Connection between strong and weak coupling in the mean spherical model in 1 + 1 dimensions
International Nuclear Information System (INIS)
Banks, J.L.
1980-01-01
I extend the strong-coupling expansion obtained by Srednicki, for the β-function of the mean spherical model in 1 + 1 dimensions, in the hamiltonian formulation. I use ordinary and two-point Pade approximants to extrapolate this result to weak coupling. I find a reasonably smooth connection between strong and weak coupling, and good numerical agreement with the exact solution. (orig.)
Weak coupling polaron and Landau-Zener scenario: Qubits modeling
Jipdi, M. N.; Tchoffo, M.; Fokou, I. F.; Fai, L. C.; Ateuafack, M. E.
2017-06-01
The paper presents a weak coupling polaron in a spherical dot with magnetic impurities and investigates conditions for which the system mimics a qubit. Particularly, the work focuses on the Landau-Zener (LZ) scenario undergone by the polaron and derives transition coefficients (transition probabilities) as well as selection rules for polaron's transitions. It is proven that, the magnetic impurities drive the polaron to a two-state superposition leading to a qubit structure. We also showed that the symmetry deficiency induced by the magnetic impurities (strong magnetic field) yields to the banishment of transition coefficients with non-stacking states. However, the transition coefficients revived for large confinement frequency (or weak magnetic field) with the orbital quantum numbers escorting transitions. The polaron is then shown to map a qubit independently of the number of relevant states with the transition coefficients lifted as LZ probabilities and given as a function of the electron-phonon coupling constant (Fröhlich constant).
From strong to weak coupling in holographic models of thermalization
Energy Technology Data Exchange (ETDEWEB)
Grozdanov, Sašo; Kaplis, Nikolaos [Instituut-Lorentz for Theoretical Physics, Leiden University,Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Starinets, Andrei O. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)
2016-07-29
We investigate the analytic structure of thermal energy-momentum tensor correlators at large but finite coupling in quantum field theories with gravity duals. We compute corrections to the quasinormal spectra of black branes due to the presence of higher derivative R{sup 2} and R{sup 4} terms in the action, focusing on the dual to N=4 SYM theory and Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators leading to the breakdown of hydrodynamic description at a coupling-dependent critical value of the wave-vector. The dependence of the critical wave vector on the coupling implies that the range of validity of the hydrodynamic description increases monotonically with the coupling. The behavior of the quasinormal spectrum at large but finite coupling may be contrasted with the known properties of the hierarchy of relaxation times determined by the spectrum of a linearized kinetic operator at weak coupling. We find that the ratio of a transport coefficient such as viscosity to the relaxation time determined by the fundamental non-hydrodynamic quasinormal frequency changes rapidly in the vicinity of infinite coupling but flattens out for weaker coupling, suggesting an extrapolation from strong coupling to the kinetic theory result. We note that the behavior of the quasinormal spectrum is qualitatively different depending on whether the ratio of shear viscosity to entropy density is greater or less than the universal, infinite coupling value of ℏ/4πk{sub B}. In the former case, the density of poles increases, indicating a formation of branch cuts in the weak coupling limit, and the spectral function shows the appearance of narrow peaks. We also discuss the relation of the viscosity-entropy ratio to conjectured bounds on relaxation time in quantum systems.
Cranking model interpretation of weakly coupled bands in Hg isotopes
International Nuclear Information System (INIS)
Guttormsen, M.; Huebel, H.
1982-01-01
The positive-parity yrast states of the transitional sup(189-198)Hg isotopes are interpreted within the Bengtsson and Frauendorf version of the cranking model. The very sharp backbendings can be explained by small interaction matrix elements between the ground and s-bands. The experimentally observed large aligned angular momenta and the low band-crossing frequencies are well reproduced in the calculations. (orig.)
The angular structure of jet quenching within a hybrid strong/weak coupling model
Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2017-08-01
Building upon the hybrid strong/weak coupling model for jet quenching, we incorporate and study the effects of transverse momentum broadening and medium response of the plasma to jets on a variety of observables. For inclusive jet observables, we find little sensitivity to the strength of broadening. To constrain those dynamics, we propose new observables constructed from ratios of differential jet shapes, in which particles are binned in momentum, which are sensitive to the in-medium broadening parameter. We also investigate the effect of the back-reaction of the medium on the angular structure of jets as reconstructed with different cone radii R. Finally we provide results for the so called ;missing-pt;, finding a qualitative agreement between our model calculations and data in many respects, although a quantitative agreement is beyond our simplified treatment of the hadrons originating from the hydrodynamic wake.
Angular structure of jet quenching within a hybrid strong/weak coupling model
Energy Technology Data Exchange (ETDEWEB)
Casalderrey-Solana, Jorge [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Gulhan, Doga Can [CERN, EP Department,CH-1211 Geneva 23 (Switzerland); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (LIP),Av. Elias Garcia 14-1, P-1000-149 Lisboa (Portugal); Theoretical Physics Department, CERN,Geneva (Switzerland); Pablos, Daniel [Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)
2017-03-27
Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡q̂/T{sup 3} that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K≠0 the jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. This effect must therefore be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. More generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the
The scattering matrix is non-trivial for weakly coupled P(phi)2 models
International Nuclear Information System (INIS)
Osterwalder, K.; Seneor, R.
1976-01-01
It is shown that for sufficiently small coupling constant lambda the lambdaP(phi) 2 quantum field theory models have a scattering matrix which is different from 1. The other method is to write the scattering matrix elements as polynomials in lambda, whose coefficients, though themselves functions of lamda, are uniformly bounded for lambda sufficiently small. The first order term in that expansion is the one given by perturbation theory. (Auth.)
Could a Weak Coupling Massless SU(5) Theory Underly the Standard Model S-Matrix
White, Alan R.
2011-04-01
The unitary Critical Pomeron connects to a unique massless left-handed SU(5) theory that, remarkably, might provide an unconventional underlying unification for the Standard Model. Multi-regge theory suggests the existence of a bound-state high-energy S-Matrix that replicates Standard Model states and interactions via massless fermion anomaly dynamics. Configurations of anomalous wee gauge boson reggeons play a vacuum-like role. All particles, including neutrinos, are bound-states with dynamical masses (there is no Higgs field) that are formed (in part) by anomaly poles. The contributing zero-momentum chirality transitions break the SU(5) symmetry to vector SU(3)⊗U(1) in the S-Matrix. The high-energy interactions are vector reggeon exchanges accompanied by wee boson sums (odd-signature for the strong interaction and even-signature for the electroweak interaction) that strongly enhance couplings. The very small SU(5) coupling, αQUD ≲ 1/120, should be reflected in small (Majorana) neutrino masses. A color sextet quark sector, still to be discovered, produces both Dark Matter and Electroweak Symmetry Breaking. Anomaly color factors imply this sector could be produced at the LHC with large cross-sections, and would be definitively identified in double pomeron processes.
The strong-weak coupling symmetry in 2D Φ4 field models
Directory of Open Access Journals (Sweden)
B.N.Shalaev
2005-01-01
Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.
Energy Technology Data Exchange (ETDEWEB)
Casalderrey-Solana, Jorge [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Gulhan, Doga Can [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Genève 23 (Switzerland); Pablos, Daniel [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2016-12-15
Within a hybrid strong/weak coupling model for jets in strongly coupled plasma, we explore jet modifications in ultra-relativistic heavy ion collisions. Our approach merges the perturbative dynamics of hard jet evolution with the strongly coupled dynamics which dominates the soft exchanges between the fast partons in the jet shower and the strongly coupled plasma itself. We implement this approach in a Monte Carlo, which supplements the DGLAP shower with the energy loss dynamics as dictated by holographic computations, up to a single free parameter that we fit to data. We then augment the model by incorporating the transverse momentum picked up by each parton in the shower as it propagates through the medium, at the expense of adding a second free parameter. We use this model to discuss the influence of the transverse broadening of the partons in a jet on intra-jet observables. In addition, we explore the sensitivity of such observables to the back-reaction of the plasma to the passage of the jet.
International Nuclear Information System (INIS)
Bolotin, H.H.; Kennedy, D.L.; Linard, B.J.; Stuchbery, A.E.
1979-01-01
The lifetimes of five excited states in 197 Au up to an excitation energy of 885 keV were measured by the recoil-distance method (RDM). These levels were populated by Coulomb excitation using both 90 MeV 20 Ne and 120 MeV 35 Cl ion beams. The experimentally determined spectroscopy of the low-lying levels 3/2 + (ground state) and 1/2 + , (3/2) + 2 , 5/2 + and 7/2 + at 77.3, 268.8, 278.9, and 547.5 keV excitation energy, respectively, has been critically compared with the detailed predictions of the de-Shalit weak-coupling core-excitation model. When the model is taken to represent the case of a dsub(3/2) proton hole coupled to a 198 Hg core, the model parameters obtained are in accord with the criteria implicit for weak core coupling and, at the same time, are in remarkably good agreement with virtually all measured E2 and M1 transition rates. (Auth.)
Buividovich, P. V.; Davody, A.
2017-12-01
We develop numerical tools for diagrammatic Monte Carlo simulations of non-Abelian lattice field theories in the t'Hooft large-N limit based on the weak-coupling expansion. First, we note that the path integral measure of such theories contributes a bare mass term in the effective action which is proportional to the bare coupling constant. This mass term renders the perturbative expansion infrared-finite and allows us to study it directly in the large-N and infinite-volume limits using the diagrammatic Monte Carlo approach. On the exactly solvable example of a large-N O (N ) sigma model in D =2 dimensions we show that this infrared-finite weak-coupling expansion contains, in addition to powers of bare coupling, also powers of its logarithm, reminiscent of resummed perturbation theory in thermal field theory and resurgent trans-series without exponential terms. We numerically demonstrate the convergence of these double series to the manifestly nonperturbative dynamical mass gap. We then develop a diagrammatic Monte Carlo algorithm for sampling planar diagrams in the large-N matrix field theory, and apply it to study this infrared-finite weak-coupling expansion for large-N U (N ) ×U (N ) nonlinear sigma model (principal chiral model) in D =2 . We sample up to 12 leading orders of the weak-coupling expansion, which is the practical limit set by the increasingly strong sign problem at high orders. Comparing diagrammatic Monte Carlo with conventional Monte Carlo simulations extrapolated to infinite N , we find a good agreement for the energy density as well as for the critical temperature of the "deconfinement" transition. Finally, we comment on the applicability of our approach to planar QCD at zero and finite density.
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2016-01-01
We have previously introduced a hybrid strong/weak coupling model for jet quenching in heavy ion collisions that describes the production and fragmentation of jets at weak coupling, using PYTHIA, and describes the rate at which each parton in the jet shower loses energy as it propagates through the strongly coupled plasma, dE/dx, using an expression computed holographically at strong coupling. The model has a single free parameter that we fit to a single experimental measurement. We then confront our model with experimental data on many other jet observables, focusing here on boson-jet observables, finding that it provides a good description of present jet data. Next, we provide the predictions of our hybrid model for many measurements to come, including those for inclusive jet, dijet, photon-jet and Z-jet observables in heavy ion collisions with energy $\\sqrt{s}=5.02$ ATeV coming soon at the LHC. As the statistical uncertainties on near-future measurements of photon-jet observables are expected to be much sm...
Superconductivity in multilayer perovskite. Weak coupling analysis
International Nuclear Information System (INIS)
Koikegami, Shigeru; Yanagisawa, Takashi
2006-01-01
We investigate the superconductivity of a three-dimensional d-p model with a multilayer perovskite structure on the basis of the second-order perturbation theory within the weak coupling framework. Our model has been designed with multilayer high-T c superconducting cuprates in mind. In our model, multiple Fermi surfaces appear, and the component of a superconducting gap function develops on each band. We have found that the multilayer structure can stabilize the superconductivity in a wide doping range. (author)
BCS superconductivity for weakly coupled clusters
International Nuclear Information System (INIS)
Friedel, J.
1992-01-01
BCS superconductivity is expected to have fairly high critical temperatures when clusters of moderate sizes are weakly coupled to form a crystal. This remark extends to quasi zerodimensional cases, a remark initially made by Labbe for quasi one-dimensional ones and by Hirsch, Bok and Labbe for quasi twodimensional ones. Possible applications are envisaged for twodimensional clusters (fullerene) or threedimensional ones (metal clusters, Chevrel phases). Conditions for optimal applicability of the scheme are somewhat restricted. (orig.)
Weakly Coupled Oscillators in a Slowly Varying World
Park, Youngmin; Ermentrout, Bard
2016-01-01
We extend the theory of weakly coupled oscillators to incorporate slowly varying inputs and parameters. We employ a combination of regular perturbation and an adiabatic approximation to derive equations for the phase-difference between a pair of oscillators. We apply this to the simple Hopf oscillator and then to a biophysical model. The latter represents the behavior of a neuron that is subject to slow modulation of a muscarinic current such as would occur during transient attention through ...
Description of intruded states in a weak-coupling basis
International Nuclear Information System (INIS)
Arenas Peris, G.E.
1989-01-01
The systematics of intruder states is described in terms of a particle-hole weak-coupling basis, the first-order correction being then reduced to the monopole component of the interaction. The necessary matrix elements can be obtained from experimental data by using a model-consistent method. Calculations are performed for intruder states in the lead region as well as for the Zr isotopes. The agreement with the experimental data is striking in both cases. (Author) [es
Gluon Bremsstrahlung in Weakly-Coupled Plasmas
International Nuclear Information System (INIS)
Arnold, Peter
2009-01-01
I report on some theoretical progress concerning the calculation of gluon bremsstrahlung for very high energy particles crossing a weakly-coupled quark-gluon plasma. (i) I advertise that two of the several formalisms used to study this problem, the BDMPS-Zakharov formalism and the AMY formalism (the latter used only for infinite, uniform media), can be made equivalent when appropriately formulated. (ii) A standard technique to simplify calculations is to expand in inverse powers of logarithms ln(E/T). I give an example where such expansions are found to work well for ω/T≥10 where ω is the bremsstrahlung gluon energy. (iii) Finally, I report on perturbative calculations of q.
Bunched soliton states in weakly coupled sine-Gordon systems
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Samuelsen, Mogens Rugholm; Lomdahl, P. S.
1990-01-01
The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.......The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results....
Bunched soliton states in weakly coupled sine-Gordon systems
International Nuclear Information System (INIS)
Gronbech-Jensen, N.; Samuelsen, M.R.; Lomdahl, P.S.; Blackburn, J.A.
1990-01-01
The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results
Stabilization of matter wave solitons in weakly coupled atomic condensates
International Nuclear Information System (INIS)
Radha, R.; Vinayagam, P.S.
2012-01-01
We investigate the dynamics of a weakly coupled two component Bose–Einstein condensate and generate bright soliton solutions. We observe that when the bright solitons evolve in time, the density of the condensates shoots up suddenly by virtue of weak coupling indicating the onset of instability in the dynamical system. However, this instability can be overcome either through Feshbach resonance by tuning the temporal scattering length or by suitably changing the time dependent coupling coefficient, thereby extending the lifetime of the condensates.
Dynamical properties of weakly coupled Josephson systems
International Nuclear Information System (INIS)
Lee, K.H.; Xia, T.K.; Stroud, D.
1990-01-01
This paper reviews recent work on the dynamical behavior of coupled resistively-shunted Josephson junctions, with emphasis on our own calculations. The authors present a model which allows for the inclusion of finite temperature, disorder, d.c. and a.c. applied currents, and applied magnetic fields. The authors discuss applications to calculations of critical currents and IV characteristics; harmonic generation and microwave absorption by finite clusters of Josephson junctions; critical energies for vortex depinning; and quantized voltage plateaus in arrays subjected to combined d.c. and a.c. currents. Possible connections to the behavior of granular high-temperature superconductors are briefly discussed
Joint queue-perturbed and weakly-coupled power control for wireless backbone networks
CSIR Research Space (South Africa)
Olwal, TO
2012-09-01
Full Text Available perturbation and weakly-coupled based power control approach for the WBNs. The ultimate objectives are to increase energy-efficiency and the overal network capacity. In order to achieve these objectives, a Markov chain model is first presented to describe...
On the scarcity of weak coupling in the string landscape
Halverson, James; Long, Cody; Sung, Benjamin
2018-02-01
We study the geometric requirements on a threefold base for the corresponding F-theory compactification to admit a weakly-coupled type IIB limit. We examine both the standard Sen limit and a more restrictive limit, and determine conditions sufficient for their non-existence for both toric bases and more general algebraic bases. In a large ensemble of geometries generated by base changing resolutions we derive an upper bound on the frequency with which a weak-coupling limit may occur, and find that such limits are extremely rare. Our results sharply quantify the widely held notion that the vast number of weakly-coupled IIB vacua is but a tiny fraction of the landscape.
Monotone difference schemes for weakly coupled elliptic and parabolic systems
P. Matus (Piotr); F.J. Gaspar Lorenz (Franscisco); L. M. Hieu (Le Minh); V.T.K. Tuyen (Vo Thi Kim)
2017-01-01
textabstractThe present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is
Chiral symmetry breaking in QED for weak coupling
Energy Technology Data Exchange (ETDEWEB)
Huang, J.C. (Missouri Univ., Columbia, MO (USA). Dept. of Physics and Astronomy); Shen, T.C. (Illinois Univ., Urbana, IL (USA). Beckman Inst.)
1991-05-01
We examine the procedure for studying chiral symmetry breaking for weak coupling in QED. We note that while the lowest non-trivial order calculations using numerical solutions to the Schwinger-Dyson equation indicate a breaking of chiral symmetry, the neglected higher-order contributions to the effective potential have imaginary values which can indicate possible instabilities in the theory. (author).
Chiral symmetry breaking in QED for weak coupling
International Nuclear Information System (INIS)
Huang, J.C.; Shen, T.C.
1991-01-01
We examine the procedure for studying chiral symmetry breaking for weak coupling in QED. We note that while the lowest non-trivial order calculations using numerical solutions to the Schwinger-Dyson equation indicate a breaking of chiral symmetry, the neglected higher-order contributions to the effective potential have imaginary values which can indicate possible instabilities in the theory. (author)
Equilibration and hydrodynamics at strong and weak coupling
Schee, Wilke van der
2017-01-01
We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate
Towards a hybrid strong/weak coupling approach to jet quenching
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2014-01-01
We explore a novel hybrid model containing both strong and weak coupling physics for high energy jets traversing a deconfined medium. This model is based on supplementing a perturbative DGLAP shower with strongly coupled energy loss rate. We embed this system into a realistic hydrodynamic evolution of hot QCD plasma. We confront our results with LHC data, obtaining good agreement for jet RAARAA, dijet imbalance AJAJ and fragmentation functions.
Renormalization of g-boson effects under weak coupling condition
International Nuclear Information System (INIS)
Zhang Zhanjun; Yang Jie; Liu Yong; Sang Jianping
1998-01-01
An approach based on perturbation theory is proposed to renormalized g-boson effects for sdgIBM system, which modifies that presented earlier by Druce et al. The weak coupling condition as the usage premise of the two approaches is proved to be satisfied. Two renormalization spectra are calculated for comparison and analyses. Results show that the g-boson effects are renormalized more completely by the approach proposed
Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution
International Nuclear Information System (INIS)
Mazeliauskas, Aleksas
2017-01-01
We use leading order effective kinetic theory to simulate the pre-equilibrium evolution of transverse energy and flow perturbations in heavy-ion collisions. We provide a Green function which propagates the initial perturbations of the energy-momentum tensor to a time when hydrodynamics becomes applicable. With this map, the pre-thermal evolution from saturated nuclei to hydrodynamics can be modeled in the framework of weakly coupled QCD. (paper)
Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution
Keegan, Liam; Mazeliauskas, Aleksas; Teaney, Derek
2016-01-01
We use effective kinetic theory, accurate at weak coupling, to simulate the pre-equilibrium evolution of transverse energy and flow perturbations in heavy-ion collisions. We provide a Green function which propagates the initial perturbations to the energy-momentum tensor at a time when hydrodynamics becomes applicable. With this map, the complete pre-thermal evolution from saturated nuclei to hydrodynamics can be modelled in a perturbatively controlled way.
Analytical solution for a coaxial plasma gun: Weak coupling limit
International Nuclear Information System (INIS)
Dietz, D.
1987-01-01
The analytical solution of the system of coupled ODE's which describes the time evolution of an ideal (i.e., zero resistance) coaxial plasma gun operating in the snowplow mode is obtained in the weak coupling limit, i.e, when the gun is fully influenced by the driving (RLC) circuit in which it resides but the circuit is negligibly influenced by the gun. Criteria for the validity of this limit are derived and numerical examples are presented. Although others have obtained approximate, asymptotic and numerical solutions of the equations, the present analytical results seem not to have appeared previously in the literature
Isotropization and hydrodynamization in weakly coupled heavy-ion collisions
Kurkela, Aleksi
2015-01-01
We numerically solve 2+1D effective kinetic theory of weak coupling QCD under longitudinal expansion relevant for early stages of heavy-ion collisions. We find agreement with viscous hydrodynamics and classical Yang-Mills simulations in the regimes where they are applicable. By choosing initial conditions that are motivated by color-glass-condensate framework we find that for Q=2GeV and $\\alpha_s$=0.3 the system is approximately described by viscous hydrodynamics well before $\\tau \\lesssim 1.0$ fm/c.
Normal-Mode Splitting in a Weakly Coupled Optomechanical System
Rossi, Massimiliano; Kralj, Nenad; Zippilli, Stefano; Natali, Riccardo; Borrielli, Antonio; Pandraud, Gregory; Serra, Enrico; Di Giuseppe, Giovanni; Vitali, David
2018-02-01
Normal-mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal-mode splitting when the pump field fluctuations are antisquashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.
Equilibration and hydrodynamics at strong and weak coupling
van der Schee, Wilke
2017-11-01
We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate framework, but quickly thereafter the mean free path is long enough for kinetic theory to become applicable. Recent simulations indicate thermalization in a time t ∼ 40(η / s) 4 / 3 / T [L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee, Y. Zhu, Weak and strong coupling equilibration in nonabelian gauge theories, JHEP 04 (2016) 031. arxiv:arXiv:1512.05347, doi:10.1007/JHEP04(2016)031], with T the temperature at that time and η / s the shear viscosity divided by the entropy density. At (infinitely) strong coupling it is possible to mimic heavy ion collisions by using holography, which leads to a dual description of colliding gravitational shock waves. The plasma formed hydrodynamises within a time of 0.41/T recent extension found corrections to this result for finite values of the coupling, when η / s is bigger than the canonical value of 1/4π, which leads to t ∼ (0.41 + 1.6 (η / s - 1 / 4 π)) / T [S. Grozdanov, W. van der Schee, Coupling constant corrections in holographic heavy ion collisions, arxiv:arXiv:1610.08976]. Future improvements include the inclusion of the effects of the running coupling constant in QCD.
Optimal power and distribution control for weakly-coupled-core reactor
International Nuclear Information System (INIS)
Oohori, Takahumi; Kaji, Ikuo
1977-01-01
A numerical procedure has been devised for obtaining the optimal power and distribution control for a weakly-coupled-core reactor. Several difficulties were encountered in solving this optimization problem: (1) nonlinearity of the reactor kinetics equations; (2) neutron-leakage interaction between the cores; (3) localized power changes occurring in addition to the total power changes; (4) constraints imposed on the states - e.g. reactivity, reactor period. To obviate these difficulties, use is made of the generalized Newton method to convert the problem into an iterative sequence of linear programming problems, after approximating the differential equations and the integral performance criterion by a set of discrete algebraic equations. In this procedure, a heuristic but effective method is used for deriving an initial approximation, which is then made to converge toward the optimal solution. Delayed-neutron one-group point reactor models embodying transient temperature feed-back to the reactivity are used in obtaining the kinetics equations for the weakly-coupled-core reactor. The criterion adopted for determining the optimality is a norm relevant to the deviations of neutron density from the desired trajectories or else to the time derivatives of the neutron density; uniform control intervals are prescribed. Examples are given of two coupled-core reactors with typical parameters to illustrate the results obtained with this procedure. A comparison is also made between the coupled-core reactor and the one-point reactor. (auth.)
Chaotic dynamics dependence on doping density in weakly coupled GaAs/AlAs superlattices
International Nuclear Information System (INIS)
Yang Gui; Zhang Fengying; Li Yuanhong; Li Yuqi
2012-01-01
A discrete sequential tunneling model is used for studying the influence of the doping density on the dynamical behaviors in weakly coupled GaAs/AlAs superlattices. Driven by the DC bias, the system exhibits self-sustained current oscillations induced by the period motion of the unstable electric field domain, and an electrical hysteresis in the loop of current density voltage curve is deduced. It is found that the hysteresis range strongly depends on the doping density, and the width of the hysteresis loop increases with increasing the doping density. By adding an external driving ac voltage, more complicated nonlinear behaviors are observed including quasiperiodicity, period-3, and the route of an inverse period-doubling to chaos when the driving frequency changes. (semiconductor physics)
Weak coupling chambers in N=2 BPS quiver theory
Energy Technology Data Exchange (ETDEWEB)
Saidi, El Hassan, E-mail: h-saidi@fsr.ac.ma [Lab of High Energy Physics, Modeling and Simulations, Faculty of Science, University Mohammed V-Agdal, 4 Avenue Ibn Battota, Rabat (Morocco); Centre of Physics and Mathematics, CPM-CNESTEN, Rabat (Morocco)
2012-11-01
Using recent results on BPS quiver theory, we develop a group theoretical method to describe the quiver mutations encoding the quantum mechanical duality relating the spectra of distinct quivers. We illustrate the method by computing the BPS spectrum of the infinite weak chamber of some examples of N=2 supersymmetric gauge models without and with quark hypermultiplets.
Quantized orbits in weakly coupled Belousov-Zhabotinsky reactors
Weiss, S.; Deegan, R. D.
2015-06-01
Using numerical and experimental tools, we study the motion of two coupled spiral cores in a light-sensitive variant of the Belousov-Zhabotinsky reaction. Each core resides on a separate two-dimensional domain, and is coupled to the other by light. When both spirals have the same sense of rotation, the cores are attracted to a circular trajectory with a diameter quantized in integer units of the spiral wavelength λ. When the spirals have opposite senses of rotation, the cores are attracted towards different but parallel straight trajectories, separated by an integer multiple of λ/2. We present a model that explains this behavior as the result of a spiral wavefront-core interaction that produces a deterministic displacement of the core and a retardation of its phase.
Strong Helioseismic Constraints on Weakly-Coupled Plasmas
Nayfonov, Alan
The extraordinary accuracy of helioseismic data allows detailed theoretical studies of solar plasmas. The necessity to produce solar models matching the experimental results in accuracy imposes strong constrains on the equations of state of solar plasmas. Several discrepancies between the experimental data and models have been successfully identified as the signatures of various non-ideal phenomena. Of a particular interest are questions of the position of the energy levels and the continuum edge and of the effect of the excited states in the solar plasma. Calculations of energy level and continuum shifts, based on the Green function formalism, appeared recently in the literature. These results have been used to examine effects of the shifts on the thermodynamic quantities. A comparison with helioseismic data has shown that the calculations based on lower-level approximations, such as the static screening in the effective two-particle wave equation, agree very well with the experimental data. However, the case of full dynamic screening produces thermodynamic quantities inconsistent with observations. The study of the effect of different internal partition functions on a complete set of thermodynamic quantities has revealed the signature of the excited states in the MHD (Mihalas, Hummer, Dappen) equation of state. The presence of exited states causes a characteristic 'wiggle' in the thermodynamic quantities due to the density-dependent occupation probabilities. This effect is absent if the ACTEX (ACTivity EXpansion) equation of state is used. The wiggle has been found to be most prominent in the quantities sensitive to density. The size of this excited states effect is well within the observational power of helioseismology, and very recent inversion analyses of helioseismic data seem to indicate the presence of the wiggle in the sun. This has a potential importance for the helioseismic determination of the helium abundance of the sun.
Self-similar regimes of turbulence in weakly coupled plasmas under compression
Viciconte, Giovanni; Gréa, Benoît-Joseph; Godeferd, Fabien S.
2018-02-01
Turbulence in weakly coupled plasmas under compression can experience a sudden dissipation of kinetic energy due to the abrupt growth of the viscosity coefficient governed by the temperature increase. We investigate in detail this phenomenon by considering a turbulent velocity field obeying the incompressible Navier-Stokes equations with a source term resulting from the mean velocity. The system can be simplified by a nonlinear change of variable, and then solved using both highly resolved direct numerical simulations and a spectral model based on the eddy-damped quasinormal Markovian closure. The model allows us to explore a wide range of initial Reynolds and compression numbers, beyond the reach of simulations, and thus permits us to evidence the presence of a nonlinear cascade phase. We find self-similarity of intermediate regimes as well as of the final decay of turbulence, and we demonstrate the importance of initial distribution of energy at large scales. This effect can explain the global sensitivity of the flow dynamics to initial conditions, which we also illustrate with simulations of compressed homogeneous isotropic turbulence and of imploding spherical turbulent layers relevant to inertial confinement fusion.
Energy Technology Data Exchange (ETDEWEB)
Abuki, Hiroaki; Hatsuda, Tetsuo [Tokyo Univ., Dept. of Physics, Tokyo (Japan); Itakura, Kazunori [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States)
2002-09-01
The two-flavor color superconductivity is studied over a wide range of baryon density with a single model. We pay a special attention to the spatial-momentum dependence of the gap and to the spatial-structure of Cooper pairs. At extremely high baryon density ({approx}O(10{sup 10} {rho}{sub 0}) with {rho}{sub 0} being the normal nuclear matter density), our model becomes equivalent to the usual perturbative QCD treatment and the gap is shown to have a sharp peak near the Fermi surface due to the weak-coupling nature of QCD. On the other hand, the gap is a smooth function of the momentum at lower densities ({approx}O(10{sup 10} {rho}{sub 0})) due to strong color magnetic and electric interactions. To study the structural change of Cooper pairs from high density to lower density, quark correlation in the color superconductor is studied both in the momentum space and in the coordinate space. The size of the Cooper pair is shown to become comparable to the averaged inter-quark distance at low densities. Also, effects of the momentum-dependent running coupling and the antiquark pairing, which are both small at high density, are shown to be non-negligible at low densities. These features are highly contrasted to the standard BCS superconductivity in metals. (author)
Huang, Yawen; Shao, Ling; Frangi, Alejandro F
2018-03-01
Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors, such as patient discomfort, increased cost, prolonged scanning time, and scanner unavailability. In additionally, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. In this paper, we propose a weakly coupled and geometry co-regularized joint dictionary learning method to address the problem of cross-modality synthesis while considering the fact that collecting the large amounts of training data is often impractical. Our learning stage requires only a few registered multi-modality image pairs as training data. To employ both paired images and a large set of unpaired data, a cross-modality image matching criterion is proposed. Then, we propose a unified model by integrating such a criterion into the joint dictionary learning and the observed common feature space for associating cross-modality data for the purpose of synthesis. Furthermore, two regularization terms are added to construct robust sparse representations. Our experimental results demonstrate superior performance of the proposed model over state-of-the-art methods.
Gauge-invariant master field in U(∞) LGT: A pathway from the strong to weak coupling phases
International Nuclear Information System (INIS)
Kazakov, V.A.; Migdal, A.A.
1987-01-01
We propose and test a new computational method for SU(∞) lattice gauge and spin theories. It is based on calculation of the effective action depending only on N (rather than N 2 ) gauge invariant degrees of freedom, by means of some modification of the strong coupling expansion. We show using the example of a one-plaquette model that the stationary point equation for this action describes the weak coupling phase as well as the strong coupling phase. It is argued that such an equation predicts a phase transition for D-dimensional gauge theory, in accordance with Monte Carlo data. (orig.)
Strong/weak coupling duality relations for non-supersymmetric string theories
International Nuclear Information System (INIS)
Blum, J.D.; Dienes, K.R.
1998-01-01
Both the supersymmetric SO(32) and E 8 x E 8 heterotic strings in ten dimensions have known strong-coupling duals. However, it has not been known whether there also exist strong-coupling duals for the non-supersymmetric heterotic strings in ten dimensions. In this paper, we construct explicit open-string duals for the circle compactifications of several of these non-supersymmetric theories, among them the tachyon-free SO(16) x SO(16) string. Our method involves the construction of heterotic and open-string interpolating models that continuously connect non-supersymmetric strings to supersymmetric strings. We find that our non-supersymmetric dual theories have exactly the same massless spectra as their heterotic counterparts within a certain range of our interpolations. We also develop a novel method for analyzing the solitons of non-supersymmetric open-string theories, and find that the solitons of our dual theories also agree with their heterotic counterparts. These are therefore the first known examples of strong/weak coupling duality relations between non-supersymmetric, tachyon-free string theories. Finally, the existence of these strong-coupling duals allows us to examine the non-perturbative stability of these strings, and we propose a phase diagram for the behavior of these strings as a function of coupling and radius. (orig.)
Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice
Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L.; Biermann, Klaus; Grahn, Holger T.
2017-01-01
Noise-enhanced chaos in a doped, weakly coupled GaAs /Al0.45Ga0.55As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.
Weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field
International Nuclear Information System (INIS)
Sato, Masahiro; Oshikawa, Masaki
2002-01-01
We study weakly coupled S=1/2 quantum Heisenberg antiferromagnetic chains in an effective staggered field. Applying mean-field (MF) theory, spin-wave theory and chain MF (CMF) theory, we can see analytically some effects of the staggered field in this higher dimensional spin system. In particular, when the staggered field and the inter-chain inter-action compete with each other, we conjecture from the MF theory that a nontrivial phase is present. The spin wave theory predicts that the behavior of the gaps induced by a staggered field is different between the competitive case and the non-competitive case. When the inter-chain interactions are weak enough, we can improve the MF phase diagram by using CMF theory and the analytical results of field theories. The ordered phase region predicted by the CMF theory is fairly smaller than one of the MF theory. Cu-benzoate, CuCl 2 · 2DMSO (dimethylsulphoxide), BaCu 2 (Si 1-x Ge x ) 2 O 7 , etc., could be described by our model in enough low temperature. (author)
Anisotropy and multi-band effects in weak-coupling superconductors
International Nuclear Information System (INIS)
Berger, T.L.
1977-01-01
The techniques of second quantization and thermodynamic Green functions are used to investigate energy gap anisotropy and multi-band effects in pure, single-crystal, weak-coupling superconductors. A generalized version of the standard Gorkov factorization is used to linearize the Green functions equations of motion. The effects of lattice periodicity and band structure are taken into account by means of Bloch wave expansions and Bloch transforms. A pairing selection rule is derived which indicates the possibility of pairing between single particle states belonging to different bands, as well as the usual Cooper pairing. It is shown that the interband gap parameter, which is coupled to the usual gap parameter by the Green functions equations of motion, can only contribute indirectly to the tunneling electric current and the thermodynamic potential. In the absence of interband pairing, the equations of motion lead to the usual BCS gap equation. Also, in the absence of interband pairing, the gap parameter is found to be equal to the diagonal matrix element of the superconductor pair potential between electronic Bloch states. An essentially temperature independent anisotropy function which contains all angular dependence of the gap is shown to evolve naturally from this formalism. The overall temperature dependence of the gap is investigated and it is found that with a change of temperature, the magnitude of the gap in different directions changes in the same ration. The ordinary Markowitz-Kadanoff model is shown to be inappropriate for the case of a multi-band superconductor and a generalized version of this model is introduced and discussed. A special case of this model is considered which leads to gap discontinuities at Brillouin zone boundaries
Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime
Zhu, Gui-Lei; Lü, Xin-You; Wan, Liang-Liang; Yin, Tai-Shuang; Bin, Qian; Wu, Ying
2018-03-01
Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in quantum physics. Here we investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical system as well as its applications in modern quantum science.
Weak coupling theory of the ripplon limited mobility of a 2-D electron lattice
International Nuclear Information System (INIS)
Dahm, A.J.; Mehrotra, R.
1981-01-01
The one ripplon-n phonon scattering contribution to the mobility of a 2D electron lattice supported by a liquid helium substrate is calculated in first order perturbation theory to all orders of n in the weak coupling limit. The Debye Waller factor is shown to limit the momentum transfer at large ripplon wave-vectors and high temperatures causing a minimum in the mobility as a function of temperature. (orig.)
Magnetic Excitations in Weakly Coupled Spin Dimers and Chains Material Cu2Fe2Ge4O13
International Nuclear Information System (INIS)
Masuda, Takatsugu; Zheludev, Andrey I.; Sales, Brian C.; Imai, S.; Uchinokura, K.; Park, S.
2005-01-01
Magnetic excitations in a weakly coupled spin dimers and chains compound Cu 2 Fe 2 Ge 4 O 13 are measured by inelastic neutron scattering. Both structure factors and dipsersion of low-energy excitations up to 10 meV energy transfer are well described by a semiclassical spin wave theory involving interacting Fe 3+ (S=5/2) chains. Additional dispersionsless excitations are observed at higher energies, at ℎω=24 meV, and associated with singlet-triplet transitions within Cu 2+ dimers. Both types of excitations can be understood by treating weak interactions between the Cu 2+ and Fe 3+ subsystems at the level of the mean-field random phase approximation. However, this simple model fails to account for the measured temperature dependence of the 24 meV mode.
International Nuclear Information System (INIS)
Bartels, J.; Wu, T.T.
1988-01-01
This paper contains the first part of a systematic semiclassical analysis of the weak-coupling limit of lattice gauge theories, using the Hamiltonian formulation. The model consists of an N 3 cubic lattice of pure SU(2) Yang-Mills theory, and in this first part we limit ourselves to the subspace of constant field configurations. We investigate the flow of classical trajectories, with a particular emphasis on the existence and location of caustics. There the ground-state wave function is expected to peak. It is found that regions densely filled with caustics are very close to the origin, i.e., in the domain of weak field configurations. This strongly supports the expectation that caustics are essential for quantities of physical interest
International Nuclear Information System (INIS)
Riseborough, P.S.
1989-01-01
An N-fold-degenerate Hubbard model is examined in the weak-coupling regime. The one-electron Green's function is calculated from a systematic expansion of the irreducible self-energy in powers of 1/N. To lowest order in the expansion, one obtains a trivial mean-field theory. In the next leading order in 1/N, one finds that the dynamics are dominated by bosonlike collective excitations. The resulting expansion has the characteristics of the standard weak-coupling field theory, except the inclusion of the 1/N factors extends the regime of applicability to include Stoner-like enhancement factors which can be N times larger. The joint valence-band photoemission and inverse-photoemission spectrum is given by the trace of the imaginary part of the one-electron Green's function. The electronic spectrum has been calculated by truncating the series expansion for the self-energy in the lowest nontrivial order of 1/N. For small values of the Coulomb interaction between the electrons, the spectrum reduces to the form obtained by calculating the self-energy to second order in the Coulomb interaction. The spectra shows a narrowing of the band in the vicinity of the Fermi level and long high-energy band tails. When the boson spectrum softens, indicating the vicinity of a phase transition, the electronic spectrum shows the appearance of satellites. The results are compared with experimental observations of anomalies in the electronic spectra of uranium-based systems. The relation between the electronic spectrum and the thermodynamic mass enhancements is also discussed
Weak KAM theory for a weakly coupled system of Hamilton–Jacobi equations
Figalli, Alessio; Gomes, Diogo A.; Marcon, Diego
2016-01-01
Here, we extend the weak KAM and Aubry–Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton–Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and describe the asymptotic limit of the generalized Lax–Oleinik semigroup. © 2016, Springer-Verlag Berlin Heidelberg.
Weak KAM theory for a weakly coupled system of Hamilton–Jacobi equations
Figalli, Alessio
2016-06-23
Here, we extend the weak KAM and Aubry–Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton–Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and describe the asymptotic limit of the generalized Lax–Oleinik semigroup. © 2016, Springer-Verlag Berlin Heidelberg.
Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons
International Nuclear Information System (INIS)
Liu, J.; Mendenhall, M. P.; Carr, R.; Filippone, B. W.; Hickerson, K. P.; Perez Galvan, A.; Russell, R.; Holley, A. T.; Hoagland, J.; VornDick, B.; Back, H. O.; Pattie, R. W. Jr.; Young, A. R.; Bowles, T. J.; Clayton, S.; Currie, S.; Hogan, G. E.; Ito, T. M.; Makela, M.; Morris, C. L.
2010-01-01
A precise measurement of the neutron decay β asymmetry A 0 has been carried out using polarized ultracold neutrons from the pulsed spallation ultracold neutron source at the Los Alamos Neutron Science Center. Combining data obtained in 2008 and 2009, we report A 0 =-0.119 66±0.000 89 -0.00140 +0.00123 , from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon g A /g V =-1.275 90 -0.00445 +0.00409 .
Diagonal form factors and heavy-heavy-light three-point functions at weak coupling
International Nuclear Information System (INIS)
Hollo, Laszlo; Jiang, Yunfeng; Petrovskii, Andrei
2015-01-01
In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.
Diagonal form factors and heavy-heavy-light three-point functions at weak coupling
Energy Technology Data Exchange (ETDEWEB)
Hollo, Laszlo [MTA Lendület Holographic QFT Group, Wigner Research Centre for Physics,H-1525 Budapest 114, P.O.B. 49 (Hungary); Jiang, Yunfeng; Petrovskii, Andrei [Institut de Physique Théorique, DSM, CEA, URA2306 CNRS,Saclay, F-91191 Gif-sur-Yvette (France)
2015-09-18
In this paper we consider a special kind of three-point functions of HHL type at weak coupling in N=4 SYM theory and analyze its volume dependence. At strong coupling this kind of three-point functions were studied recently by Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050. The authors considered some cases of HHL correlator in the su(2) sector and, relying on their explicit results, formulated a conjecture about the form of the volume dependence of the symmetric HHL structure constant to be valid at any coupling up to wrapping corrections. In order to test this hypothesis we considered the HHL correlator in su(2) sector at weak coupling and directly showed that, up to one loop, the finite volume dependence has exactly the form proposed in http://dx.doi.org/10.1007/JHEP09(2014)050. Another side of the conjecture suggests that computation of the symmetric structure constant is equivalent to computing the corresponding set of infinite volume form factors, which can be extracted as the coefficients of finite volume expansion. In this sense, extracting appropriate coefficients from our result gives a prediction for the corresponding infinite volume form factors.
Continuum orbital approximations in weak-coupling theories for inelastic electron scattering
International Nuclear Information System (INIS)
Peek, J.M.; Mann, J.B.
1977-01-01
Two approximations, motivated by heavy-particle scattering theory, are tested for weak-coupling electron-atom (ion) inelastic scattering theory. They consist of replacing the one-electron scattering orbitals by their Langer uniform approximations and the use of an average trajectory approximation which entirely avoids the necessity for generating continuum orbitals. Numerical tests for a dipole-allowed and a dipole-forbidden event, based on Coulomb-Born theory with exchange neglected, reveal the error trends. It is concluded that the uniform approximation gives a satisfactory prediction for traditional weak-coupling theories while the average approximation should be limited to collision energies exceeding at least twice the threshold energy. The accuracy for both approximations is higher for positive ions than for neutral targets. Partial-wave collision-strength data indicate that greater care should be exercised in using these approximations to predict quantities differential in the scattering angle. An application to the 2s 2 S-2p 2 P transition in Ne VIII is presented
Resonant enhanced parallel-T topology for weak coupling wireless power transfer pickup applications
Directory of Open Access Journals (Sweden)
Yao Guo
2015-07-01
Full Text Available For the wireless power transfer (WPT system, the transfer performance and the coupling coefficient are contradictory. In this paper, a novel parallel-T resonant topology consists of a traditional parallel circuit and a T-matching network for secondary side is proposed. With this method, a boosted voltage can be output to the load, since this topology has a resonant enhancement effect, and high Q value can be obtained at a low resonant frequency and low coil inductance. This feature makes it more suitable for weak coupling WPT applications. Besides, the proposed topology shows good frequency stability and adaptability to variations of load. Experimental results show that the output voltage gain improves by 757% compared with traditional series circuit, and reaches 85% total efficiency when the coupling coefficient is 0.046.
Bremsstrahlung function, leading Lüscher correction at weak coupling and localization
Energy Technology Data Exchange (ETDEWEB)
Bonini, Marisa; Griguolo, Luca; Preti, Michelangelo [Dipartimento di Fisica e Scienze della Terra,Università di Parma and INFN Gruppo Collegato di Parma,Viale G.P. Usberti 7/A, 43100 Parma (Italy); Seminara, Domenico [Dipartimento di Fisica, Università di Firenze and INFN Sezione di Firenze,via G. Sansone 1, 50019 Sesto Fiorentino (Italy)
2016-02-26
We discuss the near BPS expansion of the generalized cusp anomalous dimension with L units of R-charge. Integrability provides an exact solution, obtained by solving a general TBA equation in the appropriate limit: we propose here an alternative method based on supersymmetric localization. The basic idea is to relate the computation to the vacuum expectation value of certain 1/8 BPS Wilson loops with local operator insertions along the contour. These observables localize on a two-dimensional gauge theory on S{sup 2}, opening the possibility of exact calculations. As a test of our proposal, we reproduce the leading Lüscher correction at weak coupling to the generalized cusp anomalous dimension. This result is also checked against a genuine Feynman diagram approach in N=4 Super Yang-Mills theory.
Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime
International Nuclear Information System (INIS)
Li Chun-Yan; Li Yan-Song
2011-01-01
We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding. Hybrid entanglement states of photons and electrons are used to distribute information. We just need to transmit photons without storing them in the scheme. The electron confined in a quantum dot, which is embedded in a microcavity, is held by one of the legitimate users throughout the whole communication process. Only the polarization of a single photon and spin of electron measurements are applied in this protocol, which are easier to perform than collective-Bell state measurements. Linear optical apparatus, such as a special polarizing beam splitter in a circular basis and single photon operations, make it more flexible to realize under current technology. Its efficiency will approach 100% in the ideal case. The security of the scheme is also discussed. (general)
Electric-field domain boundary instability in weakly coupled semiconductor superlattices
Energy Technology Data Exchange (ETDEWEB)
Rasulova, G. K., E-mail: rasulova@sci.lebedev.ru [P.N. Lebedev Physical Institute of Russian Academy of Sciences, 119991 Moscow (Russian Federation); Pentin, I. V. [Moscow State Pedagogical University, 119991 Moscow (Russian Federation); Brunkov, P. N. [A. F. Ioffe Physical and Technical Institute of Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg (Russian Federation); Egorov, A. Yu. [National Research University of Information Technologies, Mechanics and Optics, 197101 St. Petersburg (Russian Federation)
2016-05-28
Damped oscillations of the current were observed in the transient current pulse characteristics of a 30-period weakly coupled GaAs/AlGaAs superlattice (SL). The switching time of the current is exponentially decreased as the voltage is verged towards the current discontinuity region indicating that the space charge necessary for the domain boundary formation is gradually accumulated in a certain SL period in a timescale of several hundreds ns. The spectral features in the electroluminescence spectra of two connected in parallel SL mesas correspond to the energy of the intersubband transitions and the resonance detuning of subbands caused by charge trapping in the quantum wells (QWs) residing in a region of the expanded domain boundary. The obtained results support our understanding of the origin of self-oscillations as a cyclic dynamics of the subband structure in the QWs forming the expanded domain boundary.
Select problems of the electrodynamics of superconducting weak-coupled systems
International Nuclear Information System (INIS)
Belenov, E.M.; Vedeneev, S.I.; Uskov, A.V.
1988-01-01
The interaction of currents in superconducting Josephson elements irradiated by electromagnetic fields in a cavity and a waveguide is considered theoretically. The possibility of using weak-coupled systems to implement stimulated emission oscillators tunable over a broad range from 10 10 to 10 13 Hz is investigated. The properties of a superconducting point contact for use as a nonlinear element in a reference frequency circuit from the microwave to the optical ranges are investigated theoretically. The possibility of frequency synthesis by means of a single nonlinear element from the microwave range to the optical range is demonstrated together with the capacity for precision laser frequency measurements. The noise aspects of using superconducting elements for laser frequency measurements are investigated
Wang, X. Y.; Dou, J. M.; Shen, H.; Li, J.; Yang, G. S.; Fan, R. Q.; Shen, Q.
2018-03-01
With the continuous strengthening of power grids, the network structure is becoming more and more complicated. An open and regional data modeling is used to complete the calculation of the protection fixed value based on the local region. At the same time, a high precision, quasi real-time boundary fusion technique is needed to seamlessly integrate the various regions so as to constitute an integrated fault computing platform which can conduct transient stability analysis of covering the whole network with high accuracy and multiple modes, deal with the impact results of non-single fault, interlocking fault and build “the first line of defense” of the power grid. The boundary fusion algorithm in this paper is an automatic fusion algorithm based on the boundary accurate coupling of the networking power grid partition, which takes the actual operation mode for qualification, complete the boundary coupling algorithm of various weak coupling partition based on open-loop mode, improving the fusion efficiency, truly reflecting its transient stability level, and effectively solving the problems of too much data, too many difficulties of partition fusion, and no effective fusion due to mutually exclusive conditions. In this paper, the basic principle of fusion process is introduced firstly, and then the method of boundary fusion customization is introduced by scene description. Finally, an example is given to illustrate the specific algorithm on how it effectively implements the boundary fusion after grid partition and to verify the accuracy and efficiency of the algorithm.
International Nuclear Information System (INIS)
Pando L, C.L.; Doedel, E.J.
2004-07-01
We investigate the onset of chaotic dynamics of the one-dimensional discrete nonlinear Schroedinger equation (DNLSE) with periodic boundary conditions in the presence of a single on-site defect. This model describes a ring of weakly- coupled Bose-Einstein condensates. We focus on the transition to global stochasticity in three different scenarios as the defect is changed. We make use of a suitable Poincare section and continuation methods. Numerical continuation enables us to find different families of stationary solutions, where certain bifurcations lead to global stochasticity. The global stochasticity is characterized by chaotic symbolic synchronization between the population inversions of certain pairs of condensates. We have seen that the Poincare cycles are useful to gain insight in the dynamics of this problem. Indeed, the return maps of the Poincare cycles have been used successfully to follow the motion along the stochastic layers of different resonances in the chaotic self-trapping regime. Moreover, the time series of the Poincare cycles suggests that in the global stochasticity regime the dynamics is, to some extent, Markovian, in spite of the fact that the condensates are phase locked with almost the same phase. This phase locking induces a peculiar local interference of the matter waves of the condensates. (author)
Energy Technology Data Exchange (ETDEWEB)
Kleinsmith, P E [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)
1976-04-01
Multiple spatial scaling is incorporated in a modified form of the Bogoliubov plasma cluster expansion; then this proposed reformulation of the plasma weak-coupling approximation is used to derive, from the BBGKY Hierarchy, a decoupled set of equations for the one-and two-particle distribution functions in the limit as the plasma parameter goes to zero. Because the reformulated cluster expansion permits retention of essential two-particle collisional information in the limiting equations, while simultaneously retaining the well-established Debye-scale relative ordering of the correlation functions, decoupling of the Hierarchy is accomplished without introduction of the divergence problems encountered in the Bogoliubov theory, as is indicated by an exact solution of the limiting equations for the equilibrium case. To establish additional links with existing plasma equilibrium theories, the two-particle equilibrium correlation function is used to calculate the interaction energy and the equation of state. The limiting equation for the equilibrium three-particle correlation function is then developed, and a formal solution is obtained.
A weakly coupled semiconductor superlattice as a harmonic hypersonic-electrical transducer
International Nuclear Information System (INIS)
Poyser, C L; Akimov, A V; Campion, R P; Kent, A J; Balanov, A G
2015-01-01
We study experimentally and theoretically the effects of high-frequency strain pulse trains on the charge transport in a weakly coupled semiconductor superlattice. In a frequency range of the order of 100 GHz such excitation may be considered as single harmonic hypersonic excitation. While travelling along the axis of the SL, the hypersonic acoustic wavepacket affects the electron tunnelling, and thus governs the electrical current through the device. We reveal how the change of current depends on the parameters of the hypersonic excitation and on the bias applied to the superlattice. We have found that the changes in the transport properties of the superlattices caused by the acoustic excitation can be largely explained using the current–voltage relation of the unperturbed system. Our experimental measurements show multiple peaks in the dependence of the transferred charge on the repetition rate of the strain pulses in the train. We demonstrate that these resonances can be understood in terms of the spectrum of the applied acoustic perturbation after taking into account the multiple reflections in the metal film serving as a generator of hypersonic excitation. Our findings suggest an application of the semiconductor superlattice as a hypersonic-electrical transducer, which can be used in various microwave devices. (paper)
Kishine, Jun-ichiro; Yonemitsu, Kenji
1997-01-01
Physical nature of dimensional crossovers in weakly coupled Hubbard chains and ladders has been discussed within the framework of the perturbative renormalization-group approach. The difference between these two cases originates from different universality classes which the corresponding isolated systems belong to.
International Nuclear Information System (INIS)
Kishine, Jun-Ichiro; Yonemitsu, Kenji
1998-01-01
Physical nature of dimensional crossovers in weakly coupled Hubbard chains and ladders has been discussed within the framework of the perturbative renormalization-group (PRG) approach. The difference between these two cases originates from different universality classes which the corresponding isolated systems belong to. In the present work, we discuss the nature of the dimensional crossovers in the weakly coupled chains and ladders, with emphasis on the difference between the two cases within the framework of the PRG approach. The difference of the universality class of the isolated chain and ladder profoundly affects the relevance or irrelevance of the inter-chain/ladder one-particle hopping. The strong coupling phase of the isolated ladder makes the one-particle process irrelevant so that the d-wave superconducting transition can be induced via the two-particle crossover in the weakly coupled ladders. The weak coupling phase of the isolated chain makes the one-particle process relevant so that the two-particle crossover can hardly be realized in the coupled chains. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Akulov, Y A
2002-01-01
Data on the chemical shifts of half-lives for atomic and molecular tritium were used to determine the ratio of axial-vector-to-vector weak coupling constants for beta decay of triton (G sub A /G sub V) sub t = -1.2646 +- 0.0035
Molecules Designed to Contain Two Weakly Coupled Spins with a Photoswitchable Spacer.
Uber, Jorge Salinas; Estrader, Marta; Garcia, Jordi; Lloyd-Williams, Paul; Sadurní, Anna; Dengler, Dominik; van Slageren, Joris; Chilton, Nicholas F; Roubeau, Olivier; Teat, Simon J; Ribas-Ariño, Jordi; Aromí, Guillem
2017-10-04
Controlling the charges and spins of molecules lies at the heart of spintronics. A photoswitchable molecule consisting of two independent spins separated by a photoswitchable moiety was designed in the form of new ligand H 4 L, which features a dithienylethene photochromic unit and two lateral coordinating moieties, and yields molecules with [MM⋅⋅⋅MM] topology. Compounds [M 4 L 2 (py) 6 ] (M=Cu, 1; Co, 2; Ni, 3; Zn, 4) were prepared and studied by single-crystal X-ray diffraction (SCXRD). Different metal centers can be selectively distributed among the two chemically distinct sites of the ligand, and this enables the preparation of many double-spin systems. Heterometallic [MM'⋅⋅⋅M'M] analogues with formulas [Cu 2 Ni 2 L 2 (py) 6 ] (5), [Co 2 Ni 2 L 2 (py) 6 ] (6), [Co 2 Cu 2 L 2 (py) 6 ] (7), [Cu 2 Zn 2 L 2 (py) 6 ] (8), and [Ni 2 Zn 2 L 2 (py) 6 ] (9) were prepared and analyzed by SCXRD. Their composition was established unambiguously. All complexes exhibit two weakly interacting [MM'] moieties, some of which embody two-level quantum systems. Compounds 5 and 8 each exhibit a pair of weakly coupled S=1/2 spins that show quantum coherence in pulsed Q-band EPR spectroscopy, as required for quantum computing, with good phase memory times (T M =3.59 and 6.03 μs at 7 K). Reversible photoswitching of all the molecules was confirmed in solution. DFT calculations on 5 indicate that the interaction between the two spins of the molecule can be switched on and off on photocyclization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Yoon Jung-Sik; Jung Young-Dae
1999-01-01
Orientation phenomena for direct 1s→2p +-1 electron-ion collisional excitations in weakly coupled plasma are investigated using the semiclassical trajectory method including the close-encounter effects. In weakly coupled plasmas, the electron-ion interaction potential is given by the classical nonspherical Debye-Hueckel model. The semiclassical screened hyperbolic-orbit trajectory method is applied to describe the motion of the projectile electron in order to investigate the variation of the orientation parameter as a function of the impact parameter, projectile energy, and Debye length. A comparison is also given for the hyperbolic-orbit and straight-line trajectory methods. The results show that the orientation parameters obtained by the hyperbolic-orbit trajectory method have maxima and minima for small impact parameter regions. In other words, there are complete 1s→2p +1 (maxima) and complete 1s→2p -1 (minima) transitions for certain impact parameters. These maxima cannot be found using the straight-line trajectory method. The variation of the propensity of the 1s→2p -1 transitions due to the plasma screening effects on the atomic wave functions is also discussed
Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam
2017-02-01
The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.
International Nuclear Information System (INIS)
Hong, Sung-Hak; Lee, Soon-Gul; Lee, Nam Hoon; Kang, Won Nam
2014-01-01
We have fabricated intergrain nanobridge junctions from a Ba 0.6 K 0.4 Fe 2 As 2 film and observed their weak coupling effects. We prepared the junction by patterning a nanobridge across a natural grain boundary by using a focused ion beam etching technique and studied their superconducting transition properties. The resistive transition showed three steps: the transitions of the bulk, the microbridge, and the junction grain boundary. Current–voltage curves showed typical Josephson junction characteristics, well-matched with the model of a resistively shunted junction incorporated with thermal fluctuations. Fitting data to theory revealed much larger current fluctuations than expected from the Johnson–Nyquist theorem. The junction showed a linear temperature dependence of the critical current and a constant normal-state resistance, indicating that the grain boundary played a role as a tunnel barrier with a very poor conductance. (paper)
Dhatt, Sharmistha; Bhattacharyya, Kamal
2012-08-01
Appropriate constructions of Padé approximants are believed to provide reasonable estimates of the asymptotic (large-coupling) amplitude and exponent of an observable, given its weak-coupling expansion to some desired order. In many instances, however, sequences of such approximants are seen to converge very poorly. We outline here a strategy that exploits the idea of fractional calculus to considerably improve the convergence behavior. Pilot calculations on the ground-state perturbative energy series of quartic, sextic, and octic anharmonic oscillators reveal clearly the worth of our endeavor.
Four point function of R-currents in N=4 SYM in the Regge limit at weak coupling
Energy Technology Data Exchange (ETDEWEB)
Bartels, J.; Mischler, A.M.; Salvadore, M. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-04-15
We compute, in N = 4 super Yang-Mills, the four point correlation function of R-currents in the Regge limit in the leading logarithmic approximation at weak coupling. Such a correlator is the closest analog to photon-photon scattering within QCD, and there is a well defined procedure to perform the analogous computation at strong coupling via AdS/CFT. The main result of this paper is, on the gauge theory side, the proof of Regge factorization and the explicit computation of the R-current impact factors. (orig.)
International Nuclear Information System (INIS)
Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R.
2001-03-01
We discuss the coherent atomic oscillations between two weakly coupled Bose-Einstein condensates. The weak link is provided by a laser barrier in a (possibly asymmetric) double-well trap or by Raman coupling between two condensates in different hyperfine levels. The boson Josephson junction (BJJ) dynamics is described by the two-mode nonlinear Gross-Pitaevskii equation that is solved analytically in terms of elliptic functions. The BJJ, being a neutral, isolated system, allows the investigations of dynamical regimes for the phase difference across the junction and for the population imbalance that are not accessible with superconductor Josephson junctions (SJJ's). These include oscillations with either or both of the following properties: (i) the time-averaged value of the phase is equal to π (π-phase oscillations); (ii) the average population imbalance is nonzero, in states with macroscopic quantum self-trapping. The (nonsinusoidal) generalization of the SJJ ac and plasma oscillations and the Shapiro resonance can also be observed. We predict the collapse of experimental data (corresponding to different trap geometries and the total number of condensate atoms) onto a single universal curve for the inverse period of oscillations. Analogies with Josephson oscillations between two weakly coupled reservoirs of 3 He-B and the internal Josephson effect in 3 He-A are also discussed. (author)
International Nuclear Information System (INIS)
Feu, W H M; Villas-Boas, J M; Cury, L A; Guimaraes, P S S; Vieira, G S; Tanaka, R Y; Passaro, A; Pires, M P; Landi, S M; Souza, P L
2009-01-01
A study of magnetotunnelling in weakly coupled multi-quantum wells reveals a new phenomenon which constitutes a kind of memory effect in the sense that the electrical resistance of the sample after application of the magnetic field is different from before and contains the information that a magnetic field was applied previously. The change in the electric field domain configuration triggered by the magnetic field was compared for two samples, one strictly periodic and another with a thicker quantum well inserted into the periodic structure. For applied biases at which two electric field domains are present in the sample, as the magnetic field is increased a succession of discontinuous reductions in the electrical resistance is observed due to the magnetic field-induced rearrangement of the electric field domains, i.e. the domain boundary jumps from well to well as the magnetic field is changed. The memory effect is revealed for the aperiodic structure as the electric field domain configuration triggered by the magnetic field remains stable after the field is reduced back to zero. This effect is related to the multi-stability in the current-voltage characteristics observed in some weakly coupled multi-quantum well structures.
Top-quark mass coupling and classification of weakly coupled heterotic superstring vacua
International Nuclear Information System (INIS)
Rizos, J.
2014-01-01
The quest for the Standard Model among the huge number of string vacua is usually based on a set of phenomenological criteria related to the massless spectrum of string models. In this work we study criteria associated with interactions in the effective low energy theory and in particular with the presence of the coupling that provides mass to the top quark. Working in the context of the free-fermionic formulation of the heterotic superstring, we demonstrate that, in a big class of phenomenologically promising Z 2 x Z 2 compactifications, these criteria can be expressed entirely in terms of the generalised GSO projection coefficients entering the definition of the models. They are shown to be very efficient in identifying phenomenologically viable vacua, especially in the framework of computer-based search, as they are met by approximately one every 10 4 models. We apply our results in the investigation of a class of supersymmetric Pati-Salam vacua, comprising 10 16 configurations, and we show that when combined with other phenomenological requirements they lead to a relatively small set of about 10 7 Standard Model compatible models that can be fully classified. (orig.)
Top-quark mass coupling and classification of weakly coupled heterotic superstring vacua
Rizos, J.
2014-06-01
The quest for the Standard Model among the huge number of string vacua is usually based on a set of phenomenological criteria related to the massless spectrum of string models. In this work we study criteria associated with interactions in the effective low energy theory and in particular with the presence of the coupling that provides mass to the top quark. Working in the context of the free-fermionic formulation of the heterotic superstring, we demonstrate that, in a big class of phenomenologically promising compactifications, these criteria can be expressed entirely in terms of the generalised GSO projection coefficients entering the definition of the models. They are shown to be very efficient in identifying phenomenologically viable vacua, especially in the framework of computer-based search, as they are met by approximately one every models. We apply our results in the investigation of a class of supersymmetric Pati-Salam vacua, comprising configurations, and we show that when combined with other phenomenological requirements they lead to a relatively small set of about Standard Model compatible models that can be fully classified.
WiLE: A Mathematica package for weak coupling expansion of Wilson loops in ABJ(M) theory
Preti, M.
2018-06-01
We present WiLE, a Mathematica® package designed to perform the weak coupling expansion of any Wilson loop in ABJ(M) theory at arbitrary perturbative order. For a given set of fields on the loop and internal vertices, the package displays all the possible Feynman diagrams and their integral representations. The user can also choose to exclude non planar diagrams, tadpoles and self-energies. Through the use of interactive input windows, the package should be easily accessible to users with little or no previous experience. The package manual provides some pedagogical examples and the computation of all ladder diagrams at three-loop relevant for the cusp anomalous dimension in ABJ(M). The latter application gives also support to some recent results computed in different contexts.
Trottier, H. D.; Shakespeare, N. H.; Lepage, G. P.; MacKenzie, P. B.
2002-05-01
Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 34 to 164) and couplings (from β~9 to β~60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported.
Competition between the symmetry breaking and onset of collapse in weakly coupled atomic condensates
International Nuclear Information System (INIS)
Salasnich, L.; Toigo, F.; Malomed, B. A.
2010-01-01
We analyze the symmetry breaking of matter-wave solitons in a pair of cigar-shaped traps coupled by tunneling of atoms. The model is based on a system of linearly coupled nonpolynomial Schroedinger equations. Unlike the well-known spontaneous-symmetry-breaking (SSB) bifurcation in coupled cubic equations, in the present model the SSB competes with the onset of collapse in this system. Stability regions of symmetric and asymmetric solitons, as well as the collapse region, are identified in the system's parameter space.
Observables in muon capture on 23Na and the effective weak couplings ga and gp
International Nuclear Information System (INIS)
Johnson, B.L.; Gorringe, T.P.; Armstrong, D.S.; Bauer, J.; Hasinoff, M.D.; Kovash, M.A.; Measday, D.F.; Moftah, B.A.; Porter, R.; Wright, D.H.
1996-01-01
We report measurements of capture rates and hyperfine dependences in muon capture on 23 Na to various states in Ne and F isotopes. We also report comparisons of the capture rates and hyperfine dependences for six 23 Na → 23 Ne transitions with the 1s-0d shell model with the empirical effective interaction of Brown and Wildenthal and the realistic effective interaction of Kuo and Brown. Fits to the data with the Brown and Wildenthal interaction yield an effective coupling g a = -1.01 ± 0.07 and an effective coupling ratio g p /g a = 6.5 ± 2.4. The value of g a is consistent with values of g a extracted from β + /β - decay and (p,n)/(n,p) charge exchange data, and the value of g p /g a is consistent with the predictions of PCAC and pion-pole dominance. We evaluate the nuclear model dependence of these values of g a and g p /g a and examine the role of the Gamow-Teller and other matrix elements in the 23 Na → 23 Ne transitions. copyright 1996 The American Physical Society
Relativistic corrections to the static energy in terms of Wilson loops at weak coupling
Energy Technology Data Exchange (ETDEWEB)
Peset, Clara [Technische Universitaet Muenchen, Physik Department T31, Garching (Germany); Pineda, Antonio [Universitat Autonoma de Barcelona, Grup de Fisica Teorica, Dept. Fisica y IFAE-BIST, Barcelona (Spain); Stahlhofen, Maximilian [Johannes Gutenberg University, PRISMA Cluster of Excellence, Institute of Physics, Mainz (Germany)
2017-10-15
We consider the O(1/m) and the spin-independent momentum-dependent O(1/m{sup 2}) quasi-static energies of heavy quarkonium (with unequal masses). They are defined nonperturbatively in terms of Wilson loops. We determine their short-distance behavior through O(α{sup 3}) and O(α{sup 2}), respectively. In particular, we calculate the ultrasoft contributions to the quasi-static energies, which requires the resummation of potential interactions. Our results can be directly compared to lattice simulations. In addition, we also compare the available lattice data with the expectations from effective string models for the long-distance behavior of the quasi-static energies. (orig.)
Detection of light-matter interaction in the weak-coupling regime by quantum light
Bin, Qian; Lü, Xin-You; Zheng, Li-Li; Bin, Shang-Wu; Wu, Ying
2018-04-01
"Mollow spectroscopy" is a photon statistics spectroscopy, obtained by scanning the quantum light scattered from a source system. Here, we apply this technique to detect the weak light-matter interaction between the cavity and atom (or a mechanical oscillator) when the strong system dissipation is included. We find that the weak interaction can be measured with high accuracy when exciting the target cavity by quantum light scattered from the source halfway between the central peak and each side peak. This originally comes from the strong correlation of the injected quantum photons. In principle, our proposal can be applied into the normal cavity quantum electrodynamics system described by the Jaynes-Cummings model and an optomechanical system. Furthermore, it is state of the art for experiment even when the interaction strength is reduced to a very small value.
Probing Wilson loops in N=4 Chern–Simons-matter theories at weak coupling
Directory of Open Access Journals (Sweden)
Luca Griguolo
2016-02-01
Full Text Available For three-dimensional N=4 super-Chern–Simons-matter theories associated to necklace quivers U(N0×U(N1×⋯U(N2r−1, we study at quantum level the two kinds of 1/2 BPS Wilson loop operators recently introduced in arXiv:1506.07614. We perform a two-loop evaluation and find the same result for the two kinds of operators, so moving to higher loops a possible quantum uplift of the classical degeneracy. We also compute the 1/4 BPS bosonic Wilson loop and discuss the quantum version of the cohomological equivalence between fermionic and bosonic Wilson loops. We compare the perturbative result with the Matrix Model prediction and find perfect matching, after identification and remotion of a suitable framing factor. Finally, we discuss the potential appearance of three-loop contributions that might break the classical degeneracy and briefly analyze possible implications on the BPS nature of these operators.
Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors
Fang, Yan; Yashin, Victor V.; Dickerson, Samuel J.; Balazs, Anna C.
2018-05-01
We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials' intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.
Jeong, Bongwon; Cho, Hanna; Keum, Hohyun; Kim, Seok; Michael McFarland, D; Bergman, Lawrence A; King, William P; Vakakis, Alexander F
2014-11-21
Intentional utilization of geometric nonlinearity in micro/nanomechanical resonators provides a breakthrough to overcome the narrow bandwidth limitation of linear dynamic systems. In past works, implementation of intentional geometric nonlinearity to an otherwise linear nano/micromechanical resonator has been successfully achieved by local modification of the system through nonlinear attachments of nanoscale size, such as nanotubes and nanowires. However, the conventional fabrication method involving manual integration of nanoscale components produced a low yield rate in these systems. In the present work, we employed a transfer-printing assembly technique to reliably integrate a silicon nanomembrane as a nonlinear coupling component onto a linear dynamic system with two discrete microcantilevers. The dynamics of the developed system was modeled analytically and investigated experimentally as the coupling strength was finely tuned via FIB post-processing. The transition from the linear to the nonlinear dynamic regime with gradual change in the coupling strength was experimentally studied. In addition, we observed for the weakly coupled system that oscillation was asynchronous in the vicinity of the resonance, thus exhibiting a nonlinear complex mode. We conjectured that the emergence of this nonlinear complex mode could be attributed to the nonlinear damping arising from the attached nanomembrane.
International Nuclear Information System (INIS)
Eerdunchaolu; Xiao Xin; Han Chao; Xin Wei; Wuyunqimuge
2012-01-01
Based on the Huybrechts' linear-combination operator, effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variational method and quantum statistical theory. The results show that the absolute value of the induced potential of the bipolaron increases with increasing the electron-phonon coupling strength, but decreases with increasing the temperature and the distance of electrons, respectively; the absolute value of the effective potential increases with increasing the radius of the quantum dot, electron-phonon coupling strength and the distance of electrons, respectively, but decreases with increasing the temperature; the temperature and electron-phonon interaction have the important influence on the formation and state properties of the bipolaron: the bipolarons in the bound state are closer and more stable when the electron-phonon coupling strength is larger or the temperature is lower; the confinement potential and coulomb repulsive potential between electrons are unfavorable to the formation of bipolarons in the bound state. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
International Nuclear Information System (INIS)
Trottier, H.D.; Shakespeare, N.H.; Lepage, G.P.; Mackenzie, P.B.
2002-01-01
Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to suppress nonperturbative finite-volume effects due to Z(3) phases. Simulations of the Wilson gluon action are done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes (from 3 4 to 16 4 ) and couplings (from β≅9 to β≅60). A high precision comparison is made between the simulation data and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent agreement with perturbation theory through second order. New results for third-order coefficients for a number of Wilson loops and the static-quark self-energy are reported
Caridad, José M.; Winters, Sinéad; McCloskey, David; Duesberg, Georg S.; Donegan, John F.; Krstić, Vojislav
2017-03-01
Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone (“hot-volume”). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~107 and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging.
D'Eramo, Francesco; Liu, Hong; Rajagopal, Krishna
2013-01-01
We calculate P(k_\\perp), the probability distribution for an energetic parton that propagates for a distance L through a medium without radiating to pick up transverse momentum k_\\perp, for a medium consisting of weakly coupled quark-gluon plasma. We use full or HTL self-energies in appropriate regimes, resumming each in order to find the leading large-L behavior. The jet quenching parameter \\hat q is the second moment of P(k_\\perp), and we compare our results to other determinations of this quantity in the literature, although we emphasize the importance of looking at P(k_\\perp) in its entirety. We compare our results for P(k_\\perp) in weakly coupled quark-gluon plasma to expectations from holographic calculations that assume a plasma that is strongly coupled at all length scales. We find that the shape of P(k_\\perp) at modest k_\\perp may not be very different in weakly coupled and strongly coupled plasmas, but we find that P(k_\\perp) must be parametrically larger in a weakly coupled plasma than in a strongl...
DEFF Research Database (Denmark)
Kaiser, W.; Bach, L.; Reithmaier, J. P.
2003-01-01
37 GHz direct-modulation bandwidth could be obtained by a multi-section design with an integrated weakly coupled DBR grating. The laser shows side mode suppression ratios of 45 dB and output powers exceeding 20 mW....
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-06-11
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling
Directory of Open Access Journals (Sweden)
Chen Gong
2017-06-01
Full Text Available The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC and wireless power transfer (WPT. However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically, since the NFC signal (especially for the uplink from the in-body part to the out-body part could be too weak to be detected. Traditional load shift keying (LSK requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK modulation, its downlink data are modulated on the power carrier (2 MHz, while its uplink data are modulated on another carrier (125 kHz. The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-01-01
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10−7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications. PMID:28604610
Cannon, Jonathan
2017-01-01
Mutual information is a commonly used measure of communication between neurons, but little theory exists describing the relationship between mutual information and the parameters of the underlying neuronal interaction. Such a theory could help us understand how specific physiological changes affect the capacity of neurons to synaptically communicate, and, in particular, they could help us characterize the mechanisms by which neuronal dynamics gate the flow of information in the brain. Here we study a pair of linear-nonlinear-Poisson neurons coupled by a weak synapse. We derive an analytical expression describing the mutual information between their spike trains in terms of synapse strength, neuronal activation function, the time course of postsynaptic currents, and the time course of the background input received by the two neurons. This expression allows mutual information calculations that would otherwise be computationally intractable. We use this expression to analytically explore the interaction of excitation, information transmission, and the convexity of the activation function. Then, using this expression to quantify mutual information in simulations, we illustrate the information-gating effects of neural oscillations and oscillatory coherence, which may either increase or decrease the mutual information across the synapse depending on parameters. Finally, we show analytically that our results can quantitatively describe the selection of one information pathway over another when multiple sending neurons project weakly to a single receiving neuron.
International Nuclear Information System (INIS)
Thingna, Juzar; Zhou, Hangbo; Wang, Jian-Sheng
2014-01-01
We present a general theory to calculate the steady-state heat and electronic currents for nonlinear systems using a perturbative expansion in the system-bath coupling. We explicitly demonstrate that using the truncated Dyson-series leads to divergences in the steady-state limit, thus making it impossible to be used for actual applications. In order to resolve the divergences, we propose a unique choice of initial condition for the reduced density matrix, which removes the divergences at each order. Our approach not only allows us to use the truncated Dyson-series, with a reasonable choice of initial condition, but also gives the expected result that the steady-state solutions should be independent of initial preparations. Using our improved Dyson series we evaluate the heat and electronic currents up to fourth-order in system-bath coupling, a considerable improvement over the standard quantum master equation techniques. We then numerically corroborate our theory for archetypal settings of linear systems using the exact nonequilibrium Green's function approach. Finally, to demonstrate the advantage of our approach, we deal with the nonlinear spin-boson model to evaluate heat current up to fourth-order and find signatures of cotunnelling process
Anomalous transport at weak coupling
International Nuclear Information System (INIS)
Chowdhury, Subham Dutta; David, Justin R.
2015-01-01
We evaluate the contribution of chiral fermions in d=2,4,6, chiral bosons, a chiral gravitino like theory in d=2 and chiral gravitinos in d=6 to all the leading parity odd transport coefficients at one loop. This is done by using finite temperature field theory to evaluate the relevant Kubo formulae. For chiral fermions and chiral bosons the relation between the parity odd transport coefficient and the microscopic anomalies including gravitational anomalies agree with that found by using the general methods of hydrodynamics and the argument involving the consistency of the Euclidean vacuum. For the gravitino like theory in d=2 and chiral gravitinos in d=6, we show that relation between the pure gravitational anomaly and parity odd transport breaks down. From the perturbative calculation we clearly identify the terms that contribute to the anomaly polynomial, but not to the transport coefficient for gravitinos. We also develop a simple method for evaluating the angular integrals in the one loop diagrams involved in the Kubo formulae. Finally we show that charge diffusion mode of an ideal 2 dimensional Weyl gas in the presence of a finite chemical potential acquires a speed, which is equal to half the speed of light.
International Nuclear Information System (INIS)
Falco, C.M.
1974-01-01
Careful studies of the effect of thermal fluctuations on the I-V characteristics of two different types of weakly coupled superconductors were made. Measurements on externally shunted, oxide-barrier tunnel junctions were found to be in complete quantitative agreement with a theory due to Ambegaokar and Halperin in the limit of β/sub c/ identical with 2eI/sub c/C/sigma 0 2 h much less than 1 where the theory is valid. Similar measurements in the region of β/sub c/ approximately equal to 1 were found to be in qualitative agreement with a theory due to Kurkijarvi and Ambegaokar. Assuming the Ambegaokar and Halperin theory is applicable, measurements on Notarys-Nercereau normal metal underlay weak links indicate the presence of a phase-dependent conductivity predicted by B. D. Josephson in 1962. The magnitude of this conductivity was found to be in agreement with that predicted by theory, however, the sign of the conductivity was found to be in disagreement. A study of the operating characteristics of rf-biased thin-film superconducting quantum interference devices (SQUIDs) has also been made and a set of performance parameters developed to optimize the behavior of these devices. The behavior of these SQUIDs has been compared with a theory due to Hansma in order to look for the effect of the phase-dependent quasiparticle-pair interference current. The me []surements were found to be qualitatively different than predicted by Hansma's theory. (Diss. Abstr. Int., B)
Properties of superconducting S-I-N, S-I-S, and S-C-S structures with amorphous weak coupling
International Nuclear Information System (INIS)
Kozub, V.I.
1984-01-01
The properties due to the presence of two-level structure systems in superconducting tunnel junctions with amorphous insulators, as well as in point and bridge Josephson junctions with amorphous surrounds, are investigated. Equations are obtained for tunneling with participation of the two-level systems for the cases of quasistatic tunneling in an S-I-N junction (N is the normal metal) and for the case of Josephson tunneling in an S-I-S junction. It is shown that inelastic tunneling makes an additional contribution to the nonlinearity of the current-voltage characteristic of an S-I-N junction. The specific phenomena of nonexponential relaxation in this junction (in particular, tunnel-current relaxation), which have a 1/t dependence, are discussed. Low-frequency noise in S-I-S and S-C-S structures, due to transitions in the two-level system and having a 1/f dependence at not too small junction sizes are considered. In the case of the stationary Josephson effect this noise has features of critical-current fluctuations that can manifest themselves, in particular as fluctuations of the magnetic flux linked with a weakly coupled superconducting ring. Under conditions of the nonstationary Josephson effect the two-level structures lead to broadening of the Josephson-generation line. It is proposed to use the nonstationary Josephson effect to observe the echo effect in glasses
Chen, Zhanbin
2018-05-01
The process of excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas by electron impact is studied, together with the subsequent radiative decay. For the target structure, the calculation is performed using the multiconfiguration Dirac-Hartree-Fock method incorporating the Debye-Hückel potential for the electron-nucleus interaction. Fine-structure levels of the 1s22p and 1s2s2p configurations and the transition properties among these levels are presented over a wide range of screening parameters. For the collision dynamics, the distorted-wave method in the relativistic frame is adopted to include the effect of plasma background, in which the interparticle interactions in the system are described by screened interactions of the Debye-Hückel type. The continuum wave function of the projectile electron is obtained by solving the modified Dirac equations. The influence of plasma strength on the cross section, the linear polarization, and the angular distribution of x-ray photon emission are investigated in detail. Comparison of the present results with experimental data and other theoretical predictions, when available, is made.
Geirsson, Halldor; LaFemina, Peter C.; DeMets, Charles; Hernandez, Douglas Antonio; Mattioli, Glen S.; Rogers, Robert; Rodriguez, Manuel; Marroquin, Griselda; Tenorio, Virginia
2015-09-01
Subduction zones exhibit variable degrees of interseismic coupling as resolved by inversions of geodetic data and analyses of seismic energy release. The degree to which a plate boundary fault is coupled can have profound effects on its seismogenic behaviour. Here we use GPS measurements to estimate co- and post-seismic deformation from the 2012 August 27, Mw7.3 megathrust earthquake offshore El Salvador, which was a tsunami earthquake. Inversions of estimated coseismic displacements are in agreement with published seismically derived source models, which indicate shallow (earthquake exceeds the coseismic deformation. Our analysis indicates that the post-seismic deformation is dominated by afterslip, as opposed to viscous relaxation, and we estimate a post-seismic moment release one to eight times greater than the coseismic moment during the first 500 d, depending on the relative location of coseismic versus post-seismic slip on the plate interface. We suggest that the excessive post-seismic motion is characteristic for the El Salvador-Nicaragua segment of the Central American margin and may be a characteristic of margins hosting tsunami earthquakes.
Weakly coupled mean-field game systems
Gomes, Diogo A.
2016-07-14
Here, we prove the existence of solutions to first-order mean-field games (MFGs) arising in optimal switching. First, we use the penalization method to construct approximate solutions. Then, we prove uniform estimates for the penalized problem. Finally, by a limiting procedure, we obtain solutions to the MFG problem. © 2016 Elsevier Ltd
Weakly coupled mean-field game systems
Gomes, Diogo A.; Patrizi, Stefania
2016-01-01
Here, we prove the existence of solutions to first-order mean-field games (MFGs) arising in optimal switching. First, we use the penalization method to construct approximate solutions. Then, we prove uniform estimates for the penalized problem
Weak coupling theory of high temperature superconductors
International Nuclear Information System (INIS)
Labbe, J.
1990-01-01
Many theories of the high T c superconductors are founded on the hypothesis that the electron-electron correlations are so strong in these materials that, in the absence of doping or internal charge transfer, they should be Mott insulators. The authors consider this hypothesis as unlikely for the following reasons. At first, very strong correlations would arise from a very large repulsive Coulomb energy between electrons within each atom. This would be the case only with very strongly localized atomic orbitals, as for instance the f orbitals in the rare earths, leading to very narrow energy bands. But in the copper oxides, the d orbitals of copper, or the p orbitals of oxygen, are not so strongly localized, and thus the intra-atomic repulsive Coulomb energy has no reason to be much larger than in the simple transitional metals or their other compounds
Transient chaos in weakly coupled Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Koch, B P; Bruhn, B
1988-01-01
This paper considers periodic excitations and coupling of nonlinear Josephson oscillators. The Melnikov method is used to prove the existence of horseshoes in the dynamics. The coupling of two systems yields a reduction of the chaos threshold in comparison with the corresponding threshold of a single system. For some selected parameter values the theoretical predictions are checked by numerical methods.
Arjun, U.; Kumar, Vinod; Anjana, P. K.; Thirumurugan, A.; Sichelschmidt, J.; Mahajan, A. V.; Nath, R.
2017-05-01
We present the synthesis and a detailed investigation of structural and magnetic properties of polycrystalline NH4[(V2O3)2(4,4'-b p y ) 2(H2PO4) (PO4)2] .0.5 H2O by means of x-ray diffraction, magnetic susceptibility, electron spin resonance, and 31P nuclear magnetic resonance measurements. Temperature-dependent magnetic susceptibility could be described well using a weakly coupled spin-1/2 dimer model with an excitation gap Δ /kB≃26.1 K between the singlet ground state and triplet excited states and a weak interdimer exchange coupling J'/kB≃4.6 K. A gapped chain model also describes the data well with a gap of about 20 K. The electron spin resonance intensity as a function of temperature traces the bulk susceptibility nicely. The isotropic Landé g factor is estimated to be about g ≃1.97 , at room temperature. We are able to resolve the 31P NMR signal as coming from two inequivalent P sites in the crystal structure. The hyperfine coupling constant between 31P nucleus and V4 + spins is calculated to be Ahf(1 ) ≃2963 Oe/μB and Ahf(2 ) ≃1466 Oe/μB for the P(1) and P(2) sites, respectively. Our NMR shift and spin-lattice relaxation rate for both the 31P sites show an activated behavior at low temperatures, further confirming the singlet ground state. The estimated value of the spin gap from the NMR data measured in an applied field of H =9.394 T is consistent with the gap obtained from the magnetic susceptibility analysis using the dimer model. Because of a relatively small spin gap, NH4[(V2O3)2(4,4'-b p y ) 2(H2PO4) (PO4)2] .0.5 H2O is a promising compound for further experimental studies under high magnetic fields.
Gauge symmetry of Sine-Gordon model
International Nuclear Information System (INIS)
Shen Jian-Min; Li Kang; Sheng Zhengmao.
1993-03-01
We have found that the strong coupled interaction of Sine-Gordon model is related to its weak coupled interaction by the su(2) gauge transformation. We therefore develop a semi-classical approach to deal with the infrared divergence in the conventional perturbation theory of the Hamiltonian of the quantum Sine-Gordon model. (author). 10 refs
SU(3) sextet model with Wilson fermions
DEFF Research Database (Denmark)
Hansen, Martin; Drach, Vincent; Pica, Claudio
2017-01-01
to be inside or very close to the lower boundary of the conformal window. We use the Wilson discretization for the fermions and map the phase structure of the lattice model. We study several spectral and gradient flow observables both in the bulk and the weak coupling phases. While in the bulk phase we find...
Stationary Patterns in One-Predator Two-Prey Models
DEFF Research Database (Denmark)
Pedersen, Michael; Zhigui, Lin
1999-01-01
Weakly-coupled elliptic system decribing models of simple three-species food webs such as the one-predator, two-prey model is discussed. We show that there is no non-constant solution if diffusions or inter-specific competitions are strong, or if the intrinsic growths of the prey are slow...
Infrared equivalence of strongly and weakly coupled gauge theories
International Nuclear Information System (INIS)
Olesen, P.
1975-10-01
Using the decoupling theorem of Apelquist and Carazzone, it is shown that in terms of Feynman diagrams the pure Yang-Mills theory is equivalent in the infrared limit to a theory (zero-mass renormalized), where the vector mesons are coupled fo fermions, and where the fermions do not decouple. By taking enough fermions it is then shown that even though the pure Yang-Mills theory is characterized by the lack of applicability of perturbation theory, nevertheless the effective coupling in the equivalent fermion description is very weak. The effective mass in the zero-mass renormalization blows up. In the fermion description, diagrams involving only vector mesons are suppressed relative to diagrams containing at least one fermion loop. (Auth.)
Weak coupling large-N transitions at finite baryon density
Hollowood, Timothy J.; Kumar, S. Prem; Myers, Joyce C.
We study thermodynamics of free SU(N) gauge theory with a large number of colours and flavours on a three-sphere, in the presence of a baryon number chemical potential. Reducing the system to a holomorphic large-N matrix integral, paying specific attention to theories with scalar flavours (squarks),
Noise Thermometry with Two Weakly Coupled Bose-Einstein Condensates
International Nuclear Information System (INIS)
Gati, Rudolf; Hemmerling, Boerge; Foelling, Jonas; Albiez, Michael; Oberthaler, Markus K.
2006-01-01
Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics
Noise thermometry with two weakly coupled Bose-Einstein condensates.
Gati, Rudolf; Hemmerling, Börge; Fölling, Jonas; Albiez, Michael; Oberthaler, Markus K
2006-04-07
Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics.
Dark matter as a weakly coupled dark baryon
Mitridate, Andrea; Redi, Michele; Smirnov, Juri; Strumia, Alessandro
2017-10-01
Dark Matter might be an accidentally stable baryon of a new confining gauge interaction. We extend previous studies exploring the possibility that the DM is made of dark quarks heavier than the dark confinement scale. The resulting phenomenology contains new unusual elements: a two-stage DM cosmology (freeze-out followed by dark condensation), a large DM annihilation cross section through recombination of dark quarks (allowing to fit the positron excess). Light dark glue-balls are relatively long lived and give extra cosmological effects; DM itself can remain radioactive.
Analytical solutions of weakly coupled map lattices using recurrence relations
Energy Technology Data Exchange (ETDEWEB)
Sotelo Herrera, Dolores, E-mail: dsh@dfmf.uned.e [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); San Martin, Jesus [Applied Maths, EUITI, UPM, Ronda de Valencia, 3-28012 Madrid (Spain); Dep. Fisica Matematica y de Fluidos, UNED, Senda del Rey 9-28040 Madrid (Spain)
2009-07-20
By using asymptotic methods recurrence relations are found that rule weakly CML evolution, with both global and diffusive coupling. The solutions obtained from these relations are very general because they do not hold restrictions about boundary conditions, initial conditions and number of oscilators in the CML. Furthermore, oscillators are ruled by an arbitraty C{sup 2} function.
Hydrodynamic fluctuations from a weakly coupled scalar field
Jackson, G.; Laine, M.
2018-04-01
Studies of non-equilibrium dynamics of first-order cosmological phase transitions may involve a scalar field interacting weakly with the energy-momentum tensor of a thermal plasma. At late times, when the scalar field is approaching equilibrium, it experiences both damping and thermal fluctuations. We show that thermal fluctuations induce a shear viscosity and a gravitational wave production rate, and propose that including this tunable contribution may help in calibrating the measurement of the gravitational wave production rate in hydrodynamic simulations. Furthermore it may enrich their physical scope, permitting in particular for a study of the instability of growing bubbles.
An extended geometric criterion for chaos in the Dicke model
International Nuclear Information System (INIS)
Li Jiangdan; Zhang Suying
2010-01-01
We extend HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion for chaotic motion to Hamiltonian systems of weak coupling of potential and momenta by defining the 'mean unstable ratio'. We discuss the Dicke model of an unstable Hamiltonian system in detail and show that our results are in good agreement with that of the computation of Lyapunov characteristic exponents.
Stationary Patterns in One-Predator Two-Prey Models
DEFF Research Database (Denmark)
Pedersen, Michael; Zhigui, Lin
1999-01-01
Weakly-coupled elliptic system decribing models of simple three-species food webs such as the one-predator, two-prey modelis discussed. We show thatthere is no non-constant solution if diffusions or inter-specific competitions are strong, or if the intrinsic growths of the prey are slow...
Extending the reach of strong-coupling: an iterative technique for Hamiltonian lattice models
International Nuclear Information System (INIS)
Alberty, J.; Greensite, J.; Patkos, A.
1983-12-01
The authors propose an iterative method for doing lattice strong-coupling-like calculations in a range of medium to weak couplings. The method is a modified Lanczos scheme, with greatly improved convergence properties. The technique is tested on the Mathieu equation and on a Hamiltonian finite-chain XY model, with excellent results. (Auth.)
Shell model calculations for exotic nuclei
International Nuclear Information System (INIS)
Brown, B.A.; Wildenthal, B.H.
1991-01-01
A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs
Electronic structure and microscopic model of CoNb2O6
Molla, Kaimujjaman; Rahaman, Badiur
2018-05-01
We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.
International Nuclear Information System (INIS)
Borisenko, O.A.; Petrov, V.K.; Zinovjev, G.M.; Bohacik, J.
1997-01-01
An approach to studying lattice gauge models in the weak-coupling region is proposed. Conceptually, this approach is based on the crucial role of original Z(N) symmetry and of the invariant gauge-group measure. As an example, an effective model from the compact Wilson formulation of SU(2) gauge theory is calculated in d=3 dimensions at zero temperature. The confining properties and the phase structure of the effective model are studied in detail
Principal chiral model on superspheres
International Nuclear Information System (INIS)
Mitev, V.; Schomerus, V.; Quella, T.
2008-09-01
We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S 3 vertical stroke 2 , we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)
On the existence of a first order phase transition at small vacuum angel θin the CP3 model
International Nuclear Information System (INIS)
Olejnik, S.; Slovenska Akademia Vied, Bratislava; Schierholz, G.; Forschungszentrum Juelich GmbH
1993-12-01
We examine the phase structure of the CP 3 model as a function of θ in the weak coupling regime. It is shown that the model has a first order phase transition at small θ. We pay special attention to the extrapolation of the data to the infinite volume. It is found that the critical value of θ decreases towards zero as β is taken to infinity. (orig.)
An SU(2) x SU(2) symmetric Higgs-Fermion model with staggered fermions
International Nuclear Information System (INIS)
Berlin, J.; Heller, U.M.
1991-01-01
We have simulated on SU(2)xSU(2) symmetric Higgs-Fermion model with a four component scalar field coupled with a Yukawa type coupling to two flavours of staggered fermions. The results show two qualitatively different behaviours in the broken phase. One for weak coupling where the fermion masses obey the perturbative tree level relation M F =y , and one for strong coupling where the behaviour agrees with a 1/d expansion. (orig.)
An asymptotic safety scenario for gauged chiral Higgs-Yukawa models
International Nuclear Information System (INIS)
Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca
2013-01-01
We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative - though weak-coupling - threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaussian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a ''walking'' mid-momentum regime. (orig.)
International Nuclear Information System (INIS)
Migdal, A.A.; Polikarpov, M.I.; Veselov, A.I.; Yurov, V.P.
1983-01-01
The Langevin equation for the lattice theory with arbitrary gauge group is derived. The four-dimensional twisted Eguchi-Kawai model is investigated numerically. The results for the plaquette energy agree with those of the known Monte Carlo calculations. The new result is the distribution of eigenvalues of the plaquette matrix. In the strong coupling phase this distribution is smooth, whereas in the weak coupling phase a gap is clearly seen
International Nuclear Information System (INIS)
Moyano, Edgardo A.; Scarpettini, Alberto F.
2003-01-01
A semi linear model of weakly coupled parabolic p.d.e. with reaction-diffusion is investigated. The system describes fission gas transfer from grain interior of UO 2 to grain boundaries. The problem is studied in a bounded domain. Using the upper-lower solutions method, two monotone sequences for the finite differences equations are constructed. Reasons are mentioned that allow to affirm that in the proposed functional sector the algorithm converges to the unique solution of the differential system. (author)
Scaling versus asymptotic scaling in the non-linear σ-model in 2D. Continuum version
International Nuclear Information System (INIS)
Flyvbjerg, H.
1990-01-01
The two-point function of the O(N)-symmetric non-linear σ-model in two dimensions is large-N expanded and renormalized, neglecting terms of O(1/N 2 ). At finite cut-off, universal, analytical expressions relate the magnetic susceptibility and the dressed mass to the bare coupling. Removing the cut-off, a similar relation gives the renormalized coupling as a function of the mass gap. In the weak-coupling limit these relations reproduce the results of renormalization group improved weak-coupling perturbation theory to two-loop order. The constant left unknown, when the renormalization group is integrated, is determined here. The approach to asymptotic scaling is studied for various values of N. (orig.)
Revisiting fifth forces in the Galileon model
Energy Technology Data Exchange (ETDEWEB)
Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Seery, David [Sussex Univ., Brighton (United Kingdom). Dept. of Physics and Astronomy
2010-05-15
A Galileon field is one which obeys a spacetime generalization of the non- relativistic Galilean invariance. Such a field may possess non-canonical kinetic terms, but ghost-free theories with a well-defined Cauchy problem exist, constructed using a finite number of relevant operators. The interactions of this scalar with matter are hidden by the Vainshtein effect, causing the Galileon to become weakly coupled near heavy sources. We revisit estimates of the fifth force mediated by a Galileon field, and show that the parameters of the model are less constrained by experiment than previously supposed. (orig.)
Directions for model building from asymptotic safety
Bond, Andrew D.; Hiller, Gudrun; Kowalska, Kamila; Litim, Daniel F.
2017-08-01
Building on recent advances in the understanding of gauge-Yukawa theories we explore possibilities to UV-complete the Standard Model in an asymptotically safe manner. Minimal extensions are based on a large flavor sector of additional fermions coupled to a scalar singlet matrix field. We find that asymptotic safety requires fermions in higher representations of SU(3) C × SU(2) L . Possible signatures at colliders are worked out and include R-hadron searches, diboson signatures and the evolution of the strong and weak coupling constants.
Kuramoto model for infinite graphs with kernels
Canale, Eduardo
2015-01-07
In this paper we study the Kuramoto model of weakly coupled oscillators for the case of non trivial network with large number of nodes. We approximate of such configurations by a McKean-Vlasov stochastic differential equation based on infinite graph. We focus on circulant graphs which have enough symmetries to make the computations easier. We then focus on the asymptotic regime where an integro-partial differential equation is derived. Numerical analysis and convergence proofs of the Fokker-Planck-Kolmogorov equation are conducted. Finally, we provide numerical examples that illustrate the convergence of our method.
Ideal Coulomb Plasma Approximation in Line Shape Models: Problematic Issues
Directory of Open Access Journals (Sweden)
Joel Rosato
2014-06-01
Full Text Available In weakly coupled plasmas, it is common to describe the microfield using a Debye model. We examine here an “artificial” ideal one-component plasma with an infinite Debye length, which has been used for the test of line shape codes. We show that the infinite Debye length assumption can lead to a misinterpretation of numerical simulations results, in particular regarding the convergence of calculations. Our discussion is done within an analytical collision operator model developed for hydrogen line shapes in near-impact regimes. When properly employed, this model can serve as a reference for testing the convergence of simulations.
Shell model for BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions
Vielma, J.; Jackson, D.; Roundy, D.; Schneider, G.
2010-03-01
Even though the composition of BaTiO3-Bi(Zn1/2Ti1/2)O3 perovskite solid solutions is similar to other ferroelectric compounds, the dielectric response is unusual. Results of permittivity measurements as a function of temperature show a diffuse phase transition indicative of a weakly coupled relaxor behavior.footnotetextC. C. Huang and D. P. Cann, J. Appl. Phys. 104, 024117 (2008) To investigate the weakly coupled relaxor behavior in these materials at intermediate length scales we are developing a newly calibrated shell model based on first-principles supercell calculations of both the solid solution and its compositional endpoints. Initial results for its phase diagram will presented.
DEFF Research Database (Denmark)
Jacobsen, Jens Christian Brings; Aalkjær, Christian; Matchkov, Vladimir
2008-01-01
development of force known as vasomotion. We present experimental data showing a considerable heterogeneity in cellular calcium dynamics in the vascular wall. In stimulated vessels, some SMCs remain quiescent, whereas others display waves of variable frequency. At the onset of vasomotion, all SMCs...
Abney, Drew H; Paxton, Alexandra; Dale, Rick; Kello, Christopher T
2015-11-01
Successful interaction requires complex coordination of body movements. Previous research has suggested a functional role for coordination and especially synchronization (i.e., time-locked movement across individuals) in different types of human interaction contexts. Although such coordination has been shown to be nearly ubiquitous in human interaction, less is known about its function. One proposal is that synchrony supports and facilitates communication (Topics Cogn Sci 1:305-319, 2009). However, questions still remain about what the properties of coordination for optimizing communication might look like. In the present study, dyads worked together to construct towers from uncooked spaghetti and marshmallows. Using cross-recurrence quantification analysis, we found that dyads with loosely coupled gross body movements performed better, supporting recent work suggesting that simple synchrony may not be the key to effective performance (Riley et al. 2011). We also found evidence that leader-follower dynamics-when sensitive to the specific role structure of the interaction-impact task performance. We discuss our results with respect to the functional role of coordination in human interaction.
Gearing motion in cogwheel pairs of molecular rotors: weak-coupling limit
Czech Academy of Sciences Publication Activity Database
Kaleta, Jiří; Michl, Josef; Méziere, C.; Simonov, S.; Zorina, L.; Wzietek, P.; Rodríguez-Fortea, A.; Canadell, E.; Batail, P.
2015-01-01
Roč. 17, č. 41 (2015), s. 7829-7834 ISSN 1466-8033 EU Projects: European Commission(XE) 227756 - DIPOLAR ROTOR ARRAY Institutional support: RVO:61388963 Keywords : organic frameworks * correlated motion * dynamics Subject RIV: CC - Organic Chemistry Impact factor: 3.849, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/ce/c5ce01372k
Two-photon transitions in hydrogen atoms embedded in weakly coupled plasmas
International Nuclear Information System (INIS)
Paul, S.; Ho, Y. K.
2008-01-01
The pseudostate method has been applied to calculate energy eigenvalues and corresponding eigenfunctions of the hydrogen atom in Debye plasma environments. Resonant two-photon transition rates from the ground state of atomic hydrogen to 2s and 3s excited states have been computed as a function of photon frequency in the length and velocity gauges for different Debye lengths. A two-photon transparency is found in correspondence to each resonance for 1s-3s. The transparency frequency and resonance enhancement frequency vary significantly with the Debye length.
Simulations of non-relativistic quantum chromodynamics at strong and weak coupling
Shakespeare, Norman Harold
In this thesis heavy quarks are investigated using lattice nonrelativistic quantum chromodynamics (NRQCD). Two major research works are presented. In the first major work, simulations are done for the three quarkonium systems cc¯, bc¯, and bb¯. The hyperfine splittings are computed at both leading and next-to-leading order in the relativistic expansion, using a large number of lattice spacings. A detailed comparison between mean-link and average plaquette tadpole renormalization schemes is undertaken with a number of features favouring the use of mean-links. These include much better scaling behavior of the hyperfine splittings and smaller relativistic corrections to the spin splittings. Signs of a breakdown in the NRQCD expansion are seen when the bare quark mass, in lattice units, falls below about one. In the second work, coefficients for the perturbative expansion of the static quark self energy are extracted from Monte Carlo simulations in the perturbative region of lattice quantum chromodynamics (QCD). A very large systematic study resulted in a major extension of existing methods. Twisted boundary conditions are used to eliminate the effects of zero modes and to suppress tunneling between the degenerate Z3 vacua. The Monte Carlo results are in excellent agreement with analytic perturbation theory, which is known through second order. New results for the third order coefficient are reported. Preliminary work is reported on quark propagators which will be used to measure second order mass renormalizations for NRQCD fermions.
Equilibrium and nonequilibrium phenomena in inhomogeneous and weakly-coupled superconductors
International Nuclear Information System (INIS)
Zaikin, A.D.
1988-01-01
In this chapter the authors formulate a microscopic theory of the order parameter suppression effect in a superconductor near the N-S-boundary when T c and T -- T c . The Meissner effect in a normal metal layer making contact with the superconductor is investigated. A microscopic theory of the stationary Josephson effect in various types of SNS - junctions is formulated. Nonstationary and nonequilibrium properties of SNS-junctions with direct conductivity are investigated together with the same properties of SNS - junctions containing a dielectric interlayer. A microscopic theory of the nonstationary Josephson effect in such systems is formulated. The enhancement of supercurrent of such systems in an external microwave field is investigated together with a number of some effects. An expression is derived for the spectrum of minor modes in a system of Josephson junctions in granular superconductors that is not accompanied by a deviation of the quasiparticle distribution function from equilibrium
Multiple spatial scaling and the weak coupling approximation. II. Homogeneous kinetic equation
Energy Technology Data Exchange (ETDEWEB)
Kleinsmith, P E [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)
1977-08-01
A modified form of the Bogoliubov plasma cluster expansion is applied to the derivation of a divergence-free kinetic equation from the BBGKY hierarchy. Special attention is given to the conditions under which the Landau kinetic equation may be derived from this more general formulation.
Stochastic mean-field dynamics for fermions in the weak coupling limit
Energy Technology Data Exchange (ETDEWEB)
Lacroix, D
2005-09-15
Assuming that the effect of the residual interaction beyond mean-field is weak and can be treated as a statistical ensemble of two-body interactions, a Markovian quantum jump theory is developed for fermionic systems. In this theory, jumps occur between many-body densities formed of pairs of states D |{phi}{sub a}> <|{phi}{sub b}| / <|{phi}{sub b} | |{phi} {sub a}> where |{phi}{sub a}> and |{phi}{sub b}> are anti-symmetrized products of single-particle states. The underlying Stochastic Mean-Field (SMF) theory is discussed and applied to the monopole vibration of a spherical {sup 40}Ca nucleus under the influence of a statistical ensemble of two-body contact interactions. In this example, the mean-field evolution of one-body observables is recovered by averaging over different stochastic trajectories while fluctuations beyond mean-field are observed. Finally, the nature of the fluctuations is discussed. (author)
The tunnel magnetoresistance in chains of quantum dots weakly coupled to external leads
International Nuclear Information System (INIS)
Weymann, Ireneusz
2010-01-01
We analyze numerically the spin-dependent transport through coherent chains of three coupled quantum dots weakly connected to external magnetic leads. In particular, using the diagrammatic technique on the Keldysh contour, we calculate the conductance, shot noise and tunnel magnetoresistance (TMR) in the sequential and cotunneling regimes. We show that transport characteristics greatly depend on the strength of the interdot Coulomb correlations, which determines the spatial distribution of the electron wavefunction in the chain. When the correlations are relatively strong, depending on the transport regime, we find both negative TMR as well as TMR enhanced above the Julliere value, accompanied with negative differential conductance (NDC) and super-Poissonian shot noise. This nontrivial behavior of tunnel magnetoresistance is associated with selection rules that govern tunneling processes and various high-spin states of the chain that are relevant for transport. For weak interdot correlations, on the other hand, the TMR is always positive and not larger than the Julliere TMR, although super-Poissonian shot noise and NDC can still be observed.
DEFF Research Database (Denmark)
Jacobsen, Jens Christian Brings; Aalkjær, Christian; Matchkov, Vladimir
2008-01-01
development of force known as vasomotion. We present experimental data showing a considerable heterogeneity in cellular calcium dynamics in the vascular wall. In stimulated vessels, some SMCs remain quiescent, whereas others display waves of variable frequency. At the onset of vasomotion, all SMCs...... are enrolled into synchronized oscillation.Simulations of coupled SMCs show that the experimentally observed cellular recruitment, the presence of quiescent cells and the variation in oscillation frequency may arise if the cell population is phenotypically heterogeneous. In this case, quiescent cells can...
Stochastic mean-field dynamics for fermions in the weak coupling limit
International Nuclear Information System (INIS)
Lacroix, D.
2005-09-01
Assuming that the effect of the residual interaction beyond mean-field is weak and can be treated as a statistical ensemble of two-body interactions, a Markovian quantum jump theory is developed for fermionic systems. In this theory, jumps occur between many-body densities formed of pairs of states D |Φ a > b | / b | |Φ a > where |Φ a > and |Φ b > are anti-symmetrized products of single-particle states. The underlying Stochastic Mean-Field (SMF) theory is discussed and applied to the monopole vibration of a spherical 40 Ca nucleus under the influence of a statistical ensemble of two-body contact interactions. In this example, the mean-field evolution of one-body observables is recovered by averaging over different stochastic trajectories while fluctuations beyond mean-field are observed. Finally, the nature of the fluctuations is discussed. (author)
Jet-medium interactions at NLO in a weakly-coupled quark-gluon plasma
International Nuclear Information System (INIS)
Ghiglieri, Jacopo; Moore, Guy D.; Teaney, Derek
2016-01-01
We present an extension to next-to-leading order in the strong coupling constant g of the AMY effective kinetic approach to the energy loss of high momentum particles in the quark-gluon plasma. At leading order, the transport of jet-like particles is determined by elastic scattering with the thermal constituents, and by inelastic collinear splittings induced by the medium. We reorganize this description into collinear splittings, high-momentum-transfer scatterings, drag and diffusion, and particle conversions (momentum-preserving identity-changing processes). We show that this reorganized description remains valid to NLO in g, and compute the appropriate modifications of the drag, diffusion, particle conversion, and inelastic splitting coefficients. In addition, a new kinematic regime opens at NLO for wider-angle collinear bremsstrahlung. These semi-collinear emissions smoothly interpolate between the leading order high-momentum-transfer scatterings and collinear splittings. To organize the calculation, we introduce a set of Wilson line operators on the light-cone which determine the diffusion and identity changing coefficients, and we show how to evaluate these operators at NLO.
3D numerical modeling of coupled phenomena in induced processes of heat treatment with malice
Directory of Open Access Journals (Sweden)
Triwong Peeteenut
2008-01-01
Full Text Available This paper describes a multi-method Malice package for three dimension coupled phenomena in induced processes of heat treatment by an algorithm weakly coupled with the Migen package integral method defining the electromagnetic model and the Flux-Expert package finite element method defining the thermal model. The integral method is well suited to inductive systems undergoing sinusoidal excitation at midrange or high frequency. The unknowns of both models are current density, scalar potential and temperature. Joule power in the electromagnetic model is generated by Eddy currents. It becomes the heat source in the thermal model.
CP violation and moduli stabilization in heterotic models
International Nuclear Information System (INIS)
Giedt, Joel
2002-01-01
The role of moduli stabilization in predictions for CP violation is examined in the context of four-dimensional effective supergravity models obtained from the weakly coupled heterotic string. They point out that while stabilization of compactification moduli has been studied extensively, the determination of background values for other scalar by dynamical means has not been subjected to the same degree of scrutiny. These other complex scalars are important potential sources of CP violation and they show in a simple model how their background values (including complex phases) may be determined from the minimization of the supergravity scalar potential, subject to the constraint of vanishing cosmological constant
Scattering and short-distance properties in field theory models
International Nuclear Information System (INIS)
Iagolnitzer, D.
1987-01-01
The aim of constructive field theory is not only to define models but also to establish their general properties of physical interest. We here review recent works on scattering and on short-distance properties for weakly coupled theories with mass gap such as typically P(φ) in dimension 2, φ 4 in dimension 3 and the (renormalizable, asymptotically free) massive Gross-Neveu (GN) model in dimension 2. Many of the ideas would apply similarly to other (possibly non renormalizable) theories that might be defined in a similar way via phase-space analysis
Finite temperature CPN-1 model and long range Neel order
International Nuclear Information System (INIS)
Ichinose, Ikuo; Yamamoto, Hisashi.
1989-09-01
We study in d space-dimensions the finite temperature behavior of long range Neel order (LRNO) in CP N-1 model as a low energy effective field theory of the antiferromagnetic Heisenberg model. For d≤1, or d≤2 at any nonzero temperature, LRNO disappears, in agreement with Mermin-Wagner-Coleman's theorem. For d=3 in the weak coupling region, LRNO exists below the critical temperature T N (Neel temperature). T N decreases as the interlayer coupling becomes relatively weak compared with that within Cu-O layers. (author)
An introduction to the Hubbard model
International Nuclear Information System (INIS)
Ercolessi, E.; Morandi, G.; Pieri, P.
1997-01-01
In these notes we review some of the basic features of the 2D Hubbard model, thought of as the appropriate model for the description of the Cu - O planes in the cuprate superconductors. We discuss breifly the weak-coupling regime of the model and, in the opposite limit, the mapping of the one band Hubbard model onto an AFM Heisenberg model at half filling and onto the t - J model below half filling. We discuss next Emery's three band model and its mapping onto the so-called ''spin-fermion'' model. Its continuum limit is discussed by making use of an adiabatic followed by a gradient expansion. We review briefly how the model maps onto a nonlinear sigma model and some of the features of the latter. (orig.)
Mathematical models of bipolar disorder
Daugherty, Darryl; Roque-Urrea, Tairi; Urrea-Roque, John; Troyer, Jessica; Wirkus, Stephen; Porter, Mason A.
2009-07-01
We use limit cycle oscillators to model bipolar II disorder, which is characterized by alternating hypomanic and depressive episodes and afflicts about 1% of the United States adult population. We consider two non-linear oscillator models of a single bipolar patient. In both frameworks, we begin with an untreated individual and examine the mathematical effects and resulting biological consequences of treatment. We also briefly consider the dynamics of interacting bipolar II individuals using weakly-coupled, weakly-damped harmonic oscillators. We discuss how the proposed models can be used as a framework for refined models that incorporate additional biological data. We conclude with a discussion of possible generalizations of our work, as there are several biologically-motivated extensions that can be readily incorporated into the series of models presented here.
Thermalization after an interaction quench in the Hubbard model.
Eckstein, Martin; Kollar, Marcus; Werner, Philipp
2009-07-31
We use nonequilibrium dynamical mean-field theory to study the time evolution of the fermionic Hubbard model after an interaction quench. Both in the weak-coupling and in the strong-coupling regime the system is trapped in quasistationary states on intermediate time scales. These two regimes are separated by a sharp crossover at U(c)dyn=0.8 in units of the bandwidth, where fast thermalization occurs. Our results indicate a dynamical phase transition which should be observable in experiments on trapped fermionic atoms.
Local models of heterotic flux vacua: spacetime and worldsheet aspects
International Nuclear Information System (INIS)
Israel, D.; Carlevaro, L.
2011-01-01
We report on some recent progress in understanding heterotic flux compactifications, from a worldsheet perspective mainly. We consider local models consisting in torus fibration over warped Eguchi-Hanson space and non-Kaehler resolved conifold geometries. We analyze the supergravity solutions and define a double-scaling limit of the resolved singularities, defined such that the geometry is smooth and weakly coupled. We show that, remarkably, the heterotic solutions admit solvable worldsheet CFT descriptions in this limit. This allows in particular to understand the important role of worldsheet non-perturbative effects. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Nonperturbative stochastic method for driven spin-boson model
Orth, Peter P.; Imambekov, Adilet; Le Hur, Karyn
2013-01-01
We introduce and apply a numerically exact method for investigating the real-time dissipative dynamics of quantum impurities embedded in a macroscopic environment beyond the weak-coupling limit. We focus on the spin-boson Hamiltonian that describes a two-level system interacting with a bosonic bath of harmonic oscillators. This model is archetypal for investigating dissipation in quantum systems, and tunable experimental realizations exist in mesoscopic and cold-atom systems. It finds abundant applications in physics ranging from the study of decoherence in quantum computing and quantum optics to extended dynamical mean-field theory. Starting from the real-time Feynman-Vernon path integral, we derive an exact stochastic Schrödinger equation that allows us to compute the full spin density matrix and spin-spin correlation functions beyond weak coupling. We greatly extend our earlier work [P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.032118 82, 032118 (2010)] by fleshing out the core concepts of the method and by presenting a number of interesting applications. Methodologically, we present an analogy between the dissipative dynamics of a quantum spin and that of a classical spin in a random magnetic field. This analogy is used to recover the well-known noninteracting-blip approximation in the weak-coupling limit. We explain in detail how to compute spin-spin autocorrelation functions. As interesting applications of our method, we explore the non-Markovian effects of the initial spin-bath preparation on the dynamics of the coherence σx(t) and of σz(t) under a Landau-Zener sweep of the bias field. We also compute to a high precision the asymptotic long-time dynamics of σz(t) without bias and demonstrate the wide applicability of our approach by calculating the spin dynamics at nonzero bias and different temperatures.
International Nuclear Information System (INIS)
RATH, JONATHAN S.; PFEIFLE, T.W.; HUNSCHE, U.
2000-01-01
A numerical model for predicting damage and permeability in the disturbed rock zone (DRZ) has been developed. The semi-empirical model predicts damage based on a function of stress tensor invariant. For a wide class of problems hydrologic/mechanical coupling is necessary for proper analysis. The RATDAMPER model incorporates dilatant volumetric strain and permeability. The RATDAMPER model has been implemented in a weakly coupled code, which combines a finite element structural code and a finite difference multi-phase fluid flow code. Using the development of inelastic volumetric strain, a value of permeability can be assigned. This flexibility allows empirical permeability functional relationships to be evaluated
International Nuclear Information System (INIS)
Heys, D.W.; Stump, D.R.
1987-01-01
Variational calculations are described that use multi-parameter trial wave functions for the U(1) lattice gauge theory in two space dimensions, and for the XY model. The trial functions are constructed as the exponential of a linear combination of states from the strong-coupling basis of the model, with the coefficients treated as variational parameters. The expectation of the hamiltonian is computed by the Monte Carlo method, using a reweighting technique to evaluate expectation values in finite patches of the parameter space. The trial function for the U(1) gauge theory involves six variational parameters, and its weak-coupling behaviour is in reasonable agreement with theoretical expectations. (orig.)
arXiv Hybrid Fluid Models from Mutual Effective Metric Couplings
Kurkela, Aleksi; Preis, Florian; Rebhan, Anton; Soloviev, Alexander
Motivated by a semi-holographic approach to the dynamics of quark-gluon plasma which combines holographic and perturbative descriptions of a strongly coupled infrared and a more weakly coupled ultraviolet sector, we construct a hybrid two-fluid model where interactions between its two sectors are encoded by their effective metric backgrounds, which are determined mutually by their energy-momentum tensors. We derive the most general consistent ultralocal interactions such that the full system has a total conserved energy-momentum tensor in flat Minkowski space and study its consequences in and near thermal equilibrium by working out its phase structure and its hydrodynamic modes.
A low-temperature derivation of spin-spin exchange in Kondo lattice model
International Nuclear Information System (INIS)
Feng Szeshiang; Mochena, Mogus
2005-01-01
Using Hubbard-Stratonovich transformation and drone-fermion representations for spin-12 and for spin-32, which is presented for the first time, we make a path-integral formulation of the Kondo lattice model. In the case of weak coupling and low temperature, the functional integral over conduction fermions can be approximated to the quadratic order and this gives the well-known RKKY interaction. In the case of strong coupling, the same quadratic approximation leads to an effective local spin-spin interaction linear in hopping energy t
A low-temperature derivation of spin-spin exchange in Kondo lattice model
Energy Technology Data Exchange (ETDEWEB)
Feng Szeshiang [Physics Department, Florida A and M University, Tallahassee, FL 32307 (United States)]. E-mail: shixiang.feng@famu.edu; Mochena, Mogus [Physics Department, Florida A and M University, Tallahassee, FL 32307 (United States)
2005-11-01
Using Hubbard-Stratonovich transformation and drone-fermion representations for spin-12 and for spin-32, which is presented for the first time, we make a path-integral formulation of the Kondo lattice model. In the case of weak coupling and low temperature, the functional integral over conduction fermions can be approximated to the quadratic order and this gives the well-known RKKY interaction. In the case of strong coupling, the same quadratic approximation leads to an effective local spin-spin interaction linear in hopping energy t.
New limits on the mass of neutral Higgses in general models
International Nuclear Information System (INIS)
Comelli, D.
1996-07-01
In general electroweak models with weakly coupled (and otherwise arbitrary) Higgs sector there always exists in the spectrum a scalar state with mass controlled by the electroweak scale. A new and simple recipe to compute an analytical tree-level upper bound on the mass of this light scalar is given. We compare this new bound with similar ones existing in the literature and show how to extract extra information on heavier neutral scalars in the spectrum from the interplay of independent bounds. Production of these states at future colliders is addressed and the implications for the decoupling limit in which only one Higgs is expected to remain light are discussed. (orig.)
Kahler stabilized, modular invariant heterotic string models
International Nuclear Information System (INIS)
Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.
2007-01-01
We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Bintruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed
Electronic structure and microscopic model of V2GeO4F2-a quantum spin system with S = 1
International Nuclear Information System (INIS)
Rahaman, Badiur; Saha-Dasgupta, T
2007-01-01
We present first-principles density functional calculations and downfolding studies of the electronic and magnetic properties of the oxide-fluoride quantum spin system V 2 GeO 4 F 2 . We discuss explicitly the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modelling based on analysis of the electronic structure of this systems puts it in the interesting class of weakly coupled alternating chain S = 1 systems. Based on the microscopic model, we make inferrences about its spin excitation spectra, which needs to be tested by rigorous experimental study
Supercritical kinetic analysis in simplified system of fuel debris using integral kinetic model
International Nuclear Information System (INIS)
Tuya, Delgersaikhan; Obara, Toru
2016-01-01
Highlights: • Kinetic analysis in simplified weakly coupled fuel debris system was performed. • The integral kinetic model was used to simulate criticality accidents. • The fission power and released energy during simulated accident were obtained. • Coupling between debris regions and its effect on the fission power was obtained. - Abstract: Preliminary prompt supercritical kinetic analyses in a simplified coupled system of fuel debris designed to roughly resemble a melted core of a nuclear reactor were performed using an integral kinetic model. The integral kinetic model, which can describe region- and time-dependent fission rate in a coupled system of arbitrary geometry, was used because the fuel debris system is weakly coupled in terms of neutronics. The results revealed some important characteristics of coupled systems, such as the coupling between debris regions and the effect of the coupling on the fission rate and released energy in each debris region during the simulated criticality accident. In brief, this study showed that the integral kinetic model can be applied to supercritical kinetic analysis in fuel debris systems and also that it can be a useful tool for investigating the effect of the coupling on consequences of a supercritical accident.
Investigation of a four-body coupling in the one-dimensional extended Penson-Kolb-Hubbard model
Ding, Hanqin; Ma, Xiaojuan; Zhang, Jun
2017-09-01
The experimental advances in cold fermion gases motivates the investigation of a one-dimensional (1D) correlated electronic system by incorporating a four-body coupling. Using the low-energy field theory scheme and focusing on the weak-coupling regime, we extend the 1D Penson-Kolb-Hubbard (PKH) model at half filling. It is found that the additional four-body interaction may significantly modify the quantum phase diagram, favoring the presence of the superconducting phase even in the case of two-body repulsions.
International Nuclear Information System (INIS)
Zhang Yumei; Chen Hong.
1995-09-01
The effects of the repulsion between the electrons on the two-channel Kondo problem are studied by use of the bosonization technique. Following Emery and Kivelson, we define a special case in the spin density wave sector, in which the impurity spin is actually detached from the dynamics of the electrons. The model is thus mapped to a local Sine-Gordon system. For weak repulsion, the basic features of the overscreening picture are maintained. However, at sufficient strong repulsion the system is driven into the weak coupling regime, hence an overscreening-underscreening transition emerges. (author). 22 refs
An asymptotic safety scenario for gauged chiral Higgs-Yukawa models
Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca
2013-12-01
We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative—though weak-coupling—threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaußian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a "walking" mid-momentum regime.
Superconductivity of the two-dimensional Penson-Kolb model
International Nuclear Information System (INIS)
Czart, W.R.; Robaszkiewicz, S.
2001-01-01
Two-dimensional (d = 2) Penson-Kolb model, i.e. the tight-binding model with the pair-hopping (intersite charge exchange) interaction, is considered and the effects of phase fluctuations on the s-wave superconductivity of this system are discussed within Kosterlitz-Thouless scenario. The London penetration depth λ at T = 0, the Kosterlitz Thouless critical temperature T c , and the Hartree-Fock approximation critical temperature T p are determined as a function of particle concentration and interaction. The Uemura type plots (T c vs. λ -2 (0)) are derived. Beyond weak coupling and for low concentrations they show the existence of universal scaling: T c ∼ 1/λ 2 (0), as it previously found for the attractive Hubbard model and for the models intersite electron pairing. (author)
Energy economy in the actomyosin interaction: lessons from simple models.
Lehman, Steven L
2010-01-01
The energy economy of the actomyosin interaction in skeletal muscle is both scientifically fascinating and practically important. This chapter demonstrates how simple cross-bridge models have guided research regarding the energy economy of skeletal muscle. Parameter variation on a very simple two-state strain-dependent model shows that early events in the actomyosin interaction strongly influence energy efficiency, and late events determine maximum shortening velocity. Addition of a weakly-bound state preceding force production allows weak coupling of cross-bridge mechanics and ATP turnover, so that a simple three-state model can simulate the velocity-dependence of ATP turnover. Consideration of the limitations of this model leads to a review of recent evidence regarding the relationship between ligand binding states, conformational states, and macromolecular structures of myosin cross-bridges. Investigation of the fine structure of the actomyosin interaction during the working stroke continues to inform fundamental research regarding the energy economy of striated muscle.
Colour dielectric model of the proton
International Nuclear Information System (INIS)
Jen, P.K.; Pradhan, T.
1984-01-01
A model of the proton with its constituent quarks bound in a colour polarizable medium with dielectric constant varying as (a/r - b 2 ) from a fixed centre, is presented. The Dirac equation modified by the colour polarization is solved and the analytic expression for the wavefunction of the quarks obtained shows that quarks with higher energy lie closer to the fixed centre. The energy spectrum is equispaced without any continuum. A semiclassical approximation scheme yields closed orbits for quarks which have smaller size for higher energies and no orbits with size bigger than a certain maximum, thereby rendering the quarks permanently confined. The wavefunctions of the three quarks constituting the proton are used to calculate physical parameters of the proton such as its mass, charge radius and weak coupling constant which with suitable choice of the constants a and b appearing in the dielectric constant agree fairly well with experimental results. (author)
The Anderson model as a matrix model
International Nuclear Information System (INIS)
Magnen, J.; Poirot, G.; Rivasseau, V.
1997-01-01
In this paper we describe a strategy to study the Anderson model of an electron in a random potential at weak coupling by a renormalization group analysis. There is an interesting technical analogy between this problem and the theory of random matrices. In d = 2 the random matrices which appear are approximately of the free type well known to physicists and mathematicians, and their asymptotic eigenvalue distribution is therefore simply Wigner's law. However in d = 3 the natural random matrices that appear have non-trivial constraints of a geometrical origin. It would be interesting to develop a general theory of these constrained random matrices, which presumably play an interesting role for many non-integrable problems related to diffusion. We present a first step in this direction, namely a rigorous bound on the tail of the eigenvalue distribution of such objects based on large deviation and graphical estimates. This bound allows to prove regularity and decay properties of the averaged Green's functions and the density of states for a three dimensional model with a thin conducting band and an energy close to the border of the band, for sufficiently small coupling constant. (orig.)
M-Theory Model-Building and Proton Stability
Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John; Faraggi, Alon E.
1998-01-01
We study the problem of baryon stability in M theory, starting from realistic four-dimensional string models constructed using the free-fermion formulation of the weakly-coupled heterotic string. Suitable variants of these models manifest an enhanced custodial gauge symmetry that forbids to all orders the appearance of dangerous dimension-five baryon-decay operators. We exhibit the underlying geometric (bosonic) interpretation of these models, which have a $Z_2 \\times Z_2$ orbifold structure similar, but not identical, to the class of Calabi-Yau threefold compactifications of M and F theory investigated by Voisin and Borcea. A related generalization of their work may provide a solution to the problem of proton stability in M theory.
M-theory model-building and proton stability
International Nuclear Information System (INIS)
Ellis, J.; Faraggi, A.E.; Nanopoulos, D.V.; Houston Advanced Research Center, The Woodlands, TX; Academy of Athens
1997-09-01
The authors study the problem of baryon stability in M theory, starting from realistic four-dimensional string models constructed using the free-fermion formulation of the weakly-coupled heterotic string. Suitable variants of these models manifest an enhanced custodial gauge symmetry that forbids to all orders the appearance of dangerous dimension-five baryon-decay operators. The authors exhibit the underlying geometric (bosonic) interpretation of these models, which have a Z 2 x Z 2 orbifold structure similar, but not identical, to the class of Calabi-Yau threefold compactifications of M and F theory investigated by Voisin and Borcea. A related generalization of their work may provide a solution to the problem of proton stability in M theory
Computer modeling and simulation in inertial confinement fusion
International Nuclear Information System (INIS)
McCrory, R.L.; Verdon, C.P.
1989-03-01
The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper we describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics. 46 refs., 19 figs., 1 tab
Energy Technology Data Exchange (ETDEWEB)
Mito, S.; Sakurai, H.; Takagi, H.; Inoue, M. [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Baryshev, A. V. [Electronics-Inspired Interdisciplinary Research Institute Toyohashi, Aichi 441-8580 (Japan); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation)
2012-04-01
We have investigated the magnetization process of the polycrystalline magnetic garnet films in order to determine the most suitable composition of garnet films for piezoelectrically-driven magneto-optic spatial light modulators (MOSLMs). For experiment, the bismuth-dysprosium-aluminum-substituted yttrium iron (Bi{sub 1.3}Dy{sub 0.7}Y{sub 1.0}Fe{sub 3.1}Al{sub 1.9}O{sub 12}) garnet films were deposited by an RF magnetron sputter and annealed at 700 deg. C in air. The annealing time was varied in a range of several minutes to control the grain size. The saturation magnetization, the remanent magnetization and the composition of the fabricated garnet films slightly changed versus the annealing time. Experiments showed that the coercivity and the grain size increased at longer annealing; the coercivity was larger for films with bigger grains. This work shows that garnet films with smaller coercivity are most suitable for controlling the magnetization of garnet and, correspondingly, the magneto-optical rotation of MOSLM pixels driven by piezoelectrics.
Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie
2016-04-01
Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.
Arrigoni, E.
1999-01-01
We study the problem of the crossover from one- to higher-dimensional metals by considering an array of Luttinger liquids (one-dimensional chains) coupled by a weak interchain hopping {\\tp.} We evaluate the exact asymptotic low-energy behavior of the self-energy in the anisotropic infinite-dimension limit. This limit extends the dinamical mean field concept to the case of a chain embedded in a self-consistent medium. The system flows to a Fermi-liquid fixed point for energies below the dimens...
Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules
Droghetti, Andrea; Thielen, Philip; Rungger, Ivan; Haag, Norman; Großmann, Nicolas; Stöckl, Johannes; Stadtmüller, Benjamin; Aeschlimann, Martin; Sanvito, Stefano; Cinchetti, Mirko
2016-08-01
Spin filtering at organic-metal interfaces is often determined by the details of the interaction between the organic molecules and the inorganic magnets used as electrodes. Here we demonstrate a spin-filtering mechanism based on the dynamical spin relaxation of the long-living interface states formed by the magnet and weakly physisorbed molecules. We investigate the case of Alq3 on Co and, by combining two-photon photoemission experiments with electronic structure theory, show that the observed long-time spin-dependent electron dynamics is driven by molecules in the second organic layer. The interface states formed by physisorbed molecules are not spin-split, but acquire a spin-dependent lifetime, that is the result of dynamical spin-relaxation driven by the interaction with the Co substrate. Such spin-filtering mechanism has an important role in the injection of spin-polarized carriers across the interface and their successive hopping diffusion into successive molecular layers of molecular spintronics devices.
Dyson-Schwinger equations for the non-linear σ-model
International Nuclear Information System (INIS)
Drouffe, J.M.; Flyvbjerg, H.
1989-08-01
Dyson-Schwinger equations for the O(N)-symmetric non-linear σ-model are derived. They are polynomials in N, hence 1/N-expanded ab initio. A finite, closed set of equations is obtained by keeping only the leading term and the first correction term in this 1/N-series. These equations are solved numerically in two dimensions on square lattices measuring 50x50, 100x100, 200x200, and 400x400. They are also solved analytically at strong coupling and at weak coupling in a finite volume. In these two limits the solution is asymptotically identical to the exact strong- and weak-coupling series through the first three terms. Between these two limits, results for the magnetic susceptibility and the mass gap are identical to the Monte Carlo results available for N=3 and N=4 within a uniform systematic error of O(1/N 3 ), i.e. the results seem good to O(1/N 2 ), though obtained from equations that are exact only to O(1/N). This is understood by seeing the results as summed infinite subseries of the 1/N-series for the exact susceptibility and mass gap. We conclude that the kind of 1/N-expansion presented here converges as well as one might ever hope for, even for N as small as 3. (orig.)
Model of cosmology and particle physics at an intermediate scale
International Nuclear Information System (INIS)
Bastero-Gil, M.; Di Clemente, V.; King, S. F.
2005-01-01
We propose a model of cosmology and particle physics in which all relevant scales arise in a natural way from an intermediate string scale. We are led to assign the string scale to the intermediate scale M * ∼10 13 GeV by four independent pieces of physics: electroweak symmetry breaking; the μ parameter; the axion scale; and the neutrino mass scale. The model involves hybrid inflation with the waterfall field N being responsible for generating the μ term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The large scale structure of the Universe is generated by the lightest right-handed sneutrino playing the role of a coupled curvaton. We show that the correct curvature perturbations may be successfully generated providing the lightest right-handed neutrino is weakly coupled in the seesaw mechanism, consistent with sequential dominance
Penson-Kolb-Hubbard model: a renormalisation group study
International Nuclear Information System (INIS)
Bhattacharyya, Bibhas; Roy, G.K.
1995-01-01
The Penson-Kolb-Hubbard (PKH) model in one dimension (1d) by means of real space renormalisation group (RG) method for the half-filled band has been studied. Different phases are identified by studying the RG-flow pattern, the energy gap and different correlation functions. The phase diagram consists of four phases: a spin density wave (SDW), a strong coupling superconducting phase (SSC), a weak coupling superconducting phase (WSC) and a nearly metallic phase. For the negative value of the pair hopping amplitude introduced in this model it was found that the pair-pair correlation indicates a superconducting phase for which the centre-of-mass of the pairs move with a momentum π. (author). 7 refs., 4 figs
Decay of the standard model Higgs field after inflation
Figueroa, Daniel G; Torrenti, Francisco
2015-01-01
We study the nonperturbative dynamics of the Standard Model (SM) after inflation, in the regime where the SM is decoupled from (or weakly coupled to) the inflationary sector. We use classical lattice simulations in an expanding box in (3+1) dimensions, modeling the SM gauge interactions with both global and Abelian-Higgs analogue scenarios. We consider different post-inflationary expansion rates. During inflation, the Higgs forms a condensate, which starts oscillating soon after inflation ends. Via nonperturbative effects, the oscillations lead to a fast decay of the Higgs into the SM species, transferring most of the energy into $Z$ and $W^{\\pm}$ bosons. All species are initially excited far away from equilibrium, but their interactions lead them into a stationary stage, with exact equipartition among the different energy components. From there on the system eventually reaches equilibrium. We have characterized in detail, in the different expansion histories considered, the evolution of the Higgs and of its ...
Energy Technology Data Exchange (ETDEWEB)
Wong, C.H., E-mail: ch.kh.vong@urfu.ru [Institute of Physics and Technology, Ural Federal University, Clear Water Bay, Kowloon (Russian Federation); Wu, R.P.H., E-mail: pak-hong-raymond.wu@connect.polyu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (Hong Kong); Lortz, R., E-mail: lortz@ust.hk [Department of Physics, Hong Kong University of Science and Technology (Hong Kong)
2017-03-15
The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature T{sub DC} is observed when the inner superconducting cylindrical surface is rotated in the angular plane. T{sub DC} reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below T{sub DC}. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.
Phase models and clustering in networks of oscillators with delayed coupling
Campbell, Sue Ann; Wang, Zhen
2018-01-01
We consider a general model for a network of oscillators with time delayed coupling where the coupling matrix is circulant. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to determine model independent existence and stability results for symmetric cluster solutions. Our results extend previous work to systems with time delay and a more general coupling matrix. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies.
Filatrella, G
2002-01-01
The technology to build reproducible and accurately defined structures consisting of many lumped junctions has become available only recently, therefore extended investigations are relatively new. However, beside the interest of such discrete structures per se, it has been suggested soon after the discovery of high-T sub c superconductivity that granular superconductors might be modelled as superconducting islands surrounded by non-superconducting material and weakly coupled to each other. This program has been vigorously carried on, and models of planar Josephson junction arrays (JJAs) have been successfully used to mimic the magnetic behaviour of granular superconductors. The JJA model has been compared to continuous models of non-granular superconductors. We will show how to derive the height of pinning barriers in the JJA model and compare the results with the continuous model. In particular, the existence of current dependent activation energy has been proved to be a key characteristic to understand flux...
Attractive Hubbard model with disorder and the generalized Anderson theorem
International Nuclear Information System (INIS)
Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.
2015-01-01
Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flat densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T c for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T c (in the weak-coupling region) or significantly increase T c (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band
Adiabatic instability in coupled dark energy/dark matter models
International Nuclear Information System (INIS)
Bean, Rachel; Flanagan, Eanna E.; Trodden, Mark
2008-01-01
We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the Universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, which can also be thought of as a type of Jeans instability, is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid, and results in the exponential growth of small scale modes. We discuss the role of the instability in specific coupled cold dark matter and mass varying neutrino models of dark energy and clarify for these theories the regimes in which the instability can be evaded due to nonadiabaticity or weak coupling.
Numerical modelling of multimode fibre-optic communication lines
Energy Technology Data Exchange (ETDEWEB)
Sidelnikov, O S; Fedoruk, M P [Novosibirsk State University, Novosibirsk (Russian Federation); Sygletos, S; Ferreira, F [Aston University, England, Birmingham, B4 7ET (United Kingdom)
2016-01-31
The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)
Decoherence, entanglement, and chaos in the Dicke model
International Nuclear Information System (INIS)
Hou Xiwen; Hu Bambi
2004-01-01
The dynamical properties of quantum entanglement in the Dicke model without rotating-wave approximation are investigated in terms of the reduced-density linear entropy. The characteristic time of decoherence process in the early-time evolution is numerically obtained and it is shown that the characteristic time decreases as the coupling parameter increases. The mean entanglement, which is defined to be averaged over time, is employed to describe the influences of both quantum phase transition and corresponding classical chaos on the behavior of entanglement. For a given energy, initial conditions are taken to be minimum uncertainty wave packets centered at regular and chaotic regions of the classical phase space. It is shown that the entanglement has a distinct change at the quantum phase transition, and that the entanglement for regular initial conditions is smaller than that for chaotic ones in the case of weak coupling, while it fluctuates with small amplitude in strong coupling and for chaotic initial conditions
Collective excitations in the Penson-Kolb model: A generalized random-phase-approximation study
International Nuclear Information System (INIS)
Roy, G.K.; Bhattacharyya, B.
1997-01-01
The evolution of the superconducting ground state of the half-filled Penson-Kolb model is examined as a function of the coupling constant using a mean-field approach and the generalized random phase approximation (RPA) in two and three dimensions. On-site singlet pairs hop to compete against single-particle motion in this model, giving the coupling constant a strong momentum dependence. There is a pronounced bandwidth enhancement effect that converges smoothly to a finite value in the strong-coupling (Bose) regime. The low-lying collective excitations evaluated in generalized RPA show a linear dispersion and a gradual crossover from the weak-coupling (BCS) limit to the Bose regime; the mode velocity increases monotonically in sharp contrast to the attractive Hubbard model. Analytical results are derived in the asymptotic limits. copyright 1997 The American Physical Society
Finite size scaling of the Higgs-Yukawa model near the Gaussian fixed point
Energy Technology Data Exchange (ETDEWEB)
Chu, David Y.J.; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu, Taiwan (China); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [HISKP, Bonn (Germany); Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Univ. Berlin (Germany)
2016-12-15
We study the scaling properties of Higgs-Yukawa models. Using the technique of Finite-Size Scaling, we are able to derive scaling functions that describe the observables of the model in the vicinity of a Gaussian fixed point. A feasibility study of our strategy is performed for the pure scalar theory in the weak-coupling regime. Choosing the on-shell renormalisation scheme gives us an advantage to fit the scaling functions against lattice data with only a small number of fit parameters. These formulae can be used to determine the universality of the observed phase transitions, and thus play an essential role in future investigations of Higgs-Yukawa models, in particular in the strong Yukawa coupling region.
3D Modelling of Flash Formation in Linear Friction Welded 30CrNiMo8 Steel Chain
Directory of Open Access Journals (Sweden)
Pedro Effertz
2017-10-01
Full Text Available Linear friction welding (LFW is a solid-state welding process that has been thoroughly investigated for chain welding in recent years in order to replace the currently in use Flash Butt Welding (FBW process. Modelling has proven to be an indispensable tool in LFW, thus providing necessary insight to the process, regardless of its final application. This article describes a 3D model developed in the commercial software DEFORM to study the LFW process of 30CrNiMo8 high strength steel in the Hero chain. Hence, a weakly coupled thermal and mechanical model were used, by means of the process experimental input such as displacement histories. The flash morphology and intervening mechanisms were analyzed. A thermal evaluation of different regions in the studied geometry was considered, and a correlation of the modeled and experimental width of the extrusion zone was established.
International Nuclear Information System (INIS)
Smits, J.W.; Siemssen, R.H.; Werf, S.Y. van der; Woude, A. van der
1979-01-01
The (p,α) reaction on the even-A nickel isotopes has been studied at an incident proton energy of 30 MeV. Between 14 and 26 states, or groups of states, were analysed for each of the residual cobalt isotopes. For these transitions angular distributions were determined from thetasub(lab) = 7.5 0 to 70 0 . In all reactions the proton-hole states (0fsub(7/2), 1ssub(1/2) and 0dsub(3/2)) stand out in the spectra. Also, states formed by the weak-coupling of the proton-holes to excitations of the neutron core were seen. Differences in the relative strengths of the positive-parity hole states between the proton pickup and the (p,α) data can be explained by a semi-microscopic model for three-nucleon transfer. Also the strength distribution of the transitions to the lowest weak-coupling quintuplet is correctly predicted. These results underline the importance of the inclusion of non-zero coupled neutron pairs into the description of (p, α) reactions. Several T> states are observed in the 58 Ni(p, α) 55 Co reactions
Chern-Simons matrix models, two-dimensional Yang-Mills theory and the Sutherland model
International Nuclear Information System (INIS)
Szabo, Richard J; Tierz, Miguel
2010-01-01
We derive some new relationships between matrix models of Chern-Simons gauge theory and of two-dimensional Yang-Mills theory. We show that q-integration of the Stieltjes-Wigert matrix model is the discrete matrix model that describes q-deformed Yang-Mills theory on S 2 . We demonstrate that the semiclassical limit of the Chern-Simons matrix model is equivalent to the Gross-Witten model in the weak-coupling phase. We study the strong-coupling limit of the unitary Chern-Simons matrix model and show that it too induces the Gross-Witten model, but as a first-order deformation of Dyson's circular ensemble. We show that the Sutherland model is intimately related to Chern-Simons gauge theory on S 3 , and hence to q-deformed Yang-Mills theory on S 2 . In particular, the ground-state wavefunction of the Sutherland model in its classical equilibrium configuration describes the Chern-Simons free energy. The correspondence is extended to Wilson line observables and to arbitrary simply laced gauge groups.
International Nuclear Information System (INIS)
Wen, Zijuan; Fu, Shengmao
2016-01-01
This paper deals with a strongly coupled reaction-diffusion system modeling a competitor-competitor-mutualist three-species model with diffusion, self-diffusion and nonlinear cross-diffusion and subject to Neumann boundary conditions. First, we establish the persistence of a corresponding reaction-diffusion system without self- and cross-diffusion. Second, the global asymptotic stability of the unique positive equilibrium for weakly coupled PDE system is established by using a comparison method. Moreover, under certain conditions about the intra- and inter-species effects, we prove that the uniform positive steady state is linearly unstable for the cross-diffusion system when one of the cross-diffusions is large enough. The results indicate that Turing instability can be driven solely from strong diffusion effect of the first species (or the second species or the third species) due to the pressure of the second species (or the first species).
Towards Dense Nuclear Matter in A Modified Sakai-Sugimoto Model
Directory of Open Access Journals (Sweden)
Rho Mannque
2012-02-01
Full Text Available As a part of the attempt to address dense baryonic matter, we first review holographic approaches to QCD. The big advantage of the holographic approaches is that they render strongly coupled 4D gauge theories as duals of certain weakly coupled string/supergravity that are well understood. Its relevance to real QCD is one of the central problems in hadron/nuclear physics as well as in the context of applied string theory. None of the models based on these holographic approaches presently available can adequately describe the system we are interested in, namely dense baryonic matter. Nevertheless, some aspects of the holographic approach are found to describe certain processes both in vacuum and in medium. In this talk we only present the structure of a model that appears to be closest to QCD, and has the potential to address the problem.
Constraints on mirror models of dark matter from observable neutron-mirror neutron oscillation
Mohapatra, Rabindra N.; Nussinov, Shmuel
2018-01-01
The process of neutron-mirror neutron oscillation, motivated by symmetric mirror dark matter models, is governed by two parameters: n -n‧ mixing parameter δ and n -n‧ mass splitting Δ. For neutron mirror neutron oscillation to be observable, the splitting between their masses Δ must be small and current experiments lead to δ ≤ 2 ×10-27 GeV and Δ ≤10-24 GeV. We show that in mirror universe models where this process is observable, this small mass splitting constrains the way that one must implement asymmetric inflation to satisfy the limits of Big Bang Nucleosynthesis on the number of effective light degrees of freedom. In particular we find that if asymmetric inflation is implemented by inflaton decay to color or electroweak charged particles, the oscillation is unobservable. Also if one uses SM singlet fields for this purpose, they must be weakly coupled to the SM fields.
Dynamical correlation functions of the quadratic coupling spin-Boson model
Zheng, Da-Chuan; Tong, Ning-Hua
2017-06-01
The spin-boson model with quadratic coupling is studied using the bosonic numerical renormalization group method. We focus on the dynamical auto-correlation functions {C}O(ω ), with the operator \\hat{O} taken as {\\hat{{{σ }}}}x, {\\hat{{{σ }}}}z, and \\hat{X}, respectively. In the weak-coupling regime α qualitatively, showing enhanced dephasing at the spin flip point. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB921704), the National Natural Science Foundation of China (Grant No. 11374362), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 15XNLQ03).
Time-dependent shell-model theory of dissipative heavy-ion collisions
International Nuclear Information System (INIS)
Ayik, S.; Noerenberg, W.
1982-01-01
A transport theory is formulated within a time-dependent shell-model approach. Time averaging of the equations for macroscopic quantities lead to irreversibility and justifies weak-coupling limit and Markov approximation for the (energy-conserving) one- and two-body collision terms. Two coupled equations for the occupation probabilities of dynamical single-particle states and for the collective variable are derived and explicit formulas for transition rates, dynamical forces, mass parameters and friction coefficients are given. The applicability of the formulation in terms of characteristic quantities of nuclear systems is considered in detail and some peculiarities due to memory effects in the initial equilibration process of heavy-ion collisions are discussed. (orig.)
Effect of Inhomogeneity on s-wave Superconductivity in the Attractive Hubbard Model
Energy Technology Data Exchange (ETDEWEB)
Aryanpour, K. A. [University of California, Davis; Dagotto, Elbio R [ORNL; Mayr, Matthias [Max-Planck-Institut fur Feskorperforschung, Stuttgart, Germany; Paiva, T. [Universidade Federal do Rio de Janeiro, Brazil; Pickett, W. E. [University of California, Davis; Scalettar, Richard T [ORNL
2006-01-01
Inhomogeneous s-wave superconductivity is studied in the two-dimensional, square lattice attractive Hubbard Hamiltonian using the Bogoliubov-de Gennes BdG mean field approximation. We find that at weak coupling, and for densities mainly below half-filling, an inhomogeneous interaction in which the on-site interaction Ui takes on two values, Ui=0, 2U results in a larger zero temperature pairing amplitude, and that the superconducting Tc can also be significantly increased, relative to a uniform system with Ui=U on all sites. These effects are observed for stripe, checkerboard, and even random patterns of the attractive centers, suggesting that the pattern of inhomogeneity is unimportant. Monte Carlo calculations which reintroduce some of the fluctuations neglected within the BdG approach see the same effect, both for the attractive Hubbard model and a Hamiltonian with d-wave pairing symmetry.
Interpretation for ''high''-Tc of the totally interconnected solution of the Ma and Lee model
International Nuclear Information System (INIS)
Wiecko, C.
1988-09-01
The already presented totally interconnected (mean-field) approximation of the Ma and Lee model, pictures very well many ingredients of the present status of comprehension of high-T c superconductors. The picture is that of a disordered grain with variable number of particles available for an attractive on-site pairing interaction, embedded in a reservoir of normal particles which fix the chemical potential. Interesting effect of absence of T c and then a sharp increase and slow decay of T c with disorder appears for weak coupling pairing as compared with the hopping probability for single particles. Interpretation is given in terms of one-particle Anderson localization theory and standard mechanisms. (author). 13 refs, 4 figs
Moment approach for the attractive Hubbard model in two dimensions: superconductivity
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Nunez, J.J.; Cordeiro, C.; Delfino, A. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica
1997-12-31
Full text. Using the moment of Nolting (Z. Phys. 225, 25 (1972) for the attractive Hubbard model in the superconducting phase, we have derived a set of three non-linear equations, the electron density, the superconducting order parameter, and the narrowing factor. Our starting point is the Ansatz that the diagonal spectral density is composed of three peaks while the off-diagonal spectral functional is composed of two. The third band, or upper Hubbard band, strongly renormalizes the other two, making the energy gap K dependent while the order parameter is pure s-wave. Our approach recuperates the BCS limit, weak coupling (U/t <<1) in a natural way. We solve these non-linear equations in a self-consistent way for intermediate coupling for U/t {approx} -4.0. Here we report the order parameter as function of temperature and compare it with the BCS result. (author)
On the realism of the re-engineered simple point charge water model
International Nuclear Information System (INIS)
Chialvo, A.A.
1996-01-01
The realism of the recently proposed high-temperature reparameterization of the simple point charge (SPC) water model [C. D. Berweger, W. F. van Gunsteren, and F. Mueller-Plathe, Chem. Phys. Lett. 232, 429 (1995)] is tested by comparing the simulated microstructure and dielectric properties to the available experimental data. The test indicates that the new parameterization fails dramatically to describe the microstructural and dielectric properties of water at high temperature; it predicts rather strong short-range site endash site pair correlations, even stronger than those for water at ambient conditions, and a threefold smaller dielectric constant. Moreover, the resulting microstructure suggests that the high-temperature force-field parameters would predict a twofold higher critical density. The failure of the high-temperature parameterization is analyzed and some suggestions on alternative choices of the target properties for the weak-coupling are discussed. copyright 1996 American Institute of Physics
Non-Fermi-liquid theory of a compactified Anderson single-impurity model
International Nuclear Information System (INIS)
Zhang, G.; Hewson, A.C.
1996-01-01
We consider a version of the symmetric Anderson impurity model (compactified) which has a non-Fermi-liquid weak-coupling regime. We find that in the Majorana fermion representation the perturbation theory can be conveniently developed in terms of Pfaffian determinants and we use this formalism to calculate the impurity free energy, self-energies, and vertex functions. We derive expressions for the impurity and the local conduction-electron charge and spin-dynamical susceptibilities in terms of the impurity self-energies and vertex functions. In the second-order perturbation theory, a linear temperature dependence of the electrical resistivity is obtained, and the leading corrections to the impurity specific heat are found to behave as TlnT. The impurity static susceptibilities have terms in lnT to zero, first, and second order, and corrections of ln 2 T to second order as well. The conduction-electron static susceptibilities, and the singlet superconducting paired static susceptibility at the impurity site, have second-order corrections lnT, which indicate that a singlet conduction-electron pairing resonance forms at the Fermi level (the chemical potential). When the perturbation theory is extended to third order logarithmic divergences are found in the only vertex function Γ 0,1,2,3 (0,0,0,0), which is nonvanishing in the zero-frequency limit. We use the multiplicative renormalization-group (RG) method to sum all the leading-order logarithmic contributions. This gives a weak-coupling low-temperature energy scale T c =Δexp[-(1/9)(πΔ/U) 2 ], which is the combination of the two independent coupling parameters. The RG scaling equation is derived and shows that the dimensionless coupling constant bar U=U/πΔ is increased as the high-energy scale Δ is reduced, so our perturbational results can be justified in the regime T approx-gt T c
Atmospheric Muon Lifetime, Standard Model of Particles and the Lead Stopping Power for Muons
Gutarra-Leon, Angel; Barazandeh, Cioli; Majewski, Walerian
2017-01-01
The muon is a fundamental particles of matter. It decays into three other leptons through an exchange of the weak vector bosons W +/W-. Muons are present in the atmosphere from cosmic ray showers. By detecting the time delay between arrival of the muon and an appearance of the decay electron in our detector, we'll measure muon's lifetime at rest. From the lifetime we should be able to find the ratio gw /MW of the weak coupling constant gw (a weak analog of the electric charge) to the mass of the W-boson MW. Vacuum expectation value v of the Higg's field, which determines the masses of all particles of the Standard Model (SM), could be then calculated from our muon experiment as v =2MWc2/gw =(τ m μc2/6 π3ĥ)1/4m μc2 in terms of muon mass mµand muon lifetime τ only. Using known experimental value for MWc2 = 80.4 GeV we'll find the weak coupling constant gw. Using the SM relation e =gwsin θ√ hc ɛ0 with the experimental value of the Z0-photon weak mixing angle θ = 29o we could find from our muon lifetime the value of the elementary electric charge e. We'll determine the sea-level fluxes of low-energy and high-energy cosmic muons, then we'll shield the detector with varying thicknesses of lead plates and find the energy-dependent muon stopping power in lead.
Discretization-dependent model for weakly connected excitable media
Arroyo, Pedro André; Alonso, Sergio; Weber dos Santos, Rodrigo
2018-03-01
Pattern formation has been widely observed in extended chemical and biological processes. Although the biochemical systems are highly heterogeneous, homogenized continuum approaches formed by partial differential equations have been employed frequently. Such approaches are usually justified by the difference of scales between the heterogeneities and the characteristic spatial size of the patterns. Under different conditions, for example, under weak coupling, discrete models are more adequate. However, discrete models may be less manageable, for instance, in terms of numerical implementation and mesh generation, than the associated continuum models. Here we study a model to approach discreteness which permits the computer implementation on general unstructured meshes. The model is cast as a partial differential equation but with a parameter that depends not only on heterogeneities sizes, as in the case of quasicontinuum models, but also on the discretization mesh. Therefore, we refer to it as a discretization-dependent model. We validate the approach in a generic excitable media that simulates three different phenomena: the propagation of action membrane potential in cardiac tissue, in myelinated axons of neurons, and concentration waves in chemical microemulsions.
Mohapatra, Shubhajyoti; Bhandari, Churna; Satpathy, Sashi; Singh, Avinash
2018-04-01
Effects of the structural distortion associated with the OsO6 octahedral rotation and tilting on the electronic band structure and magnetic anisotropy energy for the 5 d3 compound NaOsO3 are investigated using the density functional theory (DFT) and within a three-orbital model. Comparison of the essential features of the DFT band structures with the three-orbital model for both the undistorted and distorted structures provides insight into the orbital and directional asymmetry in the electron hopping terms resulting from the structural distortion. The orbital mixing terms obtained in the transformed hopping Hamiltonian resulting from the octahedral rotations are shown to account for the fine features in the DFT band structure. Staggered magnetization and the magnetic character of states near the Fermi energy indicate weak coupling behavior.
International Nuclear Information System (INIS)
Wang Haobin; Thoss, Michael
2010-01-01
Graphical abstract: □□□ - Abstract: The dynamics of the spin-boson model at zero temperature is studied for a bath characterized by a sub-Ohmic spectral density. Using the numerically exact multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method, the population dynamics of the two-level subsystem has been investigated in a broad range of parameter space. The results show the transition of the dynamics from weakly damped coherent motion to localization upon increase of the system-bath coupling strength. Comparison of the exact ML-MCTDH simulations with the non-interacting blip approximation (NIBA) shows that the latter performs rather poorly in the weak coupling regime with small Kondo parameters. However, NIBA improves significantly upon increase in the coupling strength and is quantitatively correct in the strong coupling, nonadiabatic limit. The transition from coherent motion to localization as a function of the different parameters of the model is analyzed in some detail.
Pre-relaxation in weakly interacting models
Bertini, Bruno; Fagotti, Maurizio
2015-07-01
We consider time evolution in models close to integrable points with hidden symmetries that generate infinitely many local conservation laws that do not commute with one another. The system is expected to (locally) relax to a thermal ensemble if integrability is broken, or to a so-called generalised Gibbs ensemble if unbroken. In some circumstances expectation values exhibit quasi-stationary behaviour long before their typical relaxation time. For integrability-breaking perturbations, these are also called pre-thermalisation plateaux, and emerge e.g. in the strong coupling limit of the Bose-Hubbard model. As a result of the hidden symmetries, quasi-stationarity appears also in integrable models, for example in the Ising limit of the XXZ model. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-\\frac{1}{2} chain with additional perturbations that break integrability. One of the most intriguing results of the analysis is the appearance of persistent oscillatory behaviour. To unravel its origin, we study in detail a toy model: the transverse-field Ising chain with an additional nonlocal interaction proportional to the square of the transverse spin per unit length (2013 Phys. Rev. Lett. 111 197203). Despite being nonlocal, this belongs to a class of models that emerge as intermediate steps of the mean-field mapping and shares many dynamical properties with the weakly interacting models under consideration.
Finite energy shifts in SU(n) supersymmetric Yang-Mills theory on T3xR at weak coupling
International Nuclear Information System (INIS)
Ohlsson, Fredrik
2010-01-01
We consider a perturbative treatment, in the regime of weak gauge coupling, of supersymmetric Yang-Mills theory in a space-time of the form T 3 xR with SU(n)/Z n gauge group and a nontrivial gauge bundle. More specifically, we consider the theories obtained as power series expansions around a certain class of normalizable vacua of the classical theory, corresponding to isolated points in the moduli space of flat connections, and the perturbative corrections to the free energy eigenstates and eigenvalues in the weakly interacting theory. The perturbation theory construction of the interacting Hilbert space is complicated by the divergence of the norm of the interacting states. Consequently, the free and interacting Hilbert spaces furnish unitarily inequivalent representations of the algebra of creation and annihilation operators of the quantum theory. We discuss a consistent redefinition of the Hilbert space norm to obtain the interacting Hilbert space and the properties of the interacting representation. In particular, we consider the lowest nonvanishing corrections to the free energy spectrum and discuss the crucial importance of supersymmetry for these corrections to be finite.
Energy Technology Data Exchange (ETDEWEB)
Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States); Ishizaki, Akihito [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan)
2015-08-14
Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.
Glenn, R.; Baker, W. J.; Boehme, C.; Raikh, M. E.
2013-04-01
We report on the theoretical and experimental study of spin-dependent electronic transition rates which are controlled by a radiation-induced spin-Rabi oscillation of weakly spin-exchange and spin-dipolar coupled paramagnetic states (S=(1)/(2)). The oscillation components [the Fourier content, F(s)] of the net transition rates within spin-pair ensembles are derived for randomly distributed spin resonances, with an account of a possible correlation between the two distributions corresponding to individual pair partners. Our study shows that when electrically detected Rabi spectroscopy is conducted under an increasing driving field B1, the Rabi spectrum, F(s), evolves from a single peak at s=ΩR, where ΩR=γB1 is the Rabi frequency (γ is the gyromagnetic ratio), to three peaks at s=ΩR, s=2ΩR, and low s≪ΩR. The crossover between the two regimes takes place when ΩR exceeds the expectation value δ0 of the difference in the Zeeman energies within the pairs, which corresponds to the broadening of the magnetic resonance by disorder caused by a hyperfine field or distributions of Landé g factors. We capture this crossover by analytically calculating the shapes of all three peaks at an arbitrary relation between ΩR and δ0. When the peaks are well developed their widths are Δs˜δ02/ΩR. We find a good quantitative agreement between the theory and experiment.
Lattice model of ionic liquid confined by metal electrodes
Girotto, Matheus; Malossi, Rodrigo M.; dos Santos, Alexandre P.; Levin, Yan
2018-05-01
We study, using Monte Carlo simulations, the density profiles and differential capacitance of ionic liquids confined by metal electrodes. To compute the electrostatic energy, we use the recently developed approach based on periodic Green's functions. The method also allows us to easily calculate the induced charge on the electrodes permitting an efficient implementation of simulations in a constant electrostatic potential ensemble. To speed up the simulations further, we model the ionic liquid as a lattice Coulomb gas and precalculate the interaction potential between the ions. We show that the lattice model captures the transition between camel-shaped and bell-shaped capacitance curves—the latter characteristic of ionic liquids (strong coupling limit) and the former of electrolytes (weak coupling). We observe the appearance of a second peak in the differential capacitance at ≈0.5 V for 2:1 ionic liquids, as the packing fraction is increased. Finally, we show that ionic size asymmetry decreases substantially the capacitance maximum, when all other parameters are kept fixed.
Energy Technology Data Exchange (ETDEWEB)
Cao, Xiaobin
2011-01-15
The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T{sub c} in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the
International Nuclear Information System (INIS)
Cao, Xiaobin
2011-01-01
The quasi-one-dimensional systems exhibit some unusual phenomenon, such as the Peierls instability, the pseudogap phenomena and the absence of a Fermi-Dirac distribution function line shape in the photoemission spectroscopy. Ever since the discovery of materials with highly anisotropic properties, it has been recognized that fluctuations play an important role above the three-dimensional phase transition. This regime where the precursor fluctuations are presented can be described by the so called fluctuating gap model (FGM) which was derived from the Froehlich Hamiltonian to study the low energy physics of the one-dimensional electron-phonon system. Not only is the FGM of great interest in the context of quasi-one-dimensional materials, liquid metal and spin waves above T c in ferromagnets, but also in the semiclassical approximation of superconductivity, it is possible to replace the original three-dimensional problem by a directional average over effectively one-dimensional problem which in the weak coupling limit is described by the FGM. In this work, we investigate the FGM in a wide temperature range with different statistics of the order parameter fluctuations. We derive a formally exact solution to this problem and calculate the density of states, the spectral function and the optical conductivity. In our calculation, we show that a Dyson singularity appears in the low energy density of states for Gaussian fluctuations in the commensurate case. In the incommensurate case, there is no such kind of singularity, and the zero frequency density of states varies differently as a function of the correlation lengths for different statistics of the order parameter fluctuations. Using the density of states we calculated with non-Gaussian order parameter fluctuations, we are able to calculate the static spin susceptibility which agrees with the experimental data very well. In the calculation of the spectral functions, we show that as the correlation increases, the quasi
Spädtke, P
2013-01-01
Modeling of technical machines became a standard technique since computer became powerful enough to handle the amount of data relevant to the specific system. Simulation of an existing physical device requires the knowledge of all relevant quantities. Electric fields given by the surrounding boundary as well as magnetic fields caused by coils or permanent magnets have to be known. Internal sources for both fields are sometimes taken into account, such as space charge forces or the internal magnetic field of a moving bunch of charged particles. Used solver routines are briefly described and some bench-marking is shown to estimate necessary computing times for different problems. Different types of charged particle sources will be shown together with a suitable model to describe the physical model. Electron guns are covered as well as different ion sources (volume ion sources, laser ion sources, Penning ion sources, electron resonance ion sources, and H$^-$-sources) together with some remarks on beam transport.
Precision tools and models to narrow in on the 750 GeV diphoton resonance
International Nuclear Information System (INIS)
Staub, Florian; Athron, Peter; Basso, Lorenzo
2016-02-01
The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.
Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.
Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V
2017-10-03
The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.
Unsupervised machine learning account of magnetic transitions in the Hubbard model
Ch'ng, Kelvin; Vazquez, Nick; Khatami, Ehsan
2018-01-01
We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t -distributed stochastic neighboring ensemble (t -SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t -SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t -SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.
Precision tools and models to narrow in on the 750 GeV diphoton resonance
Energy Technology Data Exchange (ETDEWEB)
Staub, Florian [CERN, Theoretical Physics Department, Geneva (Switzerland); Athron, Peter [Monash University, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Melbourne, VIC (Australia); Basso, Lorenzo [CPPM, Aix-Marseille Universite, CNRS-IN2P3, UMR 7346, Marseille Cedex 9 (France); Goodsell, Mark D. [Sorbonne Universites, LPTHE, UMR 7589, CNRS and Universite Pierre et Marie Curie, Paris Cedex 05 (France); Harries, Dylan [The University of Adelaide, Department of Physics, ARC Centre of Excellence for Particle Physics at the Terascale, Adelaide, SA (Australia); Krauss, Manuel E.; Nickel, Kilian; Opferkuch, Toby [Bethe Center for Theoretical Physics and Physikalisches Institut der Universitaet Bonn, Bonn (Germany); Ubaldi, Lorenzo [Tel-Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv (Israel); Vicente, Avelino [Instituto de Fisica Corpuscular (CSIC-Universitat de Valencia), Valencia (Spain); Voigt, Alexander [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)
2016-09-15
The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model. (orig.)
Precision tools and models to narrow in on the 750 GeV diphoton resonance
Energy Technology Data Exchange (ETDEWEB)
Staub, Florian [CERN, Geneva (Switzerland). Theoretical Physics Dept.; Athron, Peter [Monash Univ., Melbourne (Australia). ARC Center of Excellence for Particle Physics at the Terascale; Basso, Lorenzo [Aix-Marseille Univ., CNRS-IN2P3, UMR 7346 (France). CPPM; and others
2016-02-15
The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model.
Precision tools and models to narrow in on the 750 GeV diphoton resonance
International Nuclear Information System (INIS)
Staub, Florian; Athron, Peter; Basso, Lorenzo; Goodsell, Mark D.; Harries, Dylan; Krauss, Manuel E.; Nickel, Kilian; Opferkuch, Toby; Ubaldi, Lorenzo; Vicente, Avelino; Voigt, Alexander
2016-01-01
The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective vertices from the spectrum generator to a Monte-Carlo tool. Finally, as an example to demonstrate the power of the entire setup, we present a new supersymmetric model that accommodates the diphoton excess, explicitly demonstrating how a large width can be obtained. We explicitly show several steps in detail to elucidate the use of these public tools in the precision study of this model. (orig.)
Attractive Hubbard model: Homogeneous Ginzburg–Landau expansion and disorder
International Nuclear Information System (INIS)
Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.
2016-01-01
We derive a Ginzburg–Landau (GL) expansion in the disordered attractive Hubbard model within the combined Nozieres–Schmitt-Rink and DMFT+Σ approximation. Restricting ourselves to the homogeneous expansion, we analyze the disorder dependence of GL expansion coefficients for a wide range of attractive potentials U, from the weak BCS coupling region to the strong-coupling limit, where superconductivity is described by Bose–Einstein condensation (BEC) of preformed Cooper pairs. We show that for the a semielliptic “bare” density of states of the conduction band, the disorder influence on the GL coefficients A and B before quadratic and quartic terms of the order parameter, as well as on the specific heat discontinuity at the superconducting transition, is of a universal nature at any strength of the attractive interaction and is related only to the general widening of the conduction band by disorder. In general, disorder growth increases the values of the coefficients A and B, leading either to a suppression of the specific heat discontinuity (in the weak-coupling limit), or to its significant growth (in the strong-coupling region). However, this behavior actually confirms the validity of the generalized Anderson theorem, because the disorder dependence of the superconducting transition temperature T c , is also controlled only by disorder widening of the conduction band (density of states).
Using polarized positrons to probe physics beyond the standard model
Furletova, Yulia; Mantry, Sonny
2018-05-01
A high intensity polarized positron beam, as part of the JLAB 12 GeV program and the proposed electron-ion collider (EIC), can provide a unique opportunity for testing the Standard Model (SM) and probing for new physics. The combination of high luminosity with polarized electrons and positrons incident on protons and deuterons can isolate important effects and distinguish between possible new physics scenarios in a manner that will complement current experimental efforts. A comparison of cross sections between polarized electron and positron beams will allow for an extraction of the poorly known weak neutral current coupling combination 2C3u - C3d and would complement the proposed plan for a precision extraction of the combination 2C2u - Cd at the EIC. Precision measurements of these neutral weak couplings would constrain new physics scenarios including Leptoquarks, R-parity violating supersymmetry, and electron and quark compositeness. The dependence of the charged current cross section on the longitudinal polarization of the positron beam will provide an independent probe to test the chiral structure of the electroweak interactions. A polarized positron can probe charged lepton flavor violation (CLFV) through a search for e+ → τ+ transitions in a manner that is independent and complementary to the proposed e- → τ- search at the EIC. A positron beam incident on an electron in a stationary nuclear target will also allow for a dark-photon (A') search via the annihilation process e+ + e- → A' + γ.
Model for calorimetric measurements in an open quantum system
Donvil, Brecht; Muratore-Ginanneschi, Paolo; Pekola, Jukka P.; Schwieger, Kay
2018-05-01
We investigate the experimental setup proposed in New J. Phys. 15, 115006 (2013), 10.1088/1367-2630/15/11/115006 for calorimetric measurements of thermodynamic indicators in an open quantum system. As a theoretical model we consider a periodically driven qubit coupled with a large yet finite electron reservoir, the calorimeter. The calorimeter is initially at equilibrium with an infinite phonon bath. As time elapses, the temperature of the calorimeter varies in consequence of energy exchanges with the qubit and the phonon bath. We show how under weak-coupling assumptions, the evolution of the qubit-calorimeter system can be described by a generalized quantum jump process including as dynamical variable the temperature of the calorimeter. We study the jump process by numeric and analytic methods. Asymptotically with the duration of the drive, the qubit-calorimeter attains a steady state. In this same limit, we use multiscale perturbation theory to derive a Fokker-Planck equation governing the calorimeter temperature distribution. We inquire the properties of the temperature probability distribution close and at the steady state. In particular, we predict the behavior of measurable statistical indicators versus the qubit-calorimeter coupling constant.
Exact solution of the p + ip pairing Hamiltonian and a hierarchy of integrable models
International Nuclear Information System (INIS)
Dunning, Clare; Ibañez, Miguel; Sierra, Germán; Links, Jon; Zhao, Shao-You
2010-01-01
Using the well-known trigonometric six-vertex solution of the Yang–Baxter equation we derive an integrable pairing Hamiltonian with anyonic degrees of freedom. The exact algebraic Bethe ansatz solution is obtained using standard techniques. From this model we obtain several limiting models, including the pairing Hamiltonian with p + ip-wave symmetry. An in-depth study of the p + ip model is then undertaken, including a mean-field analysis, analytical and numerical solutions of the Bethe ansatz equations and an investigation of the topological properties of the ground-state wavefunction. Our main result is that the ground-state phase diagram of the p + ip model consists of three phases. There is the known boundary line with gapless excitations that occurs for vanishing chemical potential, separating the topologically trivial strong pairing phase and the topologically non-trivial weak pairing phase. We argue that a second boundary line exists separating the weak pairing phase from a topologically trivial weak coupling BCS phase, which includes the Fermi sea in the limit of zero coupling. The ground state on this second boundary line is the Moore–Read state
From polymers to quantum gravity: Triple-scaling in rectangular random matrix models
International Nuclear Information System (INIS)
Myers, R.C.; Periwal, V.
1993-01-01
Rectangular NxM matrix models can be solved in several qualitatively distinct large-N limits, since two independent parameters govern the size of the matrix. Regarded as models of random surfaces, these matrix models interpolate between branched polymer behaviour and two-dimensional quantum gravity. We solve such models in a 'triple-scaling' regime in this paper, with N and M becoming large independently. A correspondence between phase transitions and singularities of mappings from R 2 to R 2 is indicated. At different critical points, the scaling behaviour is determined by (i) two decoupled ordinary differential equations; (ii) an ordinary differential equation and a finite-difference equation; or (iii) two coupled partial differential equations. The Painleve II equation arises (in conjunction with a difference equation) at a point associated with branched polymers. For critical points described by partial differential equations, there are dual weak-coupling/strong-coupling expansions. It is conjectured that the new physics is related to microscopic topology fluctuations. (orig.)
Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms
Zhang, Guofeng; Zhu, Hanjie
2015-03-01
The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model.
Multi-physics modeling in electrical engineering. Application to a magneto-thermo-mechanical model
International Nuclear Information System (INIS)
Journeaux, Antoine
2013-01-01
The modeling of multi-physics problems in electrical engineering is presented, with an application to the numerical computation of vibrations within the end windings of large turbo-generators. This study is divided into four parts: the impositions of current density, the computation of local forces, the transfer of data between disconnected meshes, and the computation of multi-physics problems using weak coupling, Firstly, the representation of current density within numerical models is presented. The process is decomposed into two stages: the construction of the initial current density, and the determination of a divergence-free field. The representation of complex geometries makes the use of analytical methods impossible. A method based on an electrokinetic problem is used and a fully geometrical method are tested. The geometrical method produces results closer to the real current density than the electrokinetic problem. Methods to compute forces are numerous, and this study focuses on the virtual work principle and the Laplace force considering the recommendations of the literature. Laplace force is highly accurate but is applicable only if the permeability is uniform. The virtual work principle is finally preferred as it appears as the most general way to compute local forces. Mesh-to-mesh data transfer methods are developed to compute multi-physics models using multiples meshes adapted to the subproblems and multiple computational software. The interpolation method, a locally conservative projection, and an orthogonal projection are compared. Interpolation method is said to be fast but highly diffusive, and the orthogonal projections are highly accurate. The locally conservative method produces results similar to the orthogonal projection but avoid the assembly of linear systems. The numerical computation of multi-physical problems using multiple meshes and projections is then presented. However for a given class of problems, there is not an unique coupling
Fermionic Hubbard model with Rashba or Dresselhaus spin-orbit coupling
Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming
2017-06-01
In this work, we investigate the possible dramatic effects of Rashba or Dresselhaus spin-orbit coupling (SOC) on the fermionic Hubbard model in a two-dimensional square lattice. In the strong coupling limit, it leads to the rotated antiferromagnetic Heisenberg model which is a new class of quantum spin model. For a special equivalent class, we identify a new spin-orbital entangled commensurate ground (Y-y) state subject to strong quantum fluctuations at T = 0. We evaluate the quantum fluctuations by the spin wave expansion up to order 1/{S}2. In some SOC parameter regimes, the Y-y state supports a massive relativistic incommensurate magnon (C-IC) with its two gap minima positions continuously tuned by the SOC parameters. The C-IC magnons dominate all the low temperature thermodynamic quantities and also lead to the separation of the peak positions between the longitudinal and the transverse spin structure factors. In the weak coupling limit, any weak repulsive interaction also leads to a weak Y-y state. There is only a crossover from the weak to the strong coupling. High temperature expansions of the specific heats in both weak and strong coupling are presented. The dramatic roles to be played by these C-IC magnons at generic SOC parameters or under various external probes are hinted at. Experimental applications to both layered noncentrosymmetric materials and cold atoms are discussed.
A Stefan model for mass transfer in a rotating disk reaction vessel
BOHUN, C. S.
2015-05-04
Copyright © Cambridge University Press 2015. In this paper, we focus on the process of mass transfer in the rotating disk apparatus formulated as a Stefan problem with consideration given to both the hydrodynamics of the process and the specific chemical reactions occurring in the bulk. The wide range in the reaction rates of the underlying chemistry allows for a natural decoupling of the problem into a simplified set of weakly coupled convective-reaction-diffusion equations for the slowly reacting chemical species and a set of algebraic relations for the species that react rapidly. An analysis of the chemical equilibrium conditions identifies an expansion parameter and a reduced model that remains valid for arbitrarily large times. Numerical solutions of the model are compared to an asymptotic analysis revealing three distinct time scales and chemical diffusion boundary layer that lies completely inside the hydrodynamic layer. Formulated as a Stefan problem, the model generalizes the work of Levich (Levich and Spalding (1962) Physicochemical hydrodynamics, vol. 689, Prentice-Hall Englewood Cliffs, NJ) and will help better understand the natural limitations of the rotating disk reaction vessel when consideration is made for the reacting chemical species.
TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model
Vučičević, J.; Ayral, T.; Parcollet, O.
2017-09-01
We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.
Coupled SU(3) models of rotational states in nuclei and quasi-dynamical symmetry
International Nuclear Information System (INIS)
Thiamova, G.; Rowe, D. J.
2007-01-01
This contribution reports a first step towards the development of a model of low-lying nuclear collective states based on the progression from weak to strong coupling of a combination of systems in multiple SU(3) irreps. The motivation for such a model comes partly from the remarkable persistence of rotational structure observed experimentally and in many model calculations. This work considers the spectra obtainable by coupling just two SU(3) irreps by means of a quadrupole-quadrupole interaction. For a particular value of this interaction, the two irreps combine to form strongly-coupled irreps while for zero interaction the weakly-coupled results are mixtures of many such strongly-coupled irreps. A notable result is the persistence of the rotor character of the low-energy states for a wide range of the interaction strength. Also notable is the fact that, for very weak interaction strengths, the energy levels of the yrast band resemble those of a vibrational sequence while the B(E2) transition strengths remain close to those of an axially symmetric rotor, as observed in many nuclei. (Author)
Precision tools and models to narrow in on the 750 GeV diphoton resonance
Staub, Florian; Basso, Lorenzo; Goodsell, Mark D.; Harries, Dylan; Krauss, Manuel E.; Nickel, Kilian; Opferkuch, Toby; Ubaldi, Lorenzo; Vicente, Avelino; Voigt, Alexander
2016-09-23
The hints for a new resonance at 750 GeV from ATLAS and CMS have triggered a significant amount of attention. Since the simplest extensions of the standard model cannot accommodate the observation, many alternatives have been considered to explain the excess. Here we focus on several proposed renormalisable weakly-coupled models and revisit results given in the literature. We point out that physically important subtleties are often missed or neglected. To facilitate the study of the excess we have created a collection of 40 model files, selected from recent literature, for the Mathematica package SARAH. With SARAH one can generate files to perform numerical studies using the tailor-made spectrum generators FlexibleSUSY and SPheno. These have been extended to automatically include crucial higher order corrections to the diphoton and digluon decay rates for both CP-even and CP-odd scalars. Additionally, we have extended the UFO and CalcHep interfaces of SARAH, to pass the precise information about the effective...
Slade, Gordon; Tomberg, Alexandre
2016-03-01
We extend and apply a rigorous renormalisation group method to study critical correlation functions, on the 4-dimensional lattice Z4, for the weakly coupled n-component {|\\varphi|4} spin model for all {n ≥ 1}, and for the continuous-time weakly self-avoiding walk. For the {|\\varphi|4} model, we prove that the critical two-point function has | x|-2 (Gaussian) decay asymptotically, for {n ≥ 1}. We also determine the asymptotic decay of the critical correlations of the squares of components of {\\varphi}, including the logarithmic corrections to Gaussian scaling, for {n ≥ 1}. The above extends previously known results for n = 1 to all {n ≥ 1}, and also observes new phenomena for n > 1, all with a new method of proof. For the continuous-time weakly self-avoiding walk, we determine the decay of the critical generating function for the "watermelon" network consisting of p weakly mutually- and self-avoiding walks, for all {p ≥ 1}, including the logarithmic corrections. This extends a previously known result for p = 1, for which there is no logarithmic correction, to a much more general setting. In addition, for both models, we study the approach to the critical point and prove the existence of logarithmic corrections to scaling for certain correlation functions. Our method gives a rigorous analysis of the weakly self-avoiding walk as the n = 0 case of the {|\\varphi|4} model, and provides a unified treatment of both models, and of all the above results.
Constraints on mirror models of dark matter from observable neutron-mirror neutron oscillation
Directory of Open Access Journals (Sweden)
Rabindra N. Mohapatra
2018-01-01
Full Text Available The process of neutron-mirror neutron oscillation, motivated by symmetric mirror dark matter models, is governed by two parameters: n−n′ mixing parameter δ and n−n′ mass splitting Δ. For neutron mirror neutron oscillation to be observable, the splitting between their masses Δ must be small and current experiments lead to δ≤2×10−27 GeV and Δ≤10−24 GeV. We show that in mirror universe models where this process is observable, this small mass splitting constrains the way that one must implement asymmetric inflation to satisfy the limits of Big Bang Nucleosynthesis on the number of effective light degrees of freedom. In particular we find that if asymmetric inflation is implemented by inflaton decay to color or electroweak charged particles, the oscillation is unobservable. Also if one uses SM singlet fields for this purpose, they must be weakly coupled to the SM fields.
Metastable vacuum decay and θ dependence in gauge theory. Deformed QCD as a toy model
Energy Technology Data Exchange (ETDEWEB)
Bhoonah, Amit; Thomas, Evan, E-mail: zucchini@phas.ubc.ca; Zhitnitsky, Ariel R., E-mail: arz@phas.ubc.ca
2015-01-15
We study a number of different ingredients related to the θ dependence, metastable excited vacuum states and other related subjects using a simplified version of QCD, the so-called “deformed QCD”. This model is a weakly coupled gauge theory, which, however, preserves all the relevant essential elements allowing us to study hard and nontrivial features which are known to be present in real strongly coupled QCD. Our main focus in this work is to test the ideas related to the metastable vacuum states (which are known to be present in strongly coupled QCD in large N limit) in a theoretically controllable manner using the “deformed QCD” as a toy model. We explicitly show how the metastable states emerge in the system, why their lifetime is large, and why these metastable states must be present in the system for the self-consistency of the entire picture of the QCD vacuum. We also speculate on possible relevance of the metastable vacuum states in explanation of the violation of local P and CP symmetries in heavy ion collisions.
Metastable vacuum decay and θ dependence in gauge theory. Deformed QCD as a toy model
International Nuclear Information System (INIS)
Bhoonah, Amit; Thomas, Evan; Zhitnitsky, Ariel R.
2015-01-01
We study a number of different ingredients related to the θ dependence, metastable excited vacuum states and other related subjects using a simplified version of QCD, the so-called “deformed QCD”. This model is a weakly coupled gauge theory, which, however, preserves all the relevant essential elements allowing us to study hard and nontrivial features which are known to be present in real strongly coupled QCD. Our main focus in this work is to test the ideas related to the metastable vacuum states (which are known to be present in strongly coupled QCD in large N limit) in a theoretically controllable manner using the “deformed QCD” as a toy model. We explicitly show how the metastable states emerge in the system, why their lifetime is large, and why these metastable states must be present in the system for the self-consistency of the entire picture of the QCD vacuum. We also speculate on possible relevance of the metastable vacuum states in explanation of the violation of local P and CP symmetries in heavy ion collisions
International Nuclear Information System (INIS)
Au-Yang, M.K.; Brenneman, B.; Raj, D.
1995-01-01
A 1:9 scale model of a proposed advanced water reactor was tested for flow-induced vibration. The main objectives of this test were: (1) to derive an empirical equation for the turbulence forcing function which can be applied to the full-sized prototype; (2) to study the effect of viscosity on the turbulence; (3) to verify the ''superposition'' assumption widely used in dynamic analysis of weakly coupled fluid-shell systems; and (4) to measure the shell responses to verify methods and computer programs used in the flow-induced vibration analysis of the prototype. This paper describes objectives (1), (2), and (3); objective (4) will be discussed in a companion paper.The turbulence-induced fluctuating pressure was measured at 49 locations over the surface of a thick-walled, non-responsive scale model of the reactor vessel/core support cylinders. An empirical equation relating the fluctuating pressure, the frequency, and the distance from the inlet nozzle center line was derived to fit the test data. This equation involves only non-dimensional, fluid mechanical parameters that are postulated to represent the full-sized, geometrically similar prototype. While this postulate cannot be verified until similar measurements are taken on the full-sized unit, a similar approach using a 1:6 scale model of a commercial pressurized water reactor was verified in the mid-1970s by field measurements on the full-sized reactor. (orig.)
Discriminating between Higgs Boson models using e+e- → tt-bar h and Zh at the NLC
International Nuclear Information System (INIS)
Gunion, J. F.; He, X. G.
1997-01-01
In extensions of the Standard Model (SM) there are multiple neutral Higgs bosons. Their masses and couplings are often dependent upon many parameters; CP-violating mixing of CP-even with CP-odd neutral Higgs fields is generally possible. It is demonstrated that the process e + e - → tt-bar h at the NLC provides a powerful tool for extracting the tt-bar (Yukawa) couplings of the h. In combination with the e + e - → Zh process, an accurate determination of the ZZ coupling of the H is also possible. The resulting ability to distinguish different models of the Higgs sector is illustrated by detailed studies for two-Higgs-doublet models, for which the masses and couplings of the three neutral Higgs bosons are all free parameters. It is concluded that it is very possible that the SM is not correct. In this case, and if there is a weakly-coupled Higgs sector, there will certainly be Higgs bosons that do not have SM-like couplings. 3 refs., 3 figs
The θ-term, CPN-1 model and the inversion approach in the imaginary θ method
International Nuclear Information System (INIS)
Imachi, Masahiro; Kambayashi, Hitoshi; Shinno, Yasuhiko; Yoneyama, Hiroshi
2006-01-01
The weak coupling region of CP N-1 lattice field theory with the θ-term is investigated. Both the usual real theta method can the imaginary theta method are studied. The latter was first proposed by Bhanot and David. Azcoiti et al. proposed an inversion approach based on the imaginary theta method. The role of the inversion approach is investigated in this paper. A wide range of values of h=-Imθ is studied, where θ denotes the magnitude of the topological term. Step-like behavior in the x-h relation (where x=Q/V, Q is the topological charge, and V is the two-dimensional volume) is found in the weak coupling region. The physical meaning of the position of the step-like behavior is discussed. The inversion approach is applied to weak coupling regions. (author)
Collective modes of the Nambu--Jona-Lasinio model with an external U(1) gauge field
International Nuclear Information System (INIS)
Klevansky, S.P.; Jaenicke, J.; Lemmer, R.H.
1991-01-01
The effect of external color fields on the collective modes of the SU L (2)xSU R (2) chiral flavor version of the Nambu--Jona-Lasinio model is studied analytically in a U(1) approximation to the gauge fields. We show that the scalar and pseudoscalar modes respond differently to external chromomagnetic and -electric fields. In the former case, in which chiral asymmetry is enhanced, the modes remain well separated and vary slowly with the field, while in the latter case the scalar mode drops rapidly to become degenerate with the pseudoscalar mode in the chiral limit. In this regime, both modes are weakly coupled to quark matter, and the pseudoscalar pion mode in particular survives as a well-defined excitation as it enters the pair continuum. The Goldberger-Treiman relation, which is shown to hold in the presence of external fields, is responsible for this behavior. Chromoelectric and -magnetic polarizabilities are seen to be equal and opposite with absolute values β σ =2.0α s and β π =0.03α s for the scalar and pseudoscalar modes respectively
Quantum parameter estimation in the Unruh–DeWitt detector model
Energy Technology Data Exchange (ETDEWEB)
Hao, Xiang, E-mail: xhao@phas.ubc.ca [School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215011 (China); Pacific Institute of Theoretical Physics, Department of Physics and Astronomy, University of British Columbia, 6224 Agriculture Rd., Vancouver B.C., Canada V6T 1Z1 (Canada); Wu, Yinzhong [School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215011 (China)
2016-09-15
Relativistic effects on the precision of quantum metrology for particle detectors, such as two-level atoms are studied. The quantum Fisher information is used to estimate the phase sensitivity of atoms in non-inertial motions or in gravitational fields. The Unruh–DeWitt model is applicable to the investigation of the dynamics of a uniformly accelerated atom weakly coupled to a massless scalar vacuum field. When a measuring device is in the same relativistic motion as the atom, the dynamical behavior of quantum Fisher information as a function of Rindler proper time is obtained. It is found out that monotonic decrease in phase sensitivity is characteristic of dynamics of relativistic quantum estimation. The origin of the decay of quantum Fisher information is the thermal bath that the accelerated detector finds itself in due to the Unruh effect. To improve relativistic quantum metrology, we reasonably take into account two reflecting plane boundaries perpendicular to each other. The presence of the reflecting boundary can shield the detector from the thermal bath in some sense.
Pairing tendencies in a two-orbital Hubbard model in one dimension
Energy Technology Data Exchange (ETDEWEB)
Patel, Niravkumar D. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nocera, Adriana [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Alvarez, Gonzalo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moreo, A. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dagotto, Elbio R. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-07-31
The recent discovery of superconductivity under high pressure in the ladder compound BaFe2S3 has opened a new field of research in iron-based superconductors with focus on quasi-one-dimensional geometries. In this publication, using the density matrix renormalization group technique, we study a two-orbital Hubbard model defined in one-dimensional chains. Our main result is the presence of hole binding tendencies at intermediate Hubbard U repulsion and robust Hund coupling J_{H} / U = 0.25. Binding does not occur either in weak coupling or at very strong coupling. The pair-pair correlations that are dominant near half-filling, or of similar strength as the charge and spin correlation channels, involve hole-pair operators that are spin singlets, use nearest-neighbor sites, and employ different orbitals for each hole. As a result, the Hund coupling strength, presence of robust magnetic moments, and antiferromagnetic correlations among them are important for the binding tendencies found here.
Energy Technology Data Exchange (ETDEWEB)
Zhao, Mei; Wang, Guomin; Hendon, Harry H.; Alves, Oscar [Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne (Australia)
2011-04-15
Impacts on the coupled variability of the Indo-Pacific by including the effects of surface currents on surface stress are explored in four extended integrations of an experimental version of the Bureau of Meteorology's coupled seasonal forecast model POAMA. The first pair of simulations differs only in their treatment of momentum coupling: one version includes the effects of surface currents on the surface stress computation and the other does not. The version that includes the effect of surface currents has less mean-state bias in the equatorial Pacific cold tongue but produces relatively weak coupled variability in the Tropics, especially that related to the Indian Ocean dipole (IOD) and El Nino/Southern Oscillation (ENSO). The version without the effects of surface currents has greater bias in the Pacific cold tongue but stronger IOD and ENSO variability. In order to diagnose the role of changes in local coupling from changes in remote forcing by ENSO for causing changes in IOD variability, a second set of simulations is conducted where effects of surface currents are included only in the Indian Ocean and only in the Pacific Ocean. IOD variability is found to be equally reduced by inclusion of the local effects of surface currents in the Indian Ocean and by the reduction of ENSO variability as a result of including effects of surface currents in the Pacific. Some implications of these results for predictability of the IOD and its dependence on ENSO, and for ocean subsurface data assimilation are discussed. (orig.)
One dimensionalization in the spin-1 Heisenberg model on the anisotropic triangular lattice
Gonzalez, M. G.; Ghioldi, E. A.; Gazza, C. J.; Manuel, L. O.; Trumper, A. E.
2017-11-01
We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1 Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled Haldane chains (J'≪J ) and the isotropic triangular lattice (J'=J ). We use the density-matrix renormalization group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered regime at (J'/J) c˜0.42 , signaled by the sudden closing of the spin gap. Coming from the magnetically ordered side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral magnetic order toward a magnetically disordered phase with one-dimensional features at (J'/J) c˜0.43 . The agreement of these complementary methods, along with the strong difference found between the intra- and the interchain DMRG short spin-spin correlations for sufficiently large values of the interchain coupling, suggests that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.
Two-band model with off-diagonal occupation dependent hopping rate
International Nuclear Information System (INIS)
Zawadowski, A.
1989-01-01
In this paper two-band hopping model is treated on a two-dimensional square lattice. The atoms are located at the corners and the middles of the edges of the squares. In addition to the strongly overlapping orbitals of the atoms, there are extra orbitals at the corners, which are weakly hybridized. The assumption is made that the Fermi level is inside the broad band and is every near to the narrow band formed by the extra orbitals. The hamiltonian is Hubbard type, but the off-diagonal part of the two-site interaction t is kept also where one creation or annihilation operator acts on the extra orbital and the others on one of its neighbors. The weak coupling t is enhanced by the on-site Coulomb repulsion at the corners, which enhancement is a power function of the ratio of the broad band width and the narrow bank position measured from the Fermi level. That enhancement is obtained by summation of logarithmic Kondo-type corrections of orbital origin, which reflects the formation of a ground state of new type with strong orbital and spin correlations. Interaction between the particles of the broad band is generated by processes with one heavy and one light particle in the intermediate state
Theoretical model of x-ray scattering as a dense matter probe.
Gregori, G; Glenzer, S H; Rozmus, W; Lee, R W; Landen, O L
2003-02-01
We present analytical expressions for the dynamic structure factor, or form factor S(k,omega), which is the quantity describing the x-ray cross section from a dense plasma or a simple liquid. Our results, based on the random phase approximation for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. Our form factor correctly reproduces the Compton energy down-shift and the known Fermi-Dirac electron velocity distribution for S(k,omega) in the case of a cold degenerate plasma. The usual concept of scattering parameter is also reinterpreted for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments or for the modeling of solid density matter found in the interior of planets.
The Standard Model Higgs as the origin of the hot Big Bang
Figueroa, Daniel G.
2017-04-10
If the Standard Model (SM) Higgs is weakly coupled to the inflationary sector, the Higgs is expected to be universally in the form of a condensate towards the end of inflation. The Higgs decays rapidly after inflation -- via non-perturbative effects -- into an out-of-equilibrium distribution of SM species, which thermalize soon afterwards. If the post-inflationary equation of state of the universe is stiff, $w \\simeq +1$, the SM species eventually dominate the total energy budget. This provides a natural origin for the relativistic thermal plasma of SM species, required for the onset the `hot Big Bang' era. The viability of this scenario requires the inflationary Hubble scale $H_*$ to be lower than the instability scale for Higgs vacuum decay, the Higgs not to generate too large curvature perturbations at cosmological scales, and the SM dominance to occur before Big Bang Nucleosynthesis. We show that successful reheating into the SM can only be obtained in the presence of a non-minimal coupling to gravity $\\x...
Exact lattice supersymmetry: The two-dimensional N=2 Wess-Zumino model
International Nuclear Information System (INIS)
Catterall, Simon; Karamov, Sergey
2002-01-01
We study the two-dimensional Wess-Zumino model with extended N=2 supersymmetry on the lattice. The lattice prescription we choose has the merit of preserving exactly a single supersymmetric invariance at finite lattice spacing a. Furthermore, we construct three other transformations of the lattice fields under which the variation of the lattice action vanishes to O(ga 2 ) where g is a typical interaction coupling. These four transformations correspond to the two Majorana supercharges of the continuum theory. We also derive lattice Ward identities corresponding to these exact and approximate symmetries. We use dynamical fermion simulations to check the equality of the mass gaps in the boson and fermion sectors and to check the lattice Ward identities. At least for weak coupling we see no problems associated with a lack of reflection positivity in the lattice action and find good agreement with theory. At strong coupling we provide evidence that problems associated with a lack of reflection positivity are evaded for small enough lattice spacing
Stability of superfluid phases in the 2D spin-polarized attractive Hubbard model
Kujawa-Cichy, A.; Micnas, R.
2011-08-01
We study the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (LPs) with increasing attraction, in the presence of the Zeeman magnetic field (h) for d=2, within the spin-polarized attractive Hubbard model. The broken symmetry Hartree approximation as well as the strong coupling expansion are used. We also apply the Kosterlitz-Thouless (KT) scenario to determine the phase coherence temperatures. For spin-independent hopping integrals (t↑=t↓), we find no stable homogeneous polarized superfluid (SCM) state in the ground state for the strong attraction and obtain that for a two-component Fermi system on a 2D lattice with population imbalance, phase separation (PS) is favoured for a fixed particle concentration, even on the LP (BEC) side. We also examine the influence of spin-dependent hopping integrals (mass imbalance) on the stability of the SCM phase. We find a topological quantum phase transition (Lifshitz type) from the unpolarized superfluid phase (SC0) to SCM and tricritical points in the h-|U| and t↑/t↓-|U| ground-state phase diagrams. We also construct the finite temperature phase diagrams for both t↑=t↓ and t↑≠t↓ and analyze the possibility of occurrence of a spin-polarized KT superfluid.
Modeling the dual pacemaker system of the tau mutant hamster.
Oda, G A; Menaker, M; Friesen, W O
2000-06-01
Circadian pacemakers in many animals are compound. In rodents, a two-oscillator model of the pacemaker composed of an evening (E) and a morning (M) oscillator has been proposed based on the phenomenon of "splitting" and bimodal activity peaks. The authors describe computer simulations of the pacemaker in tau mutant hamsters viewed as a system of mutually coupled E and M oscillators. These mutant animals exhibit normal type 1 PRCs when released into DD but make a transition to a type 0 PRC when held for many weeks in DD. The two-oscillator model describes particularly well some recent behavioral experiments on these hamsters. The authors sought to determine the relationships between oscillator amplitude, period, PRC, and activity duration through computer simulations. Two complementary approaches proved useful for analyzing weakly coupled oscillator systems. The authors adopted a "distinct oscillators" view when considering the component E and M oscillators and a "system" view when considering the system as a whole. For strongly coupled systems, only the system view is appropriate. The simulations lead the authors to two primary conjectures: (1) the total amplitude of the pacemaker system in tau mutant hamsters is less than in the wild-type animals, and (2) the coupling between the unit E and M oscillators is weakened during continuous exposure of hamsters to DD. As coupling strength decreases, activity duration (alpha) increases due to a greater phase difference between E and M. At the same time, the total amplitude of the system decreases, causing an increase in observable PRC amplitudes. Reduced coupling also increases the relative autonomy of the unit oscillators. The relatively autonomous phase shifts of E and M oscillators can account for both immediate compression and expansion of activity bands in tau mutant and wild-type hamsters subjected to light pulses.
Spectra of definite type in waveguide models
Czech Academy of Sciences Publication Activity Database
Lotoreichik, Vladimir; Siegl, Petr
2017-01-01
Roč. 145, č. 3 (2017), s. 1231-1246 ISSN 0002-9939 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : spectral points of definite and of type pi * weakly coupled bound states * pertrubations of essential spectrum * PT-symmetric waveguide Subject RIV: BE - Theoretical Physics OBOR OECD: Applied mathematics Impact factor: 0.679, year: 2016
Strongly coupled models at the LHC
International Nuclear Information System (INIS)
Vries, Maikel de
2014-10-01
In this thesis strongly coupled models where the Higgs boson is composite are discussed. These models provide an explanation for the origin of electroweak symmetry breaking including a solution for the hierarchy problem. Strongly coupled models provide an alternative to the weakly coupled supersymmetric extensions of the Standard Model and lead to different and interesting phenomenology at the Large Hadron Collider (LHC). This thesis discusses two particular strongly coupled models, a composite Higgs model with partial compositeness and the Littlest Higgs model with T-parity - a composite model with collective symmetry breaking. The phenomenology relevant for the LHC is covered and the applicability of effective operators for these types of strongly coupled models is explored. First, a composite Higgs model with partial compositeness is discussed. In this model right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, which are motivated by flavour physics, large cross sections for the production of new resonances coupling to light quarks are expected. Experimental signatures of right-handed compositeness at the LHC are studied, and constraints on the parameter space of these models are derived using recent results by ATLAS and CMS. Furthermore, dedicated searches for multi-jet signals at the LHC are proposed which could significantly improve the sensitivity to signatures of right-handed compositeness. The Littlest Higgs model with T-parity, providing an attractive solution to the fine-tuning problem, is discussed next. This solution is only natural if its intrinsic symmetry breaking scale f is relatively close to the electroweak scale. The constraints from the latest results of the 8 TeV run at the LHC are examined. The model's parameter space is being excluded based on a combination of electroweak precision observables, Higgs precision
Energy Technology Data Exchange (ETDEWEB)
Mezani, S.
2004-07-15
This work is interested in the study of the electromagnetic and thermal behaviors of the induction motor. A state of the art is initially drawn up, where we have presented and discussed the current methods dealing with electromagnetic and thermal modeling of induction motors. An electromagnetic model, that uses the 2D complex finite element method to solve the field equations, is developed. The rotor movement is accounted for by coupling the air gap field, for each space harmonic, using the double air gap method. The superposition principle permits the determination of the final solution. To deal with non linear problems, an approach that introduces equivalent reluctivities, is proposed. We have assumed that the saturation is only due to the first space harmonic. A thermal model is elaborated by using the nodal method. The machine is cut up into 11 cylindrical lumped elements, the thermal model represents the juxtaposition of these lumped elements. The electromagnetic and thermal models are, weakly, coupled together for a more precise determination of the temperature distribution inside the motor. In the validation phase of our work, we have designed a test bench that allows specific torque and temperature measurements. The comparison of the calculations and the measurements is satisfactory. (author)
Zingl, Manuel; Nuss, Martin; Bauernfeind, Daniel; Aichhorn, Markus
2018-05-01
Recently solvers for the Anderson impurity model (AIM) working directly on the real-frequency axis have gained much interest. A simple and yet frequently used impurity solver is exact diagonalization (ED), which is based on a discretization of the AIM bath degrees of freedom. Usually, the bath parameters cannot be obtained directly on the real-frequency axis, but have to be determined by a fit procedure on the Matsubara axis. In this work we present an approach where the bath degrees of freedom are first discretized directly on the real-frequency axis using a large number of bath sites (≈ 50). Then, the bath is optimized by unitary transformations such that it separates into two parts that are weakly coupled. One part contains the impurity site and its interacting Green's functions can be determined with ED. The other (larger) part is a non-interacting system containing all the remaining bath sites. Finally, the Green's function of the full AIM is calculated via coupling these two parts with cluster perturbation theory.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Dong-Rui; Jiang, Wei-Zhou; Wei, Si-Na; Yang, Rong-Yao [Southeast University, Department of Physics, Nanjing (China); Xiang, Qian-Fei [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)
2016-05-15
It has been a puzzle whether quarks may exist in the interior of massive neutron stars, since the hadron-quark phase transition softens the equation of state (EOS) and reduce the neutron star (NS) maximum mass very significantly. In this work, we consider the light U-boson that increases the NS maximum mass appreciably through its weak coupling to fermions. The inclusion of the U-boson may thus allow the existence of the quark degrees of freedom in the interior of large mass neutron stars. Unlike the consequence of the U-boson in hadronic matter, the stiffening role of the U-boson in the hybrid EOS is not sensitive to the choice of the hadron phase models. In addition, we have also investigated the effect of the effective QCD correction on the hybrid EOS. This correction may reduce the coupling strength of the U-boson that is needed to satisfy NS maximum mass constraint. While the inclusion of the U-boson also increases the NS radius significantly, we find that appropriate in-medium effects of the U-boson may reduce the NS radii significantly, satisfying both the NS radius and mass constraints well. (orig.)
International Nuclear Information System (INIS)
Kagan, M. Yu.; Val’kov, V. V.; Mitskan, V. A.; Korovuskin, M. M.
2013-01-01
Using the Shubin-Vonsovsky model in the weak-coupling regime W > U > V (W is the bandwidth, U is the Hubbard onsite repulsion, and V is the Coulomb interaction at neighboring sites) based on the Kohn-Luttinger mechanism, we determined the regions of the existence of the superconducting phases with the d xy , p, s, and d x 2 -y 2 symmetry types of the order parameter. It is shown that the effective interaction in the Cooper channel considerably depends not only on single-site but also on intersite Coulomb correlations. This is demonstrated by the example of the qualitative change and complication of the phase diagram of the superconducting state. The superconducting (SC) phase induction mechanism is determined taking into account polarization contributions in the second-order perturbation theory in the Coulomb interaction. The results obtained for the angular dependence of the superconducting gap in different channels are compared with angule-resolved photoemission spectroscopy (ARPES) results. The influence of long-range hops in the phase diagram and critical superconducting transition temperature in different channels is analyzed. The conditions for the appearance of the Kohn-Luttinger superconductivity with the d x 2 -y 2 symmetry and high critical temperatures T c ∼ 100 K near the half-filling are determined
Energy Technology Data Exchange (ETDEWEB)
Kagan, M. Yu., E-mail: kagan@kapitza.ras.ru [Russian Academy of Sciences, Kapitza Institute for Physical Problems (Russian Federation); Val' kov, V. V.; Mitskan, V. A.; Korovuskin, M. M. [Russian Academy of Sciences, Kirenskii Physics Institute, Siberian Branch (Russian Federation)
2013-10-15
Using the Shubin-Vonsovsky model in the weak-coupling regime W > U > V (W is the bandwidth, U is the Hubbard onsite repulsion, and V is the Coulomb interaction at neighboring sites) based on the Kohn-Luttinger mechanism, we determined the regions of the existence of the superconducting phases with the d{sub xy}, p, s, and d{sub x{sup 2}-y{sup 2}} symmetry types of the order parameter. It is shown that the effective interaction in the Cooper channel considerably depends not only on single-site but also on intersite Coulomb correlations. This is demonstrated by the example of the qualitative change and complication of the phase diagram of the superconducting state. The superconducting (SC) phase induction mechanism is determined taking into account polarization contributions in the second-order perturbation theory in the Coulomb interaction. The results obtained for the angular dependence of the superconducting gap in different channels are compared with angule-resolved photoemission spectroscopy (ARPES) results. The influence of long-range hops in the phase diagram and critical superconducting transition temperature in different channels is analyzed. The conditions for the appearance of the Kohn-Luttinger superconductivity with the d{sub x{sup 2}-y{sup 2}} symmetry and high critical temperatures T{sub c} {approx} 100 K near the half-filling are determined.
Theoretical studies of Anderson impurity models
International Nuclear Information System (INIS)
Glossop, M.T.
2000-01-01
A Local Moment Approach (LMA) is developed for single-particle excitations of a symmetric single impurity Anderson model (SIAM) with a soft-gap hybridization vanishing at the Fermi level, Δ I ∝ vertical bar W vertical bar r with r > 0, and for the generic asymmetric case of the 'normal' (r = 0) SIAM. In all cases we work within a two-self-energy description with local moments introduced explicitly from the outset, and in which single-particle excitations are coupled dynamically to low-energy transverse spin fluctuations. For the soft-gap symmetric SIAM, the resultant theory is applicable on all energy scales, and captures both the spin-fluctuation regime of strong coupling (large-U), as well as the weak coupling regime where it is perturbatively exact for those r-domains in which perturbation theory in U is non-singular. While the primary emphasis is on single-particle dynamics, the quantum phase transition between strong coupling (SC) and local moment (LM) phases can also be addressed directly; for the spin-fluctuation regime in particular a number of asymptotically exact results are thereby obtained, notably for the behaviour of the critical U c (r) separating SC/LM states and the Kondo scale w m (r) characteristic of the SC phase. Results for both single-particle spectra and SG/LM phase boundaries are found to agree well with recent numerical renormalization group (NRG) studies; and a number of further testable predictions are made. Single-particle spectra are examined systematically for both SC and LM states; in particular, for all 0 ≤ r 0 SC phase which, in agreement with conclusions drawn from recent NRG work, may be viewed as a non-trivial but natural generalization of Fermi liquid physics. We also reinvestigate the problem via the NRG in light of the predictions arising from the LMA: all are borne out and excellent agreement is found. For the asymmetric single impurity Anderson model (ASIAM) we establish general conditions which must be satisfied
Zhu, Yenan; Hsieh, Yee-Hsee; Dhingra, Rishi R.; Dick, Thomas E.; Jacono, Frank J.; Galán, Roberto F.
2013-02-01
Interactions between oscillators can be investigated with standard tools of time series analysis. However, these methods are insensitive to the directionality of the coupling, i.e., the asymmetry of the interactions. An elegant alternative was proposed by Rosenblum and collaborators [M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrowka, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.65.041909 65, 041909 (2002); M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.64.045202 64, 045202 (2001)] which consists in fitting the empirical phases to a generic model of two weakly coupled phase oscillators. This allows one to obtain the interaction functions defining the coupling and its directionality. A limitation of this approach is that a solution always exists in the least-squares sense, even in the absence of coupling. To preclude spurious results, we propose a three-step protocol: (1) Determine if a statistical dependency exists in the data by evaluating the mutual information of the phases; (2) if so, compute the interaction functions of the oscillators; and (3) validate the empirical oscillator model by comparing the joint probability of the phases obtained from simulating the model with that of the empirical phases. We apply this protocol to a model of two coupled Stuart-Landau oscillators and show that it reliably detects genuine coupling. We also apply this protocol to investigate cardiorespiratory coupling in anesthetized rats. We observe reciprocal coupling between respiration and heartbeat and that the influence of respiration on the heartbeat is generally much stronger than vice versa. In addition, we find that the vagus nerve mediates coupling in both directions.
Strongly coupled radiation from moving mirrors and holography in the Karch-Randall model
International Nuclear Information System (INIS)
Pujolas, Oriol
2008-01-01
Motivated by the puzzles in understanding how Black Holes evaporate into a strongly coupled Conformal Field Theory, we study particle creation by an accelerating mirror. We model the mirror as a gravitating Domain Wall and consider a CFT coupled to it through gravity, in asymptotically Anti de Sitter space. This problem (backreaction included) can be solved exactly at one loop. At strong coupling, this is dual to a Domain Wall localized on the brane in the Karch-Randall model, which can be fully solved as well. Hence, in this case one can see how the particle production is affected by A) strong coupling and B) its own backreaction. We find that A) the amount of CFT radiation at strong coupling is not suppressed relative to the weak coupling result; and B) once the boundary conditions in the AdS 5 bulk are appropriately mapped to the conditions for the CFT on the boundary of AdS 4 , the Karch-Randall model and the CFT side agree to leading order in the backreaction. This agreement holds even for a new class of self-consistent solutions (the 'Bootstrap' Domain Wall spacetimes) that have no classical limit. This provides a quite precise check of the holographic interpretation of the Karch-Randall model. We also comment on the massive gravity interpretation. As a byproduct, we show that relativistic Cosmic Strings (pure tension codimension 2 branes) in Anti de Sitter are repulsive and generate long-range tidal forces even at classical level. This is the phenomenon dual to particle production by Domain Walls.
Cobalt, fast neutrons and physical models: Nuclear data and measurements series
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.; Whalen, J.F.; Lawson, R.D.
1987-07-01
Energy-averaged neutron total cross sections of cobalt were measured from ≅0.5 to 12.0 MeV. Differential elastic- and inelastic-scattering cross sections were measured from ≅1.5 to 10.0 MeV over the scattering-angle range ≅18 0 to 160 0 , with sufficient detail to define the energy-averaged behavior. Inelastic neutron groups were observed corresponding to ''levels'' at: 1115 +- 29, 1212 +- 24, 1307 +- 24, 1503 +- 33, 1778 +- 40, 2112 +- 40, 2224 +- 35, 2423 +- 39, 2593 +- 41 and 2810 keV. The experimental results were interpreted in terms of the spherical optical-statistical and coupled-channels models. An unusually successful description of observables was achieved over a wide energy range ( 20.0 MeV) with a spherical model having energy-dependent strengths and geometries. The energy dependencies are large below ≅7.0 MeV (i.e., ≅19.0 MeV above the Fermi energy), but become smaller and similar to those reported for ''global'' potentials at higher energies. The imaginary strength is large and decreases with energy. These imaginary-potential characteristics are attributed to neutron shell closure and collective-vibrational processes. The weak-coupling model also offers an explanation of the unusual negative energy slope and relatively small radius of the imaginary potential. The spherical optical model derived from the neutron-scattering results was extrapolated to bound energies using the dispersion relationship and the method of moments. The resulting real-potential strength and radius peak at ≅-10.0 MeV, while concurrently the real diffuseness is at a minimum. The extrapolated potential is ≅8% larger than that implied by reported particle-state energies, and ≅13% smaller than indicated by hole-state energies. 68 refs., 15 figs., 1 tab
A Stefan model for mass transfer in a rotating disk reaction vessel
BOHUN, C. S.
2015-01-01
chemical reactions occurring in the bulk. The wide range in the reaction rates of the underlying chemistry allows for a natural decoupling of the problem into a simplified set of weakly coupled convective-reaction-diffusion equations for the slowly reacting
International Nuclear Information System (INIS)
Adler, S.L.
1999-01-01
We construct extensions of the standard model based on the hypothesis that Higgs bosons also exhibit a family structure and that the flavor weak eigenstates in the three families are distinguished by a discrete Z 6 chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models with three Higgs doublets and with six Higgs doublets comprising two weakly coupled sets of three. In a leading approximation of S 3 cyclic permutation symmetry the three-Higgs-doublet model gives a open-quotes democraticclose quotes mass matrix of rank 1, while the six-Higgs-doublet model gives either a rank-1 mass matrix or, in the case when it spontaneously violates CP, a rank-2 mass matrix corresponding to nonzero second family masses. In both models, the CKM matrix is exactly unity in the leading approximation. Allowing small explicit violations of cyclic permutation symmetry generates small first family masses in the six-Higgs-doublet model, and first and second family masses in the three-Higgs-doublet model, and gives a nontrivial CKM matrix in which the mixings of the first and second family quarks are naturally larger than mixings involving the third family. Complete numerical fits are given for both models, flavor-changing neutral current constraints are discussed in detail, and the issues of unification of couplings and neutrino masses are addressed. On a technical level, our analysis uses the theory of circulant and retrocirculant matrices, the relevant parts of which are reviewed. copyright 1998 The American Physical Society
International Nuclear Information System (INIS)
Fossez, Kevin
2014-01-01
Small open quantum systems, whose properties are profoundly affected by the environment of continuum states, are intensely studied in various fields of Physics: nuclear physics, atomic and molecular physics, quantum optics, etc. These different many-body systems, in spite of their specific features, have generic properties which are common to all weakly bound or unbound systems close to the threshold. Coupling to the continuum is essential to describe the low-energy nuclear reactions of astrophysical interest, the formation of halo states in nuclei, atomic clusters and dipolar anions, or the near-threshold two neutron and alpha particle correlations (clustering). Recently, the open quantum system extension of the nuclear shell model, the Gamow shell model (GSM), based on the Berggren ensemble, has been applied successfully for the description of resonant states spectra in atomic nuclei. The coupled-channel formulation of the GSM (GSM-CC) allows to describe various low-energy nuclear reactions. In this work, the GSM-CC is formulated and applied for the description of proton/neutron radiative capture reactions of astrophysical interest, such as: 17 F(p, γ) 18 Ne, 7 Be(p, γ) 8 B and 7 Li(n, γ) 8 Li. Moreover, for the first time, the GSM has been applied in atomic physics for the description of spectra of dipolar anions. Systematic investigation of the hydrogen cyanide dipolar anion (HCN - ) allowed to identify the collective bands of states both in the strong coupling regime, for weakly bound halo states, and in the weak coupling regime above the dissociation threshold. In the strong coupling regime, K J = 0 anion a rotational band has been found. Above the threshold, K J quantum number is not conserved. Resonances in this regime form rotational bands according to the angular momentum of the rotating molecule, whereas the band head energies and the lifetimes depend predominantly on the external electron wave function. (author) [fr
International Nuclear Information System (INIS)
Goan, Hsi-Sheng; Jian, Chung-Chin; Chen, Po-Wen
2010-01-01
We evaluate the non-Markovian finite-temperature two-time correlation functions (CF's) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evolution equations, valid to second order in the system-environment interaction Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CF's, to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CF's of non-Markovian open systems. The two-time CF's obtained using the recently derived evolution equations in the weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian two-time CF's obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure to calculate the two-time CF's for weak-coupling Markovian open systems. This demonstrates clearly that the recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It is believed that these evolution equations will have applications in many different branches of physics.
Pan, Bingying; Wang, Yang; Zhang, Lijuan; Li, Shiyan
2014-04-07
Single crystals of a metal organic complex (C5H12N)CuBr3 (C5H12N = piperidinium, pipH for short) have been synthesized, and the structure was determined by single-crystal X-ray diffraction. (pipH)CuBr3 crystallizes in the monoclinic group C2/c. Edging-sharing CuBr5 units link to form zigzag chains along the c axis, and the neighboring Cu(II) ions with spin-1/2 are bridged by bibromide ions. Magnetic susceptibility data down to 1.8 K can be well fitted by the Bonner-Fisher formula for the antiferromagnetic spin-1/2 chain, giving the intrachain magnetic coupling constant J ≈ -17 K. At zero field, (pipH)CuBr3 shows three-dimensional (3D) order below TN = 1.68 K. Calculated by the mean-field theory, the interchain coupling constant J' = -0.91 K is obtained and the ordered magnetic moment m0 is about 0.23 μB. This value of m0 makes (pipH)CuBr3 a rare compound suitable to study the 1D-3D dimensional cross-over problem in magnetism, since both 3D order and one-dimensional (1D) quantum fluctuations are prominent. In addition, specific heat measurements reveal two successive magnetic transitions with lowering temperature when external field μ0H ≥ 3 T is applied along the a' axis. The μ0H-T phase diagram of (pipH)CuBr3 is roughly constructed.
1/J2 corrections to BMN energies from the quantum long range Landau-Lifshitz model
International Nuclear Information System (INIS)
Minahan, Joseph A.; Tirziu, Alin; Tseytlin, Arkady A.
2005-01-01
In a previous paper [hep-th/0509071], it was shown that quantum 1/J corrections to the BMN spectrum in an effective Landau-Lifshitz (LL) model match with the results from the one-loop gauge theory, provided one chooses an appropriate regularization. In this paper we continue this study for the conjectured Bethe ansatz for the long range spin chain representing perturbative large-N N = 4 Super Yang-Mills in the SU(2) sector, and the 'quantum string' Bethe ansatz for its string dual. The comparison is carried out for corrections to BMN energies up to order λ-tilde 3 in the effective expansion parameter λ-tilde = λ/J 2 . After determining the 'gauge-theory' LL action to order λ-tilde 3 , which is accomplished indirectly by fixing the coefficients in the LL action so that the energies of circular strings match with the energies found using the Bethe ansatz, we find perfect agreement. We interpret this as further support for an underlying integrability of the system. We then consider the 'string-theory' LL action which is a limit of the classical string action representing fast string motion on an S 3 subspace of S 5 and compare the resulting λ-tilde 3 /J 2 corrections to the prediction of the 'string' Bethe ansatz. As in the gauge case, we find precise matching. This indicates that the LL hamiltonian supplemented with a normal ordering prescription and ζ-function regularization reproduces the full superstring result for the 1/J 2 corrections, and also signifies that the string Bethe ansatz does describe the quantum BMN string spectrum to order 1/J 2 . We also comment on using the quantum LL approach to determine the non-analytic contributions in λ that are behind the strong to weak coupling interpolation between the string and gauge results
Inert two-Higgs-doublet model strongly coupled to a non-Abelian vector resonance
Rojas-Abatte, Felipe; Mora, Maria Luisa; Urbina, Jose; Zerwekh, Alfonso R.
2017-11-01
We study the possibility of a dark matter candidate having its origin in an extended Higgs sector which, at least partially, is related to a new strongly interacting sector. More concretely, we consider an i2HDM (i.e., a Type-I two Higgs doublet model supplemented with a Z2 under which the nonstandard scalar doublet is odd) based on the gauge group S U (2 )1×S U (2 )2×U (1 )Y . We assume that one of the scalar doublets and the standard fermion transform nontrivially under S U (2 )1 while the second doublet transforms under S U (2 )2. Our main hypothesis is that standard sector is weakly coupled while the gauge interactions associated to the second group is characterized by a large coupling constant. We explore the consequences of this construction for the phenomenology of the dark matter candidate and we show that the presence of the new vector resonance reduces the relic density saturation region, compared to the usual i2DHM, in the high dark matter mass range. In the collider side, we argue that the mono-Z production is the channel which offers the best chances to manifest the presence of the new vector field. We study the departures from the usual i2HDM predictions and show that the discovery of the heavy vector at the LHC is challenging even in the mono-Z channel since the typical cross sections are of the order of 10-2 fb .
Dynamics of the two-spin spin-boson model with a common bath
Energy Technology Data Exchange (ETDEWEB)
Deng, Tianrui [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058 (China); Yan, Yiying; Chen, Lipeng; Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore)
2016-04-14
Dynamics of the two-spin spin-boson model in the presence of Ohmic and sub-Ohmic baths is investigated by employing a multitude of the Davydov D{sub 1} trial states, also known as the multi-D{sub 1} Ansatz. Its accuracy in dynamics simulations of the two-spin SBM is improved significantly over the single D{sub 1} Ansatz, especially in the weak to moderately strong coupling regime. Validity of the multi-D{sub 1} Ansatz for various coupling strengths is also systematically examined by making use of the deviation vector which quantifies how faithfully the trial state obeys the Schrödinger equation. The time evolution of population difference and entanglement has been studied for various initial conditions and coupling strengths. Careful comparisons are carried out between our approach and three other methods, i.e., the time-dependent numerical renormalization group (TD-NRG) approach, the Bloch-Redfield theory, and a method based on a variational master equation. For strong coupling, the multi-D{sub 1} trial state yields consistent results as the TD-NRG approach in the Ohmic regime while the two disagree in the sub-Ohmic regime, where the multi-D{sub 1} trial state is shown to be more accurate. For weak coupling, the multi-D{sub 1} trial state agrees with the two master-equation methods in the presence of both Ohmic and sub-Ohmic baths, but shows considerable differences with the TD-NRG approach in the presence of a sub-Ohmic bath, calling into question the validity of the TD-NRG results at long times in the literature.
International Nuclear Information System (INIS)
Hui, A.; Doniach, S.
1993-01-01
In this paper, we present a study of the ground-state phase diagram of a one-dimensional quantum chain, the Penson-Kolb-Hubbard model, H=-summation i ,η=±1,σ (tc i+ησ † c iσ +Vc i+η↑ † c i+η↓ † c i↓ ci↑)+ summation i Un i↑ ni↓ at half filling. We have examined the system using exact diagonalization for samples of up to 12 sites and employed two techniques, eigenprojection decomposition and twisted-boundary conditions, in analyzing the data. These techniques allow us to characterize the ground state in a manner insensitive to changes in sample size and provide us with a clean way to visualize the physics. When used with the ''correct'' order parameter, qualitative features emerge even for sample sizes as small as six sites. We find that the second-order charge-density-wave--spin-density-wave transition in the weak-coupling limit (t much-gt U∼2V) turns into a first-order superconducting--antiferromagnetic transition in the strong-coupling regime [t much-lt U∼(4/π)V]. We also observe evidence of a charge-density-wave--superconducting transition in the parameter range (t∼V much-gt U). These three transition lines meet together at a tricritical point at (t:U:V)∼(0.04:0.54:0.42). A naive renormalization-group analysis in the intermediate-coupling regime produces results consistent with this conclusion
MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY
Energy Technology Data Exchange (ETDEWEB)
N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll
2015-04-01
The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism
International Nuclear Information System (INIS)
Cosimo, Alejandro
2014-01-01
The Thermo-Mecano-Metallurgical (TMM) modelling of welding is considered in this thesis, where the high non-linearity and the multiphysics character of the problem makes necessary to study different areas of Computational Mechanics. Each of the main problems, specifically the thermal, the mechanical and the metallurgical problems, are separately investigated. In the context of Computational Welding Mechanics (CWM), their coupling is solved by means of a staggered approach making the hypothesis that they are weakly-coupled. In the case of the thermal problem, the primary complication is stated by the solid/liquid phase change. Classical formulations dealing with the solution of this problem suffer from instabilities associated to the discontinuity of the temperature gradient at the phase change boundary. This issue is studied in this work by considering an enriched finite element formulation with the ability of representing the gradient discontinuity inside finite elements. It is remarked that the proposed method avoids the use of an auxiliary equation to determine the enrichment position, which is common for level set formulations. The mechanical behaviour of bodies during solidification is revisited and implemented as part of the Finite Element (FE) framework OOFELIE. When possible, microstructure evolution must be considered in order to correctly predict Weld Residual Stresses (WRS). In this context, the implementation of a particular model for predicting microstructure evolution comes in association with the restriction that it can be applied to a reduced number of materials. In order to deal with this issue, the conception of a computational tool flexible enough to describe a wide range of materials is undertaken. Additionally, a model describing the Titanium alloy Ti6Al4V is particularly considered. The high computational cost of welding problems is addressed by means of the formulation of Hyper-Reduced Order Models (HROMs), and the parallelization of the FE
Correa Mora, Francisco
velocity field is best fit by a model with strongly locked faults in the volcanic arc and a weakly coupled subduction interface. In this region, seismic hazards associated with subduction are therefore low, but are high for crustal faults, in agreement with records of historic seismicity.
Numerical approach to optimal portfolio in a power utility regime-switching model
Gyulov, Tihomir B.; Koleva, Miglena N.; Vulkov, Lubin G.
2017-12-01
We consider a system of weakly coupled degenerate semi-linear parabolic equations of optimal portfolio in a regime-switching with power utility function, derived by A.R. Valdez and T. Vargiolu [14]. First, we discuss some basic properties of the solution of this system. Then, we develop and analyze implicit-explicit, flux limited finite difference schemes for the differential problem. Numerical experiments are discussed.
From Kondo model and strong coupling lattice QCD to the Isgur-Wise function
International Nuclear Information System (INIS)
Patel, Apoorva
1995-01-01
Isgur-Wise functions parametrise the leading behaviour of weak decay form factors of mesons and baryons containing a single heavy quark. The form factors for the quark mass operator are calculated in strong coupling lattice QCD, and Isgur-Wise functions extracted from them. Based on renormalisation group invariance of the operators involved, it is argued that the Isgur-Wise functions would be the same in the weak coupling continuum theory. (author)
A Coupled Soil-Atmosphere Model of H2O2 on Mars
Bullock, Mark A.; Stoker, Carol R.; Mckay, Christopher P.; Zent, Aaron P.
1994-01-01
The Viking Gas Chromatograph Mass Spectrometer failed to detect organic compounds on Mars, and both the Viking Labeled Release and the Viking Gas Exchange experiments indicated a reactive soil surface. These results have led to the widespread belief that there are oxidants in the martian soil. Since H2O2 is produced by photochemical processes in the atmosphere of Mars, and has been shown in the laboratory to reproduce closely the Viking LR results, it is a likely candidate for a martian soil oxidant. Here, we report on the results of a coupled soil/atmosphere transport model for H202 on Mars. Upon diffusing into the soil, its concentration is determined by the extent to which it is adsorbed and by the rate at which it is catalytically destroyed. An analytical model for calculating the distribution of H202 in the martian atmosphere and soil is developed. The concentration of H202 in the soil is shown to go to zero at a finite depth, a consequence of the nonlinear soil diffusion equation. The model is parameterized in terms of an unknown quantity, the lifetime of H202 against heterogeneous catalytic destruction in the soil. Calculated concentrations are compared with a H202 concentration of 30 nmoles/cu cm, inferred from the Viking Labeled Release experiment. A significant result of this model is that for a wide range of H202 lifetimes (up to 105 years), the extinction depth was found to be less than 3 m. The maximum possible concentration in the top 4 cm is calculated to be approx. 240 nmoles/cu cm, achieved with lifetimes of greater than 1000 years. Concentrations higher than 30 nmoles/cu cm require lifetimes of greater than 4.3 terrestrial years. For a wide range of H202 lifetimes, it was found that the atmospheric concentration is only weakly coupled with soil loss processes. Losses to the soil become significant only when lifetimes are less than a few hours. If there are depths below which H202 is not transported, it is plausible that organic compounds
Directory of Open Access Journals (Sweden)
G. M. Wolfe
2011-02-01
only weakly coupled with the upper canopy. Future efforts to model forest-atmosphere exchange will require a more mechanistic understanding of non-stomatal deposition and a more thorough characterization of in-canopy mixing processes.
Towards the hot sphaleron rate and sizable CP violation in the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Hernandez Canseco, Andres
2009-10-14
In this work we study two aspects of the Standard Model related to baryogenesis at the electroweak scale. The first deals with CP violation. For some time now, it has been thought that CP violation within the Standard Model was too weak to be able to produce the baryon asymmetry of the universe. The argument is based on the small value of the Jarslkog's determinant, {proportional_to}10{sup -19}, but the latter is a perturbative calculation and CP violation in experiments can be much larger, e.g. in the Kaon system of order 10{sup -3}. With the use of the worldline method, we derive a oneloop effective action by integrating out the fermions in the next-to-leading order of a gradient expansion. The CP violation, previously present in the fermion sector, manifests as CP violating operators in the effective action. By treating the fermion masses non-perturbatively, albeit with their derivatives treated perturbatively as befits a gradient expansion, we find the operators not to be suppressed by the Jarlskog determinant, but by the Jarlskog invariant, which is of order 10{sup -5}. The second part of this work deals with the infrared analysis of Boedeker's effective theory, which encodes the dynamics of weakly coupled, non-abelian gauge fields at high temperature with characteristic momentum scale of order vertical stroke k vertical stroke {proportional_to}g{sup 2}T. The motivation for this is the eventual analytic calculation of the hot sphaleron rate, which is directly proportional to the rate of baryon number violation in the symmetric phase. After transcribing Boedeker's effective theory from a Langevin equation into an Euclidean path integral, we derive Dyson-Schwinger equations. We introduce an ansatz intended to solve the infrared dominated equations, and find the expected enhanced gauge propagator. An analogous role to the ghost propagator in Yang-Mills theory is played by the mixed propagator, which is suppressed. (orig.)
Understanding quantum measurement from the solution of dynamical models
Energy Technology Data Exchange (ETDEWEB)
Allahverdyan, Armen E. [Laboratoire de Physique Statistique et Systèmes Complexes, ISMANS, 44 Av. Bartholdi, 72000 Le Mans (France); Balian, Roger [Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Nieuwenhuizen, Theo M., E-mail: T.M.Nieuwenhuizen@uva.nl [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)
2013-04-15
The quantum measurement problem, to wit, understanding why a unique outcome is obtained in each individual experiment, is currently tackled by solving models. After an introduction we review the many dynamical models proposed over the years for elucidating quantum measurements. The approaches range from standard quantum theory, relying for instance on quantum statistical mechanics or on decoherence, to quantum–classical methods, to consistent histories and to modifications of the theory. Next, a flexible and rather realistic quantum model is introduced, describing the measurement of the z-component of a spin through interaction with a magnetic memory simulated by a Curie–Weiss magnet, including N≫1 spins weakly coupled to a phonon bath. Initially prepared in a metastable paramagnetic state, it may transit to its up or down ferromagnetic state, triggered by its coupling with the tested spin, so that its magnetization acts as a pointer. A detailed solution of the dynamical equations is worked out, exhibiting several time scales. Conditions on the parameters of the model are found, which ensure that the process satisfies all the features of ideal measurements. Various imperfections of the measurement are discussed, as well as attempts of incompatible measurements. The first steps consist in the solution of the Hamiltonian dynamics for the spin-apparatus density matrix D{sup -hat} (t). Its off-diagonal blocks in a basis selected by the spin–pointer coupling, rapidly decay owing to the many degrees of freedom of the pointer. Recurrences are ruled out either by some randomness of that coupling, or by the interaction with the bath. On a longer time scale, the trend towards equilibrium of the magnet produces a final state D{sup -hat} (t{sub f}) that involves correlations between the system and the indications of the pointer, thus ensuring registration. Although D{sup -hat} (t{sub f}) has the form expected for ideal measurements, it only describes a large set of
Self-dual nonsupersymmetric Type II String Compactifications
International Nuclear Information System (INIS)
Kachru, Shamit; Silverstein, Eva
1998-01-01
It has recently been proposed that certain nonsupersymmetric type II orbifolds have vanishing perturbative contributions to the cosmological constant. We show that techniques of Sen and Vafa allow one to construct dual type II descriptions of these models (some of which have no weakly coupled heterotic dual). The dual type II models are given by the same orbifolds with the string coupling S and a T 2 volume T exchanged. This allows us to argue that in various strongly coupled limits of the original type II models, there are weakly coupled duals which exhibit the same perturbative cancellations as the original models
DEFF Research Database (Denmark)
Cameron, Ian; Gani, Rafiqul
2011-01-01
This chapter deals with the practicalities of building, testing, deploying and maintaining models. It gives specific advice for each phase of the modelling cycle. To do this, a modelling framework is introduced which covers: problem and model definition; model conceptualization; model data...... requirements; model construction; model solution; model verification; model validation and finally model deployment and maintenance. Within the adopted methodology, each step is discussedthrough the consideration of key issues and questions relevant to the modelling activity. Practical advice, based on many...
Freeman, Thomas J.
This paper discusses six different models of organizational structure and leadership, including the scalar chain or pyramid model, the continuum model, the grid model, the linking pin model, the contingency model, and the circle or democratic model. Each model is examined in a separate section that describes the model and its development, lists…
Double beta decay in the generalized seniority scheme
International Nuclear Information System (INIS)
Pittel, S.; Engel, J.; Vogel, P.; Ji Xiangdong
1990-01-01
A generalized-seniority truncation scheme is used in shell-model calculations of double beta decay matrix elements. Calculations are carried out for 78 Ge, 82 Se and 128,130 Te. Matrix elements calculated for the two-neutrino decay mode are small compared to weak-coupling shell-model calculations and support the suppression mechanism first observed in the quasi-particle random phase approximation. Matrix elements for the neutrinoless mode are similar to those of the weak-coupling shell model, suggesting that these matrix elements can be pinned down fairly accurately. (orig.)
ten Cate, Jacob M
2015-01-01
Developing experimental models to understand dental caries has been the theme in our research group. Our first, the pH-cycling model, was developed to investigate the chemical reactions in enamel or dentine, which lead to dental caries. It aimed to leverage our understanding of the fluoride mode of action and was also utilized for the formulation of oral care products. In addition, we made use of intra-oral (in situ) models to study other features of the oral environment that drive the de/remineralization balance in individual patients. This model addressed basic questions, such as how enamel and dentine are affected by challenges in the oral cavity, as well as practical issues related to fluoride toothpaste efficacy. The observation that perhaps fluoride is not sufficiently potent to reduce dental caries in the present-day society triggered us to expand our knowledge in the bacterial aetiology of dental caries. For this we developed the Amsterdam Active Attachment biofilm model. Different from studies on planktonic ('single') bacteria, this biofilm model captures bacteria in a habitat similar to dental plaque. With data from the combination of these models, it should be possible to study separate processes which together may lead to dental caries. Also products and novel agents could be evaluated that interfere with either of the processes. Having these separate models in place, a suggestion is made to design computer models to encompass the available information. Models but also role models are of the utmost importance in bringing and guiding research and researchers. 2015 S. Karger AG, Basel
DEFF Research Database (Denmark)
Carlson, Kerstin
The International Criminal Tribunal for the former Yugoslavia (ICTY) was the first and most celebrated of a wave of international criminal tribunals (ICTs) built in the 1990s designed to advance liberalism through international criminal law. Model(ing) Justice examines the case law of the ICTY...
ten Cate, J.M.
2015-01-01
Developing experimental models to understand dental caries has been the theme in our research group. Our first, the pH-cycling model, was developed to investigate the chemical reactions in enamel or dentine, which lead to dental caries. It aimed to leverage our understanding of the fluoride mode of
Dynamical Messengers for Gauge Mediation
Energy Technology Data Exchange (ETDEWEB)
Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.
2011-08-17
We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.
Modelling SDL, Modelling Languages
Directory of Open Access Journals (Sweden)
Michael Piefel
2007-02-01
Full Text Available Today's software systems are too complex to implement them and model them using only one language. As a result, modern software engineering uses different languages for different levels of abstraction and different system aspects. Thus to handle an increasing number of related or integrated languages is the most challenging task in the development of tools. We use object oriented metamodelling to describe languages. Object orientation allows us to derive abstract reusable concept definitions (concept classes from existing languages. This language definition technique concentrates on semantic abstractions rather than syntactical peculiarities. We present a set of common concept classes that describe structure, behaviour, and data aspects of high-level modelling languages. Our models contain syntax modelling using the OMG MOF as well as static semantic constraints written in OMG OCL. We derive metamodels for subsets of SDL and UML from these common concepts, and we show for parts of these languages that they can be modelled and related to each other through the same abstract concepts.
Energy Technology Data Exchange (ETDEWEB)
Zayakin, Andrey V.
2011-01-17
This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the
International Nuclear Information System (INIS)
Zayakin, Andrey V.
2011-01-01
This Thesis is dedicated to a comparison of the two means of studying the electromagnetic properties of the QCD vacuum - holography and resummed field theory. I compare two classes of distinct models for the dynamics of the condensates. The first class consists of the so-called holographic models of QCD. Based upon the Maldacena conjecture, it tries to establish the properties of QCD correlation functions from the behavior of classical solutions of field equations in a higher-dimensional theory. Yet in many aspects the holographic approach has been found to be in an excellent agreement with data. These successes are the prediction of the very small viscosity-to-entropy ratio and the predictions of meson spectra up to 5% accuracy in several models. On the other hand, the resummation methods in field theory have not been discarded so far. Both classes of methods have access to condensates. Thus a comprehensive study of condensates becomes possible, in which I compare my calculations in holography and resummed field theory with each other, as well as with lattice results, field theory and experiment. I prove that the low-energy theorems of QCD keep their validity in holographic models with a gluon condensate in a non-trivial way. I also show that the so-called decoupling relation holds in holography models with chiral and gluon condensates, whereas this relation fails in the Dyson-Schwinger approach. On the contrary, my results on the chiral magnetic effect in holography disagree with the weak-field prediction; the chiral magnetic effect (that is, the electric current generation in a magnetic field) is three times less than the current in the weakly-coupled QCD. The chiral condensate behavior is found to be quadratic in external field both in the Dyson-Schwinger approach and in holography, yet we know that in the exact limit the condensate must be linear, thus both classes of models are concluded to be deficient for establishing the correct condensate behaviour in the
Anaïs Schaeffer
2012-01-01
By analysing the production of mesons in the forward region of LHC proton-proton collisions, the LHCf collaboration has provided key information needed to calibrate extremely high-energy cosmic ray models. Average transverse momentum (pT) as a function of rapidity loss ∆y. Black dots represent LHCf data and the red diamonds represent SPS experiment UA7 results. The predictions of hadronic interaction models are shown by open boxes (sibyll 2.1), open circles (qgsjet II-03) and open triangles (epos 1.99). Among these models, epos 1.99 shows the best overall agreement with the LHCf data. LHCf is dedicated to the measurement of neutral particles emitted at extremely small angles in the very forward region of LHC collisions. Two imaging calorimeters – Arm1 and Arm2 – take data 140 m either side of the ATLAS interaction point. “The physics goal of this type of analysis is to provide data for calibrating the hadron interaction models – the well-known &...
Shear viscosities of photons in strongly coupled plasmas
Directory of Open Access Journals (Sweden)
Di-Lun Yang
2016-09-01
Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.
Effect of Interband Interaction on Isotope Effect Coefficient of Mg B2 Superconductors
International Nuclear Information System (INIS)
Udomsamuthirun, P.; Kumvongsa, C.; Burakorn, A.; Changkanarth, P.; Maneeratanakul, S.
2005-10-01
In this research, the exact formula of Tc s equation and the isotope effect coefficient of two-band s-wave superconductors in weak-coupling limit are derived by considering the influence of interband interaction .In each band ,our model consist of two paring interactions : the electron-phonon interaction and non-electron-phonon interaction . According to the numerical calculation, we find that the isotope effect coefficient of MgB 2 , α=3 . 0 with T c 40 K can be found in the weak coupling regime and interband interaction of electron-phonon show more effect on isotope effect coefficient than interband interaction of non-phonon-electron
A cosmic Ray Muon Experiment: a Way to Teach Standard Model of Particles at Community Colleges
International Nuclear Information System (INIS)
Barazandeh, C; Gutarra-Leon, A; Rivas, R; Glaser, H; Majewski, W
2016-01-01
This experiment is an example of research for early undergraduate students and of its benefits and challenges as an accessible strategy for community colleges, in the spirit of the report on improving undergraduate STEM education from the US President's Council of Advisors on Science and Technology. The goals of this project include measuring average low- energy muon flux, day/night flux difference, time dilation, energy spectra of electrons and muons in arbitrary units, muon decay curve, average lifetime of muons. From the lifetime data we calculate the weak coupling constant g w , electric charge e and the Higgs energy density. (paper)
Shape coexistence, Lanczos techniques, and large-basis shell-model calculations
Energy Technology Data Exchange (ETDEWEB)
Haxton, W C [Washington Univ., Seattle, WA (United States). Dept. of Physics
1992-08-01
I discuss numerical many-body techniques based on the Lanczos algorithm and their applications to nuclear structure problems. Examples include shape coexistence, inclusive response functions, and weak interaction rates in {sup 16}O; weak-coupling descriptions of the O{sup +} bands in isotopes of Ge and Se; and the evaluation of the nuclear Green`s functions that arise in two-neutrino {beta}{beta} decay and in nuclear anapole and electric dipole moment calculations. (author). 11 refs., 2 tabs., 4 figs.
High-field, high-T/sub c/ superconductivity in U6Fe and U6Co
International Nuclear Information System (INIS)
DeLong, L.E.; Hall, L.N.; Malik, S.K.; Crabtree, G.W.; Lwpl, W.; Gschneidner, K. A. Jr.
1986-06-01
Upper critical field data for U 6 Fe and U 6 Co are found to be markedly inconsistent with the weak coupling WHHM model. Nevertheless, excellent quantitative fits of H/sub c/ 2 vs T are obtained by using a modifiction of the WHHM model in which the orbital field is multiplied by a temperature-dependent enhancement factor
Optimal control of transmission power management in wireless backbone mesh networks
CSIR Research Space (South Africa)
Olwal, TO
2011-01-01
Full Text Available , the TPM problems are modelled as a singular-perturbation of both energy and packet evolutions at the queue system as well as a weak-coupling problem, owing to the interference across adjacent multiple channels. Based on these models, an optimal control...
DEFF Research Database (Denmark)
Larsen, Lars Bjørn; Vesterager, Johan
This report provides an overview of the existing models of global manufacturing, describes the required modelling views and associated methods and identifies tools, which can provide support for this modelling activity.The model adopted for global manufacturing is that of an extended enterprise s...
Directory of Open Access Journals (Sweden)
A.A. Malykh
2017-08-01
Full Text Available In this paper, the concept of locally simple models is considered. Locally simple models are arbitrarily complex models built from relatively simple components. A lot of practically important domains of discourse can be described as locally simple models, for example, business models of enterprises and companies. Up to now, research in human reasoning automation has been mainly concentrated around the most intellectually intensive activities, such as automated theorem proving. On the other hand, the retailer business model is formed from ”jobs”, and each ”job” can be modelled and automated more or less easily. At the same time, the whole retailer model as an integrated system is extremely complex. In this paper, we offer a variant of the mathematical definition of a locally simple model. This definition is intended for modelling a wide range of domains. Therefore, we also must take into account the perceptual and psychological issues. Logic is elitist, and if we want to attract to our models as many people as possible, we need to hide this elitism behind some metaphor, to which ’ordinary’ people are accustomed. As such a metaphor, we use the concept of a document, so our locally simple models are called document models. Document models are built in the paradigm of semantic programming. This allows us to achieve another important goal - to make the documentary models executable. Executable models are models that can act as practical information systems in the described domain of discourse. Thus, if our model is executable, then programming becomes redundant. The direct use of a model, instead of its programming coding, brings important advantages, for example, a drastic cost reduction for development and maintenance. Moreover, since the model is well and sound, and not dissolved within programming modules, we can directly apply AI tools, in particular, machine learning. This significantly expands the possibilities for automation and
Chang, CC
2012-01-01
Model theory deals with a branch of mathematical logic showing connections between a formal language and its interpretations or models. This is the first and most successful textbook in logical model theory. Extensively updated and corrected in 1990 to accommodate developments in model theoretic methods - including classification theory and nonstandard analysis - the third edition added entirely new sections, exercises, and references. Each chapter introduces an individual method and discusses specific applications. Basic methods of constructing models include constants, elementary chains, Sko
Gaussian dominance on compact spin manifolds
International Nuclear Information System (INIS)
Patrascioiu, A.; Richard, J.L.
1984-07-01
The low temperature regime of continuous spin models is discussed. The relevance of the weak coupling expansion for the calculation of invariant Green's functions is analyzed. Notably it is found that in two dimensions Green's functions of invariant operators cannot be computed perturbatively
Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization
Canale, Eduardo A.; Monzó n, Pablo
2015-01-01
© 2015 AIP Publishing LLC. This work is concerned with stability of equilibria in the homogeneous (equal frequencies) Kuramoto model of weakly coupled oscillators. In 2012 [R. Taylor, J. Phys. A: Math. Theor. 45, 1-15 (2012)], a sufficient condition
Microstructure and properties of bismuth calcium strontium copper oxide superconductors
Emmen, J.H.P.M.; Brabers, V.A.M.; Jonge, de W.J.M.; Steen, C.V.D.; Dalderop, J.H.J.; Geppaart, P.M.A.; Kopinga, K.
1989-01-01
Electric and magnetic properties of sintered and compact-zone-melted samples of BiCaSrCuO were measured. The results were interpreted with a theoretical model, in which the samples consist of small superconducting granules weakly coupled by Josephson junctions.
Four-pomeron couplings in cut reggeon field theory
International Nuclear Information System (INIS)
Grassberger, P.
1980-01-01
Four-pomeron cutting rules are studied in cut reggeon field theory (CRFT). Without any microscopic model, CRFT allows for three different 4-pomeron couplings. Demanding that CRFT is interpretable as a Markov process, only one of these couplings remains. The cutting rules for the 4-pomeron vertex thus become unique, disagreeing with those found in weak coupling diameter 3 theory. (orig.)
DEFF Research Database (Denmark)
Oster, Michael; Gaididei, Yuri B.; Johansson, Magnus
2004-01-01
We study the continuum limit of a nonlinear Schrodinger lattice model with both on-site and inter-site nonlinearities, describing weakly coupled optical waveguides or Bose-Einstein condensates. The resulting continuum nonlinear Schrodinger-type equation includes both nonlocal and nonlinear...
Healy, Richard W.; Scanlon, Bridget R.
2010-01-01
Simulation models are widely used in all types of hydrologic studies, and many of these models can be used to estimate recharge. Models can provide important insight into the functioning of hydrologic systems by identifying factors that influence recharge. The predictive capability of models can be used to evaluate how changes in climate, water use, land use, and other factors may affect recharge rates. Most hydrological simulation models, including watershed models and groundwater-flow models, are based on some form of water-budget equation, so the material in this chapter is closely linked to that in Chapter 2. Empirical models that are not based on a water-budget equation have also been used for estimating recharge; these models generally take the form of simple estimation equations that define annual recharge as a function of precipitation and possibly other climatic data or watershed characteristics.Model complexity varies greatly. Some models are simple accounting models; others attempt to accurately represent the physics of water movement through each compartment of the hydrologic system. Some models provide estimates of recharge explicitly; for example, a model based on the Richards equation can simulate water movement from the soil surface through the unsaturated zone to the water table. Recharge estimates can be obtained indirectly from other models. For example, recharge is a parameter in groundwater-flow models that solve for hydraulic head (i.e. groundwater level). Recharge estimates can be obtained through a model calibration process in which recharge and other model parameter values are adjusted so that simulated water levels agree with measured water levels. The simulation that provides the closest agreement is called the best fit, and the recharge value used in that simulation is the model-generated estimate of recharge.
International Nuclear Information System (INIS)
Buchler, J.R.; Gottesman, S.T.; Hunter, J.H. Jr.
1990-01-01
Various papers on galactic models are presented. Individual topics addressed include: observations relating to galactic mass distributions; the structure of the Galaxy; mass distribution in spiral galaxies; rotation curves of spiral galaxies in clusters; grand design, multiple arm, and flocculent spiral galaxies; observations of barred spirals; ringed galaxies; elliptical galaxies; the modal approach to models of galaxies; self-consistent models of spiral galaxies; dynamical models of spiral galaxies; N-body models. Also discussed are: two-component models of galaxies; simulations of cloudy, gaseous galactic disks; numerical experiments on the stability of hot stellar systems; instabilities of slowly rotating galaxies; spiral structure as a recurrent instability; model gas flows in selected barred spiral galaxies; bar shapes and orbital stochasticity; three-dimensional models; polar ring galaxies; dynamical models of polar rings
Model-model Perencanaan Strategik
Amirin, Tatang M
2005-01-01
The process of strategic planning, used to be called as long-term planning, consists of several components, including strategic analysis, setting strategic direction (covering of mission, vision, and values), and action planning. Many writers develop models representing the steps of the strategic planning process, i.e. basic planning model, problem-based planning model, scenario model, and organic or self-organizing model.
DEFF Research Database (Denmark)
Bækgaard, Lars
2001-01-01
The purpose of this chapter is to discuss conceptual event modeling within a context of information modeling. Traditionally, information modeling has been concerned with the modeling of a universe of discourse in terms of information structures. However, most interesting universes of discourse...... are dynamic and we present a modeling approach that can be used to model such dynamics.We characterize events as both information objects and change agents (Bækgaard 1997). When viewed as information objects events are phenomena that can be observed and described. For example, borrow events in a library can...
DEFF Research Database (Denmark)
Ashauer, Roman; Albert, Carlo; Augustine, Starrlight
2016-01-01
The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test...
DEFF Research Database (Denmark)
Sales-Cruz, Mauricio; Piccolo, Chiara; Heitzig, Martina
2011-01-01
covered, illustrating several models such as the Wilson equation and NRTL equation, along with their solution strategies. A section shows how to use experimental data to regress the property model parameters using a least squares approach. A full model analysis is applied in each example that discusses...... the degrees of freedom, dependent and independent variables and solution strategy. Vapour-liquid and solid-liquid equilibrium is covered, and applications to droplet evaporation and kinetic models are given....
DEFF Research Database (Denmark)
Ravn, Anders P.; Staunstrup, Jørgen
1994-01-01
This paper proposes a model for specifying interfaces between concurrently executing modules of a computing system. The model does not prescribe a particular type of communication protocol and is aimed at describing interfaces between both software and hardware modules or a combination of the two....... The model describes both functional and timing properties of an interface...
Hydrological models are mediating models
Babel, L. V.; Karssenberg, D.
2013-08-01
Despite the increasing role of models in hydrological research and decision-making processes, only few accounts of the nature and function of models exist in hydrology. Earlier considerations have traditionally been conducted while making a clear distinction between physically-based and conceptual models. A new philosophical account, primarily based on the fields of physics and economics, transcends classes of models and scientific disciplines by considering models as "mediators" between theory and observations. The core of this approach lies in identifying models as (1) being only partially dependent on theory and observations, (2) integrating non-deductive elements in their construction, and (3) carrying the role of instruments of scientific enquiry about both theory and the world. The applicability of this approach to hydrology is evaluated in the present article. Three widely used hydrological models, each showing a different degree of apparent physicality, are confronted to the main characteristics of the "mediating models" concept. We argue that irrespective of their kind, hydrological models depend on both theory and observations, rather than merely on one of these two domains. Their construction is additionally involving a large number of miscellaneous, external ingredients, such as past experiences, model objectives, knowledge and preferences of the modeller, as well as hardware and software resources. We show that hydrological models convey the role of instruments in scientific practice by mediating between theory and the world. It results from these considerations that the traditional distinction between physically-based and conceptual models is necessarily too simplistic and refers at best to the stage at which theory and observations are steering model construction. The large variety of ingredients involved in model construction would deserve closer attention, for being rarely explicitly presented in peer-reviewed literature. We believe that devoting
International Nuclear Information System (INIS)
Phillips, C.K.
1985-12-01
This lecture provides a survey of the methods used to model fast magnetosonic wave coupling, propagation, and absorption in tokamaks. The validity and limitations of three distinct types of modelling codes, which will be contrasted, include discrete models which utilize ray tracing techniques, approximate continuous field models based on a parabolic approximation of the wave equation, and full field models derived using finite difference techniques. Inclusion of mode conversion effects in these models and modification of the minority distribution function will also be discussed. The lecture will conclude with a presentation of time-dependent global transport simulations of ICRF-heated tokamak discharges obtained in conjunction with the ICRF modelling codes. 52 refs., 15 figs
Modelling in Business Model design
Simonse, W.L.
2013-01-01
It appears that business model design might not always produce a design or model as the expected result. However when designers are involved, a visual model or artefact is produced. To assist strategic managers in thinking about how they can act, the designers challenge is to combine strategy and
International Nuclear Information System (INIS)
Michel, F.C.
1989-01-01
Three existing eclipse models for the PSR 1957 + 20 pulsar are discussed in terms of their requirements and the information they yield about the pulsar wind: the interacting wind from a companion model, the magnetosphere model, and the occulting disk model. It is shown out that the wind model requires an MHD wind from the pulsar, with enough particles that the Poynting flux of the wind can be thermalized; in this model, a large flux of energetic radiation from the pulsar is required to accompany the wind and drive the wind off the companion. The magnetosphere model requires an EM wind, which is Poynting flux dominated; the advantage of this model over the wind model is that the plasma density inside the magnetosphere can be orders of magnitude larger than in a magnetospheric tail blown back by wind interaction. The occulting disk model also requires an EM wind so that the interaction would be pushed down onto the companion surface, minimizing direct interaction of the wind with the orbiting macroscopic particles
International Nuclear Information System (INIS)
Yang, H.
1999-01-01
The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future
Chandrasekharan, Nataraj
especially if the application imposes a space/size constraint. Moreover, the bimorph with increased thickness will now require a larger mechanical force to deform the structure which can fall outside the input ambient excitation amplitude range. In contrast, the honeycomb core bimorph offers an advantage in terms of preserving the global geometric dimensions. The natural frequency of the honeycomb core bimorph can be altered by manipulating honeycomb cell design parameters, such as cell angle, cell wall thickness, vertical cell height and inclined cell length. This results in a change in the mass and stiffness properties of the substrate and hence the bimorph, thereby altering the natural frequency of the harvester. Design flexibility of honeycomb core bimorphs is demonstrated by varying honeycomb cell parameters to alter mass and stiffness properties for power harvesting. The influence of honeycomb cell parameters on power generation is examined to evaluate optimum design to attain highest specific power. In addition, the more compliant nature of a honeycomb core bimorph decreases susceptibility towards fatigue and can increase the operating lifetime of the harvester. The second component of this dissertation analyses an uncoupled equivalent circuit model for piezoelectric energy harvesting. Open circuit voltage developed on the piezoelectric materials can be easily computed either through analytical or finite element models. The efficacy of a method to determine power developed across a resistive load, by representing the coupled piezoelectric electromechanical problem with an external load as an open circuit voltage driven equivalent circuit, is evaluated. The lack of backward feedback at finite resistive loads resulting from such an equivalent representation is examined by comparing the equivalent circuit model to the governing equations of a fully coupled circuit model for the electromechanical problem. It is found that the backward feedback is insignificant for weakly
DEFF Research Database (Denmark)
Blomhøj, Morten
2004-01-01
Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...
2016-01-01
This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.
Bottle, Neil
2013-01-01
The Model : making exhibition was curated by Brian Kennedy in collaboration with Allies & Morrison in September 2013. For the London Design Festival, the Model : making exhibition looked at the increased use of new technologies by both craft-makers and architectural model makers. In both practices traditional ways of making by hand are increasingly being combined with the latest technologies of digital imaging, laser cutting, CNC machining and 3D printing. This exhibition focussed on ...
International Nuclear Information System (INIS)
Frampton, Paul H.
1998-01-01
In this talk I begin with some general discussion of model building in particle theory, emphasizing the need for motivation and testability. Three illustrative examples are then described. The first is the Left-Right model which provides an explanation for the chirality of quarks and leptons. The second is the 331-model which offers a first step to understanding the three generations of quarks and leptons. Third and last is the SU(15) model which can accommodate the light leptoquarks possibly seen at HERA
International Nuclear Information System (INIS)
Frampton, P.H.
1998-01-01
In this talk I begin with some general discussion of model building in particle theory, emphasizing the need for motivation and testability. Three illustrative examples are then described. The first is the Left-Right model which provides an explanation for the chirality of quarks and leptons. The second is the 331-model which offers a first step to understanding the three generations of quarks and leptons. Third and last is the SU(15) model which can accommodate the light leptoquarks possibly seen at HERA. copyright 1998 American Institute of Physics
Modeling Documents with Event Model
Directory of Open Access Journals (Sweden)
Longhui Wang
2015-08-01
Full Text Available Currently deep learning has made great breakthroughs in visual and speech processing, mainly because it draws lessons from the hierarchical mode that brain deals with images and speech. In the field of NLP, a topic model is one of the important ways for modeling documents. Topic models are built on a generative model that clearly does not match the way humans write. In this paper, we propose Event Model, which is unsupervised and based on the language processing mechanism of neurolinguistics, to model documents. In Event Model, documents are descriptions of concrete or abstract events seen, heard, or sensed by people and words are objects in the events. Event Model has two stages: word learning and dimensionality reduction. Word learning is to learn semantics of words based on deep learning. Dimensionality reduction is the process that representing a document as a low dimensional vector by a linear mode that is completely different from topic models. Event Model achieves state-of-the-art results on document retrieval tasks.
DEFF Research Database (Denmark)
Gøtze, Jens Peter; Krentz, Andrew
2014-01-01
In this issue of Cardiovascular Endocrinology, we are proud to present a broad and dedicated spectrum of reviews on animal models in cardiovascular disease. The reviews cover most aspects of animal models in science from basic differences and similarities between small animals and the human...
Jongerden, M.R.; Haverkort, Boudewijn R.H.M.
2008-01-01
The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However,
DEFF Research Database (Denmark)
Højgaard, Tomas; Hansen, Rune
The purpose of this paper is to introduce Didactical Modelling as a research methodology in mathematics education. We compare the methodology with other approaches and argue that Didactical Modelling has its own specificity. We discuss the methodological “why” and explain why we find it useful...
Kempen, van A.; Kok, H.; Wagter, H.
1992-01-01
In Computer Aided Drafting three groups of three-dimensional geometric modelling can be recognized: wire frame, surface and solid modelling. One of the methods to describe a solid is by using a boundary based representation. The topology of the surface of a solid is the adjacency information between
Poortman, Sybilla; Sloep, Peter
2006-01-01
Educational models describes a case study on a complex learning object. Possibilities are investigated for using this learning object, which is based on a particular educational model, outside of its original context. Furthermore, this study provides advice that might lead to an increase in
International Nuclear Information System (INIS)
V. Chipman
2002-01-01
The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses
DEFF Research Database (Denmark)
Kindler, Ekkart
2009-01-01
, these notations have been extended in order to increase expressiveness and to be more competitive. This resulted in an increasing number of notations and formalisms for modelling business processes and in an increase of the different modelling constructs provided by modelling notations, which makes it difficult......There are many different notations and formalisms for modelling business processes and workflows. These notations and formalisms have been introduced with different purposes and objectives. Later, influenced by other notations, comparisons with other tools, or by standardization efforts...... to compare modelling notations and to make transformations between them. One of the reasons is that, in each notation, the new concepts are introduced in a different way by extending the already existing constructs. In this chapter, we go the opposite direction: We show that it is possible to add most...
Directory of Open Access Journals (Sweden)
P. Grimaldi
2012-07-01
Full Text Available These mandatory guidelines are provided for preparation of papers accepted for publication in the series of Volumes of The The stereometric modelling means modelling achieved with : – the use of a pair of virtual cameras, with parallel axes and positioned at a mutual distance average of 1/10 of the distance camera-object (in practice the realization and use of a stereometric camera in the modeling program; – the shot visualization in two distinct windows – the stereoscopic viewing of the shot while modelling. Since the definition of "3D vision" is inaccurately referred to as the simple perspective of an object, it is required to add the word stereo so that "3D stereo vision " shall stand for "three-dimensional view" and ,therefore, measure the width, height and depth of the surveyed image. Thanks to the development of a stereo metric model , either real or virtual, through the "materialization", either real or virtual, of the optical-stereo metric model made visible with a stereoscope. It is feasible a continuous on line updating of the cultural heritage with the help of photogrammetry and stereometric modelling. The catalogue of the Architectonic Photogrammetry Laboratory of Politecnico di Bari is available on line at: http://rappresentazione.stereofot.it:591/StereoFot/FMPro?-db=StereoFot.fp5&-lay=Scheda&-format=cerca.htm&-view
Modeling complexes of modeled proteins.
Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A
2017-03-01
Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DEFF Research Database (Denmark)
Kreiner, Svend; Christensen, Karl Bang
Rasch models; Partial Credit models; Rating Scale models; Item bias; Differential item functioning; Local independence; Graphical models......Rasch models; Partial Credit models; Rating Scale models; Item bias; Differential item functioning; Local independence; Graphical models...
International Nuclear Information System (INIS)
Woosley, S.E.; California, University, Livermore, CA); Weaver, T.A.
1981-01-01
Recent progress in understanding the observed properties of type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the Ni-56 produced therein is reviewed. The expected nucleosynthesis and gamma-line spectra for this model of type I explosions and a model for type II explosions are presented. Finally, a qualitatively new approach to the problem of massive star death and type II supernovae based upon a combination of rotation and thermonuclear burning is discussed. While the theoretical results of existing models are predicated upon the assumption of a successful core bounce calculation and the neglect of such two-dimensional effects as rotation and magnetic fields the new model suggests an entirely different scenario in which a considerable portion of the energy carried by an equatorially ejected blob is deposited in the red giant envelope overlying the mantle of the star
Hodges, Wilfrid
1993-01-01
An up-to-date and integrated introduction to model theory, designed to be used for graduate courses (for students who are familiar with first-order logic), and as a reference for more experienced logicians and mathematicians.
Indian Academy of Sciences (India)
2School of Water Resources, Indian Institute of Technology,. Kharagpur ... the most accepted method for modelling LULCC using current .... We used UTM coordinate system with zone 45 .... need to develop criteria for making decision about.
National Oceanic and Atmospheric Administration, Department of Commerce — Computer simulations of past climate. Variables provided as model output are described by parameter keyword. In some cases the parameter keywords are a subset of all...
Energy models characterize the energy system, its evolution, and its interactions with the broader economy. The energy system consists of primary resources, including both fossil fuels and renewables; power plants, refineries, and other technologies to process and convert these r...
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Skaaret, Eimund
Calculation procedures, used in the design of ventilating systems, which are especially suited for displacement ventilation in addition to linking it to mixing ventilation, are addressed. The two zone flow model is considered and the steady state and transient solutions are addressed. Different methods of supplying air are discussed, and different types of air flow are considered: piston flow, plane flow and radial flow. An evaluation model for ventilation systems is presented.
Model uncertainty: Probabilities for models?
International Nuclear Information System (INIS)
Winkler, R.L.
1994-01-01
Like any other type of uncertainty, model uncertainty should be treated in terms of probabilities. The question is how to do this. The most commonly-used approach has a drawback related to the interpretation of the probabilities assigned to the models. If we step back and look at the big picture, asking what the appropriate focus of the model uncertainty question should be in the context of risk and decision analysis, we see that a different probabilistic approach makes more sense, although it raise some implementation questions. Current work that is underway to address these questions looks very promising
International Nuclear Information System (INIS)
Fryer, M.O.
1984-01-01
The temperature measurements provided by thermocouples (TCs) are important for the operation of pressurized water reactors. During severe inadequate core cooling incidents, extreme temperatures may cause type K thermocouples (TCs) used for core exit temperature monitoring to perform poorly. A model of TC electrical behavior has been developed to determine how TCs react under extreme temperatures. The model predicts the voltage output of the TC and its impedance. A series of experiments were conducted on a length of type K thermocouple to validate the model. Impedance was measured at several temperatures between 22 0 C and 1100 0 C and at frequencies between dc and 10 MHz. The model was able to accurately predict impedance over this wide range of conditions. The average percentage difference between experimental data and the model was less than 6.5%. Experimental accuracy was +-2.5%. There is a sriking difference between impedance versus frequency plots at 300 0 C and at higher temperatures. This may be useful in validating TC data during accident conditions
Kallman, T.
2010-01-01
Warm absorber spectra are characterized by the many lines from partially ionized intermediate-Z elements, and iron, detected with the grating instruments on Chandra and XMM-Newton. If these ions are formed in a gas which is in photoionization equilibrium, they correspond to a broad range of ionization parameters, although there is evidence for certain preferred values. A test for any dynamical model for these outflows is to reproduce these properties, at some level of detail. In this paper we present a statistical analysis of the ionization distribution which can be applied both the observed spectra and to theoretical models. As an example, we apply it to our dynamical models for warm absorber outflows, based on evaporation from the molecular torus.
Smith, J. A.; Cooper, K.; Randolph, M.
1984-01-01
A classical description of the one dimensional radiative transfer treatment of vegetation canopies was completed and the results were tested against measured prairie (blue grama) and agricultural canopies (soybean). Phase functions are calculated in terms of directly measurable biophysical characteristics of the canopy medium. While the phase functions tend to exhibit backscattering anisotropy, their exact behavior is somewhat more complex and wavelength dependent. A Monte Carlo model was developed that treats soil surfaces with large periodic variations in three dimensions. A photon-ray tracing technology is used. Currently, the rough soil surface is described by analytic functions and appropriate geometric calculations performed. A bidirectional reflectance distribution function is calculated and, hence, available for other atmospheric or canopy reflectance models as a lower boundary condition. This technique is used together with an adding model to calculate several cases where Lambertian leaves possessing anisotropic leaf angle distributions yield non-Lambertian reflectance; similar behavior is exhibited for simulated soil surfaces.
Eck, Christof; Knabner, Peter
2017-01-01
Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.
Cardey, Sylviane
2013-01-01
In response to the need for reliable results from natural language processing, this book presents an original way of decomposing a language(s) in a microscopic manner by means of intra/inter‑language norms and divergences, going progressively from languages as systems to the linguistic, mathematical and computational models, which being based on a constructive approach are inherently traceable. Languages are described with their elements aggregating or repelling each other to form viable interrelated micro‑systems. The abstract model, which contrary to the current state of the art works in int
Directory of Open Access Journals (Sweden)
Aarti Sharma
2009-01-01
Full Text Available The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and the exponential growth of the knowledge of protein structures have made it possible for organic compounds to be tailored to decrease the harmful side effects and increase the potency. This article provides a detailed description of the techniques employed in molecular modeling. Molecular modeling is a rapidly developing discipline, and has been supported by the dramatic improvements in computer hardware and software in recent years.
International Nuclear Information System (INIS)
Woosley, S.E.; Weaver, T.A.
1980-01-01
Recent progress in understanding the observed properties of Type I supernovae as a consequence of the thermonuclear detonation of white dwarf stars and the ensuing decay of the 56 Ni produced therein is reviewed. Within the context of this model for Type I explosions and the 1978 model for Type II explosions, the expected nucleosynthesis and gamma-line spectra from both kinds of supernovae are presented. Finally, a qualitatively new approach to the problem of massive star death and Type II supernovae based upon a combination of rotation and thermonuclear burning is discussed
Baart, F.; Donchyts, G.; van Dam, A.; Plieger, M.
2015-12-01
The emergence of interactive art has blurred the line between electronic, computer graphics and art. Here we apply this art form to numerical models. Here we show how the transformation of a numerical model into an interactive painting can both provide insights and solve real world problems. The cases that are used as an example include forensic reconstructions, dredging optimization, barrier design. The system can be fed using any source of time varying vector fields, such as hydrodynamic models. The cases used here, the Indian Ocean (HYCOM), the Wadden Sea (Delft3D Curvilinear), San Francisco Bay (3Di subgrid and Delft3D Flexible Mesh), show that the method used is suitable for different time and spatial scales. High resolution numerical models become interactive paintings by exchanging their velocity fields with a high resolution (>=1M cells) image based flow visualization that runs in a html5 compatible web browser. The image based flow visualization combines three images into a new image: the current image, a drawing, and a uv + mask field. The advection scheme that computes the resultant image is executed in the graphics card using WebGL, allowing for 1M grid cells at 60Hz performance on mediocre graphic cards. The software is provided as open source software. By using different sources for a drawing one can gain insight into several aspects of the velocity fields. These aspects include not only the commonly represented magnitude and direction, but also divergence, topology and turbulence .
Finger Lakes Regional Education Center for Economic Development, Mount Morris, NY.
This guide describes seven model programs that were developed by the Finger Lakes Regional Center for Economic Development (New York) to meet the training needs of female and minority entrepreneurs to help their businesses survive and grow and to assist disabled and dislocated workers and youth in beginning small businesses. The first three models…
DEFF Research Database (Denmark)
Nash, Ulrik William
2014-01-01
Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabil...
International Nuclear Information System (INIS)
Michel, F.C.
1989-01-01
This paper addresses the question of, if one overlooks their idiosyncratic difficulties, what could be learned from the various models about the pulsar wind? The wind model requires an MHD wind from the pulsar, namely, one with enough particles that the Poynting flux of the wind can be thermalized. Otherwise, there is no shock and the pulsar wind simply reflects like a flashlight beam. Additionally, a large flux of energetic radiation from the pulsar is required to accompany the wind and drive the wind off the companion. The magnetosphere model probably requires an EM wind, which is Poynting flux dominated. Reflection in this case would arguably minimize the intimate interaction between the two flows that leads to tail formation and thereby permit a weakly magnetized tail. The occulting disk model also would point to an EM wind so that the interaction would be pushed down onto the companion surface (to form the neutral fountain) and so as to also minimize direct interaction of the wind with the orbiting macroscopic particles
African Journals Online (AJOL)
Simple analytic polynomials have been proposed for estimating solar radiation in the traditional Northern, Central and Southern regions of Malawi. There is a strong agreement between the polynomials and the SSE model with R2 values of 0.988, 0.989 and 0.989 and root mean square errors of 0.061, 0.057 and 0.062 ...
Lomnitz, Cinna
Tichelaar and Ruff [1989] propose to “estimate model variance in complicated geophysical problems,” including the determination of focal depth in earthquakes, by means of unconventional statistical methods such as bootstrapping. They are successful insofar as they are able to duplicate the results from more conventional procedures.
International Nuclear Information System (INIS)
Norgett, M.J.
1980-01-01
Calculations, drawing principally on developments at AERE Harwell, of the relaxation about lattice defects are reviewed with emphasis on the techniques required for such calculations. The principles of defect modelling are outlined and various programs developed for defect simulations are discussed. Particular calculations for metals, ionic crystals and oxides, are considered. (UK)
DEFF Research Database (Denmark)
Stubkjær, Erik
2005-01-01
to the modeling of an industrial sector, as it aims at rendering the basic concepts that relate to the domain of real estate and the pertinent human activities. The palpable objects are pieces of land and buildings, documents, data stores and archives, as well as persons in their diverse roles as owners, holders...
DEFF Research Database (Denmark)
About the reconstruction of Palle Nielsen's (f. 1942) work The Model from 1968: a gigantic playground for children in the museum, where they can freely romp about, climb in ropes, crawl on wooden structures, work with tools, jump in foam rubber, paint with finger paints and dress up in costumes....
International Nuclear Information System (INIS)
Wenzel, W.J.; Gallegos, A.F.; Rodgers, J.C.
1985-01-01
The BIOTRAN model was developed at Los Alamos to help predict short- and long-term consequences to man from releases of radionuclides into the environment. It is a dynamic model that simulates on a daily and yearly basis the flux of biomass, water, and radionuclides through terrestrial and aquatic ecosystems. Biomass, water, and radionuclides are driven within the ecosystems by climate variables stochastically generated by BIOTRAN each simulation day. The climate variables influence soil hydraulics, plant growth, evapotranspiration, and particle suspension and deposition. BIOTRAN has 22 different plant growth strategies for simulating various grasses, shrubs, trees, and crops. Ruminants and humans are also dynamically simulated by using the simulated crops and forage as intake for user-specified diets. BIOTRAN has been used at Los Alamos for long-term prediction of health effects to populations following potential accidental releases of uranium and plutonium. Newly developed subroutines are described: a human dynamic physiological and metabolic model; a soil hydrology and irrigation model; limnetic nutrient and radionuclide cycling in fresh-water lakes. 7 references
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...
1975-01-01
thai h’liathe0in antd is finaull’ %IIIrd alt %tramlit And drohlttle. Mike aplpars Ito inua•,e upward in outler a rei and dowoi. ward it %iunr areli, Oil...fiducial marks should be constant and the edges phobic nor hydrophilic is better for routine sharpl ) defined. model testing. Before each launching in
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. Molecular Modeling: A Powerful Tool for Drug Design and Molecular Docking. Rama Rao Nadendla. General Article Volume 9 Issue 5 May 2004 pp 51-60. Fulltext. Click here to view fulltext PDF. Permanent link:
International Nuclear Information System (INIS)
Alsaed, A.
2004-01-01
The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of this analysis is to document the criticality computational method. The criticality
Heberer, Bianca; Neubauer, Franz
2010-05-01
Surface uplift and rock exhumation within an orogen are generally a consequence of convergence, and can often be linked with subsidence in a peripheral foreland. Since vertical loads act on the entire lithosphere, these processes can, therefore, be considered as plate-scale processes. Here, we propose a conceptual model for this linkage for the Friuli orocline and its surrounding units. The Friuli orocline stretches from the ENE-trending Southern Alps to the SE-trending Dinarides. There, two Neogene stages of convergence and associated deformation can be differentiated: (1) a Mid-Late Miocene phase of increased surface uplift and intra-orogenic subsidence of sedimentary basins reflecting intra-orogenic crustal-scale folding. Depocentres are e.g. the flexural Belluno, Ljubljana and Klagenfurt basins. (2) A second stage of convergence during Late Pliocene-Pleistocene times led to overall surface uplift in the orogen and contemporaneous pronounced subsidence in the peripheral foreland basin (Venetian platform and the northern Adriatic Sea). We propose, that the spatially variable extent of subsidence originates in variably strong orogen-basin coupling, i.e. weak coupling during stage 1 vs. strong coupling during stage 2. This interpretation is based on the apatite fission track age pattern, the distribution of intra-orogenic Neogene sediment basins and subsidence analyses in the foreland basin (Barbieri et al., 2007). Available low-temperature thermochronological data for the Southern Alps and the NW Dinarides are sparse, in contrast to a dense network of primarily apatite fission track ages north of the Periadriatic lineament (e.g. summarized by Luth & Willingshofer, 2008). AFT ages adjacent to the eastern Periadriatic Lineament mainly range from 15 to 25 Ma (Hejl, 1997; Fodor et al., 2008). Detrital studies on Oligocene to Miocene sediments from the Venetian foreland basin yielded dominant age groups clustering roughly around 20 and 30 Ma (Stefani et al., 2008
Constraints on SU2xU1 breaking by vacuum misalignment
International Nuclear Information System (INIS)
Banks, T.
1984-01-01
We examine a proposal of Georgi and Kaplan for raising the scale of technicolor. In scalarless vectorlike technicolor models with massless techni-fermions we show that the proposal does not work. We present a simple model which realizes the Georgi-Kaplan scenario with a partially chiral technicolor group. The model requires fine tuning of the ratio of two weak coupling constants with an accuracy of O(10 -4 ). We argue that the fine-tuning problem is quite general. (orig.)
International Nuclear Information System (INIS)
Miller, D.; Richards, P.L.; Etemad, S.; Inam, A.; Venkatesan, T.; Dutta, B.; Wu, X.D.; Eom, C.B.; Geballe, T.H.; Newman, N.; Cole, B.F.
1991-01-01
We have measured the residual loss in five epitaxial a-b plane films of the high-T c superconductor YBa 2 Cu 3 O 7 . Microwave measurements near 10 GHz were made by resonance techniques at 4 K. Submillimeter measurements from ∼1.5 to 21 THz were made at 2 K by a direct absorption technique. We use a model of weakly coupled superconducting grains and a homogeneous two-fluid model to fit the data for each film below the well-known absorption edge at 13.5 THz. When the penetration depth determined from muon spin rotation measurements is used to constrain each model, the weakly coupled grain model is able to fit the measured absorptivities for all films, but the two-fluid model is less successful
Building Models and Building Modelling
DEFF Research Database (Denmark)
Jørgensen, Kaj; Skauge, Jørn
2008-01-01
I rapportens indledende kapitel beskrives de primære begreber vedrørende bygningsmodeller og nogle fundamentale forhold vedrørende computerbaseret modulering bliver opstillet. Desuden bliver forskellen mellem tegneprogrammer og bygningsmodelleringsprogrammer beskrevet. Vigtige aspekter om comp...
DEFF Research Database (Denmark)
2012-01-01
The relationship between representation and the represented is examined here through the notion of persistent modelling. This notion is not novel to the activity of architectural design if it is considered as describing a continued active and iterative engagement with design concerns – an evident....... It also provides critical insight into the use of contemporary modelling tools and methods, together with an examination of the implications their use has within the territories of architectural design, realisation and experience....... on this subject, this book makes essential reading for anyone considering new ways of thinking about architecture. In drawing upon both historical and contemporary perspectives this book provides evidence of the ways in which relations between representation and the represented continue to be reconsidered...
DEFF Research Database (Denmark)
The relationship between representation and the represented is examined here through the notion of persistent modelling. This notion is not novel to the activity of architectural design if it is considered as describing a continued active and iterative engagement with design concerns – an evident....... It also provides critical insight into the use of contemporary modelling tools and methods, together with an examination of the implications their use has within the territories of architectural design, realisation and experience....... on this subject, this book makes essential reading for anyone considering new ways of thinking about architecture. In drawing upon both historical and contemporary perspectives this book provides evidence of the ways in which relations between representation and the represented continue to be reconsidered...
Barr, Michael
2002-01-01
Acyclic models is a method heavily used to analyze and compare various homology and cohomology theories appearing in topology and algebra. This book is the first attempt to put together in a concise form this important technique and to include all the necessary background. It presents a brief introduction to category theory and homological algebra. The author then gives the background of the theory of differential modules and chain complexes over an abelian category to state the main acyclic models theorem, generalizing and systemizing the earlier material. This is then applied to various cohomology theories in algebra and topology. The volume could be used as a text for a course that combines homological algebra and algebraic topology. Required background includes a standard course in abstract algebra and some knowledge of topology. The volume contains many exercises. It is also suitable as a reference work for researchers.
Directory of Open Access Journals (Sweden)
Aarti Sharma
2009-12-01
Full Text Available
DEFF Research Database (Denmark)
Pedersen, Mogens Jin; Stritch, Justin Michael
2018-01-01
Replication studies relate to the scientific principle of replicability and serve the significant purpose of providing supporting (or contradicting) evidence regarding the existence of a phenomenon. However, replication has never been an integral part of public administration and management...... research. Recently, scholars have issued calls for more replication, but academic reflections on when replication adds substantive value to public administration and management research are needed. This concise article presents a conceptual model, RNICE, for assessing when and how a replication study...... contributes knowledge about a social phenomenon and advances knowledge in the public administration and management literatures. The RNICE model provides a vehicle for researchers who seek to evaluate or demonstrate the value of a replication study systematically. We illustrate the practical application...
DEFF Research Database (Denmark)
Lasrado, Lester Allan; Vatrapu, Ravi
2016-01-01
Recent advancements in set theory and readily available software have enabled social science researchers to bridge the variable-centered quantitative and case-based qualitative methodological paradigms in order to analyze multi-dimensional associations beyond the linearity assumptions, aggregate...... effects, unicausal reduction, and case specificity. Based on the developments in set theoretical thinking in social sciences and employing methods like Qualitative Comparative Analysis (QCA), Necessary Condition Analysis (NCA), and set visualization techniques, in this position paper, we propose...... and demonstrate a new approach to maturity models in the domain of Information Systems. This position paper describes the set-theoretical approach to maturity models, presents current results and outlines future research work....
DEFF Research Database (Denmark)
Bork Petersen, Franziska
2013-01-01
advantageous manner. Stepping on the catwalk’s sloping, moving surfaces decelerates the models’ walk and makes it cautious, hesitant and shaky: suddenly the models lack exactly the affirmative, staccato, striving quality of motion, and the condescending expression that they perform on most contemporary......For the presentation of his autumn/winter 2012 collection in Paris and subsequently in Copenhagen, Danish designer Henrik Vibskov installed a mobile catwalk. The article investigates the choreographic impact of this scenography on those who move through it. Drawing on Dance Studies, the analytical...... focus centres on how the catwalk scenography evokes a ‘defiguration’ of the walking models and to what effect. Vibskov’s mobile catwalk draws attention to the walk, which is a key element of models’ performance but which usually functions in fashion shows merely to present clothes in the most...
DEFF Research Database (Denmark)
Arnoldi, Jakob
The article discusses the use of algorithmic models for so-called High Frequency Trading (HFT) in finance. HFT is controversial yet widespread in modern financial markets. It is a form of automated trading technology which critics among other things claim can lead to market manipulation. Drawing....... The article analyses these challenges and argues that we witness a new post-social form of human-technology interaction that will lead to a reconfiguration of professional codes for financial trading....
Vincent, Julian F V
2003-01-01
Biomimetics is seen as a path from biology to engineering. The only path from engineering to biology in current use is the application of engineering concepts and models to biological systems. However, there is another pathway: the verification of biological mechanisms by manufacture, leading to an iterative process between biology and engineering in which the new understanding that the engineering implementation of a biological system can bring is fed back into biology, allowing a more compl...
Energy Technology Data Exchange (ETDEWEB)
McIllvaine, C M
1994-07-01
Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO{sub 2}), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO{sub x} concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO{sub x} coordinates of the point, known as the NMOC/NO{sub x} ratio. Results obtained by the described model are presented.
International Nuclear Information System (INIS)
McIllvaine, C.M.
1994-01-01
Exhaust gases from power plants that burn fossil fuels contain concentrations of sulfur dioxide (SO 2 ), nitric oxide (NO), particulate matter, hydrocarbon compounds and trace metals. Estimated emissions from the operation of a hypothetical 500 MW coal-fired power plant are given. Ozone is considered a secondary pollutant, since it is not emitted directly into the atmosphere but is formed from other air pollutants, specifically, nitrogen oxides (NO), and non-methane organic compounds (NMOQ) in the presence of sunlight. (NMOC are sometimes referred to as hydrocarbons, HC, or volatile organic compounds, VOC, and they may or may not include methane). Additionally, ozone formation Alternative is a function of the ratio of NMOC concentrations to NO x concentrations. A typical ozone isopleth is shown, generated with the Empirical Kinetic Modeling Approach (EKMA) option of the Environmental Protection Agency's (EPA) Ozone Isopleth Plotting Mechanism (OZIPM-4) model. Ozone isopleth diagrams, originally generated with smog chamber data, are more commonly generated with photochemical reaction mechanisms and tested against smog chamber data. The shape of the isopleth curves is a function of the region (i.e. background conditions) where ozone concentrations are simulated. The location of an ozone concentration on the isopleth diagram is defined by the ratio of NMOC and NO x coordinates of the point, known as the NMOC/NO x ratio. Results obtained by the described model are presented
Walker, Ellen A
2010-01-01
As clinical studies reveal that chemotherapeutic agents may impair several different cognitive domains in humans, the development of preclinical animal models is critical to assess the degree of chemotherapy-induced learning and memory deficits and to understand the underlying neural mechanisms. In this chapter, the effects of various cancer chemotherapeutic agents in rodents on sensory processing, conditioned taste aversion, conditioned emotional response, passive avoidance, spatial learning, cued memory, discrimination learning, delayed-matching-to-sample, novel-object recognition, electrophysiological recordings and autoshaping is reviewed. It appears at first glance that the effects of the cancer chemotherapy agents in these many different models are inconsistent. However, a literature is emerging that reveals subtle or unique changes in sensory processing, acquisition, consolidation and retrieval that are dose- and time-dependent. As more studies examine cancer chemotherapeutic agents alone and in combination during repeated treatment regimens, the animal models will become more predictive tools for the assessment of these impairments and the underlying neural mechanisms. The eventual goal is to collect enough data to enable physicians to make informed choices about therapeutic regimens for their patients and discover new avenues of alternative or complementary therapies that reduce or eliminate chemotherapy-induced cognitive deficits.
Energy Technology Data Exchange (ETDEWEB)
Plimpton, Steven James; Heffernan, Julieanne; Sasaki, Darryl Yoshio; Frischknecht, Amalie Lucile; Stevens, Mark Jackson; Frink, Laura J. Douglas
2005-11-01
Understanding the properties and behavior of biomembranes is fundamental to many biological processes and technologies. Microdomains in biomembranes or ''lipid rafts'' are now known to be an integral part of cell signaling, vesicle formation, fusion processes, protein trafficking, and viral and toxin infection processes. Understanding how microdomains form, how they depend on membrane constituents, and how they act not only has biological implications, but also will impact Sandia's effort in development of membranes that structurally adapt to their environment in a controlled manner. To provide such understanding, we created physically-based models of biomembranes. Molecular dynamics (MD) simulations and classical density functional theory (DFT) calculations using these models were applied to phenomena such as microdomain formation, membrane fusion, pattern formation, and protein insertion. Because lipid dynamics and self-organization in membranes occur on length and time scales beyond atomistic MD, we used coarse-grained models of double tail lipid molecules that spontaneously self-assemble into bilayers. DFT provided equilibrium information on membrane structure. Experimental work was performed to further help elucidate the fundamental membrane organization principles.
Salunke-Gawali, Sunita; Ahmed, Khursheed; Varret, François; Linares, Jorge; Zaware, Santosh; Date, Sadgopal; Rane, Sandhya
2008-07-01
value of antiferromagnetic exchange leads to Fe+3μ-(OH) Fe + 2 bridging in Fe-1 dimer instead of μ-oxo bridge. The intermolecular association through H-bonds may lead to weakly coupled antiferromagnetic interaction between two Fe-2 molecules having Fe + 3(h.s.) centers. Using S = 5/2, 5/2 spin pair model we obtained best-fitted parameters such as J = -12.4 cm - 1, g = 2.3 with R = 3.58 × 10 - 5. Synthetic strategy results in non-equivalent iron sites in Fe-1 dimer analogues to PAP enzyme hence its reconstitution results in pUC-19 DNA cleavage activity, as physiological functionality of APase. It is compared with nuclease activity of Fe-2 RAPase.
Energy Technology Data Exchange (ETDEWEB)
Chandler, Graham
2011-03-15
Ken Dedeluk is the president and CEO of Computer Modeling Group (CMG). Dedeluk started his career with Gulf Oil in 1972, worked in computer assisted design; then joined Imperial Esso and Shell, where he became international operations' VP; and finally joined CMG in 1998. CMG made a decision that turned out to be the company's turning point: they decided to provide intensive support and service to their customer to better use their technology. Thanks to this service, their customers' satisfaction grew as well as their revenues.
Model integration and a theory of models
Dolk, Daniel R.; Kottemann, Jeffrey E.
1993-01-01
Model integration extends the scope of model management to include the dimension of manipulation as well. This invariably leads to comparisons with database theory. Model integration is viewed from four perspectives: Organizational, definitional, procedural, and implementational. Strategic modeling is discussed as the organizational motivation for model integration. Schema and process integration are examined as the logical and manipulation counterparts of model integr...
Fermion mass hierarchies in theories of technicolor
International Nuclear Information System (INIS)
Peskin, M.E.
1981-01-01
Models in which light fermion masses result from dynamical symmetry breaking often produce these masses in a hierarchial pattern. The author exhibits two scenarios for obtaining such hierarchies and illustrates each with a simple model of mass generation. In the first scenario, the light fermion masses are separated by powers of a weak coupling constant; in the second scenario, they are separated by a ratio of large mass scales
Tornow, Sabine; Zwicknagl, Gertrud
2009-01-01
We investigate the transport characteristics of a redox system weakly coupled to leads in the Coulomb blockade regime. The redox system comprises a donor and acceptor separated by an insulating bridge in a solution. It is modeled by a two-site extended Hubbard model which includes on-site and inter-site Coulomb interactions and the coupling to a bosonic bath. The current voltage characteristics is calculated at high temperatures using a rate equation approach. For high voltages exceeding the ...
1989-01-01
A wooden model of the ALEPH experiment and its cavern. ALEPH was one of 4 experiments at CERN's 27km Large Electron Positron collider (LEP) that ran from 1989 to 2000. During 11 years of research, LEP's experiments provided a detailed study of the electroweak interaction. Measurements performed at LEP also proved that there are three – and only three – generations of particles of matter. LEP was closed down on 2 November 2000 to make way for the construction of the Large Hadron Collider in the same tunnel. The cavern and detector are in separate locations - the cavern is stored at CERN and the detector is temporarily on display in Glasgow physics department. Both are available for loan.
Directory of Open Access Journals (Sweden)
Robert F. Love
2001-01-01
Full Text Available Distance predicting functions may be used in a variety of applications for estimating travel distances between points. To evaluate the accuracy of a distance predicting function and to determine its parameters, a goodness-of-fit criteria is employed. AD (Absolute Deviations, SD (Squared Deviations and NAD (Normalized Absolute Deviations are the three criteria that are mostly employed in practice. In the literature some assumptions have been made about the properties of each criterion. In this paper, we present statistical analyses performed to compare the three criteria from different perspectives. For this purpose, we employ the ℓkpθ-norm as the distance predicting function, and statistically compare the three criteria by using normalized absolute prediction error distributions in seventeen geographical regions. We find that there exist no significant differences between the criteria. However, since the criterion SD has desirable properties in terms of distance modelling procedures, we suggest its use in practice.
Admixtures of shell and cluster states in 18F
International Nuclear Information System (INIS)
Sakuda, Toshimi; Nemoto, Fumiki; Nagata, Sinobu.
1976-01-01
The properties of the low-lying T=0 positive-parity levels in 18 F are shown to be well understood by considering admixtures of 2p shell-model states and ''4p-2h'' states with alpha-cluster structures. In order to represent the ''4p-2h'' states, α- 14 N cluster model is introduced. By this model, weak coupling features and coupling between shell and cluster states are well described. The binding energies of the ground 1 + and the lowest 3 + levels are reproduced by the couplings with the ''4p-2h'' cluster states. On the other hand, weak coupling features of ''4p-2h'' cluster states are disturbed to some extent. As a result, the energy spectrum, E2-transition rates and reduced α-widths of all T=0 positive-parity levels below 7 MeV excitation energy are systematically reproduced. (auth.)
Challenges in the detection of long lived particles with ATLAS: the Hidden valley scenario
Ventura, D
2009-01-01
A number of extensions of the Standard Model result in particles that are neutral, weakly-coupled and have macroscopic decay lengths that can be comparable with LHC detector dimensions[1, 2, 3]. These long lived particles occur in many models; in the Hidden Valley (HV) Scenario a new sector is weakly coupled to the Standard Model and results in neutral long lived HV particles ($pi_{v}$) that decay to heavy quark pairs and tau pairs. These particles can be produced in Higgs boson decays, SUSY processes or $Z^prime$ decays. \\ We present the results of a ﬁrst study of the ATLAS Detector performance for the Higgs decay $h^0 ightarrowpi_vpi_v$, where the $pi_v$ is neutral and has a displaced decay mainly to bottom quarks. The initial goal of our study is to obtain benchmark triggers for processes with such non-standard signatures in the ATLAS apparatus.
Comparison: Binomial model and Black Scholes model
Directory of Open Access Journals (Sweden)
Amir Ahmad Dar
2018-03-01
Full Text Available The Binomial Model and the Black Scholes Model are the popular methods that are used to solve the option pricing problems. Binomial Model is a simple statistical method and Black Scholes model requires a solution of a stochastic differential equation. Pricing of European call and a put option is a very difficult method used by actuaries. The main goal of this study is to differentiate the Binominal model and the Black Scholes model by using two statistical model - t-test and Tukey model at one period. Finally, the result showed that there is no significant difference between the means of the European options by using the above two models.
Computational Modeling | Bioenergy | NREL
cell walls and are the source of biofuels and biomaterials. Our modeling investigates their properties . Quantum Mechanical Models NREL studies chemical and electronic properties and processes to reduce barriers Computational Modeling Computational Modeling NREL uses computational modeling to increase the
Essays on model uncertainty in financial models
Li, Jing
2018-01-01
This dissertation studies model uncertainty, particularly in financial models. It consists of two empirical chapters and one theoretical chapter. The first empirical chapter (Chapter 2) classifies model uncertainty into parameter uncertainty and misspecification uncertainty. It investigates the
Vector models and generalized SYK models
Energy Technology Data Exchange (ETDEWEB)
Peng, Cheng [Department of Physics, Brown University,Providence RI 02912 (United States)
2017-05-23
We consider the relation between SYK-like models and vector models by studying a toy model where a tensor field is coupled with a vector field. By integrating out the tensor field, the toy model reduces to the Gross-Neveu model in 1 dimension. On the other hand, a certain perturbation can be turned on and the toy model flows to an SYK-like model at low energy. A chaotic-nonchaotic phase transition occurs as the sign of the perturbation is altered. We further study similar models that possess chaos and enhanced reparameterization symmetries.
Solving the strongly coupled 2D gravity III. String suspectibility and topological N-point functions
International Nuclear Information System (INIS)
Gervais, J.-L.; Roussel, J.-F.
1996-01-01
For pt.II see ibid., vol 426, p.140-86, 1994. We spell out the derivation of novel features, put forward earlier in a letter, of two-dimensional gravity in the strong coupling regime, at C L =7, 13, 19. Within the operator approach previously developed, they neatly follow from the appearance of a new cosmological term/marginal operator, different from the standard weak-coupling one, that determines the world-sheet interaction. The corresponding string susceptibility is obtained and found real contrary to the continuation of the KPZ formula. Strongly coupled (topological like) models - only involving zero-mode degrees of freedom - are solved up to sixth order, using the Ward identities which follow from the dependence upon the new cosmological constant. They are technically similar to the weakly coupled ones, which reproduce the matrix model results, but gravity and matter quantum numbers are entangled differently. (orig.)
Collider detection of dark matter electromagnetic anapole moments
Alves, Alexandre; Santos, A. C. O.; Sinha, Kuver
2018-03-01
Dark matter that interacts with the Standard Model by exchanging photons through higher multipole interactions occurs in a wide range of both strongly and weakly coupled hidden sector models. We study the collider detection prospects of these candidates, with a focus on Majorana dark matter that couples through the anapole moment. The study is conducted at the effective field theory level with the mono-Z signature incorporating varying levels of systematic uncertainties at the high-luminosity LHC. The projected collider reach on the anapole moment is then compared to the reach coming from direct detection experiments like LZ. Finally, the analysis is applied to a weakly coupled completion with leptophilic dark matter.
Modeling styles in business process modeling
Pinggera, J.; Soffer, P.; Zugal, S.; Weber, B.; Weidlich, M.; Fahland, D.; Reijers, H.A.; Mendling, J.; Bider, I.; Halpin, T.; Krogstie, J.; Nurcan, S.; Proper, E.; Schmidt, R.; Soffer, P.; Wrycza, S.
2012-01-01
Research on quality issues of business process models has recently begun to explore the process of creating process models. As a consequence, the question arises whether different ways of creating process models exist. In this vein, we observed 115 students engaged in the act of modeling, recording
The IMACLIM model; Le modele IMACLIM
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
This document provides annexes to the IMACLIM model which propose an actualized description of IMACLIM, model allowing the design of an evaluation tool of the greenhouse gases reduction policies. The model is described in a version coupled with the POLES, technical and economical model of the energy industry. Notations, equations, sources, processing and specifications are proposed and detailed. (A.L.B.)
From Product Models to Product State Models
DEFF Research Database (Denmark)
Larsen, Michael Holm
1999-01-01
A well-known technology designed to handle product data is Product Models. Product Models are in their current form not able to handle all types of product state information. Hence, the concept of a Product State Model (PSM) is proposed. The PSM and in particular how to model a PSM is the Research...
International Nuclear Information System (INIS)
Gourdin, M.
1976-01-01
In most gauge theories weak neutral currents appear as a natural consequence of the models, but the specific properties are not predicted in a general way. In purely leptonic interactions the structure of these currents can be tested without making assumptions about the weak couplings of the hadrons. The influence of neutral currents appearing in the process e + e - → μ + μ - can be measured using the polarization of the outgoing myons. (BJ) [de
Influence functionals and black body radiation
Anglin, J. R.
1993-01-01
The Feynman-Vernon formalism is used to obtain a microscopic, quantum mechanical derivation of black body radiation, for a massless scalar field in 1+1 dimensions, weakly coupled to an environment of finite size. The model exhibits the absorption, thermal equilibrium, and emission properties of a canonical black body, but shows that the thermal radiation propagates outwards from the body, with the Planckian spectrum applying inside a wavefront region of finite thickness. The black body enviro...
Stress-stress correlator in ϕ 4 theory: poles or a cut?
Moore, Guy D.
2018-05-01
We explore the analytical properties of the traceless stress tensor 2-point function at zero momentum and small frequency (relevant for shear viscosity and hydrodynamic response) in hot, weakly coupled λ ϕ 4 theory. We show that, rather than one or a small number of poles, the correlator has a cut along the negative imaginary frequency axis. We briefly discuss this result's relevance for constructing 2'nd order hydrodynamic models of hot relativistic field theories.
Convergence of the iterative solution of loop equations in planar QCD2
International Nuclear Information System (INIS)
Marchesini, G.; Onofri, E.
1985-01-01
A numerical algorithm recently introduced to solve the loop equations in lattice gauge theory is tested on a simple model with a phase transition: the planar limit of QCD in two dimensions. We show that the algorithm reproduces the correct known results in both strong and weak coupling phases, provided that a relaxation parameter a la Gauss-Seidel is introduced in the iteration process. We also give some analytical explanation of the applicability of the method. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Doebrich, Babette; Collaboration: ALPS-II collaboration
2013-09-15
This proceedings contribution gives a brief experimental update of the 'Any light particle search (ALPS) -II' at DESY which will be sensitive to sub-eV, very weakly coupled particles beyond the Standard Model. First data on hidden sector photon parameter space through photon-hidden photon oscillations in vacuum is expected in 2014. Axion-like particle search (implying the installation of superconducting HERA magnets) could be realized in 2017.
Bent and branched chains of nanoresonators
Melikhova, A. S.; Popov, I. Yu
2014-10-01
We study the spectral problem for bent and branched chains of weakly coupled conglobate resonators. At the joint points the δ-coupling is assumed. Our approach is based on the theory of self-adjoint extensions of symmetric operators and transfer matrix method. The structure of the spectrum is described. For the both cases it is proved that the Hamiltonian has negative eigenvalue for some values of the model parameters.
Constraining Dark Matter using Mono-X, Dijet, and Dilepton Final States with the ATLAS Detector
Tolley, Emma; The ATLAS collaboration
2017-01-01
Weakly-coupled TeV-scale particles may mediate interactions between dark matter (DM) and Standard Model (SM) particles. DM production at colliders may be evident in “mono-X” topologies, and mediator production in in dijet and dilepton events. The latest results obtained by the ATLAS experiment are presented and interpreted following the LHC DM WG guidelines, with particular focus on the complementarity between different collider searches as well as direct detection experiments.
A nonperturbative solution of D=1 string theory
International Nuclear Information System (INIS)
Gross, D.J.; Miljkovic, N.
1990-01-01
We derive a nonperturbative solution of D=1 string theory, based on a double scaling limit of the one dimensional random matrix model. We derive an exact expression for the partition function in terms of the string coupling constant. The weak coupling expansion suffers from infrared divergences, which we attribute to massless tadpoles. The continuum limit seems to be well defined, however, in a strong coupling expansion. This could correspond to a different stable nonperturbative vacuum. (orig.)
Electrical and thermal transport in the quasi-atomic limit of coupled Luttinger liquids
Szasz, Aaron; Ilan, Roni; Moore, Joel E.
2016-01-01
We introduce a new model for quasi one-dimensional materials, motivated by intriguing but not yet well-understood experiments that have shown two-dimensional polymer films to be promising materials for thermoelectric devices. We consider a two-dimensional material consisting of many one-dimensional systems, each treated as a Luttinger liquid, with weak (incoherent) coupling between them. This approximation of strong interactions within each one-dimensional chain and weak coupling between them...
Measurable distributions of unpolarized neutron decay
International Nuclear Information System (INIS)
Glueck, F.
1992-05-01
Several two- and one-dimensional distributions of unpolarized free neutron decay are calculated. The results of the order-α model independent radiative correction calculations are tabulated numerically. With these corrections the theoretical distributions become precise enough to make possible the determination of the ratio of the axial-vector to the vector weak coupling constants to a precision of ∼0.001. (author) 39 refs.; 7 tabs
Friedel Transition in Layered Superconductors
International Nuclear Information System (INIS)
Dzierzawa, M.; Zamora, M.; Baeriswyl, D.; Bagnoud, X.
1996-01-01
Weakly coupled superconducting layers are described by the anisotropic 3D XY model. A low-temperature layer decoupling due to a proliferation of fluxons between planes, as proposed by Friedel, does not occur. The same is true for a periodic superlattice of high and low T c layers, although the interplane coherence can become extremely weak. On the other hand a true layer decoupling is found for a random stack. copyright 1996 The American Physical Society
Spin effects in the weak interaction
International Nuclear Information System (INIS)
Freedman, S.J.; Chicago Univ., IL; Chicago Univ., IL
1990-01-01
Modern experiments investigating the beta decay of the neutron and light nuclei are still providing important constraints on the theory of the weak interaction. Beta decay experiments are yielding more precise values for allowed and induced weak coupling constants and putting constraints on possible extensions to the standard electroweak model. Here we emphasize the implications of recent experiments to pin down the strengths of the weak vector and axial vector couplings of the nucleon
New Physics in Single-Top Production
Kind, OM; The ATLAS collaboration
2013-01-01
In this presentation for TOP 2013 the latest results on searches of physics beyond the Standard Model using single-top signatures from CDF, CMS, D0 and ATLAS are collected. This includes searches for unknown resonances like W' or b*, measurements of the W helicity fractions and top polarisation in single-top events, as well as tests for CP violation, FCNC or anomalous weak couplings.
Exploring the Hidden Sector @ Low Energies
CERN. Geneva
2015-01-01
Over the years we have accumulated a large number of indications for physics beyond the standard model. This new physics is often sought-after at high masses and energies. Here collider experiments can bring decisive insights. However, over recent years it has become increasingly clear that new physics can also appear at low energy, but extremely weak coupling. Experiments and observations at this `low energy frontier' therefore provide a powerful tool to gain insight into fundamental physics, which is complementary to accelerators.
Spectral and resonance properties of the Smilansky Hamiltonian
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Lotoreichik, Vladimir; Tater, Miloš
2017-01-01
Roč. 381, č. 8 (2017), s. 756-761 ISSN 0375-9601 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Smilansky model * discrete spectrum * weak coupling * resonances Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.772, year: 2016
CERN. Geneva
2014-01-01
The conjectured relation between higher spin theories on anti de-Sitter (AdS) spaces and weakly coupled conformal field theories is reviewed. I shall then outline the evidence in favour of a concrete duality of this kind, relating a specific higher spin theory on AdS3 to a family of 2d minimal model CFTs. Finally, I shall explain how this relation fits into the framework of the familiar stringy AdS/CFT correspondence.
Modelling live forensic acquisition
CSIR Research Space (South Africa)
Grobler, MM
2009-06-01
Full Text Available This paper discusses the development of a South African model for Live Forensic Acquisition - Liforac. The Liforac model is a comprehensive model that presents a range of aspects related to Live Forensic Acquisition. The model provides forensic...
Models in architectural design
Pauwels, Pieter
2017-01-01
Whereas architects and construction specialists used to rely mainly on sketches and physical models as representations of their own cognitive design models, they rely now more and more on computer models. Parametric models, generative models, as-built models, building information models (BIM), and so forth, they are used daily by any practitioner in architectural design and construction. Although processes of abstraction and the actual architectural model-based reasoning itself of course rema...
International Nuclear Information System (INIS)
Tozini, A.V.
1984-01-01
A review is made of some properties of the rotating Universe models. Godel's model is identified as a generalized filted model. Some properties of new solutions of the Einstein's equations, which are rotating non-stationary Universe models, are presented and analyzed. These models have the Godel's model as a particular case. Non-stationary cosmological models are found which are a generalization of the Godel's metrics in an analogous way in which Friedmann is to the Einstein's model. (L.C.) [pt
Concept Modeling vs. Data modeling in Practice
DEFF Research Database (Denmark)
Madsen, Bodil Nistrup; Erdman Thomsen, Hanne
2015-01-01
This chapter shows the usefulness of terminological concept modeling as a first step in data modeling. First, we introduce terminological concept modeling with terminological ontologies, i.e. concept systems enriched with characteristics modeled as feature specifications. This enables a formal...... account of the inheritance of characteristics and allows us to introduce a number of principles and constraints which render concept modeling more coherent than earlier approaches. Second, we explain how terminological ontologies can be used as the basis for developing conceptual and logical data models....... We also show how to map from the various elements in the terminological ontology to elements in the data models, and explain the differences between the models. Finally the usefulness of terminological ontologies as a prerequisite for IT development and data modeling is illustrated with examples from...
Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.
2015-11-01
We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.
Model-to-model interface for multiscale materials modeling
Energy Technology Data Exchange (ETDEWEB)
Antonelli, Perry Edward [Iowa State Univ., Ames, IA (United States)
2017-12-17
A low-level model-to-model interface is presented that will enable independent models to be linked into an integrated system of models. The interface is based on a standard set of functions that contain appropriate export and import schemas that enable models to be linked with no changes to the models themselves. These ideas are presented in the context of a specific multiscale material problem that couples atomistic-based molecular dynamics calculations to continuum calculations of fluid ow. These simulations will be used to examine the influence of interactions of the fluid with an adjacent solid on the fluid ow. The interface will also be examined by adding it to an already existing modeling code, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and comparing it with our own molecular dynamics code.
Synchronization of diffusively coupled oscillators near the homoclinic bifurcation
International Nuclear Information System (INIS)
Postnov, D.; Han, Seung Kee; Kook, Hyungtae
1998-09-01
It has been known that a diffusive coupling between two limit cycle oscillations typically leads to the inphase synchronization and also that it is the only stable state in the weak coupling limit. Recently, however, it has been shown that the coupling of the same nature can result in the distinctive dephased synchronization when the limit cycles are close to the homoclinic bifurcation, which often occurs especially for the neuronal oscillators. In this paper we propose a simple physical model using the modified van der Pol equation, which unfolds the generic synchronization behaviors of the latter kind and in which one may readily observe changes in the synchronization behaviors between the distinctive regimes as well. The dephasing mechanism is analyzed both qualitatively and quantitatively in the weak coupling limit. A general form of coupling is introduced and the synchronization behaviors over a wide range of the coupling parameters are explored to construct the phase diagram using the bifurcation analysis. (author)
Cognitive models embedded in system simulation models
International Nuclear Information System (INIS)
Siegel, A.I.; Wolf, J.J.
1982-01-01
If we are to discuss and consider cognitive models, we must first come to grips with two questions: (1) What is cognition; (2) What is a model. Presumably, the answers to these questions can provide a basis for defining a cognitive model. Accordingly, this paper first places these two questions into perspective. Then, cognitive models are set within the context of computer simulation models and a number of computer simulations of cognitive processes are described. Finally, pervasive issues are discussed vis-a-vis cognitive modeling in the computer simulation context
Model Manipulation for End-User Modelers
DEFF Research Database (Denmark)
Acretoaie, Vlad
, and transformations using their modeling notation and editor of choice. The VM* languages are implemented via a single execution engine, the VM* Runtime, built on top of the Henshin graph-based transformation engine. This approach combines the benefits of flexibility, maturity, and formality. To simplify model editor......End-user modelers are domain experts who create and use models as part of their work. They are typically not Software Engineers, and have little or no programming and meta-modeling experience. However, using model manipulation languages developed in the context of Model-Driven Engineering often...... requires such experience. These languages are therefore only used by a small subset of the modelers that could, in theory, benefit from them. The goals of this thesis are to substantiate this observation, introduce the concepts and tools required to overcome it, and provide empirical evidence in support...
Air Quality Dispersion Modeling - Alternative Models
Models, not listed in Appendix W, that can be used in regulatory applications with case-by-case justification to the Reviewing Authority as noted in Section 3.2, Use of Alternative Models, in Appendix W.
Topological massive sigma models
International Nuclear Information System (INIS)
Lambert, N.D.
1995-01-01
In this paper we construct topological sigma models which include a potential and are related to twisted massive supersymmetric sigma models. Contrary to a previous construction these models have no central charge and do not require the manifold to admit a Killing vector. We use the topological massive sigma model constructed here to simplify the calculation of the observables. Lastly it is noted that this model can be viewed as interpolating between topological massless sigma models and topological Landau-Ginzburg models. ((orig.))
Dodgson, Mark; Gann, David; Phillips, Nelson; Massa, Lorenzo; Tucci, Christopher
2014-01-01
The chapter offers a broad review of the literature at the nexus between Business Models and innovation studies, and examines the notion of Business Model Innovation in three different situations: Business Model Design in newly formed organizations, Business Model Reconfiguration in incumbent firms, and Business Model Innovation in the broad context of sustainability. Tools and perspectives to make sense of Business Models and support managers and entrepreneurs in dealing with Business Model ...
[Bone remodeling and modeling/mini-modeling.
Hasegawa, Tomoka; Amizuka, Norio
Modeling, adapting structures to loading by changing bone size and shapes, often takes place in bone of the fetal and developmental stages, while bone remodeling-replacement of old bone into new bone-is predominant in the adult stage. Modeling can be divided into macro-modeling(macroscopic modeling)and mini-modeling(microscopic modeling). In the cellular process of mini-modeling, unlike bone remodeling, bone lining cells, i.e., resting flattened osteoblasts covering bone surfaces will become active form of osteoblasts, and then, deposit new bone onto the old bone without mediating osteoclastic bone resorption. Among the drugs for osteoporotic treatment, eldecalcitol(a vitamin D3 analog)and teriparatide(human PTH[1-34])could show mini-modeling based bone formation. Histologically, mature, active form of osteoblasts are localized on the new bone induced by mini-modeling, however, only a few cell layer of preosteoblasts are formed over the newly-formed bone, and accordingly, few osteoclasts are present in the region of mini-modeling. In this review, histological characteristics of bone remodeling and modeling including mini-modeling will be introduced.
A Model of Trusted Measurement Model
Ma Zhili; Wang Zhihao; Dai Liang; Zhu Xiaoqin
2017-01-01
A model of Trusted Measurement supporting behavior measurement based on trusted connection architecture (TCA) with three entities and three levels is proposed, and a frame to illustrate the model is given. The model synthesizes three trusted measurement dimensions including trusted identity, trusted status and trusted behavior, satisfies the essential requirements of trusted measurement, and unified the TCA with three entities and three levels.
Nuclear structure of 41Ca from inelastic proton scattering
International Nuclear Information System (INIS)
Vold, P.B.; Cline, D.; Voigt, M.J.A. de
1977-01-01
Angular distributions have been measured for inelastic and elastic scattering of 19 MeV protons on 40 41 Ca. A total of 89 levels were identified below 6.4 MeV in 41 Ca with an energy resolution of 12 keV. Inelastic transition strengths have been extracted using DWBA theory with a vibrational model form factor. These transition strengths correlate well with inelastic α-scattering and electromagnetic values. The quadrupole strengths are interpreted in terms of the coexistence model and imply that the excited-core admixture in the ground states of both 40 Ca and 41 Ca are approximately 5%. The octupole strengths in 41 Ca exhibits features characteristic of the weak coupling of an fsub(7/2) neutron to the lowest 3 - state in 40 Ca. The l = 5 strength exhibits a similar weak-coupling behavior. In both cases the microscopic structure appreciably reduces the transition strength for the highest spin member of the weak-coupling multiplets. (Auth.)
Collett, David
2002-01-01
INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...
Tavasszy, L.A.; Jong, G. de
2014-01-01
Freight Transport Modelling is a unique new reference book that provides insight into the state-of-the-art of freight modelling. Focusing on models used to support public transport policy analysis, Freight Transport Modelling systematically introduces the latest freight transport modelling
Semantic Business Process Modeling
Markovic, Ivan
2010-01-01
This book presents a process-oriented business modeling framework based on semantic technologies. The framework consists of modeling languages, methods, and tools that allow for semantic modeling of business motivation, business policies and rules, and business processes. Quality of the proposed modeling framework is evaluated based on the modeling content of SAP Solution Composer and several real-world business scenarios.
DEFF Research Database (Denmark)
Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik
1997-01-01
This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...
DEFF Research Database (Denmark)
Könemann, Patrick
just contain a list of strings, one for each line, whereas the structure of models is defined by their meta models. There are tools available which are able to compute the diff between two models, e.g. RSA or EMF Compare. However, their diff is not model-independent, i.e. it refers to the models...
Haiganoush Preisler; Alan Ager
2013-01-01
For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...
Environmental Satellite Models for a Macroeconomic Model
International Nuclear Information System (INIS)
Moeller, F.; Grinderslev, D.; Werner, M.
2003-01-01
To support national environmental policy, it is desirable to forecast and analyse environmental indicators consistently with economic variables. However, environmental indicators are physical measures linked to physical activities that are not specified in economic models. One way to deal with this is to develop environmental satellite models linked to economic models. The system of models presented gives a frame of reference where emissions of greenhouse gases, acid gases, and leaching of nutrients to the aquatic environment are analysed in line with - and consistently with - macroeconomic variables. This paper gives an overview of the data and the satellite models. Finally, the results of applying the model system to calculate the impacts on emissions and the economy are reviewed in a few illustrative examples. The models have been developed for Denmark; however, most of the environmental data used are from the CORINAIR system implemented in numerous countries
Geologic Framework Model Analysis Model Report
Energy Technology Data Exchange (ETDEWEB)
R. Clayton
2000-12-19
The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the
Geologic Framework Model Analysis Model Report
International Nuclear Information System (INIS)
Clayton, R.
2000-01-01
The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M and O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and
DEFF Research Database (Denmark)
De Giovanni, Domenico
2010-01-01
prepayment models for mortgage backed securities, this paper builds a Rational Expectation (RE) model describing the policyholders' behavior in lapsing the contract. A market model with stochastic interest rates is considered, and the pricing is carried out through numerical approximation...
DEFF Research Database (Denmark)
De Giovanni, Domenico
prepayment models for mortgage backed securities, this paper builds a Rational Expectation (RE) model describing the policyholders' behavior in lapsing the contract. A market model with stochastic interest rates is considered, and the pricing is carried out through numerical approximation...
DEFF Research Database (Denmark)
Silvennoinen, Annastiina; Teräsvirta, Timo
This article contains a review of multivariate GARCH models. Most common GARCH models are presented and their properties considered. This also includes nonparametric and semiparametric models. Existing specification and misspecification tests are discussed. Finally, there is an empirical example...
Collaborative networks: Reference modeling
Camarinha-Matos, L.M.; Afsarmanesh, H.
2008-01-01
Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of
DEFF Research Database (Denmark)
Juhl, Joakim
This thesis is about mathematical modelling and technology development. While mathematical modelling has become widely deployed within a broad range of scientific practices, it has also gained a central position within technology development. The intersection of mathematical modelling and technol...
D'Souza, Austin
2013-01-01
Presentatie gegeven op 13 mei 2013 op de bijeenkomst "Business Model Canvas Challenge Assen".
Het Business Model Canvas is ontworpen door Alex Osterwalder. Het model werkt zeer overzichtelijk en bestaat uit negen bouwstenen.
CSIR Research Space (South Africa)
Osburn, L
2010-01-01
Full Text Available The construction industry has turned to energy modelling in order to assist them in reducing the amount of energy consumed by buildings. However, while the energy loads of buildings can be accurately modelled, energy models often under...
Earth Data Analysis Center, University of New Mexico — The model combines three modeled fire behavior parameters (rate of spread, flame length, crown fire potential) and one modeled ecological health measure (fire regime...
Mathematical Modeling Using MATLAB
National Research Council Canada - National Science Library
Phillips, Donovan
1998-01-01
.... Mathematical Modeling Using MA MATLAB acts as a companion resource to A First Course in Mathematical Modeling with the goal of guiding the reader to a fuller understanding of the modeling process...
Analytic Modeling of Insurgencies
2014-08-01
Counterinsurgency, Situational Awareness, Civilians, Lanchester 1. Introduction Combat modeling is one of the oldest areas of operations research, dating...Army. The ground-breaking work of Lanchester in 1916 [1] marks the beginning of formal models of conflicts, where mathematical formulas and, later...Warfare model [3], which is a Lanchester - based mathematical model (see more details about this model later on), and McCormick’s Magic Diamond model [4
Computational neurogenetic modeling
Benuskova, Lubica
2010-01-01
Computational Neurogenetic Modeling is a student text, introducing the scope and problems of a new scientific discipline - Computational Neurogenetic Modeling (CNGM). CNGM is concerned with the study and development of dynamic neuronal models for modeling brain functions with respect to genes and dynamic interactions between genes. These include neural network models and their integration with gene network models. This new area brings together knowledge from various scientific disciplines, such as computer and information science, neuroscience and cognitive science, genetics and molecular biol
Federal Laboratory Consortium — The Environmental Modeling Center provides the computational tools to perform geostatistical analysis, to model ground water and atmospheric releases for comparison...
Finch, W Holmes; Kelley, Ken
2014-01-01
A powerful tool for analyzing nested designs in a variety of fields, multilevel/hierarchical modeling allows researchers to account for data collected at multiple levels. Multilevel Modeling Using R provides you with a helpful guide to conducting multilevel data modeling using the R software environment.After reviewing standard linear models, the authors present the basics of multilevel models and explain how to fit these models using R. They then show how to employ multilevel modeling with longitudinal data and demonstrate the valuable graphical options in R. The book also describes models fo
Cosmological models without singularities
International Nuclear Information System (INIS)
Petry, W.
1981-01-01
A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)
National Aeronautics and Space Administration — CLAIRE MONTELEONI*, GAVIN SCHMIDT, AND SHAILESH SAROHA* Climate models are complex mathematical models designed by meteorologists, geophysicists, and climate...
ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT
International Nuclear Information System (INIS)
Clinton Lum
2002-01-01
The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS MandO 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS MandO 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4
Integrated Site Model Process Model Report
International Nuclear Information System (INIS)
Booth, T.
2000-01-01
The Integrated Site Model (ISM) provides a framework for discussing the geologic features and properties of Yucca Mountain, which is being evaluated as a potential site for a geologic repository for the disposal of nuclear waste. The ISM is important to the evaluation of the site because it provides 3-D portrayals of site geologic, rock property, and mineralogic characteristics and their spatial variabilities. The ISM is not a single discrete model; rather, it is a set of static representations that provide three-dimensional (3-D), computer representations of site geology, selected hydrologic and rock properties, and mineralogic-characteristics data. These representations are manifested in three separate model components of the ISM: the Geologic Framework Model (GFM), the Rock Properties Model (RPM), and the Mineralogic Model (MM). The GFM provides a representation of the 3-D stratigraphy and geologic structure. Based on the framework provided by the GFM, the RPM and MM provide spatial simulations of the rock and hydrologic properties, and mineralogy, respectively. Functional summaries of the component models and their respective output are provided in Section 1.4. Each of the component models of the ISM considers different specific aspects of the site geologic setting. Each model was developed using unique methodologies and inputs, and the determination of the modeled units for each of the components is dependent on the requirements of that component. Therefore, while the ISM represents the integration of the rock properties and mineralogy into a geologic framework, the discussion of ISM construction and results is most appropriately presented in terms of the three separate components. This Process Model Report (PMR) summarizes the individual component models of the ISM (the GFM, RPM, and MM) and describes how the three components are constructed and combined to form the ISM
ECONOMIC MODELING STOCKS CONTROL SYSTEM: SIMULATION MODEL
Климак, М.С.; Войтко, С.В.
2016-01-01
Considered theoretical and applied aspects of the development of simulation models to predictthe optimal development and production systems that create tangible products andservices. It isproved that theprocessof inventory control needs of economicandmathematical modeling in viewof thecomplexity of theoretical studies. A simulation model of stocks control that allows make managementdecisions with production logistics
Classical integrability for three-point functions: cognate structure at weak and strong couplings
Energy Technology Data Exchange (ETDEWEB)
Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
2016-10-10
In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.
Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.
2018-05-01
It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.
Modelling bankruptcy prediction models in Slovak companies
Directory of Open Access Journals (Sweden)
Kovacova Maria
2017-01-01
Full Text Available An intensive research from academics and practitioners has been provided regarding models for bankruptcy prediction and credit risk management. In spite of numerous researches focusing on forecasting bankruptcy using traditional statistics techniques (e.g. discriminant analysis and logistic regression and early artificial intelligence models (e.g. artificial neural networks, there is a trend for transition to machine learning models (support vector machines, bagging, boosting, and random forest to predict bankruptcy one year prior to the event. Comparing the performance of this with unconventional approach with results obtained by discriminant analysis, logistic regression, and neural networks application, it has been found that bagging, boosting, and random forest models outperform the others techniques, and that all prediction accuracy in the testing sample improves when the additional variables are included. On the other side the prediction accuracy of old and well known bankruptcy prediction models is quiet high. Therefore, we aim to analyse these in some way old models on the dataset of Slovak companies to validate their prediction ability in specific conditions. Furthermore, these models will be modelled according to new trends by calculating the influence of elimination of selected variables on the overall prediction ability of these models.
Better models are more effectively connected models
Nunes, João Pedro; Bielders, Charles; Darboux, Frederic; Fiener, Peter; Finger, David; Turnbull-Lloyd, Laura; Wainwright, John
2016-04-01
The concept of hydrologic and geomorphologic connectivity describes the processes and pathways which link sources (e.g. rainfall, snow and ice melt, springs, eroded areas and barren lands) to accumulation areas (e.g. foot slopes, streams, aquifers, reservoirs), and the spatial variations thereof. There are many examples of hydrological and sediment connectivity on a watershed scale; in consequence, a process-based understanding of connectivity is crucial to help managers understand their systems and adopt adequate measures for flood prevention, pollution mitigation and soil protection, among others. Modelling is often used as a tool to understand and predict fluxes within a catchment by complementing observations with model results. Catchment models should therefore be able to reproduce the linkages, and thus the connectivity of water and sediment fluxes within the systems under simulation. In modelling, a high level of spatial and temporal detail is desirable to ensure taking into account a maximum number of components, which then enables connectivity to emerge from the simulated structures and functions. However, computational constraints and, in many cases, lack of data prevent the representation of all relevant processes and spatial/temporal variability in most models. In most cases, therefore, the level of detail selected for modelling is too coarse to represent the system in a way in which connectivity can emerge; a problem which can be circumvented by representing fine-scale structures and processes within coarser scale models using a variety of approaches. This poster focuses on the results of ongoing discussions on modelling connectivity held during several workshops within COST Action Connecteur. It assesses the current state of the art of incorporating the concept of connectivity in hydrological and sediment models, as well as the attitudes of modellers towards this issue. The discussion will focus on the different approaches through which connectivity
Generalized latent variable modeling multilevel, longitudinal, and structural equation models
Skrondal, Anders; Rabe-Hesketh, Sophia
2004-01-01
This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models.
Energy Technology Data Exchange (ETDEWEB)
D. W. Wu
2003-07-16
The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).
Energy Technology Data Exchange (ETDEWEB)
M. A. Wasiolek
2003-10-27
The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).
International Nuclear Information System (INIS)
D. W. Wu
2003-01-01
The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the reference biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7)
Rahmani, Fouad Lazhar
2010-11-01
The aim of this paper is to present mathematical modelling of the spread of infection in the context of the transmission of the human immunodeficiency virus (HIV) and the acquired immune deficiency syndrome (AIDS). These models are based in part on the models suggested in the field of th AIDS mathematical modelling as reported by ISHAM [6].
DEFF Research Database (Denmark)
Ayres, Phil
2012-01-01
This essay discusses models. It examines what models are, the roles models perform and suggests various intentions that underlie their construction and use. It discusses how models act as a conversational partner, and how they support various forms of conversation within the conversational activity...
Wenger, Trey V.; Kepley, Amanda K.; Balser, Dana S.
2017-07-01
HII Region Models fits HII region models to observed radio recombination line and radio continuum data. The algorithm includes the calculations of departure coefficients to correct for non-LTE effects. HII Region Models has been used to model star formation in the nucleus of IC 342.
Energy Technology Data Exchange (ETDEWEB)
Ibsen, Lars Bo; Liingaard, M.
2006-12-15
A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)
DEFF Research Database (Denmark)
Larsen, Bjarke Alexander; Andkjær, Kasper Ingdahl; Schoenau-Fog, Henrik
2015-01-01
This paper proposes a new relation model, called "The Moody Mask model", for Interactive Digital Storytelling (IDS), based on Franceso Osborne's "Mask Model" from 2011. This, mixed with some elements from Chris Crawford's Personality Models, is a system designed for dynamic interaction between ch...
Efficient polarimetric BRDF model.
Renhorn, Ingmar G E; Hallberg, Tomas; Boreman, Glenn D
2015-11-30
The purpose of the present manuscript is to present a polarimetric bidirectional reflectance distribution function (BRDF) model suitable for hyperspectral and polarimetric signature modelling. The model is based on a further development of a previously published four-parameter model that has been generalized in order to account for different types of surface structures (generalized Gaussian distribution). A generalization of the Lambertian diffuse model is presented. The pBRDF-functions are normalized using numerical integration. Using directional-hemispherical reflectance (DHR) measurements, three of the four basic parameters can be determined for any wavelength. This simplifies considerably the development of multispectral polarimetric BRDF applications. The scattering parameter has to be determined from at least one BRDF measurement. The model deals with linear polarized radiation; and in similarity with e.g. the facet model depolarization is not included. The model is very general and can inherently model extreme surfaces such as mirrors and Lambertian surfaces. The complex mixture of sources is described by the sum of two basic models, a generalized Gaussian/Fresnel model and a generalized Lambertian model. Although the physics inspired model has some ad hoc features, the predictive power of the model is impressive over a wide range of angles and scattering magnitudes. The model has been applied successfully to painted surfaces, both dull and glossy and also on metallic bead blasted surfaces. The simple and efficient model should be attractive for polarimetric simulations and polarimetric remote sensing.
Sznajd, J.
2016-12-01
The linear perturbation renormalization group (LPRG) is used to study the phase transition of the weakly coupled Ising chains with intrachain (J ) and interchain nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions forming the triangular and rectangular lattices in a field. The phase diagrams with the frustration point at J2=-J1/2 for a rectangular lattice and J2=-J1 for a triangular lattice have been found. The LPRG calculations support the idea that the phase transition is always continuous except for the frustration point and is accompanied by a divergence of the specific heat. For the antiferromagnetic chains, the external field does not change substantially the shape of the phase diagram. The critical temperature is suppressed to zero according to the power law when approaching the frustration point with an exponent dependent on the value of the field.
International Nuclear Information System (INIS)
Napier, B.A.; Simpson, J.C.; Eslinger, P.W.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.
1994-05-01
The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computer models for estimating the possible radiation doses that individuals may have received from past Hanford Site operations. This document describes the validation of these models. In the HEDR Project, the model validation exercise consisted of comparing computational model estimates with limited historical field measurements and experimental measurements that are independent of those used to develop the models. The results of any one test do not mean that a model is valid. Rather, the collection of tests together provide a level of confidence that the HEDR models are valid
International Nuclear Information System (INIS)
Ogava, S.; Savada, S.; Nakagava, M.
1983-01-01
Composite models of hadrons are considered. The main attention is paid to the Sakata, S model. In the framework of the model it is presupposed that proton, neutron and Λ particle are the fundamental particles. Theoretical studies of unknown fundamental constituents of a substance have led to the creation of the quark model. In the framework of the quark model using the theory of SU(6)-symmetry the classification of mesons and baryons is considered. Using the quark model relations between hadron masses, their spins and electromagnetic properties are explained. The problem of three-colour model with many flavours is briefly presented
Modeller af komplicerede systemer
DEFF Research Database (Denmark)
Mortensen, J.
emphasizes their use in relation to technical systems. All the presented models, with the exception of the types presented in chapter 2, are non-theoretical non-formal conceptual network models. Two new model types are presented: 1) The System-Environment model, which describes the environments interaction...... with conceptual modeling in relation to process control. It´s purpose is to present classify and exemplify the use of a set of qualitative model types. Such model types are useful in the early phase of modeling, where no structured methods are at hand. Although the models are general in character, this thesis......This thesis, "Modeller af komplicerede systemer", represents part of the requirements for the Danish Ph.D.degree. Assisting professor John Nørgaard-Nielsen, M.Sc.E.E.Ph.D. has been principal supervisor and professor Morten Lind, M.Sc.E.E.Ph.D. has been assisting supervisor. The thesis is concerned...
Molenaar, Peter C M
2017-01-01
Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.
DEFF Research Database (Denmark)
Justesen, Lise; Overgaard, Svend Skafte
2017-01-01
This article presents an analytical model that aims to conceptualize how meal experiences are framed when taking into account a dynamic understanding of hospitality: the meal model is named The Hospitable Meal Model. The idea behind The Hospitable Meal Model is to present a conceptual model...... that can serve as a frame for developing hospitable meal competencies among professionals working within the area of institutional foodservices as well as a conceptual model for analysing meal experiences. The Hospitable Meal Model transcends and transforms existing meal models by presenting a more open......-ended approach towards meal experiences. The underlying purpose of The Hospitable Meal Model is to provide the basis for creating value for the individuals involved in institutional meal services. The Hospitable Meal Model was developed on the basis of an empirical study on hospital meal experiences explored...
Morgan, Byron JT; Tanner, Martin Abba; Carlin, Bradley P
2008-01-01
Introduction and Examples Introduction Examples of data sets Basic Model Fitting Introduction Maximum-likelihood estimation for a geometric model Maximum-likelihood for the beta-geometric model Modelling polyspermy Which model? What is a model for? Mechanistic models Function Optimisation Introduction MATLAB: graphs and finite differences Deterministic search methods Stochastic search methods Accuracy and a hybrid approach Basic Likelihood ToolsIntroduction Estimating standard errors and correlations Looking at surfaces: profile log-likelihoods Confidence regions from profiles Hypothesis testing in model selectionScore and Wald tests Classical goodness of fit Model selection biasGeneral Principles Introduction Parameterisation Parameter redundancy Boundary estimates Regression and influence The EM algorithm Alternative methods of model fitting Non-regular problemsSimulation Techniques Introduction Simulating random variables Integral estimation Verification Monte Carlo inference Estimating sampling distributi...
International Nuclear Information System (INIS)
Ahlers, C.F.; Liu, H.H.
2001-01-01
The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the AMR Development Plan for U0035 Calibrated Properties Model REV00 (CRWMS M and O 1999c). These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions
International Nuclear Information System (INIS)
Ahlers, C.; Liu, H.
2000-01-01
The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions
Business Models and Business Model Innovation
DEFF Research Database (Denmark)
Foss, Nicolai J.; Saebi, Tina
2018-01-01
While research on business models and business model innovation continue to exhibit growth, the field is still, even after more than two decades of research, characterized by a striking lack of cumulative theorizing and an opportunistic borrowing of more or less related ideas from neighbouring...
Wake modelling combining mesoscale and microscale models
DEFF Research Database (Denmark)
Badger, Jake; Volker, Patrick; Prospathospoulos, J.
2013-01-01
In this paper the basis for introducing thrust information from microscale wake models into mesocale model wake parameterizations will be described. A classification system for the different types of mesoscale wake parameterizations is suggested and outlined. Four different mesoscale wake paramet...
Introduction to Adjoint Models
Errico, Ronald M.
2015-01-01
In this lecture, some fundamentals of adjoint models will be described. This includes a basic derivation of tangent linear and corresponding adjoint models from a parent nonlinear model, the interpretation of adjoint-derived sensitivity fields, a description of methods of automatic differentiation, and the use of adjoint models to solve various optimization problems, including singular vectors. Concluding remarks will attempt to correct common misconceptions about adjoint models and their utilization.
Zagorsek, Branislav
2013-01-01
Business model describes the company’s most important activities, proposed value, and the compensation for the value. Business model visualization enables to simply and systematically capture and describe the most important components of the business model while the standardization of the concept allows the comparison between companies. There are several possibilities how to visualize the model. The aim of this paper is to describe the options for business model visualization and business mod...
DEFF Research Database (Denmark)
Langseth, Helge; Nielsen, Thomas Dyhre
2005-01-01
parametric family ofdistributions. In this paper we propose a new set of models forclassification in continuous domains, termed latent classificationmodels. The latent classification model can roughly be seen ascombining the \\NB model with a mixture of factor analyzers,thereby relaxing the assumptions...... classification model, and wedemonstrate empirically that the accuracy of the proposed model issignificantly higher than the accuracy of other probabilisticclassifiers....
Geochemistry Model Validation Report: External Accumulation Model
International Nuclear Information System (INIS)
Zarrabi, K.
2001-01-01
The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation
Pavement Aging Model by Response Surface Modeling
Directory of Open Access Journals (Sweden)
Manzano-Ramírez A.
2011-10-01
Full Text Available In this work, surface course aging was modeled by Response Surface Methodology (RSM. The Marshall specimens were placed in a conventional oven for time and temperature conditions established on the basis of the environment factors of the region where the surface course is constructed by AC-20 from the Ing. Antonio M. Amor refinery. Volatilized material (VM, load resistance increment (ΔL and flow resistance increment (ΔF models were developed by the RSM. Cylindrical specimens with real aging were extracted from the surface course pilot to evaluate the error of the models. The VM model was adequate, in contrast (ΔL and (ΔF models were almost adequate with an error of 20 %, that was associated with the other environmental factors, which were not considered at the beginning of the research.
Modelling of an homogeneous equilibrium mixture model
International Nuclear Information System (INIS)
Bernard-Champmartin, A.; Poujade, O.; Mathiaud, J.; Mathiaud, J.; Ghidaglia, J.M.
2014-01-01
We present here a model for two phase flows which is simpler than the 6-equations models (with two densities, two velocities, two temperatures) but more accurate than the standard mixture models with 4 equations (with two densities, one velocity and one temperature). We are interested in the case when the two-phases have been interacting long enough for the drag force to be small but still not negligible. The so-called Homogeneous Equilibrium Mixture Model (HEM) that we present is dealing with both mixture and relative quantities, allowing in particular to follow both a mixture velocity and a relative velocity. This relative velocity is not tracked by a conservation law but by a closure law (drift relation), whose expression is related to the drag force terms of the two-phase flow. After the derivation of the model, a stability analysis and numerical experiments are presented. (authors)
DEFF Research Database (Denmark)
Cameron, Ian T.; Gani, Rafiqul
. These approaches are put into the context of life cycle modelling, where multiscale and multiform modelling is increasingly prevalent in the 21st century. The book commences with a discussion of modern product and process modelling theory and practice followed by a series of case studies drawn from a variety......This book covers the area of product and process modelling via a case study approach. It addresses a wide range of modelling applications with emphasis on modelling methodology and the subsequent in-depth analysis of mathematical models to gain insight via structural aspects of the models...... to biotechnology applications, food, polymer and human health application areas. The book highlights to important nature of modern product and process modelling in the decision making processes across the life cycle. As such it provides an important resource for students, researchers and industrial practitioners....
DEFF Research Database (Denmark)
Høskuldsson, Agnar
1996-01-01
Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four of these cri......Determination of the proper dimension of a given linear model is one of the most important tasks in the applied modeling work. We consider here eight criteria that can be used to determine the dimension of the model, or equivalently, the number of components to use in the model. Four...... the basic problems in determining the dimension of linear models. Then each of the eight measures are treated. The results are illustrated by examples....
Model Validation Status Review
International Nuclear Information System (INIS)
E.L. Hardin
2001-01-01
The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M and O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and
Modeling for Battery Prognostics
Kulkarni, Chetan S.; Goebel, Kai; Khasin, Michael; Hogge, Edward; Quach, Patrick
2017-01-01
For any battery-powered vehicles (be it unmanned aerial vehicles, small passenger aircraft, or assets in exoplanetary operations) to operate at maximum efficiency and reliability, it is critical to monitor battery health as well performance and to predict end of discharge (EOD) and end of useful life (EOL). To fulfil these needs, it is important to capture the battery's inherent characteristics as well as operational knowledge in the form of models that can be used by monitoring, diagnostic, and prognostic algorithms. Several battery modeling methodologies have been developed in last few years as the understanding of underlying electrochemical mechanics has been advancing. The models can generally be classified as empirical models, electrochemical engineering models, multi-physics models, and molecular/atomist. Empirical models are based on fitting certain functions to past experimental data, without making use of any physicochemical principles. Electrical circuit equivalent models are an example of such empirical models. Electrochemical engineering models are typically continuum models that include electrochemical kinetics and transport phenomena. Each model has its advantages and disadvantages. The former type of model has the advantage of being computationally efficient, but has limited accuracy and robustness, due to the approximations used in developed model, and as a result of such approximations, cannot represent aging well. The latter type of model has the advantage of being very accurate, but is often computationally inefficient, having to solve complex sets of partial differential equations, and thus not suited well for online prognostic applications. In addition both multi-physics and atomist models are computationally expensive hence are even less suited to online application An electrochemistry-based model of Li-ion batteries has been developed, that captures crucial electrochemical processes, captures effects of aging, is computationally efficient
Model Validation Status Review
Energy Technology Data Exchange (ETDEWEB)
E.L. Hardin
2001-11-28
The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and
Modeling volatility using state space models.
Timmer, J; Weigend, A S
1997-08-01
In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).