the largest positive root. A root separation bound of a polynomial is a lower bound on the distance between the roots. Both classes of bounds are fundamental tools in computer algebra and computational real algebraic geometry, with numerous applications. In the first part of the thesis, we study the quality of positive root bounds. Higher quality means that the relative over-estimation (the ratio of the bound and the largest positive root) is smaller. We find that all known positive root bounds can be arbitrarily bad. We then show that a particular positive root bound is tight for certain important classes of polynomials. In the remainder of the thesis, we turn to root separation bounds. We observe that known root separation bounds are usually very pessimistic. To our surprise, we also find that known root separation bounds are not compatible with the geometry of the roots (unlike positive root bounds). This motivates us to derive new root separation bounds. In the second part of this thesis, we derive a new root separation for univariate polynomials by transforming a known bound into a new improved bound. In the third part of this thesis, we use a similar strategy to derive a new improved root separation bound for polynomial systems.
Weak, strong, and uniform quantum simulations
Wang, Dong-Sheng
2015-01-01
In this work, we introduce different types of quantum simulations according to different operator topologies on a Hilbert space, namely, uniform, strong, and weak quantum simulations. We show that they have the same computational power that the efficiently solvable problems are in bounded-error quantum polynomial time. For the weak simulation, we formalize a general weak quantum simulation problem and construct an algorithm which is valid for all instances. Also, we analyze the computational power of quantum simulations by proving the query lower bound for simulating a general quantum process.
Directory of Open Access Journals (Sweden)
Ballester Pla, Coralio
2012-03-01
Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.
La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.
A note on black-hole physics, cosmic censorship, and the charge-mass relation of atomic nuclei
Hod, Shahar
2016-02-01
Arguing from the cosmic censorship principle, one of the fundamental cornerstones of black-hole physics, we have recently suggested the existence of a universal upper bound relating the maximal electric charge of a weakly self-gravitating system to its total mass: Z(A)≤slant {Z}*(A)\\equiv {α }-1/3{A}2/3, where Z is the number of protons in the system, A is the total baryon (mass) number, and α ={e}2/{{\\hslash }}c is the dimensionless fine-structure constant. In order to test the validity of this suggested bound, we here explore the Z(A) functional relation of atomic nuclei as deduced from the Weizsäcker semi-empirical mass formula. It is shown that all atomic nuclei, including the meta-stable maximally charged ones, conform to the suggested charge-mass upper bound. Our results support the validity of the cosmic censorship conjecture in black-hole physics.
Recent topics of mesic atoms and mesic nuclei -- $\\phi$ mesic nuclei exist ?--
Yamagata-Sekihara, J; Cabrera, D; Vacas, M J Vicente
2008-01-01
We study $\\phi$-meson production in nuclei to investigate the in-medium modification of the $\\phi$-meson spectral function at finite density. We consider (${\\bar p},\\phi$), ($\\gamma,p$) and ($\\pi^-,n$) reactions to produce a $\\phi$-meson inside the nucleus and evaluate the effects of the medium modifications to reaction cross sections. The structures of the bound states, $\\phi$-mesic nuclei, are also studied. For strong absorptive interaction cases, we need to know the spectrum shape in a wide energy region to deduce the properties of $\\phi$.
Formation of $\\phi$ mesic nuclei
Yamagata-Sekihara, J; Vacas, M J Vicente; Hirenzaki, S
2010-01-01
We study the structure and formation of the $\\phi$ mesic nuclei to investigate the in-medium modification of the $\\phi$-meson spectral function at finite density. We consider (${\\bar p},\\phi$), ($\\gamma,p$) and ($\\pi^-,n$) reactions to produce a $\\phi$-meson inside the nucleus and evaluate the effects of its medium modifications to the reaction cross sections. We also estimate the consequences of the uncertainties of the ${\\bar K}$ selfenergy in medium to the $\\phi$-nucleus interaction. We find that it may be possible to see a peak structure in the reaction spectra for the strong attractive potential cases. On the other hand, for strong absorptive interaction cases with relatively weak attractions, it is very difficult to observe clear peaks and we may need to know the spectrum shape in a wide energy region to deduce the properties of $\\phi$.
Selfconsistent calculations for hyperdeformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)
1996-12-31
Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.
Proton Halo or Skin in the Excited States of Light Nuclei
Institute of Scientific and Technical Information of China (English)
陈金根; 蔡翔舟; 张虎勇; 沈文庆; 任中洲; 蒋维洲; 马余刚; 钟晨; 魏义彬; 郭威; 周星飞; 马国亮; 王鲲
2003-01-01
Properties of nuclei 13,15N and 9B are investigated in the relativistic mean-field theory with NLZ and NL3 force parameters. The calculated binding energies are very close to the experimental ones. The calculations show that the first excited state (1p1/2) in 9B, the first excited state (2s1/2) in 13N and the second excited state (2s1/2) in 15N are weakly bound. In particular, for 13N and 15N, the proton density distributions in the two above excited states have a long tail and the rms radii of the last proton are greatly larger compared with their respective matter radii. It is predicted that a proton halo exists in the first excited state of 13N and in the second excited state of 15N, respectively. It also indicates that the first excited state in 9B is a proton skin state.
Hall, Lawrence J.; Pinner, David; Ruderman, Joshua T.
2014-12-01
The measured values of the weak scale, v, and the first generation masses, m u, d, e , are simultaneously explained in the multiverse, with all these parameters scanning independently. At the same time, several remarkable coincidences are understood. Small variations in these parameters away from their measured values lead to the instability of hydrogen, the instability of heavy nuclei, and either a hydrogen or a helium dominated universe from Big Bang Nucleosynthesis. In the 4d parameter space of ( m u , m d , m e , v), catastrophic boundaries are reached by separately increasing each parameter above its measured value by a factor of (1.4, 1.3, 2.5, ˜ 5), respectively. The fine-tuning problem of the weak scale in the Standard Model is solved: as v is increased beyond the observed value, it is impossible to maintain a significant cosmological hydrogen abundance for any values of m u, d, e that yield both hydrogen and heavy nuclei stability.
Nuclear dynamics of K¯ bound states
Mareš, J.; Friedman, E.; Gal, A.
2006-07-01
K¯ nuclear bound states were generated dynamically within a relativistic mean field (RMF) model. Substantial polarization of the core nucleus was found for light nuclei. The behavior of the dynamically calculated width ΓK¯ as function of the K¯ binding energy was studied. A lower limit of ΓK¯ ˜ 35 - 45 MeV for 1s K¯ nuclear states in light nuclei such as 12C was placed on the width expected for deep binding in the range B K¯ ˜ 100 - 200 MeV.
Weak Galois and Weak Cocleft Coextensions
Institute of Scientific and Technical Information of China (English)
J.N. Alonso (A)lvarez; J.M. Fernández Vilaboa; R. González Rodríguez; A.B. Rodríguez Raposo
2007-01-01
For a weak entwining structure (A, C,ψ) living in a braided monoidal category with equalizers and coequalizers, we formulate the notion of weak A-Galois coextension with normal basis and we show that these Galois coextensions are equivalent to the weak A-cocleft coextensions introduced by the authors.
Analysis of isomeric ratios for medium-mass nuclei
Danagulyan, A. S.; Hovhannisyan, G. H.; Bakhshiyan, T. M.; Kerobyan, I. A.
2016-09-01
Values of the isomeric ratios for product nuclei originating from simple charge-exchange reactions were analyzed. The cross sections for the formation of product nuclei in ground and isomeric states were calculated with the aid of the TALYS 1.4 and EMPIRE 3.2 codes. The calculated values of the isomeric ratios were compared with their experimental counterparts taken from the EXFOR database. For the 86,87Y, 94,95,96,99Tc, and 44Sc nuclei, the experimental values of the isomeric ratios exceed the respective calculated values. The nuclei in question feature weak deformations and have high-spin yrast lines and rotational bands. The possible reason behind the discrepancy between theoretical and experimental isomeric ratios is that the decay of yrast states leads with a high probability to the formation of isomeric states of detected product nuclei.
Quantum-memory-assisted entropic uncertainty relations under weak measurements
Li, Lei; Wang, Qing-Wen; Shen, Shu-Qian; Li, Ming
2017-08-01
We investigate quantum-memory-assisted entropic uncertainty relations (EURs) based on weak measurements. It is shown that the lower bound of EUR revealed by weak measurements is always larger than that revealed by the corresponding projective measurements. A series of lower bounds of EUR under both weak measurements and projective measurements are presented. Interestingly, the quantum-memory-assisted EUR based on weak measurements is a monotonically decreasing function of the strength parameter. Furthermore, some information-theoretic inequalities associated with weak measurements are also derived.
Cluster radioactivity in very heavy nuclei: a new perspective
Energy Technology Data Exchange (ETDEWEB)
Routray, T.R. [P.G. Department of Physics, Sambalpur University, Jyoti Vihar, Burla, Orissa 768019 (India)], E-mail: trr1@rediffmail.com; Nayak, Jagajjaya [P.G. Department of Physics, Sambalpur University, Jyoti Vihar, Burla, Orissa 768019 (India)], E-mail: jagat.su_ph@yahoo.in; Basu, D.N. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064 (India)], E-mail: dnb@veccal.ernet.in
2009-08-01
Exotic cluster decay of very heavy nuclei is studied using the microscopic nuclear potentials obtained by folding density dependent M3Y effective interaction with the densities of the cluster and the daughter nuclei. The microscopic nuclear potential, Coulomb interaction and the centrifugal barrier arising out of spin-parity conservation are used to obtain the potential between the cluster and the daughter nuclei. Half life values are calculated in the WKB framework and the preformation factors are extracted. The latter values are seen to have only a very weak dependence on the mass of the emitted cluster.
Multi-K¯ nuclei and kaon condensation
Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.
2008-04-01
We extend previous relativistic mean-field (RMF) calculations of multi-K¯ nuclei, using vector boson fields with SU(3) PPV coupling constants and scalar boson fields constrained phenomenologically. For a given core nucleus, the resulting K¯ separation energy BK¯, as well as the associated nuclear and K¯-meson densities, saturate with the number κ of K¯ mesons for κ>κsat~10. Saturation appears robust against a wide range of variations, including the RMF nuclear model used and the type of boson fields mediating the strong interactions. Because BK¯ generally does not exceed 200 MeV, it is argued that multi-K¯ nuclei do not compete with multihyperonic nuclei in providing the ground state of strange hadronic configurations and that kaon condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter. Last, we explore possibly self-bound strange systems made of neutrons and K¯0 mesons, or protons and K- mesons, and study their properties.
On Weakly Singular Versions of Discrete Nonlinear Inequalities and Applications
Directory of Open Access Journals (Sweden)
Kelong Cheng
2014-01-01
Full Text Available Some new weakly singular versions of discrete nonlinear inequalities are established, which generalize some existing weakly singular inequalities and can be used in the analysis of nonlinear Volterra type difference equations with weakly singular kernels. A few applications to the upper bound and the uniqueness of solutions of nonlinear difference equations are also involved.
On weakly D-differentiable operators
DEFF Research Database (Denmark)
Christensen, Erik
2016-01-01
Let DD be a self-adjoint operator on a Hilbert space HH and aa a bounded operator on HH. We say that aa is weakly DD-differentiable, if for any pair of vectors ξ,ηξ,η from HH the function 〈eitDae−itDξ,η〉〈eitDae−itDξ,η〉 is differentiable. We give an elementary example of a bounded operator aa, suc...
Pre-equilibrium Emission and α-clustering in Nuclei
Gramegna, F.; Fabris, D.; Marchi, T.; Degerlier, M.; Fotina, O. V.; Kravchuk, V. L.; D'Agostino, M.; Morelli, L.; Appannababu, S.; Baiocco, G.; Barlini, S.; Bini, M.; Brondi, A.; Bruno, M.; Casini, G.; Cinausero, M.; Gelli, N.; Moro, R.; Olmi, A.; Pasquali, G.; Piantelli, S.; Poggi, G.; Valdrè, S.; Vardaci, E.
2015-02-01
The study of nuclear states built on clusters bound by valence neutrons in their molecular configurations is a field of large interest, which is being renewed by the availability of exotic beams: clustering is, in fact, predicted to become very important at the drip-line, where weakly bound systems will prevail. Although for light nuclei at an excitation energy close to the particle separation value there are experimental evidences of such structure effects, this is still not the case for heavier nuclear systems. Many attempts have been done using preformation alpha clustering models, but there is still a lack of experimental data capable to give a direct feedback. In particular, searching for alpha clustering effects in medium mass systems is still a challenge, which can give new hints in this subject. In the past we have studied the reactions 250, 192 and 130 MeV 16O + 116Sn, observing a significant increase in the fast emitted α-particle yield. This effect was ascribed to the presence of preformed a-clusters in the 16O projectile nucleus. In order to investigate these aspects, in a model independent way, a new experimental campaign has been performed with the GARFIELD + RCo set up, to compare results from two different reactions: a double magic a-cluster (16O) and a non-magic α-cluster projectile (19F) at the same beam velocity (16AMeV) have been chosen, impinging respectively on 65Cu and 62Ni targets, thus leading to the same 81Rb* compound nucleus. The angular distributions and the light charged particles emission spectra in coincidence with evaporation residues have been measured and analyzed. The preliminary results of the data analysis and the main features of the theoretical model used for their interpretation are presented.
Temperature programmed desorption of weakly bound adsorbates on Au(111)
Engelhart, Daniel P.; Wagner, Roman J. V.; Meling, Artur; Wodtke, Alec M.; Schäfer, Tim
2016-08-01
We have performed temperature programmed desorption (TPD) experiments to analyze the desorption kinetics of Ar, Kr, Xe, C2H2, SF6, N2, NO and CO on Au(111). We report desorption activation energies (Edes), which are an excellent proxy for the binding energies. The derived binding energies scale with the polarizability of the molecules, consistent with the conclusion that the surface-adsorbate bonds arise due to dispersion forces. The reported results serve as a benchmark for theories of dispersion force interactions of molecules at metal surfaces.
Anharmonic vibrations in nuclei
Fallot, M; Andrés, M V; Catara, F; Lanza, E G; Scarpaci, J A; Chomaz, Ph.
2003-01-01
In this letter, we show that the non-linearitites of large amplitude motions in atomic nuclei induce giant quadrupole and monopole vibrations. As a consequence, the main source of anharmonicity is the coupling with configurations including one of these two giant resonances on top of any state. Two-phonon energies are often lowered by one or two MeV because of the large matrix elements with such three phonon configurations. These effects are studied in two nuclei, 40Ca and 208Pb.
Bertsch, G F
2016-01-01
Gerry Brown initiated some early studies on the coexistence of different nuclear shapes. The subject has continued to be of interest and is crucial for understanding nuclear fission. We now have a very good picture of the potential energy surface with respect to shape degrees of freedom in heavy nuclei, but the dynamics remain problematic. In contrast, the early studies on light nuclei were quite successful in describing the mixing between shapes. Perhaps a new approach in the spirit of the old calculations could better elucidate the character of the fission dynamics and explain phenomena that current theory does not model well.
Status and Perspectives of the Search for Eta-Mesic Nuclei
Moskal, Pawel; Krzemien, Wojciech
2016-01-01
In this report the search for eta-mesic nuclei is reviewed. The brief description of the experimental studies is presented with a focus on the possible production of the eta-nucleus bound states for light nuclei like 4He and 3He.
Elusive active galactic nuclei
Maiolino, R; Comastri, A; Gilli, R; Nagar, NM; Bianchi, S; Boker, T; Colbert, E; Krabbe, A; Marconi, A; Matt, G; Salvati, M
2003-01-01
A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically 'elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtai
Institute of Scientific and Technical Information of China (English)
Yong Hua LI; Hai Bin KAN; Bing Jun YU
2004-01-01
In this paper, a special kind of partial algebras called projective partial groupoids is defined.It is proved that the inverse image of all projections of a fundamental weak regular *-semigroup under the homomorphism induced by the maximum idempotent-separating congruence of a weak regular *-semigroup has a projective partial groupoid structure. Moreover, a weak regular *-product which connects a fundamental weak regular *-semigroup with corresponding projective partial groupoid is defined and characterized. It is finally proved that every weak regular *-product is in fact a weak regular *-semigroup and any weak regular *-semigroup is constructed in this way.
Fusion and reactions of exotic nuclei
Directory of Open Access Journals (Sweden)
Sánchez-Benítez A.M.
2011-10-01
Full Text Available Close to the drip lines, the scattering cross sections of halo nuclei show a different behaviour as compared to the tightly bound projectiles of the stability line. Several experiments carried out in the last decade have been dedicated to investigate the competition between transfer, breakup and fusion channels at energies around and below the Coulomb barrier. The rather complex scenario gives rise to conﬂicting conclusions concerning the effect of breakup and transfer on reaction dynamics and the sub-barrier fusion process. In this work we discuss recent experimental ﬁndings in fusion and reactions of 6He halo nucleus at energies around the Coulomb barrier.
Reactions and structure of exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Esbensen, H.
1993-08-01
Radioactive beam experiments have made it possible to study the structure of light neutron rich nuclei. A characteristic feature is a large dipole strength near threshold. An excellent example is the loosely bound nucleus ``Li for which Coulomb dissociation plays a dominant role in breakup reactions on a high Z target. I will describe a three-body model and apply it to calculate the dipole response of {sup 11}Li and the momentum distributions for the three-body breakup reaction: {sup 11}Li {yields} {sup 9}Li+n+n, and comparisons will be made to recent three-body coincidence measurements.
Isospin Mixing In N $\\approx$ Z Nuclei
Srnka, D; Versyck, S; Zakoucky, D
2002-01-01
Isospin mixing in N $\\approx$ Z nuclei region of the nuclear chart is an important phenomenon in nuclear physics which has recently gained theoretical and experimental interest. It also forms an important nuclear physics correction in the precise determination of the $ft$-values of superallowed 0$^+ \\rightarrow 0^+ \\beta$- transitions. The latter are used in precision tests of the weak interaction from nuclear $\\beta$- decay. We propose to experimentally measure isospin mixing into nuclear ground states in the N $\\approx$ Z region by determining the isospin forbidden Fermi-component in the Gamow-Teller dominated $J^{\\pi} \\rightarrow J^{\\pi} \\beta$- transitions through the observation of anisotropic positron emission from oriented nuclei. First measurements were carried out with $^{71}$As and are being analyzed now.
Theory of inclusive breakup cross section for Borromean nuclei within a four-body spectator model
Carlson, Brett V; Hussein, Mahir S
2016-01-01
We develop a model to treat the inclusive non-elastic break up reactions involving weakly bound three-cluster nuclei. Borromean, two-nucleon, halo nuclei are candidates of unstable three-fragments projectiles. The model is based on the theory of inclusive breakup reactions commonly employed in the treatment of incomplete fusion and surrogate method. The theory was developed in the 80's by Ichimura, Autern and Vincent (IAV) [Phys. Rev. C 32, 431 (1985)] \\cite{IAV1985}, Udagawa and Tamura (UT)[Phys. Rev. C 24, 1348 (1981)], \\cite{UT1981} and Hussein and McVoy (HM)[Nucl. Phys. A 445, 124 (1985)], \\cite{HM1985}. We extend these three-body theories to derive an expression for the fragment yield in the reaction $A\\,(a,b)\\,X$, where the projectile is $a = x_1 + x_2 + b$. The inclusive breakup cross section is found to be the sum of a generalized four-body form of the elastic breakup cross section plus the inclusive non-elastic breakup cross section which involves the "reaction" cross section of the participant fragm...
Shape Deformations in Atomic Nuclei
Hamamoto, Ikuko
2011-01-01
The ground states of some nuclei are described by densities and mean fields that are spherical, while others are deformed. The existence of non-spherical shape in nuclei represents a spontaneous symmetry breaking.
Are $\\eta$- and $\\omega$-nuclear states bound ?
Tsushima, K; Thomas, A W; Saitô, K
1998-01-01
We investigate theoretically whether it is feasible to detect $\\eta$- and $^{40}$Ca, $^{90}$Zr and $^{208}$Pb, we also investigate $^6$He, $^{11}$B and $^{26}$Mg, which are the final nuclei in the proposed experiment involving the (d,$^3$He) reaction at GSI. Potentials for the $\\eta$ and $\\omega$ mesons in these nuclei are calculated in local density approximation, embedding the mesons in the nucleus described by solving the mean-field equations of motion in the QMC model. Our results suggest that one should expect to find $\\eta$- and $\\omega$-nucleus bound states in all these nuclei.
Ultra High Energy Nuclei Propagation
Aloisio, Roberto
2008-01-01
We discuss the problem of ultra high energy nuclei propagation in astrophysical backgrounds. We present a new analytical computation scheme based on the hypothesis of continuos energy losses in a kinetic formulation of the particles propagation. This scheme enables the computation of the fluxes of ultra high energy nuclei as well as the fluxes of secondaries (nuclei and nucleons) produced by the process of photo-disintegration suffered by nuclei.
On interpretations of bounded arithmetic and bounded set theory
Pettigrew, Richard
2008-01-01
In a recent paper, Kaye and Wong proved the following result, which they considered to belong to the folklore of mathematical logic. THEOREM: The first-order theories of Peano arithmetic and ZF with the axiom of infinity negated are mutually interpretable with interpretations that are inverse to each other. In this note, I describe a theory of sets that stands in the same relation to the bounded arithmetic IDelta0 + exp. Because of the weakness of this theory of sets, I cannot straightforwardly adapt Kaye and Wong's interpretation of the arithmetic in the set theory. Instead, I am forced to produce a different interpretation.
Energy Technology Data Exchange (ETDEWEB)
Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1998-07-22
For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.
Energy Technology Data Exchange (ETDEWEB)
Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)
1998-07-22
For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.
Fission and Properties of Neutron-Rich Nuclei - Proceedings of the Second International Conference
Hamilton, J. H.; Phillips, W. R.; Carter, H. K.
The Table of Contents for the book is as follows: * Preface * Structure of Elementary Matter: Cold Valleys and Their Importance in Fission, Fusion and for Superheavy Nuclei * Tunnelling Phenomena in Nuclear Physics * Heavy Nuclei Studies Using Transfer Reactions * Isomeric Properties of Nuclei Near 78Ni * Investigation of Light Actinide Nuclei at Yale and Beyond * U-Projectile Fission at Relativistic Energies * Cluster Description of Cold Fission Modes in 252Cf * Neutron-pair Transfer Theory for Pear-shaped Ba Fission Fragments * New RMFA Parameters of Normal and Exotic Nuclei * Study of Fission Fragments from 12C+238U Reactions: Prompt and Delayed Spectroscopy * γ-Ray Angular Correlations in 252Cf and 248Cm Fission Fragments * Fragment Angular Momentum and Descent Dynamics in 252Cf Spontaneous Fission * The Experimental Investigation of Neutron-Rich Nuclei * High-Spin Structure of Some Odd-Z Nuclei with A ≈ 100 From Heavy-Ion Induced Fission * Coexistence of Symmetric and Asymmetric Nuclear Shapes and 10Be Ternary Fission * Octupole Effects in the Lanthanides * High Spin Structure of the 113-1l6Cd Isotopes Produced by Heavy-Ion Induced Fission Reaction * Temperature-Dependent Fission Barriers and Mass Distributions for 239U * Strength Distributions for Gamow Teller Transitions in Very Weakly Bound Systems * High Spin Fragmentation Spectroscopy * Search for a Four-Neutron Transfer From 8He to 4He * Microsecond Isomers in Fission Fragments in the Vicinity of the Doubly Magic 132Sn * Recent On-Line NMR/on Nuclear Magnetic Dipole Moments Near 132Sn: Meson Exchange Current Effects at the Shell Closure and Shell Model Treatment of Variation with Proton and Neutron Number * High-spin K-Isomers Beyond the Fusion Limit * High Energy Neutron Induced Fission: Charge Yield Distributions and Search and Spectroscopy of New Isomers * Hartree-Fock Mean-Field Models Using Separable Interactions * Variation of Fission Characteristics Over the Nuclear Chart * Investigation of
Van Isacker, P
2010-01-01
The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. General notions of symmetry and dynamical symmetry in quantum mechanics are introduced and illustrated with simple examples such as the SO(4) symmetry of the hydrogen atom and the isospin symmetry in nuclei. Two nuclear models, the shell model and the interacting boson model, are reviewed with particular emphasis on their use of group-theoretical techniques.
Coulomb dissociation of light unstable nuclei
Energy Technology Data Exchange (ETDEWEB)
Kido, Toshihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yabana, Kazuhiro; Suzuki, Yoshiyuki
1997-05-01
The aim of this study is that a simulation method applicable to the atomic nucleus with neutron halo structure developed till now is applied to a wider range unstable nucleus containing proton excess nucleus to also attribute understanding of nuclear reaction with interest in astronomical nuclear reaction. The proton dissociation energy in {sup 8}B nucleus is small value of 138 eV, which is thought to have a structure of proton at the most outer shell bound much weakly by core nucleus and spread in thinner thickness. For the coulomb excitation of such weak bound system, quantum theoretical and non-perturbational treatment is important. Therefore, 3-dimensional time-dependent Schroedinger equation on relative wave function of the core nucleus {sup 7}Be and halo proton p will be dissolved in time space and will execute a time developmental simulation. (G.K.)
Electron and pion scattering off nuclei
Energy Technology Data Exchange (ETDEWEB)
Buss, O.; Mosel, U. [Inst. fuer Theoretische Physik, Univ. Giessen (Germany); Alvarez-Ruso, L. [Dept. de Fisica Teorica and IFIC, Centro Mixto Univ. de Valencia-CSIC (Spain)
2007-07-01
We present a treatment of pion and electron scattering off nuclei within the framework of a Boltzmann-Uehling-Uhlenbeck (BUU) transport model. In this approach we realize a full coupled channel treatment and include medium modifications such as mean-field potentials, Fermi motion and width modifications. We have applied the GiBUU model to the description of the double charge exchange (DCX) reaction of pions with different nuclear targets at incident kinetic energies of 120-180 MeV. The DCX process is highly sensitive to details of the interactions of pions with the nuclear medium and, therefore, represents a major benchmark for any model of pion scattering off nuclei at low and intermediate energies. We discuss the impact of surface effects and the dependence on the nuclear mass number. We have achieved a good quantitative agreement with the extensive data set obtained at LAMPF. Furthermore, we present a description of electron induced reactions, i.e. pion production, off nuclei. We consider the scattering of electrons off the bound nucleons in an impulse approximation and investigate medium modifications to exclusive particle production cross sections and compare our results to available data. (orig.)
Interaction of eta mesons with nuclei
Kelkar, N G; Upadhyay, N J; Jain, B K
2013-01-01
Back in the mid eighties, a new branch of investigation which was related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta meson producing reactions. The vast literature of experimental as well as theoretical works which studied various aspects of eta producing reactions such as the $\\pi ^+$ $n$ $\\to \\eta p$, $p d \\to ^3$He $\\eta$, $p \\,^6$Li $\\to ^7$Be $\\eta$ and $\\gamma ^3$He $\\to \\eta$ X, to name a few, had but one objective in mind: to understand the eta - nucleon ($\\eta N$) and hence the $\\eta$-nucleus interaction which could explain the production data and confirm the existence of some $\\eta$-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the $\\eta N$ and hence the $\\eta$-nu...
η-nuclear bound states revisited
Friedman, E.; Gal, A.; Mareš, J.
2013-10-01
The strong energy dependence of the s-wave ηN scattering amplitude at and below threshold, as evident in coupled-channels K-matrix fits and chiral models that incorporate the S11N* (1535) resonance, is included self-consistently in η-nuclear bound-state calculations. This approach, applied recently in calculations of kaonic atoms and Kbar-nuclear bound states, is found to impose stronger constraints than ever on the onset of η-nuclear binding, with a minimum value of ReaηN ≈ 0.9 fm required to accommodate an η-4He bound state. Binding energies and widths of η-nuclear states are calculated within several underlying ηN models for nuclei across the periodic table, including Mg25η for which some evidence was proposed in a recent COSY experiment.
Viscosity bound versus the universal relaxation bound
Hod, Shahar
2017-10-01
For gauge theories with an Einstein gravity dual, the AdS/CFT correspondence predicts a universal value for the ratio of the shear viscosity to the entropy density, η / s = 1 / 4 π. The holographic calculations have motivated the formulation of the celebrated KSS conjecture, according to which all fluids conform to the lower bound η / s ≥ 1 / 4 π. The bound on η / s may be regarded as a lower bound on the relaxation properties of perturbed fluids and it has been the focus of much recent attention. In particular, it was argued that for a class of field theories with Gauss-Bonnet gravity dual, the shear viscosity to entropy density ratio, η / s, could violate the conjectured KSS bound. In the present paper we argue that the proposed violations of the KSS bound are strongly constrained by Bekenstein's generalized second law (GSL) of thermodynamics. In particular, it is shown that physical consistency of the Gauss-Bonnet theory with the GSL requires its coupling constant to be bounded by λGB ≲ 0 . 063. We further argue that the genuine physical bound on the relaxation properties of physically consistent fluids is ℑω(k > 2 πT) > πT, where ω and k are respectively the proper frequency and the wavenumber of a perturbation mode in the fluid.
Weakly circadian cells improve resynchrony.
Directory of Open Access Journals (Sweden)
Alexis B Webb
Full Text Available The mammalian suprachiasmatic nuclei (SCN contain thousands of neurons capable of generating near 24-h rhythms. When isolated from their network, SCN neurons exhibit a range of oscillatory phenotypes: sustained or damping oscillations, or arrhythmic patterns. The implications of this variability are unknown. Experimentally, we found that cells within SCN explants recover from pharmacologically-induced desynchrony by re-establishing rhythmicity and synchrony in waves, independent of their intrinsic circadian period We therefore hypothesized that a cell's location within the network may also critically determine its resynchronization. To test this, we employed a deterministic, mechanistic model of circadian oscillators where we could independently control cell-intrinsic and network-connectivity parameters. We found that small changes in key parameters produced the full range of oscillatory phenotypes seen in biological cells, including similar distributions of period, amplitude and ability to cycle. The model also predicted that weaker oscillators could adjust their phase more readily than stronger oscillators. Using these model cells we explored potential biological consequences of their number and placement within the network. We found that the population synchronized to a higher degree when weak oscillators were at highly connected nodes within the network. A mathematically independent phase-amplitude model reproduced these findings. Thus, small differences in cell-intrinsic parameters contribute to large changes in the oscillatory ability of a cell, but the location of weak oscillators within the network also critically shapes the degree of synchronization for the population.
Cofinitely weak supplemented modules
Alizade, Rafail; Büyükaşık, Engin
2003-01-01
We prove that a module M is cofinitely weak supplemented or briefly cws (i.e., every submodule N of M with M/N finitely generated, has a weak supplement) if and only if every maximal submodule has a weak supplement. If M is a cws-module then every M-generated module is a cws-module. Every module is cws if and only if the ring is semilocal. We study also modules, whose finitely generated submodules have weak supplements.
Precision measurement of the mass difference between light nuclei and anti-nuclei
Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym
2015-08-17
The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($\\bar{d}$), and $^{3}{\\rm He}$ and $^3\\overline{\\rm He}$ nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirm CPT invariance to an unprecedented precision in the sector of light nuclei. This funda...
Nearest-neighbor Entropy Estimators with Weak Metrics
Timofeev, Evgeniy
2012-01-01
A problem of improving the accuracy of nonparametric entropy estimation for a stationary ergodic process is considered. New weak metrics are introduced and relations between metrics, measures, and entropy are discussed. Based on weak metrics, a new nearest-neighbor entropy estimator is constructed and has a parameter with which the estimator is optimized to reduce its bias. It is shown that estimator's variance is upper-bounded by a nearly optimal Cramer-Rao lower bound.
Institute of Scientific and Technical Information of China (English)
丁夏畦; 罗佩珠
2004-01-01
In this paper the authors introduce some new ideas on generalized numbers and generalized weak functions. They prove that the product of any two weak functions is a generalized weak function. So in particular they solve the problem of the multiplication of two generalized functions.
A Characterization of Complete Bounded Domain
Institute of Scientific and Technical Information of China (English)
殷慰萍; 苏简兵; 赵振刚
2002-01-01
@@ 1 IntroductionThis paper is concerned with biholomorphic mappings between two bounded domains D and G both in Cn.Consequently,an important question is whether the domain D is biholomorphic to G? We give an answer for this question under a very weak condition.
Functions of bounded variation
Lind, Martin
2006-01-01
The paper begins with a short survey of monotone functions. The functions of bounded variation are introduced and some basic properties of these functions are given. Finally the jump function of a function of bounded variation is defined.
Felker, Susan B.
2005-01-01
Robert Cobb Jr., of Greensboro, N.C., a 1986-89 participant in the Virginia Tech Upward Bound program, was recently named Virginia's TRIO Achiever for 2004. Federal TRIO programs include Upward Bound and Educational Talent Search.
Tools for model-independent bounds in direct dark matter searches
DEFF Research Database (Denmark)
Cirelli, M.; Del Nobile, E.; Panci, P.
2013-01-01
We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei.......We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei....
Battye, R. A.; Manton, N. S.; Sutcliffe, P. M.
We review recent work on the modelling of atomic nuclei as quantised Skyrmions, using Skyrme's original model with pion fields only. Skyrmions are topological soliton solutions, whose conserved topological charge B is identified with the baryon number of a nucleus. Apart from an energy and length scale, the Skyrme model has just one dimensionless parameter m, proportional to the pion mass. It has been found that a good fit to experimental nuclear data requires m to be of order 1. The Skyrmions for B up to 7 have been known for some time, and are qualitatively insensitive to whether m is zero or of order 1. However, for baryon numbers B = 8 and above, the Skyrmions have quite a compact structure for m of order 1, rather than the hollow polyhedral structure found when m = 0. One finds for baryon numbers which are multiples of four, that the Skyrmions are composed of B = 4 sub-units, as in the α-particle model of nuclei. The rational map ansatz gives a useful approximation to the Skyrmion solutions for all baryon numbers when m = 0. For m of order 1, it gives a good approximation for baryon numbers up to 7, and generalisations of this ansatz are helpful for higher baryon numbers. We briefly review the work from the 1980s and 90s on the semiclassical rigidbody quantisation of Skyrmions for B = 1, 2, 3 and 4. We then discuss more recent work extending this method to B = 6, 7, 8, 10 and 12. We determine the quantum states of the Skyrmions, finding their spins, isospins and parities, and compare with the experimental data on the ground and excited states of nuclei up to mass number 12.
Beckmann, Volker
2012-01-01
This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d
Blandford, RD; Woltjer, L
1990-01-01
Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory
Energy Technology Data Exchange (ETDEWEB)
Ney, E.P.
1982-01-22
Photography of the nucleus of comet Halley is the goal of several planned space missions. The nucleus of a comet is surrounded by a cloud of dust particles. If this cloud is optically thick, it will prevent observation of the nuclear surface. Broadband photometry of nine comets has been analyzed to determine the visibility of their nuclei. Only in the case of comet West near perihelion was the dust dense enough to interfere with imaging. Comparison of the visual brightness of the well-observed comets with that of Halley in 1910 leads to the conclusion that the nucleus of Halley can be imaged without significant obscuration by the dust.
Silicon Burning: Formation of the Iron Peak Nuclei
Hix, Wm. Raphael; Thielemann, Friederich-Karl
1993-12-01
As the most tightly bound nuclei, the 'Iron Peak' nuclei are the culmination of nuclear energy generation in astrophysical environments. Our re-examination of silicon burning, the mechanism by which the nuclei of the iron peak are produced, has revealed a number of potential improvements in the treatment of this ultimate stage of astrophysical nuclear energy generation. Previous work on Nuclear Statistical Equilibrium (NSE), the end state of silicon burning, has neglected the effect that Coulomb screening of capture reactions and their reverse reactions has on the equilibrium distribution, or assumed that these effects cancel, leaving an abundance distribution identical to that predicted in the absence of such screening. We find that the proper treatment of the screening of nuclear reactions in Nuclear Statistical Equilibrium (NSE), can produce significant differences in the relative abundances of the nuclei produced. This is particularly true at high density. Further, results gleaned from simulation work done with a large nuclear network (300 nuclei and 3000 reactions) and from independent calculations of NSE abundance distributions, offer new insights into the quasi-equilibrium mechanism and the approach to NSE. We will discuss methods which use this quasi-equilibrium mechanism to preserve the most important features of the large nuclear network calculations at a significant improvement in computational speed. Such improved methods are ideally suited for hydro- dynamic calculations which involve the production of iron peak nuclei, where the larger network calculation proves unmanageable.
Charge-changing interactions probing point-proton radii of nuclei
Directory of Open Access Journals (Sweden)
Yamaki S.
2014-03-01
Full Text Available The question of whether charge-changing interactions can be used to probe point-proton radii of nuclei remains unanswered. Charge-changing cross sections, σcc, were systematically investigated using stable and unstable nuclear beams of intermediateenergy. The ratios of the experimental σcc values to the calculated ones obtained from a phenomenological Glauber-type model analysis are found to be nearly constant in a broad range of Z/N for light neutron-rich nuclei. This enables the determination of density distributions, i.e., the radii of protons tightly bound in nuclei. To test the applicability of the present method to all nuclei in the nuclear chart, extensive measurements were performed for medium-mass nuclei ranging from Z = 18 to 32. The present study suggests the potential capability of a new experimental approach for exploring exotic nuclei.
Elusive Active Galactic Nuclei
Maiolino, R; Gilli, R; Nagar, N M; Bianchi, S; Böker, T; Colbert, E; Krabbe, A; Marconi, A; Matt, G; Salvati, M
2003-01-01
A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically "elusive". X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive AGN in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 10^24 cm^-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN, the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical Narrow Line Region. Elusive AGN may contribute significantly to the 30 keV bump of the X-ray background.
Electron scattering for exotic nuclei
Indian Academy of Sciences (India)
Toshimi Suda
2014-11-01
A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world’s first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density distributions of short-lived exotic nuclei by elastic electron scattering. The first collision between electrons and exotic nuclei will be observed in the year 2014.
Cluster radioactivity in very heavy nuclei: a new perspective
Routray, T R; Basu, D N
2008-01-01
Exotic cluster decay of very heavy nuclei is studied using the microscopic nuclear potentials obtained by folding density dependent M3Y effective interaction with the densities of the cluster and the daughter nuclei. The microscopic nuclear potential, Coulomb interaction and the centrifugal barrier arising out of spin parity conservation are used to obtain the potential between the cluster and the daughter. Half life values are calculated in the WKB framework and the preformation factors are extracted. The latter values are seen to have only a very weak dependence on the mass of the cluster.
Effective field theory for halo nuclei
Energy Technology Data Exchange (ETDEWEB)
Hagen, Philipp Robert
2014-02-19
We investigate properties of two- and three-body halo systems using effective field theory. If the two-particle scattering length a in such a system is large compared to the typical range of the interaction R, low-energy observables in the strong and the electromagnetic sector can be calculated in halo EFT in a controlled expansion in R/ vertical stroke a vertical stroke. Here we focus on universal properties and stay at leading order in the expansion. Motivated by the existence of the P-wave halo nucleus {sup 6}He, we first set up an EFT framework for a general three-body system with resonant two-particle P-wave interactions. Based on a Lagrangian description, we identify the area in the effective range parameter space where the two-particle sector of our model is renormalizable. However, we argue that for such parameters, there are two two-body bound states: a physical one and an additional deeper-bound and non-normalizable state that limits the range of applicability of our theory. With regard to the three-body sector, we then classify all angular-momentum and parity channels that display asymptotic discrete scale invariance and thus require renormalization via a cut-off dependent three-body force. In the unitary limit an Efimov effect occurs. However, this effect is purely mathematical, since, due to causality bounds, the unitary limit for P-wave interactions can not be realized in nature. Away from the unitary limit, the three-body binding energy spectrum displays an approximate Efimov effect but lies below the unphysical, deep two-body bound state and is thus unphysical. Finally, we discuss possible modifications in our halo EFT approach with P-wave interactions that might provide a suitable way to describe physical three-body bound states. We then set up a halo EFT formalism for two-neutron halo nuclei with resonant two-particle S-wave interactions. Introducing external currents via minimal coupling, we calculate observables and universal correlations for
Constant factor approximation to the bounded genus instances of ATSP
Gharan, Shayan Oveis
2009-01-01
We give a constant factor approximation algorithm for the asymmetric traveling salesman problem when the underlying undirected graph of the Held-Karp linear programming relaxation of the problem has orientable bounded genus. Our result also implies the weak version Goddyn's conjecture on the existence of thin trees on graphs with orientable bounded genus.
On Weakly Semicommutative Rings*
Institute of Scientific and Technical Information of China (English)
CHEN WEI-XING; CUI SHU-YING
2011-01-01
A ring R is said to be weakly scmicommutative if for any a, b ∈ R,ab = 0 implies aRb C_ Nil(R), where Nil(R) is the set of all nilpotcnt elements in R.In this note, we clarify the relationship between weakly semicommutative rings and NI-rings by proving that the notion of a weakly semicommutative ring is a proper generalization of NI-rings. We say that a ring R is weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical, and prove that if R is a weakly 2-primal ring which satisfies oα-condition for an endomorphism α of R (that is, ab = 0 （←→） aα(b) ＝ 0 where a, b ∈ R) then the skew polynomial ring R[π; αα]is a weakly 2-primal ring, and that if R is a ring and I is an ideal of R such that I and R/I are both weakly semicommutative then R is weakly semicommutative.Those extend the main results of Liang et al. 2007 (Taiwanese J. Math., 11(5)(2007),1359-1368) considerably. Moreover, several new results about weakly semicommutative rings and NI-rings are included.
Mareš, J.; Cieplý, A.; Friedman, E.; Gal, A.; Gazda, D.
2015-08-01
We report on our recent calculations of K - and η nuclear quasi-bound states. The underlying and η N scattering amplitudes are constructed within coupled-channel models that capture the physics of the Λ(1405) and N ∗(1535) resonances, respectively. The role played by the strong energy dependence of the scattering amplitudes near threshold and the importance of self-consistent treatment of the subthreshold energy shift are discussed.
MULTI-bar K (hyper)nuclei and Kaon Condensation
Gazda, D.; Mareš, J.; Friedman, E.; Gal, A.
2010-10-01
We report on recent relativistic mean-field calculations of multi-bar K nuclei1,2 which were performed fully and self-consistently across the periodic table. The bar K separation energy B{bar K} as well as the nuclear and bar K-meson densities were found to saturate with the number of antikaons in the nuclear medium. Saturation appears robust against a wide range of variations, including the nuclear model used and the type of boson fields mediating the strong interactions. In addition, we have explored properties of kaonic hypernuclei - strange systems made of nucleons, hyperons and K- mesons. We observed saturation also in these objects. Since the bar K separation energy B{bar K} does not exceed 200 MeV, multi-bar K nuclei lie energetically well above multi-hyperonic nuclei and it is unlikely that kaon condensation could occur in strong-interaction self-bound hadronic matter.
We propose an experiment with MINIBALL coupled to T-REX to investigate n-rich $^{95,96}$Rb nuclei by the incomplete fusion reaction of $^{94}$Kr on $^{7}$Li. The nuclei of interest will be populated by transfer of a triton into $^{94}$Kr, forming the excited $^{97}$Rb nucleus, followed by the emission of an alpha particle, which will be detected in the Si telescopes of T-REX. The $^{97}$Rb product will evaporate 1 or 2 (with the highest probability) neutrons leading to $^{96}$Rb or $^{95}$Rb, respectively. The aim of the experiment is twofold: \\\\ i) to perform a $\\gamma$- spectroscopy study of $^{95,96}$Rb nuclei with N=58,59, the structure of which is of particular interest in investigating the transition towards stable deformation at N=60, \\\\ ii) to acquire experience in using incomplete fusion reactions with the weakly bound $^{7}$Li target, in order to perform, at a later stage with HIE-ISOLDE, similar measurements induced by n-rich radioactive beams of Sn and Hg, for which at least 5 MeV/nucleon are need...
Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics: - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...
Ayala, A P; Levin, E M
1996-01-01
In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus - nucleus cascade.
Xu, Renxin
2011-01-01
What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the {\\em gigantic nucleus} speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.
Nucleomorphs: enslaved algal nuclei.
Cavalier-Smith, T
2002-12-01
Nucleomorphs of cryptomonad and chlorarachnean algae are the relict, miniaturised nuclei of formerly independent red and green algae enslaved by separate eukaryote hosts over 500 million years ago. The complete 551 kb genome sequence of a cryptomonad nucleomorph confirms that cryptomonads are eukaryote-eukaryote chimeras and greatly illuminates the symbiogenetic event that created the kingdom Chromista and their alveolate protozoan sisters. Nucleomorph membranes may, like plasma membranes, be more enduring after secondary symbiogenesis than are their genomes. Partial sequences of chlorarachnean nucleomorphs indicate that genomic streamlining is limited by the mutational difficulty of removing useless introns. Nucleomorph miniaturisation emphasises that selection can dramatically reduce eukaryote genome size and eliminate most non-functional nuclear non-coding DNA. Given the differential scaling of nuclear and nucleomorph genomes with cell size, it follows that most non-coding nuclear DNA must have a bulk-sequence-independent function related to cell volume.
Physical Uncertainty Bounds (PUB)
Energy Technology Data Exchange (ETDEWEB)
Vaughan, Diane Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Dean L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-19
This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.
Weak Quasi-elastic Production of Hyperons
Singh, S K
2006-01-01
The quasielastic weak production of $\\Lambda$ and $\\Sigma$ hyperons from nucleons and nuclei induced by antineutrinos is studied in the energy region of some ongoing neutrino oscillation experiments in the intermediate energy region. The hyperon nucleon transition form factors determined from neutrino nucleon scattering and an analysis of high precision data on semileptonic decays of neutron and hyperons using SU(3) symmetry have been used. The nuclear effects due to Fermi motion and final state interaction effects due to hyperon nucleon scattering have also been studied. The numerical results for differential and total cross sections have been presented.
Proton-neutron deformations and F -spin symmetry in nuclei
Energy Technology Data Exchange (ETDEWEB)
Leviatan, A.; Ginocchio, J.N. (Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (USA)); Kirson, M.W. (Nuclear Physics Department, Weizmann Institute of Science, 76100 Rehovot (Israel))
1990-12-03
The purity of intrinsic states of nuclei with respect to a proton-neutron boson symmetry ({ital F} spin) is shown to be largely determined by the difference between proton and neutron deformations and not by whether the Hamiltonian is an {ital F}-spin scalar. Upper and lower bounds on {ital F}-spin mixing in the ground-state band of {sup 165}Ho are estimated using recent pion single-charge-exchange data.
Precision spectroscopy of pionic atoms and chiral symmetry in nuclei
Directory of Open Access Journals (Sweden)
Itahashi Kenta
2016-01-01
Full Text Available We conduct an experimental project to make spectroscopy of deeply bound pionic atoms systematically over wide range of nuclei. We aim at studying the strong interaction in the low energy region, which has close connection to spontaneous chiral symmetry breaking and its partial restoration in nuclear matter. First experimental results show improved spectral resolution and much better statistical sensitivity than previous experiments. Present status of the experiment is reported.
Idiopathic isolated orbicularis weakness
MacVie, O P; Majid, M A; Husssin, H M; Ung, T; Manners, R M; Ormerod, I; Pawade, J; Harrad, R A
2012-01-01
Purpose Orbicularis weakness is commonly associated with seventh nerve palsy or neuromuscular and myopathic conditions such as myotonic dystrophy and myasethenia gravis. We report four cases of idiopathic isolated orbicularis weakness. Methods All four cases were female and the presenting symptoms of ocular irritation and epiphora had been present for over 7 years in three patients. All patients had lagophthalmos and three had ectropion. Three patients underwent full investigations which excluded known causes of orbicularis weakness. Two patients underwent oribularis oculi muscle biopsy and histological confirmation of orbicularis atrophy. Results All patients underwent surgery to specifically address the orbicularis weakness with satisfactory outcomes and alleviation of symptoms in all cases. Isolated orbicularis weakness may be a relatively common entity that is frequently overlooked. Conclusion Early recognition of this condition may lead to better management and prevent patients undergoing unnecessary surgical procedures. PMID:22322997
Energy Technology Data Exchange (ETDEWEB)
Henley, E.M.
1981-09-01
Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces. (GHT)
Holt, Roy J.
2016-03-01
Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.
Directory of Open Access Journals (Sweden)
Holt Roy J.
2016-01-01
Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.
Learning within bounds and dream sleep
Geszti, T.; Pazmandi, F.
1987-12-01
In a bounded-synapses version of Hopfield's model (1984) for neural networks the quasienergy of a given memory, which is approximately equal to the depth of the corresponding energy well is calculated exactly by treating the change of a synaptic strength on learning as a random walk within bounds. Attractors corresponding to stored memories are found to be considerably flattened before serious retrieval errors arise. This allows dream sleep to be interpreted as random recall and relearning of fresh strong memories, in order to stack them on top of weak incidental memory imprints of a day.
Momentum Distribution of a Fragment and Nucleon Removal Cross Section in the Reaction of Halo Nuclei
Institute of Scientific and Technical Information of China (English)
ZHAOYao-Lin; MAZhong-Yu; CHENBao-Qiu
2003-01-01
Recently the research on the halo structure of drip-line nuclei has shown some interesting properties of the existence of one or more halo nucleons. In the framework of few-body Glauber model, the momentum distribution of a fragment and nucleon removal cross section in the reaction of halo nuclei is presented and extended to nuclei having more than one halo nucleons. The reaction mechanism is treated with and without taking account of the final-state interaction. The wave function of removal halo nucleons in the continuum state is modified by imposing an orthogonal condition to the bound state. An analytical expression of the longitudinal momentum distribution of the fragment is derived when the bound state wave function of halo nucleons is taken as a Gaussian-type function. This is useful in the further investigation on the structure of halo nuclei.
Eta-mesic nuclei: past, present, future
Haider, Q
2015-01-01
Eta-mesic nucleus or the quasibound nuclear state of an eta ($\\eta$) meson in a nucleus is caused by strong-interaction force alone. This new type of nuclear species, which extends the landscape of nuclear physics, has been extensively studied since its prediction in 1986. In this paper, we review and analyze in great detail the models of the fundamental $\\eta$--nucleon interaction leading to the formation of an $\\eta$--mesic nucleus, the methods used in calculating the properties of a bound $\\eta$, and the approaches employed in the interpretation of the pertinent experimental data. In view of the successful observation of the $\\eta$--mesic nucleus $^{25}$Mg$_{\\eta}$ and other promising experimental results, future direction in searching for more $\\eta$--mesic nuclei is suggested.
The cochlear nuclei of snakes.
Miller, M R
1980-08-15
The cochlear nuclei of three burrowing snakes (Xenopeltis unicolor, Cylindrophis rufus, and Eryx johni) and three non-burrowing snakes (Epicrates cenchris, Natrix sipedon, and Pituophis catenifer) were studied. The posterior branch of the statoacoustic nerve and its posterior ganglion were destroyed and the degenerated nerve fibers and terminals traced to primary cochlear nuclei in 13 specimens of Pituophis catenifer. All these snake species possess three primary and one secondary cochlear nuclei. The primary cochlear nuclei consist of a small nucleus angularis located at the cerebello-medullary junction and a fairly large nucleus magnocellularis forming a dorsal cap over the cephalic end of the alar eminence. Nucleus magnocellularis may be subdivided into a medially placed group of rounder cells, nucleus magnocellularis medialis, and a laterally placed group of more ovate and paler-staining cells, nucleus magnocellularis lateralis. A small but well-defined secondary nucleus which showed no degenerated nerve terminals after nerve root section, nucleus laminaris, underlies the cephalic part of both nucleus magnocellularis medialis and nucleus magnocellularis lateralis. Larger and better-developed cochlear nuclei were found in burrowing species than in non-burrowing species of snakes. Of the three burrowing species studied, Xenopeltis showed the greatest development of cochlear nuclei; Eryx cochlear nuclei were not quite as large but were better differentiated than in Xenopeltis; and Cylindrophis cochlear nuclei were fairly large but not as well developed nor as well differentiated as in either Xenopeltis or Eryx. The cochlear nuclei of the three non-burrowing snakes, Epicrates, Natrix, and Pituophis, were not as large nor as well developed as those of the burrowing snakes. There is some, but not complete, correlation between cochlear development and papilla basilaris length and number of hair cells. Thus, Xenopeltis and Eryx, with well-developed cochlear nuclei
Weak decays. [Lectures, phenomenology
Energy Technology Data Exchange (ETDEWEB)
Wojcicki, S.
1978-11-01
Lectures are given on weak decays from a phenomenological point of view, emphasizing new results and ideas and the relation of recent results to the new standard theoretical model. The general framework within which the weak decay is viewed and relevant fundamental questions, weak decays of noncharmed hadrons, decays of muons and the tau, and the decays of charmed particles are covered. Limitation is made to the discussion of those topics that either have received recent experimental attention or are relevant to the new physics. (JFP) 178 references
Weakly asymptotically hyperbolic manifolds
Allen, Paul T; Lee, John M; Allen, Iva Stavrov
2015-01-01
We introduce a class of "weakly asymptotically hyperbolic" geometries whose sectional curvatures tend to $-1$ and are $C^0$, but are not necessarily $C^1$, conformally compact. We subsequently investigate the rate at which curvature invariants decay at infinity, identifying a conformally invariant tensor which serves as an obstruction to "higher order decay" of the Riemann curvature operator. Finally, we establish Fredholm results for geometric elliptic operators, extending the work of Rafe Mazzeo and John M. Lee to this setting. As an application, we show that any weakly asymptotically hyperbolic metric is conformally related to a weakly asymptotically hyperbolic metric of constant negative curvature.
de Rham, Claudia; Tolley, Andrew J; Zhou, Shuang-Yong
2016-01-01
Recently, aLIGO has announced the first direct detections of gravitational waves, a direct manifestation of the propagating degrees of freedom of gravity. The detected signals GW150914 and GW151226 have been used to examine the basic properties of these gravitational degrees of freedom, particularly setting an upper bound on their mass. It is timely to review what the mass of these gravitational degrees of freedom means from the theoretical point of view, particularly taking into account the recent developments in constructing consistent massive gravity theories. Apart from the GW150914 mass bound, a few other observational bounds have been established from the effects of the Yukawa potential, modified dispersion relation and fifth force that are all induced when the fundamental gravitational degrees of freedom are massive. We review these different mass bounds and examine how they stand in the wake of recent theoretical developments and how they compare to the bound from GW150914.
Bounding species distribution models
Directory of Open Access Journals (Sweden)
Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE
2011-10-01
Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].
Bounding Species Distribution Models
Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.
2011-01-01
Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].
Energy Technology Data Exchange (ETDEWEB)
Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)
1996-10-01
In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.
Hosoya, Akio
2010-01-01
We develop a formal theory of the weak values with emphasis on the consistency conditions and a probabilistic interpretation in the counter-factual processes. We present the condition for the choice of the post-selected state to give a negative weak value of a given projection operator and strange values of an observable in general. The general framework is applied to Hardy's paradox and the spin $1/2$ system to explicitly address the issues of counter-factuality and strange weak values. The counter-factual arguments which characterize the paradox specifies the pre-selected state and a complete set of the post-selected states clarifies how the strange weak values emerge.
Monopole transitions in hot nuclei
Energy Technology Data Exchange (ETDEWEB)
Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)
1994-12-31
Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.
Spectroscopy of heavy fissionable nuclei
Indian Academy of Sciences (India)
S K Tandel
2015-09-01
Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.
Neutrino interactions with nuclei
Leitner, T; Mosel, U; Alvarez-Ruso, L
2008-01-01
Current long baseline experiments aim at measuring neutrino oscillation parameters with a high precision. A critical quantity is the neutrino energy which can not be measured directly but has to be reconstructed from the observed hadrons. A good knowledge of neutrino-nucleus interactions is thus necessary to minimize the systematic uncertainties in neutrino fluxes, backgrounds and detector responses. In particular final-state interactions inside the target nucleus modify considerably the particle yields through rescattering, charge-exchange and absorption. Nuclear effects can be described with our coupled channel GiBUU transport model where the neutrino first interacts with a bound nucleon producing secondary particles which are then transported out of the nucleus. In this contribution, we give some examples for the application of our model focusing in particular on the MiniBooNE and K2K experiments.
Dynamical effects in fusion with exotic nuclei
Vo-Phuoc, K; Simpson, E C
2016-01-01
[Background] Reactions with stable beams have demonstrated a strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. [Purpose] To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. [Method] Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in $^{40-54}$Ca+$^{116}$Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. [Results] The development of a neutron skin in exotic calcium iso...
Parity nonconservation in /sup 19/F nuclei
Energy Technology Data Exchange (ETDEWEB)
Elsener, K.; Gruebler, W.; Koenig, V.; Schmelzbach, P.A.; Ulbricht, J.; Vuaridel, B.; Singy, D.; Forstner, C.; Zhang, W.Z.
1987-01-12
The parity nonconserving asymmetry A/sub ..gamma../ in the decay of polarized /sup 19/F/sup */(110 keV) nuclei has been measured. A value of A/sub ..gamma../=-(6.83 +- 2.11) x 10/sup -5/ (total error) was found. Systematic errors are extensively investigated and found to be small. The absolute normalization is given by the /sup 19/F/sup */ polarization, which is found to be rho/sub F/=-0.52 +- 0.08 in a separate experiment, using a calibrated Compton polarimeter. The new result A/sub ..gamma../(/sup 19/F) is compared to earlier experiments and recent theoretical calculations. From an analysis including /sup 18/F and /sup 21/Ne results, constraints on the weak meson-nucleon coupling constants f/sub ..pi../ and h/sub rho//sup 0/ are deduced. Agreement with calculations based on the standard electroweak theory and QCD is found.
Multicolor Bound Soliton Molecule
Luo, Rui; Lin, Qiang
2015-01-01
We show a new class of bound soliton molecule that exists in a parametrically driven nonlinear optical cavity with appropriate dispersion characteristics. The composed solitons exhibit distinctive colors but coincide in time and share a common phase, bound together via strong inter-soliton four-wave mixing and Cherenkov radiation. The multicolor bound soliton molecule shows intriguing spectral locking characteristics and remarkable capability of spectrum management to tailor soliton frequencies, which may open up a great avenue towards versatile generation and manipulation of multi-octave spanning phase-locked Kerr frequency combs, with great potential for applications in frequency metrology, optical frequency synthesis, and spectroscopy.
Mid-infrared spectra of comet nuclei
Kelley, Michael S P; Gehrz, Robert D; Reach, William T; Harker, David E
2016-01-01
Jovian Trojan D-type asteroids have mid-infrared emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 {\\mu}m thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis suggests the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74 to 0.83, are systematically lower than the Jupiter-family comet population mean of 1.03+/-0.11, derived from 16- and 22-{\\mu}m photometry. When the spectra are normalized by the NEATM model, a weak 10-{\\mu}m silicate plateau is evident, w...
Directory of Open Access Journals (Sweden)
Kumar Ravinder
2014-03-01
Full Text Available We have studied the single proton breakup from weakly bound exotic nuclei due to several reaction mechanisms separately and their total and the interference effects, in order to clarify quantitatively which mechanism would dominate the measured observables. We have considered: (i the recoil effect of the core-target Coulomb potential which we distinguish from the direct proton-target Coulomb potential, and (ii nuclear breakup, which consists of stripping and diffraction. Thus, we have calculated the absolute values of breakup cross sections and parallel momentum distributions (LMD for 8B and 17F projectiles on a light and a heavy target in a range of intermediate incident energies (40A–80A MeV for each reaction mechanism. Furthermore the interference among the two Coulomb effects and nuclear diffraction has been studied in detail. The calculation of the direct and recoil Coulomb effects separately and of their interference is the new and most relevant aspect of this work.
Kumar, Ravinder; Bonaccorso, Angela
2014-03-01
We have studied the single proton breakup from weakly bound exotic nuclei due to several reaction mechanisms separately and their total and the interference effects, in order to clarify quantitatively which mechanism would dominate the measured observables. We have considered: (i) the recoil effect of the core-target Coulomb potential which we distinguish from the direct proton-target Coulomb potential, and (ii) nuclear breakup, which consists of stripping and diffraction. Thus, we have calculated the absolute values of breakup cross sections and parallel momentum distributions (LMD) for 8B and 17F projectiles on a light and a heavy target in a range of intermediate incident energies (40A-80A MeV) for each reaction mechanism. Furthermore the interference among the two Coulomb effects and nuclear diffraction has been studied in detail. The calculation of the direct and recoil Coulomb effects separately and of their interference is the new and most relevant aspect of this work.
Pseudospin Dynamical Symetry in Nuclei
Ginocchio, Joseph N
2014-01-01
Pseudospin symmetry has been useful in understanding atomic nuclei. We review the arguments that this symmetry is a relativistic symmetry. The condition for this symmetry is that the sum of the vector and scalar potentials in the Dirac Hamiltonian is a constant. We give the generators of pseudospin symmetry. We review some of the predictions that follow from this insight into the relativistic origins of pseudospin symmetry. Since in nuclei the sum of the scalar and vector potentials is not zero but is small, we discuss preliminary investigations into the conditions on the potentials to produce partial dynamic pseudospin symmetry. Finally we show that approximate pseudospin symmetry in nuclei predicts approximate spin symmetry in anti-nucleon scattering from nuclei.
Joyal, André
2009-01-01
We define weak units in a semi-monoidal 2-category $\\CC$ as cancellable pseudo-idempotents: they are pairs $(I,\\alpha)$ where $I$ is an object such that tensoring with $I$ from either side constitutes a biequivalence of $\\CC$, and $\\alpha: I \\tensor I \\to I$ is an equivalence in $\\CC$. We show that this notion of weak unit has coherence built in: Theorem A: $\\alpha$ has a canonical associator 2-cell, which automatically satisfies the pentagon equation. Theorem B: every morphism of weak units is automatically compatible with those associators. Theorem C: the 2-category of weak units is contractible if non-empty. Finally we show (Theorem E) that the notion of weak unit is equivalent to the notion obtained from the definition of tricategory: $\\alpha$ alone induces the whole family of left and right maps (indexed by the objects), as well as the whole family of Kelly 2-cells (one for each pair of objects), satisfying the relevant coherence axioms.
Choban, E A
2003-01-01
The cross-sections for the reactions of muonium (anti-muonium) production in the high-energy electron (positron) scattering by nuclei e sup - (e sup +)+Z->Z + M sup 0 (anti M sup 0)+mu sup - (mu sup +) are calculated in dependence on energy and polarization of the initial electron (positron) and polarization of the final mu sup - (mu sup +)-meson. Since this is a coherent phenomenon the cross-sections are proportional to Z sup 2. For Z propor to 100, due to the factor Z sup 2 , the cross-sections are large enough to be measured at the energies available for the HERA Collider at DESY. The results are discussed in connection with a test of CPT invariance. (orig.)
Influence of pairing correlations on the radius of neutron-rich nuclei
Zhang, Ying; Chen, Ying; Meng, Jie; Ring, Peter
2017-01-01
The influence of pairing correlations on the neutron root mean square (rms) radius of nuclei is investigated in the framework of self-consistent Skyrme Hartree-Fock-Bogoliubov calculations. The continuum is treated appropriately by the Green's function techniques. As an example the nucleus 124Zr is treated for a varying strength of pairing correlations. We find that, as the pairing strength increases, the neutron rms radius first shrinks, reaches a minimum, and beyond this point it expands again. The shrinkage is due to the the so-called pairing antihalo effect, i.e., due to the decrease of the asymptotic density distribution with increasing pairing. However, in some cases, increasing pairing correlations can also lead to an expansion of the nucleus due to a growing occupation of so-called halo orbits, i.e., weakly bound states and resonances in the continuum with low-ℓ values. In this case, the neutron radii are extended just by the influence of pairing correlations, since these halo orbits cannot be occupied without pairing. The term "antihalo effect" is not justified in such cases. For a full understanding of this complicated interplay, self-consistent calculations are necessary.
Weak gravity conjecture and effective field theory
Saraswat, Prashant
2017-01-01
The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.
The weak gravity conjecture and scalar fields
Palti, Eran
2017-08-01
We propose a generalisation of the Weak Gravity Conjecture in the presence of scalar fields. The proposal is guided by properties of extremal black holes in N=2 supergravity, but can be understood more generally in terms of forbidding towers of stable gravitationally bound states. It amounts to the statement that there must exist a particle on which the gauge force acts more strongly than gravity and the scalar forces combined. We also propose that the scalar force itself should act on this particle stronger than gravity. This implies that generically the mass of this particle decreases exponentially as a function of the scalar field expectation value for super-Planckian variations, which is behaviour predicted by the Refined Swampland Conjecture. In the context of N=2 supergravity the Weak Gravity Conjecture bound can be tied to bounds on scalar field distances in field space. Guided by this, we present a general proof that for any linear combination of moduli in any Calabi-Yau compactification of string theory the proper field distance grows at best logarithmically with the moduli values for super-Planckian distances.
Charge, neutron, and weak size of the atomic nucleus
Hagen, G; Forssén, C; Jansen, G R; Nazarewicz, W; Papenbrock, T; Wendt, K A; Bacca, S; Barnea, N; Carlsson, B; Drischler, C; Hebeler, K; Hjorth-Jensen, M; Miorelli, M; Orlandini, G; Schwenk, A; Simonis, J
2015-01-01
What is the size of the atomic nucleus? This deceivably simple question is difficult to answer. While the electric charge distributions in atomic nuclei were measured accurately already half a century ago, our knowledge of the distribution of neutrons is still deficient. In addition to constraining the size of atomic nuclei, the neutron distribution also impacts the number of nuclei that can exist and the size of neutron stars. We present an ab initio calculation of the neutron distribution of the neutron-rich nucleus $^{48}$Ca. We show that the neutron skin (difference between radii of neutron and proton distributions) is significantly smaller than previously thought. We also make predictions for the electric dipole polarizability and the weak form factor; both quantities are currently targeted by precision measurements. Based on ab initio results for $^{48}$Ca, we provide a constraint on the size of a neutron star.
WEAK CONVERGENCE OF SOME SERIES
Institute of Scientific and Technical Information of China (English)
2000-01-01
This paper continues the study of [1] on weak functions.The weak convergence theory is investigated in complex analysis,Fourier transform and Mellin transform.A Mobius inverse formula of weak functions is obtained.
DEFF Research Database (Denmark)
Kohlenbach, Ulrich Wilhelm
2002-01-01
We show that the so-called weak Markov's principle (WMP) which states that every pseudo-positive real number is positive is underivable in E-HA + AC. Since allows one to formalize (atl eastl arge parts of) Bishop's constructive mathematics, this makes it unlikely that WMP can be proved within the...
From heavy nuclei to super-heavy nuclei
Theisen, C
2003-01-01
The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei.
On closed weak supplemented modules
Institute of Scientific and Technical Information of China (English)
ZENG Qing-yi; SHI Mei-hua
2006-01-01
A module M is called closed weak supplemented if for any closed submodule N of M, there is a submodule K of M such that M=K+N and K(c)N＜＜M. Any direct summand of closed weak supplemented module is also closed weak supplemented.Any nonsingular image of closed weak supplemented module is closed weak supplemented. Nonsingular V-rings in which all nonsingular modules are closed weak supplemented are characterized in Section 4.
Hoyer, Paul
2016-01-01
Even a first approximation of bound states requires contributions of all powers in the coupling. This means that the concept of "lowest order bound state" needs to be defined. In these lectures I discuss the "Born" (no loop, lowest order in $\\hbar$) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. As a check of the method, Positronium states of any momentum are determined as eigenstates of the QED Hamiltonian, quantized at equal time. Analogously, states bound by a strong external field $A^\\mu(\\xv)$ are found as eigenstates of the Dirac Hamiltonian. Their Fock states have dynamically created $e^+e^-$ pairs, whose distribution is determined by the Dirac wave function. The linear potential of $D=1+1$ dimensions confines electrons but repels positrons. As a result, the mass spectrum is continuous and the wave functions have features of both bound states and plane waves. The classical solutions of Gauss' law are explored for hadrons in QCD. A non-vanishing bo...
Bounding species distribution models
Institute of Scientific and Technical Information of China (English)
Thomas J. STOHLGREN; Catherine S. JARNEVICH; Wayne E. ESAIAS; Jeffrey T. MORISETTE
2011-01-01
Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern.Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development,yet there is no recommended best practice for “clamping” model extrapolations.We relied on two commonly used modeling approaches:classification and regression tree (CART) and maximum entropy (Maxent) models,and we tested a simple alteration of the model extrapolations,bounding extrapolations to the maximum and minimum values of primary environmental predictors,to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States.Findings suggest that multiple models of bounding,and the most conservative bounding of species distribution models,like those presented here,should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5):642-647,2011].
Information, Utility & Bounded Rationality
Ortega, Pedro A
2011-01-01
Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here we employ an axiomatic framework for bounded rational decision-making based on a thermodynamic interpretation of resource costs as information costs. This leads to a variational "free utility" principle akin to thermodynamical free energy that trades off utility and information costs. We show that bounded optimal control solutions can be derived from this variational principle, which leads in general to stochastic policies. Furthermore, we show that risk-sensitive and robust (minimax) control schemes fall out naturally from this framework if the environment is considered as a bounded rational and perfectly rational opponent, respectively. When resource costs are ignored, the maximum expected utility principle is recovered.
Bounded Computational Capacity Equilibrium
Hernandez, Penelope
2010-01-01
We study repeated games played by players with bounded computational power, where, in contrast to Abreu and Rubisntein (1988), the memory is costly. We prove a folk theorem: the limit set of equilibrium payoffs in mixed strategies, as the cost of memory goes to 0, includes the set of feasible and individually rational payoffs. This result stands in sharp contrast to Abreu and Rubisntein (1988), who proved that when memory is free, the set of equilibrium payoffs in repeated games played by players with bounded computational power is a strict subset of the set of feasible and individually rational payoffs. Our result emphasizes the role of memory cost and of mixing when players have bounded computational power.
Bachoc, Christine; Cohen, Gerard; Sole, Patrick; Tchamkerten, Aslan
2010-01-01
The maximum size of a binary code is studied as a function of its length N, minimum distance D, and minimum codeword weight W. This function B(N,D,W) is first characterized in terms of its exponential growth rate in the limit as N tends to infinity for fixed d=D/N and w=W/N. The exponential growth rate of B(N,D,W) is shown to be equal to the exponential growth rate of A(N,D) for w <= 1/2, and equal to the exponential growth rate of A(N,D,W) for 1/2< w <= 1. Second, analytic and numerical upper bounds on B(N,D,W) are derived using the semidefinite programming (SDP) method. These bounds yield a non-asymptotic improvement of the second Johnson bound and are tight for certain values of the parameters.
Carlson, C E; Lebed, R F; Carlson, Carl E.; Carone, Christopher D.; Lebed, Richard F.
2001-01-01
Jurco, Moller, Schraml, Schupp, and Wess have shown how to construct noncommutative SU(N) gauge theories from a consistency relation. Within this framework, we present the Feynman rules for noncommutative QCD and compute explicitly the most dangerous Lorentz-violating operator generated through radiative corrections. We find that interesting effects appear at the one-loop level, in contrast to conventional noncommutative U(N) gauge theories, leading to a stringent bound. Our results are consistent with others appearing recently in the literature that suggest collider limits are not competitive with low-energy tests of Lorentz violation for bounding the scale of spacetime noncommutativity.
Photodissociation of neutron deficient nuclei
Energy Technology Data Exchange (ETDEWEB)
Sonnabend, K.; Babilon, M.; Hasper, J.; Mueller, S.; Zarza, M.; Zilges, A. [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)
2006-03-15
The knowledge of the cross sections for photodissociation reactions like e.g. ({gamma}, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained. (orig.)
Studies of exotic light nuclei
Energy Technology Data Exchange (ETDEWEB)
Cerny, J.
1976-05-01
For neutron-deficient nuclei, extension of the T/sub z/ = --3/2 series of strong beta-delayed proton precursors to /sup 61/Ge is discussed. For neutron-excess nuclei, heavy-ion induced, multi-nucleon transfer reaction studies of masses and energy levels of 2sld shell nuclei with T/sub z/ greater than or equal to 5/2 are covered. In addition, preliminary attempts to employ the (/sup 7/Li,/sup 2/He) reaction for the latter studies are shown; a new detection system capable of observing unbound final states as reaction products is demonstrated via investigations of the (..cap alpha..,/sup 2/He) reaction.
A relativistic symmetry in nuclei
Energy Technology Data Exchange (ETDEWEB)
Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)
2007-11-15
We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.
Study of -nucleus interaction through the formation of -nucleus bound state
Indian Academy of Sciences (India)
V Jha; B J Roy; A Chatterjee; H Machner
2006-05-01
The question of possible existence of -mesic nuclei is quite intriguing. Answer to this question will deeply enrich our understanding of -nucleus interaction which is not so well-understood. We review the experimental efforts for the search of -mesic nuclei and describe the physics motivation behind it. We present the description of an experiment for the search of -nucleus bound state using the GeV proton beam, currently being performed at COSY.
Energy Technology Data Exchange (ETDEWEB)
Suzuki, M.
1988-04-01
Dynamical mechanism of composite W and Z is studied in a 1/N field theory model with four-fermion interactions in which global weak SU(2) symmetry is broken explicitly by electromagnetic interaction. Issues involved in such a model are discussed in detail. Deviation from gauge coupling due to compositeness and higher order loop corrections are examined to show that this class of models are consistent not only theoretically but also experimentally.
HAMLET interacts with histones and chromatin in tumor cell nuclei.
Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina
2003-10-24
HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.
Spontaneous fission of superheavy nuclei
Indian Academy of Sciences (India)
R A Gherghescu; D N Poenaru
2015-09-01
The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.
Octupole shapes in heavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Ahmad, I.
1994-08-01
Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets.
International Symposium on Exotic Nuclei
Sobolev, Yu G; EXON-2014
2015-01-01
The production and the properties of nuclei in extreme conditions, such as high isospin, temperature, angular momenta, large deformations etc., have become the subject of detailed investigations in all scientific centers. The main topics discussed at the Symposium were: Synthesis and Properties of Exotic Nuclei; Superheavy Elements; Rare Processes, Nuclear Reactions, Fission and Decays; Experimental Facilities and Scientific Projects. This book provides a comprehensive overview of the newest results of the investigations in the main scientific centers such as GSI (Darmstadt, Germany), GANIL (Caen, France), RIKEN (Wako-shi, Japan), MSU (Michigan, USA), and JINR (Dubna, Russia).
Accardi, Alberto
2016-01-01
I review recent progress in the extraction of unpolarized parton distributions in the proton and in nuclei from a unified point of view that highlights how the interplay between high energy particle physics and lower energy nuclear physics can be of mutual benefit to either field. Areas of overlap range from the search for physics beyond the standard model at the LHC, to the study of the non perturbative structure of nucleons and the emergence of nuclei from quark and gluon degrees of freedom, to the interaction of colored probes in a cold nuclear medium.
Upper bounds for domination related parameters in graphs on surfaces
Directory of Open Access Journals (Sweden)
Vladimir Samodivkin
2016-08-01
Full Text Available In this paper we give tight upper bounds on the total domination number, the weakly connected domination number and the connected domination number of a graph in terms of order and Euler characteristic. We also present upper bounds for the restrained bondage number, the total restrained bondage number and the restricted edge connectivity of graphs in terms of the orientable/nonorientable genus and maximum degree.
Appell, Jürgen; Merentes Díaz, Nelson José
2013-01-01
This monographis a self-contained exposition of the definition and properties of functionsof bounded variation and their various generalizations; the analytical properties of nonlinear composition operators in spaces of such functions; applications to Fourier analysis, nonlinear integral equations, and boundary value problems. The book is written for non-specialists. Every chapter closes with a list of exercises and open problems.
DEFF Research Database (Denmark)
Emiris, Ioannis Z.; Mourrain, Bernard; Tsigaridas, Elias
2010-01-01
of variables. One application is to the bitsize of the eigenvalues and eigenvectors of an integer matrix, which also yields a new proof that the problem is polynomial. We also compare against recent lower bounds on the absolute value of the root coordinates by Brownawell and Yap [5], obtained under...
The star formation history of Seyfert 2 nuclei
Fernandes, R C; Melnick, Yu M; Terlevich, E; Terlevich, R J; Kunth, D; Lacerda, R R; Joguet, B
2004-01-01
We present a study of the stellar populations in the central ~ 200 pc of a large and homogeneous sample comprising 79 nearby galaxies, most of which are type 2 Seyferts. The star-formation history of these nuclei is reconstructed by means of state-of-the art population synthesis modeling of their spectra in the 3500--5200 A interval. A QSO-like featureless continuum (FC) is added to the models to account for possible scattered light from a hidden AGN. We find that: (1) The star-formation history of Seyfert 2 nuclei is remarkably heterogeneous: young starbursts, intermediate age, and old stellar populations all appear in significant and widely varying proportions. (2) A significant fraction of the nuclei show a strong FC component, but this FC is not always an indication of a hidden AGN: it can also betray the presence of a young, dusty starburst. (3) We detect weak broad Hbeta emission in several Seyfert 2s after cleaning the observed spectrum by subtracting the synthesis model. These are most likely the weak...
Asymptotic theory of weakly dependent random processes
Rio, Emmanuel
2017-01-01
Presenting tools to aid understanding of asymptotic theory and weakly dependent processes, this book is devoted to inequalities and limit theorems for sequences of random variables that are strongly mixing in the sense of Rosenblatt, or absolutely regular. The first chapter introduces covariance inequalities under strong mixing or absolute regularity. These covariance inequalities are applied in Chapters 2, 3 and 4 to moment inequalities, rates of convergence in the strong law, and central limit theorems. Chapter 5 concerns coupling. In Chapter 6 new deviation inequalities and new moment inequalities for partial sums via the coupling lemmas of Chapter 5 are derived and applied to the bounded law of the iterated logarithm. Chapters 7 and 8 deal with the theory of empirical processes under weak dependence. Lastly, Chapter 9 describes links between ergodicity, return times and rates of mixing in the case of irreducible Markov chains. Each chapter ends with a set of exercises. The book is an updated and extended ...
DEFF Research Database (Denmark)
Haagerup, Uffe; Knudby, Søren
2015-01-01
The weak Haagerup property for locally compact groups and the weak Haagerup constant were recently introduced by the second author [27]. The weak Haagerup property is weaker than both weak amenability introduced by Cowling and the first author [9] and the Haagerup property introduced by Connes [6......] and Choda [5]. In this paper, it is shown that a connected simple Lie group G has the weak Haagerup property if and only if the real rank of G is zero or one. Hence for connected simple Lie groups the weak Haagerup property coincides with weak amenability. Moreover, it turns out that for connected simple...... Lie groups the weak Haagerup constant coincides with the weak amenability constant, although this is not true for locally compact groups in general. It is also shown that the semidirect product R2 × SL(2,R) does not have the weak Haagerup property....
Meson exchange and neutral weak currents
Energy Technology Data Exchange (ETDEWEB)
Beck, D.H. [Univ. of Illinois, Urbana, IL (United States)
1994-04-01
Measurements of parity-violating electron scattering asymmetries to determine weak neutral currents in nuclei will be effected by the presence of meson exchange currents. Present low momentum transfer calculations, based on a flavor independent framework, show these effects to be small. In general, however, as the momentum transfer increases to values typical of deep-inelastic scattering, fragmentation functions show a clear flavor dependence. It is suggested that a good experimental starting point for understanding the flavor dependence of meson production and exchange currents is the Q{sup 2} dependence of parity-violating asymmetry in inclusive single pion electroproduction. A CEBAF facility with doubled energy is necessary to approach momentum transfers where this process begins to scale.
On properties of (weakly) small groups
Milliet, Cédric
2011-01-01
A group is small if it has countably many complete $n$-types over the empty set for each natural number n. More generally, a group $G$ is weakly small if it has countably many complete 1-types over every finite subset of G. We show here that in a weakly small group, subgroups which are definable with parameters lying in a finitely generated algebraic closure satisfy the descending chain conditions for their traces in any finitely generated algebraic closure. An infinite weakly small group has an infinite abelian subgroup, which may not be definable. A small nilpotent group is the central product of a definable divisible group with a definable one of bounded exponent. In a group with simple theory, any set of pairwise commuting elements is contained in a definable finite-by-abelian subgroup. First corollary : a weakly small group with simple theory has an infinite definable finite-by-abelian subgoup. Secondly, in a group with simple theory, a normal solvable group A of derived length n is contained in an A-def...
Dynamical effects in fusion with exotic nuclei
Vo-Phuoc, K.; Simenel, C.; Simpson, E. C.
2016-08-01
Background: Reactions with stable beams have demonstrated strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. Purpose: To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. Method: Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in -54Ca40+116Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. Results: The development of a neutron skin in exotic calcium isotopes strongly lowers the bare potential barrier. However, this static effect is not apparent when dynamical effects are included. On the contrary, a fusion hindrance is observed in TDHF calculations with the most neutron-rich calcium isotopes which cannot be explained by vibrational couplings. Transfer reactions are also important in these systems due to charge equilibration processes. Conclusions: Despite its impact on the bare potential, the neutron skin is not seen as playing an important role in the fusion dynamics. However, the charge transfer with exotic projectiles could lead to an increase of the Coulomb repulsion between the fragments, suppressing fusion. The effects of transfer and dissipative mechanisms on fusion with exotic nuclei deserve further studies.
On Entropy Bounds and Holography
Halyo, Edi
2009-01-01
We show that the holographic entropy bound for gravitational systems and the Bekenstein entropy bound for nongravitational systems are holographically related. Using the AdS/CFT correspondence, we find that the Bekenstein bound on the boundary is obtained from the holographic bound in the bulk by minimizing the boundary energy with respect the AdS radius or the cosmological constant. This relation may also ameliorate some problems associated with the Bekenstein bound.
Partial Dynamical Symmetries in Nuclei
Leviatan, A
2000-01-01
Partial dynamical symmetries (PDS) are shown to be relevant to the interpretation of the $K=0_2$ band and to the occurrence of F-spin multiplets of ground and scissors bands in deformed nuclei. Hamiltonians with bosonic and fermionic PDS are presented.
Multiphonon giant resonances in nuclei
Energy Technology Data Exchange (ETDEWEB)
Aumann, T. [Mainz Univ. (Germany). Inst. fuer Kernchemie; Bortignon, P.F. [Milan Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Milan (Italy); Emling, H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)
1998-07-01
We review the present knowledge of multiphonon giant resonances in nuclei. Theoretical concepts approaching the intrinsic structure and excitation mechanisms of multi-phonon states are discussed. The available experimental results are summarized, including a brief description of applied techniques. This review emphasizes electromagnetic excitations of double dipole resonances. Open questions and possible routes toward a solution are addressed. (orig.)
Nuclear astrophysics of light nuclei
DEFF Research Database (Denmark)
Fynbo, Hans Otto Uldall
2013-01-01
A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...
Fission dynamics of hot nuclei
Indian Academy of Sciences (India)
Santanu Pal; Jhilam Sadhukhan
2014-04-01
Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.
Low energy + scattering on = nuclei
Indian Academy of Sciences (India)
Swapan Das; Arun K Jain
2003-11-01
The data for the total cross-section of + scattering on various nuclei have been analysed in the Glauber multiple scattering theory. Energy-dependent +-nucleus optical potential is generated using the forward +-nucleon scattering amplitude and the nuclear density distribution. Along with this, the calculated total +-nucleus cross-sections using the effective +-nucleon cross-section inside the nucleus are also presented.
Inversion assuming weak scattering
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus
2013-01-01
The study of weak scattering from inhomogeneous media or interface roughness has long been of interest in sonar applications. In an acoustic backscattering model of a stationary field of volume inhomogeneities, a stochastic description of the field is more useful than a deterministic description...... due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...
Erler, Jens
2013-01-01
This is a review of electroweak precision physics with particular emphasis on low-energy precision measurements in the neutral current sector of the electroweak theory and includes future experimental prospects and the theoretical challenges one faces to interpret these observables. Within the minimal Standard Model they serve as determinations of the weak mixing angle which are competitive with and complementary to those obtained near the Z-resonance. In the context of new physics beyond the Standard Model these measurements are crucial to discriminate between models and to reduce the allowed parameter space within a given model. We illustrate this for the minimal supersymmetric Standard Model with or without R-parity.
Measurement of weak radioactivity
Theodorsson , P
1996-01-01
This book is intended for scientists engaged in the measurement of weak alpha, beta, and gamma active samples; in health physics, environmental control, nuclear geophysics, tracer work, radiocarbon dating etc. It describes the underlying principles of radiation measurement and the detectors used. It also covers the sources of background, analyzes their effect on the detector and discusses economic ways to reduce the background. The most important types of low-level counting systems and the measurement of some of the more important radioisotopes are described here. In cases where more than one type can be used, the selection of the most suitable system is shown.
Weakly broken galileon symmetry
Energy Technology Data Exchange (ETDEWEB)
Pirtskhalava, David [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Santoni, Luca; Trincherini, Enrico [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); INFN, Sezione di Pisa, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Vernizzi, Filippo [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, Gif-sur-Yvette cédex, F-91191 (France)
2015-09-01
Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.
Neutron skin studies of medium and heavy nuclei
Directory of Open Access Journals (Sweden)
Thiel M.
2014-06-01
Full Text Available The recent PREX experiment at JLab has demonstrated the sensitivity of parity violating electron scattering to the neutron density, meanwhile outlining its major experimental challenges. On the other side, intermediate energy photons are an ideal probe for studying the properties of strongly interacting matter from the nuclear scale down to the sub-nuclear components of the nucleus. Among others coherent pion photoproduction can provide information on the existence and nature of neutron skins in nuclei. The simultaneous combination of different techniques allows a systematic determination across the periodic table thus benchmarking modern calculation. Recently a systematic investigation of the latter method has been exploited at MAMI (Mainz. At MESA the same setup as in the measurement of the weak mixing angle can be used to determine the parity-violating asymmetry for polarized electrons scattered on heavy nuclei with a 1% resolution. Status and prospects of the projects are presented.
Bounded Satisfiability for PCTL
Bertrand, Nathalie; Schewe, Sven
2012-01-01
While model checking PCTL for Markov chains is decidable in polynomial-time, the decidability of PCTL satisfiability, as well as its finite model property, are long standing open problems. While general satisfiability is an intriguing challenge from a purely theoretical point of view, we argue that general solutions would not be of interest to practitioners: such solutions could be too big to be implementable or even infinite. Inspired by bounded synthesis techniques, we turn to the more applied problem of seeking models of a bounded size: we restrict our search to implementable -- and therefore reasonably simple -- models. We propose a procedure to decide whether or not a given PCTL formula has an implementable model by reducing it to an SMT problem. We have implemented our techniques and found that they can be applied to the practical problem of sanity checking -- a procedure that allows a system designer to check whether their formula has an unexpectedly small model.
Alberico, W M
2004-01-01
The focus of these Lectures is on the weak decay modes of hypernuclei, with special attention to Lambda-hypernuclei. The subject involves many fields of modern theoretical and experimental physics, from nuclear structure to the fundamental constituents of matter and their interactions. The various weak decay modes of Lambda-hypernuclei are described: the mesonic mode and the non-mesonic ones. The latter are the dominant decay channels of medium--heavy hypernuclei, where, on the contrary, the mesonic decay is disfavoured by Pauli blocking effect on the outgoing nucleon. In particular, one can distinguish between one-body and two-body induced decays. Theoretical models employed to evaluate the (partial and total) decay widths of hypernuclei are illustrated, and their results compared with existing experimental data. Open problems and recent achievements are extensively discussed, in particular the determination of the ratio Gamma_n/Gamma_p, possible tests of the Delta I=1/2 rule in non-mesonic decays and the pu...
Jolley, Sarah E; Bunnell, Aaron E; Hough, Catherine L
2016-11-01
Survivorship after critical illness is an increasingly important health-care concern as ICU use continues to increase while ICU mortality is decreasing. Survivors of critical illness experience marked disability and impairments in physical and cognitive function that persist for years after their initial ICU stay. Newfound impairment is associated with increased health-care costs and use, reductions in health-related quality of life, and prolonged unemployment. Weakness, critical illness neuropathy and/or myopathy, and muscle atrophy are common in patients who are critically ill, with up to 80% of patients admitted to the ICU developing some form of neuromuscular dysfunction. ICU-acquired weakness (ICUAW) is associated with longer durations of mechanical ventilation and hospitalization, along with greater functional impairment for survivors. Although there is increasing recognition of ICUAW as a clinical entity, significant knowledge gaps exist concerning identifying patients at high risk for its development and understanding its role in long-term outcomes after critical illness. This review addresses the epidemiologic and pathophysiologic aspects of ICUAW; highlights the diagnostic challenges associated with its diagnosis in patients who are critically ill; and proposes, to our knowledge, a novel strategy for identifying ICUAW. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Reaching Fleming's dicrimination bound
Gruebl, Gebhard
2012-01-01
Any rule for identifying a quantum system's state within a set of two non-orthogonal pure states by a single measurement is flawed. It has a non-zero probability of either yielding the wrong result or leaving the query undecided. This also holds if the measurement of an observable $A$ is repeated on a finite sample of $n$ state copies. We formulate a state identification rule for such a sample. This rule's probability of giving the wrong result turns out to be bounded from above by $1/n\\delta_{A}^{2}$ with $\\delta_{A}=|_{1}-_{2}|/(\\Delta_{1}A+\\Delta_{2}A).$ A larger $\\delta_{A}$ results in a smaller upper bound. Yet, according to Fleming, $\\delta_{A}$ cannot exceed $\\tan\\theta$ with $\\theta\\in(0,\\pi/2) $ being the angle between the pure states under consideration. We demonstrate that there exist observables $A$ which reach the bound $\\tan\\theta$ and we determine all of them.
PSPACE Bounds for Rank-1 Modal Logics
Schröder, Lutz
2007-01-01
For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way.
Hester, Tim; Maglich, Bogdan; Calsec Collaboration
2015-10-01
Copious T and 3He production from D(d, p) T and D(d, n) 3He reactions in 725 KeV colliding beams was observed in weak-focusing Self-Collider1-4 radius 15 cm, in B = 3.12 T, stabilized5 non-linearly by electron cloud oscillations with confinement time ~ 23 s. BARC's simulations7 predict that by switching to Strong Focusing Self Collider proposed by Blewett6, 10 deuterons 0.75 MeV each, will generate 1 3He + 1T +1p + 1n at a total input energy cost of 10.72 MeV. Economic value of T and 3He is 65 and 120 MeV/atom respectively. While energy balance is negative, we project economic gain 205 MeV/10.72 MeV ~ 20 i.e. 3He production/sale will fund cost of T. Assuming the luminosity achieved in MIGMA IV, we replace D beam injection with a high energy beam of 14 times ionized natural Mo ions and look for the 1-neutron reactions of the type 98Mo+100Mo -->299Mo, where 99Mo14+ will be EM channeled into a mass spectrometer and collected at one loci/ radius, while all other masses/radii rejected. Physics and engineering parameters required to produce at least 1 g of 99Mo per day, at an electricity cost of 100K, will be presented. 2- and 3-neutron exchange reactions will be considered, too.
Exotic nuclei with charm and bottom ﬂavor
Directory of Open Access Journals (Sweden)
Yasui S.
2010-04-01
Full Text Available We discuss the possibility of existence of exotic nuclei containing charm and bottom mesons. We study the interaction between $ar{D}$ (B mesons and nucleons from view of heavy quark symmetry, and derive the one pion exchange potentials. We apply these potentials to the two body system of $ar{D}$ (B meson and nucleon N , and ﬁnd there are possible stable bound states with spin JP = 1/2− and isospin I = 0. We ﬁnd that the tensor interaction mixing $ar{D}$N and $ar{D}$*N (BN and B*N plays an important role. We also qualitatively discuss the possible bound states of $ar{D}$ (B meson and two nucleons.
α-decay half-lives in medium mass nuclei
Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong
2011-01-01
Systematical calculations on the α-decay half-lives of even-even medium mass nuclei with 82 cluster model using a two-potential approach. The decay width is achieved in terms of the bound state wavefunction, the scattering wavefunction and the outer potential, where the effective α-nucleus potential is obtained from the double-folded integral of the realistic nucleon-nucleon interaction with the mass distributions of α particle and daughter nucleus. Instead of the Wentzel-Kramers-Brillouin (WKB) barrier penetration probability, the numerical solution of the Schrödinger equation for the bound state is presented. In addition, the shell effect on the α-preformation factor has been taken into account for even-even N = 126 isotones. The calculated α-decay half-lives are found to agree with experimental data with a mean factor of less than 2.
Mogami manifolds, nuclei, and 3D simplicial gravity
Energy Technology Data Exchange (ETDEWEB)
Benedetti, Bruno, E-mail: bruno@math.miami.edu
2017-06-15
Mogami introduced in 1995 a large class of triangulated 3-dimensional pseudomanifolds, henceforth called “Mogami pseudomanifolds”. He proved an exponential bound for the size of this class in terms of the number of tetrahedra. The question of whether all 3-balls are Mogami has remained open since; a positive answer would imply a much-desired exponential upper bound for the total number of 3-balls (and 3-spheres) with N tetrahedra. Here we provide a negative answer: many 3-balls are not Mogami. On the way to this result, we characterize the Mogami property in terms of nuclei, in the sense of Collet–Eckmann–Younan: “The only three-dimensional Mogami nucleus is the tetrahedron”.
Hyperquarks and bosonic preon bound states
Schmid, Michael L.; Buchmann, Alfons J.
2009-11-01
In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin-(1)/(2) preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular, those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on, respectively, the effective gauge groups SU(6)P and SU(9)G. This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.
Hyperquarks and bosonic preon bound states
Schmid, Michael L
2013-01-01
In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two fundamental spin 1/2 preons, the standard model weak gauge bosons emerge as preon bound states. In addition, the model predicts a host of new composite gauge bosons, in particular those responsible for hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard model weak interactions and a scheme for a partial and grand unification of nongravitational interactions based on respectively the effective gauge groups SU(6)_P and SU(9)_G. This leads to a prediction of the Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution equations for the effective coupling strengths, we calculate the partial and grand unification scales, the hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.
BOUNDING PYRAMIDS AND BOUNDING CONES FOR TRIANGULAR BEZIER SURFACES
Institute of Scientific and Technical Information of China (English)
Jian-song Deng; Fa-lai Chen; Li-li Wang
2000-01-01
This paper describes practical approaches on how to construct bounding pyramids and bounding cones for triangular Bézier surfaces. Examples are provided to illustrate the process of construction and comparison is made between various surface bounding volumes. Furthermore, as a starting point for the construction,we provide a way to compute hodographs of triangular Bézier surfaces and improve the algorithm for computing the bounding cone of a set of vectors.
Completely general bounds on Non-Unitary leptonic mixing
Hernandez-Garcia, Josu
2016-01-01
We derive constraints on the mixing of heavy right-handed neutrinos with the SM fields in the most general Seesaw scenario where the heavy neutrinos are integrated out. Among the electroweak and flavour observables included in the global fit, $\\mu\\rightarrow e\\gamma$ sets the present strongest bound on the additional neutrino mixing, while in the future it will be dominated by $\\mu-e$ conversion in nuclei. Increasing its sensitivity in future experiments could probe Non-Unitarity in Lepton Flavour Violating processes. Nevertheless, in order to determine completely model-independent constraints, we provide a second set of bounds derived through a global fit that does not include LFV observables. These indirect constraints on the off-diagonal elements come from the diagonal bounds through the Schwarz inequality.
Kaplan, L
1998-01-01
We examine the consequences of classical ergodicity for the localization properties of individual quantum eigenstates in the classical limit. We note that the well known Schnirelman result is a weaker form of quantum ergodicity than the one implied by random matrix theory. This suggests the possibility of systems with non-gaussian random eigenstates which are nonetheless ergodic in the sense of Schnirelman and lead to ergodic transport in the classical limit. These we call "weakly quantum ergodic.'' Indeed for a class of "slow ergodic" classical systems, it is found that each eigenstate becomes localized to an ever decreasing fraction of the available state space, in the semiclassical limit. Nevertheless, each eigenstate in this limit covers phase space evenly on any classical scale, and long-time transport properties betwen individual quantum states remain ergodic due to the diffractive effects which dominate quantum phase space exploration.
Directory of Open Access Journals (Sweden)
Wu C.Y.
2012-02-01
Full Text Available Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.
Kroll, J.; Baramsai, B.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Couture, A.; Chyzh, A.; Dashdorj, D.; Haight, R. C.; Jandel, M.; Krtička, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W.; Rundberg, R. S.; Ullmann, J. L.; Vieira, G. J.; Walker, C. L.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.
2012-02-01
Spectra of γ rays following neutron capture at isolated resonances of 6 stable Gd isotopes were measured with highly segmented BaF2 detector DANCE at the Los Alamos LANSCE spallation neutron source. The main emphasis was put on studying the γ-cascade decay of neutron resonances to get unique information on photon strength. An analysis of the accumulated γ-ray spectra within the extreme statistical model leads to an inescapable conclusion that scissors mode resonances are built not only on the ground-state, but also on excited levels in all product nuclei studied. The results on summed B(M1)↑ strength and energy of the scissors mode are compared with systematics of scissors mode parameters for the ground-state transitions deduced from nuclear resonance fluorescence measurements. A specific feature of our experiments is the investigation of scissors mode of odd nuclei, for which the nuclear resonance fluorescence provides only limited information.
Evolution of active galactic nuclei
Merloni, Andrea
2012-01-01
[Abriged] Supermassive black holes (SMBH) lurk in the nuclei of most massive galaxies, perhaps in all of them. The tight observed scaling relations between SMBH masses and structural properties of their host spheroids likely indicate that the processes fostering the growth of both components are physically linked, despite the many orders of magnitude difference in their physical size. This chapter discusses how we constrain the evolution of SMBH, probed by their actively growing phases, when they shine as active galactic nuclei (AGN) with luminosities often in excess of that of the entire stellar population of their host galaxies. Following loosely the chronological developments of the field, we begin by discussing early evolutionary studies, when AGN represented beacons of light probing the most distant reaches of the universe and were used as tracers of the large scale structure. This early study turned into AGN "Demography", once it was realized that the strong evolution (in luminosity, number density) of ...
Proton scattering from unstable nuclei
Indian Academy of Sciences (India)
Y Blumenfeld; E Khan; F Maréchal; T Suomijärvi
2001-08-01
Recent improvements in the intensities and optical qualities of radioactive beams have made possible the study of elastic and inelastic proton scattering on unstable nuclei. The design and performances of an innovative silicon strip detector array devoted to such experiments are described. The quality of the data obtained are illustrated with recent results obtained at the GANIL facility for unstable oxygen, sulfur and argon isotopes. Methods to analyse the data using phenomenological and microscopic optical model potentials are discussed.
Strange neutral currents in nuclei
Ressell, M T; Aufderheide, M B; Bloom, S D; Resler, D A
1995-01-01
We examine the effects on the nuclear neutral current Gamow-Teller (GT) strength of a finite contribution from a polarized strange quark sea. We perform nuclear shell model calculations of the neutral current GT strength for a number of nuclei likely to be present during stellar core collapse. We compare the GT strength when a finite strange quark contribution is included to the strength without such a contribution. As an example, the process of neutral current nuclear de-excitation via \
Triaxial rotation in atomic nuclei
Institute of Scientific and Technical Information of China (English)
CHEN Yong-Shou; GAO Zao-Chun
2009-01-01
The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.
Double pion photoproduction in nuclei
Vicente-Vacas, M J; Gómez-Tejedor, J A; Vicente-Vacas, M J; Oset, E; Gómez Tejedor, J A
1994-01-01
Abstract: The inclusive A(gamma,pi+ pi-)X reaction is studied theoretically. A sizeable enhancement of the cross section is found, in comparison with the scaling of the deuteron cross section (sigma_deuteron * A/2). This enhancement is due to the modifications in the nuclear medium of the gamma N ----> pi pi N amplitude and the pion dispersion relation. The enhancement is found to be bigger than the one already observed in the (pi,pi pi) reaction in nuclei.
Continuum spectroscopy of light nuclei
Directory of Open Access Journals (Sweden)
Charity R. J.
2016-01-01
Full Text Available Resonance spectroscopy of light nuclei is discussed with emphasis on the invariant-mass measurements performed with the HiRA detector. For three-body exit channels, we consider the exact conditions necessary such that the decay can be described as either sequential or prompt. However experimentally, we find some cases where the decay is intermediate between these two limits. Finally, two-proton decay from isobaric analog states is discussed.
Geometric symmetries in light nuclei
Bijker, Roelof
2016-01-01
The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.
DECAY ESTIMATES FOR ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN BOUNDED DOMAIN
Institute of Scientific and Technical Information of China (English)
Mohamed Ahmed Abdallah; Jiang Fei; Tan Zhong
2012-01-01
In this paper,under the hypothesis that (o) is upper bounded,we construct a Lyapunov functional for the multidimensional isentropic compressible magnetohydrodynamic equations and show that the weak solutions decay exponentially to the equilibrium state in L2 norm.Our result verifies that the method of Daoyuan Fang,Ruizhao Zi and Ting Zhang [1] can be adapted to magnetohydrodynamic equations.
Critical SQG in bounded domains
Constantin, Peter; Ignatova, Mihaela
2016-01-01
We consider the critical dissipative SQG equation in bounded domains, with the square root of the Dirichlet Laplacian dissipation. We prove global a priori interior $C^{\\alpha}$ and Lipschitz bounds for large data.
Energy Technology Data Exchange (ETDEWEB)
Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States); Shenker, Stephen H. [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA (United States); Stanford, Douglas [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ (United States)
2016-08-17
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent λ{sub L}≤2πk{sub B}T/ℏ. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
DEFF Research Database (Denmark)
Faupin, Jeremy; Møller, Jacob Schach; Skibsted, Erik
2011-01-01
We study regularity of bound states pertaining to embedded eigenvalues of a self-adjoint operator H, with respect to an auxiliary operator A that is conjugate to H in the sense of Mourre. We work within the framework of singular Mourre theory which enables us to deal with confined massless Pauli–......–Fierz models, our primary example, and many-body AC-Stark Hamiltonians. In the simpler context of regular Mourre theory, our results boil down to an improvement of results obtained recently in [8, 9]....
Maldacena, Juan; Stanford, Douglas
2015-01-01
We conjecture a sharp bound on the rate of growth of chaos in thermal quantum systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-time-order correlation function closely related to the commutator of operators separated in time. We conjecture that the influence of chaos on this correlator can develop no faster than exponentially, with Lyapunov exponent $\\lambda_L \\le 2 \\pi k_B T/\\hbar$. We give a precise mathematical argument, based on plausible physical assumptions, establishing this conjecture.
Information content of the weak-charge form factor
Reinhard, P -G; Nazarewicz, W; Agrawal, B K; Paar, N; Rocca-Maza, X
2013-01-01
Parity-violating electron scattering provides a model-independent determination of the nuclear weak-charge form factor that has widespread implications across such diverse areas as fundamental symmetries, nuclear structure, heavy-ion collisions, and neutron-star structure. We assess the impact of precise measurements of the weak-charge form factor of ${}^{48}$Ca and ${}^{208}$Pb on a variety of nuclear observables, such as the neutron skin and the electric-dipole polarizability. We use the nuclear Density Functional Theory with several accurately calibrated non-relativistic and relativistic energy density functionals. To assess the degree of correlation between nuclear observables and to explore systematic and statistical uncertainties on theoretical predictions, we employ the chi-square statistical covariance technique. We find a strong correlation between the weak-charge form factor and the neutron radius, that allows for an accurate determination of the neutron skin of neutron-rich nuclei. We determine the...
High-redshift SDSS Quasars with Weak Emission Lines
DEFF Research Database (Denmark)
Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Brandt, W. N.
2009-01-01
We identify a sample of 74 high-redshift quasars (z > 3) with weak emission lines from the Fifth Data Release of the Sloan Digital Sky Survey and present infrared, optical, and radio observations of a subsample of four objects at z > 4. These weak emission-line quasars (WLQs) constitute a prominent...... tail of the Lya + N v equivalent width distribution, and we compare them to quasars with more typical emission-line properties and to low-redshift active galactic nuclei with weak/absent emission lines, namely BL Lac objects. We find that WLQs exhibit hot (T ~ 1000 K) thermal dust emission and have...... rest-frame 0.1-5 µm spectral energy distributions that are quite similar to those of normal quasars. The variability, polarization, and radio properties of WLQs are also different from those of BL Lacs, making continuum boosting by a relativistic jet an unlikely physical interpretation. The most...
Delay Bounds for Multiclass FIFO
Jiang, Yuming; Misra, Vishal
2016-01-01
FIFO is perhaps the simplest scheduling discipline. For single-class FIFO, its delay guarantee performance has been extensively studied: The well-known results include a stochastic delay bound for $GI/GI/1$ by Kingman and a deterministic delay bound for $D/D/1$ by Cruz. However, for multiclass FIFO, few such results are available. To fill the gap, we prove delay bounds for multiclass FIFO in this work, considering both deterministic and stochastic cases. Specifically, delay bounds are present...
Anomalously Weak Solar Convection
Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.
2012-01-01
Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.
DEFF Research Database (Denmark)
Nielson, Hanne Riis; Nielson, Flemming
1992-01-01
they obtain a quadratic bound. These bounds are shown to be tight. Specializing the case of strict and additive functions to functionals of a form that would correspond to iterative programs they show that a linear bound is tight. This is related to several analyses studied in the literature (including...
Error bounds for set inclusions
Institute of Scientific and Technical Information of China (English)
ZHENG; Xiyin(郑喜印)
2003-01-01
A variant of Robinson-Ursescu Theorem is given in normed spaces. Several error bound theorems for convex inclusions are proved and in particular a positive answer to Li and Singer's conjecture is given under weaker assumption than the assumption required in their conjecture. Perturbation error bounds are also studied. As applications, we study error bounds for convex inequality systems.
Low-energy Antikaon Interaction with Nuclei: The AMADEUS Challenge
Marton, Johann; Bellotti, Giovanni; Berucci, Carolina; Bosnar, Dimitri; Bragadireanu, Mario; Curceanu, Catalina; Clozza, Alberto; Cargnelli, Michael; Butt, Aslan; Del Grande, Raffaele; Fabbietti, Laura; Fiorini, Carlo; Ghio, Francesco; Guaraldo, Carlo; Iliescu, Mihai; Sandri, Paolo Levi; Pietreanu, Dorel; Piscicchia, Kristian; Vidal, Antonio Romero; Scordo, Alessandro; Shi, Hexi; Sirghi, Diana; Sirghi, Florin; Tucakovic, Ivana; Doce, Oton Vazquez; Widmann, Eberhard; Zmeskal, Johann
2016-01-01
The low-energy strong interaction of antikaons (K-) with nuclei has many facets and rep- resents a lively and challenging research ?eld. It is interconnected to the peculiar role of strangeness, since the strange quark is rather light, but still much heavier than the up and down quarks. Thus, when strangeness is involved one has to deal with spontaneous and explicit symmetry breaking in QCD. It is well known that the antikaon interaction with nucleons is attractive, but how strong ? Is the interaction strong enough to bind nucleons to form kaonic nuclei and, if so, what are the properties (binding energy, decay width)? There are controversial indications for such bound states and new results are expected to come soon. The existence of antikaon mediated bound states might have important consequences since it would open the possibility for the formation of cold baryonic matter of high density which might have a severe impact in astrophysics for the understanding of the composi- tion of compact (neutron) stars. ...
The Weak Expectation Property and Riesz Interpolation
Kavruk, Ali S
2012-01-01
We show that Lance's weak expectation property is connected to tight Riesz interpolations in lattice theory. More precisely we first prove that if A \\subset B(H) is a unital C*-subalgebra, where B(H) is the bounded linear operators on a Hilbert space H, then A has (2,2) tight Riesz interpolation property in B(H) (defined below). An extension of this requires an additional assumption on A: A has (2,3) tight Riesz interpolation property in B(H) at every matricial level if and only if A has the weak expectation property. Let $J = span{(1,1,-1,-1,-1)}$ in $C^5$ . We show that a unital C*-algebra A has the weak expectation property if and only if $A \\otimesmin (C^5/J) = A \\otimesmax (C^5/J)$ (here \\otimesmin and \\otimesmax are the minimal and the maximal operator system tensor products, respectively, and $C^5/J$ is the operator system quotient of $C^5$ by $J$). We express the Kirchberg conjecture (KC) in terms of a four dimensional operator system problem. We prove that KC has an affirmative answer if and only if ...
Multifunctions of bounded variation
Vinter, R. B.
2016-02-01
Consider control systems described by a differential equation with a control term or, more generally, by a differential inclusion with velocity set F (t , x). Certain properties of state trajectories can be derived when it is assumed that F (t , x) is merely measurable w.r.t. the time variable t. But sometimes a refined analysis requires the imposition of stronger hypotheses regarding the time dependence. Stronger forms of necessary conditions for minimizing state trajectories can be derived, for example, when F (t , x) is Lipschitz continuous w.r.t. time. It has recently become apparent that significant addition properties of state trajectories can still be derived, when the Lipschitz continuity hypothesis is replaced by the weaker requirement that F (t , x) has bounded variation w.r.t. time. This paper introduces a new concept of multifunctions F (t , x) that have bounded variation w.r.t. time near a given state trajectory, of special relevance to control. We provide an application to sensitivity analysis.
Dosen, K
2010-01-01
An operad (this paper deals with non-symmetric operads) may be conceived as a partial algebra with a family of insertion operations, Gerstenhaber's circle-i products, which satisfy two kinds of associativity, one of them involving commutativity. A Cat-operad is an operad enriched over the category Cat of small categories, as a 2-category with small hom-categories is a category enriched over Cat. The notion of weak Cat-operad is to the notion of Cat-operad what the notion of bicategory is to the notion of 2-category. The equations of operads like associativity of insertions are replaced by isomorphisms in a category. The goal of this paper is to formulate conditions concerning these isomorphisms that ensure coherence, in the sense that all diagrams of canonical arrows commute. This is the sense in which the notions of monoidal category and bicategory are coherent. The coherence proof in the paper is much simplified by indexing the insertion operations in a context-independent way, and not in the usual manner. ...
Tensor Effect on Bubble Nuclei
Institute of Scientific and Technical Information of China (English)
WANG Yan-Zhao; GU Jian-Zhong; ZHANG Xi-Zhen; DONG Jian-Min
2011-01-01
In the framework of the Hartree-Fock-Bogoliubov (HFB) approach with Skyrme interactions SLy5+T, SLy5+Tw and several sets of TIJ parametrizations, I.e. The Skyrme interaction parametrizations including the tensor terms, the proton density distribution in 34Si and 46Ar nuclei is calculated with and without the tensor force. It is shown that the bubble effect in 34Si does not depend a great deal on the Skyrme parametrization and the proton density distribution in 34Si is hardly influenced by the tensor force. As to 46Ar, the SLy5+Tw parametrization favors the formation of the bubble structure due to the inversion between the 2s1/2 and 1d3/2 orbits (2s1/2-ld3/2 inversion). The inversion mechanism induced by the SLy5+Tw interaction is analyzed based on the proton single-particle spectra obtained from the SLy5 and SLy5+Tw interactions as well as the wave functions of the 2s1/2 and 1d3/2 states.%In the framework of the Hartree-Fock-Bogoliubov (HFB) approach with Skyrme interactions SLy5+ T,SLy5+ Tω and several sets of TIJ parametrizations,i.e.the Skyrme interaction pararmetrizations including the tensor terms,the proton density distribution in 34Si and 46 Ar nuclei is calculated with and without the tensor force.It is shown that the bubble effect in 34Si does not depend a great deal on the Skyrme parametrization and the proton density distribution in 34Si is hardly influenced by the tensor force.As to 46Ar,the SLy5+ Tω parametrization favors the formation of the bubble structure due to the inversion between the 2s1/2 and 1d3/2 orbits (2s1/2-1d3/2 inversion).The inversion mechanism induced by the SLy5+ Tω interaction is analyzed based on the proton single-particle spectra obtained from the SLy5 and SLy5+ Tω interactions as well as the wave functions of the 2s1/2 and 1d3/2 states.The study of exotic nuclear structures has been a hot topic in nuclear physics.[1-4] Exotic nuclei are unstabile,superheavy nuclei,halo nuclei and so forth,whose structures are quite different
Weak Total Resolvability In Graphs
Directory of Open Access Journals (Sweden)
Casel Katrin
2016-02-01
Full Text Available A vertex v ∈ V (G is said to distinguish two vertices x, y ∈ V (G of a graph G if the distance from v to x is di erent from the distance from v to y. A set W ⊆ V (G is a total resolving set for a graph G if for every pair of vertices x, y ∈ V (G, there exists some vertex w ∈ W − {x, y} which distinguishes x and y, while W is a weak total resolving set if for every x ∈ V (G−W and y ∈ W, there exists some w ∈ W −{y} which distinguishes x and y. A weak total resolving set of minimum cardinality is called a weak total metric basis of G and its cardinality the weak total metric dimension of G. Our main contributions are the following ones: (a Graphs with small and large weak total metric bases are characterised. (b We explore the (tight relation to independent 2-domination. (c We introduce a new graph parameter, called weak total adjacency dimension and present results that are analogous to those presented for weak total dimension. (d For trees, we derive a characterisation of the weak total (adjacency metric dimension. Also, exact figures for our parameters are presented for (generalised fans and wheels. (e We show that for Cartesian product graphs, the weak total (adjacency metric dimension is usually pretty small. (f The weak total (adjacency dimension is studied for lexicographic products of graphs.
Nowak, K.; Kästner, M.; Miltner, A.
2009-04-01
During degradation of organic pollutants in soil, metabolites, microbial biomass, CO2and "bound" residues ("non-extractable" residues in soil organic matter) are formed. Enhanced transformation of these contaminants into "bound" residues has been proposed as an alternative remediation method for polluted soils. However, this kind of residues may pose a potential risk for the environment due to their chemical structure and possible remobilization under different conditions. Therefore particular attention is given actually to "bound" residues. Part of these non-extractable residues may be "biogenic," because microorganisms use the carbon from the pollutant to form their biomass components (fatty acids, amino acids, amino sugars), which subsequently may be incorporated into soil organic matter. Furthermore, the CO2 originating from mineralization of xenobiotics, can be re-assimilated by microorganisms and also incorporated into "biogenic residue". The hazard posed by "bound" residues may be overestimated because they are "biogenic" (contain microbial fatty acids and amino acids). The knowledge about the pathways of "biogenic residue" formation is necessary for a proper assessment of the fate of tested pollutants and their turnover in the soil environment. Moreover, these data are needed to establish the realistic degradation rates of the contaminants in soil. The main objectives of this study are: to quantify the extent of "biogenic residue" (fatty acids, amino acids, amino sugars) formation during the degradation of a model pollutant (2,4-dichlorophenoxyacetic acid = 2,4-D) and during CO2 assimilation by microorganisms and to evaluate which components are mainly incorporated into "bound" residues. To investigate the extent of "biogenic residue" formation in soil during the degradation of 2,4-D, experiments with either 14C-U-ring and 13C6-2,4-D or carboxyl-14C 2,4-D were performed. The incubation experiments were performed according to OECD test guideline 307, in the
Existence of global weak solution for a reduced gravity two and a half layer model
Energy Technology Data Exchange (ETDEWEB)
Guo, Zhenhua, E-mail: zhenhua.guo.math@gmail.com; Li, Zilai, E-mail: lizilai0917@163.com; Yao, Lei, E-mail: yaolei1056@hotmail.com [Department of Mathematics and CNS, Northwest University, Xi' an 710127 (China)
2013-12-15
We investigate the existence of global weak solution to a reduced gravity two and a half layer model in one-dimensional bounded spatial domain or periodic domain. Also, we show that any possible vacuum state has to vanish within finite time, then the weak solution becomes a unique strong one.
Space group constraints on weak indices in topological insulators
Varjas, Dániel; de Juan, Fernando; Lu, Yuan-Ming
2017-07-01
Lattice translation symmetry gives rise to a large class of "weak" topological insulators (TIs), characterized by translation-protected gapless surface states and dislocation bound states. In this work we show that space group symmetries lead to constraints on the weak topological indices that define these phases. In particular, we show that screw rotation symmetry enforces the Hall conductivity in planes perpendicular to the screw axis to be quantized in multiples of the screw rank, which generally applies to interacting systems. We further show that certain 3D weak indices associated with quantum spin Hall effects (class AII) are forbidden by the Bravais lattice and by glide or even-fold screw symmetries. These results put strong constraints on weak TI candidates in the experimental and numerical search for topological materials, based on the crystal structure alone.
Microscopic properties of superdeformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Karlsson, Lennart B
1999-04-01
Many high spin rotational bands in superdeformed nuclei have been found in the A 140 - 150 region, but so far no linking transitions to known normal-deformed states have been found in these nuclei. Therefore, configuration and spin assignments have to be based on indirect spectroscopic information. Identical bands were first discovered in this region of superdeformed states. At present, some identical bands have also been found at normal deformation, but such bands are more common at superdeformation. Recently lifetime measurements have given relative quadrupole moments with high accuracy. Spectroscopic quantities are calculated using the configuration constrained cranked Nilsson-Strutinsky model with the modified oscillator potential. In a statistical study the occurrence of identical bands is tested. Comparing superdeformed and normal deformed nuclei, the higher possibility for identical bands at superdeformation is understood from calculated reduced widths of the E{sub {gamma}} and J{sup (2)} distributions. The importance of high-N orbitals for identical bands is also discussed. Additivity of electric quadrupole moment contributions in the superdeformed A - 150 region is discussed with the nucleus {sup 152}Dy as a `core`. In analytic harmonic oscillator calculations, the effective electric quadrupole moment q{sub eff}, i.e. the change in the total quadrupole moment caused by the added particle, is expressed as a simple function of the single-particle mass, quadrupole moment q{sub {nu}}. Also in realistic calculations, simple relations between q{sub eff} and q{sub {nu}} can be used to estimate the total electric quadrupole moment, e.g. for the nucleus {sup 142}Sm, by adding the effect of 10 holes, to the total electric quadrupole moment of {sup 152}Dy. Furthermore, tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A - 150 region. For the superdeformed region around {sup 143}Eu, configuration and spin assignments
Breakup Densities of Hot Nuclei.
Viola, Vic
2006-04-01
Breakup densities of hot ^197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E*/A .3ex˜x 5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.
Double pion photoproduction in nuclei
Energy Technology Data Exchange (ETDEWEB)
Gomez Tejedor, J.A. [Departamento de Fisica Teorica, Valencia (Spain); Vicente-Vacas, M.J. [Departamento de Fisica Teorica, Valencia (Spain); Oset, E. [Departamento de Fisica Teorica, Valencia (Spain)
1995-06-19
The inclusive A({gamma},{pi}{sup +}{pi}{sup -})X reaction is studied theoretically. A sizable enhancement of the cross section is found, in comparison with the scaling of the deuteron cross section ({sigma}{sub d} A/2). This enhancement is due to the modifications in the nuclear medium of the {gamma}N {yields}{pi}{pi}N amplitude and the pion dispersion relation. The enhancement is found to be bigger than the one already observed in the ({pi},{pi}{pi}) reaction in nuclei. ((orig.)).
Weak Interaction Neutron Production Rates in Fully Ionized Plasmas
Widom, A; Srivastava, Y N
2013-01-01
Employing the weak interaction reaction wherein a heavy electron is captured by a proton to produce a neutron and a neutrino, the neutron production rate for neutral hydrogen gases and for fully ionized plasmas is computed. Using the Coulomb atomic bound state wave functions of a neutral hydrogen gas, our production rate results are in agreement with recent estimates by Maiani {\\it et al}. Using Coulomb scattering state wave functions for the fully ionized plasma, we find a substantially enhanced neutron production rate. The scattering wave function should replace the bound state wave function for estimates of the enhanced neutron production rate on water plasma drenched cathodes of chemical cells.
Search for the Scalar Component of Weak Interactions
Zakoucky, Dalibor
2014-01-01
Weak interactions ar e described by the Standard Model which postulates the basic assumption about the pure " V (ector) - A (xial vector)" character of the interaction. Nevertheless, even after half a century of development of the model and experimental testing of its fundamental i ngredients, experimental data still allow the existence of other types of weak interactions - e.g. scalar interactions are ruled out only on the 7% level. Experimental project WITCH ( W eak I nteraction T rap for CH arged particles) was set up at the isoto pe separator ISOLDE at CERN trying to probe the properties of the weak interaction in order to look for their forbidden (scalar, tensor) components or at least significantly improve their current experimental limits. Experimental setup consisting of a comb ination of 2 Penning traps and retardation spectrometer allows to catch the radioactive nuclei from ISOLDE separator, traps and cools them and lets them decay in rest and then probes the energy spectrum of recoiling nuclei whic...
Bound Nucleon Form Factors, Quark-Hadron Duality, and Nuclear EMC Effect
Tsushima, K; Melnitchouk, W; Saitô, K; Thomas, A W
2003-01-01
We discuss the electromagnetic form factors, axial form factors, and structure functions of a bound nucleon in the quark-meson coupling (QMC) model. Free space nucleon form factors are calculated using the improved cloudy bag model (ICBM). After describing finite nuclei and nuclear matter in the quark-based QMC model, we compute the in-medium modification of the bound nucleon form factors in the same framework. Finally, limits on the medium modification of the bound nucleon $F_2$ structure function are obtained using the calculated in-medium electromagnetic form factors and local quark-hadron duality.
Weak compactness of biharmonic maps
Directory of Open Access Journals (Sweden)
Shenzhou Zheng
2012-10-01
Full Text Available This article shows that if a sequence of weak solutions of a perturbed biharmonic map satisfies $Phi_ko 0$ in $(W^{2,2}^*$ and $u_kightharpoonup u$ weakly in $W^{2,2}$, then $u$ is a biharmonic map. In particular, we show that the space of biharmonic maps is sequentially compact under the weak-$W^{2,2}$ topology.
Thermal instability of cell nuclei
Warmt, Enrico; Kießling, Tobias R.; Stange, Roland; Fritsch, Anatol W.; Zink, Mareike; Käs, Josef A.
2014-07-01
DNA is known to be a mechanically and thermally stable structure. In its double stranded form it is densely packed within the cell nucleus and is thermo-resistant up to 70\\:^\\circ {\\rm{C}}. In contrast, we found a sudden loss of cell nuclei integrity at relatively moderate temperatures ranging from 45 to 55\\:^\\circ {\\rm{C}}. In our study, suspended cells held in an optical double beam trap were heated under controlled conditions while monitoring the nuclear shape. At specific critical temperatures, an irreversible sudden shape transition of the nuclei was observed. These temperature induced transitions differ in abundance and intensity for various normal and cancerous epithelial breast cells, which clearly characterizes different cell types. Our results show that temperatures slightly higher than physiological conditions are able to induce instabilities of nuclear structures, eventually leading to cell death. This is a surprising finding since recent thermorheological cell studies have shown that cells have a lower viscosity and are thus more deformable upon temperature increase. Since the nucleus is tightly coupled to the outer cell shape via the cytoskeleton, the force propagation of nuclear reshaping to the cell membrane was investigated in combination with the application of cytoskeletal drugs.
Excited nuclei in neutron star crusts
Takibayev, Nurgali; Nasirova, Diana
2012-01-01
The paper considers the chains of successive electron capture reactions by nuclei of the iron group which take place in the crystal structures of neutron star envelopes. It is shown that as a result of such reactions the daughter nuclei in excited states accumulate within certain layers of neutron star crusts. The phonon model of interactions is proposed between the excited nuclei in the crystalline structure, as well as formation of highly excited nuclear states which emit neutrons and higher energy photons.
General gauge mediation at the weak scale
Knapen, Simon; Redigolo, Diego; Shih, David
2016-03-01
We completely characterize General Gauge Mediation (GGM) at the weak scale by solving all IR constraints over the full parameter space. This is made possible through a combination of numerical and analytical methods, based on a set of algebraic relations among the IR soft masses derived from the GGM boundary conditions in the UV. We show how tensions between just a few constraints determine the boundaries of the parameter space: electroweak symmetry breaking (EWSB), the Higgs mass, slepton tachyons, and left-handed stop/sbottom tachyons. While these constraints allow the left-handed squarks to be arbitrarily light, they place strong lower bounds on all of the right-handed squarks. Meanwhile, light EW superpartners are generic throughout much of the parameter space. This is especially the case at lower messenger scales, where a positive threshold correction to m h coming from light Higgsinos and winos is essential in order to satisfy the Higgs mass constraint.
General Gauge Mediation at the Weak Scale
Knapen, Simon; Shih, David
2015-01-01
We completely characterize General Gauge Mediation (GGM) at the weak scale by solving all IR constraints over the full parameter space. This is made possible through a combination of numerical and analytical methods, based on a set of algebraic relations among the IR soft masses derived from the GGM boundary conditions in the UV. We show how tensions between just a few constraints determine the boundaries of the parameter space: electroweak symmetry breaking (EWSB), the Higgs mass, slepton tachyons, and left-handed stop/sbottom tachyons. While these constraints allow the left-handed squarks to be arbitrarily light, they place strong lower bounds on all of the right-handed squarks. Meanwhile, light EW superpartners are generic throughout much of the parameter space. This is especially the case at lower messenger scales, where a positive threshold correction to $m_h$ coming from light Higgsinos and winos is essential in order to satisfy the Higgs mass constraint.
Completely Continuous and Weakly Completely Continuous Abstract Segal Algebras
Indian Academy of Sciences (India)
Fatemeh Abtahi
2013-11-01
Let $\\mathcal{A}$ be a Banach algebra. It is obtained a necessary and sufficient condition for the complete continuity and also weak complete continuity of symmetric abstract Segal algebras with respect to $\\mathcal{A}$, under the condition of the existence of an approximate identity for $\\mathcal{B}$, bounded in $\\mathcal{A}$. In addition, a necessary condition for the weak complete continuity of $\\mathcal{A}$ is given. Moreover, the applications of these results about some group algebras on locally compact groups are obtained.
A Weak Comparison Principle for Reaction-Diffusion Systems
Directory of Open Access Journals (Sweden)
José Valero
2012-01-01
Full Text Available We prove a weak comparison principle for a reaction-diffusion system without uniqueness of solutions. We apply the abstract results to the Lotka-Volterra system with diffusion, a generalized logistic equation, and to a model of fractional-order chemical autocatalysis with decay. Moreover, in the case of the Lotka-Volterra system a weak maximum principle is given, and a suitable estimate in the space of essentially bounded functions L∞ is proved for at least one solution of the problem.
A weak comparison principle for reaction-diffusion systems
Valero, José
2012-01-01
In this paper we prove a weak comparison principle for a reaction-diffusion system without uniqueness of solutions. We apply the abstract results to the Lotka-Volterra system with diffusion, a generalized logistic equation and to a model of fractional-order chemical autocatalysis with decay. Morever, in the case of the Lotka-Volterra system a weak maximum principle is given, and a suitable estimate in the space of essentially bounded functions $L^{\\infty}$ is proved for at least one solution of the problem.
Mid-infrared spectra of comet nuclei
Kelley, Michael S. P.; Woodward, Charles E.; Gehrz, Robert D.; Reach, William T.; Harker, David E.
2017-03-01
Comet nuclei and D-type asteroids have several similarities at optical and near-IR wavelengths, including near-featureless red reflectance spectra, and low albedos. Mineral identifications based on these characteristics are fraught with degeneracies, although some general trends can be identified. In contrast, spectral emissivity features in the mid-infrared provide important compositional information that might not otherwise be achievable. Jovian Trojan D-type asteroids have emissivity features strikingly similar to comet comae, suggesting that they have the same compositions and that the surfaces of the Trojans are highly porous. However, a direct comparison between a comet and asteroid surface has not been possible due to the paucity of spectra of comet nuclei at mid-infrared wavelengths. We present 5-35 μm thermal emission spectra of comets 10P/Tempel 2, and 49P/Arend-Rigaux observed with the Infrared Spectrograph on the Spitzer Space Telescope. Our analysis reveals no evidence for a coma or tail at the time of observation, suggesting the spectra are dominated by the comet nucleus. We fit each spectrum with the near-Earth asteroid thermal model (NEATM) and find sizes in agreement with previous values. However, the NEATM beaming parameters of the nuclei, 0.74-0.83, are systematically lower than the Jupiter-family comet population mean of 1.03 ± 0.11, derived from 16- and 22-μm photometry. We suggest this may be either an artifact of the spectral reduction, or the consequence of an emissivity low near 16 μm. When the spectra are normalized by the NEATM model, a weak 10-μm silicate plateau is evident, with a shape similar to those seen in mid-infrared spectra of D-type asteroids. A silicate plateau is also evident in previously published Spitzer spectra of the nucleus of comet 9P/Tempel 1. We compare, in detail, these comet nucleus emission features to those seen in spectra of the Jovian Trojan D-types (624) Hektor, (911) Agamemnon, and (1172) Aneas, as well
Review of metastable states in heavy nuclei
Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.
2016-07-01
The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.
Bounding approaches to system identification
Norton, John; Piet-Lahanier, Hélène; Walter, Éric
1996-01-01
In response to the growing interest in bounding error approaches, the editors of this volume offer the first collection of papers to describe advances in techniques and applications of bounding of the parameters, or state variables, of uncertain dynamical systems. Contributors explore the application of the bounding approach as an alternative to the probabilistic analysis of such systems, relating its importance to robust control-system design.
On functions of bounded variation
Aistleitner, Christoph; Pausinger, Florian; Svane, Anne Marie; Tichy, Robert F.
2015-01-01
The recently introduced concept of $\\mathcal{D}$-variation unifies previous concepts of variation of multivariate functions. In this paper, we give an affirmative answer to the open question from Pausinger \\& Svane (J. Complexity, 2014) whether every function of bounded Hardy--Krause variation is Borel measurable and has bounded $\\mathcal{D}$-variation. Moreover, we show that the space of functions of bounded $\\mathcal{D}$-variation can be turned into a commutative Banach algebra.
Bukh, Boris
2011-01-01
In 2008, Bukh, Matousek, and Nivasch conjectured that for every n-point set S in R^d and every k, 0 <= k <= d-1, there exists a k-flat f in R^d (a "centerflat") that lies at "depth" (k+1) n / (k+d+1) - O(1) in S, in the sense that every halfspace that contains f contains at least that many points of S. This claim is true and tight for k=0 (this is Rado's centerpoint theorem), as well as for k = d-1 (trivial). Bukh et al. showed the existence of a (d-2)-flat at depth (d-1) n / (2d-1) - O(1) (the case k = d-2). In this paper we concentrate on the case k=1 (the case of "centerlines"), in which the conjectured value for the leading constant is 2/(d+2). We prove that 2/(d+2) is an *upper bound* for the leading constant. Specifically, we show that for every fixed d and every n there exists an n-point set in R^d for which no line in R^d lies at depth larger than 2n/(d+2) + o(n). This point set is the "stretched grid"---a set which has been previously used by Bukh et al. for other related purposes.
Quarkonium-nucleus bound states from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Beane, S. R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S. D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M. J. [Univ. of Washington, Seattle, WA (United States)
2015-06-11
Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.
Spectral Properties of AGN with Very Weak [O III] Lines
Directory of Open Access Journals (Sweden)
Kovacevic, J.
2011-06-01
Full Text Available The spectral properties of a sample of 58 Active GalacticNuclei (AGN spectra, in which emission [O~III] $lambdalambda$4959, 5007 AA lines are weak or totally absent, are analyzed. In order to investigate thephysical reason for the [O~III] emission suppression, the spectral propertiesof the weak [O~III] spectra sample are compared with the same properties of asample of 269 spectra with the strong [O~III] lines. The spectra are obtainedfrom Sloan Digital Sky Survey (SDSS Database. It is found that the objectswith the weak or absent [O~III] $lambdalambda$4959, 5007 AA linesgenerally have the high continuum luminosities (log($lambda$L$_{5100}$ $>$45, that they are very rare at smaller redshifts ($z <$ 0.3 and that theyusually have strong starburst influence. From the sample with weak or absent[O~III] lines, two boundary subgroups may be distinguished: the subgroup witha strong H$beta$ narrow component and subgroup with a very weak or negligibleH$beta$ narrow component. The physical causes for the [O~III] linessuppressing are probably different in these two subgroups: the [O~III] linesare absent in objects with strong narrow H$beta$ probably because of strongstarburst (SB activity, which produces high density of the gas, while in theobjects with the negligible narrow H$beta$, the reason for [O~III] and narrowH$beta$ suppression may be a low covering factor.
[Systemic lupus erythematosus and weakness].
Vinagre, Filipe; Santos, Maria José; da Silva, José Canas
2006-01-01
We report a case of a 13-year old young girl, with Juvenile Systemic Lupus Erythematosus and recent onset of muscle weakness. Investigations lead to the diagnosis of Myasthenia Gravis. The most important causes of muscle weakness in lupus patients are discussed.
Expected impact from weak reactions with light nuclei in corecollapse supernova simulations
Directory of Open Access Journals (Sweden)
Fischer T.
2016-01-01
Full Text Available We study the role of light nuclear clusters in simulations of core-collapse supernovae. Expressions for the reaction rates are developed for a large selection of charged current absorption and scattering processes with light clusters. Medium modifications are taken into account at the mean-field level. We explore the possible impact on the supernova dynamics and the neutrino signal during the mass accretion phase prior to the possible explosion onset as well as during the subsequent protoneutron star deleptnoization after the explosion onset has been launched.
Theoretical studies of proton capture reactions in A～25 proton-rich nuclei
Institute of Scientific and Technical Information of China (English)
QI Chong; DU RenZhong; GAO Yang; ZHU JianYu; XU FuRong
2009-01-01
The direct proton capture and resonance proton capture properties of stellar reactions 22Mg(p,γ)23Aland 25Si(p,γ)27P are studied by employing a mean-field potential obtained from the Skyrme-Hartree-Fock (SHF) model.Calculations with the SHF potential reproduce well the loosely-bound structure of the ground states as well as the widths of the resonant states in these nuclei.With the obtained potential we estimate the reaction rates of direct proton capture and resonance proton capture to nuclei 23Al and 27p.The effect of the 27p loosely-bound structure on the S factor of the direct proton capture is also discussed.
Theoretical studies of proton capture reactions in A～25 proton-rich nuclei
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The direct proton capture and resonance proton capture properties of stellar reactions 22Mg(p,γ)23Al and 26Si(p,γ)27P are studied by employing a mean-field potential obtained from the Skyrme-Hartree-Fock(SHF) model.Calculations with the SHF potential reproduce well the loosely-bound structure of the ground states as well as the widths of the resonant states in these nuclei.With the obtained potential we estimate the reaction rates of direct proton capture and resonance proton capture to nuclei 23Al and 27P.The effect of the 27P loosely-bound structure on the S factor of the direct proton capture is also discussed.
Cavitation Nuclei: Experiments and Theory
DEFF Research Database (Denmark)
Mørch, Knud Aage
2009-01-01
The Swedish astrophysicist and Nobel Prize winner Hannes Alfven said: Theories come and go - the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory...... becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer...... us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories - and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character....
CAVITATION NUCLEI: EXPERIMENTS AND THEORY
Institute of Scientific and Technical Information of China (English)
MфRCH K. A.
2009-01-01
The Swedish astrophysicist and Nobel Prize winner Hannes Alfvén said: Theories come and go ─ the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories – and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character.
Inclusive breakup of Borromean nuclei
Hussein, Mahir S; Frederico, Tobias
2016-01-01
We derive the inclusive breakup cross section of a three-fragment projectile nuclei, $a = b +x_1 + x_2$, in the spectator model. The resulting four-body cross section for observing $b$, is composed of the elastic breakup cross section which contains information about the correlation between the two participant fragments, and the inclusive non-elastic breakup cross section. This latter cross section is found to be a non-trivial four-body generalization of the Austern formula \\cite{Austern1987}, which is proportional to a matrix element of the form, $\\langle\\hat{\\rho}_{{x_1},{x_2}}\\left|\\left[W_{{x_1}} + W_{{x_2}} + W_{3B}\\right]\\right|\\hat{\\rho}_{{x_1}, {x_2}}\\rangle$. The new feature here is the three-body absorption, represented by the imaginary potential, $W_{3B}$. We analyze this type of absorption and supply ideas of how to calculate its contribution.
Quasifree kaon photoproduction on nuclei
Energy Technology Data Exchange (ETDEWEB)
Frank Lee; T. MART; Cornelius Bennhold; Lester Wright
2001-12-01
Investigations of the quasifree reaction A({gamma}, K Y)B are presented in the distorted wave impulse approximation (DWIA). For this purpose, we present a revised tree-level model of elementary kaon photoproduction that incorporates hadronic form factors consistent with gauge invariance, uses SU(3) values for the Born couplings and uses resonances consistent with multi-channel analyses. The potential of exclusive quasifree kaon photoproduction on nuclei to reveal details of the hyperon-nucleus interaction is examined. Detailed predictions for the coincidence cross section, the photon asymmetry, and the hyperon polarization and their sensitivities to the ingredients of the model are obtained for all six production channels. Under selected kinematics these observables are found to be sensitive to the hyperon-nucleus final state interaction. Some polarization observables are found to be insensitive to distortion effects, making them ideal tools to search for possible medium modifications of the elementary amplitude.
Existence of Weak Solutions for the Incompressible Euler Equations
Wiedemann, Emil
2011-01-01
Using a recent result of C. De Lellis and L. Sz\\'{e}kelyhidi Jr. we show that, in the case of periodic boundary conditions and for dimension greater or equal 2, there exist infinitely many global weak solutions to the incompressible Euler equations with initial data $v_0$, where $v_0$ may be any solenoidal $L^2$-vectorfield. In addition, the energy of these solutions is bounded in time.
Weak Interaction Neutron Production Rates in Fully Ionized Plasmas
Widom, A.; Swain, J.; Srivastava, Y. N.
2013-01-01
Employing the weak interaction reaction wherein a heavy electron is captured by a proton to produce a neutron and a neutrino, the neutron production rate for neutral hydrogen gases and for fully ionized plasmas is computed. Using the Coulomb atomic bound state wave functions of a neutral hydrogen gas, our production rate results are in agreement with recent estimates by Maiani {\\it et al}. Using Coulomb scattering state wave functions for the fully ionized plasma, we find a substantially enha...
Variational Study of Weakly Coupled Triply Heavy Baryons
Jia, Y
2006-01-01
Baryons made of three heavy quarks become weakly coupled, when all the quarks are sufficiently heavy such that the typical momentum transfer is much larger than Lambda_QCD. We use variational method to estimate masses of the lowest-lying bcc, ccc, bbb and bbc states by assuming they are Coulomb bound states. Our predictions for these states are systematically lower than those made long ago by Bjorken.
Eternal Chaotic Inflation is Prohibited by Weak Gravity Conjecture
Huang, Qing-Guo; Wang, Yi
2007-01-01
We investigate whether the eternal chaotic inflation can be achieved when the weak gravity conjecture is taken into account. We show that even the assisted chaotic inflation with potential $\\lambda\\phi^4$ or $m^2\\phi^2$ can not be eternal. The effective field theory description for the inflaton field breaks down before inflation reaches the eternal regime. We also find that the total number of e-folds is still bounded by the inflationary entropy for the assisted inflation.
Direct Detection of Dark Matter Bound to the Earth
Catena, Riccardo
2016-01-01
We study the properties and direct detection prospects of an as of yet neglected population of dark matter (DM) particles moving in orbits gravitationally bound to the Earth. This DM population is expected to form via scattering by nuclei in the Earth's interior. We compute fluxes and nuclear recoil energy spectra expected at direct detection experiments for the new DM population considering detectors with and without directional sensitivity, and different types of target materials and DM-nucleon interactions. DM particles bound to the Earth manifest as a prominent rise in the low-energy part of the observed nuclear recoil energy spectrum. Ultra-low threshold energies of about 1 eV are needed to resolve this effect. Its shape is independent of the DM-nucleus scattering cross-section normalisation.
Institute of Scientific and Technical Information of China (English)
LIU Li-Guo; TIAN Cheng-Lin; CHEN Ping-Xing; YUAN Nai-Chang
2009-01-01
We derive an analytical lower bound on the concurrence for bipartite quantum systems with an improved computable cross norm or realignment criterion and an improved positive partial transpose criterion respectively.Furthermore we demonstrate that our bound is better than that obtained from the local uncertainty relations criterion with optimal local orthogonal observables which is known as one of the best estimations of concurrence.
Bounds for Asian basket options
Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle
2008-09-01
In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.
Anaphoric Pronouns and Bound Variables
Wasow, Thomas
1975-01-01
Deals with certain problems inherent in deriving anaphoric pronouns from bound variables. Syntactic rules applied to determine anaphora relations cannot be applied if anaphoric pronouns and their antecedents have identical underlying forms. An approach to anaphora which preserves some advantages of the bound-variable theory without the problems is…
Decay of heavy and superheavy nuclei
Indian Academy of Sciences (India)
K P Santhosh
2014-04-01
We present here, an overview and progress of the theoretical works on the isomeric state decay, decay fine structure of even–even, even–odd, odd–even and odd–odd nuclei, a study on the feasibility of observing decay chains from the isotopes of the superheavy nuclei = 115 in the range 271 ≤ ≤ 294 and the isotopes of = 117 in the range 270 ≤ ≤ 301, within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half-lives of the favoured and unfavoured decay of nuclei in the range 67 ≤ ≤ 91 from both the ground state and isomeric state, are in good agreement with the experimental data and the standard deviation of half-life is found to be 0.44. From the fine structure studies done on various ranges of nuclei, it is evident that, for nearly all the transitions, the theoretical values show good match with the experimental values. This reveals that CPPMDN is successful in explaining the fine structure of even–even, even–odd, odd–even and odd–odd nuclei. Our studies on the decay of the superheavy nuclei 271−294115 and 270−301117 predict 4 chains consistently from 284,285,286115 nuclei and 5 chains and 3 chains consistently from 288−291117 and 292117, respectively. We thus hope that these studies on 284−286115 and 288−292117 will be a guide to future experiments.
Isovector multiphonon excitations in near spherical nuclei
Smirnova, N A; Pietralla, N; Van Isacker, P; Isacker, Piet Van; Mizusaki, Takahiro; Pietralla, Norbert; Smirnova, Nadya A.
2000-01-01
The lowest isoscalar and isovector quadrupole and octupole excitations in near spherical nuclei are studied within the the proton-neutron version of the interacting boson model including quadrupole and octupole bosons (sdf-IBM-2). The main decay modes of these states in near spherical nuclei are discussed.
Partial Dynamical Symmetry in Deformed Nuclei
Energy Technology Data Exchange (ETDEWEB)
Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
1996-07-01
We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. {copyright} {ital 1996 The American Physical Society.}
Partial dynamical symmetry in deformed nuclei
Leviatan, A
1996-01-01
We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei.
Positron production in collision of heavy nuclei
Khriplovich, I B
2016-01-01
We consider the electromagnetic production of positron in collision of slow heavy nuclei, with the simultaneously produced electron captured by one of the nuclei. The cross-section of the discussed process exceeds essentially the cross-section of $e^+e^-$ production.
RFP for the Comet Nuclei Tour (CONTOUR)
DEFF Research Database (Denmark)
Jørgensen, John Leif; Madsen, Peter Buch; Betto, Maurizio
1999-01-01
This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program.......This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program....
Towards the exact calculation of medium nuclei
Energy Technology Data Exchange (ETDEWEB)
Gandolfi, Stefano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Joseph Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lonardoni, Diego [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Xiaobao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-12-19
The prediction of the structure of light and medium nuclei is crucial to test our knowledge of nuclear interactions. The calculation of the nuclei from two- and three-nucleon interactions obtained from rst principle is, however, one of the most challenging problems for many-body nuclear physics.
Variation of hadron masses in finite nuclei
Saitô, K; Tsushima, K; Saito, Koichi; Thomas, Anthony W.; Tsushima, Kazuo
1997-01-01
Using a self-consistent, Hartree description for both infinite nuclear matter and finite nuclei based on a relativistic quark model (the quark-meson coupling model), we investigate the variation of the masses of the non-strange vector mesons, the hyperons and the nucleon in infinite nuclear matter and in finite nuclei.
Energy Radiation of the Active Galactic Nuclei
Institute of Scientific and Technical Information of China (English)
TANG Zhi-Ming; WANG Yong-Jiu
2004-01-01
In the Hellings-Nordtvedt theory, we obtain some expressions of energy radiation and mass defect effect for a kind of the active galactic nuclei, which is meaningful to calculating the energy radiation in the procession of forming this kind of celestial bodies. This calculation can give some interpretation for energy source of the jet from the active galactic nuclei.
Mean-field models and exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P.G. [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)
1998-06-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)
A relativistic model for neutrino pion production from nuclei in the resonance region
Praet, C; Jachowicz, N; Ryckebusch, J
2007-01-01
We present a relativistic model for electroweak pion production from nuclei, focusing on the $\\Delta$ and the second resonance region. Bound states are derived in the Hartree approximation to the $\\sigma-\\omega$ Walecka model. Final-state interactions of the outgoing pion and nucleon are described in a factorized way by means of a relativistic extension of the Glauber model. Our formalism allows a detailed study of neutrino pion production through $Q^2$, $W$, energy, angle and out-of-plane distributions.
The ratio method: a new way to look at halo nuclei
Directory of Open Access Journals (Sweden)
Capel P.
2014-03-01
Full Text Available A new reaction observable is presented to study exotic loosely-bound structures, such as halo nuclei. It consists of the ratio of two angular distributions, e. g. one for breakup and one for elastic scattering. This ratio is nearly independent of the reaction mechanism and is very sensitive to the projectile structure. This new ratio method is illustrated on the particular case of 11Be, the archetypal one-neutron halo nucleus.
Market Access through Bound Tariffs
DEFF Research Database (Denmark)
Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal
on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive......WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and long...
Market access through bound tariffs
DEFF Research Database (Denmark)
Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal
2010-01-01
on the risk that exporters face in destination markets. The present paper formalizes the underlying interaction of risk, fixed export costs and firms' market entry decisions based on techniques known from the real options literature; doing so we highlight the important role of bound tariffs at the extensive......WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings...... margin of trade. We find that bound tariffs are more effective with higher risk destination markets, that a large binding overhang may still command substantial market access, and that reductions in bound tariffs generate effective market access even when bound rates are above current and longterm...
Asynchronous Bounded Expected Delay Networks
Bakhshi, Rena; Fokkink, Wan; Pang, Jun
2010-01-01
The commonly used asynchronous bounded delay (ABD) network models assume a fixed bound on message delay. We propose a probabilistic network model, called asynchronous bounded expected delay (ABE) model. Instead of a strict bound, the ABE model requires only a bound on the expected message delay. While the conditions of ABD networks restrict the set of possible executions, in ABE networks all asynchronous executions are possible, but executions with extremely long delays are less probable. In contrast to ABD networks, ABE networks cannot be synchronised efficiently. At the example of an election algorithm, we show that the minimal assumptions of ABE networks are sufficient for the development of efficient algorithms. For anonymous, unidirectional ABE rings of known size N we devise a probabilistic leader election algorithm having average message and time complexity O(N).
Quantifying the effect of baryon physics on weak lensing tomography
Semboloni, Elisabetta; Schaye, Joop; van Daalen, Marcel P; McCarthy, Ian J
2011-01-01
We use matter power spectra from cosmological hydrodynamic simulations to quantify the effect of baryon physics on the weak gravitational lensing shear signal. The simulations consider a number of processes, such as radiative cooling, star formation, supernovae and feedback from active galactic nuclei (AGN). Van Daalen et al. (2011) used the same simulations to show that baryon physics, in particular the strong feedback that is required to solve the overcooling problem, modifies the matter power spectrum on scales relevant for cosmological weak lensing studies. As a result, the use of power spectra from dark matter simulations can lead to significant biases in the inferred cosmological parameters. We show that the typical biases are much larger than the precision with which future missions aim to constrain the dark energy equation of state, w_0. For instance, the simulation with AGN feedback, which reproduces X-ray and optical properties of groups of galaxies, gives rise to a ~40% bias in w_0. We demonstrate ...
K¯ nuclear bound states in a dynamical model
Mareš, J.; Friedman, E.; Gal, A.
2006-05-01
A comprehensive data base of K-atom level shifts and widths is re-analyzed in order to study the density dependence of the K¯-nuclear optical potential. Significant departure from a tρ form is found only for ρ(r)/ρ ≲ 0.2 and extrapolation to nuclear-matter density ρ yields an attractive potential, about 170 MeV deep. Partial restoration of chiral symmetry compatible with pionic atoms and low-energy pion-nuclear data plays no role at the relevant low-density regime, but this effect is not ruled out at densities of order ρ and beyond. K¯-nuclear bound states are generated across the periodic table self consistently, using a relativistic mean-field model Lagrangian which couples the K¯ to the scalar and vector meson fields mediating the nuclear interactions. The reduced phase space available for K¯ absorption from these bound states is taken into account by adding an energy-dependent imaginary term which underlies the corresponding K¯-nuclear level widths, with a strength required by fits to the atomic data. Substantial polarization of the core nucleus is found for light nuclei, and the binding energies and widths calculated in this dynamical model differ appreciably from those calculated for a static nucleus. A wide range of binding energies is spanned by varying the K¯ couplings to the meson fields. Our calculations provide a lower limit of Γ=50±10 MeV on the width of nuclear bound states for K¯-binding energy in the range B˜100-200 MeV. Comments are made on the interpretation of the FINUDA experiment at DAΦNE which claimed evidence for deeply bound Kpp states in light nuclei.
Inward Bound---The Search For Supermassive Black Holes In Galactic Nuclei
Kormendy, John; Richstone, Douglas
Dynamical searches reveal central dark objects with masses $\\sim 10^6$to $10^{9.5}$ \\msun in the Galaxy, \\m31, \\mm32, M87, NGC 3115, NGC 3377, NGC 4258, and NGC 4594. Indirect arguments suggest but do not prove that these are supermassive black holes (BHs) like those postulated as quasar engines. This paper reviews dynamical search techniques, the robustness of the evidence, and BH demographics. Stellar-dynamical evidence is generally more robust than gas-dynamical evidence (gas velocities can be nongravitational), but gas measurements reach closer to the Schwarzschild radius, and in NGC 4258 they show a Keplerian rotation curve. A statistical survey finds BHs in $\\sim 20\\%$ of nearby E--Sbc galaxies, consistent with predictions based on quasar energetics. BH masses are proportional to the mass of the bulge component. Most candidates are inactive; in some cases, the abundance of fuel is not easily reconciled with BH starvation. Flashes caused by the accretion of individual stars may provide a test of the BH picture.
Study of the structure of unstable nuclei through the reaction experiments
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Along with the development of the radioactive nuclear beam facility, the study of the structure of unstable nuclei has progressed rapidly over the last few decades. Due to the weakly binding property, the structure information of the unstable nuclei comes primarily from the scattering or reaction experiments. Therefore it would be very important to understand clearly the reaction mechanism involved in the experiment. We outlined here the major reaction mechanisms which are adequate to the study of unstable nuclei, with the focus on the new phenomena and methods in comparison with those with traditional stable nucleus beam. Especially emphasized are the breakup and knockout reactions, developed as accurate tools for spectroscopy investigation into the nuclear structure with low intensity secondary beam. Couplings of the breakup channel to the elastic scattering and the fusion and transfer reactions are also reviewed.
A Good Statistics Study of Antiproton Interactions with Nuclei
2002-01-01
This experiment extends the study of inclusive pion production and the correlation between pions which result from hadron-nucleus collisions at intermediate and high energies to the antiproton-nucleus system. It is part of a long term systematic search for exotic nuclear phenomena. The correlation data will be used to extract, via pion interferometry, the size and coherence of the annihilation source in nuclei. In addition, the reaction @* + A @A p + A* will be studied to look for structure in the proton spectra which antiproton-nucleus bound states.\\\\ \\\\ The experimental system is based on a flexible, broad range, large acceptance (1~steradian) spectrometer which consists of an 80~cm diameter dipole magnet surrounded with detector arrays. These detectors provide momentum, energy loss, Cerenkov and time of flight information for up to ten ejectiles per event. Momentum resolution varies from 1\\% to 3\\%, depending on energy.
Probing Andreev bound states in one-atom superconducting contacts
Energy Technology Data Exchange (ETDEWEB)
Pothier, Hugues; Janvier, Camille; Tosi, Leandro; Girit, Caglar; Goffman, Marcelo; Esteve, Daniel; Urbina, Cristian [Quantronics Group, SPEC, CEA-Saclay (France)
2015-07-01
Superconductors are characterized by a dissipationless current. Since the work of Josephson 50 years ago, it is known that a supercurrent can even flow through tunnel junctions between superconductors. This Josephson effect also occurs through any type of ''weak links'' between superconductors: non-superconducting materials, constrictions,.. A unified understanding of the Josephson effect has emerged from a mesoscopic description of weak links. It relies on the existence of doublets of localized states that have energies below the superconducting gap: the Andreev bound states. I will present experiments performed on the simplest conductor possible, a single-atom contact between superconductors, that illustrate these concepts. The most recent work demonstrates time-domain manipulation of quantum superpositions of Andreev bound states.
Effects of QCD bound states on dark matter relic abundance
Liew, Seng Pei; Luo, Feng
2017-02-01
We study scenarios where there exists an exotic massive particle charged under QCD in the early Universe. We calculate the formation and dissociation rates of bound states formed by pairs of these particles, and apply the results in dark matter (DM) coannihilation scenarios, including also the Sommerfeld effect. We find that on top of the Sommerfeld enhancement, bound-state effects can further significantly increase the largest possible DM masses which can give the observed DM relic abundance, by ˜ 30-100% with respect to values obtained by considering the Sommerfeld effect only, for the color triplet or octet exotic particles we consider. In particular, it indicates that the Bino DM mass in the right-handed stop-Bino coannihilation scenario in the Minimal Supersymmetric extension of the Standard Model (MSSM) can reach ˜ 2.5 TeV, even though the potential between the stop and antistop prior to forming a bound state is repulsive. We also apply the bound-state effects in the calculations of relic abundance of long-lived or metastable massive colored particles, and discuss the implications on the BBN constraints and the abundance of a super-weakly interacting DM. The corrections for the bound-state effect when the exotic massive colored particles also carry electric charges, and the collider bounds are also discussed.
Fusion probability in heavy nuclei
Banerjee, Tathagata; Nath, S.; Pal, Santanu
2015-03-01
Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, PCN> , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. PCN> for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: PCN> has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine PCN> . Approximate boundaries have been obtained from where PCN> starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of PCN> from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross sections
Gravitational Interaction of Higgs Boson and Weak Boson Scattering
Xianyu, Zhong-Zhi; He, Hong-Jian
2013-01-01
With the LHC discovery of a 125GeV Higgs-like particle, we study gravitational interaction of Higgs boson via the unique dimension-4 operator involving Higgs doublet and scalar curvature, \\xi H^\\dag H R, with nonminimal coupling \\xi. This Higgs portal term can be transformed away in Einstein frame and induces gauge-invariant effective interactions in the Higgs sector. We study the weak boson scattering in Einstein frame, and explicitly demonstrate the longitudinal-Goldstone boson equivalence theorem in the presence of \\xi coupling. With these, we derive unitarity bound on the Higgs gravitational coupling \\xi in Einstein frame, which is stronger than that inferred from the LHC Higgs measurements. We further analyze \\xi-dependent weak boson scattering cross sections at TeV scale, and study the LHC probe of \\xi coupling via weak boson scattering experiments.
Ab initio calculations of reactions of light nuclei
Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr
2017-09-01
An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable as a support tool for accurate evaluations of crucial reaction data for nuclear astrophysics, fusion-energy research, and other applications. We present an efficient many-body approach to nuclear bound and scattering states alike, known as the ab initio no-core shell model with continuum. In this approach, square-integrable energy eigenstates of the A-nucleon system are coupled to (A-A)+A target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges. We show that predictive results for nucleon and deuterium scattering on 4He nuclei can be obtained from the direct solution of the Schröedinger equation with modern nuclear potentials.
$\\beta$ - decay asymmetry in mirror nuclei: A = 9
Axelsson, L E; Smedberg, M
2002-01-01
Investigations of light nuclei close to the drip lines have revealed new and intriguing features of the nuclear structure. The occurrence of halo structures in loosely bound systems has had a great impact on the nuclear physics research in the last years. As intriguing but not yet solved is the nature of transitions with very large $\\beta$ - strength. \\\\ \\\\We report here on the investigation of this latter feature by an accurate measurement of the $\\beta$ - decay asymmetry between the mirror nuclei in the A=9 mass chain.\\\\ \\\\The possible asymmetry for the decay to the states around 12 MeV is interesting not only due to the fact that the individual B$_{GT}$ values are large (with large overlap in wave-functions, an unambiguous interpretation is much easier made), but also due to the special role played by this transition for the $^{9}$Li decay. It seems to belong to a class of high-B$_{GT}$ transitions observed at the neutron drip line and has been suggested to be due either to a lowering of the giant Gamow-Te...
The Out-bound and In-bound Travelling Market
Institute of Scientific and Technical Information of China (English)
Emily Yu
2009-01-01
@@ As the Spring Festival of China with a long vocation of seven days nationally is approaching,more and more attention is paid to the out-bound and inn-bound trayeling market.Will people hold their pockets firmly in the"cold winter"of world-wide financial crisis,or will they grab the great discount of traveling and take a good relax?
Precision Metrology Using Weak Measurements
Zhang, Lijian; Datta, Animesh; Walmsley, Ian A.
2015-05-01
Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.
Precision metrology using weak measurements.
Zhang, Lijian; Datta, Animesh; Walmsley, Ian A
2015-05-29
Weak values and measurements have been proposed as a means to achieve dramatic enhancements in metrology based on the greatly increased range of possible measurement outcomes. Unfortunately, the very large values of measurement outcomes occur with highly suppressed probabilities. This raises three vital questions in weak-measurement-based metrology. Namely, (Q1) Does postselection enhance the measurement precision? (Q2) Does weak measurement offer better precision than strong measurement? (Q3) Is it possible to beat the standard quantum limit or to achieve the Heisenberg limit with weak measurement using only classical resources? We analyze these questions for two prototypical, and generic, measurement protocols and show that while the answers to the first two questions are negative for both protocols, the answer to the last is affirmative for measurements with phase-space interactions, and negative for configuration space interactions. Our results, particularly the ability of weak measurements to perform at par with strong measurements in some cases, are instructive for the design of weak-measurement-based protocols for quantum metrology.
Acute muscular weakness in children
Directory of Open Access Journals (Sweden)
Ricardo Pablo Javier Erazo Torricelli
Full Text Available ABSTRACT Acute muscle weakness in children is a pediatric emergency. During the diagnostic approach, it is crucial to obtain a detailed case history, including: onset of weakness, history of associated febrile states, ingestion of toxic substances/toxins, immunizations, and family history. Neurological examination must be meticulous as well. In this review, we describe the most common diseases related to acute muscle weakness, grouped into the site of origin (from the upper motor neuron to the motor unit. Early detection of hyperCKemia may lead to a myositis diagnosis, and hypokalemia points to the diagnosis of periodic paralysis. Ophthalmoparesis, ptosis and bulbar signs are suggestive of myasthenia gravis or botulism. Distal weakness and hyporeflexia are clinical features of Guillain-Barré syndrome, the most frequent cause of acute muscle weakness. If all studies are normal, a psychogenic cause should be considered. Finding the etiology of acute muscle weakness is essential to execute treatment in a timely manner, improving the prognosis of affected children.
Functions of Bounded κφ-Variation in the Sense of Riesz-Korenblum
Mariela Castillo; Sergio Rivas; María Sanoja; Iván Zea
2013-01-01
We present the space of functions of bounded κφ-variation in the sense of Riesz-Korenblum, denoted by κBVφ[a,b], which is a combination of the notions of bounded φ-variation in the sense of Riesz and bounded κ-variation in the sense of Korenblum. Moreover, we prove that the space generated by this class of functions is a Banach space with a given norm and we prove that the uniformly bounded composition operator satisfies Matkowski's weak condition.
Weak nuclear collectivity from proton and neutron pairing gaps
Orce, Nico
2010-01-01
I explore weakly-collective singly-closed shell nuclei with high-j shells where active valence neutrons and particle-particle correlations may be the dominant collective degree of freedom. The combination of large and close-lying proton and neutron pairing gaps extracted from experimental masses seems to charaterize the origin of the weak collectivity observed in Ni and Sn superfluids with $N\\approx Z$. The trend of $E2$ transition strengths, i.e., $B(E2; 2^+_1\\rightarrow 0^+_1)$ values, in these nuclei is predicted from proton and neutron pairing-gap information. The agreement with the Ni isotopes is excellent and recent experimental results support the trend in the Sn isotopes. This work emphasizes the importance of atomic masses in elucidating nuclear-structure properties. In particular, it indicates that many-body microscopic properties such as nuclear collectivity could be directly inferred from more macroscopic average properties such as atomic masses.
Combining Alphas via Bounded Regression
Directory of Open Access Journals (Sweden)
Zura Kakushadze
2015-11-01
Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.
Bounds for Certain Character Sums
Institute of Scientific and Technical Information of China (English)
杨锦; 郑志勇
2003-01-01
This paper shows a connection between exponential sums and character sums. In particular, we introduce a character sum that is an analog of the classical Kloosterman sums and establish the analogous Weil-Estermann's upper bound for it. The paper also analyzes a generalized Hardy-Littlewood example for character sums, which shows that the upper bounds given here are the best possible. The analysis makes use of local bounds for the exponential sums and character sums. The basic theorems have been previously established.
Institute of Scientific and Technical Information of China (English)
Zhi-Hong Tao; Cong-Hua Zhou; Zhong Chen; Li-Fu Wang
2007-01-01
Bounded Model Checking has been recently introduced as an efficient verification method for reactive systems.This technique reduces model checking of linear temporal logic to propositional satisfiability.In this paper we first present how quantified Boolean decision procedures can replace BDDs.We introduce a bounded model checking procedure for temporal logic CTL* which reduces model checking to the satisfiability of quantified Boolean formulas.Our new technique avoids the space blow up of BDDs, and extends the concept of bounded model checking.
Limits on the electromagnetic and weak dipole moments of the tau-lepton in a 331 model
Energy Technology Data Exchange (ETDEWEB)
Gutiérrez-Rodríguez, A. [Facultad de Física, Universidad Autónoma de Zacatecas Apartado, Postal C-580, 98060 Zacatecas, México (Mexico); Hernández-Ruíz, M.A. [Facultad de Ciencias Químicas, Universidad Autónoma de Zacatecas Apartado, Postal 585, 98060 Zacatecas, México (Mexico); Castañeda-Almanza, C.P.; Espinoza-Garrido, A.; Chubykalo, A. [Facultad de Física, Universidad Autónoma de Zacatecas Apartado, Postal C-580, 98060 Zacatecas, México (Mexico)
2014-08-15
Using as an input the data obtained by the L3 and OPAL Collaborations for the reaction e{sup +}e{sup −}→τ{sup +}τ{sup −}γ at the Z{sub 1}-pole, we obtained bounds on the electromagnetic and weak dipole moments of the tau-lepton in the context of a 331 model. Our bounds on the electromagnetic moments are consistent with the bounds obtained by the L3 and OPAL Collaborations for the reaction e{sup +}e{sup −}→τ{sup +}τ{sup −}γ. We also obtained bounds on the tau weak dipole moments which are consistent with the bounds obtained recently by the DELPHI, ALEPH and BELLE Collaborations from the reaction e{sup +}e{sup −}→τ{sup +}τ{sup −}. Our work complements other studies on the electromagnetic and weak dipole moments of the tau-lepton.
Chemical complexity in galactic nuclei
Martin-Pintado, Jesus
2007-12-01
In recent years our knowledge of the chemical complexity in the nuclei of galaxies has dramatically changed. Recent observations of the nucleus of the Milky Way, of the starburst galaxy NGC253 and of the ultraluminous infrared galaxy (ULIRG) Arp220 have shown large abundance of complex organic molecules believed to be formed on grains. The Galactic center appears to be the largest repository of complex organic molecule like aldehydes and alcohols in the galaxy. We also measure large abundance of methanol in starburst galaxies and in ULIRGs suggesting that complex organic molecules are also efficiently produced in the central region of galaxies with strong star formation activity. From the systematic observational studies of molecular abundance in regions dominated by different heating processes like shocks, UV radiation, X-rays and cosmic rays in the center of the Milky Way, we are opening the possibility of using chemistry as a diagnostic tool to study the highly obscured regions of galactic centers. The templates found in the nucleus of the Milky Way will be used to establish the main mechanisms driving the heating and the chemistry of the molecular clouds in galaxies with different type of activity. The role of grain chemistry in the chemical complexity observed in the center of galaxies will be also briefly discussed.
Molecular outflows in starburst nuclei
Roy, Arpita; Sharma, Prateek; Shchekinov, Yuri
2016-01-01
Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with $N_{OB}\\ge 10^5$ (corresponding to a star formation rate (SFR)$\\ge 1$ M$_{\\odot}$ yr$^{-1}$ in the nuclear region), in a stratified disk with mid-plane density $n_0\\sim 200\\hbox{--}1000$ cm$^{-3}$ and scale height $z_0\\ge 200 (n_0/10^2 \\, {\\rm cm}^{-3})^{-3/5}$ pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is $\\ge 10^7$ M$_\\odot$ at a distance of a few hundred pc, with a speed of several tens of km s$^{-1}$. We show that a SFR surface density of $10 \\le \\Sigma_{SFR} \\le 50$ M$_\\odot$ yr$^{-1}$ kpc$^{-2}$ favours the production of molecular outflows, consistent with observed values.
The morphology of cometary nuclei
Keller, H. U.; Jorda, L.
comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of
Hadronic weak charges and parity-violating forward Compton scattering
Gorchtein, Mikhail
2016-01-01
Parity-violating elastic electron-nucleon scattering at low momentum transfer allows one to access the nucleon's weak charge, the vector coupling of the $Z$-boson to the nucleon. In the Standard Model and at tree level, the weak charge of the proton is related to the weak mixing angle and accidentally suppressed, $Q_W^{p,\\,{\\rm tree}}=1-4\\sin^2\\theta_W\\approx0.07$. Modern experiments aim at extracting $Q_W^p$ at $\\sim1\\%$ accuracy. Similarly, parity non-conservation in atoms allows to access the weak charge of atomic nuclei. We consider a novel class of radiative corrections, an exchange of two photons with parity violation in the hadronic/nuclear system. These corrections may affect the extraction of $\\sin^2\\theta_W$ from the experimental data at the relevant level of precision because they are affected by long-range interactions similar to other parity-violating radiative corrections, such as, e.g., the $\\gamma Z$-exchange, which has obtained much attention recently. We show that the significance of this ne...
Biological effects due to weak magnetic field on plants
Belyavskaya, N. A.
2004-01-01
Throughout the evolution process, Earth's magnetic field (MF, about 50 μT) was a natural component of the environment for living organisms. Biological objects, flying on planned long-term interplanetary missions, would experience much weaker magnetic fields, since galactic MF is known to be 0.1-1 nT. However, the role of weak magnetic fields and their influence on functioning of biological organisms are still insufficiently understood, and is actively studied. Numerous experiments with seedlings of different plant species placed in weak magnetic field have shown that the growth of their primary roots is inhibited during early germination stages in comparison with control. The proliferative activity and cell reproduction in meristem of plant roots are reduced in weak magnetic field. Cell reproductive cycle slows down due to the expansion of G 1 phase in many plant species (and of G 2 phase in flax and lentil roots), while other phases of cell cycle remain relatively stabile. In plant cells exposed to weak magnetic field, the functional activity of genome at early pre-replicate period is shown to decrease. Weak magnetic field causes intensification of protein synthesis and disintegration in plant roots. At ultrastructural level, changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells were observed in pea roots exposed to weak magnetic field. Mitochondria were found to be very sensitive to weak magnetic field: their size and relative volume in cells increase, matrix becomes electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to weak magnetic field show Ca 2+ over-saturation in all organelles and in cytoplasm unlike the control ones. The data presented suggest that prolonged exposures of plants to weak
Bounds on dark matter interactions with electroweak gauge bosons
Energy Technology Data Exchange (ETDEWEB)
Cotta, R. C.; Hewett, J. L.; Le, M. -P.; Rizzo, T. G.
2013-12-01
We investigate scenarios in which dark matter interacts with the Standard Model primarily through electroweak gauge bosons. We employ an effective field theory framework wherein the Standard Model and the dark matter particle are the only light states in order to derive model-independent bounds. Bounds on such interactions are derived from dark matter production by weak boson fusion at the LHC, indirect detection searches for the products of dark matter annihilation and from the measured invisible width of the Z^{ 0} . We find that limits on the UV scale, Λ , reach weak scale values for most operators and values of the dark matter mass, thus probing the most natural scenarios in the weakly interacting massive particle dark matter paradigm. Our bounds suggest that light dark matter ( m_{ χ} ≲ m_{ Z} / 2 or m _{χ} ≲ 100 – 200 GeV , depending on the operator) cannot interact only with the electroweak gauge bosons of the Standard Model, but rather requires additional operator contributions or dark sector structure to avoid overclosing the Universe.
Alpha decay chains from superheavy nuclei
Samanta, C
2008-01-01
Magic islands for extra-stable nuclei in the midst of the sea of fission-instability were predicted to be around Z=114, 124 or, 126 with N=184, and Z=120, with N=172. Whether these fission-survived superheavy nuclei with high Z and N would live long enough for detection or, undergo alpha-decay in a very short time remains an open question. Alpha-decay half lives of nuclei with 130 118 are found to have alpha-decay half lives of the order of microseconds or, less.
Deep inelastic scattering on asymmetric nuclei
Saito, K.; Boros, C.; Tsushima, K.; Bissey, F.; Afnan, I. R.; Thomas, A. W.
2000-11-01
We study deep inelastic scattering on isospin asymmetric nuclei. In particular, the difference of the nuclear structure functions and the Gottfried sum rule for the lightest mirror nuclei, 3He and 3H, are investigated. It is found that such systems can provide significant information on charge symmetry breaking and flavor asymmetry in the nuclear medium. Furthermore, we propose a new method to extract the neutron structure function from radioactive isotopes far from the line of stability. We also discuss the flavor asymmetry in the Drell-Yan process with isospin asymmetric nuclei.
Computing Constrained Cramer Rao Bounds
Tune, Paul
2012-01-01
We revisit the problem of computing submatrices of the Cram\\'er-Rao bound (CRB), which lower bounds the variance of any unbiased estimator of a vector parameter $\\vth$. We explore iterative methods that avoid direct inversion of the Fisher information matrix, which can be computationally expensive when the dimension of $\\vth$ is large. The computation of the bound is related to the quadratic matrix program, where there are highly efficient methods for solving it. We present several methods, and show that algorithms in prior work are special instances of existing optimization algorithms. Some of these methods converge to the bound monotonically, but in particular, algorithms converging non-monotonically are much faster. We then extend the work to encompass the computation of the CRB when the Fisher information matrix is singular and when the parameter $\\vth$ is subject to constraints. As an application, we consider the design of a data streaming algorithm for network measurement.
An Inequality for Bounded Functions
Kouba, Omran
2012-01-01
In this note we prove optimal inequalities for bounded functions in terms of their deviation from their mean. These results extend and generalize some known inequalities due to Thong (2011) and Perfetti (2011)
Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien
2016-11-01
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.
Schulz, M D; Vidal, J
2016-01-01
We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.
Some bounds for quantum copying
Rastegin, A E
2001-01-01
We derive lower bounds on the absolute error and the relative error of an abstract copying of two-state set. We do not specify a copying transformation and a dimension of state space. Only the unitarity of quantum mechanical transformations is used. Our approach is based on the notion of angle between two states. We first prove several useful statements, simply expressed in terms of angles. We then examine a lower bound on the absolute error, that was first considered by Hillery and Buzek. Our reasonings supplement and reinforce the results, obtained by them. So, we derive more strong bounds on the absolute error, and we also consider a tradeoff between size of error and corresponding probability distributions. After that we examine a lower bound on the relative error.
... stroke After injury to a nerve During a flare-up of multiple sclerosis (MS) You may feel ... Duchenne) Myotonic dystrophy POISONING Botulism Poisoning ( insecticides , nerve gas) Shellfish poisoning OTHER Not enough healthy red blood ...
Wee partons in large nuclei: From virtual dream to hard reality
Energy Technology Data Exchange (ETDEWEB)
Venugopalan, R.
1995-06-01
We construct a weak coupling, many body theory to compute parton distributions in large nuclei for x {much_lt} A{sup {minus} 1/3}. The wee partons are highly coherent, non-Abelian Weizsaecker-Williams fields. Radiative corrections to the classical results axe discussed. The parton distributions for a single nucleus provide the initial conditions for the dynamical evolution of matter formed in ultrarelativistic nuclear collisions.
Cyto- and chemoarchitecture of the sensory trigeminal nuclei of the echidna, platypus and rat.
Ashwell, Ken W S; Hardman, Craig D; Paxinos, George
2006-02-01
We have examined the cyto- and chemoarchitecture of the trigeminal nuclei of two monotremes using Nissl staining, enzyme reactivity for cytochrome oxidase, immunoreactivity for calcium binding proteins and non-phosphorylated neurofilament (SMI-32 antibody) and lectin histochemistry (Griffonia simplicifolia isolectin B4). The principal trigeminal nucleus and the oralis and interpolaris spinal trigeminal nuclei were substantially larger in the platypus than in either the echidna or rat, but the caudalis subnucleus was similar in size in both monotremes and the rat. The numerical density of Nissl stained neurons was higher in the principal, oralis and interpolaris nuclei of the platypus relative to the echidna, but similar to that in the rat. Neuropil immunoreactivity for parvalbumin was particularly intense in the principal trigeminal, oralis and interpolaris subnuclei of the platypus, but the numerical density of parvalbumin immunoreactive neurons was not particularly high in these nuclei of the platypus. Neuropil immunoreactivity for calbindin and calretinin was relatively weak in both monotremes, although calretinin immunoreactive somata made up a large proportion of neurons in the principal, oralis and interpolaris subnuclei of the echidna. Distribution of calretinin immunoreactivity and Griffonia simplicifolia B4 isolectin reactivity suggested that the caudalis subnucleus of the echidna does not have a clearly defined gelatinosus region. Our findings indicate that the trigeminal nuclei of the echidna do not appear to be highly specialized, but that the principal, oralis and interpolaris subnuclei of the platypus trigeminal complex are highly differentiated, presumably for processing of tactile and electrosensory information from the bill.
A simple model for doublet bands in doubly odd nuclei
Energy Technology Data Exchange (ETDEWEB)
Yoshinaga, N. [Saitama University, Department of Physics, Saitama City (Japan); Higashiyama, K. [Chiba Institute of Technology, Department of Physics, Narashino, Chiba (Japan); University of Tokyo, Department of Physics, Hongo, Tokyo (Japan)
2006-11-15
Nuclear structure of doublet bands in doubly odd nuclei with mass A {proportional_to} 130 is investigated within the framework of a simple model where the even-even core couples with a neutron and a proton in intruder orbitals through a quadrupole-quadrupole interaction. The model reproduces quite well the energy levels of doublet bands and electromagnetic transitions. The staggering of the ratios B(M1;I{yields}I-1)/B(E2;I{yields}I-2) of the yrast bands turns out to be described by the chopsticks-like motion of two angular momenta of the unpaired neutron and the unpaired proton when they are weakly coupled with the core. (orig.)
Peripheral facial weakness (Bell's palsy).
Basić-Kes, Vanja; Dobrota, Vesna Dermanović; Cesarik, Marijan; Matovina, Lucija Zadro; Madzar, Zrinko; Zavoreo, Iris; Demarin, Vida
2013-06-01
Peripheral facial weakness is a facial nerve damage that results in muscle weakness on one side of the face. It may be idiopathic (Bell's palsy) or may have a detectable cause. Almost 80% of peripheral facial weakness cases are primary and the rest of them are secondary. The most frequent causes of secondary peripheral facial weakness are systemic viral infections, trauma, surgery, diabetes, local infections, tumor, immune disorders, drugs, degenerative diseases of the central nervous system, etc. The diagnosis relies upon the presence of typical signs and symptoms, blood chemistry tests, cerebrospinal fluid investigations, nerve conduction studies and neuroimaging methods (cerebral MRI, x-ray of the skull and mastoid). Treatment of secondary peripheral facial weakness is based on therapy for the underlying disorder, unlike the treatment of Bell's palsy that is controversial due to the lack of large, randomized, controlled, prospective studies. There are some indications that steroids or antiviral agents are beneficial but there are also studies that show no beneficial effect. Additional treatments include eye protection, physiotherapy, acupuncture, botulinum toxin, or surgery. Bell's palsy has a benign prognosis with complete recovery in about 80% of patients, 15% experience some mode of permanent nerve damage and severe consequences remain in 5% of patients.
Institute of Scientific and Technical Information of China (English)
Yong-ping Liu; Gui-qiao Xu
2002-01-01
The classes of the multivariate functions with bounded moduli on Rd and Td are given and their average a-widths and non-linear n-widths are discussed. The weak asymptotic behaviors are established for the corresponding quantities.
Critical-Point Structure in Finite Nuclei
Leviatan, A
2006-01-01
Properties of quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Special emphasis is paid to the dynamics at the critical-point of a general first-order phase transition.
GDR in Hot Nuclei: New Measurements
Camera, F.; Kmiecik, M.; Wieland, O.; Benzoni, G.; Bracco, A.; Brambilla, S.; Crespi, F.; Mason, P.; Moroni, A.; Million, B.; Leoni, S.; Maj, A.; Styczen, J.; Brekiesz, M.; Meczynski, W.; Zieblinski, M.; Gramegna, F.; Barlini, S.; Kravchuk, V. L.; Lanchais, A. L.; Mastinu, P. F.; Bruno, M.; D'Agostino, M.; Geraci, E.; Ordine, A.; Casini, G.; Chiari, M.
2005-04-01
The measured properties of the Giant Dipole Resonance in hot rotating nuclei are successfully described with the model of thermal fluctuations, even though there are still some open problems especially at very low (T 2.5MeV) temperatures and missing data in some mass regions. Recent experimental works have addressed more specific problems regarding the nuclear shape and its behaviour in very particular and delimited phase space regions. In this paper will be discussed new exclusive measurements of the GDR γ decay in heavy 216Rn nuclei (where the shape of nuclei surviving fission have been probed) and some preliminary data on the 132Ce nuclei at very high excitation energy.
Quantum Monte Carlo Calculations of Light Nuclei
Pieper, Steven C
2007-01-01
During the last 15 years, there has been much progress in defining the nuclear Hamiltonian and applying quantum Monte Carlo methods to the calculation of light nuclei. I describe both aspects of this work and some recent results.
On The Structure of A=3 Nuclei
Abbas, Syed Afsar
2011-01-01
The hole in the charge distribution of $^3{\\text He}$ is a major problem in A=3 nuclei. The canonical wavefucntion of A=3 nuclei which does well for electromagnetic properties of A=3 nuclei fails to produce the hole in A=3 nuclei. The hole is normally assumed to arise from explicit quark degree of freedom. Very often quark degrees of freedom are imposed to propose a different short range part of the wavefunction for A=3 to explain the hole in $^3{\\text He}$. So an hybrid model with nucleonic degree of freedom in outer part and quark degrees of freedom in the inner part of the nucleus have been invoked to understand the above problem. Here we present a different picture with a new wavefunction working at short range within nucleonic degrees of freedom itself. So the above problem is explained here based entirely on the nucleonic degree of freedom only.
Emergence of the giant weak component in directed random graphs with arbitrary degree distributions
Kryven, Ivan
2016-07-01
The weak component generalizes the idea of connected components to directed graphs. In this paper, an exact criterion for the existence of the giant weak component is derived for directed graphs with arbitrary bivariate degree distributions. In addition, we consider a random process for evolving directed graphs with bounded degrees. The bounds are not the same for different vertices but satisfy a predefined distribution. The analytic expression obtained for the evolving degree distribution is then combined with the weak-component criterion to obtain the exact time of the phase transition. The phase-transition time is obtained as a function of the distribution that bounds the degrees. Remarkably, when viewed from the step-polymerization formalism, the new results yield Flory-Stockmayer gelation theory and generalize it to a broader scope.
Warping the Weak Gravity Conjecture
Directory of Open Access Journals (Sweden)
Karta Kooner
2016-08-01
Full Text Available The Weak Gravity Conjecture, if valid, rules out simple models of Natural Inflation by restricting their axion decay constant to be sub-Planckian. We revisit stringy attempts to realise Natural Inflation, with a single open string axionic inflaton from a probe D-brane in a warped throat. We show that warped geometries can allow the requisite super-Planckian axion decay constant to be achieved, within the supergravity approximation and consistently with the Weak Gravity Conjecture. Preliminary estimates of the brane backreaction suggest that the probe approximation may be under control. However, there is a tension between large axion decay constant and high string scale, where the requisite high string scale is difficult to achieve in all attempts to realise large field inflation using perturbative string theory. We comment on the Generalized Weak Gravity Conjecture in the light of our results.
Energy Technology Data Exchange (ETDEWEB)
Ledoux, X.
1995-04-01
We are studying the formation and the de-excitation of hot nuclei created in reactions induced by light high energy projectiles. These reactions, described in a two step model: an intranuclear cascade followed by an evaporation phase, produce nuclei in which the collective modes (compression, rotation, deformation) are weakly excited. By measuring the neutron multiplicities, event by event with ORION, and the light charged particle energies and multiplicities one can evaluate the excitation energy distribution of the nuclei. At the same time, theoretical simulations are carried out using the intranuclear cascade code developed by J. Cugnon and the statistical de-excitation code GEMINI. The good agreement with experimental results indicate that 10% of the p-nucleus interactions lead to temperatures greater than 5 MeV. The observation of the fission of a nucleus with a temperature close to 5 MeV shows that the nucleus behaves as a set of bound nucleons and, that the temperature stability limit is not yet reached. The observed decline of fission probability at high excitation energies is most likely to be correlated to the appearance of an other de-excitation process (evaporation residues emission or multifragmentation) which could not be experimentally detected. Finally, in the last chapter, we briefly present the principle of transmutation for long-lived nuclear waste with a proton accelerator and underline the interest of the present work in such studies. (author). 54 refs., 80 figs., 13 tabs.
Interpolation for weak Orlicz spaces with condition
Institute of Scientific and Technical Information of China (English)
JIAO Yong; PENG LiHua; LIU PeiDe
2008-01-01
An interpolation theorem for weak Orlicz spaces generalized by N-functions satisfying M△ condition is given.It is proved to be true for weak Orlicz martingale spaces by weak atomic decomposition of weak Hardy martingale spaces.And applying the interpolation theorem,we obtain some embedding relationships among weak Orlicz martingale spaces.
Synthesis of superheavy nuclei: Obstacles and opportunities
Directory of Open Access Journals (Sweden)
Zagrebaev V.I.
2015-01-01
Full Text Available There are only 3 methods for the production of heavy and superheavy (SH nuclei, namely, fusion reactions, a sequence of neutron capture and beta(- decay and multinucleon transfer reactions. Low values of the fusion cross sections and very short half-lives of nuclei with Z<120 put obstacles in synthesis of new elements. At the same time, an important area of SH isotopes located between those produced in the cold and hot fusion reactions remains unstudied yet. This gap could be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. New neutron-enriched isotopes of SH elements may be produced with the use of a 48Ca beam if a 250Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible beta(+ decay of 291114 and 287112 nuclei formed in this reaction with a cross section of about 0.8 pb. A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced by using the pulsed nuclear reactors of the next generation only if the neutron fluence per pulse will be increased by about three orders of magnitude. Multinucleon transfer processes look quite promising for the production and study of neutron-rich heavy nuclei located in upper part of the nuclear map not reachable by other reaction mechanisms. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N=126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei allows one to plan such experiments at currently available accelerators.
Energy Technology Data Exchange (ETDEWEB)
Hartmann, T.; Volz, S.; Babilon, M.; Mohr, P.; Vogt, K.; Zilges, A
2003-05-19
Recently the importance of small contributions of electric dipole strength near the particle threshold to the production rates of atomic nuclei has become evident. Prior estimates concentrated on the Giant Dipole Resonance (GDR) which dominates photoabsorption in all nuclei. Extrapolations to smaller excitation energies were assumed to be sufficiently reliable. However, new measurements reveal that collective E1 strength can be found in the threshold region.
Statistical Properties of Quantum Spectra in Nuclei
Institute of Scientific and Technical Information of China (English)
2001-01-01
Some aspects of quantum chaos in a finite system have been studied based on the analysis of statistical behaviors of quantum spectrum in nuclei. The experiment data show the transition from order to chaos with increasing excitation energy in spherical nuclei. The dependence of the order to chaos transition on nuclear deformation and nuclear rotating is described. The influence of pairing effect on the order to chaos transition is also discussed. Some important experiment phenomena in nuclear
Shell structure of nuclei far from stability
Grawe, H
2001-01-01
The experimental status of shell structure studies in medium-heavy nuclei far off the line of beta-stability is reviewed. Experimental techniques, signatures for shell closure and expectations for future investigations are discussed for the key regions around sup 4 sup 8 sup , sup 5 sup 6 Ni, sup 1 sup 0 sup 0 Sn for proton rich nuclei and the neutron-rich N=20 isotones, Ca, Ni and Sn isotopes.
Masses of nuclei close to the dripline
Herfurth, F; Beck, D; Blaum, K; Bollen, G; Kellerbauer, A G; Kluge, H J; Lunney, M D; Rodríguez, D; Schwarz, S; Sikler, G; Weber, C
2003-01-01
Mass measurements of radioactive nuclides are one of the cornerstones of our understanding of the nucleus. The Penning trap spectrometer ISOLTRAP performs direct mass measurements far away from the valley of stability, as well as high-precision measurements of key nuclei to anchor long decay chains. Both schemes provide valuable information on the dripline itself and on nuclei in its close vicinity. (10 refs) .
Realistic level density calculation for heavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Cerf, N. [Institut de Physique Nucleaire, Orsay (France); Pichon, B. [Observatoire de Paris, Meudon (France); Rayet, M.; Arnould, M. [Institut d`Astronomie et d`Astrophysique, Bruxelles (Belgium)
1994-12-31
A microscopic calculation of the level density is performed, based on a combinatorial evaluation using a realistic single-particle level scheme. This calculation relies on a fast Monte Carlo algorithm, allowing to consider heavy nuclei (i.e., large shell model spaces) which could not be treated previously in combinatorial approaches. An exhaustive comparison of the predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented.
Electromagnetism in nonleptonic weak interactions
Energy Technology Data Exchange (ETDEWEB)
Ecker, G. E-mail: ecker@doppler.thp.univie.ac.at; Isidori, G.; Mueller, G.; Neufeld, H.; Pich, A
2000-12-18
We construct a low-energy effective field theory that permits the complete treatment of isospin-breaking effects in nonleptonic weak interactions to next-to-leading order. To this end, we enlarge the chiral Lagrangian describing strong and {delta}S=1 weak interactions by including electromagnetic terms with the photon as additional dynamical degree of freedom. The complete and minimal list of local terms at next-to-leading order is given. We perform the one-loop renormalization at the level of the generating functional and specialize to K{yields}{pi}{pi} decays.
Cosmology and the weak interaction
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))
1989-12-01
The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.
Weak disorder in Fibonacci sequences
Energy Technology Data Exchange (ETDEWEB)
Ben-Naim, E [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Krapivsky, P L [Department of Physics and Center for Molecular Cybernetics, Boston University, Boston, MA 02215 (United States)
2006-05-19
We study how weak disorder affects the growth of the Fibonacci series. We introduce a family of stochastic sequences that grow by the normal Fibonacci recursion with probability 1 - {epsilon}, but follow a different recursion rule with a small probability {epsilon}. We focus on the weak disorder limit and obtain the Lyapunov exponent that characterizes the typical growth of the sequence elements, using perturbation theory. The limiting distribution for the ratio of consecutive sequence elements is obtained as well. A number of variations to the basic Fibonacci recursion including shift, doubling and copying are considered. (letter to the editor)
Energy Technology Data Exchange (ETDEWEB)
Lima, V
2004-10-01
In a towing mode reaction the projectile picks up a nucleon from the target and then breaks up by emitting one nucleon. The velocity of the emitted nucleon is boosted by the projectile velocity, leading to the emission of the nucleon in a narrow cone around the direction of the scattered projectile. This work is dedicated to the towing mode in halo nuclei such as Be{sup 11}. The experiment was performed at Ganil facility by bombarding a Ti{sup 48} target with a 41 MeV per nucleon Be{sup 11} beam, the reaction studied is: Ti{sup 48}(Be{sup 11}, Be{sup 10} + n + {gamma}). The first chapter reviews the various nuclear processes that take place when 2 nuclei collide with a particular attention for the towing mode. The second chapter is dedicated to solving the time dependant Schroedinger equation (TDSE) in order to assess the impact of various parameters such as incident energy, target charge or the linking energy of the nucleon, on the towing mode reaction. The third chapter deals with the experimental equipment and set-up including detectors and the data acquisition system. Computerized simulations have been performed in order to assess the efficiency of the detecting system, they are presented in the fourth chapter. A comparison between experimental data and the results from TDSE solving, concerning the energy spectra of the emitted particles, has enabled the author to deduce the spectroscopic factors for the different contributions of the fundamental state of Be{sup 11}, they are presented in the last chapter. The cross-sections of the towing mode are of the magnitude of several tens of milli-barns in the case of weakly bound nuclei like Be{sup 11} which make it an efficient tool to study intern structure of nuclei. (A.C.)
The fate of the weakly-bound $\\psi(2s)$ in nuclear matter
Durham, J Matthew
2014-01-01
We present new results of a completed PHENIX analysis of $\\psi(2s)$ modification at midrapidity in 200 GeV $d+$Au collisions. Strong suppression of the $\\psi(2s)$ relative to the $J/\\psi$ is observed. This difference in suppression is too strong to be explained by breakup effects in the nucleus, due to the short nuclear crossing times at RHIC. Given the observation of long range correlations in $p(d)+$A collisions at LHC and RHIC, consistent with hydrodynamics, these observations raise interesting questions about the mechanism of $\\psi(2s)$ suppression when it is produced in a nuclear target. In 2012, the PHENIX Collaboration installed the FVTX, a silicon tracker that precisely measures muon pair opening angles prior to any multiple scattering in the muon arm absorber, and thus provides an improved dimuon mass resolution. The FVTX allows the $\\psi(2s)$ to be separated from the $J/\\psi$ at forward and backward rapidity for the first time at RHIC. We present new results on $\\psi(2s)$ production in $p+p$ collisi...
Modelling excited states of weakly bound complexes with density functional theory.
Briggs, Edward A; Besley, Nicholas A
2014-07-28
The binding within the ethene-argon and formaldehyde-methane complexes in the ground and electronically excited states is studied with equation of motion coupled cluster theory (EOM-CCSD), second-order Møller-Plesset perturbation theory (MP2) and density functional theory with dispersion corrections (DFT-D). Electronically excited states are studied within MP2 and Kohn-Sham DFT formalisms by exploiting a procedure called the maximum overlap method that allows convergence of the relevant self-consistent field equations to higher energy (or excited state) solutions. Potential energy curves computed using MP2 are in good agreement with the EOM-CCSD calculations for both the valence and Rydberg excited states studied. For the DFT-D approach, B3LYP-D3/aug-cc-pVTZ calculations are found to be in agreement with EOM-CCSD for the ground and valence excited states. However, for the π3s Rydberg state of ethene-argon and the n3s Rydberg state of formaldehyde-methane significant deviation is observed, and this disagreement with EOM-CCSD is present for a variety of DFT-D based approaches. Variation of the parameters within the D2 dispersion correction results in closer agreement with EOM-CCSD for the Rydberg states but demonstrates that a different parameterisation from the ground state is required for these states. This indicates that time-dependent density functional theory calculations based upon a DFT-D reference may be satisfactory for excitations to valence states, but will potentially be inaccurate for excitations to Rydberg states, or more generally states where the nature of the electron density is significantly different from the ground state.
Probing transfer to unbound states of the ejectile with weakly bound 7Li on 93Nb
Pandit, S K; Mahata, K; Keeley, N; Parkar, V V; Rout, P C; Martel, I; Palshetkar, C S; Kumar, A; Ramachandran, K; Patale, P; Chatterjee, A; Kailas, S
2016-01-01
The two-step process of transfer followed by breakup is explored by measuring a rather complete set of exclusive data for reaction channels populating states in the ejectile continua of the $^7$Li+$^{93}$Nb system at energies close to the Coulomb barrier. The cross sections for $\\alpha+\\alpha$ events from one proton pickup were found to be smaller than those for $\\alpha+d$ events from one neutron stripping and $\\alpha+t$ events from direct breakup of $^7$Li. Coupled channels Born approximation and continuum discretized coupled channels calculations describe the data well and support the conclusion that the $\\alpha+d$ and $\\alpha+\\alpha$ events are produced by direct transfer to unbound states of the ejectile.
Bekenstein entropy bound for weakly-coupled field theories on a 3-sphere
Myers, Joyce C.
2012-01-01
We calculate the high temperature partition functions for SU(N-c) orU(N-c) gauge theories in the deconfined phase on 51 x 53, with scalars, vectors, and/or fermions in an at representation, at zero 't Hooft coupling and large N-c, using, analytical methods. We compare these with numerical results wh
Suppression of the weakly-bound excited Υ states in HI collisions
2011-01-01
CMS was able to observe for the first time this phenomenon by comparing last year’s HI collisions at 2.76 TeV/nucleon with the pp collisions that took place at the same energy earlier this year. For more, visit: http://bit.ly/Y-melting
Optical Potential Parameters of Weakly Bound Nuclear System 17F+13C
Institute of Scientific and Technical Information of China (English)
2008-01-01
<正>It is well known that optical potential is a basic ingredient in the study of nucleus-nucleus collisions. With the application of radioactive ion beams (RIB), extracting the optical potential parameters for the
Mutual information challenges entropy bounds
Casini, H
2006-01-01
We consider some formulations of the entropy bounds at the semiclassical level. The entropy S(V) localized in a region V is divergent in quantum field theory (QFT). Instead of it we focus on the mutual information I(V,W)=S(V)+S(W)-S(V U W) between two different non-intersecting sets V and W. This is a low energy quantity, independent of the regularization scheme. In addition, the mutual information is bounded above by twice the entropy corresponding to the sets involved. Calculations of I(V,W) in QFT show that the entropy in empty space cannot be renormalized to zero, and must be actually very large. We find that this entropy due to the vacuum fluctuations violates the FMW bound in Minkowski space. The mutual information also gives a precise, cutoff independent meaning to the statement that the number of degrees of freedom increases with the volume in QFT. If the holographic bound holds, this points to the essential non locality of the physical cutoff. Violations of the Bousso bound would require conformal th...
The cohomology group of weak entwining structure
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this paper, we reveal that a weak entwining structure admits a rich cohomology theory. As an application we compute the cohomology of a weak entwining structure associated to a weak coalgebra-Galois extension.
Bounding the space of holographic CFTs with chaos
Energy Technology Data Exchange (ETDEWEB)
Perlmutter, Eric [Department of Physics, Princeton University,Jadwin Hall, Princeton, NJ 08544 (United States)
2016-10-13
Thermal states of quantum systems with many degrees of freedom are subject to a bound on the rate of onset of chaos, including a bound on the Lyapunov exponent, λ{sub L}≤2π/β. We harness this bound to constrain the space of putative holographic CFTs and their would-be dual theories of AdS gravity. First, by studying out-of-time-order four-point functions, we discuss how λ{sub L}=2π/β in ordinary two-dimensional holographic CFTs is related to properties of the OPE at strong coupling. We then rule out the existence of unitary, sparse two-dimensional CFTs with large central charge and a set of higher spin currents of bounded spin; this implies the inconsistency of weakly coupled AdS{sub 3} higher spin gravities without infinite towers of gauge fields, such as the SL(N) theories. This fits naturally with the structure of higher-dimensional gravity, where finite towers of higher spin fields lead to acausality. On the other hand, unitary CFTs with classical W{sub ∞}[λ] symmetry, dual to 3D Vasiliev or hs[λ] higher spin gravities, do not violate the chaos bound, instead exhibiting no chaos: λ{sub L}=0. Independently, we show that such theories violate unitarity for |λ|>2. These results encourage a tensionless string theory interpretation of the 3D Vasiliev theory.
Second threshold in weak interactions
Veltman, M.J.G.
1977-01-01
The point of view that weak interactions must have a second threshold below 300 – 600 GeV is developed. Above this threshold new physics must come in. This new physics may be the Higgs system, or some other nonperturbative system possibly having some similarities to the Higgs system. The limit of la
Beam splitting on weak illumination.
Snyder, A W; Buryak, A V; Mitchell, D J
1998-01-01
We demonstrate, in both two and three dimensions, how a self-guided beam in a non-Kerr medium is split into two beams on weak illumination. We also provide an elegant physical explanation that predicts the universal character of the observed phenomenon. Possible applications of our findings to guiding light with light are also discussed.
Weak measurements and supraluminal communication
Belinsky, A V
2016-01-01
There is suggested a version of the experiment with a correlated pair of particles in the entangled state. The experiment demonstrates that, in the case of weak and/or non-demolition measurements of one of the particles, it is possible to transmit information with a speed not limited by velocity of light.
Thomys, Janus; Zhang, Xiaohong
2013-01-01
We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983
Eldercare at Home: Bone Weakness
... socialize. This can make exercising fun. If you don't exercise, your bones and muscles will become weak and your chances of falling will increase. Let’s exercise together. I will pick you up and we will go to the mall and walk for a little ...
Submanifolds Weakly Associated with Graphs
Indian Academy of Sciences (India)
A Carriazo; L M Fernández; A Rodríguez-Hidalgo
2009-06-01
We establish an interesting link between differential geometry and graph theory by defining submanifolds weakly associated with graphs. We prove that, in a local sense, every submanifold satisfies such an association, and other general results. Finally, we study submanifolds associated with graphs either in low dimensions or belonging to some special families.
Preliminary Results on the Experimental Investigation of the Structure Functions of Bound Nucleons
Energy Technology Data Exchange (ETDEWEB)
Bodek, Arie [Univ. of Rochester, NY (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-08-01
We present preliminary results on an experimental study of the nuclear modification of the longitudinal ($\\sigma_L$) and transverse ($\\sigma_T$) structure functions of nucleons bound in nuclear targets. The origin of these modifications (commonly referred as as the EMC effect) is not fully understood. Our measurements of R= $\\sigma_L / \\sigma_T$ for nuclei ($R_A$) and for deuterium ($R_D$) indicate that nuclear modifications of the structure functions of bound nucleons are different for the longitudinal and transverse structure functions, and that contrary to expectation from several theoretical models, $R_A< R_D$.
Preliminary Results on the Experimental Investigation of the Structure Functions of Bound Nucleons
Bodek, A
2015-01-01
We present preliminary results on an experimental study of the nuclear modification of the longitudinal ($\\sigma_L$) and transverse ($\\sigma_T$) structure functions of nucleons bound in nuclear targets. The origin of these modifications (commonly referred as as the EMC effect) is not fully understood. Our measurements of R= $\\sigma_L / \\sigma_T$ for nuclei ($R_A$) and for deuterium ($R_D$) indicate that nuclear modifications of the structure functions of bound nucleons are different for the longitudinal and transverse structure functions, and that contrary to expectation from several theoretical models, $R_A< R_D$.
In-medium mathaccent "7016relax K- and eta -meson Interactions and Bound States
Gal, A.; Friedman, E.; Barnea, N.; Cieplý, A.; Mareš, J.; Gazda, D.
The role played by subthreshold meson-baryon dynamics is demonstrated in kaonic-atom, Kbar-nuclear and eta-nuclear bound-state calculations within in-medium models of Kbar-N and eta-N interactions. New analyses of kaonic atom data reveal appreciable multi-nucleon contributions. Calculations of eta-nuclear bound states show, in particular, that the eta-N scattering length is not a useful indicator of whether or not eta mesons bind in nuclei nor of the widths anticipated for such states.
Improved Range Searching Lower Bounds
DEFF Research Database (Denmark)
Larsen, Kasper Green; Nguyen, Huy L.
2012-01-01
Table of Contents -------------------------------------------------------------------------------- In this paper we present a number of improved lower bounds for range searching in the pointer machine and the group model. In the pointer machine, we prove lower bounds for the approximate simplex...... range reporting problem. In approximate simplex range reporting, points that lie within a distance of ε ⋅ Diam(s) from the border of a query simplex s, are free to be included or excluded from the output, where ε ≥ 0 is an input parameter to the range searching problem. We prove our lower bounds...... by constructing a hard input set and query set, and then invoking Chazelle and Rosenberg's [CGTA'96] general theorem on the complexity of navigation in the pointer machine. For the group model, we show that input sets and query sets that are hard for range reporting in the pointer machine (i.e. by Chazelle...
Experimental activation of bound entanglement.
Kaneda, Fumihiro; Shimizu, Ryosuke; Ishizaka, Satoshi; Mitsumori, Yasuyoshi; Kosaka, Hideo; Edamatsu, Keiichi
2012-07-27
Entanglement is one of the essential resources in quantum information and communication technology (QICT). The entanglement thus far explored and applied to QICT has been pure and distillable entanglement. Yet, there is another type of entanglement, called "bound entanglement," which is not distillable by local operations and classical communication. We demonstrate the experimental "activation" of the bound entanglement held in the four-qubit Smolin state, unleashing its immanent entanglement in distillable form, with the help of auxiliary two-qubit entanglement and local operations and classical communication. We anticipate that it opens the way to a new class of QICT applications that utilize more general classes of entanglement than ever, including bound entanglement.
On the weak project construction cost management
Institute of Scientific and Technical Information of China (English)
高守刚; 姜婧; 李玲
2013-01-01
the weak cost management is the most talked about topics in the weak industry, but also the basis of the weak construction business management and focus. With the increasingly fierce market competition, weak construction enterprises, the competition among enterprises wil gradual y transition from product quality competition to price competition. To strengthen the management of the weak construction enterprises cost, cut public spending ef iciency, improve market competitiveness, wil be the main way most weak construction corporate earnings and long-term business strategy. Based on the to weak project construction cost management based on analysis of the type of project construction costs, and further proposed the weak project construction cost management measures.
Modeling agreement on bounded scales.
Vanbelle, Sophie; Lesaffre, Emmanuel
2017-01-01
Agreement is an important concept in medical and behavioral sciences, in particular in clinical decision making where disagreements possibly imply a different patient management. The concordance correlation coefficient is an appropriate measure to quantify agreement between two scorers on a quantitative scale. However, this measure is based on the first two moments, which could poorly summarize the shape of the score distribution on bounded scales. Bounded outcome scores are common in medical and behavioral sciences. Typical examples are scores obtained on visual analog scales and scores derived as the number of positive items on a questionnaire. These kinds of scores often show a non-standard distribution, like a J- or U-shape, questioning the usefulness of the concordance correlation coefficient as agreement measure. The logit-normal distribution has shown to be successful in modeling bounded outcome scores of two types: (1) when the bounded score is a coarsened version of a latent score with a logit-normal distribution on the [0,1] interval and (2) when the bounded score is a proportion with the true probability having a logit-normal distribution. In the present work, a model-based approach, based on a bivariate generalization of the logit-normal distribution, is developed in a Bayesian framework to assess the agreement on bounded scales. This method permits to directly study the impact of predictors on the concordance correlation coefficient and can be simply implemented in standard Bayesian softwares, like JAGS and WinBUGS. The performances of the new method are compared to the classical approach using simulations. Finally, the methodology is used in two different medical domains: cardiology and rheumatology.
Probing dark matter caustics with weak lensing
Gavazzi, R; Fort, B; Gavazzi, Raphael; Mohayaee, Roya; Fort, Bernard
2006-01-01
Caustics are high-density structures that form frequently in collisionless media. Under self-gravity, cold dark matter flows focus onto caustics which are yet to be resolved in numerical simulations and or observed in the real world. If detected, caustics would provide a strong evidence for dark matter and would rule out alternative models such as those with modified dynamics. Here, we demonstrate how they might be observed in the weak lensing data. We evaluate the shear distortion and show that its radial profile is marked by a characteristic sawtooth pattern due to the caustics in dark matter haloes that form by selfsimilar accretion. We discuss the observational complications, mainly due to the poor knowledge of the virial radii of the haloes and demonstrate that a superposition of about 600 cluster-size haloes would give a signal-to-noise ratio which is sufficiently large for the detection of caustics with ground-based observations. This number is reduced to 200 for space-based observations. These bounds ...
Lower Bounds for Sparse Recovery
Ba, Khanh Do; Price, Eric; Woodruff, David P
2011-01-01
We consider the following k-sparse recovery problem: design an m x n matrix A, such that for any signal x, given Ax we can efficiently recover x' satisfying ||x-x'||_1 <= C min_{k-sparse} x"} ||x-x"||_1. It is known that there exist matrices A with this property that have only O(k log (n/k)) rows. In this paper we show that this bound is tight. Our bound holds even for the more general /randomized/ version of the problem, where A is a random variable and the recovery algorithm is required to work for any fixed x with constant probability (over A).
Variables Bounding Based Retiming Algorithm
Institute of Scientific and Technical Information of China (English)
宫宗伟; 林争辉; 陈后鹏
2002-01-01
Retiming is a technique for optimizing sequential circuits. In this paper, wediscuss this problem and propose an improved retiming algorithm based on variables bounding.Through the computation of the lower and upper bounds on variables, the algorithm can signi-ficantly reduce the number of constraints and speed up the execution of retiming. Furthermore,the elements of matrixes D and W are computed in a demand-driven way, which can reducethe capacity of memory. It is shown through the experimental results on ISCAS89 benchmarksthat our algorithm is very effective for large-scale sequential circuits.
Bounds for Completely Decomposable Jacobians
Duursma, Iwan
2010-01-01
A curve over the field of two elements with completely decomposable Jacobian is shown to have at most six rational points and genus at most 26. The bounds are sharp. The previous upper bound for the genus was 145. We also show that a curve over the field of $q$ elements with more than $q^{m/2}+1$ rational points has at least one Frobenius angle in the open interval $(\\pi/m,3\\pi/m)$. The proofs make use of the explicit formula method.
WEAK REGULARIZATION FOR A CLASS OF ILL-POSED CAUCHY PROBLEMS
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This article is concerned with the ill-posed Cauchy problem associated with a densely defined linear operator A in a Banach space. A family of weak regularizing operators is introduced. If the spectrum of A is contained in a sector of right-half complex plane and its resolvent is polynomially bounded, the weak regularization for such ill-posed Cauchy problem can be shown by using the quasi-reversibility method and regularized semigroups. Finally, an example is given.
Tom W. Bonner Prize in Nuclear Physics Talk: Finding Real Nuclei in Imaginary Time
Pieper, Steven C.
2010-02-01
Ab initio calculations of nuclei treat a nucleus as a system of A nucleons interacting by realistic two- (N ) and three-nucleon (N ) forces. Variational Monte Carlo (VMC) followed by Green's function Monte Carlo (GFMC) is a very successful ab initio method for light nuclei. The VMC gives an upper bound to the true energy of a nucleus for a given Hamiltonian; the closeness of the upper bound to the exact solution of the Schr"odinger equation depends on the physical insight built into the trial wave function, ψT, that is used. GFMC starts with a ψT and, by propagation in imaginary time, allows the exact lowest eigenenergy for a given set of quantum numbers to be computed. The first VMC calculations of nuclei were published in 1981 by Lomnitz-Adler, Pandharipande, and Smith. They were for ^3H and ^4He using the Reid N potential. Six years later, Carlson published the first GFMC calculations of nuclei, again for ^3H and ^4He, but using a slightly-simplified N potential; in the following year he used the full Reid V8 potential. Pudliner, Pandharipande, Carlson, and Wiringa published GFMC calculations of A=6 nuclei in 1995, using the Argonne V18 N potential and the Urbana IX N potential. Since then there has been steady progress in applying GFMC to larger nuclei. This has been from both increasing computer power and new or improved algorithms. The largest computers are increasingly difficult to use efficiently, but, as a result of a SciDAC collaboration, we now get excellent scalability up to 131,000 cores on Argonne's IBM Blue Gene/P. In addition we have found that the GFMC can be used for multiple states with the same quantum numbers. With the Argonne V18 and Illinois N potentials, we obtain an excellent description of the properties of nuclei up to A = 12. I will describe these methods, present recent advances in using the largest computers, and some recent results. )
REGAL: A Regularization based Algorithm for Reinforcement Learning in Weakly Communicating MDPs
Bartlett, Peter L
2012-01-01
We provide an algorithm that achieves the optimal regret rate in an unknown weakly communicating Markov Decision Process (MDP). The algorithm proceeds in episodes where, in each episode, it picks a policy using regularization based on the span of the optimal bias vector. For an MDP with S states and A actions whose optimal bias vector has span bounded by H, we show a regret bound of ~O(HSpAT). We also relate the span to various diameter-like quantities associated with the MDP, demonstrating how our results improve on previous regret bounds.
Electron scattering and reactions from exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Karataglidis, S. [University of Johannesburg, Department of Physics, Auckland Park (South Africa); University of Melbourne, School of Physics, Victoria (Australia)
2017-04-15
The SCRIT and FAIR/ELISe experiments are the first to attempt to measure directly electron scattering form factors from nuclei far from stability. This will give direct information for the (one-body) charge densities of those systems, about which there is little information available. The SCRIT experiment will be taking data for medium-mass exotic nuclei, while the electron-ion collider at ELISe, when constructed, will be able to measure form factors for a wide range of exotic nuclei, as available from the radioactive ion beams produced by the FAIR experiment. Other facilities are now being proposed, which will also consider electron scattering from exotic nuclei at higher energies, to study short-range correlations in exclusive reactions. This review will consider all available information concerning the current status (largely theoretical) of electron scattering from exotic nuclei and, where possible, complement such information with equivalent information concerning the neutron densities of those exotic systems, as obtained from intermediate energy proton scattering. The issue of long- and short-range correlations will be discussed, and whether extending such studies to the exotic sector will elicit new information. (orig.)
Pollen grains are efficient cloud condensation nuclei
Energy Technology Data Exchange (ETDEWEB)
Pope, F D, E-mail: fdp21@cam.ac.uk [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)
2010-10-15
This letter presents a laboratory study investigating the ability of pollen grains to act as cloud condensation nuclei. The hygroscopicity of pollen is measured under subsaturated relative humidities using an electrodynamic balance. It is found, along with other results, that pollen exhibits bulk uptake of water under subsaturated conditions. Through the use of an environmental scanning electron microscope it was observed that the surface of pollen is wettable at high subsaturated humidities. The hygroscopic response of the pollen to subsaturated relative humidities is parametrized using {kappa}-Koehler theory and values of the parameter {kappa} for pollen are between 0.05 and 0.1. It is found that while pollen grains are only moderately hygroscopic, they can activate at critical supersaturations of 0.001% and lower, and thus pollen grains will readily act as cloud condensation nuclei. While the number density of pollen grains is too low for them to represent a significant global source of cloud condensation nuclei, the large sizes of pollen grains suggest that they will be an important source of giant cloud condensation nuclei. Low temperature work using the environmental scanning electron microscope indicated that pollen grains do not act as deposition ice nuclei at temperatures warmer than - 15 deg. C.
Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution
Keegan, Liam; Mazeliauskas, Aleksas; Teaney, Derek
2016-01-01
We use effective kinetic theory, accurate at weak coupling, to simulate the pre-equilibrium evolution of transverse energy and flow perturbations in heavy-ion collisions. We provide a Green function which propagates the initial perturbations to the energy-momentum tensor at a time when hydrodynamics becomes applicable. With this map, the complete pre-thermal evolution from saturated nuclei to hydrodynamics can be modelled in a perturbatively controlled way.
Performance analysis of stochastic gradient algorithms under weak conditions
Institute of Scientific and Technical Information of China (English)
DING Feng; YANG HuiZhong; LIU Fei
2008-01-01
By using the stochastic martingale theory, convergence properties of stochastic gradient (SG) identification algorithms are studied under weak conditions. The analysis indicates that the parameter estimates by the SG algorithms consistently converge to the true parameters, as long as the information vector is persistently exciting (i.e., the data product moment matrix has a bounded condition number) and that the process noises are zero mean and uncorrelated. These results remove the strict assumptions, made in existing references, that the noise variances and high-order moments exist, and the processes are stationary and ergodic and the strong persistent excitation condition holds. This contribution greatly relaxes the convergence conditions of stochastic gradient algorithms. The simulation results with bounded and unbounded noise variances confirm the convergence conclusions proposed.
Efficient topological compilation for a weakly integral anyonic model
Bocharov, Alex; Cui, Xingshan; Kliuchnikov, Vadym; Wang, Zhenghan
2016-01-01
A class of anyonic models for universal quantum computation based on weakly-integral anyons has been recently proposed. While universal set of gates cannot be obtained in this context by anyon braiding alone, designing a certain type of sector charge measurement provides universality. In this paper we develop a compilation algorithm to approximate arbitrary n -qutrit unitaries with asymptotically efficient circuits over the metaplectic anyon model. One flavor of our algorithm produces efficient circuits with upper complexity bound asymptotically in O (32 nlog1 /ɛ ) and entanglement cost that is exponential in n . Another flavor of the algorithm produces efficient circuits with upper complexity bound in O (n 32 nlog1 /ɛ ) and no additional entanglement cost.
Limit on right hand weak coupling parameters from inelastic neutrino interactions
Abramowicz, H; De Groot, J G H; Dydak, F; Eisele, F; Flottmann, T; Geweniger, C; Guyot, C; He, J T; Klasen, H P; Kleinknecht, K; Knobloch, J; Królikowski, J; May, J; Merlo, J P; Palazzi, P; Para, A; Peyaud, B; Pszola, B; Rander, J; Ranjard, F; Renk, B; Rothberg, J E; Ruan, T Z; Schlatter, W D; Schuller, J P; Steinberger, J; Taureg, H; Tittel, K; Turlay, René; von Rüden, Wolfgang; Wahl, H; Willutzki, H J; Wotschack, J; Wu, W M
1982-01-01
Right handed weak quark current coupled to the usual left handed weak lepton current would be seen in inclusive antineutrino scattering on nuclei as a contribution at large y with the quark (not antiquark) structure function. The authors do not see such a term, and can therefore put an upper limit on the relative strengths of such right handed currents: rho /sup 2/= sigma /sub R// sigma /sub L/ <0.009, 90% confidence. This measurement puts limits on the mixing angle of left- right symmetric models. In distinction to similar limits derived from muon decay or beta decay, our limits are also valid if the right handed neutrino is heavy.
Market access through bound tariffs
DEFF Research Database (Denmark)
Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal
2010-01-01
WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings on t...
Market Access through Bound Tariffs
DEFF Research Database (Denmark)
Sala, Davide; Schröder, Philipp J.H.; Yalcin, Erdal
WTO negotiations deal predominantly with bound - besides applied - tariff rates. But, how can reductions in tariffs ceilings, i.e. tariff rates that no exporter may ever actually be confronted with, generate market access? The answer to this question relates to the effects of tariff bindings on t...
Bounded Densities and Their Derivatives
DEFF Research Database (Denmark)
Kozine, Igor; Krymsky, V.
2009-01-01
This paper describes how one can compute interval-valued statistical measures given limited information about the underlying distribution. The particular focus is on a bounded derivative of a probability density function and its combination with other available statistical evidence for computing ...
Wronskian Method for Bound States
Fernandez, Francisco M.
2011-01-01
We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider…
Variational Bounds for Creeping Composites
Procházka, Petr
2010-05-01
In the paper time dependent variational bounds are derived based on Extended Hashin-Shtrikman variational principles. Direct calculation leads to explicit formulas to be presented in the text. For various mechanical properties easy coding in Excel, say, can be used and verification of accuracy for numerical procedures is available using the derived formulas.
Pieter Paul Rubens, "Prometheus Bound."
Shoemaker, Marla K.
1986-01-01
Provides a full-color reproduction of Pieter Paul Rubens' painting, "Prometheus Bound," and a lesson plan for using it with students in grades 10 through 12. The goal of the lesson is to introduce students to the techniques of design and execution used by Rubens. (JDH)
Carvalho, Catarina; MarkoviÄ, Petar; Maróti, Miklós
2007-01-01
We prove that the constraint languages invariant under a short sequence of J\\'onsson terms (containing at most three non-trivial ternary terms) are tractable by showing that they have bounded width. This improves the previous result by Kiss and Valeriote and presents some evidence that the Larose-Zadori conjecture holds in the congruence-distributive case.
Pieter Paul Rubens, "Prometheus Bound."
Shoemaker, Marla K.
1986-01-01
Provides a full-color reproduction of Pieter Paul Rubens' painting, "Prometheus Bound," and a lesson plan for using it with students in grades 10 through 12. The goal of the lesson is to introduce students to the techniques of design and execution used by Rubens. (JDH)
A Functional Calculus for Quotient Bounded Operators
Directory of Open Access Journals (Sweden)
Sorin Mirel Stoian
2006-12-01
Full Text Available If (X, P is a sequentially locally convex space, then a quotient bounded operator T beloging to QP is regular (in the sense of Waelbroeck if and only if it is a bounded element (in the sense of Allan of algebra QP. The classic functional calculus for bounded operators on Banach space is generalized for bounded elements of algebra QP.
Chemical Properties of Dipole-Bound Negative Ions
Liu, Y.
2005-05-01
In dipole bound negative ions the extra electron is weakly bound by the dipole potential of the neutral molecule in a diffuse orbital localized near the positive end of the dipole. In consequence, it is reasonable to expect that such species will be highly reactive and possess chemical properties similar to those of Rydberg atoms, which also contain a weakly-bound electron in a diffuse orbital. These properties are being examined using a negative ion Penning trap. Data for electron transfer in collisions with attaching targets such as SF6 show that the rate constants for this process are large, ˜ 10-7 cm^3 s-1, and similar to those for free electron attachment. This suggests that collisions can be described in terms of an essentially-free electron model. This is further reinforced by the observation that rotational energy transfer in collisions with polar molecules can lead to rapid electron detachment, again with large rate constants of ˜ 10 -7 cm^3 s-1. Results for several target species will be presented and discussed in light of a free electron model.
Weakly Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws
Chen, Gui-Qiang; Zhang, Yongqian
2012-01-01
We establish an $L^1$-estimate to validate the weakly nonlinear geometric optics for entropy solutions of nonlinear hyperbolic systems of conservation laws with arbitrary initial data of small bounded variation. This implies that the simpler geometric optics expansion function can be employed to study the properties of general entropy solutions to hyperbolic systems of conservation laws. Our analysis involves new techniques which rely on the structure of the approximate equations, besides the properties of the wave-front tracking algorithm and the standard semigroup estimates.
The Scattering of Fast Nucleons from Nuclei
Kerman, A. K.; McManus, H.; Thaler, R. M.
2000-04-01
The formal theory of the scattering of high-energy nucleons by nuclei is developed in terms of the nucleon-nucleon scattering amplitude. The most important approximations necessary to make numerical calculation feasible are then examined. The optical model potential is derived on this basis and compared with the optical model parameters found from experiment. The elastic scattering and polarization of nucleons from light nuclei is predicted and compared with experiment. The effect of nuclear correlations is discussed. The polarization of inelastically scattered nucleons is discussed and predictions compared with experiments. To within the validity of the approximations the experimental data on the scattering of nucleons from nuclei at energies above ˜100 Mev appears to be consistent with the theory.
The scattering of fast nucleons from nuclei
Energy Technology Data Exchange (ETDEWEB)
Kerman, A. K. [Massachusetts Institute of Technology, Cambridge, Massachusetts (United States); McManus, H. [Chalk River Laboratory, Chalk River, Ontario, (Canada); Thaler, R. M. [Los Alamos Scientific Laboratory, Los Alamos, New Mexico (United States)
2000-04-10
The formal theory of the scattering of high-energy nucleons by nuclei is developed in terms of the nucleon nucleon scattering amplitude. The most important approximations necessary to make numerical calculation feasible are then examined. The optical model potential is derived on this basis and compared with the optical model parameters found from experiment. The elastic scattering and polarization of nucleons from light nuclei is predicted and compared with experiment. The effect of nuclear correlations is discussed. The polarization of inelastically scattered nucleons is discussed and predictions compared with experiments. To within the validity of the approximations the experimental data on the scattering of nucleons from nuclei at energies above {approx}100 Mev appears to be consistent with the theory. (c) 2000 Academic Press, Inc.
Nucleon localization in light and heavy nuclei
Zhang, C L; Nazarewicz, W
2016-01-01
An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate $\\alpha$-cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. Using the spatial nucleon localization measure, we investigate the cluster structures in deformed light nuclei and study the emergence of fragments in fissioning heavy nuclei. To illustrate basic concepts of nucleon localization, we employ the deformed harmonic oscillator model. Realistic calculations are carried out using self-consistent nuclear density functional theory with quantified energy density functionals optimized for fission studies. We study particle densities and spatial nucleon localization distributions for deformed cluster configurations of $^{8}$Be and $^{20}$Ne, and also along...
Reflections on cavitation nuclei in water
DEFF Research Database (Denmark)
Mørch, Knud Aage
2007-01-01
The origin of cavitation bubbles, cavitation nuclei, has been a subject of debate since the early years of cavitation research. This paper presents an analysis of a representative selection of experimental investigations of cavitation inception and the tensile strength of water. At atmospheric...... to explaining why the tensile strength of water varies so dramatically between the experiments reported. A model for calculation of the critical pressure of skin-covered free gas bubbles as well as that of interfacial gaseous nuclei covered by a skin is presented. This model is able to bridge the apparently...... pressure, the possibility of stabilization of free gas bubbles by a skin has been documented, but only within a range of bubble sizes that makes them responsible for tensile strengths up to about 1.5 bar, and values reaching almost 300 bar have been measured. However, cavitation nuclei can also be harbored...
Alpha-cluster model of atomic nuclei
Energy Technology Data Exchange (ETDEWEB)
Sosin, Zbigniew; Kallunkathariyil, Jinesh [Jagiellonian University, M. Smoluchowski Institute of Physics, Krakow (Poland); Blocki, Jan [NCBJ, Theoretical Physics Division (BP2), Swierk (Poland); Lukasik, Jerzy; Pawlowski, Piotr [IFJ PAN, Krakow (Poland)
2016-05-15
The description of a nuclear system in its ground state and at low excitations based on the equation of state (EoS) around normal density is presented. In the expansion of the EoS around the saturation point, additional spin polarization terms are taken into account. These terms, together with the standard symmetry term, are responsible for the appearance of the α-like clusters in the ground-state configurations of the N=Z even-even nuclei. At the nuclear surface these clusters can be identified as alpha particles. A correction for the surface effects is introduced for atomic nuclei. Taking into account an additional interaction between clusters the binding energies and sizes of the considered nuclei are very accurately described. The limits of the EoS parameters are established from the properties of the α, {sup 3}He and t particles. (orig.)
Shape phase mixing in critical point nuclei
Budaca, R
2016-01-01
Spectral properties of nuclei near the critical point of the quantum phase transition between spherical and axially symmetric shapes are studied in a hybrid collective model which combines the $\\gamma$-stable and $\\gamma$-rigid collective conditions through a rigidity parameter. The model in the lower and upper limits of the rigidity parameter recovers the X(5) and X(3) solutions respectively, while in the equally mixed case it corresponds to the X(4) critical point symmetry. Numerical applications of the model on nuclei from regions known for critical behavior reveal a sizable shape phase mixing and its evolution with neutron or proton numbers. The model also enables a better description of energy spectra and electromagnetic transitions for these nuclei.
Statistical ensembles and fragmentation of finite nuclei
Das, P.; Mallik, S.; Chaudhuri, G.
2017-09-01
Statistical models based on different ensembles are very commonly used to describe the nuclear multifragmentation reaction in heavy ion collisions at intermediate energies. Canonical model results are more appropriate for finite nuclei calculations while those obtained from the grand canonical ones are more easily calculable. A transformation relation has been worked out for converting results of finite nuclei from grand canonical to canonical and vice versa. The formula shows that, irrespective of the particle number fluctuation in the grand canonical ensemble, exact canonical results can be recovered for observables varying linearly or quadratically with the number of particles. This result is of great significance since the baryon and charge conservation constraints can make the exact canonical calculations extremely difficult in general. This concept developed in this work can be extended in future for transformation to ensembles where analytical solutions do not exist. The applicability of certain equations (isoscaling, etc.) in the regime of finite nuclei can also be tested using this transformation relation.
Nuclei of Taxus baccata: Flavanols Linked to Chromatin Remodeling Factors
Directory of Open Access Journals (Sweden)
Walter Feucht
2009-01-01
Full Text Available Microscopic studies of young needles and shoot tips from Taxus baccata showed that flavanols are localized in the nuclei. This observation is based on the histochemical staining of flavanols with the DMACA reagent. The colour that is obtained with this reagent varies from pale to deep blue, depending on the amount of flavanols. This study is focused on nondifferentiated cell lineages and on differentiating cells. The key point to note is that all nuclei of a cell lineage showed a uniform DMACA staining pattern based on the amount and structural appearence of nuclear flavanols. This points to transcriptional and epigenetic programming. However, comparing various cell lineages from different shoot tips and needles revealed a lineage-specific expression of nuclear flavanols. This result implied that both positional and developmental signals from neighbouring cells were involved in the nuclear flavanol binding of lineages. The cells of a developmentally advanced lineage loose their intimate contact and, then, they separate from each other to undergo an autonomous, individual sequence of differentiation. This in turn was accompanied by differences in the nuclear flavanol patterns of the single cells. Investigating different mitotic stages revealed a wide spectrum in flavanol staining intensities of the chromosomes. These observations should be linked to UV-VIS spectroscopical kinetic results indicating that nuclear flavanols bound to histones are involved in epigenetically regulated modification of chromatin. The kinetic studies show that catechin is relatively rapidly degraded by oxygen in the presence of Mg2+-ions. However, this degradation reaction is strongly inhibited when histone proteins were added. This behaviour is a clear indication that coregulatory interactions exist between catechin and histones.