WorldWideScience

Sample records for wavy liquid films

  1. Simultaneous measurements of thickness and temperature profile in a wavy liquid film falling freely on a heating wall

    International Nuclear Information System (INIS)

    Lyu, T.; Mudawar, I.

    1990-01-01

    This paper reports on a technique for measuring the thickness of liquid films that was developed and tested. The feasibility of this technique was demonstrated in stagnant liquid films as well as in liquid jets. A procedure for in-situ calibration of the thickness probe was developed, allowing the adaptation of the probe to measurements of wavy liquid films. The thickness probe was constructed from a platinum-rhodium wire that was stretched across the film. A constant DC current was supplied through the probe wire, and film thickness was determined from variations in the probe voltage drop resulting from the large differences in the electrical resistances of the wetted and unwetted segments of the wire. Unlike electrical admittance thickness probes, the new probe did not require dissolving an electrolyte in the liquid, making the new probe well suited to studies involving sensible heating of a film of pure dielectric liquid that is in direct contact with a current- carrying wall. Also presented is a composite probe that facilitated simultaneous measurements of temperature profile across a wavy liquid film and film thickness. Experimental results demonstrate a strong influence of waviness on liquid temperature in a film of deionized water falling freely on the outside wall of a vertical, electrically heated tube for film Reynolds numbers smaller than 10,000

  2. Predicting the onset of nucleate boiling in wavy free-falling turbulent liquid films

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, W J; Mudawar, I [Purdue Univ., Lafayette, IN (USA). School of Mechanical Engineering

    1989-02-01

    Experiments are performed to develop a fundamental understanding of boiling incipience in wavy free-falling turbulent liquid films. Incipience conditions are measured and correlated for water and a fluorocarbon (FC-72) liquid. Incipience in water films is influenced by turbulent eddies and, to a larger extent, by interfacial waves. A new approach to predicting incipience in water and other non-wetting fluids is presented. This approach utilizes physical parameters of commonly accepted incipience models and provides a means of correcting these models for the effects of turbulent eddies and roll waves. This study also demonstrates some unique incipience characteristics of fluorocarbon films. The weak surface tension forces of FC-72 allow droplets and liquid streams to break of the crests of incoming roll waves prior to, and during nucleate boiling. The low contact angle of FC-72 allows the liquid to penetrate deep inside wall cavities. Thus incipience from these flooded cavities requires much higher wall superheat than predicted from incipience models. (author).

  3. Predicting the onset of nucleate boiling in wavy free-falling turbulent liquid films

    International Nuclear Information System (INIS)

    Marsh, W.J.; Mudawar, I.

    1989-01-01

    Experiments are performed to develop a fundamental understanding of boiling incipience in wavy free-falling turbulent liquid films. Incipience conditions are measured and correlated for water and a fluorocarbon (FC-72) liquid. Incipience in water films is influenced by turbulent eddies and, to a larger extent, by interfacial waves. A new approach to predicting incipience in water and other non-wetting fluids is presented. This approach utilizes physical parameters of commonly accepted incipience models and provides a means of correcting these models for the effects of turbulent eddies and roll waves. This study also demonstrates some unique incipience characteristics of fluorocarbon films. The weak surface tension forces of FC-72 allow droplets and liquid streams to break of the crests of incoming roll waves prior to, and during nucleate boiling. The low contact angle of FC-72 allows the liquid to penetrate deep inside wall cavities. Thus incipience from these flooded cavities requires much higher wall superheat than predicted from incipience models. (author)

  4. Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models

    Energy Technology Data Exchange (ETDEWEB)

    Min, June Kee [Pusan National University, Busan (Korea, Republic of); Park, Il Seouk [Kyungpook National University, Daegu (Korea, Republic of)

    2014-05-15

    Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors.

  5. Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models

    International Nuclear Information System (INIS)

    Min, June Kee; Park, Il Seouk

    2014-01-01

    Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors

  6. Wavy channel Thin Film Transistor for area efficient, high performance and low power applications

    KAUST Repository

    Hanna, Amir; Sevilla, Galo T.; Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2014-01-01

    We report a new Thin Film Transistor (TFT) architecture that allows expansion of the device width using wavy (continuous without separation) fin features - termed as wavy channel (WC) architecture. This architecture allows expansion of transistor

  7. Analysis of spatial and temporal spectra of liquid film surface in annular gas-liquid flow

    Science.gov (United States)

    Alekseenko, Sergey; Cherdantsev, Andrey; Heinz, Oksana; Kharlamov, Sergey; Markovich, Dmitriy

    2013-09-01

    Wavy structure of liquid film in annular gas-liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.

  8. Broad bandwidth vibration energy harvester based on thermally stable wavy fluorinated ethylene propylene electret films with negative charges

    Science.gov (United States)

    Zhang, Xiaoqing; Sessler, Gerhard M.; Ma, Xingchen; Xue, Yuan; Wu, Liming

    2018-06-01

    Wavy fluorinated ethylene propylene (FEP) electret films with negative charges were prepared by a patterning method followed by a corona charging process. The thermal stability of these films was characterized by the surface potential decay with annealing time at elevated temperatures. The results show that thermally stable electret films can be made by corona charging followed by pre-aging treatment. Vibration energy harvesters having a very simple sandwich structure, consisting of a central wavy FEP electret film and two outside metal plates, were designed and their performance, including the resonance frequency, output power, half power bandwidth, and device stability, was investigated. These harvesters show a broad bandwidth as well as high output power. Their performance can be further improved by using a wavy-shaped counter electrode. For an energy harvester with an area of 4 cm2 and a seismic mass of 80 g, the output power referred to 1 g (g is the gravity of the earth), the resonance frequency, and the 3 dB bandwidth are 1.85 mW, 90 Hz, and 24 Hz, respectively. The output power is sufficient to power some electronic devices. Such devices may be embedded in shoe soles, carpets or seat cushions where the flexibility is required and large force is available.

  9. Wavy Architecture Thin-Film Transistor for Ultrahigh Resolution Flexible Displays

    KAUST Repository

    Hanna, Amir Nabil; Kutbee, Arwa Talal; Subedi, Ram Chandra; Ooi, Boon S.; Hussain, Muhammad Mustafa

    2017-01-01

    A novel wavy-shaped thin-film-transistor (TFT) architecture, capable of achieving 70% higher drive current per unit chip area when compared with planar conventional TFT architectures, is reported for flexible display application. The transistor, due to its atypical architecture, does not alter the turn-on voltage or the OFF current values, leading to higher performance without compromising static power consumption. The concept behind this architecture is expanding the transistor's width vertically through grooved trenches in a structural layer deposited on a flexible substrate. Operation of zinc oxide (ZnO)-based TFTs is shown down to a bending radius of 5 mm with no degradation in the electrical performance or cracks in the gate stack. Finally, flexible low-power LEDs driven by the respective currents of the novel wavy, and conventional coplanar architectures are demonstrated, where the novel architecture is able to drive the LED at 2 × the output power, 3 versus 1.5 mW, which demonstrates the potential use for ultrahigh resolution displays in an area efficient manner.

  10. Wavy Architecture Thin-Film Transistor for Ultrahigh Resolution Flexible Displays

    KAUST Repository

    Hanna, Amir Nabil

    2017-11-13

    A novel wavy-shaped thin-film-transistor (TFT) architecture, capable of achieving 70% higher drive current per unit chip area when compared with planar conventional TFT architectures, is reported for flexible display application. The transistor, due to its atypical architecture, does not alter the turn-on voltage or the OFF current values, leading to higher performance without compromising static power consumption. The concept behind this architecture is expanding the transistor\\'s width vertically through grooved trenches in a structural layer deposited on a flexible substrate. Operation of zinc oxide (ZnO)-based TFTs is shown down to a bending radius of 5 mm with no degradation in the electrical performance or cracks in the gate stack. Finally, flexible low-power LEDs driven by the respective currents of the novel wavy, and conventional coplanar architectures are demonstrated, where the novel architecture is able to drive the LED at 2 × the output power, 3 versus 1.5 mW, which demonstrates the potential use for ultrahigh resolution displays in an area efficient manner.

  11. Pattern formation in plastic liquid films on elastomers by ratcheting.

    Science.gov (United States)

    Huang, Jiangshui; Yang, Jiawei; Jin, Lihua; Clarke, David R; Suo, Zhigang

    2016-04-20

    Plastic liquids, also known as Bingham liquids, retain their shape when loads are small, but flow when loads exceed a threshold. We discovered that plastic liquid films coated on elastomers develop wavy patterns under cyclic loads. As the number of cycles increases, the wavelength of the patterns remains unchanged, but the amplitude of the patterns increases and then saturates. Because the patterns develop progressively under cyclic loads, we call this phenomenon as "patterning by ratcheting". We observe the phenomenon in plastic liquids of several kinds, and studied the effects of thickness, the cyclic frequency of the stretch, and the range of the stretch. Finite element simulations show that the ratcheting phenomenon can occur in materials described by a commonly used model of elastic-plastic deformation.

  12. Interaction of Liquid Film Flow of Direct Vessel Injection Under the Cross Directional Gas Flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-sol; Lee, Jae-young [Handong Global University, Pohang (Korea, Republic of); Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In order to obtain a proper scaling law of the flow, local information of the flow was investigated experimentally and also numerically. A series of experiments were conducted in the 1/20 modified linear scaled plate type test rig to analyze a liquid film from ECC water injection through the DVI nozzle to the downcomer wall. The present study investigates liquid film flow generated in a downcomer of direct vessel injection (DVI) system which is employed as an emergency core cooling (ECC) system during a loss of coolant accident in the Korea nuclear power plant APR1400. During the late reflooding, complicated multi-phase flow phenomena including the wavy film flow, film breakup, entrainment, liquid film shift due to interfacial drag and gas jet impingement occur. A confocal chromatic sensor was used to measure the local instantaneous liquid film thickness and a hydraulic jump in the film flow and boundaries of the film flow. It was found that CFD analysis results without surface tension model showed some difference with the data in surface tension dominated flow region. For the interaction between a liquid film and gas shear flow, CFD results make a good agreement with the real liquid film dynamics in the case of low film Reynolds number or low Weber number flow. In the 1/20 scaled plate type experiment and simulation, the deformed spreading profile results seem to accord with each other at the relatively low We and Re regime.

  13. Wavy channel Thin Film Transistor for area efficient, high performance and low power applications

    KAUST Repository

    Hanna, Amir

    2014-06-01

    We report a new Thin Film Transistor (TFT) architecture that allows expansion of the device width using wavy (continuous without separation) fin features - termed as wavy channel (WC) architecture. This architecture allows expansion of transistor width in a direction perpendicular to the substrate, thus not consuming extra chip area, achieving area efficiency. The devices have shown for a 13% increase in the device width resulting in a maximum 2.4x increase in \\'ON\\' current value of the WCTFT, when compared to planar devices consuming the same chip area, while using atomic layer deposition based zinc oxide (ZnO) as the channel material. The WCTFT devices also maintain similar \\'OFF\\' current value, similar to 100 pA, when compared to planar devices, thus not compromising on power consumption for performance which usually happens with larger width devices. This work offers a pragmatic opportunity to use WCTFTs as backplane circuitry for large-area high-resolution display applications without any limitation any TFT materials.

  14. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    International Nuclear Information System (INIS)

    Hanna, A. N.; Ghoneim, M. T.; Bahabry, R. R.; Hussain, A. M.; Hussain, M. M.

    2013-01-01

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions

  15. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    KAUST Repository

    Hanna, Amir; Ghoneim, Mohamed T.; Bahabry, Rabab R.; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2013-01-01

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  16. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    KAUST Repository

    Hanna, Amir

    2013-11-26

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  17. (Invited) Wavy Channel TFT Architecture for High Performance Oxide Based Displays

    KAUST Repository

    Hanna, Amir; Hussain, Aftab M.; Hussain, Aftab M.; Ghoneim, Mohamed T.; Rojas, Jhonathan Prieto; Sevilla, Galo T.; Hussain, Muhammad Mustafa

    2015-01-01

    We show the effectiveness of wavy channel architecture for thin film transistor application for increased output current. This specific architecture allows increased width of the device by adopting a corrugated shape of the substrate without any further real estate penalty. The performance improvement is attributed not only to the increased transistor width, but also to enhanced applied electric field in the channel due to the wavy architecture.

  18. (Invited) Wavy Channel TFT Architecture for High Performance Oxide Based Displays

    KAUST Repository

    Hanna, Amir

    2015-05-22

    We show the effectiveness of wavy channel architecture for thin film transistor application for increased output current. This specific architecture allows increased width of the device by adopting a corrugated shape of the substrate without any further real estate penalty. The performance improvement is attributed not only to the increased transistor width, but also to enhanced applied electric field in the channel due to the wavy architecture.

  19. Droplet deposition measurement with high-speed camera and novel high-speed liquid film sensor with high spatial resolution

    International Nuclear Information System (INIS)

    Damsohn, M.; Prasser, H.-M.

    2011-01-01

    Highlights: → Development of a sensor for time- and space-resolved droplet deposition in annular flow. → Experimental measurement of droplet deposition in horizontal annular flow to compare readings of the sensor with images of a high-speed camera when droplets are depositing unto the liquid film. → Self-adaptive signal filter based on autoregression to separate droplet impacts in the sensor signal from waves of liquid films. - Abstract: A sensor based on the electrical conductance method is presented for the measurement of dynamic liquid films in two-phase flow. The so called liquid film sensor consists of a matrix with 64 x 16 measuring points, a spatial resolution of 3.12 mm and a time resolution of 10 kHz. Experiments in a horizontal co-current air-water film flow were conducted to test the capability of the sensor to detect droplet deposition from the gas core onto the liquid film. The experimental setup is equipped with the liquid film sensor and a high speed camera (HSC) recording the droplet deposition with a sampling rate of 10 kHz simultaneously. In some experiments the recognition of droplet deposition on the sensor is enhanced by marking the droplets with higher electrical conductivity. The comparison between the HSC and the sensor shows, that the sensor captures the droplet deposition above a certain droplet diameter. The impacts of droplet deposition can be filtered from the wavy structures respectively conductivity changes of the liquid film using a filter algorithm based on autoregression. The results will be used to locally measure droplet deposition e.g. in the proximity of spacers in a subchannel geometry.

  20. Stabilising falling liquid film flows using feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Alice B., E-mail: alice.thompson1@imperial.ac.uk; Gomes, Susana N.; Pavliotis, Grigorios A.; Papageorgiou, Demetrios T. [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-01-15

    Falling liquid films become unstable due to inertial effects when the fluid layer is sufficiently thick or the slope sufficiently steep. This free surface flow of a single fluid layer has industrial applications including coating and heat transfer, which benefit from smooth and wavy interfaces, respectively. Here, we discuss how the dynamics of the system are altered by feedback controls based on observations of the interface height, and supplied to the system via the perpendicular injection and suction of fluid through the wall. In this study, we model the system using both Benney and weighted-residual models that account for the fluid injection through the wall. We find that feedback using injection and suction is a remarkably effective control mechanism: the controls can be used to drive the system towards arbitrary steady states and travelling waves, and the qualitative effects are independent of the details of the flow modelling. Furthermore, we show that the system can still be successfully controlled when the feedback is applied via a set of localised actuators and only a small number of system observations are available, and that this is possible using both static (where the controls are based on only the most recent set of observations) and dynamic (where the controls are based on an approximation of the system which evolves over time) control schemes. This study thus provides a solid theoretical foundation for future experimental realisations of the active feedback control of falling liquid films.

  1. Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors

    KAUST Repository

    Hanna, Amir

    2016-01-01

    This dissertation also introduces a novel thin-film-transistors architecture that is named the Wavy Channel (WC) architecture, which allows for extending device width by integrating vertical fin-like substrate corrugations giving

  2. Transitions between Taylor vortices and spirals via wavy Taylor vortices and wavy spirals

    International Nuclear Information System (INIS)

    Hoffmann, Ch; Altmeyer, S; Pinter, A; Luecke, M

    2009-01-01

    We present numerical simulations of closed wavy Taylor vortices and of helicoidal wavy spirals in the Taylor-Couette system. These wavy structures appearing via a secondary bifurcation out of Taylor vortex flow and out of spiral vortex flow, respectively, mediate transitions between Taylor and spiral vortices and vice versa. Structure, dynamics, stability and bifurcation behaviour are investigated in quantitative detail as a function of Reynolds numbers and wave numbers for counter-rotating as well as corotating cylinders. These results are obtained by solving the Navier-Stokes equations subject to axial periodicity for a radius ratio η=0.5 with a combination of a finite differences method and a Galerkin method.

  3. Wavy Channel architecture thin film transistor (TFT) using amorphous zinc oxide for high-performance and low-power semiconductor circuits

    KAUST Repository

    Hanna, Amir; Hussain, Aftab M.; Hussain, Muhammad Mustafa

    2015-01-01

    We report a Wavy Channel (WC) architecture thin film transistor (TFT) for extended device width by integrating continuous vertical fin like features with lateral continuous plane in the substrate. For a WC TFT which has 50% larger device width, the enhancement in the output drive current is 100%, when compared to a conventional planar TFT consuming the same chip area. This current increase is attributed to both the extra width and enhanced field effect mobility due to corner effects. This shows the potential of WC architecture to boast circuit performance without the need for aggressive gate length scaling. © 2015 IEEE.

  4. Wavy Channel architecture thin film transistor (TFT) using amorphous zinc oxide for high-performance and low-power semiconductor circuits

    KAUST Repository

    Hanna, Amir

    2015-08-12

    We report a Wavy Channel (WC) architecture thin film transistor (TFT) for extended device width by integrating continuous vertical fin like features with lateral continuous plane in the substrate. For a WC TFT which has 50% larger device width, the enhancement in the output drive current is 100%, when compared to a conventional planar TFT consuming the same chip area. This current increase is attributed to both the extra width and enhanced field effect mobility due to corner effects. This shows the potential of WC architecture to boast circuit performance without the need for aggressive gate length scaling. © 2015 IEEE.

  5. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir

    2015-12-04

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (ZnO) present promising opportunity in that regard, still wide area of improvement exists to increase the performance further. Here, we show a wavy channel (WC) architecture for ZnO integrated TFT which increases transistor width without chip area penalty, enabling high performance in material agnostic way. We further demonstrate digital logic NAND circuit using the WC architecture and compare it to the conventional planar architecture. The WC architecture circuits have shown 2× higher peak-to-peak output voltage for the same input voltage. They also have 3× lower high-to-low propagation delay times, respectively, when compared to the planar architecture. The performance enhancement is attributed to both extra device width and enhanced field effect mobility due to higher gate field electrostatics control.

  6. Numerical analysis for conductance probes, for the measurement of liquid film thickness in two-phase flow

    International Nuclear Information System (INIS)

    No, Hee Cheon; Mayinger, F.

    1995-01-01

    A three-dimensional numerical tool is developed to calculate the potential distribution, electric field, and conductance for any types of conductance probes immersed in the wavy liquid film with various shapes of its free surface. The tool is validated against various analytical solutions. It is applied to find out the characteristics of the wire-wire probe, the flush-wire probe and the flush-flush probe in terms of resolution, linearity, and sensitivity. The wire-wire probe shows high resolution and excellent linearity for various film thickness, but comparably low sensitivity for low film thickness fixed. The flush-wire probe shows good linearity and high sensitivity for varying film thickness, but resolution degrading with an increase in film thickness. In order to check the applicability of the three types of probes in the real situation, the Korteweg-de Vries(KdV) two-dimensional solitary wave is simulated. The wire-wire probe is strongly affected by the installation direction of the two wires; when the wires are installed perpendicularly to the flow direction, the wire-wire probe shows large distortion of the solitary wave. In order to measure the transverse profile of waves, the wire-wire probes and the flush-wire probes are required to be separately installed 2mm and 2mm, respectively

  7. Wavy channel thin film transistor architecture for area efficient, high performance and low power displays

    KAUST Repository

    Hanna, Amir

    2013-12-23

    We demonstrate a new thin film transistor (TFT) architecture that allows expansion of the device width using continuous fin features - termed as wavy channel (WC) architecture. This architecture allows expansion of transistor width in a direction perpendicular to the substrate, thus not consuming extra chip area, achieving area efficiency. The devices have shown for a 13% increase in the device width resulting in a maximum 2.5× increase in \\'ON\\' current value of the WCTFT, when compared to planar devices consuming the same chip area, while using atomic layer deposition based zinc oxide (ZnO) as the channel material. The WCTFT devices also maintain similar \\'OFF\\' current value, ~100 pA, when compared to planar devices, thus not compromising on power consumption for performance which usually happens with larger width devices. This work offers an interesting opportunity to use WCTFTs as backplane circuitry for large-area high-resolution display applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Interfacial transport characteristics in a gas-liquid or an immiscible liquid-liquid stratified flow

    International Nuclear Information System (INIS)

    Inoue, A.; Aoki, S.; Aritomi, M.; Kozawa, Y.

    1982-01-01

    This paper is a review for an interfacial transport characteristics of mass, momentum and energy in a gas-liquid or a immiscible liquid-liquid stratified flow with wavy interface which have been studied in our division. In the experiment, a characteristic of wave motion and its effect to the turbulence near the interface as well as overall flow characteristics like pressure drop, position of the interface were investigated in an air-water, an air-mercury and a water-liquid metal stratified flow. On the other hand, several models based on the mixing length model and a two-equation model of turbulence, with special interfacial boundary conditions in which the wavy surface was regarded as a rough surface correspond to the wavy height, a source of turbulent energy equal to the wave energy and a damped-turbulence due to the surface tension, were proposed to predict the flow characteristics and the interfacial heat transfer in a fully developed and an undeveloped stratified flow and examined by the experimental data. (author)

  9. Glints from particulate media and wavy surfaces

    International Nuclear Information System (INIS)

    Borovoi, Anatoli; Konoshonkin, Alexander; Kolokolova, Ludmilla

    2012-01-01

    Glints are bright light spots created by particulate media like cirrus clouds, glaciers, and wavy water surfaces. They are seen around the specular reflection angle. In this paper, the glints from such scattering/reflecting media are described in a unified manner through the probability density for facet tilts. Various kinds of these probability densities for wavy surfaces are defined and classified. The concept of the differential scattering cross section (DSCS) for rough surfaces instead of the conventional bidirectional reflectance distribution function (BRDF) is introduced for characterization of the glints. The simple equations connecting the DSCS and the probability densities for facet tilts are derived. It is shown that the glints from particulate media and wavy surface are very similar at small incidence angles and they are significantly different at slant incidence. -- Highlights: ► Differential scattering cross section unifies particulate media and wavy surfaces. ► The glint pattern is a mapping of the probability density function for facet tilts. ► Shadowing is a crucial aspect of glint pattern formation. ► Glint patterns discriminate between the particulate media and wavy surfaces.

  10. The flow of a thin liquid film on a stationary and rotating disk. I - Experimental analysis and flow visualization

    Science.gov (United States)

    Thomas, S.; Faghri, A.; Hankey, W.

    1990-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.

  11. Film boiling heat transfer in liquid helium

    International Nuclear Information System (INIS)

    Inai, Nobuhiko

    1979-01-01

    The experimental data on the film boiling heat transfer in liquid helium are required for investigating the stability of superconducting wires. On the other hand, liquid helium has the extremely different physical properties as compared with the liquids at normal temperature such as water. In this study, the experiments on pool boiling were carried out, using the horizontal top surface of a 20 mm diameter copper cylinder in liquid helium. For observing individual bubbles, the experiments on film boiling from a horizontal platinum wire were performed separately in liquid nitrogen and liquid helium, and photographs of floating-away bubbles were taken. The author pointed out the considerable upward shift of the boiling curve near the least heat flux point in film boiling from the one given by the Berenson's equation which has been said to agree comparatively well with the data on the film boiling of the liquids at normal temperature, and the reason was investigated. Consequently, a model for film boiling heat transfer was presented. Also one equation expressing the film boiling at low heat flux for low temperature liquids was proposed. It represents well the tendency to shift from Berenson's equation of the experimental data on film boiling at the least heat flux point for liquid helium, liquid nitrogen and water having extremely different physical properties. Some discussions are added at the end of the paper. (Wakatsuki, Y.)

  12. Measurement of liquid film flow on nuclear rod bundle in micro-scale by using very high speed camera system

    Science.gov (United States)

    Pham, Son; Kawara, Zensaku; Yokomine, Takehiko; Kunugi, Tomoaki

    2012-11-01

    Playing important roles in the mass and heat transfer as well as the safety of boiling water reactor, the liquid film flow on nuclear fuel rods has been studied by different measurement techniques such as ultrasonic transmission, conductivity probe, etc. Obtained experimental data of this annular two-phase flow, however, are still not enough to construct the physical model for critical heat flux analysis especially at the micro-scale. Remain problems are mainly caused by complicated geometry of fuel rod bundles, high velocity and very unstable interface behavior of liquid and gas flow. To get over these difficulties, a new approach using a very high speed digital camera system has been introduced in this work. The test section simulating a 3×3 rectangular rod bundle was made of acrylic to allow a full optical observation of the camera. Image data were taken through Cassegrain optical system to maintain the spatiotemporal resolution up to 7 μm and 20 μs. The results included not only the real-time visual information of flow patterns, but also the quantitative data such as liquid film thickness, the droplets' size and speed distributions, and the tilt angle of wavy surfaces. These databases could contribute to the development of a new model for the annular two-phase flow. Partly supported by the Global Center of Excellence (G-COE) program (J-051) of MEXT, Japan.

  13. Transfer printing and patterning of stretchable electrospun film

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Yongqing; Huang, YongAn, E-mail: yahuang@hust.edu.cn; Yin, Zhouping

    2013-10-01

    Electrospinning is an effective method for nanofiber production, but seldom used in the fabrication of patterned structures directly due to the whipping instability of the electrospinning jet. The whipping instability of electrospinning is adopted to fabricate stretchable patterned film by combination with an improved thermal transfer printing. The electrospun film is composed of small-scale wavy/coiled fibers, which make the patterned film highly stretchable. The optimal process parameters of whipping-based electrospinning are investigated to fabricate electrospun film with uniform and compact wavy/coiled fiber. Then the transfer printing and thermal detachment lithography are studied to generate patterned film, including the pressure, temperature, and peeling-off speed. Finally, the stretchability of the patterned electrospun film is studied through experiment and finite element analysis. It may open a cost-effective and high-throughput way for flexible/stretchable electronics fabrication. - Highlights: • Stretchable nonwoven film with small-scale wavy fibers is fabricated. • The film is transferred and patterned by thermal detachment lithography. • The patterned film is validated with high stretchability.

  14. Natural convection in wavy enclosures with volumetric heat sources

    International Nuclear Information System (INIS)

    Oztop, H.F.; Varol, Y.; Abu-Nada, E.; Chamkha, A.

    2011-01-01

    In this paper, the effects of volumetric heat sources on natural convection heat transfer and flow structures in a wavy-walled enclosure are studied numerically. The governing differential equations are solved by an accurate finite-volume method. The vertical walls of enclosure are assumed to be heated differentially whereas the two wavy walls (top and bottom) are kept adiabatic. The effective governing parameters for this problem are the internal and external Rayleigh numbers and the amplitude of wavy walls. It is found that both the function of wavy wall and the ratio of internal Rayleigh number (Ra I ) to external Rayleigh number (Ra E ) affect the heat transfer and fluid flow significantly. The heat transfer is predicted to be a decreasing function of waviness of the top and bottom walls in case of (IRa/ERa)>1 and (IRa/ERa)<1. (authors)

  15. On liquid films on an inclined plate

    KAUST Repository

    BENILOV, E. S.

    2010-08-18

    This paper examines two related problems from liquid-film theory. Firstly, a steady-state flow of a liquid film down a pre-wetted plate is considered, in which there is a precursor film in front of the main film. Assuming the former to be thin, a full asymptotic description of the problem is developed and simple analytical estimates for the extent and depth of the precursor film\\'s influence on the main film are provided. Secondly, the so-called drag-out problem is considered, where an inclined plate is withdrawn from a pool of liquid. Using a combination of numerical and asymptotic means, the parameter range where the classical Landau-Levich-Wilson solution is not unique is determined. © 2010 Cambridge University Press.

  16. Dynamical mechanism of the liquid film motor

    Science.gov (United States)

    Liu, Zhong-Qiang; Li, Ying-Jun; Zhang, Guang-Cai; Jiang, Su-Rong

    2011-02-01

    The paper presents a simple dynamical model to systemically explain the rotation mechanism of the liquid film motor reported by experiments. The field-induced-plasticity effect of the liquid film is introduced into our model, in which the liquid film in crossed electric fields is considered as a Bingham plastic fluid with equivalent electric dipole moment. Several analytic results involving the torque of rotation, the scaling relation of the threshold fields, and the dynamics equation of a square film and its solution are obtained. We find that the rotation of the liquid film motor originates from the continuous competition between the destruction and the reestablishment of the polarization equilibrium maintained by the external electric field, which is free from the boundary effects. Most experimental phenomena observed in direct current electric fields are interpreted well.

  17. Simulation of Guided Wave Interaction with In-Plane Fiber Waviness

    Science.gov (United States)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.

  18. Area and energy efficient high-performance ZnO wavy channel thin-film transistor

    KAUST Repository

    Hanna, Amir

    2014-09-01

    Increased output current while maintaining low power consumption in thin-film transistors (TFTs) is essential for future generation large-area high-resolution displays. Here, we show wavy channel (WC) architecture in TFT that allows the expansion of the transistor width in the direction perpendicular to the substrate through integrating continuous fin features on the underlying substrate. This architecture enables expanding the TFT width without consuming any additional chip area, thus enabling increased performance while maintaining the real estate integrity. The experimental WCTFTs show a linear increase in output current as a function of number of fins per device resulting in (3.5×) increase in output current when compared with planar counterparts that consume the same chip area. The new architecture also allows tuning the threshold voltage as a function of the number of fin features included in the device, as threshold voltage linearly decreased from 6.8 V for planar device to 2.6 V for WC devices with 32 fins. This makes the new architecture more power efficient as lower operation voltages could be used for WC devices compared with planar counterparts. It was also found that field effect mobility linearly increases with the number of fins included in the device, showing almost \\\\(1.8×) enhancements in the field effect mobility than that of the planar counterparts. This can be attributed to higher electric field in the channel due to the fin architecture and threshold voltage shift. © 2014 IEEE.

  19. The Effect of Roll Waves on the Hydrodynamics of Falling Films Observed in Vertical Column Absorbers

    International Nuclear Information System (INIS)

    Miller, W.A.

    2001-01-01

    A thin falling film is well suited to simultaneous heat and mass transfer because of the small thermal resistance through the film and because of the large contact surface achievable at low flow rates. The film enters as a smooth laminar flow and quickly transitions into small-amplitude wavy flow. The waves grown in length and amplitude and are identified as roll waves. This flow regime is termed wavy-laminar flow, and modern heat and mass transfer equipment operate in this complicated transition regime. Research published in open literature has shown the mass flow rate in the rollwaves to be about 10 to 20 times greater than that in the laminar substrate. As the film fully develops, the waves grow in mass and the film substrate thins because fluid is swept from the substrate by the secondary flows of the roll wave. Many studies have been conducted to measure and correlate the film thickness of wavy-laminar flows. Literature data show that Nusselt's theory for smooth laminar flow can over predict the film thickness by as much as 20% for certain wavy-laminar flow conditions. The hydrodynamics of falling films were therefore studied to measure the film thickness of a free-surface falling film and to better understand the parameters that affect the variations of the film thickness. A flow loop was set up for measuring the thickness, wave amplitude,and frequency of a film during hydrodynamic flow. Decreasing the pipe diameter caused the amplitude of the wavy flow to diminish. Measurements monitored from stations along the falling film showed a thinning of film thickness. Fully developed flow required large starting lengths of about 0.5 m. The film thickness increases as the Reynolds number (Re) increases. Increasing the Kapitza number (Ka) causes a decrease in the film thickness. Regression analysis showed that the Re and Ka numbers described the data trends in wavy-laminar flow. Rather than correlating the Re number in discrete ranges of the Ka number as earlier

  20. Wavy channel transistor for area efficient high performance operation

    KAUST Repository

    Fahad, Hossain M.; Hussain, Aftab M.; Hussain, Muhammad Mustafa; Sevilla, Galo T.

    2013-01-01

    We report a wavy channel FinFET like transistor where the channel is wavy to increase its width without any area penalty and thereby increasing its drive current. Through simulation and experiments, we show the effectiveness of such device

  1. Liquid crystals for organic thin-film transistors

    Science.gov (United States)

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi

    2015-04-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  2. A CFD study of wave influence on film steam condensation in the presence of non-condensable gas

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianmao, E-mail: xm-wang11@mails.tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Chang, Huajian, E-mail: changhj@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Corradini, Michael, E-mail: corradini@engr.wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2016-08-15

    Highlights: • A condensation model is incorporated in the ANSYS FLUENT. • Different turbulence models are evaluated for flows over wavy surfaces. • Wavy surfaces with and without moving velocities are used to model the wave. • Various wavy surfaces with different wave heights and wavelengths are selected. • Wave influence on film steam condensation is investigated. - Abstract: Steam condensation plays an important role in removing heat from the containment of a nuclear plant during postulated accidents. However, due to the presence of non-condensable gases such as air and hydrogen in the containment, the condensation rate can decrease dramatically. Under certain conditions, the condensate film on the cold containment walls can affect the overall heat transfer rate. The wavy interface of the condensate film is a factor and is usually believed to enhance the condensation rate, since the waves can both increase the interfacial area and disturb the non-condensable gas boundary layer. However, it is not clear how to properly account for this factor and what is its quantitative influence in experiments. In this work, a CFD approach is applied to study the wave effects on film condensation in the presence of non-condensable gas. Wavy surfaces with and without moving velocities are used to replace the wavy interface of the falling film. A condensation model is incorporated in the ANSYS FLUENT simulation and a realizable k–ε turbulence model is applied. Various wavy surfaces with different wave heights and wavelengths are selected to conduct numerical experiments with a wide range of gas velocities. The results show that the wave structure can enhance condensation rate up to ten percent mainly due to the alteration of local flow structures in the gas phase. The increments of the condensation rate due to the wavy interface can vary with different gas velocities. The investigation shows that a multiplication factor accounts for the wave effects on film

  3. Failure Behavior of Unidirectional Composites under Compression Loading: Effect of Fiber Waviness

    Directory of Open Access Journals (Sweden)

    Swaroop Narayanan Nair

    2017-08-01

    Full Text Available The key objective of this work is to highlight the effect of manufacturing-induced fiber waviness defects on the compressive failure of glass fiber-reinforced unidirectional specimens. For this purpose, in-plane, through-thickness waviness defects (with different waviness severities are induced during the manufacturing of the laminate. Numerical and experimental results show that the compressive strength of the composites decreases as the severity of the waviness defects increases. A reduction of up to 75% is noted with a wave severity of 0.075. Optical and scanning electron microscopy observations of the failed specimens reveal that kink-bands are created in the wavy regions and lead to failure.

  4. Horizontal liquid film-mist two phase flow, (1)

    International Nuclear Information System (INIS)

    Akagawa, Koji; Sakaguchi, Tadashi; Fujii, Terushige; Nakatani, Yoji; Nakaseko, Kosaburo.

    1979-01-01

    The characteristics of liquid film in annular spray flow, the generation of droplets from liquid film and the transport of droplets to a wall are the important matters in the planning and design of nuclear reactor cooling system and the channels of steam generators. The study on the liquid film spray flow is scarce, and its characteristics are not yet elucidated. The purpose of this series of studies is to clarify the characteristics of liquid film, the generation, diffusion and distribution of droplets and pressure loss in the liquid film spray flow composed of the liquid film on the lower wall and spraying gas flow in a rectangular, horizontal channel. In this paper, the concentration distribution and the diffusion coefficient of droplets on a cross section in the region of flow completion are reported. The experimental apparatuses and the experimental method, the flow rate of droplets and the velocity distribution of gas phase, the concentration distribution and the diffusion coefficient of droplets, and the diameter of generated droplets are explained. The equation for the concentration distribution of droplets using dimensionless characteristic value was derived. The mean diffusion coefficient of droplets was constant on a cross section, and the effects of gravity and turbulent diffusion can be evaluated. (Kako, I.)

  5. Visualization study of interaction with 2-D film flow on the vertical plate and lateral air velocity for DVI system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sol; Lee, Jae Young [Handong Global University, Pohang (Korea, Republic of); Euh, Dong Jin; Kim, Jong Rok [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The present study investigates liquid film flow generated in a downcomer of direct vessel injection (DVI) system which is employed as an emergency core cooling (ECC) system during a loss of coolant accident in the Korea nuclear power plant APR1400. During the late reflooding, complicated multi-phase flow phenomena including the wavy film flow, film breakup, entrainment, liquid film shift due to interfacial drag and gas jet impingement occur. In order to obtain a proper scaling law of the flow, local information of the flow was investigated experimentally and also numerically. A series of experiments were conducted in the 1/20 modified linear scaled plate type test rig to analyze a liquid film from ECC water injection through the DVI nozzle to the downcomer wall. A confocal chromatic sensor was used to measure the local instantaneous liquid film thickness. In this study, the average flow information of the downcomer was analyzed through the information about the thickness, speed, droplet size and speed of highly precise liquid film flow in the structure that occurs in a 2-dimensional liquid film flow, rather than film flow, onset of entrainment, droplet velocity, and size which have been studied in 1-dimension of the existing annular flow. The multi-dimensional flow characteristic information of downcomer can be utilized as the basic data for nuclear safety analysis in the future.

  6. Films nématiques minces sur substrats liquides

    OpenAIRE

    Delabre , Ulysse

    2009-01-01

    This work analyzes the organization of thin films of nematic liquid crystals on liquid substrates (water and glycerol). In this situation, the planar anchoring at the liquid interface is stronger than the homeotropic anchorage at the air interface. Below a critical thickness about 0.5-0.6 µm, stripes appear that correspond to a modulation of the nematic orientation. The stripe wavelength is much larger than the film thickness. We have analyzed the specific situation of very thin films and we ...

  7. Rupture of thin liquid films on structured surfaces.

    Science.gov (United States)

    Ajaev, Vladimir S; Gatapova, Elizaveta Ya; Kabov, Oleg A

    2011-10-01

    We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film. Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.

  8. Improvement of a wall thinning rate model for liquid droplet impingement erosion. Implementation of liquid film thickness model with consideration of film behavior

    International Nuclear Information System (INIS)

    Morita, Ryo

    2014-01-01

    Liquid droplet impingement erosion (LDI) is defined as an erosion phenomenon caused by high-speed droplet attack in a steam flow. Pipe wall thinning by LDI is sometimes observed in a steam piping system of a power plant. As LDI usually occurs very locally and is difficult to detect, predicting LDI location is required for safe operation of power plant systems. Therefore, we have involved in the research program to develop prediction tools that will be used easily in actual power plants. Our previous researches developed a thinning rate evaluation model due to LDI (LDI model) and the evaluation system of the thinning rate and the thinning shape within a practically acceptable time (LDI evaluation system). Though the LDI model can include a cushioning effect of liquid film which is generated on the material surface by droplet impingement as an empirical equation with fluid parameter, the liquid film thickness is not clarified due to complex flow condition. In this study, to improve the LDI model and the LDI evaluation system, an analytical model of the liquid film thickness was proposed with consideration of the liquid film flow behavior on the material surface. The mass balance of the liquid film was considered, and the results of CFD calculations and existing researches were applied to obtain the liquid film thickness in this model. As a result of the LDI evaluation of the new LDI model with liquid film model, improvement of the LDI model was achieved. (author)

  9. Numerical study of Wavy Blade Section for Wind Turbines

    DEFF Research Database (Denmark)

    Kobæk, C. M.; Hansen, Martin Otto Laver

    2016-01-01

    than a flipper having a smooth trailing edge and thus could be potentially beneficial when catching food. A thorough literature study of the Wavy Blade concept is made and followed by CFD computations of two wavy blade geometries and a comparison with their baseline S809 airfoil at conditions more...

  10. Hydrodynamic characteristics for flow around wavy wings with different wave lengths

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2012-12-01

    Full Text Available The present study numerically investigates the effect of the wavy leading edge on hydrodynamic characteristics for the flow of rectangular wings with the low aspect ratio of 1.5. Five different wave lengths at fixed wavy amplitude have been considered. Numerical simulations are performed at a wide range of the angle of attack (0° ≤α ≤ 40° at one Reynolds number of 106. The wavy wings considered in this study did not experience enough lift drop to be defined as the stall, comparing with the smooth wing. However, in the pre-stall region, the wavy wings reveal the considerable loss of the lift, compared to the smooth wing. In the post-stall, the lift coefficients of the smooth wing and the wavy wings are not much different. The pressure coefficient, limiting streamlines and the iso-surface of the spanwise vorticity are also highlighted to examine the effect of the wave length on the flow structures.

  11. Modelling of film condensation in presence of non condensable gases

    International Nuclear Information System (INIS)

    Genevieve Geffraye; Dominique Bestion; Vladimir Kalitvianski

    2005-01-01

    Full text of publication follows: This paper presents recent developments in the modelling of the condensation due to heat removal from a wall with a possible presence of hydrogen, nitrogen, or air. This work is mainly concerned with nuclear reactor safety with particular reference to situations related to new reactor design, cold shutdown state and severe accident analysis. Film condensation of steam in presence of nitrogen and helium in a tube has been investigated in the COTURNE experiment in a rather large range of parameters, pressure (from 0.1 to 7 Mpa), heat flux (0.1 to 6 W/cm 2 ), mass fraction of noncondensable gas (0 to 1) and also in presence of superheated steam. The experiment represents a Steam Generator tube of a Pressurised Water Reactor and can simulate both co-current or countercurrent flow of steam and water.The models are implemented in the CATHARE code used for nuclear reactor thermal-hydraulics. The code uses two mass balance equations for liquid and gas, two momentum balance equations for liquid and gas and two energy balance equations for liquid and gas. Additional mass transport equations can be added for each non condensable gas. Heat transfers from wall to liquid film, from liquid to interface and gas to interface are modelled. The liquid film heat transfer coefficient is first investigated in pure saturated steam conditions in the pressure range from 0.1 to 7 Mpa. The CATHARE film condensation model in pure steam conditions is derived from Chen's correlation. Chen proposes a general correlation for the film condensation, covering the wavy-laminar and the turbulent film regimes and taking into account the interfacial friction effect. A large data base of laminar film regime was used including COTURNE data other available data found in the literature. The analysis of these data base suggests an influence of the liquid Reynolds number, according to the Nusselt theory, and also of the Eoetvoes number, with surface tension effects. A

  12. The waviness of the extratropical jet and daily weather extremes

    Science.gov (United States)

    Röthlisberger, Matthias; Martius, Olivia; Pfahl, Stephan

    2016-04-01

    In recent years the Northern Hemisphere mid-latitudes have experienced a large number of weather extremes with substantial socio-economic impact, such as the European and Russian heat waves in 2003 and 2010, severe winter floods in the United Kingdom in 2013/2014 and devastating winter storms such as Lothar (1999) and Xynthia (2010) in Central Europe. These have triggered an engaged debate within the scientific community on the role of human induced climate change in the occurrence of such extremes. A key element of this debate is the hypothesis that the waviness of the extratropical jet is linked to the occurrence of weather extremes, with a wavier jet stream favouring more extremes. Previous work on this topic is expanded in this study by analyzing the linkage between a regional measure of jet waviness and daily temperature, precipitation and wind gust extremes. We show that indeed such a linkage exists in many regions of the world, however this waviness-extremes linkage varies spatially in strength and sign. Locally, it is strong only where the relevant weather systems, in which the extremes occur, are affected by the jet waviness. Its sign depends on how the frequency of occurrence of the relevant weather systems is correlated with the occurrence of high and low jet waviness. These results go beyond previous studies by noting that also a decrease in waviness could be associated with an enhanced number of some weather extremes, especially wind gust and precipitation extremes over western Europe.

  13. Generation of Customizable Micro-wavy Pattern through Grayscale Direct Image Lithography.

    Science.gov (United States)

    He, Ran; Wang, Shunqiang; Andrews, Geoffrey; Shi, Wentao; Liu, Yaling

    2016-02-23

    With the increasing amount of research work in surface studies, a more effective method of producing patterned microstructures is highly desired due to the geometric limitations and complex fabricating process of current techniques. This paper presents an efficient and cost-effective method to generate customizable micro-wavy pattern using direct image lithography. This method utilizes a grayscale Gaussian distribution effect to model inaccuracies inherent in the polymerization process, which are normally regarded as trivial matters or errors. The measured surface profiles and the mathematical prediction show a good agreement, demonstrating the ability of this method to generate wavy patterns with precisely controlled features. An accurate pattern can be generated with customizable parameters (wavelength, amplitude, wave shape, pattern profile, and overall dimension). This mask-free photolithography approach provides a rapid fabrication method that is capable of generating complex and non-uniform 3D wavy patterns with the wavelength ranging from 12 μm to 2100 μm and an amplitude-to-wavelength ratio as large as 300%. Microfluidic devices with pure wavy and wavy-herringbone patterns suitable for capture of circulating tumor cells are made as a demonstrative application. A completely customized microfluidic device with wavy patterns can be created within a few hours without access to clean room or commercial photolithography equipment.

  14. Generation of Customizable Micro-wavy Pattern through Grayscale Direct Image Lithography

    Science.gov (United States)

    He, Ran; Wang, Shunqiang; Andrews, Geoffrey; Shi, Wentao; Liu, Yaling

    2016-02-01

    With the increasing amount of research work in surface studies, a more effective method of producing patterned microstructures is highly desired due to the geometric limitations and complex fabricating process of current techniques. This paper presents an efficient and cost-effective method to generate customizable micro-wavy pattern using direct image lithography. This method utilizes a grayscale Gaussian distribution effect to model inaccuracies inherent in the polymerization process, which are normally regarded as trivial matters or errors. The measured surface profiles and the mathematical prediction show a good agreement, demonstrating the ability of this method to generate wavy patterns with precisely controlled features. An accurate pattern can be generated with customizable parameters (wavelength, amplitude, wave shape, pattern profile, and overall dimension). This mask-free photolithography approach provides a rapid fabrication method that is capable of generating complex and non-uniform 3D wavy patterns with the wavelength ranging from 12 μm to 2100 μm and an amplitude-to-wavelength ratio as large as 300%. Microfluidic devices with pure wavy and wavy-herringbone patterns suitable for capture of circulating tumor cells are made as a demonstrative application. A completely customized microfluidic device with wavy patterns can be created within a few hours without access to clean room or commercial photolithography equipment.

  15. Distortion of liquid film discharging from twin-fluid atomizer

    Science.gov (United States)

    Mehring, C.; Sirignano, W. A.

    2001-11-01

    The nonlinear distortion and disintegration of a thin liquid film exiting from a two-dimensional twin-fluid atomizer is analyzed numerically. Pulsed gas jets impacting on both sides of the discharging liquid film at the atomizer exit generate dilational and/or sinuous deformations of the film. Both liquid phase and gas phase are inviscid and incompressible. For the liquid phase the so-called long-wavelength approximation is employed yielding a system of unsteady one-dimensional equations for the planar film. Solution of Laplace's equation for the velocity potential yields the gas-phase velocity field on both sides of the liquid stream. Coupling between both phases is described through kinematic and dynamic boundary conditions at the phase interfaces, and includes the solution of the unsteady Bernoulli equation to determine the gas-phase pressure along the interfaces. Both gas- and liquid-phase equations are solved simultaneously. Solution of Laplace's equation for the gas streams is obtained by means of a boundary-element method. Numerical solutions for the liquid phase use the Lax-Wendroff method with Richtmyer splitting. Sheet distortion resulting from the stagnation pressure of the impacting gas jets and subsequent disturbance amplification due to Kelvin-Helmholtz effects are studied for various combinations of gas-pulse timing, gas-jet impact angles, gas-to-liquid-density ratio, liquid-phase Weber number and gas-jet-to-liquid-jet-momentum ratio. Dilational and sinuous oscillations of the liquid are examined and film pinch-off is predicted.

  16. Fundamentals of a liquid (soap) film tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Beizaie, M. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Applied Mechanics and Engineering Science; Gharib, M. [Graduate Aeronautical Laboratory, California Institute of Technology, 1200 California Boulevard, Pasadena, CA 91125 (United States)

    1997-06-13

    The continuously running liquid film tunnel is a novel device suitable for the study of two-dimensional flows. In this innovation, the films start from a reservoir, run over a horizontal or non-horizontal wire frame and get pulled/washed by a water sheet or by gravity of liquid film. How-ever, despite the simple design and widespread application of LFT, its working mechanisms are not well understood. In the present work, an experimental effort for explaining these mechanisms is reported. The results show that both film velocities and film flow rates increase with water sheet velocity up to a saturation level. This behavior is described via a force balance between the shear force produced by the water sheet and the opposing pulling force of reservoir and boundary layer frictions. The results also show that the average film thickness depends on the surfactant concentration. This is as predicted by a model based on Langmuir`s adsorption theory, in which the liquid film contains two external monolayers of surfactant and a slab of surfactant solution in between. When a film is drawn from the reservoir to the water sheet, the surfactant molecules start migrating from the former to the latter. To restore the thermodynamic equilibrium, the dragged film pulls more surfactant due to Marangoni elasticity, and thus a flow is established. The film flow soon reaches an equilibrium rate as required by the force balance mentioned above. (orig.). With 18 figs.

  17. Mechanism of constitution liquid film migration

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Hongjun [Univ. of Alabama, Birmingham, AL (United States)

    1999-06-01

    Liquid film migration (LFM) in liquid phase sintering classically involves a large metastable liquid volume adjacent to solid, and migration occurs at an isolated solid-liquid (S-L) interface. Constitutional liquid film migration (CLFM), discovered in alloy 718, has major characteristics similar to those of LFM, except that the metastable liquid is from the constitutional liquation of precipitates on the grain boundary. The similarity between LFM and CLFM has led to the theory that coherency lattice strain responsible for LFM is also responsible for CLFM. The coherency strain hypothesis was tested in this study by evaluating whether the Hillert model of LFM would also apply for CLFM. Experimental results of CLFM in alloy 718 showed that migration velocity followed the trend predicted by the Hillert model. This indicates that the coherency strain hypothesis of LFM also applies for CLFM and that the coherency lattice strain responsible for LFM is also the driving force for CLFM.

  18. Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids

    Directory of Open Access Journals (Sweden)

    Azher M. Abed

    2015-03-01

    Full Text Available The heat transfer and flow characteristics in corrugated with V-shape lower plate using nanofluids are numerically studied. The computations are performed on uniform heat flux over a range of Reynolds number (Re 8000–20,000. The governing equations are numerically solved in the domain by a finite volume method (FVM using the k–ε standard turbulent model. Studies are carried out for different types of nanoparticles Al2O3,CuO, SiO2 and ZnO with different volume fractions in the range of 0–4%. Three different types of base fluid (water, glycerin, ethylene glycol are also examined. Results indicated that the average Nusselt number for nanofluids is greater than that of the base liquid. The SiO2 nanofluid yields the best heat transfer enhancement among all other type of nanofluids. Heat transfer enhancement increase with increases the volumetric concentration, but it is accompanied by increasing pressure drop values. Moreover, the average Nusselt number increases with an increase in Reynolds number and volume concentration. The SiO2–glycerin nanofluid has the highest Nusselt number compared with other base fluids. The present study shows that these V-shaped wavy channels have advantages by using nanofluids and thus serve as promising candidates for incorporation into efficient heat transfer devices.

  19. Film Boiling on Downward Quenching Hemisphere of Varying Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Chan S. Kim; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-04-01

    Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Laminar Transition Apparatus). Two test sections are made of copper to maintain low Biot numbers. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of all the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the test sections. The measured data are compared with the numerical predictions from laminar film boiling analysis. The measured heat transfer coefficients are found to be greater than those predicted by the conventional laminar flow theory on account of the interfacial wavy motion incurred by the Helmholtz instability. Incorporation of the wavy motion model considerably improves the agreement between the experimental and numerical results in terms of heat transfer coefficient. In addition, the interfacial wavy motion and the quenching process are visualized through a digital camera.

  20. Experimental and numerical study on heat transfer and pressure drop performance of Cross-Wavy primary surface channel

    International Nuclear Information System (INIS)

    Ma, Ting; Du, Lin-xiu; Sun, Ning; Zeng, Min; Sundén, Bengt; Wang, Qiu-wang

    2016-01-01

    Highlights: • Naphthalene sublimation experiments were performed for Cross-Wavy channels. • Entrance region has a small effect on unit-averaged heat transfer coefficient of Cross-Wavy channels. • Correlations of Nusselt number and friction factor in Cross-Wavy channel were obtained. • Similar Cross-Wavy channels have similar thermal hydraulic performance. - Abstract: The Cross-Wavy primary surface heat exchanger is one of the most promising candidates for microturbine recuperators. In this paper, naphthalene sublimation experiments are performed for Cross-Wavy channels in a wind tunnel. The experimental results indicate that the entrance region has a small effect on the unit-averaged heat transfer coefficient of whole Cross-Wavy channels. Correlations of Nusselt number and friction factor in the Cross-Wavy channel are obtained. However, only the Cross-Wavy channel with a large equivalent diameter is tested because the actual Cross-Wavy channels are very complicated and small. Therefore, based on the similarity rules, five Cross-Wavy channels with similar structures but different equivalent diameters are further investigated by numerical simulations. The numerical results indicate that the Cross-Wavy channels with similar structures but different equivalent diameters have similar thermal-hydraulic performance in the studied Reynolds number range.

  1. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    International Nuclear Information System (INIS)

    Oguchi, Hiroyuki; Ikeshoji, Tamio; Orimo, Shin-ichi; Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro; Kuwano, Hiroki

    2014-01-01

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al 2 O 3 substrates indicated polycrystalline films with a LiAlO 2 secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides

  2. Wavy channel transistor for area efficient high performance operation

    KAUST Repository

    Fahad, Hossain M.

    2013-04-05

    We report a wavy channel FinFET like transistor where the channel is wavy to increase its width without any area penalty and thereby increasing its drive current. Through simulation and experiments, we show the effectiveness of such device architecture is capable of high performance operation compared to conventional FinFETs with comparatively higher area efficiency and lower chip latency as well as lower power consumption.

  3. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  4. Review on film cooling of liquid rocket engines

    Directory of Open Access Journals (Sweden)

    S.R. Shine

    2018-03-01

    Full Text Available Film cooling in combination with regenerative cooling is presently considered as an efficient method to guarantee safe operation of liquid rocket engines having higher heat flux densities for long duration. This paper aims to bring all the research carried out in the field of liquid rocket engine film cooling since 1950. The analytical and numerical procedure followed, experimental facilities and measurements made and major inferences drawn are reviewed in detail, and compared where ever possible. Review has been made through a discussion of the analyses methodologies and the factors that influence film cooling performance. An effort has also been made to determine the status of the research, pointing out critical gaps, which are still to be explained and addressed by future generations. Keywords: Heat transfer, Liquid rocket thrust chamber, Film cooling, Cooling effectiveness

  5. A study on waviness induced vibration of ball bearings based on signal coherence theory

    Science.gov (United States)

    Liu, Wentao; Zhang, Yun; Feng, Zhi-Jing; Zhao, Jing-Shan; Wang, Dongfeng

    2014-11-01

    This paper focuses on the effects of waviness on vibration of ball bearings. An experimental analysis method is developed by adopting signal coherence theory of multiple-inputs/single-output (MISO) system. The inputs are waviness excitations of the inner and outer races, and the output is vibration response of the outer ring. Waviness excitation signals are first derived from the manufacturing deviations, and found to be strongly coherent in low frequency range. Virtual input signals are then introduced by the method of orthogonalization. In both cases of vibration acceleration and speed responses, the cumulated virtual input-output coherence function verifies that the first peak region of vibration spectrum is mainly induced by the waviness excitations. In order to distinguish the contributions of the inner and outer races, coherence functions of the virtual inputs with real inputs are calculated, and the results indicate that the outer race waviness contributes more to vibration than the inner race waviness does in the example. Further, a multi-body dynamic model is constructed and employed to frequency response analyses. It is discovered that the waviness induced spectral peak frequency is close to the natural frequency of bearing.

  6. Numerical and experimental study of disturbance wave development in vertical two-phase annular flow

    Science.gov (United States)

    Hewitt, Geoffrey; Yang, Junfeng; Zhao, Yujie; Markides, Christos; Matar, Omar

    2013-11-01

    The annular flow regime is characterized by the presence of a thin, wavy liquid film driven along the wall by the shear stress exerted by the gas phase. Under certain liquid film Reynolds numbers, large disturbance waves are observed to traverse the interface, whose length is typically on the order of 20 mm and whose height is typically on the order of 5 times the thickness of the thin (substrate) layer between the waves. Experimental wok has been conducted to study the disturbance wave onset by probing the local film thickness for different Reynolds numbers. It is observed the disturbance waves grow gradually from wavy initiation and form the ring-like structure. To predict the wavy flow field observed in the experiment, 3D CFD simulations are performed using different low Reynolds number turbulence models and Large Eddy Simulation. Modeling results confirm that there is recirculation within the waves, and that they as a packet of turbulence traveling over a laminar substrate film. We also predict the coalescence and the break-up of waves leading to liquid droplet entrainment into the gas core. Skolkovo Foundation, UNIHEAT project.

  7. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Ikeshoji, Tamio; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan)

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  8. On the study of wavy leading-edge vanes to achieve low fan interaction noise

    Science.gov (United States)

    Tong, Fan; Qiao, Weiyang; Xu, Kunbo; Wang, Liangfeng; Chen, Weijie; Wang, Xunnian

    2018-04-01

    The application of wavy leading-edge vanes to reduce a single-stage axial fan noise is numerically studied. The aerodynamic and acoustic performance of the fan is numerically investigated using a hybrid unsteady Reynolds averaged Navier-Stokes (URANS)/acoustic analogy method (Goldstein equations). First, the hybrid URANS/Goldstein method is developed and successfully validated against experiment results. Next, numerical simulations are performed to investigate the noise reduction effects of the wavy leading-edge vanes. The aerodynamic and acoustic performance is assessed for a fan with vanes equipped with two different wavy leading-edge profiles and compared with the performance of conventional straight leading-edge vanes. Results indicate that a fan with wavy leading-edge vanes produces lower interaction noise than the baseline fan without a significant loss in aerodynamic performance. In fact, it is demonstrated that wavy leading-edge vanes have the potential to lead to both aerodynamic and acoustic improvements. The two different wavy leading-edge profiles are shown to successfully reduce the fan tone sound power level by 1.2 dB and 4.3 dB, respectively. Fan efficiency is also improved by about 1% with one of the tested wavy leading-edge profiles. Large eddy simulation (LES) is also performed for a simplified fan stage model to assess the effects of wavy leading-edge vanes on the broadband fan noise. Results indicate that the overall sound power level of a fan can be reduced by about 4 dB with the larger wavy leading-edge profile. Finally, the noise reduction mechanisms are investigated and analysed. It is found that the wavy leading-edge profiles can induce significant streamwise vorticity around the leading-edge protuberances and reduce pressure fluctuations (especially at locations of wavy leading-edge hills) and unsteady forces on the stator vanes. The underlying mechanism of the reduced pressure fluctuations is also discussed by examining the magnitude

  9. Development of Pre-set Counter-rotating Streamwise Vortices in Wavy Channel

    KAUST Repository

    Budiman, A.C.

    2015-10-23

    Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75 mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H = 35 mm and 50 mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re = 3100 and H = 35 mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re = 4400 and H = 50 mm, the splitting of the vortices can also be observed.

  10. Development of Pre-set Counter-rotating Streamwise Vortices in Wavy Channel

    KAUST Repository

    Budiman, A.C.; Mitsudharmadi, Hatsari; Bouremel, Y.; Winoto, S.H.; Low, H.T.

    2015-01-01

    Development of counter-rotating streamwise vortices in a rectangular channel with one-sided wavy surface has been experimentally quantified using hot-wire anemometry. The wavy surface has fixed amplitude of 3.75 mm. The counter-rotating vortices are pre-set by means of a sawtooth pattern cut at the leading edge of the wavy surface. Variations of the central streamwise velocity Uc with a channel gap H = 35 mm and 50 mm (corresponding to a Reynolds number from 1600 to 4400) change the instability of the flow which can be distinguished from the velocity contours at a certain spanwise plane. The streamwise velocity contours and turbulence intensity for Reynolds number Re = 3100 and H = 35 mm show the disappearance of the mushroom-like vortices prior to turbulence near the second peak of the wavy surface, while for higher Re, this phenomenon occurs earlier. Under certain conditions, for example, for Re = 4400 and H = 50 mm, the splitting of the vortices can also be observed.

  11. The effect of the gas-liquid density ratio on the liquid film thickness in vertical upward annular flow

    International Nuclear Information System (INIS)

    Mori, Shoji; Okuyama, Kunito

    2010-01-01

    Annular two phase flow is encountered in many industrial equipments, including flow near nuclear fuel rods in boiling water reactor (BWR). Especially, disturbance waves play important roles in the pressure drop, the generation of entrainments, and the dryout of the liquid film. Therefore, it is important to clarify the behavior of disturbance waves and base film. However, most of the previous studies have been performed under atmospheric pressure conditions that provide the properties of liquid and gas which are significantly different from those of a BWR. Therefore, the effect of properties in gas and liquid on liquid film characteristics should be clarified. In this paper we focus on the effect of gas-liquid density ratio on liquid film thickness characteristics. The experiments have been conducted at four density ratio conditions (ρ L /ρ G =763, 451, 231, and 31). As a result, it was found that liquid film thickness characteristics including the effect of liquid/gas density ratios were well correlated with a gas Weber number and the liquid Reynolds number in the wide range of experimental conditions (ρ L /ρ G : 31-763, We: 10-1800, Re L : 500-2200). (author)

  12. Dewetting Properties of Metallic Liquid Film on Nanopillared Graphene

    Science.gov (United States)

    Li, Xiongying; He, Yezeng; Wang, Yong; Dong, Jichen; Li, Hui

    2014-01-01

    In this work, we report simulation evidence that the graphene surface decorated by carbon nanotube pillars shows strong dewettability, which can give it great advantages in dewetting and detaching metallic nanodroplets on the surfaces. Molecular dynamics (MD) simulations show that the ultrathin liquid film first contracts then detaches from the graphene on a time scale of several nanoseconds, as a result of the inertial effect. The detaching velocity is in the order of 10 m/s for the droplet with radii smaller than 50 nm. Moreover, the contracting and detaching behaviors of the liquid film can be effectively controlled by tuning the geometric parameters of the liquid film or pillar. In addition, the temperature effects on the dewetting and detaching of the metallic liquid film are also discussed. Our results show that one can exploit and effectively control the dewetting properties of metallic nanodroplets by decorating the surfaces with nanotube pillars. PMID:24487279

  13. Liquid films and droplet deposition in a BWR fuel element

    International Nuclear Information System (INIS)

    Damsohn, M.

    2011-01-01

    In the upper part of boiling water reactors (BWR) the flow regime is dominated by a steam-water droplet flow with liquid films on the nuclear fuel rod, the so called (wispy) annular flow regime. The film thickness and liquid flow rate distribution around the fuel rod play an important role especially in regard to so called dryout, which is the main phenomenon limiting the thermal power of a fuel assembly. The deposition of droplets in the liquid film is important, because this process sustains the liquid film and delays dryout. Functional spacers with different vane shapes have been used in recent decades to enhance droplet deposition and thus create more favorable conditions for heat removal. In this thesis the behavior of liquid films and droplet deposition in the annular flow regime in BWR bundles is addressed by experiments in an adiabatic flow at nearly ambient pressure. The experimental setup consists of a vertical channel with the cross-section resembling a pair of neighboring subchannels of a fuel rod bundle. Within this double subchannel an annular flow is established with a gas-water mixture. The impact of functional spacers on the annular flow behavior is studied closely. Parameter variations comprise gas and liquid flow rates, gas density and spacer shape. The setup is instrumented with a newly developed liquid film sensor that measures the electrical conductance between electrodes flush to the wall with high temporal and spatial resolution. Advanced post-processing methods are used to investigate the dynamic behavior of liquid films and droplet deposition. The topic is also assessed numerically by means of single-phase Reynolds-Averaged-Navier-Stokes CFD simulations of the flow in the gas core. For this the commercial code STAR-CCM+ is used coupled with additional models for the liquid film distribution and droplet motion. The results of the experiments show that the liquid film is quite evenly distributed around the circumference of the fuel rods. The

  14. Thickness of residual wetting film in liquid-liquid displacement

    Science.gov (United States)

    Beresnev, Igor; Gaul, William; Vigil, R. Dennis

    2011-08-01

    Core-annular flow is common in nature, representing, for example, how streams of oil, surrounded by water, move in petroleum reservoirs. Oil, typically a nonwetting fluid, tends to occupy the middle (core) part of a channel, while water forms a surrounding wall-wetting film. What is the thickness of the wetting film? A classic theory has been in existence for nearly 50 years offering a solution, although in a controversial manner, for moving gas bubbles. On the other hand, an acceptable, experimentally verified theory for a body of one liquid flowing in another has not been available. Here we develop a hydrodynamic, testable theory providing an explicit relationship between the thickness of the wetting film and fluid properties for a blob of one fluid moving in another, with neither phase being gas. In its relationship to the capillary number Ca, the thickness of the film is predicted to be proportional to Ca2 at lower Ca and to level off at a constant value of ˜20% the channel radius at higher Ca. The thickness of the film is deduced to be approximately unaffected by the viscosity ratio of the fluids. We have conducted our own laboratory experiments and compiled experimental data from other studies, all of which are mutually consistent and confirm the salient features of the theory. At the same time, the classic law, originally deduced for films surrounding moving gas bubbles but often believed to hold for liquids as well, fails to explain the observations.

  15. Liquid film characterization in horizontal, annular, two-phase, gas-liquid flow using time-resolved laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Farias, P.S.C.; Martins, F.J.W.A.; Azevedo, L.F.A. [PUC-Rio, Department of Mechanical Engineering, Rio de Janeiro (Brazil); Sampaio, L.E.B. [LMTA/PGMEC, UFF, Department of Mechanical Engineering, Laboratory of Theoretical and Applied Mechanics, Rio de Janeiro (Brazil); Serfaty, R. [Petrobras R and D Center, Rio de Janeiro (Brazil)

    2012-03-15

    A non-intrusive optical technique was developed to provide time-resolved longitudinal and cross-sectional images of the liquid film in horizontal annular pipe flow of air and water, revealing the interfacial wave behavior. Quantitative information on the liquid film dynamics was extracted from the time-resolved images. The planar laser-induced fluorescence technique was utilized to allow for optical separation of the light emitted by the film from that scattered by the air-water interface. The visualization test section was fabricated from a tube presenting nearly the same refractive index as water, which allowed the visualization of the liquid film at regions very close to the pipe wall. Longitudinal images of the liquid film were captured using a high-frame-rate digital video camera synchronized with a high-repetition-rate laser. An image processing algorithm was developed to automatically detect the position of the air-water interface in each image frame. The thickness of the liquid film was measured at two axial stations in each processed image frame, providing time history records of the film thickness at two different positions. Wave frequency information was obtained by analyzing the time-dependent signals of film thickness for each of the two axial positions recorded. Wave velocities were measured by cross-correlating the amplitude signals from the two axial positions. For the film cross-section observations, two high-speed digital video cameras were used in a stereoscopic arrangement. Comparisons with results from different techniques available in literature indicate that the technique developed presents equivalent accuracy in measuring the liquid film properties. Time-resolved images of longitudinal and cross-section views of the film were recorded, which constitute valuable information provided by the technique implemented. (orig.)

  16. Wavy Channel TFT-Based Digital Circuits

    KAUST Repository

    Hanna, Amir

    2016-02-23

    We report a wavy channel (WC) architecture thin-film transistor-based digital circuitry using ZnO as a channel material. The novel architecture allows for extending device width by integrating vertical finlike substrate corrugations giving rise to 50% larger device width, without occupying extra chip area. The enhancement in the output drive current is 100%, when compared with conventional planar architecture for devices occupying the same chip area. The current increase is attributed to both the extra device width and 50% enhancement in field-effect mobility due to electrostatic gating effects. Fabricated inverters show that WC inverters can achieve two times the peak-to-peak output voltage for the same input when compared with planar devices. In addition, WC inverters show 30% faster rise and fall times, and can operate up to around two times frequency of the planar inverters for the same peak-to-peak output voltage. WC NOR circuits have shown 70% higher peak-to-peak output voltage, over their planar counterparts, and WC pass transistor logic multiplexer circuit has shown more than five times faster high-to-low propagation delay compared with its planar counterpart at a similar peak-to-peak output voltage.

  17. Wavy Channel TFT-Based Digital Circuits

    KAUST Repository

    Hanna, Amir; Hussain, Aftab M.; Hussain, Aftab M.; Hussain, Aftab M.; Omran, Hesham; Alsharif, Sarah M.; Salama, Khaled N.; Hussain, Muhammad Mustafa

    2016-01-01

    We report a wavy channel (WC) architecture thin-film transistor-based digital circuitry using ZnO as a channel material. The novel architecture allows for extending device width by integrating vertical finlike substrate corrugations giving rise to 50% larger device width, without occupying extra chip area. The enhancement in the output drive current is 100%, when compared with conventional planar architecture for devices occupying the same chip area. The current increase is attributed to both the extra device width and 50% enhancement in field-effect mobility due to electrostatic gating effects. Fabricated inverters show that WC inverters can achieve two times the peak-to-peak output voltage for the same input when compared with planar devices. In addition, WC inverters show 30% faster rise and fall times, and can operate up to around two times frequency of the planar inverters for the same peak-to-peak output voltage. WC NOR circuits have shown 70% higher peak-to-peak output voltage, over their planar counterparts, and WC pass transistor logic multiplexer circuit has shown more than five times faster high-to-low propagation delay compared with its planar counterpart at a similar peak-to-peak output voltage.

  18. Performance of nanofluids on heat transfer in a wavy solar collector ...

    African Journals Online (AJOL)

    The bottom wavy solid surface is kept at a constant temperature Tc. Numerical analysis is done by this article for the performance of different nanofluids on convective flow and heat transfer phenomena inside a solar collector. The solar collector has the flatplate cover and sinusoidal wavy absorber. Two different nanofluids ...

  19. The effect of bubble acceleration on the liquid film thickness in micro tubes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Youngbae, E-mail: bhan@feslab.t.u-tokyo.ac.j [Department of Mechanical Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Shikazono, Naoki, E-mail: shika@feslab.t.u-tokyo.ac.j [Department of Mechanical Engineering, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2010-08-15

    Liquid film thickness is an important parameter for predicting boiling heat transfer in micro tubes. In the previous study (), liquid film thickness under the steady condition was investigated and an empirical correlation for the initial liquid film thickness based on capillary number, Reynolds number and Weber number was proposed. However, under flow boiling conditions, bubble velocity is not constant but accelerated due to evaporation. It is necessary to consider this bubble acceleration effect on the liquid film thickness, since it affects viscous, surface tension and inertia forces in the momentum equation. In addition, viscous boundary layer develops, and it may also affect the liquid film thickness. In the present study, the effect of bubble acceleration is investigated. Laser focus displacement meter is used to measure the liquid film thickness. Ethanol, water and FC-40 are used as working fluids. Circular tubes with three different inner diameters, D = 0.5, 0.7 and 1.0 mm, are used. The increase of liquid film thickness with capillary number is restricted by the bubble acceleration. Finally, an empirical correlation is proposed for the liquid film thickness of accelerated flows in terms of capillary number and Bond number based on the bubble acceleration.

  20. The effect of bubble acceleration on the liquid film thickness in micro tubes

    International Nuclear Information System (INIS)

    Han, Youngbae; Shikazono, Naoki

    2010-01-01

    Liquid film thickness is an important parameter for predicting boiling heat transfer in micro tubes. In the previous study (), liquid film thickness under the steady condition was investigated and an empirical correlation for the initial liquid film thickness based on capillary number, Reynolds number and Weber number was proposed. However, under flow boiling conditions, bubble velocity is not constant but accelerated due to evaporation. It is necessary to consider this bubble acceleration effect on the liquid film thickness, since it affects viscous, surface tension and inertia forces in the momentum equation. In addition, viscous boundary layer develops, and it may also affect the liquid film thickness. In the present study, the effect of bubble acceleration is investigated. Laser focus displacement meter is used to measure the liquid film thickness. Ethanol, water and FC-40 are used as working fluids. Circular tubes with three different inner diameters, D = 0.5, 0.7 and 1.0 mm, are used. The increase of liquid film thickness with capillary number is restricted by the bubble acceleration. Finally, an empirical correlation is proposed for the liquid film thickness of accelerated flows in terms of capillary number and Bond number based on the bubble acceleration.

  1. An experimental study on flow friction and heat transfer of water in sinusoidal wavy silicon microchannels

    Science.gov (United States)

    Huang, Houxue; Wu, Huiying; Zhang, Chi

    2018-05-01

    Sinusoidal wavy microchannels have been known as a more heat transfer efficient heat sink for the cooling of electronics than normal straight microchannels. However, the existing experimental study on wavy silicon microchannels with different phase differences are few. As a result of this, in this paper an experimental study has been conducted to investigate the single phase flow friction and heat transfer of de-ionized water in eight different sinusoidal wavy silicon microchannels (SWSMCs) and one straight silicon microchannel (SMC). The SWSMCs feature different phase differences (α  =  0 to π) and different relative wavy amplitudes (β  =  A/l  =  0.05 to 0.4), but the same average hydraulic diameters (D h  =  160 µm). It is found that both flow friction constant fRe and the Nusselt number depend on the phase difference and relative wavy amplitude. For sinusoidal wavy microchannels with a relative wavy amplitude (β  =  0.05), the Nusselt number increased noticeably with the phase difference for Re  >  250, but the effect was insignificant for Re  reducing the wavy wave length induced higher pressure drop and apparent friction constant fRe, while the Nusselt number increased with relative wavy amplitude for Re  >  300. The results indicate that the thermal resistances of sinusoidal wavy silicon microchannels were generally lower than that of straight silicon microchannels, and the thermal resistance decreased with the increase in relative wavy amplitude. The enhancement of thermal performance is attributed to the flow re-circulation occurring in the corrugation troughs and the secondary flows or Dean vortices introduced by curved channels. It is concluded that silicon sinusoidal wavy microchannels provide higher heat transfer rate albeit with a higher flow friction, making it a better choice for the cooling of high heat flux electronics.

  2. On Digital Film Theory: Liquid Cinema and Liquid Film Theory

    OpenAIRE

    Hakan Erkılıç

    2017-01-01

    Referring to Bauman’s (2005) concept of “liquid modernity”, this paper aims to discuss the new film theory that has emerged from the digitalization of cinema. The concepts of perceptual reality and elastic reality constitute the two most important parts of the theory. Bauman argues that contemporary modern societies are “liquid” because of their dynamic character. Although contemporary societies are in constant movement, he indicates that they lack certainty and borders, and flexibility and u...

  3. Significant questions in thin liquid film heat transfer

    International Nuclear Information System (INIS)

    Bankoff, S.G.

    1994-01-01

    Thin liquid films appear in many contexts, such as the cooling of gas turbine blade tips, rocket engines, microelectronics arrays, and hot fuel element surfaces in hypothetical nuclear reactor accidents. Apart from these direct cooling applications of thin liquid layers, thin films form a crucial element in determining the allowable heat flux limits in boiling. This is because the last stages of dryout almost invariably involve the rupture of a residual liquid film, either as a microlayer underneath the bubbles, or a thin annular layer in a high-quality burnout scenario. The destabilization of these thin films under the combined actions of shear stress, evaporation, and thermocapillary effects is quite complex. The later stages of actual rupture to form dry regions, which then expand, resulting in possible overheating, are even more complex and less well understood. However, significant progress has been made in understanding the behavior of these thin films, which are subject to competing instabilities prior to actual rupture. This will be reviewed briefly. Recent work on the advance, or recession, of contact lines will also be described briefly, and significant questions that still remain to be answered will be discussed. 68 refs., 7 figs

  4. Absorption homogenization at wavy melt films by CO{sub 2}-lasers in contrast to 1 μm-wavelength lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Alexander F.H., E-mail: alexander.kaplan@ltu.se

    2015-02-15

    Highlights: • The absorption distribution of 1 μm wavelength lasers compared to 10 μm CO{sub 2}-lasers across a wavy molten steel surface is calculated, at grazing angle of incidence. • For a wide range of surface waviness parameters the CO{sub 2}-laser shows a much more homogenizing absorption behaviour than 1 μm-lasers. • Although the interaction is very complex and non-linear, it is fundamental and very distinct between CO{sub 2}-lasers and 1 μm-lasers, due to their very different Fresnel-absorption characteristics. • The strong local absorption peaks for 1 μm-lasers can cause very strong local boiling and amplification of surface waves, in good correlation to empirical experimental trends. • Such differences can in turn have strong consequences during laser materials processing like laser keyhole welding, laser drilling or laser remote fusion cutting. - Abstract: For wavy metal melts, across a wide range of their topology parameters, lasers with about 1 μm wavelength experience the highest Fresnel absorption around the shoulders of the waves. Calculations show that this induces a strong peak of the absorbed power density of the laser beam. The high temperature gradients have the potential to cause very local boiling and growth of the valleys. In contrast, for a certain parameter category the small Brewster angle for the CO{sub 2}-laser partially homogenizes the temperatures by elevated absorption at domains of grazing incidence. This has the potential to cause opposite consequences on the process, like wave smoothing.

  5. The microjet-film interaction: the interaction and resulting shapes of a liquid microjet impacting a soap film

    Science.gov (United States)

    Chan, Jau Tung; Lee, Jie Liang; Tjeng, Vincent; Yeo, Ye; Tan, Guoxian

    2014-11-01

    The International Young Physicists’ Tournament (IYPT) is a worldwide annual competition for high-school students. This paper is adapted from the solution to problem 8, Jet and Film, as presented by the Singapore Team at the 26th IYPT, Taipei, Taiwan. The impact of liquid microjets on stable soap films was investigated. Two steady regimes were observed: refraction (where the microjet penetrates the soap film and is deflected) and absorption (where the microjet merges with the soap film and forms vertical undulating patterns on the soap film surface). This phenomenon has potential applications in controlling the trajectory of a liquid microjet in air. Although Kirstetter et al (2012) investigated this interaction by using the same liquid for both the microjet and the soap film, this paper extends their work by using different liquids for the microjet and the soap film. In addition, the need for a small-angle approximation of Snell’s law is removed for the refraction regime, and an alternative expression is proposed for the force exerted by the soap film on the microjet in the absorption regime that accounts for the dependence of the wavelength of the undulating patterns on the angle of incidence of the microjet on the soap film. Empirical data support these improved theoretical predictions.

  6. The microjet-film interaction: the interaction and resulting shapes of a liquid microjet impacting a soap film

    International Nuclear Information System (INIS)

    Chan, Jau Tung; Tan, Guoxian; Lee, Jie Liang; Tjeng, Vincent; Yeo, Ye

    2014-01-01

    The International Young Physicists’ Tournament (IYPT) is a worldwide annual competition for high-school students. This paper is adapted from the solution to problem 8, Jet and Film, as presented by the Singapore Team at the 26th IYPT, Taipei, Taiwan. The impact of liquid microjets on stable soap films was investigated. Two steady regimes were observed: refraction (where the microjet penetrates the soap film and is deflected) and absorption (where the microjet merges with the soap film and forms vertical undulating patterns on the soap film surface). This phenomenon has potential applications in controlling the trajectory of a liquid microjet in air. Although Kirstetter et al (2012) investigated this interaction by using the same liquid for both the microjet and the soap film, this paper extends their work by using different liquids for the microjet and the soap film. In addition, the need for a small-angle approximation of Snell’s law is removed for the refraction regime, and an alternative expression is proposed for the force exerted by the soap film on the microjet in the absorption regime that accounts for the dependence of the wavelength of the undulating patterns on the angle of incidence of the microjet on the soap film. Empirical data support these improved theoretical predictions. (paper)

  7. Hydrodynamic instability induced liquid--solid contacts in film boiling

    International Nuclear Information System (INIS)

    Yao, S.; Henry, R.E.

    1976-01-01

    The film boiling liquid-solid contacts of saturated ethanol and water to horizontal flat gold plated copper are examined by using electric conductance probe. It is observed that the liquid-solid contacts occur over a wide temperature range, and generally, induced by hydrodynamic instabilities. The area of contact decreases exponentially with interface temperature and is liquid depth dependent. The averaged duration of contacts is strongly influenced by the dominant nucleation process, and thus, depends on the interface temperature and the wettability of the solid during the contact. The frequency of major contacts is about 1.5 times the bubble detaching frequency. It is found that the liquid-solid contacts may account for a large percentage of the film boiling heat transfer near the low temperature end of film boiling and decreases as the interface temperature increases

  8. Annular dispersed flow analysis model by Lagrangian method and liquid film cell method

    International Nuclear Information System (INIS)

    Matsuura, K.; Kuchinishi, M.; Kataoka, I.; Serizawa, A.

    2003-01-01

    A new annular dispersed flow analysis model was developed. In this model, both droplet behavior and liquid film behavior were simultaneously analyzed. Droplet behavior in turbulent flow was analyzed by the Lagrangian method with refined stochastic model. On the other hand, liquid film behavior was simulated by the boundary condition of moving rough wall and liquid film cell model, which was used to estimate liquid film flow rate. The height of moving rough wall was estimated by disturbance wave height correlation. In each liquid film cell, liquid film flow rate was calculated by considering droplet deposition and entrainment flow rate. Droplet deposition flow rate was calculated by Lagrangian method and entrainment flow rate was calculated by entrainment correlation. For the verification of moving rough wall model, turbulent flow analysis results under the annular flow condition were compared with the experimental data. Agreement between analysis results and experimental results were fairly good. Furthermore annular dispersed flow experiments were analyzed, in order to verify droplet behavior model and the liquid film cell model. The experimental results of radial distribution of droplet mass flux were compared with analysis results. The agreement was good under low liquid flow rate condition and poor under high liquid flow rate condition. But by modifying entrainment rate correlation, the agreement become good even under high liquid flow rate. This means that basic analysis method of droplet and liquid film behavior was right. In future work, verification calculation should be carried out under different experimental condition and entrainment ratio correlation also should be corrected

  9. Autophobicity and layering behavior of thin liquid-crystalline polymer films.

    NARCIS (Netherlands)

    Wielen, van der M.W.J.; Cohen Stuart, M.A.; Fleer, G.J.

    1998-01-01

    The stability against breaking-up of thin spin-coated films of liquid-crystalline polymers depends on the film thickness and annealing temperature. This study concerns side-chain liquid-crystalline polymers, based on alternating copolymers of maleic anhydride and mesogenic alkenes. The mesogenic

  10. Investigation of the cooling film distribution in liquid rocket engine

    Directory of Open Access Journals (Sweden)

    Luís Antonio Silva

    2011-05-01

    Full Text Available This study presents the results of the investigation of a cooling method widely used in the combustion chambers, which is called cooling film, and it is applied to a liquid rocket engine that uses as propellants liquid oxygen and kerosene. Starting from an engine cooling, whose film is formed through the fuel spray guns positioned on the periphery of the injection system, the film was experimentally examined, it is formed by liquid that seeped through the inner wall of the combustion chamber. The parameter used for validation and refinement of the theoretical penetration of the film was cooling, as this parameter is of paramount importance to obtain an efficient thermal protection inside the combustion chamber. Cold tests confirmed a penetrating cold enough cooling of the film for the length of the combustion chamber of the studied engine.

  11. Carbon films produced from ionic liquid carbon precursors

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  12. Effect of Collector Aspect Ratio on the Thermal Performance of Wavy Finned Absorber Solar Air Heater

    OpenAIRE

    Abhishek Priyam; Prabha Chand

    2016-01-01

    A theoretical investigation on the effect of collector aspect ratio on the thermal performance of wavy finned absorber solar air heaters has been performed. For the constant collector area, the various performance parameters have been calculated for plane and wavy finned solar air heaters. It has been found that the performance of wavy finned solar air heater improved with the increase in the collector aspect ratio. The performance of wavy finned solar air heater has been found 30 percent hig...

  13. An Experimental Study of the Influence of in-Plane Fiber Waviness on Unidirectional Laminates Tensile Properties

    Science.gov (United States)

    Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong

    2017-12-01

    As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.

  14. Controlled electrodeposition of Au monolayer film on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Liu, Shengzhong Frank, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-15

    Highlights: • We fabricate Au monolayer film on Ionic liquid substrate using an electrochemical deposition technique. • Au monolayer film was deposited on a “soft substrate” for the first time. • Au monolayer film can contribute extra Raman enhancement. - Abstract: Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF{sub 6}] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  15. Surfactant induced flows in thin liquid films : an experimental study

    NARCIS (Netherlands)

    Sinz, D.K.N.

    2012-01-01

    The topic of the experimental work summarized in my thesis is the flow in thin liquid films induced by non-uniformly distributed surfactants. The flow dynamics as a consequence of the deposition of a droplet of an insoluble surfactant onto a thin liquid film covering a solid substrate where

  16. Performance comparisons of enhanced tubes with discrete and wavy disruption shapes

    Energy Technology Data Exchange (ETDEWEB)

    Arman, B.; Rabas, T.J.

    1993-08-01

    This paper presents comparisons of the friction factors and heat-transfer coefficients obtained with enhanced tubes with transverse discrete and almost transverse wavy two-dimensional disruptions. Both experimental data and numerical predictions were used for the comparisons. For the latter a two-layer turbulence model incorporated in a body-fitted, finite-volume method was used. The disruption shape, discrete or wavy, depends on the manufacturing process. If an extrusion process is used, discrete disruptions (ribs) of various profiles are obtained that are separated from each other by a flat or unaltered inside diameter. If a spirally indenting process is used, a wavy proflie is obtained with a continuously varying inside diameter between two adjacent disruption peaks. These disruptions are transverse or almost transverse to the tube axis and separated by a distance that exceeds the reattachment length. Based on these comparisons, the following conclusions are obtained: (1) the disruption shape is not an important correlating parameter for discrete disruptions, (2) only the friction factor is influenced by the shape for wavy disruptions, and (3) there are major differences between both the friction-factor and heat-transfer performance of discrete and wavy disruptions with the same maximum disruption height and spacing. However, the most important finding is that the groove radius of spirally indented tubes should be increased because of the substantial reduction of the friction factor but only a small decrease in the thermal performance. Additional comparisons of predicted results were made to obtain a fundamental understanding of the influence of these different shapes.

  17. Stabilization of thin liquid films by repulsive van der waals force

    KAUST Repository

    Li, Erqiang

    2014-05-13

    Using high-speed video recording of bubble rise experiments, we study the stability of thin liquid films trapped between a rising bubble and a surfactant-free liquid-liquid meniscus interface. Using different combinations of nonpolar oils and water that are all immiscible, we investigate the extent to which film stability can be predicted by attractive and repulsive van der Waals (vdW) interactions that are indicated by the relative magnitude of the refractive indices of the liquid combinations, for example, water (refractive index, n = 1.33), perfluorohexane (n = 1.23), and tetradecane (n = 1.43). We show that, when the film-forming phase was oil (perfluorohexane or tetradecane), the stability of the film could always be predicted from the sign of the vdW interaction, with a repulsive vdW force resulting in a stable film and an attractive vdW force resulting in film rupture. However, if aqueous electrolyte is the film-forming bulk phase between the rising air bubble and the upper oil phase, the film always ruptured, even when a repulsive vdW interaction was predicted. We interpret these results as supporting the hypothesis that a short-ranged hydrophobic attraction determines the stability of the thin water film formed between an air phase and a nonpolar oil phase. © 2014 American Chemical Society.

  18. Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column

    Science.gov (United States)

    Liu, Chong

    2017-10-01

    Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.

  19. Energy driven self-organization in nanoscale metallic liquid films.

    Science.gov (United States)

    Krishna, H; Shirato, N; Favazza, C; Kalyanaraman, R

    2009-10-01

    Nanometre thick metallic liquid films on inert substrates can spontaneously dewet and self-organize into complex nanomorphologies and nanostructures with well-defined length scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and ensuing nanomorphologies, as well as introduce dramatic changes to dewetting length scales due to the nanoscopic nature of film heating. Here, we show theoretically that the self-organization principle, based on equating the rate of transfer of thermodynamic free energy to rate of loss in liquid flow, accurately describes the spontaneous dewetting. Experimental measurements of laser dewetting of Ag and Co liquid films on SiO(2) substrates confirm this principle. This energy transfer approach could be useful for analyzing the behavior of nanomaterials and chemical processes in which spontaneous changes are important.

  20. Reducing Friction with a Liquid Film on the Body Surface

    Directory of Open Access Journals (Sweden)

    Nikolay Klyuev

    2018-03-01

    Full Text Available A flow of a thin layer of liquid is simulated on a flat surface of a body located in a stream of air. Liquid film on the surface of the body reduces frictional resistance and can be used as a boundary layer control element. The paper presents a mathematical model of the film flow on a half-plane, located at an angle to the horizon. The fluid flow is determined by the force of gravity and friction from the external air current. A model of an incompressible viscous fluid is used in the boundary-layer approximation. The terms of the motion equation are averaged over the film thickness according to the Leibniz rule. In the cross section of the film, a quadratic law is adopted for the distribution of the longitudinal velocity, taking into account friction on the film surface. An analytical solution of the problem is obtained in the form of series in powers of the small parameter for determining the film thickness and the average longitudinal velocity along the length of the plate. It is shown that the friction decreases with flow around a half-plane with a film of liquid on the surface.

  1. 3-D modeling of parietal liquid films in internal combustion engines; Modelisation tridimensionnelle des films liquides parietaux dans les moteurs a combustion interne

    Energy Technology Data Exchange (ETDEWEB)

    Foucart, H

    1998-12-11

    To simulate the air-fuel mixing in the intake ports and cylinder of an internal combustion engines, a wall fuel liquid film model has been developed for integration in 3D CFD codes. Phenomena taken into account include wall film formation by an impinging spray without splashing effect, film transport such as governed by mass and momentum equations with hot wall effects, and evaporation considering energy equation with an analytical mass transfer formulation developed here. A continuous-fluid method is used to describe the wall film over a three dimensional complex surface. The basic approximation is that of a laminar incompressible boundary layer; the liquid film equations are written in an integral form and solved by a first-order ALE finite volume scheme; the equation system is closed without coefficient fitting requirements. The model has been implemented in a Multi-Block version of KIVA-II (KMB) and tested against problems having theoretical solutions. Then in a first step, it has been compared to the measurements obtained in a cylindrical pipe reproducing the main characteristics of SI engine intake pipe flow and in a second step, it has been compared to the Xiong experiment concerning the film evaporation on a hot wall. The film behaviour is satisfactory reproduced by the computations for a set of operating conditions. Finally, engine calculations were conducted showing the importance of including a liquid film model for the simulations. (author) 54 refs.

  2. A Retrospective on Modulated Wavy Vortex Flow

    OpenAIRE

    Gorman, Michael; Swinney, Harry

    2009-01-01

    A fluid dynamics video of the Modulated Wavy Vortex Flow state of Taylor-Couette flow with the outer cylinder fixed is presented. This state precedes the transition to turbulence, which is more gradual than that for other fluid systems.

  3. An experimental study of high heat flux removal by shear-driven liquid films

    Directory of Open Access Journals (Sweden)

    Zaitsev Dmitry

    2017-01-01

    Full Text Available Intensively evaporating liquid films, moving under the friction of a co-current gas flow in a mini-channel (shear-driven liquid films, are promising for the use in cooling systems of modern semiconductor devices with high local heat release. In this work, the effect of various parameters, such as the liquid and gas flow rates and channel height, on the critical heat flux in the locally heated shear-driven water film has been studied. A record value of the critical heat flux of 1200 W/cm2 has been achieved in experiments. Heat leaks to the substrate and heat losses to the atmosphere in total do not exceed 25% for the heat flux above 400 W/cm2. Comparison of the critical heat fluxes for the shear-driven liquid film and for flow boiling in a minichannel shows that the critical heat flux is an order of magnitude higher for the shear-driven liquid film. This confirms the prospect of using shear-driven liquid films in the modern high-efficient cooling systems.

  4. The evolution of droplet impacting on thin liquid film at superhydrophilic surface

    Science.gov (United States)

    Li, Yun; Zheng, Yi; Lan, Zhong; Xu, Wei; Ma, Xuehu

    2017-12-01

    Thin films are ubiquitous in nature, and the evolution of a liquid film after droplet impact is critical in many industrial processes. In this paper, a series of experiments and numerical simulations are conducted to investigate the distribution and evolution features of local temperature as the droplet impacts a thin film on the superhydrophilic surface by the thermal tracing method. A cold area is formed in the center after droplet impacts on heated solid surfaces. For the droplet impact on thin heated liquid film, a ring-shaped low temperature zone is observed in this experiment. Meanwhile, numerical simulation is adopted to analyze the mechanism and the interaction between the droplet and the liquid film. It is found that due to the vortex velocity distribution formed inside the liquid film after the impact, a large part of the droplet has congested. The heating process is not obvious in the congested area, which leads to the formation of a low-temperature area in the results.

  5. Preparation and Characterization of Silver Liquid Thin Films for Magnetic Fluid Deformable Mirror

    Directory of Open Access Journals (Sweden)

    Lianchao Zhang

    2015-01-01

    Full Text Available Silver liquid thin film, formed by silver nanoparticles stacking and spreading on the surface of the liquid, is one of the important parts of magnetic fluid deformable mirror. First, silver nanoparticles were prepared by liquid phase chemical reduction method using sodium citrate as reducing agent and stabilizer and silver nitrate as precursor. Characterization of silver nanoparticles was studied using X-ray diffractometer, UV-vis spectrophotometer, and transmission electron microscope (TEM. The results showed that silver nanoparticles are spherical and have a good monodispersity. Additionally, the effect of the reaction conditions on the particle size of silver is obvious. And then silver liquid thin films were prepared by oil-water two-phase interface technology using as-synthesized silver nanoparticles. Properties of the film were investigated using different technology. The results showed that the film has good reflectivity and the particle size has a great influence on the reflectivity of the films. SEM photos showed that the liquid film is composed of multilayer silver nanoparticles. In addition, stability of the film was studied. The results showed that after being stored for 8 days under natural conditions, the gloss and reflectivity of the film start to decrease.

  6. Aligned silane-treated MWCNT/liquid crystal polymer films

    International Nuclear Information System (INIS)

    Cervini, Raoul; Simon, George P; Ginic-Markovic, Milena; Matisons, Janis G; Huynh, Chi; Hawkins, Stephen

    2008-01-01

    We report on a method to preferentially align multiwall carbon nanotubes (MWCNTs) in a liquid crystalline matrix to form stable composite thin films. The liquid crystalline monomeric chains can be crosslinked to form acrylate bridges, thereby retaining the nanotube alignment. Further post-treatment by ozone etching of the composite films leads to an increase in bulk conductivity, leading to higher emission currents when examined under conducting scanning probe microscopy. The described methodology may facilitate device manufacture where electron emission from nanosized tips is important in the creation of new display devices

  7. Slippage and nanorheology of thin liquid polymer films

    International Nuclear Information System (INIS)

    Bäumchen, Oliver; Fetzer, Renate; Klos, Mischa; Lessel, Matthias; Marquant, Ludovic; Hähl, Hendrik; Jacobs, Karin

    2012-01-01

    Thin liquid films on surfaces are part of our everyday life; they serve, e.g., as coatings or lubricants. The stability of a thin layer is governed by interfacial forces, described by the effective interface potential, and has been subject of many studies in recent decades. In recent years, the dynamics of thin liquid films has come into focus since results on the reduction of the glass transition temperature raised new questions on the behavior of especially polymeric liquids in confined geometries. The new focus was fired by theoretical models that proposed significant implication of the boundary condition at the solid/liquid interface on the dynamics of dewetting and the form of a liquid front. Our study reflects these recent developments and adds new experimental data to corroborate the theoretical models. To probe the solid/liquid boundary condition experimentally, different methods are possible, each bearing advantages and disadvantages, which will be discussed. Studying liquid flow on a variety of different substrates entails a view on the direct implications of the substrate. The experimental focus of this study is the variation of the polymer chain length; the results demonstrate that inter-chain entanglements and in particular their density close to the interface, originating from non-bulk conformations, govern the liquid slip of a polymer. (paper)

  8. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Praveen, E-mail: pmalik100@yahoo.co [Department of Physics, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab (India); Raina, K.K. [Liquid Crystal Group, Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala 147004, Punjab (India)

    2010-01-01

    Guest-host polymer-dispersed liquid crystal (GHPDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic dye (anthraquinone blue) by polymerization-induced phase separation (PIPS) technique. Non-ionic dichroic dye (1%, 2% and 4% wt./wt. ratio) was taken as guest in PDLC host. Polarizing microscopy shows that in the absence of electric field, liquid crystal (LC) droplets in polymer matrix mainly exhibit bipolar configuration, however, relatively at higher field, maltese-type crosses were observed. Our results show that approx1% dye-doped PDLC film shows better transmission and faster response times over pure polymer-dispersed nematic liquid crystal (PDNLC) and higher concentrated (2% and 4%) GHPDLC films.

  9. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films

    International Nuclear Information System (INIS)

    Malik, Praveen; Raina, K.K.

    2010-01-01

    Guest-host polymer-dispersed liquid crystal (GHPDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic dye (anthraquinone blue) by polymerization-induced phase separation (PIPS) technique. Non-ionic dichroic dye (1%, 2% and 4% wt./wt. ratio) was taken as guest in PDLC host. Polarizing microscopy shows that in the absence of electric field, liquid crystal (LC) droplets in polymer matrix mainly exhibit bipolar configuration, however, relatively at higher field, maltese-type crosses were observed. Our results show that ∼1% dye-doped PDLC film shows better transmission and faster response times over pure polymer-dispersed nematic liquid crystal (PDNLC) and higher concentrated (2% and 4%) GHPDLC films.

  10. Numerical study of wave disturbance in liquid cooling film

    Directory of Open Access Journals (Sweden)

    S.R. Shine

    2013-06-01

    Full Text Available Transient numerical simulations are carried out to investigate the liquid-gas interface characteristics associated with liquid film cooling flows. A two-dimensional axisymmetric multi-phase numerical model using finite volume formulation is developed. The model has been validated against available experimental data for liquid-film cooling flows inside tubes. The model has been used to predict the interface characteristics for a variety of imposed parameters and momentum flux ratios under cold flow conditions wherein both the coolant and mainstream are maintained at the same temperature. Disturbance waves are observed at the liquid-gas interface for coolant flows above a critical value and after a finite distance from the inlet. The distance toward the wave inception point increased with the increase of momentum flux ratio. However, at higher momentum flux ratios, the properties of the disturbance waves did not vary significantly. The parameters related to the liquid-gas interface waves, namely, wave velocity, frequency, amplitude and wave length have been analyzed in detail. Analysis indicates that the liquid entrainment is due to the shearing of the disturbance wave crest.

  11. Stability of tetraphenyl butadiene thin films in liquid xenon

    International Nuclear Information System (INIS)

    Sanguino, P.; Balau, F.; Botelho do Rego, A.M.; Pereira, A.; Chepel, V.

    2016-01-01

    Tetraphenyl butadiene (TPB) is widely used in particle detectors as a wavelength shifter. In this work we studied the stability of TPB thin films when immersed in liquid xenon (LXe). The thin films were deposited on glass and quartz substrates by thermal evaporation. Morphological and chemical surface properties were monitored before and after immersion into LXe by scanning electron microscopy and X-ray photoelectron spectroscopy. No appreciable changes have been detected with these two methods. Grain size and surface chemical composition were found to be identical before and after submersion into LXe. However, the film thickness, measured via optical transmission in the ultraviolet–visible wavelength regions, decreased by 1.6 μg/cm 2 (24%) after immersion in LXe during 20 h. These results suggest the necessity of using a protective thin film over the Tetraphenyl butadiene when used as a wavelength shifter in LXe particle detectors. - Highlights: • Stability of tetraphenyl butadiene (TPB) thin films immersed in liquid xenon (LXe). • Thermally evaporated TPB thin films were immersed in LXe for 20 h. • Film morphology and chemical surface properties remained unchanged. • Surface density of the films decreased by 1.6 μg/cm 2 (24%) after immersion in LXe. • For using in LXe particle detectors, TPB films should be protected with a coating.

  12. Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?

    Science.gov (United States)

    Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim

    2014-11-01

    Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).

  13. Flow analysis for efficient design of wavy structured microchannel mixing devices

    Science.gov (United States)

    Kanchan, Mithun; Maniyeri, Ranjith

    2018-04-01

    Microfluidics is a rapidly growing field of applied research which is strongly driven by demands of bio-technology and medical innovation. Lab-on-chip (LOC) is one such application which deals with integrating bio-laboratory on micro-channel based single fluidic chip. Since fluid flow in such devices is restricted to laminar regime, designing an efficient passive modulator to induce chaotic mixing for such diffusion based flow is a major challenge. In the present work two-dimensional numerical simulation of viscous incompressible flow is carried out using immersed boundary method (IBM) to obtain an efficient design for wavy structured micro-channel mixing devices. The continuity and Navier-Stokes equations governing the flow are solved by fractional step based finite volume method on a staggered Cartesian grid system. IBM uses Eulerian co-ordinates to describe fluid flow and Lagrangian co-ordinates to describe solid boundary. Dirac delta function is used to couple both these co-ordinate variables. A tether forcing term is used to impose the no-slip boundary condition on the wavy structure and fluid interface. Fluid flow analysis by varying Reynolds number is carried out for four wavy structure models and one straight line model. By analyzing fluid accumulation zones and flow velocities, it can be concluded that straight line structure performs better mixing for low Reynolds number and Model 2 for higher Reynolds number. Thus wavy structures can be incorporated in micro-channels to improve mixing efficiency.

  14. Liquid Film Diffusion on Reaction Rate in Submerged Biofilters

    DEFF Research Database (Denmark)

    Christiansen, Pia; Hollesen, Line; Harremoës, Poul

    1995-01-01

    Experiments were carried out in order to investigate the influence of liquid film diffusion on reaction rate in a submerged biofilter with denitrification and in order to compare with a theoretical study of the mass transfer coefficient. The experiments were carried out with varied flow, identified...... by the empty bed velocity of inflow and recirculation, respectively 1.3, 2.8, 5.6 and 10.9 m/h. The filter material consisted of 3 mm biostyren spheres. The results indicate that the influence of liquid film diffusion on reaction rate can be ignored....

  15. Thickness of Residual Wetting Film in Liquid-Liquid Displacement in Capillary Channels

    Science.gov (United States)

    Beresnev, I. A.; Gaul, W.; Vigil, D.

    2010-12-01

    Core-annular flow is common in nature, representing, for example, how streams of oil, surrounded by water, move in petroleum reservoirs. Oil, typically a non-wetting fluid, tends to occupy the middle (core) part of a channel, while water forms a surrounding wall-wetting film. What is the thickness of this wetting film? Understanding this question may determine the ultimate oil recovery. A classic theory has been in existence for nearly 50 years offering a solution, although in a controversial manner, for moving gas bubbles. On the other hand, an acceptable, experimentally verified theory for a body of one liquid flowing in another has not been available. We develop a hydrodynamic, testable theory providing an explicit relationship between the thickness of the wetting film and fluid properties for a blob of one fluid moving in another, with neither phase being gas. In its relationship to the capillary number Ca, the thickness of the film is predicted to be proportional to Ca2 at lower Ca and to level off at a constant value of about 20 % the channel radius at higher Ca. The thickness of the film is deduced to be approximately unaffected by the viscosity ratio of the fluids. We have conducted our own laboratory experiments and compiled experimental data from other studies, all of which are mutually consistent and confirm the salient features of the theory. At the same time, the classic law, originally deduced for films surrounding moving gas bubbles but often believed to hold for liquids as well, fails to explain the observations.

  16. Instabilities of isothermal liquid films

    International Nuclear Information System (INIS)

    Solesio, J.N.

    1977-04-01

    The integral forms of the mass and linear momentum balances are given for a two-phase flow system with surface tension and without material surface properties. The instantaneous local laws for each phase and the jump conditions for the interface are derived from these balance laws. Then, these laws are systematically simplified by means of dimensional analysis for an isothermal liquid film flowing down a plane. The stability studies of films are critically reviewed. The different methods are divided into two groups: the first one deals with the global approach, the second one with the perturbation theory. This group includes a new technique based upon the method of quadrature by differentiation. Finally, the different methods are compared [fr

  17. Measurement of liquid film in microchannels using a laser focus displacement meter

    Science.gov (United States)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji; Hibiki, Takashi; Ishii, Mamoru

    2005-06-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in microchannels and minichannels. To prevent the tube wall signal from disturbing that of the gas liquid interface, a fluorocarbon tube with a water box was used; the refraction index of this device is the same as that for water. With this method, accurate instantaneous measurements of the interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement by using the measured displacement in a fluorocarbon tube of 25 μm to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 mm and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with the real displacement to within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 μm at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 mm and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film of less than 1 μm in thickness in the slug and annular flow regimes.

  18. Measurement of liquid film in microchannels using a laser focus displacement meter

    Energy Technology Data Exchange (ETDEWEB)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji [Tokyo University of Marine Science and Technology, Faculty of Marine Technology, Etchujima, Koto, Tokyo (Japan); Hibiki, Takashi [Kyoto University, Research Reactor Institute, Kumatori, Sennan, Osaka (Japan); Ishii, Mamoru [Purdue University, School of Nuclear Engineering, West Lafayette, IN (United States)

    2005-06-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in microchannels and minichannels. To prevent the tube wall signal from disturbing that of the gas-liquid interface, a fluorocarbon tube with a water box was used; the refraction index of this device is the same as that for water. With this method, accurate instantaneous measurements of the interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement by using the measured displacement in a fluorocarbon tube of 25 {mu}m to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 mm and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with the real displacement to within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 {mu}m at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 mm and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film of less than 1 {mu}m in thickness in the slug and annular flow regimes. (orig.)

  19. Deformation and dewetting of thin liquid films induced by moving gas jets

    NARCIS (Netherlands)

    Berendsen, C.W.J.; Zeegers, J.C.H.; Darhuber, A.A.

    2013-01-01

    We study the deformation of thin liquid films subjected to impinging air-jets that are moving with respect to the substrate. The height profile and shape of the deformed liquid film is evaluated experimentally and numerically for different jet Reynolds numbers and translation speeds, for different

  20. Natural convection of Al2O3-water nanofluid in a wavy enclosure

    Science.gov (United States)

    Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.

    2017-06-01

    Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat

  1. Effects of Wavenumber and Chirality on the Axial Compressive Behavior of Wavy Carbon Nanotubes: A Molecular Mechanics Study

    Directory of Open Access Journals (Sweden)

    Masaki Kawachi

    2014-01-01

    Full Text Available The effects of wavenumber and chirality on the axial compressive behavior and properties of wavy carbon nanotubes (CNTs with multiple Stone-Wales defects are investigated using molecular mechanics simulations with the adaptive intermolecular reactive empirical bond-order potential. The wavy CNTs are assumed to be point-symmetric with respect to their axial centers. It is found that the wavy CNT models, respectively, exhibit a buckling point and long wavelength buckling mode regardless of the wavenumbers and chiralities examined. It is also found that the wavy CNTs have nearly the same buckling stresses as their pristine straight counterparts.

  2. Analytical and numerical techniques for predicting the interfacial stresses of wavy carbon nanotube/polymer composites

    NARCIS (Netherlands)

    Yazdchi, K.; Salehi, M.; Shokrieh, M.M.

    2009-01-01

    By introducing a new simplified 3D representative volume element for wavy carbon nanotubes, an analytical model is developed to study the stress transfer in single-walled carbon nanotube-reinforced polymer composites. Based on the pull-out modeling technique, the effects of waviness, aspect ratio,

  3. Measurement on liquid film in microchannels using laser focus displacements meter

    International Nuclear Information System (INIS)

    Fukamachi, Norihiro; Tamura, Naohisa; Hazuku, Tatsuya; Takamasa, Tomoji

    2003-01-01

    To elucidate details of the fascinating nonlinear phenomena of gas-liquid interface in micro- and mini-channels, high spatial temporal knowledge of the interface in gas-liquid two-phase flows is essential. This paper presents a new method for measuring interface of liquid film in microchannels using a laser focus displacement meter(LFD). The purpose of the study was to clarify the effectiveness the new method for obtaining detailed information of interface displacement, especially in the case of thin liquid film, in micro- and mini-channels. In the test, water and nitrogen gas were used as working fluids. To eliminate the signal of tube wall disturbing that of gas-liquid interface, a fluorocarbon tube with water box was used; whose refraction index was the same as one of water. With this method, accurate measurements of the interface of liquid film, in real time, with sensitivity of 0.1 μm and 1 kHz, were achieved. The error caused by the refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated theoretically and experimentally. The formulated theoretical equation can derive the real interface displacement using measured displacement in a fluorocarbon tube of 25 μm -2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 and 2 mm in I.D. showed that the corrected interface displacement calculated by the equation agreed with real displacement within a 1% margin of error. Simultaneous measurement on the interface in a fluorocarbon tube of 0.5 and 1 mm in I.D. using the LFD and a high-speed camera movie with a microscope was carried out. It showed that the LFD could measure the interface of liquid film in high spatially and temporally in annular, slug and piston flow regions and clarified the existence of thin liquid film thinner than 1 μm in thickness in slug and annular regions. (author)

  4. Film thickness in gas-liquid two-phase flow, (4)

    International Nuclear Information System (INIS)

    Fukano, Toru; Sekoguchi, Kotohiko; Kawakami, Yasushi; Shimizu, Hideo.

    1979-01-01

    This paper reports in detail on the thinning process of water film by means of the drainage that appears directly under an obstacle inserted against the flow into the gas-liquid two-phase flow in a tube. The equipment is the same as that used for the first study, in which the orifice type obstacle of 5 mm long having the area ratio of 0.235 was used. This obstacle is the one for which the most significant drainage was observed in the previous study. The change of liquid film in course of time was measured by the constant current method as described before. First, the premising conditions and duration of the drainage are considered. In the thinning by drainage, water film became about 0.1 mm at the early stage of 0.1 sec from its start, then the whole water film became the flow governed by viscosity (called viscous water film). After this state, the film became thinner very slowly. The viscous film is thicker as it is apart farther from the obstacle. If the flow conditions show significant drainage, the duration of drainage directly under the obstacle is nearly equal to the passing time of gas slug. When the thinning of water film is accelerated by drainage, it might cause the possible disappearance of water film when gas slug passes, even if the thermal load is comparatively low. (Wakatsuki, Y.)

  5. Stability of thin liquid films containing surface active particles

    Science.gov (United States)

    Umashankar, Hariharan; Kalpathy, Sreeram; Dixit, Harish

    2017-11-01

    The stability and dynamics of thin liquid films(industrial settings like coating and printing processes and extraction of oil from porous rocks. In this study a hydrodynamic model is introduced to capture the long term evolution of a Newtonian liquid film containing insoluble surfaceactive particles.We consider here the possibility of four distinct interaction regimes based on the surface rheological effects of the particles, such that either, both or neither of Marangoni and surface viscosity effects would be present at the leading order in the governing equations. The liquid film is bounded by a rigid impermeable solid below and covered by passive air phase above.A standard linear stability analysis and nonlinear simulations are performed on the set of highly coupled partial differential evolution equations. Linear stability analysis gives insights on whether a particular imposed perturbationwavenumber will grow or decay in time and also evaluating the fastest growing wavenumber. Parametric studies for all four regimes provides a strong confirmation that surface viscosity and Marangoni effects are indeed rupture delaying effects.

  6. Liquid-film assisted formation of alumina/niobium interfaces

    OpenAIRE

    Sugar, Joshua D.; McKeown, Joseph T.; Marks, Robert A.; Glaeser, Andreas M.

    2002-01-01

    Alumina has been joined at 1400 degrees C using niobium-based interlayers. Two different joining approaches were compared: solid-state diffusion bonding using a niobium foil as an interlayer, and liquid-film assisted bonding using a multilayer copper/niobium/copper interlayer. In both cases, a 127-(mu)m thick niobium foil was used; =1.4-(mu)m or =3-(mu)m thick copper films flanked the niobium. Room-temperature four-point bend tests showed that the introduction of a copper film had a significa...

  7. [The peculiar morphological features of the imprints of straight and wavy head hair dirtied with blood].

    Science.gov (United States)

    Leonova, E N; Nagornov, M N; Prokhorenko, A S

    2018-01-01

    The objective of the present study was to elucidate the specific morphological features of the imprints of blood-soaked straight and wavy head hair. The contact imprints of straight and wavy head hair dirtied with blood were obtained experimentally. The imprints of straight hair were shown to exhibit the elements in the form of the rectilinear and bow-shaped slightly bent stripes. The imprints of wavy hair were shaped as the arches, waves, circles, and a large number of various small elements, such as dashes and commas.

  8. Contact stiffness and damping of liquid films in dynamic atomic force microscope

    International Nuclear Information System (INIS)

    Xu, Rong-Guang; Leng, Yongsheng

    2016-01-01

    The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayer distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.

  9. Contact stiffness and damping of liquid films in dynamic atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Rong-Guang; Leng, Yongsheng, E-mail: leng@gwu.edu [Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052 (United States)

    2016-04-21

    The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayer distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.

  10. Stabilization of thin liquid films by repulsive van der waals force

    KAUST Repository

    Li, Erqiang; Vakarelski, Ivan Uriev; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-01-01

    Using high-speed video recording of bubble rise experiments, we study the stability of thin liquid films trapped between a rising bubble and a surfactant-free liquid-liquid meniscus interface. Using different combinations of nonpolar oils and water

  11. Near-field interaction of colloid near wavy walls

    Science.gov (United States)

    Luo, Yimin; Serra, Francesca; Wong, Denise; Steager, Edward; Stebe, Kathleen

    Anisotropic media can be used to manipulate colloids, in tandem with carefully designed boundary conditions. For example, in bulk nematic liquid crystal, a wall with homeotropic anchoring repels a colloid with the same anchoring; yet by changing the surface topography from planar to concave, one can turn repulsion into attraction. We explore the behaviors of micro-particles with associated topological defects (hedgehogs or Saturn rings) near wavy walls. The walls locally excite disturbance, which decays into bulk. The range of influence is related to the curvature. The distortion can be used to position particles, either directly on the structure or at a distance away, based on the ``splay-matching'' rules. When distortion becomes stronger through the deepening of the well, the splay field created by the wall can prompt transformation from a Saturn ring to a hedgehog. We combine wells of different wavelength and depth to direct colloid movement. We apply a magnetic field to reset the initial position of ferromagnetic colloids and subsequently release them to probe the elastic energy landscape. Our platform enables manipulation, particle selection, and a detailed study of defect structure under the influence of curvature. Army Research Office.

  12. Behaviour of liquid films and flooding in counter-current two-phase flow, (1)

    International Nuclear Information System (INIS)

    Suzuki, Shin-ichi; Ueda, Tatsuhiro.

    1978-01-01

    This paper reports on the results of study of the behavior of liquid film and flooding in counter-current two phase flow, and the flow speed of gas phase was measured over the wide ranges of tube diameter, tube length, amount of liquid flow, viscosity and surface tension. Liquid samples used for this experiment were water, glycerol, and second octyl alcohol. The phenomena were observed with a high speed camera. The maximum thickness of liquid film was measured, and the effects of various factors on the flooding were investigated. The results of investigation were as follows. The big waves which cause the flooding were developed by the interaction of one of the waves on liquid film surface with gas phase flow. The flow speed of gas phase at the time of beginning of flooding increases with the reduction of amount of liquid flow and the increase of tube diameter. The flooding flow speed is reduced with the increase of tube length. The larger maximum film thickness at the time of no gas phase flow causes flooding at low gas phase flow speed. (Kato, T.)

  13. Effect of liquid film on near-threshold laser ablation of a solid surface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongsik; Oh, Bukuk; Lee, Ho

    2004-01-30

    Enhancement of material ablation and photoacoustic excitation by an artificially deposited liquid film in the process of pulsed-laser ablation (PLA) is investigated in this paper. Ablation threshold, ablation rate, surface topography, and acoustic-transient emission are also measured for dry and liquid film-coated surfaces. The physical mechanisms of enhanced ablation in the liquid-assisted process are analyzed at relatively low laser fluences with negligible effect of laser-produced plasma. Particularly, correlation between material ablation and acoustic-transient generation is examined. In the experiment, aluminum thin-films and bulk foils are ablated by Q-switched Nd:YAG laser pulses. The dependence of ablation rate and laser-induced topography on liquid film thickness and chemical composition is also examined. Photoacoustic emission is measured by the probe beam deflection method utilizing a CW HeNe laser and a microphone. In comparison with a dry ablation process, the liquid-assisted ablation process results in substantially augmented ablation efficiency and reduced ablation threshold. The results indicate that both increased laser-energy coupling, i.e., lowered reflectance, and amplified photoacoustic excitation in explosive vaporization of liquid are responsible for the enhanced material ablation.

  14. Analysis of the stability of native oxide films at liquid lead/metal interfaces

    International Nuclear Information System (INIS)

    Lesueur, C.; Chatain, D.; Gas, P.; Bergman, C.; Baque, F.

    2002-01-01

    The interface between liquid lead and different metallic solids (pure metals: Al, Fe and Ni, and T91 steel) was investigated below 400 deg C under ultrahigh vacuum (UHV) by wetting experiments. The aim was to check the physical stability of native oxide films grown at the surface of the substrates, along a contact with liquid lead. Two types of metallic substrates were used: i) conventional bulk polycrystals, and ii) nanocrystalline films obtained by e-beam evaporation under UHV. The actual contact between liquid lead and the solid substrates was achieved by preparing lead drops in-situ. Wetting experiments were performed using sessile drop and/or liquid bridge methods. Fresh solid surfaces and former liquid/solid interfaces can be explored by squeezing and stretching a liquid lead bridge formed between two parallel and horizontal substrates. It is shown that the contact with liquid lead produces the detachment of the native oxide films grown on the metallic solids. It is concluded that if oxide coatings are needed to protect a metallic solid from attack by liquid lead, they should be self-renewable. (authors)

  15. Numerical simulation of liquid film flow on revolution surfaces with momentum integral method

    International Nuclear Information System (INIS)

    Bottoni Maurizio

    2005-01-01

    The momentum integral method is applied in the frame of safety analysis of pressure water reactors under hypothetical loss of coolant accident (LOCA) conditions to simulate numerically film condensation, rewetting and vaporization on the inner surface of pressure water reactor containment. From the conservation equations of mass and momentum of a liquid film arising from condensation of steam upon the inner of the containment during a LOCA in a pressure water reactor plant, an integro-differential equation is derived, referring to an arbitrary axisymmetric surface of revolution. This equation describes the velocity distribution of the liquid film along a meridian of a surface of revolution. From the integro-differential equation and ordinary differential equation of first order for the film velocity is derived and integrated numerically. From the velocity distribution the film thickness distribution is obtained. The solution of the enthalpy equation for the liquid film yields the temperature distribution on the inner surface of the containment. (authors)

  16. The influence of double nested layer waviness on compression strength of carbon fiber composite materials

    International Nuclear Information System (INIS)

    Khan, Z.M.

    1997-01-01

    As advanced composite materials having superior physical and mechanical properties are being developed, optimization of their production processes in eagerly being sought. One of the most common defect in production of structural composites is layer waviness. Layer waviness is more pronounced in thick section flat and cylindrical laminates that are extensively used in missile casings, submersibles and space platforms. Layer waviness undulates the entire layers of a multidirectional laminate in through-the-thickness direction leading to gross deterioration of its compression strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wave 0 degree centigrade layer fabricated in IM/85510-7 carbon - epoxy composite laminate on a steel mold using single step fabrication procedure. The laminate was cured on a heated press according to specific curing cycle. Static compression testing was performed using NASA short block compression fixture on an MTS servo Hydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of composite laminate. The experimental and analytical results revealed that up to about 35% fraction of wave 0 degree layer exceeded 35%. This analysis indicated that the percentage of 0 degree wavy layer may be used to estimate the reduction in compression strength of a composite laminate under restricted conditions. (author)

  17. Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering

    Directory of Open Access Journals (Sweden)

    Rachman Chaim

    2016-04-01

    Full Text Available Recently, local melting of the particle surfaces confirmed the formation of spark and plasma during spark plasma sintering, which explains the rapid densification mechanism via liquid. A model for rapid densification of flash sintered ceramics by liquid film capillary was presented, where liquid film forms by local melting at the particle contacts, due to Joule heating followed by thermal runaway. Local densification is by particle rearrangement led by spreading of the liquid, due to local attractive capillary forces. Electrowetting may assist this process. The asymmetric nature of the powder compact represents an invasive percolating system.

  18. Wing in Ground Effect over a Wavy Surface

    Directory of Open Access Journals (Sweden)

    Valentin Adrian Jean BUTOESCU

    2018-06-01

    Full Text Available A vortex method has been used to investigate the effect of a wavy ground on the aerodynamic forces acting on a wing that flies in its proximity. The air is considered inviscid and incompressible. The problem is obviously unsteady, and the solutions were found numerically.

  19. Interfacial bubbles formed by plunging thin liquid films in a pool

    Science.gov (United States)

    Salkin, Louis; Schmit, Alexandre; David, Richard; Delvert, Alexandre; Gicquel, Eric; Panizza, Pascal; Courbin, Laurent

    2017-06-01

    We show that the immersion of a horizontally suspended thin film of liquid in a pool of the same fluid creates an interfacial bubble, that is, a bubble at the liquid-air interface. Varying the fluid properties, the film's size, and its immersion velocity, our experiments unveil two formation regimes characterized by either a visco-capillary or an inertio-capillary mechanism that controls the size of a produced bubble. To rationalize these results, we compare the pressure exerted by the air flow under a plunging film with the Laplace pressure needed to generate film dimpling, which subsequently yields air entrapment and the production of a bubble. This physical model explains the power-law variations of the bubble size with the governing dimensionless number for each regime.

  20. Pore-scale analysis of the minimum liquid film thickness around elongated bubbles in confined gas-liquid flows

    Science.gov (United States)

    Magnini, M.; Beisel, A. M.; Ferrari, A.; Thome, J. R.

    2017-11-01

    The fluid mechanics of elongated bubbles in confined gas-liquid flows in micro-geometries is important in pore-scale flow processes for enhanced oil recovery and mobilization of colloids in unsaturated soil. The efficiency of such processes is traditionally related to the thickness of the liquid film trapped between the elongated bubble and the pore's wall, which is assumed constant. However, the surface of long bubbles presents undulations in the vicinity of the rear meniscus, which may significantly decrease the local thickness of the liquid film, thus impacting the process of interest. This study presents a systematic analysis of these undulations and the minimum film thickness induced in the range Ca = 0.001- 0.5 and Re = 0.1- 2000 . Pore-scale Computational Fluid Dynamics (CFD) simulations are performed with a self-improved version of the opensource solver ESI OpenFOAM which is based on a Volume of Fluid method to track the gas-liquid interface. A lubrication model based on the extension of the classical axisymmetric Bretherton theory is utilized to better understand the CFD results. The profiles of the rear meniscus of the bubble obtained with the lubrication model agree fairly well with those extracted from the CFD simulations. This study shows that the Weber number of the flow, We = Ca Re , is the parameter that best describes the dynamics of the interfacial waves. When We 0.1, a larger number of wave crests becomes evident on the surface of the rear meniscus of the bubble. The liquid film thickness at the crests of the undulations thins considerably as the Reynolds number is increased, down to less than 60% of the value measured in the flat film region. This may significantly influence important environmental processes, such as the detachment and mobilization of micron-sized pollutants and pathogenic micro-organisms adhering at the pore's wall in unsaturated soil.

  1. Effectiveness-NTU analyses in a double tube heat exchanger equipped with wavy strip considering various angles

    International Nuclear Information System (INIS)

    Pourahmad, Saman; Pesteei, S.M.

    2016-01-01

    Highlights: • Double tube heat exchanger equipped with wavy strip turbulators was studied. • The effects of wavy strip angles on the effectiveness were investigated. • Variation of the effectiveness with hot and cold water flow rate was presented. • The effectiveness increases with the decrease of wavy strip angle. • The friction factor increases with the decrease of wavy strip angle. - Abstract: In the present study, effectiveness-NTU analyses in a double tube heat exchanger equipped with wavy strip considering various angles were experimentally studied. Moreover, variation of the effectiveness with hot water Reynolds numbers for different cold water flow rates were presented. These turbulators with different angles of 45°, 60°, 90°, 120° and 150° were made of galvanized plates with thickness of 1 mm and were installed in the inner tube of heat exchanger. The experiments were carried out at Reynolds numbers of 3000–13,500 at turbulent flow regime. Throughout the experiments, hot and cold water flowed through the inner pipe and the space between the pipes (annulus), respectively. It was tried to keep the inlet hot and cold water temperatures at constant values. Effectiveness-NTU analyses were made for the conditions with and without wavy strips including their different angles and compared to each other. Results showed the considerable effect of turbulators on effectiveness (ε) and number of heat transfer units (NTU) of double tube heat exchanger. In addition, some empirical correlations expressing the results were also developed based on curve fitting.

  2. Lasing in liquid crystal thin films

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)], E-mail: palto@online.ru

    2006-09-15

    A lasing condition is formulated in matrix form for optically anisotropic thin films. Lasing behavior of liquid-crystal slabs is analyzed. In particular, it is shown that if the spatial extent of a liquid crystal slab is much larger than its thickness, then laser emission is feasible not only along the normal to the slab, but also in the entire angular sector. The generated laser light can be observed experimentally as a spot or as concentric rings on a screen. The lowest lasing threshold corresponds to in-plane sliding modes leaking into the substrate. The feedback required for lasing is provided by reflection from the interfaces, rather than edges, of the liquid-crystal slab operating as a planar Fabry-Perot cavity. For cholesteric liquid crystals, it is shown that energy loss to the sliding modes leaking into the substrates and escaping through their edges is a key factor that limits the efficiency of band-edge emission along the normal to the slab.

  3. Influences of the wavy surface inserted in the middle of a circular tube heat exchanger on thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Jedsadaratanancai, Withada [King Mongkut' s Institute of Technology Ladkrabang, Bangkok (Thailand); Boonloi, Amnart [King Mongkut' s University of Technology North Bangkok, Bangkok (Thailand)

    2015-09-15

    Numerical investigations on flow topology, heat transfer behavior and performance evaluation in a circular tube inserted with various configurations of wavy surfaces, Inclined wavy surface (IWS), V-downstream wavy surface (VDWS), V-Upstream wavy surface (VUWS) are presented. The effects of the flow attack angles; 20 .deg., 30 .deg., 45.deg. and 60.deg. are studied for the Reynolds numbers, Re = 100-2000. The numerical results are compared with the smooth circular tube with no wavy surface and the previous works. It is found that the IWS, VDWS and VUWS can produce longitudinal vortex flow and impinging jet of the fluid flow like inclined baffle, V-downstream baffle and V-Upstream baffle, respectively, but give lower friction loss. The flow phenomena created by the wavy surfaces help to augment the heat transfer rate and thermal performance in the test tube. In the range studied, the order of enhancement for heat transfer rate is around 1.40-3.75, 1.60-6.25 and 1.30-5.80 times higher than the smooth tube for IWS, VDWS and VUWS, respectively. Moreover, the maximum thermal performance, presented in terms of the Thermal enhancement factor (TEF), is found to be about 1.60, 2.40 and 2.10, respectively, for IWS, VUWS and VDWS.

  4. Foam films as thin liquid gas separation membranes.

    Science.gov (United States)

    Ramanathan, Muruganathan; Müller, Hans Joachim; Möhwald, Helmuth; Krastev, Rumen

    2011-03-01

    In this letter, we testify the feasibility of using freestanding foam films as a thin liquid gas separation membrane. Diminishing bubble method was used as a tool to measure the permeability of pure gases like argon, nitrogen, and oxygen in addition to atmospheric air. All components of the foam film including the nature of the tail (fluorocarbon vs hydrocarbon), charge on the headgroup (anionic, cationic, and nonionic) and the thickness of the water core (Newton black film vs Common black film) were systematically varied to understand the permeation phenomena of pure gases. Overall results indicate that the permeability values for different gases are in accordance with magnitude of their molecular diameter. A smaller gaseous molecule permeates faster than the larger ones, indicating a new realm of application for foam films as size selective separation membranes.

  5. Flaser and wavy bedding in ephemeral streams: a modern and an ancient example

    Science.gov (United States)

    Martin, A. J.

    2000-10-01

    Flaser and wavy bedding are sedimentary structures characterized by alternating rippled sand and mud layers. These structures often are considered to form mostly in tidally influenced environments; published examples from fluvial environments are rare. Flaser and wavy bedding were found in two ephemeral stream deposits: the Jurassic Kayenta Formation and the modern wash in Seven Mile Canyon, both located in southeastern Utah, USA. These examples demonstrate that flaser bedding can form and be preserved in ephemeral streams.

  6. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus.

    Science.gov (United States)

    Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe

    2016-11-09

    Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.

  7. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  8. Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal

    Science.gov (United States)

    Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen

    2015-03-01

    We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.

  9. Full characterization of polypyrrole thin films electrosynthesized in room temperature ionic liquids, water or acetonitrile

    International Nuclear Information System (INIS)

    Viau, L.; Hihn, J.Y.; Lakard, S.; Moutarlier, V.; Flaud, V.; Lakard, B.

    2014-01-01

    Highlights: • Polypyrrole films were electrodeposited from three room temperature ionic liquids. • Polymer films were characterized using many surface analysis techniques. • The incorporation of anions and/or cations inside the polymer films was evidenced. • The influence of the ionic liquid on the polymer properties was deeply studied. - Abstract: Pyrrole was electrochemically oxidized in two conventional media (water and acetonitrile) and in three room temperature ionic liquids: 1-butyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Infrared and Raman Spectroscopies confirmed the formation of polypyrrole by electropolymerization but were unable to demonstrate the presence of anions in the polymer films. The use of ionic liquids as growth media resulted in polymer films having a good electrochemical activity. The difference of activity from one polymer film to the other was mainly attributed to the difference of viscosity between the solvents used. The morphological features of the polypyrrole films were also fully studied. Profilometric measurements demonstrated that polymer films grown, at the same potential, in ionic liquids were thinner and had a smaller roughness than those grown in other solvents. Atomic Force Microscopy showed that polypyrrole films had nearly similar micrometric nodular structure whatever the growth medium even if some differences of porosity and homogeneity were observed using Scanning Electron Microscopy. The incorporation of counter-anions at the top surface of the films was finally evidenced by X-ray Photoelectron Spectroscopy. These anions were also incorporated inside the polymer film with a uniform distribution as shown by Glow Discharge Optical Emission Spectroscopy

  10. Falling liquid film flow along cascade-typed first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, T.; Nakai, T.; Kawara, Z.

    2007-01-01

    To protect from high energy/particle fluxes caused by nuclear fusion reaction such as extremely high heat flux, X rays, Alpha particles and fuel debris to a first wall of an inertia fusion reactor, a 'cascade-typed' first wall with a falling liquid film flow is proposed as the 'liquid wall' concept which is one of the reactor chamber cooling and wall protection schemes: the reactor chamber can protect by using a liquid metal film flow (such as Li 17 Pb 83 ) over the wall. In order to investigate the feasibility of this concept, we conducted the numerical analyses by using the STREAM code and also conducted the flow visualization experiments. The numerical results suggested that the cascade structure design should be improved, so that we redesigned the cascade-typed first wall and performed the flow visualization as a POP (proof-of-principle) experiment. In the numerical analyses, the water is used as the working liquid and an acrylic plate as the wall. These selections are based on two reasons: (1) from the non-dimensional analysis approach, the Weber number (We=ρu 2 δ/σ: ρ is density, u is velocity, δ is film thickness, σ is surface tension coefficient) should be the same between the design (Li 17 Pb 83 flow) and the model experiment (water flow) because of the free-surface instability, (2) the SiC/SiC composite would be used as the wall material, so that the wall may have the less wettability: the acrylic plate has the similar feature. The redesigned cascade-typed first wall for one step (30 cm height corresponding to 4 Hz laser duration) consists of a liquid tank having a free-surface for keeping the constant water-head located at the backside of the first wall, and connects to a slit which is composed of two plates: one plate is the first wall, and the other is maintaining the liquid level. This design solved the trouble of the previous design. The test section for the flow visualization has the same structure and the same height as the reactor design

  11. Controlling the morphology of side chain liquid crystalline block copolymer thin films through variations in liquid crystalline content.

    Science.gov (United States)

    Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T

    2008-10-01

    In this paper, we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase-segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the intermaterial dividing surface. By manipulating the strength of these interactions, the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nanopatterning applications without manipulation of the surface chemistry or the application of external fields.

  12. Direct Numerical Simulation of Oscillatory Flow Over a Wavy, Rough, and Permeable Bottom

    Science.gov (United States)

    Mazzuoli, Marco; Blondeaux, Paolo; Simeonov, Julian; Calantoni, Joseph

    2018-03-01

    The results of a direct numerical simulation of oscillatory flow over a wavy bottom composed of different layers of spherical particles are described. The amplitude of wavy bottom is much smaller in scale than typical bed forms such as sand ripples. The spherical particles are packed in such a way to reproduce a bottom profile observed during an experiment conducted in a laboratory flow tunnel with well-sorted coarse sand. The amplitude and period of the external forcing flow as well as the size of the particles are set equal to the experimental values and the computed velocity field is compared with the measured velocity profiles. The direct numerical simulation allows for the evaluation of quantities, which are difficult to measure in a laboratory experiment (e.g., vorticity, seepage flow velocity, and hydrodynamic force acting on sediment particles). In particular, attention is focused on the coherent vortex structures generated by the vorticity shed by both the spherical particles and the bottom waviness. Results show that the wavy bottom triggers transition to turbulence. Moreover, the forces acting on the spherical particles are computed to investigate the mechanisms through which they are possibly mobilized by the oscillatory flow. It was found that forces capable of mobilizing surface particles are strongly correlated with the particle position above the mean bed elevation and the passage of coherent vortices above them.

  13. The effects of a flow obstacle on liquid film flowing concurrently with air in a horizontal rectangular duct

    International Nuclear Information System (INIS)

    Fukano, Tohru; Tominaga, Akira; Morikawa, Kengo.

    1986-01-01

    The aspect of a liquid film flowing near a flat plate type obstacle was observed, and the liquid film thickness and the entrainment were measured under a wide range of gas and liquid flow rates. The results are summarized as follows: (1) The configurations of film flows near the obstacle are classified according to whether (a) the liquid film climbs over the obstacle or not, (b) the air flows under the obstacle or not, or (c) the liquid film swells or sinks just upstream or downstream of the obstacle. (2) The lower the liquid flow rate, the larger the effect of the obstacle on the film thickness. (3) The generation of entrainment is regulated by the obstacle when the air volumetric flux is high and by the disturbance wave when it is low. (author)

  14. Linear stability of liquid films with phase change at the interface

    International Nuclear Information System (INIS)

    Spindler, Bertrand

    1980-01-01

    The objective of this research thesis is to study the linear stability of the flow of a liquid film on an inclined plane with a heat flow on the wall and an interfacial phase change, and to highlight the influence of the phase change on the flow stability. In order to do so, the author first proposed a rational simplification of equations by studying the order of magnitude of different terms, and based on some simple hypotheses regarding flow physics. Two stability studies are then addressed, one regarding a flow with a pre-existing film, and the other regarding the flow of a condensation film. In both cases, it is assumed that there is no imposed heat flow, but that the driving effect of vapour by the liquid film is taken into account [fr

  15. Preconcentration in gas or liquid phases using adsorbent thin films

    Directory of Open Access Journals (Sweden)

    Antonio Pereira Nascimento Filho

    2006-03-01

    Full Text Available The possibility of preconcentration on microchannels for organic compounds in gas or liquid phases was evaluated. Microstructures with different geometries were mechanically machined using poly(methyl methacrylate - PMMA as substrates and some cavities were covered with cellulose. The surfaces of the microchannels were modified by plasma deposition of hydrophilic or hydrophobic films using 2-propanol and hexamethyldisilazane (HMDS, respectively. Double layers of HMDS + 2-propanol were also used. Adsorption characterization was made by Quartz Crystal Measurements (QCM technique using reactants in a large polarity range that showed the adsorption ability of the structures depends more on the films used than on the capillary phenomena. Cellulose modified by double layer film showed a high retention capacity for all gaseous compounds tested. However, structures without plasma deposition showed low retention capacity. Microchannels modified with double layers or 2-propanol plasma films showed higher retention than non-modified ones on gas or liquid phase.

  16. A novel zebrafish mutant with wavy-notochord: an effective biological index for monitoring the copper pollution of water from natural resources.

    Science.gov (United States)

    Chen, Yau-Hung; Lin, Ji-Sheng

    2011-02-01

    We identified a novel zebrafish mutant that has wavy-notochord phenotypes, such as severely twisted notochord and posterior malformations, but has normal melanocytes. Histological evidences showed that proliferating vacuolar cells extended their growth to the muscle region, and consequently caused the wavy-notochord phenotypes. Interestingly, those malformations can be greatly reversed by exposure with copper, suggesting that copper plays an important role on wavy-notochord phenotypes. In addition, after long-term copper exposure, the surviving larvae derived from wavy-notochord mutants displayed bone malformations, such as twisted axial skeleton and osteophyte. These phenotypic changes and molecular evidences of wavy-notochord mutants are highly similar to those embryos whose lysyl oxidases activities have been inactivated. Taken together, we propose that (i) the putative mutated genes of this wavy-notochord mutant might be highly associated with the lysyl oxidase genes in zebrafish; and (ii) this fish model is an effective tool for monitoring copper pollution of water from natural resources. Copyright © 2009 Wiley Periodicals, Inc.

  17. Gas Separation Ability of the Liquid Bubble Film.

    Czech Academy of Sciences Publication Activity Database

    Řezníčková Čermáková, Jiřina; Petričkovič, Roman; Vejražka, Jiří; Setničková, Kateřina; Uchytil, Petr

    2016-01-01

    Roč. 166, JUN 22 (2016), s. 26-33 ISSN 1383-5866 Institutional support: RVO:67985858 Keywords : liquid film membrane * bubble * gas separation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  18. Control of cavity acoustics by surface waviness in landing configurations

    CSIR Research Space (South Africa)

    Dala, L

    2014-08-01

    Full Text Available ): 2321-3051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING Control of Cavity Acoustics by Surface Waviness In Landing Configurations Laurent Dala CSIR, DPSS/Aeronautics Systems, Pretoria 0001, South Africa...

  19. Foam-film-stabilized liquid bridge networks in evaporative lithography and wet granular matter

    KAUST Repository

    Vakarelski, Ivan Uriev

    2013-04-23

    Evaporative lithography using latex particle templates is a novel approach for the self-assembly of suspension-dispersed nanoparticles into ordered microwire networks. The phenomenon that drives the self-assembly process is the propagation of a network of interconnected liquid bridges between the template particles and the underlying substrate. With the aid of video microscopy, we demonstrate that these liquid bridges are in fact the border zone between the underlying substrate and foam films vertical to the substrate, which are formed during the evaporation of the liquid from the suspension. The stability of the foam films and thus the liquid bridge network stability are due to the presence of a small amount of surfactant in the evaporating solution. We show that the same type of foam-film-stabilized liquid bridge network can also propagate in 3D clusters of spherical particles, which has important implications for the understanding of wet granular matter. © 2013 American Chemical Society.

  20. Self-similarity of solitary waves on inertia-dominated falling liquid films.

    Science.gov (United States)

    Denner, Fabian; Pradas, Marc; Charogiannis, Alexandros; Markides, Christos N; van Wachem, Berend G M; Kalliadasis, Serafim

    2016-03-01

    We propose consistent scaling of solitary waves on inertia-dominated falling liquid films, which accurately accounts for the driving physical mechanisms and leads to a self-similar characterization of solitary waves. Direct numerical simulations of the entire two-phase system are conducted using a state-of-the-art finite volume framework for interfacial flows in an open domain that was previously validated against experimental film-flow data with excellent agreement. We present a detailed analysis of the wave shape and the dispersion of solitary waves on 34 different water films with Reynolds numbers Re=20-120 and surface tension coefficients σ=0.0512-0.072 N m(-1) on substrates with inclination angles β=19°-90°. Following a detailed analysis of these cases we formulate a consistent characterization of the shape and dispersion of solitary waves, based on a newly proposed scaling derived from the Nusselt flat film solution, that unveils a self-similarity as well as the driving mechanism of solitary waves on gravity-driven liquid films. Our results demonstrate that the shape of solitary waves, i.e., height and asymmetry of the wave, is predominantly influenced by the balance of inertia and surface tension. Furthermore, we find that the dispersion of solitary waves on the inertia-dominated falling liquid films considered in this study is governed by nonlinear effects and only driven by inertia, with surface tension and gravity having a negligible influence.

  1. Multiscale Simulation of Gas Film Lubrication During Liquid Droplet Collision

    Science.gov (United States)

    Chen, Xiaodong; Khare, Prashant; Ma, Dongjun; Yang, Vigor

    2012-02-01

    Droplet collision plays an elementary role in dense spray combustion process. When two droplets approach each other, a gas film forms in between. The pressure generated within the film prevents motion of approaching droplets. This fluid mechanics is fluid film lubrication that occurs when opposing bearing surfaces are completely separated by fluid film. The lubrication flow in gas film decides the collision outcome, coalescence or bouncing. Present study focuses on gas film drainage process over a wide range of Weber numbers during equal- and unequal-sized droplet collision. The formulation is based on complete set of conservation equations for both liquid and surrounding gas phases. An improved volume-of-fluid technique, augmented by an adaptive mesh refinement algorithm, is used to track liquid/gas interfaces. A unique thickness-based refinement algorithm based on topology of interfacial flow is developed and implemented to efficiently resolve the multiscale problem. The grid size on interface is up O(10-4) of droplet size with a max resolution of 0.015 μm. An advanced visualization technique using the Ray-tracing methodology is used to gain direct insights to detailed physics. Theories are established by analyzing the characteristics of shape changing and flow evolution.

  2. Post-modelling of images from a laser-induced wavy boiling front

    Energy Technology Data Exchange (ETDEWEB)

    Matti, R.S., E-mail: ramiz.matti@ltu.se [Luleå University of Technology, Department of Engineering Sciences and Mathematics, SE-971 87 Luleå (Sweden); University of Mosul, College of Engineering, Department of Mechanical Engineering, Mosul (Iraq); Kaplan, A.F.H. [Luleå University of Technology, Department of Engineering Sciences and Mathematics, SE-971 87 Luleå (Sweden)

    2015-12-01

    Highlights: • New method: post-modelling of high speed images from a laser-induced front. • From the images a wavy cavity and its absorption distribution is calculated. • Histograms enable additional statistical analysis and understanding. • Despite the complex topology the absorptivity is bound to 35–43%. • The new method visualizes valuable complementary information. - Abstract: Processes like laser keyhole welding, remote fusion laser cutting or laser drilling are governed by a highly dynamic wavy boiling front that was recently recorded by ultra-high speed imaging. A new approach has now been established by post-modelling of the high speed images. Based on the image greyscale and on a cavity model the three-dimensional front topology is reconstructed. As a second step the Fresnel absorptivity modulation across the wavy front is calculated, combined with the local projection of the laser beam. Frequency polygons enable additional analysis of the statistical variations of the properties across the front. Trends like shadow formation and time dependency can be studied, locally and for the whole front. Despite strong topology modulation in space and time, for lasers with 1 μm wavelength and steel the absorptivity is bounded to a narrow range of 35–43%, owing to its Fresnel characteristics.

  3. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.

    Science.gov (United States)

    Henkel, S; Beyrau, F; Hardalupas, Y; Taylor, A M K P

    2016-02-08

    This paper describes the development and application of a novel optical technique for the measurement of liquid film thickness formed on surfaces during the impingement of automotive fuel sprays. The technique makes use of the change of the light scattering characteristics of a metal surface with known roughness, when liquid is deposited. Important advantages of the technique over previously established methods are the ability to measure the time-dependent spatial distribution of the liquid film without a need to add a fluorescent tracer to the liquid, while the measurement principle is not influenced by changes of the pressure and temperature of the liquid or the surrounding gas phase. Also, there is no need for non-fluorescing surrogate fuels. However, an in situ calibration of the dependence of signal intensity on liquid film thickness is required. The developed method can be applied to measure the time-dependent and two-dimensional distribution of the liquid fuel film thickness on the piston or the liner of gasoline direct injection (GDI) engines. The applicability of this technique was evaluated with impinging sprays of several linear alkanes and alcohols with different thermo-physical properties. The surface temperature of the impingement plate was controlled to simulate the range of piston surface temperatures inside a GDI engine. Two sets of liquid film thickness measurements were obtained. During the first set, the surface temperature of the plate was kept constant, while the spray of different fuels interacted with the surface. In the second set, the plate temperature was adjusted to match the boiling temperature of each fuel. In this way, the influence of the surface temperature on the liquid film created by the spray of different fuels and their evaporation characteristics could be demonstrated.

  4. Film Formation of Ag Nanoparticles at the Organic-Aqueous Liquid Interface

    Science.gov (United States)

    Vigorita, John

    2005-03-01

    A wet-chemical method to make films by spontaneous assembly of passivated Ag nanoparticles at the organic-aqueous liquid interface is presented. The interfacial films exhibit a blue opalescence, or in other cases a silvery color, and are characterized with transmission electron microscopy and UV-visible spectrophotometry. Measurements indicate that nanoparticles in the interfacial film can form superlattices and in some cases nanostructures.

  5. Proteins at fluid interfaces: adsorption layers and thin liquid films.

    Science.gov (United States)

    Yampolskaya, Galina; Platikanov, Dimo

    2006-12-21

    A review in which many original published results of the authors as well as many other papers are discussed. The structure and some properties of the globular proteins are shortly presented, special accent being put on the alpha-chymotrypsin (alpha-ChT), lysozyme (LZ), human serum albumin (HSA), and bovine serum albumin (BSA) which have been used in the experiments with thin liquid films. The behaviour of protein adsorption layers (PAL) is extensively discussed. The dynamics of PAL formation, including the kinetics of adsorption as well as the time evolution of the surface tension of protein aqueous solutions, are considered. A considerable place is devoted to the surface tension and adsorption isotherms of the globular protein solutions, the simulation of PAL by interacting hard spheres, the experimental surface tension isotherms of the above mentioned proteins, and the interfacial tension isotherms for the protein aqueous solution/oil interface. The rheological properties of PAL at fluid interfaces are shortly reviewed. After a brief information about the experimental methods for investigation of protein thin liquid (foam or emulsion) films, the properties of the protein black foam films are extensively discussed: the conditions for their formation, the influence of the electrolytes and pH on the film type and stability, the thermodynamic properties of the black foam films, the contact angles film/bulk and their dynamic hysteresis. The next center of attention concerns some properties of the protein emulsion films: the conditions for formation of emulsion black films, the formation and development of a dimpling in microscopic, circular films. The protein-phospholipid mixed foam films are also briefly considered.

  6. Flow over a traveling wavy foil with a passively flapping flat plate

    Science.gov (United States)

    Liu, Nansheng; Peng, Yan; Liang, Youwen; Lu, Xiyun

    2012-05-01

    Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The study reveals that the passively oscillating flat plate contributes half of the propulsive force. The flexibility, represented by the nondimensional natural frequency F, plays a very important role in the movement and propulsive force generation of the whole body. When the plate is too flexible, the drag force is observed. As the flat plate becomes more rigid, the propulsive force that is generated when the undulation is confined to last part of the wavy foil becomes larger. The steady movement occurs at F=5. These results are consistent with the observations of some swimming animals in nature.

  7. Collagen films with stabilized liquid crystalline phases and concerns on osteoblast behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Minjian; Ding, Shan; Min, Xiang; Jiao, Yanpeng, E-mail: tjiaoyp@jnu.edu.cn; Li, Lihua; Li, Hong; Zhou, Changren, E-mail: tcrz9@jnu.edu.cn

    2016-01-01

    To duplicate collagen's in vivo liquid crystalline (LC) phase and investigate the relationship between the morphology of LC collagen and osteoblast behavior, a self-assembly method was introduced for preparing collagen films with a stabilized LC phase. The LC texture and topological structure of the films before and after stabilization were observed with polarizing optical microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The relationship between the collagen films and osteoblast behavior was studied with the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide method, proliferation index detection, alkaline phosphatase measurements, osteocalcin assay, inverted microscopy, SEM observation, AFM observation, and cytoskeleton fluorescence staining. The results showed that the LC collagen film had continuously twisting orientations in the cholesteric phase with a typical series of arced patterns. The collagen fibers assembled in a well-organized orientation in the LC film. Compared to the non-LC film, the LC collagen film can promote cell proliferation, and increase ALP and osteocalcin expression, revealing a contact guide effect on osteoblasts. - Highlights: • Collagen film with liquid crystalline (LC) phase was observed by POM, SEM and AFM. • The effect of LC collagen film on osteoblasts behaviors was studied in detail. • LC collagen film promoted osteoblast proliferation and osteogenesis activity.

  8. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film

    International Nuclear Information System (INIS)

    Yu-Jia, Tao; Xiu-Lan, Huai; Zhi-Gang, Li

    2009-01-01

    A mathematical model is developed to investigate the dynamics of vapor bubble growth in a thin liquid film, movement of the interface between two fluids and the surface heat transfer characteristics. The model takes into account the effects of phase change between the vapor and liquid, gravity, surface tension and viscosity. The details of the multiphase now and heat transfer are discussed for two cases: (1) when a water micro-droplet impacts a thin liquid film with a vapor bubble growing and (2) when the vapor bubble grows and merges with the vapor layer above the liquid film without the droplet impacting. The development trend of the interface between the vapor and liquid is coincident qualitatively with the available literature, mostly at the first stage. We also provide an important method to better understand the mechanism of nucleate spray cooling. (fundamental areas of phenomenology (including applications))

  9. Rotational reorganization of doped cholesteric liquid crystalline films

    NARCIS (Netherlands)

    Eelkema, R.; M. Pollard, M.; Katsonis, N.; Vicario, J.; J. Broer, D.; Feringa, B.L.

    2006-01-01

    In this paper an unprecedented rotational reorganization of cholesteric liquid crystalline films is described. This rotational reorganization results from the conversion of a chiral molecular motor dopant to an isomer with a different helical twisting power, leading to a change in the cholesteric

  10. Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Soheilmoghaddam, Mohammad [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia (UTM), Johor (Malaysia); Wahit, Mat Uzir, E-mail: mat.uzir@cheme.utm.my [Center for Composites, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia); Mahmoudian, Shaya [Department of Textile Engineering, Kashan Branch, Islamic Azad University, Kashan (Iran, Islamic Republic of); Hanid, Nurbaiti Abdul [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia (UTM), Johor (Malaysia)

    2013-09-16

    Regenerated cellulose/halloysite nanotube (RC/HNT) nanocomposite films were successfully prepared in ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl) using solution casting method. The structural, morphological, thermal and mechanical properties of RC/HNT nanocomposites were investigated. X-ray diffraction analysis revealed a cellulose II crystalline structure and well dispersed HNT in RC/HNT nanocomposite films. At 6 wt.% HNT film, tensile strength and Young's modulus of RC films improved by 55.3% and 100%, respectively. Moisture absorption by the nanocomposites in an environment with 75% constant relative humidity was reduced by the addition of HNT to the RC. The presence of HNT enhanced the thermal stability and char yield of RC. The significant reinforcing effects of HNTs demonstrated that there is a possible interface interaction between cellulose and HNT which yielded better thermal and mechanical properties of the nanocomposite films as compared to pure RC. - Highlights: • The RC/HNT nanocomposite films were prepared via ionic liquid, BMIMCl. • XRD diffraction patterns and FESEM revealed well dispersed HNT in cellulose matrix. • The nanocomposite films exhibited excellent mechanical properties. • Moisture absorption and diffusion coefficient of RC reduced by HNT incorporation. • Addition of HNT enhanced thermal stability and activation energy of the RC.

  11. Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid

    International Nuclear Information System (INIS)

    Soheilmoghaddam, Mohammad; Wahit, Mat Uzir; Mahmoudian, Shaya; Hanid, Nurbaiti Abdul

    2013-01-01

    Regenerated cellulose/halloysite nanotube (RC/HNT) nanocomposite films were successfully prepared in ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl) using solution casting method. The structural, morphological, thermal and mechanical properties of RC/HNT nanocomposites were investigated. X-ray diffraction analysis revealed a cellulose II crystalline structure and well dispersed HNT in RC/HNT nanocomposite films. At 6 wt.% HNT film, tensile strength and Young's modulus of RC films improved by 55.3% and 100%, respectively. Moisture absorption by the nanocomposites in an environment with 75% constant relative humidity was reduced by the addition of HNT to the RC. The presence of HNT enhanced the thermal stability and char yield of RC. The significant reinforcing effects of HNTs demonstrated that there is a possible interface interaction between cellulose and HNT which yielded better thermal and mechanical properties of the nanocomposite films as compared to pure RC. - Highlights: • The RC/HNT nanocomposite films were prepared via ionic liquid, BMIMCl. • XRD diffraction patterns and FESEM revealed well dispersed HNT in cellulose matrix. • The nanocomposite films exhibited excellent mechanical properties. • Moisture absorption and diffusion coefficient of RC reduced by HNT incorporation. • Addition of HNT enhanced thermal stability and activation energy of the RC

  12. Equations governing the liquid-film flow over a plane with heat flux and interfacial phase change

    International Nuclear Information System (INIS)

    Spindler, B.

    1983-01-01

    The purpose of the study is to find a system of equations which can be used to study the linear stability of a liquid film flow over a plane exhibiting wall heat flux and interfacial phase change. The flow of such a film is governed by four groups of equations: the equations for mass balance, momentum and energy in the liquid; equations for the balance in the steam; equations for the balance at the liquid-steam interface; and the boundary conditions. Two flow patterns are considered - flow with upstream film and film condensation. Stability is studied by perturbation methods

  13. Equations governing the liquid-film flow over a plane with heat flux and interfacial phase change

    Science.gov (United States)

    Spindler, B.

    1983-08-01

    The purpose of the study is to find a system of equations which can be used to study the linear stability of a liquid film flow over a plane exhibiting wall heat flux and interfacial phase change. The flow of such a film is governed by four groups of equations: the equations for mass balance, momentum and energy in the liquid; equations for the balance in the steam; equations for the balance at the liquid-steam interface; and the boundary conditions. Two flow patterns are considered - flow with upstream film and film condensation. Stability is studied by perturbation methods.

  14. The ion capturing effect of 5° SiOx alignment films in liquid crystal devices

    Science.gov (United States)

    Huang, Yi; Bos, Philip J.; Bhowmik, Achintya

    2010-09-01

    We show that SiOx, deposited at 5° to the interior surface of a liquid crystal cell allows for a surprisingly substantial reduction in the ion concentration of liquid crystal devices. We have investigated this effect and found that this type of film, due to its surface morphology, captures ions from the liquid crystal material. Ion adsorption on 5° SiOx film obeys the Langmuir isotherm. Experimental results shown allow estimation of the ion capturing capacity of these films to be more than an order of 10 000/μm2. These types of materials are useful for new types of very low power liquid crystal devices such as e-books.

  15. Direct numerical simulation of 3D particle motion in an evaporating liquid film

    International Nuclear Information System (INIS)

    Hwang, Ho Chan; Son, Gi Hun

    2016-01-01

    A direct numerical simulation method is developed for 3D particle motion in liquid film evaporation. The liquid-gas and fluid-solid interfaces are tracked by a sharp-interface Level-set (LS) method, which includes the effects of evaporation, contact line and solid particles. The LS method is validated through simulation of the interaction between two particles falling in a single-phase fluid. The LS based DNS method is applied to computation of the particle motion in liquid film evaporation to investigate the particle-interface and particle-particle interactions

  16. The Effect of Thermal Radiation on Entropy Generation Due to Micro-Polar Fluid Flow Along a Wavy Surface

    Directory of Open Access Journals (Sweden)

    Kuei-Hao Chang

    2011-09-01

    Full Text Available In this study, the effect of thermal radiation on micro-polar fluid flow over a wavy surface is studied. The optically thick limit approximation for the radiation flux is assumed. Prandtl’s transposition theorem is used to stretch the ordinary coordinate system in certain directions. The wavy surface can be transferred into a calculable plane coordinate system. The governing equations of micro-polar fluid along a wavy surface are derived from the complete Navier-Stokes equations. A simple transformation is proposed to transform the governing equations into boundary layer equations so they can be solved numerically by the cubic spline collocation method. A modified form for the entropy generation equation is derived. Effects of thermal radiation on the temperature and the vortex viscosity parameter and the effects of the wavy surface on the velocity are all included in the modified entropy generation equation.

  17. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    International Nuclear Information System (INIS)

    Lu, Renguo; Zhang, Hedong; Komada, Suguru; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2014-01-01

    Highlights: • We present fine UV-patterning of nm-thick liquid films for surface functionalization. • The patterned films exhibit both a morphological pattern and a functional pattern of different surface properties. • The finest pattern linewidth was 0.5 μm. • Fine patterning is crucial for improving surface and tribological properties. - Abstract: For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave–convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant

  18. Experiments and numerical modeling of fast flowing liquid metal thin films under spatially varying magnetic field conditions

    Science.gov (United States)

    Narula, Manmeet Singh

    Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the

  19. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    International Nuclear Information System (INIS)

    Gusain, Rashi; Kokufu, Sho; Bakshi, Paramjeet S.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki; Khatri, Om P.

    2016-01-01

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF_6) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF_6 thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF_6 thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF_6 thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF_6 thin film, the covalent interaction between ImPF_6 ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  20. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Gusain, Rashi [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India); Kokufu, Sho [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Bakshi, Paramjeet S. [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Khatri, Om P., E-mail: opkhatri@iip.res.in [CSIR-Indian Institute of Petroleum, Mohkampur, Dehardun 248005 (India); Academy of Scientific and Innovative Research, New Delhi 110025 (India)

    2016-02-28

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF{sub 6}) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF{sub 6} thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF{sub 6} thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF{sub 6} thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF{sub 6} thin film, the covalent interaction between ImPF{sub 6} ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  1. Film thickness in gas-liquid two-phase flow, (2)

    International Nuclear Information System (INIS)

    Sekoguchi, Kotohiko; Fukano, Toru; Kawakami, Yasushi; Shimizu, Hideo.

    1977-01-01

    The effect of four rectangular obstacles inserted into a circular tube has been studied in gas-liquid two-phase flow. The obstacles are set on the inner wall of the tube, and the ratio of the opening is 0.6. The water film flows partially through the obstacles. The minimum thickness of water film was measured in relation to flow speed. The serious effect of the obstacles was seen against the formation of water film, and drainage under the obstacles and backward flow play important roles. Since water film can flow partially through the obstacles, the film in case of the rectangular obstacles in thicker than that in case of an orifice when the gas flow speed was slower than 5 m/s. However, when the gas flow speed is over 5 m/s, the film thickness was thinner. The minimum film thickness of downstream of the obstacles was almost same as that in case of no obstacle. The minimum film thickness of up stream depends on the location of measurement due to the effect of drainage. (Kato, T.)

  2. A variational model of disjoining pressure: Liquid film on a nonplanar surface

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Virnovsky, G.

    2009-06-01

    Variational methods have been successfully used in modelling thin liquid films in numerous theoretical studies of wettability. In this paper, the variational model of the disjoining pressure is extended to the general case of a two-dimensional solid surface. The Helmgoltz free energy functional depends both on the disjoining pressure isotherm and the shape of the solid surface. The augmented Young-Laplace equation (AYLE) is a nonlinear second-order partial differential equation. A number of solutions describing wetting films on spherical grains have been obtained. In the case of cylindrical films, the phase portrait technique describes the entire variety of mathematically feasible solutions. It turns out that a periodic solution, which would describe wave-like wetting films, does not satisfy the Jacobi's condition of the classical calculus of variations. Therefore, such a solution is nonphysical. The roughness of the solid surface significantly affects liquid film stability. AYLE solutions suggest that film rupture is more likely at a location where the pore-wall surface is most exposed into the pore space and the curvature is positive.

  3. Langmuir-Blodgett films prepared from pre-formed cholestanic liquid-crystalline polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tundo, P.; Hodge, P.; Valli, L.; Davis, F. (Venice Univ. (Italy). Dip. di Scienze Ambientali Lecce Univ. (Italy). Dip. di Scienza dei Materiali Manchester Univ. (United Kingdom). Dep. of Chemistry)

    1992-01-01

    A series of alternating copolymers of maleic anhydride and a-olefins functionalized through different alkyl chains with cholestanic groups were synthetised and derivatives prepared by reactions of the anhydride residues with methanol, water, dimethylamine and morpholine, respectively. The same starting functionalized a-olefins were used to prepare other suitable compounds in order to correlate the features of the liquid-crystalline behaviour of the mesogenic cholestanic group with the stability of the forthcoming polymeric or not polymeric Langmuir-Blodgett (LB) films. For some copolymers surface pressure against area per molecule isotherms are reported. In some multilayer (LB) films, the spacings between the layers were determined by the detection of BRAGG peaks by X-ray diffraction. The (LB) films of these polymers are closed packed, owing to either the polymeric skeleton or liquid-crystalline interaction.

  4. Application results of a prototype ultrasonic liquid film sensor to a 7 MPa steam-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Aoyama, Goro; Fujimoto, Kiyoshi; Katono, Kenichi; Nagayoshi, Takuji; Baba, Atsushi; Yasuda, Kenichi

    2016-01-01

    A prototype ultrasonic liquid film sensor was applied to a high-temperature steam-water two-phase flow experiment. The liquid film sensor was vertically installed in a loop which was connected to HUSTLE, a multi-purpose steam source test facility. The hydraulic diameter of the measurement section was 9.4 mm. The output waveforms of the sensor were acquired with a digital oscilloscope. The fluid temperature and system pressure were kept at 288°C and 7.2 MPa, respectively, during the experiment. The pulse-echo method was used to calculate the liquid film thickness. The cross-correlation calculation was utilized to determine the time difference between the pulse reflected at the sensor surface and the pulse reflected at the liquid film surface. The time-averaged liquid film thicknesses were less than 0.055 mm in the annular flow condition. The increase of the time-averaged thickness was small with the change of the gas momentum flux. The film thicknesses measured with the sensor were compared with the past experimental results; the former were smaller than one-fourth of the thickness estimated as the mean film thickness. The comparison results suggested that the continuous liquid sublayer thickness was measured with the liquid film sensor. (author)

  5. Forming of film surface of very viscous liquid flowing with gas in pipes

    Directory of Open Access Journals (Sweden)

    Czernek Krystian

    2017-01-01

    Full Text Available The study presents the possible use of optoelectronic system for the measurement of the values, which are specific for hydrodynamics of two-phase gas liquid flow in vertical pipes, where a very-high-viscosity liquid forms a falling film in a pipe. The experimental method was provided, and the findings were presented and analysed for selected values, which characterize the two-phase flow. Attempt was also made to evaluate the effects of flow parameters and properties of the liquid on the gas-liquid interface value, which is decisive for the conditions of heat exchange and mass transfer in falling film equipment. The nature and form of created waves at various velocities were also described.

  6. Study of memory effects in polymer dispersed liquid crystal films

    International Nuclear Information System (INIS)

    Han, Jinwoo

    2006-01-01

    In this work, we have studied the memory effects in polymer dispersed liquid crystal films. We found that optical responses, such as the memory effects, of the films depended strongly on the morphology. For example, memory effects were observed for films with polymer ball morphologies; however, only weak hysteresis effects were observed for films with droplet morphologies. In particular, a stronger memory effect was observed for films with more complicated polymer ball structures. Coincidentally, T TE , the temperature at which the memory state is thermally erased, was generally higher for the films exhibiting a stronger memory effect. In addition, studies of the temporal evolution of the films show that the memory effects become stronger after films have been kept on the shelf for a period of time. This change is likely to be associated with a modification of surface anchoring properties at the LC-polymer interface.

  7. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films

    OpenAIRE

    Yujian Sun; Cuihong Zhang; Le Zhou; Hua Fang; Jianhua Huang; Haipeng Ma; Yi Zhang; Jie Yang; Lan-Ying Zhang; Ping Song; Yanzi Gao; Jiumei Xiao; Fasheng Li; Kexuan Li

    2016-01-01

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found...

  8. Measurement of interfacial displacement of a liquid film in microchannels using laser focus displacement meter

    International Nuclear Information System (INIS)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji; Hibiki, Takashi

    2004-01-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in micro- and mini-channels. To prevent the tube wall signal from disturbing that of the gas-liquid interface, a fluorocarbon tube with water box was used; the refraction index of this device is same as that for water. With this method, accurate instantaneous measurements of interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement using measured displacement in a fluorocarbon tube of 25 μm to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with real displacement within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 μm at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film less than 1 μm in thickness in slug and annular flow regions. (author)

  9. Development and utilization of liquid quartz light modulating film. Ekisho choko film no kaihatsu to riyo

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, M. (Ajinomoto Co. Inc., Tokyo (Japan))

    1992-03-01

    This paper introduces the polymer dispersed liquid crystal (PDLC) ACT'' sheet, a liquid quartz light modulating film, developed by the Ajinomoto Company in Japan. A mixture of liquid crystal and polymer precursor is sandwiched between polyethylene terephthalate films imparted with transparency conductor made of indium tin oxide (ITO), which is then polymerized by heating or irradiating ultraviolet rays to obtain a PDLC. The film has a thickness as thin as about 0.3 mm, and good processibility. The sheet uses light modulating elements functioning on scatter and permeation of light. Clarification was made on the voltage dependence of cloudiness, total light permeability, straight and parallel light permeability, the response, and the operating voltage. The system consumes small amount of power with a threshold value of about 35V, and is suitable to operate large areas when working on the utility power supply. An incident light having a high diffusion capability when the electric field is turned off exhibits a high clouding function. The system gives an excellent feel of colorlessness and transparency when the electric field is turned on. The performances in heat insulation, infrared reflection capability and noise resistance are expected to be compounded for a functional versatility. 4 refs., 6 figs., 2 tabs.

  10. Specific heat of amorphous 3He films and confined liquid 3He

    International Nuclear Information System (INIS)

    Golov, A.; Pobell, F.

    1995-01-01

    We have measured the heat capacities of 3 He films and liquid 3 He in porous Vycor glass at 10 to 600 mK. With increasing the film thickness front 1 to 3 atomic layers , the specific heat evolves gradually from that typical to solid to that of liquid 3 He. At about 2 atomic layers, however, its low-temperature part is nearly temperature-independent; we interpret this as a result of gradual freezing of spins in an amorphous solid 3 He film with decreasing the temperature. The contribution of liquid 3 He in the center of the Vycor pores can be described as the specific heat of bulk liquid 3 He at corresponding pressures in the range 0 to 28 bar. The thickness of amorphous solid on the pore walls increases with external pressure roughly linearly. Preplating the walls with 4 He allows to determine the positions of 3 He atoms contributing to the surface specific heat at 10 to 50 mK. In addition, the contribution from the specific heat of 3 He- 4 He mixing at 100 to 600 mK is discussed as a function of pressure and amount of 4 He

  11. Direct measurements of liquid film roughness for the prediction of annular flow pressure drop

    International Nuclear Information System (INIS)

    Ashwood, Andrea C.; Schubring, DuWayne; Shedd, Timothy A.

    2009-01-01

    A vertical two-phase (air-water) test section has been constructed to allow for detailed visualization of flow phenomena in the annular regime. The total internal reflection (TIR) technique for film thickness estimation, originally developed by Shedd and Newell (1998), has been adapted for use in this test section. This technique uses the pattern of diffuse light reflected from the gas-liquid interface to estimate the base film thickness, i.e., the thickness between large liquid waves. Measurement of base film thickness separately from the average film thickness, which couples base film and wave behavior, allows for consideration of separate effects from each of the two zones. A modified Hurlburt-Newell (2000) correlation that separates the flow into these two zones has been generated. Data regarding the relationship between average base film thickness and wave height, along with verification of the base film thickness measured from the TIR technique, were provided by planar laser-induced fluorescence (PLIF). For the present vertical air-water up flows with liquid superficial velocities ranging from 4 to 34 cm s -1 and gas superficial velocities from 35 to 85 m s -1 , the modified Hurlburt-Newell correlation predicts pressure loss to within 10%. (author)

  12. Direct measurements of liquid film roughness for the prediction of annular flow pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Ashwood, Andrea C; Schubring, DuWayne; Shedd, Timothy A. [University of Wisconsin, Madison, WI (United States)], e-mail: cashwood@wisc.edu, e-mail: dlschubring@wisc.edu, e-mail: shedd@engr.wisc.edu

    2009-07-01

    A vertical two-phase (air-water) test section has been constructed to allow for detailed visualization of flow phenomena in the annular regime. The total internal reflection (TIR) technique for film thickness estimation, originally developed by Shedd and Newell (1998), has been adapted for use in this test section. This technique uses the pattern of diffuse light reflected from the gas-liquid interface to estimate the base film thickness, i.e., the thickness between large liquid waves. Measurement of base film thickness separately from the average film thickness, which couples base film and wave behavior, allows for consideration of separate effects from each of the two zones. A modified Hurlburt-Newell (2000) correlation that separates the flow into these two zones has been generated. Data regarding the relationship between average base film thickness and wave height, along with verification of the base film thickness measured from the TIR technique, were provided by planar laser-induced fluorescence (PLIF). For the present vertical air-water up flows with liquid superficial velocities ranging from 4 to 34 cm s{sup -1} and gas superficial velocities from 35 to 85 m s{sup -1}, the modified Hurlburt-Newell correlation predicts pressure loss to within 10%. (author)

  13. Substrate and surfactant effects on the glass-liquid transition of thin water films.

    Science.gov (United States)

    Souda, Ryutaro

    2006-09-07

    Temperature-programmed time-of-flight secondary ion mass spectrometry (TP-TOF-SIMS) and temperature-programmed desorption (TPD) have been used to perform a detailed investigation of the adsorption, desorption, and glass-liquid transition of water on the graphite and Ni(111) surfaces in the temperature range 13-200 K. Water wets the graphite surface at 100-120 K, and the hydrogen-bonded network is formed preferentially in the first monolayer to reduce the number of nonbonding hydrogens. The strongly chemisorbed water molecules at the Ni(111) surface do not form such a network and play a role in stabilizing the film morphology up to 160 K, where dewetting occurs abruptly irrespective of the film thickness. The surface structure of the water film formed on graphite is fluctuated considerably, resulting in deweting at 150-160 K depending on the film thickness. The dewetted patches of graphite are molecularly clean, whereas the chemisorbed water remains on the Ni(111) surface even after evaporation of the film. The abrupt drop in the desorption rate of water molecules at 160 K, which has been attributed to crystallization in the previous TPD studies, is found to disappear completely when a monolayer of methanol is present on the surface. This is because the morphology of supercooled liquid water is changed by the surface tension, and it is quenched by termination of the free OH groups on the surface. The surfactant methanol desorbs above 160 K since the hydrogen bonds of the water molecules are reconstructed. The drastic change in the properties of supercooled liquid water at 160 K should be ascribed to the liquid-liquid phase transition.

  14. A liquid-like model for the morphology evolution of ion bombarded thin films

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, L., E-mail: luca.repetto@unige.it [Department of Physics and Nanomed Labs, Università di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Lo Savio, R. [Department of Physics and Nanomed Labs, Università di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Šetina Batič, B. [Inštitut Za Kovinske Materiale in Tehnologije, Lepi pot 11, 1000 Ljubljana (Slovenia); Firpo, G.; Angeli, E.; Valbusa, U. [Department of Physics and Nanomed Labs, Università di Genova, Via Dodecaneso 33, 16146 Genova (Italy)

    2015-07-01

    Thin solid films exposed to ion irradiation exhibit a peculiar evolution that can differ substantially from what is observed for bulk samples. The phenomenology of the patterns that self-organize on the substrate is very rich, with morphologies that display several degrees of order upon the modification of initial film characteristics and irradiation parameters. This richness paves the way for the fabrication of novel functional surfaces, but it is also an indication of the complexity of the underlying driving mechanisms. A remarkable simplification for the comprehension of these phenomena can come from the noteworthy similarity of the obtained patterns with those showing up when liquids dewet from their substrates. Here, we analyze the possibility to apply a liquid-like model to explain the morphology evolution of ion bombarded thin films for the whole phenomenology showing up in experiments. In establishing this connection between liquids and ion bombarded thin films, we propose to use also for liquids the insight gained for our system with recent experiments that stress the importance of the substrate topography for the selection of the dewetting mechanism. If confirmed, this result would lead to a reconsideration of the importance of capillary waves in spinodal dewetting, and will help to understand the low reproducibility of the related experimental results.

  15. Unsteady Flow in a Horizontal Double-Sided Symmetric Thin Liquid Films

    Directory of Open Access Journals (Sweden)

    Joseph G. ABDULAHAD

    2017-06-01

    Full Text Available In this paper a mathematical model is constructed to describe a two dimensional incompressible flow in a symmetric horizontal thin liquid film for unsteadies flow. We apply the Navier-Stokes equations with specified boundary conditions and we obtain the equation of the film thickness by using the similarity method in which we can isolate the explicit time dependence and then the shape of the film will depend on one variable only.

  16. Investigation of cascade-type falling liquid-film along first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, T.; Nakai, T.; Kawara, Z.; Norimatsu, T.; Kozaki, Y.

    2008-01-01

    To protect the first wall of an inertia fusion reactor from extremely high heat flux, X-rays, alpha particles and fuel debris caused by a nuclear fusion reaction, a 'cascade-type' falling liquid-film flow is proposed as a 'liquid-wall' concept. The flow visualization experiment to investigate the feasibility of this liquid-wall concept has been conducted. The preliminary numerical simulation results suggest that the current cascade structure design should be improved because less thermal-mixing is expected. The cascade-type structure has, therefore, been redesigned. This new cascade-type first wall consists of a liquid reservoir which has a free-surface to maintain a constant water head in the rear, and connects to a slit composed of two plates, i.e., the first wall is connected to a slit which is partially made up of the first wall to begin with it. The numerical simulations were performed on the new cascade-type first wall and they show the stable liquid-film flow on it. Moreover, the POP (proof-of-principle) flow visualization experiments, which satisfy the Weber number coincident condition, are carried out using water as the working fluid. By comparing the numerical and experimental results, it was found that the liquid-film flow with 3-5 mm thickness could be stably established. According to these results for the new cascade-type first wall concept, it was confirmed that the coolant flow rate and the thickness of the liquid-film could be controlled if the Weber number coincident condition was satisfied

  17. Enhanced electrocatalytic activity of reduced graphene oxide-Os nanoparticle hybrid films obtained at a liquid/liquid interface

    Science.gov (United States)

    Bramhaiah, K.; Pandey, Indu; Singh, Vidya N.; Kavitha, C.; John, Neena S.

    2018-03-01

    Hybrid films of reduced graphene oxide-osmium nanoparticles (rGO-Os NPs) synthesized at a liquid/liquid interface are explored for their electrocatalytic activity towards the oxidation of rhodamine B (RhB), a popular colourant found in textile industry effluents and a non-permitted food colour. The free-standing nature of the films enables them to be lifted directly on to electrodes without the aid of any binders. The films consist of aggregates of ultra-small Os NPs interspersed with rGO layers. The hybrid film exhibits enhanced RhB oxidation when compared to its constituents arising from the synergic effect between rGO and Os NPs, Os contributing to electrocatalysis and rGO contributing to high surface area and conductance as well as stabilization of Os nanoparticles. The electrochemical sensor based on rGO-Os NP hybrid film on pencil graphite electrode shows a remarkable performance for the quantitative detection of RhB with a linear variation in a wide range of concentrations, 4-1300 ppb (8.3 nM-2.71 μM). The modified electrode presents good stability over more than 6 months, reproducibility and anti-interference capability. The use of developed sensor for adequate detection of RhB in real samples such as food samples and pen markers is also demonstrated.

  18. The response of skin friction, wall heat transfer and pressure drop to wall waviness in the presence of buoyancy

    Directory of Open Access Journals (Sweden)

    C. N. B. Rao

    1982-01-01

    Full Text Available Laminar natural convection flow and heat transfer of a viscous incompressible fluid confined between two long vertical wavy walls has been analysed taking the fluid properties constant and variable. In particular, attention is restricted to estimate the effects of viscous dissipation and wall waviness on the flow and heat transfer characteristics. Use has been made of a linearization technique to simplify the governing equations and of Galerkin's method in the solution. The solutions obtained for the velocity and the temperature-fields hold good for all values of the Grashof number and wave number of the wavy walls.

  19. Hierarchical macroscopic fibrillar adhesives: in situ study of buckling and adhesion mechanisms on wavy substrates.

    Science.gov (United States)

    Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard

    2015-10-23

    Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.

  20. Mechanism analysis of improved DLC films friction behaviors with liquid sulfidation treatment

    International Nuclear Information System (INIS)

    Zeng Qunfeng; Yu Fei; Dong Guangneng; Mao Junhong

    2012-01-01

    Highlights: ► Liquid sulfidation is applied to treat DLC films. ► Sulfur atoms are chemically bonded and the graphitization presented in the treated films. ► The treated films exhibited much lower coefficient of friction than the untreated films under dry friction condition. ► The sulfidation mechanisms are supposed as surface chemical reaction and surface diffusion. ► The presence of sulfur-containing materials and graphitization are beneficial to improve anti-friction behaviors of the treated films. - Abstract: Diamond like carbon (DLC) films were treated by liquid sulfidation to improve their friction behaviors. Friction behaviors of DLC films were experimentally evaluated in ambient air under dry friction using GCr15 steel ball sliding over DLC-coated steel flat in a ball-on-disk tribometer system. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were applied to identify the chemical composition and structure of DLC films. It was found that the content of sp 2 carbon bond increased and G peak shifted to high wave number after sulfidation treatment. The measurement results showed that sulfur atoms were chemically bonded and the graphitization occurred in the treated DLC films. It was indicated that the treated DLC films exhibited much better friction behaviors than the untreated films, especially for DLC films deposited with high nitrogen ratio. In this paper, we proposed the possible sulfidation mechanism of sulfurized DLC films. Sulfidation mechanism is postulated that thiourea reacted with oxygen to form sulfur-containing organic compounds which included CSSC, CSOH and (NH 2 )NH=CSO 2 H and surface diffusion during sulfidation treatment. The anti-friction behaviors of the treated DLC films can be attributed to the production of the compounds containing sulfur on the DLC film surface, the reduce of oxygen content and the presence of graphitization of DLC films.

  1. Not spreading in reverse: The dewetting of a liquid film into a single drop.

    Science.gov (United States)

    Edwards, Andrew M J; Ledesma-Aguilar, Rodrigo; Newton, Michael I; Brown, Carl V; McHale, Glen

    2016-09-01

    Wetting and dewetting are both fundamental modes of motion of liquids on solid surfaces. They are critically important for processes in biology, chemistry, and engineering, such as drying, coating, and lubrication. However, recent progress in wetting, which has led to new fields such as superhydrophobicity and liquid marbles, has not been matched by dewetting. A significant problem has been the inability to study the model system of a uniform film dewetting from a nonwetting surface to a single macroscopic droplet-a barrier that does not exist for the reverse wetting process of a droplet spreading into a film. We report the dewetting of a dielectrophoresis-induced film into a single equilibrium droplet. The emergent picture of the full dewetting dynamics is of an initial regime, where a liquid rim recedes at constant speed and constant dynamic contact angle, followed by a relatively short exponential relaxation of a spherical cap shape. This sharply contrasts with the reverse wetting process, where a spreading droplet follows a smooth sequence of spherical cap shapes. Complementary numerical simulations and a hydrodynamic model reveal a local dewetting mechanism driven by the equilibrium contact angle, where contact line slip dominates the dewetting dynamics. Our conclusions can be used to understand a wide variety of processes involving liquid dewetting, such as drop rebound, condensation, and evaporation. In overcoming the barrier to studying single film-to-droplet dewetting, our results provide new approaches to fluid manipulation and uses of dewetting, such as inducing films of prescribed initial shapes and slip-controlled liquid retraction.

  2. Light Path Model of Fiber Optic Liquid Level Sensor Considering Residual Liquid Film on the Wall

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-01-01

    Full Text Available The working principle of the refractive-type fiber optic liquid level sensor is analyzed in detail based on the light refraction principle. The optic path models are developed in consideration of common simplification and the residual liquid film on the glass tube wall. The calculating formulae for the model are derived, constraint conditions are obtained, influencing factors are discussed, and the scopes and skills of application are analyzed through instance simulations. The research results are useful in directing the correct usage of the fiber optic liquid level sensor, especially in special cases, such as those involving viscous liquid in the glass tube monitoring.

  3. Development of Tollmien-Schlichting disturbances in the presence of laminar separation bubbles on an unswept infinite wavy wing

    Science.gov (United States)

    Thomas, Christian; Mughal, Shahid; Ashworth, Richard

    2017-04-01

    The effect of long-wavelength sinusoidal surface waviness on the development of Tollmien-Schlichting (TS) wave instabilities is investigated. The analysis is based on the compressible flow that forms over an unswept infinite wavy wing with surface variations of variable amplitude, wavelength, and phase. Boundary layer profiles are extracted directly from solutions of a Navier-Stokes solver, which allows a thorough parametric analysis to be undertaken. Many wavy surface configurations are examined that can be sufficient to establish localized pockets of separated flow. Linear stability analysis is undertaken using parabolized stability equations (PSE) and linearized Navier-Stokes (LNS) methods, and surface waviness is generally found to enhance unstable behavior. Results of the two schemes are compared and criteria for PSE to establish accurate solutions in separated flows are determined, which are based on the number of TS waves per wavelength of the surface deformation. Relationships are formulated, relating the instability variations to the surface parameters, which are consistent with previous observations regarding the growth of TS waves on a flat plate. Additionally, some long-wavelength surface deformations are found to stabilize TS disturbances.

  4. Investigation of cascade-typed falling liquid film flow along first wall of laser-fusion reactor

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki; Nakai, Tadakatsu; Kawara, Zensaku

    2007-01-01

    To protect from high energy/particle fluxes caused by nuclear fusion reaction such as extremely high heat flux, X rays, Alpha particles and fuel debris to a first wall of an inertia fusion reactor, a ''cascade-typed'' falling liquid film flow is proposed as the ''liquid wall'' concept which is one of the reactor chamber cooling and wall protection schemes: the reactor chamber can protect by using a liquid metal film flow (such as Li 17 Pb 83 ) over the wall. In order to investigate the feasibility of this concept, we conducted the numerical analyses by using the commercial code (STREAM: unsteady three-dimensional general purpose thermofluid code) and also conducted the flow visualization experiments. The numerical results suggested that the cascade structure design should be improved, so that we redesigned the cascade-typed first wall and performed the flow visualization as a POP (proof-of-principle) experiment. In the numerical analyses, the water is used as the working liquid and an acrylic plate as the wall. These selections are based on two reasons: (1) from the non-dimensional analysis approach, the Weber number (We=ru 2 d/s: r is density, u is velocity, d is film thickness, s is surface tension coefficient) should be the same between the design (Li 17 Pb 83 flow) and the model experiment (water flow) because of the free-surface instability, (2) the SiC/SiC composite would be used as the wall material, so that the wall may have the less wettability: the acrylic plate has the similar feature. The redesigned cascade-typed first wall for one step (30 cm height corresponding to 4 Hz laser duration) consists of a liquid tank having a free-surface for keeping the constant waterhead located at the backside of the first wall, and connects to a slit which is composed of two plates: one plate is the first wall, and the other is maintaining the liquid level. This design solved the trouble of the previous design. The test section for the flow visualization has the same

  5. Numerical study of heat and mass transfer during evaporation of a turbulent binary liquid film

    Directory of Open Access Journals (Sweden)

    Khalal Larbi

    2015-01-01

    Full Text Available This paper deals with a computational study for analysing heat and mass exchanges in the evaporation of a turbulent binary liquid film (water-ethanol and water-methanol along a vertical tube. The film is in co-current with the dry air and the tube wall is subjected to a uniform heat flux. The effect of gas-liquid phase coupling, variable thermophysical properties and film vaporization are considered in the analysis. The numerical method applied solves the coupled governing equations together with the boundary and interfacial conditions. The algebraic systems of equations obtained are solved using the Thomas algorithm. The results concern the effects of the inlet liquid Reynolds number and inlet film composition on the intensity of heat and mass transfer. In this study, results obtained show that heat transferred through the latent mode is more pronounced when the concentration of volatile components is higher in the liquid mixture .The comparisons of wall temperature and accumulated mass evaporation rate with the literature results are in good agreement.

  6. Liquid film thickness and interfacial wave propagate in venturi scrubber for filtered venting

    International Nuclear Information System (INIS)

    Nakao, Yasuhiro; Horiguchi, Naoki; Kanagawa, Tetsuya; Kaneko, Akiko; Abe, Yutaka; Yoshida, Hiroyuki

    2016-01-01

    As one of filtered venting systems which should be installed in light water reactors from the viewpoint of protecting a containment vessel and suppressing the diffusion of radioactive materials, there is a system composed of venturi scrubbers. The radioactive materials in the contaminated gas are collected into liquid. By forming dispersed flow in the venturi scrubber, interfacial area between liquid and gas is enhanced, finally, large decontamination factor is realized. In evaluation for the decontamination performance of the venturi scrubber, interface characteristics of droplets and liquid film are important. In this study, as a part of evaluation method of the interfacial area, the liquid film thickness in the venturi scrubber was measured. And evaluate the results of investigation experimentally for each ruffling average thickness and liquid film in a fluidized condition. The cross section area of a venturi scrubber is a rectangular one manufactured a transparent acrylic for visualization. In the venturi scrubber, a pressure drop occurs in the throat part by the inflow of air from the compressor. Water flows from the tank by a pressure difference between a suctioned hole with head pressure and a throat part. An annular spray flow is then formed in the venturi scrubber. (author)

  7. Unique self-assembly behavior of a triblock copolymer and fabrication of catalytically active gold nanoparticle/polymer thin films at the liquid/liquid interface

    International Nuclear Information System (INIS)

    Shang, Ke; Geng, Yuanyuan; Xu, Xingtao; Wang, Changwei; Lee, Yong-Ill; Hao, Jingcheng; Liu, Hong-Guo

    2014-01-01

    Gold nanoparticle-doped poly(2-vinylpyridine)-block-polystyrene-block-poly(2-vinylpyridine) (P2VP-b-PS-b-P2VP) thin films were prepared at the planar liquid/liquid interface between the chloroform solution of the polymer and aqueous solution of HAuCl 4 . Transmission electron microscopic (TEM) investigations revealed that foam films composed of microcapsules as well as one-dimensional belts were formed, and numerous Au nanoparticles were incorporated in the walls of the microcapsules and the nanobelts. The walls and the belts have layered structure. The formation mechanism of the foams and the belts was attributed to adsorption of the polymer molecules, combination of the polymer molecules with AuCl 4 − ions, microphase separation and self-assembly of the composite molecules at the interface. This microstructure is different apparently from those formed in solutions, in casting or spin-coating thin films and at the air/water interface of this triblock copolymer, reflecting unique self-assembly behavior at the liquid/liquid interface. This microstructure is also different from those formed by homo-P2VP and P4VP-b-PS-b-P4VP at the liquid/liquid interface, indicating the effects of molecular structures on the self-assembly behaviors of the polymers. After further treatment by UV-light irradiation and KBH 4 aqueous solution, the gold species were reduced completely, as indicated by UV–vis spectra and X-ray photoelectron spectra (XPS). Thermogravimetric analysis indicated that the composite films have high thermal stability, and the content of gold was estimated to be about 9.1%. These composite films exhibited high catalytic activity for the reduction of 4-nitrophenol by KBH 4 in aqueous solutions. - Highlights: • P2VP-b-PS-b-P2VP formed microcapsules and nanobelts at the liquid/liquid interface. • Its self-assembly behavior differs from P4VP-b-PS-b-P4VP at the interface. • This behavior also differs from those in solution, in film and at air/water interface

  8. Unique self-assembly behavior of a triblock copolymer and fabrication of catalytically active gold nanoparticle/polymer thin films at the liquid/liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Ke; Geng, Yuanyuan; Xu, Xingtao [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China); Wang, Changwei [Environmental Monitoring Center of Shandong Province, Jinan 250013 (China); Lee, Yong-Ill [Anastro Laboratory, Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Hao, Jingcheng [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China); Liu, Hong-Guo, E-mail: hgliu@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100 (China)

    2014-07-01

    Gold nanoparticle-doped poly(2-vinylpyridine)-block-polystyrene-block-poly(2-vinylpyridine) (P2VP-b-PS-b-P2VP) thin films were prepared at the planar liquid/liquid interface between the chloroform solution of the polymer and aqueous solution of HAuCl{sub 4}. Transmission electron microscopic (TEM) investigations revealed that foam films composed of microcapsules as well as one-dimensional belts were formed, and numerous Au nanoparticles were incorporated in the walls of the microcapsules and the nanobelts. The walls and the belts have layered structure. The formation mechanism of the foams and the belts was attributed to adsorption of the polymer molecules, combination of the polymer molecules with AuCl{sub 4}{sup −} ions, microphase separation and self-assembly of the composite molecules at the interface. This microstructure is different apparently from those formed in solutions, in casting or spin-coating thin films and at the air/water interface of this triblock copolymer, reflecting unique self-assembly behavior at the liquid/liquid interface. This microstructure is also different from those formed by homo-P2VP and P4VP-b-PS-b-P4VP at the liquid/liquid interface, indicating the effects of molecular structures on the self-assembly behaviors of the polymers. After further treatment by UV-light irradiation and KBH{sub 4} aqueous solution, the gold species were reduced completely, as indicated by UV–vis spectra and X-ray photoelectron spectra (XPS). Thermogravimetric analysis indicated that the composite films have high thermal stability, and the content of gold was estimated to be about 9.1%. These composite films exhibited high catalytic activity for the reduction of 4-nitrophenol by KBH{sub 4} in aqueous solutions. - Highlights: • P2VP-b-PS-b-P2VP formed microcapsules and nanobelts at the liquid/liquid interface. • Its self-assembly behavior differs from P4VP-b-PS-b-P4VP at the interface. • This behavior also differs from those in solution, in film and

  9. Experiment-scale molecular simulation study of liquid crystal thin films

    Science.gov (United States)

    Nguyen, Trung Dac; Carrillo, Jan-Michael Y.; Matheson, Michael A.; Brown, W. Michael

    2014-03-01

    Supercomputers have now reached a performance level adequate for studying thin films with molecular detail at the relevant scales. By exploiting the power of GPU accelerators on Titan, we have been able to perform simulations of characteristic liquid crystal films that provide remarkable qualitative agreement with experimental images. We have demonstrated that key features of spinodal instability can only be observed with sufficiently large system sizes, which were not accessible with previous simulation studies. Our study emphasizes the capability and significance of petascale simulations in providing molecular-level insights in thin film systems as well as other interfacial phenomena.

  10. Dielectrophoretic deformation of thin liquid films induced by surface charge patterns on dielectric substrates

    NARCIS (Netherlands)

    Berendsen, C.W.J.; Kuijpers, C.J.; Zeegers, J.C.H.; Darhuber, A.A.

    2013-01-01

    We studied the deformation of thin liquid films induced by surface charge patterns at the solid–liquid interface quantitatively by experiments and numerical simulations. We deposited a surface charge distribution on dielectric substrates by applying potential differences between a conductive liquid

  11. Synthesis and characterization of liquid crystals and their thermoset films

    International Nuclear Information System (INIS)

    Ahn, Yong-Ho; Jung, Myung-Sup; Chang, Jin-Hae

    2010-01-01

    We prepared a series of aromatic liquid crystals (LCs) based on aromatic ester units with the reactive end groups methyl-maleimide and nadimide, and the resulting LCs were thermally cross-linked to produce liquid crystalline thermoset (LCT) films by means of solution-casting and heat treatment. The synthesized LCs and LCTs were characterized with Fourier transform infrared (FT-IR) spectroscopy, 1 H nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and polarizing optical microscopy with a hot stage. We found that all these LCs form nematic phases. The coefficients of thermal expansion (CTEs) of the LCT films are strongly affected by the reactive end group and the mesogen units in their main-chain structures. The methyl-maleimide-terminated biphenyl LCT was found to have the lowest CTE.

  12. Characterization of adsorption uptake curves for both intraparticle diffusion and liquid film mass transfer controlling systems

    International Nuclear Information System (INIS)

    Sonetaka, Noriyoshi; Fan, Huan-Jung; Kobayashi, Seiji; Su, Yang-Chih; Furuya, Eiji

    2009-01-01

    In general, the adsorption uptake curve (AUC) can be easily determined in either intraparticle diffusion or liquid film mass transfer dominating systems. However, for both intraparticle diffusion and liquid film mass transfer controlling systems, the characterization of AUC is much more complicated, for example, when relatively small adsorbent particles are employed. In addition, there is no analytical solution available for both intraparticle diffusion and liquid film mass transfer controlling systems. Therefore, this paper is trying to characterize AUC for both intraparticle diffusion and liquid film mass transfer controlling adsorption systems using the shallow bed reactor technique. Typical parameters influencing AUC include liquid film mass transfer coefficient (k F ), effective intraparticle diffusivity (D S ), influent concentration (c 0 ) and equilibrium parameters (such as Freundlich isotherm constants k and 1/n). These parameters were investigated in this research and the simulated results indicated that the ratio of k F /D S and Freundlich constant 1/n had impact on AUC. Biot number (Bi) was used to replace the ratio of k F /D S in this study. Bi represents the ratio of the rate of transport across the liquid layer to the rate of intraparticle diffusion. Furthermore, Bi is much more significant than that of 1/n for AUC. Therefore, AUC can be characterized by Bi. In addition, the obtained Bi could be used to determine D S and k F simultaneously. Both parameters (D S and k F ) are important for designing and operating fixed bed reactors.

  13. Modeling Solar Energetic Particle Transport near a Wavy Heliospheric Current Sheet

    Science.gov (United States)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2018-02-01

    Understanding the transport of solar energetic particles (SEPs) from acceleration sites at the Sun into interplanetary space and to the Earth is an important question for forecasting space weather. The interplanetary magnetic field (IMF), with two distinct polarities and a complex structure, governs energetic particle transport and drifts. We analyze for the first time the effect of a wavy heliospheric current sheet (HCS) on the propagation of SEPs. We inject protons close to the Sun and propagate them by integrating fully 3D trajectories within the inner heliosphere in the presence of weak scattering. We model the HCS position using fits based on neutral lines of magnetic field source surface maps (SSMs). We map 1 au proton crossings, which show efficient transport in longitude via HCS, depending on the location of the injection region with respect to the HCS. For HCS tilt angles around 30°–40°, we find significant qualitative differences between A+ and A‑ configurations of the IMF, with stronger fluences along the HCS in the former case but with a distribution of particles across a wider range of longitudes and latitudes in the latter. We show how a wavy current sheet leads to longitudinally periodic enhancements in particle fluence. We show that for an A+ IMF configuration, a wavy HCS allows for more proton deceleration than a flat HCS. We find that A‑ IMF configurations result in larger average fluences than A+ IMF configurations, due to a radial drift component at the current sheet.

  14. Foam-film-stabilized liquid bridge networks in evaporative lithography and wet granular matter

    KAUST Repository

    Vakarelski, Ivan Uriev; Marston, Jeremy; Thoroddsen, Sigurdur T

    2013-01-01

    network of interconnected liquid bridges between the template particles and the underlying substrate. With the aid of video microscopy, we demonstrate that these liquid bridges are in fact the border zone between the underlying substrate and foam films

  15. Influence of the Fin on Two-Dimensional Characteristics of Dispersed Flow With Wall Liquid Film in the Vicinity of Obstacle

    International Nuclear Information System (INIS)

    Stosic, Zoran V.; Stevanovic, Vladimir D.; Serizawa, Akimi

    2002-01-01

    Spacers have positive effects on the heat transfer enhancement and critical heat flux (CHF) increase downstream of their location in the boiling channel. These effects are further increased by the inclusion of the fin on the spacer rear edge. Numerical simulation of a separation in a high void gas phase and dispersed droplets flow around a spacer, with a liquid film flowing on the wall, is performed. Mechanisms leading to the CHF increase due to the two-phase flow separation and liquid film thickening downstream the spacer are demonstrated. Numerical simulations of gas phase, entrained droplets and wall liquid film flows were performed with the three-fluid model and with the application of the high order numerical scheme for the liquid film surface interface tracking. Predicted is a separation of gas and entrained droplets streams around the spacer without and with a fin inclined 30 and 60 degrees to the wall, as well as a change of wall liquid film thickness in the vicinity of spacer. Results of liquid film dynamic behaviour are compared with the recently obtained experimental results. Multi-dimensional characteristics of surface waves on the liquid film were measured with newly developed ultrasonic transmission technique in a 3 3 rod bundle test section with air-water flow under atmospheric conditions. Obtained numerical results are in good agreement with experimental observations. The presented investigation gives insight into the complex mechanisms of separated two-phase flow with wall liquid film around the spacer and support thermal-hydraulic design and optimisation of flow obstacles in various thermal equipment. (authors)

  16. Electrochemical preparation of photoelectrochemically active CuI thin films from room temperature ionic liquid

    International Nuclear Information System (INIS)

    Huang, Hsin-Yi; Chien, Da-Jean; Huang, Genin-Gary; Chen, Po-Yu

    2012-01-01

    Highlights: ► CuI film can be formed by anodization of Cu in ionic liquid containing iodide. ► Coordinating strength of anion in ionic liquid determine the formation of CuI. ► Photocurrent of the CuI film can be observed in aqueous solution and in ionic liquid. ► Cu layer coated on conductive substrates can be converted to CuI. - Abstract: Cuprous iodide (CuI) thin films with photoelectrochemical activity were prepared by anodizing copper wire or copper-electrodeposited tungsten wire in the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF 6 RTIL) containing N-butyl-N-methylpyrrolidinium iodide (BMP-I). A copper coating was formed on the tungsten wire by potentiostatic electrodeposition in BMP-dicyanamide (BMP-DCA) RTIL containing copper chloride (CuCl). The CuI films formed using this method were compact, fine-grained and exhibited good adhesion. The characteristic diffraction signals of CuI were observed by powder X-ray diffractometry (XRD). X-ray photoelectron spectroscopy (XPS) also confirmed the formation of a CuI compound semiconductor. The CuI films demonstrated an apparent and stable photocurrent under white light illumination in aqueous solutions and in a RTIL. This method has enabled the electrochemical formation of CuI from a RTIL for the first time, and the first observation of a photocurrent produced from CuI in a RTIL. The coordinating strength of the anions of the RTIL is the key to the successful formation of the CuI thin film. If the coordinating strength of the anions of the RTIL is too strong, no CuI formation is observed.

  17. Migration of liquid film and grain boundary in Mo-Ni induced by W diffusion

    International Nuclear Information System (INIS)

    Kang, H.K.; Hackney, S.; Yoon, D.N.

    1988-01-01

    The liquid films and grain boundaries in liquid phase sintered Mo-Ni alloy are observed to migrate during heat-treatment after adding W to the liquid matrix. Behind the migrating boundaries forms Mo-Ni-W solid solution with the W concentration decreasing with the migration distance because of W depletion in the liquid matrix. The migration rate during the heat-treatment at 1540 0 C after adding W decreases with the decreasing pretreatment sintering temperature. When the sintering temperature is 1420 0 C, the migration rate is almost reduced to O. Under this condition, the coherency strain due to the simultaneous diffusion of W and Ni into the grain surfaces is estimated to be almost O. The results thus show that the coherency strain due to lattice diffusion is the driving force for the liquid film and grain boundary migration

  18. Design of instantaneous liquid film thickness measurement system for conductive or non-conductive fluid with high viscosity

    Directory of Open Access Journals (Sweden)

    Yongxin Yu

    2017-06-01

    Full Text Available In the paper, a new capacitive sensor with a dielectric film coating was designed to measure the thickness of the liquid film on a flat surface. The measured medium can be conductive or non-conductive fluid with high viscosity such as silicone oil, syrup, CMC solution and melt. With the dielectric film coating, the defects caused by the humidity in a capacitor can be avoided completely. With a excitation frequency 0-20kHz, the static permittivity of capacitive sensor is obtained and stable when small thicknesses are monitored within the frequency of 0-3kHz. Based on the measurement principle, an experimental system was designed and verified including calibration and actual measurement for different liquid film thickness. Experimental results showed that the sensitivity, the resolution, repeatability and linear range of the capacitive sensor are satisfied to the liquid film thickness measurement. Finally, the capacitive measuring system was successfully applied to the water, silicone oil and syrup film thickness measurement.

  19. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    International Nuclear Information System (INIS)

    He, Y.Y.; Zhang, G.F.; Zhao, Y.; Liu, D.D.; Cong, Y.; Buck, V.

    2015-01-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect

  20. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.Y. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Zhang, G.F. [School of Materials Science and Engineering, Dalian University of Technology, 116024, Dalian China (China); Zhao, Y.; Liu, D.D. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Cong, Y., E-mail: congyan@ciomp.ac.cn [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Buck, V. [Thin Film Technology Group, Faculty of Physics, University Duisburg-Essen and CeNIDE, 47057 Duisburg (Germany)

    2015-09-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect.

  1. An analysis of the falling film gas-liquid reactor

    NARCIS (Netherlands)

    Davis, E.J.; Ouwerkerk-Dijkers, van M.P.; Venkatesh, S.

    1979-01-01

    A mathematical model of the falling film reactor is developed to predict the conversion and temperature distribution in the reactor as a function of the gas and liquid flow rates, physical properties, the feed composition of the reactive gas and carrier gas and other parameters of the system.

  2. Thin liquid films with time-dependent chemical reactions sheared by an ambient gas flow

    Science.gov (United States)

    Bender, Achim; Stephan, Peter; Gambaryan-Roisman, Tatiana

    2017-08-01

    Chemical reactions in thin liquid films are found in many industrial applications, e.g., in combustion chambers of internal combustion engines where a fuel film can develop on pistons or cylinder walls. The reactions within the film and the turbulent outer gas flow influence film stability and lead to film breakup, which in turn can lead to deposit formation. In this work we examine the evolution and stability of a thin liquid film in the presence of a first-order chemical reaction and under the influence of a turbulent gas flow. Long-wave theory with a double perturbation analysis is used to reduce the complexity of the problem and obtain an evolution equation for the film thickness. The chemical reaction is assumed to be slow compared to film evolution and the amount of reactant in the film is limited, which means that the reaction rate decreases with time as the reactant is consumed. A linear stability analysis is performed to identify the influence of reaction parameters, material properties, and environmental conditions on the film stability limits. Results indicate that exothermic reactions have a stabilizing effect whereas endothermic reactions destabilize the film and can lead to rupture. It is shown that an initially unstable film can become stable with time as the reaction rate decreases. The shearing of the film by the external gas flow leads to the appearance of traveling waves. The shear stress magnitude has a nonmonotonic influence on film stability.

  3. On mobility of ions in thin films in liquid substrates

    International Nuclear Information System (INIS)

    Matveev, Yu.A.

    1984-01-01

    The problem of energy dissipation by emission of ripplons is solved for an ion moving in the media with two interfaces (films on solid and liquid substrates), taking into account the Van der Waals interaction. It is shown that in contrast to the earlier considered case of solid substrate where the action of the Van der Waals forces causes only renormalization of the free fall acceleration, in the vase of liquid substrate the influence of these forces is much more complicated. In addition to renormalization of the amplitude of the emitted surface wave and change of the velocity threshold after which the wave mechanism is effective, in sufficiently thin film, where modes are ''intersected'' the analytical expressions for mobility are also significantly modified. In real experimental environments consideration of all the factors mentioned leads as a rule to higher ion mobility

  4. Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.

    Science.gov (United States)

    Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish

    2013-10-15

    A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film

    Directory of Open Access Journals (Sweden)

    Sławomir Boncel

    2011-06-01

    Full Text Available The physical compatibility of a highly aligned carbon nanotube (HACNT film with liquids was established using a fast and convenient experimental protocol. Two parameters were found to be decisive for the infiltration process. For a given density of nanotube packing, the thermodynamics of the infiltration process (wettability were described by the contact angle between the nanotube wall and a liquid meniscus (θ. Once the wettability criterion (θ < 90° was met, the HACNT film (of free volume equal to 91% was penetrated gradually by the liquid in a rate that can be linearly correlated to dynamic viscosity of the liquid (η. The experimental results follow the classical theory of capillarity for a steady process (Lucas–Washburn law, where the nanoscale capillary force, here supported by gravity, is compensated by viscous drag. This most general theory of capillarity can be applied in a prediction of both wettability of HACNT films and the dynamics of capillary rise in the intertube space in various technological applications.

  6. Preliminary test of an ultrasonic liquid film sensor for high-temperature steam-water two-phase flow experiments

    International Nuclear Information System (INIS)

    Aoyama, Goro; Nagayoshi, Takuji; Baba, Atsushi

    2014-01-01

    A prototype liquid film sensor for high-temperature steam-water experiments has been developed. The sensor shape simulates a boiling water reactor (BWR) fuel rod. The pulse-echo method can be utilized to measure the thickness of the liquid film covering the sensor surface. A piezoelectric element is soldered onto the inside of the sensor casing which consists of two curved casing pieces. After the piezoelectric element is attached, the two casing pieces are laser welded together. It is confirmed that the temperature rise at the time of the laser welding does not influence soldering of the piezoelectric element. The pressure proof test shows that the sensor can be used at a high-pressure condition of 7 MPa. Simple air-water experiments are done at atmospheric pressure to confirm the liquid film thickness can be measured with the sensor. The fluctuation of the liquid film thickness is satisfactorily captured with the sensor. The minimum and maximum thicknesses are 0.084 and 0.180 mm, respectively. The amplitude of the waveform at 286°C is predicted by the calculation based on the acoustic impedance. It is expected that the sensor is able to measure the liquid film thickness even at BWR operating conditions. (author)

  7. The flow and hydrodynamic stability of a liquid film on a rotating disc

    International Nuclear Information System (INIS)

    Kim, Tae-Sung; Kim, Moon-Uhn

    2009-01-01

    The flow of a liquid film on a rotating disc is investigated in the case where a liquid is supplied at a constant flow rate. We propose thin film equations by the integral method with a simple approach to satisfy the boundary conditions on a disc and a free surface, and the results are compared with those of the Navier-Stokes equations. The radial film velocity is assumed to be a quartic profile in our analysis, whereas it was assumed to be a quadratic one, neglecting the inertia force so that the boundary conditions were not completely satisfied, in the analysis of Sisoev et al (2003 J. Fluid Mech. 229 531-54). The basic flow and its stability are analyzed using the thin film equations even in the region where the inertia force is not negligible. A local stability analysis of the flow is conducted using the linearized disturbance equations and correctly predicts Needham's simple instability criterion. The present thin film equations give a good approximation of the Navier-Stokes equations.

  8. Investigation of the liquid film flow rate in an annular two phase flow

    International Nuclear Information System (INIS)

    Chandraker, D.K.; Dasgupta, A.; Vijayan, P.K.; Aritomi, M.

    2011-01-01

    An accurate knowledge of the liquid film flow is essential in most thermal-hydraulic predictions, including the onset of dryout in boiling channels and post-dryout heat transfer during transient and accident scenarios. The determination of the film flow is an important aspect of the dryout analysis in the boiling channel. Dryout is caused due to the disappearance of the liquid film on the heated surface. Mechanistic prediction of dryout involves the modeling of the physical phenomenon of the processes like entrainment and deposition rate of droplets. In the nuclear reactor systems analytical prediction of the thermal hydraulic parameters is always desirable to avoid generation of exhaustive and expensive experimental data for optimizing the design parameters. Good constitutive models for entrainment and deposition are vital for an accurate prediction of the film flow rate and hence dryout in a fuel bundle. This paper attempts a comprehensive review of the dryout analysis involving application of the constitutive models for the film flow rate. Validation of these models against various experimental data has also been presented in this paper. (author)

  9. EXPERIMENTAL EVALUATION OF WEDM MACHINED SURFACE WAVINESS

    Directory of Open Access Journals (Sweden)

    Katerina Mouralova

    2016-10-01

    Full Text Available Wire Electrical Discharge Machining (WEDM an unconventional machining technology which has become indispensable in many industries. The typical morphology of a surface machined using the electrical discharge technology is characterized with a large number of craters caused by electro-spark discharges produced during the machining process. The study deals with an evaluation of the machine parameter setting on the profile parameters of surface waviness on samples made of two metal materials Al 99.5 and Ti-6Al-4V. Attention was also paid to an evaluation of the surface morphology using 3D colour filtered and non-filtered images.

  10. Precipitation of thin-film organic single crystals by a novel crystal growth method using electrospray and ionic liquid film

    Science.gov (United States)

    Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko

    2018-04-01

    We report an organic single crystal growth technique, which uses a nonvolatile liquid thin film as a crystal growth field and supplies fine droplets containing solute from the surface of the liquid thin film uniformly and continuously by electrospray deposition. Here, we investigated the relationships between the solute concentration of the supplied solution and the morphology and size of precipitated crystals for four types of fluorescent organic low molecule material [tris(8-hydroxyquinoline)aluminum (Alq3), 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), N,N‧-bis(3-methylphenyl)-N,N‧-diphenylbenzidine (TPD), and N,N-bis(naphthalene-1-yl)-N,N-diphenyl-benzidine (NPB)] using an ionic liquid as the nonvolatile liquid. As the concentration of the supplied solution decreased, the morphology of precipitated crystals changed from dendritic or leaf shape to platelike one. At the solution concentration of 0.1 mg/ml, relatively large platelike single crystals with a diagonal length of over 100 µm were obtained for all types of material. In the experiment using ionic liquid and dioctyl sebacate as nonvolatile liquids, it was confirmed that there is a clear positive correlation between the maximum volume of the precipitated single crystal and the solubility of solute under the same solution supply conditions.

  11. Study of 'liquid gold' coatings: Thermal decomposition and formation of metallic thin films

    International Nuclear Information System (INIS)

    Deram, V.; Turrell, S.; Darque-Ceretti, E.; Aucouturier, M.

    2006-01-01

    Organo-metallic solutions called liquid gold are largely used to obtain thin gilded films which are employed for decorative, technological and functional uses. However, these films often prove to be fragile with respect to use, resulting in loss of brilliance or even eventual film removal. An understanding of the behaviour of the layers requires good knowledge of the materials themselves. The present work was undertaken to better understand the evolution of the structural properties of liquid gold as it undergoes heat-processing. Accordingly, we followed the thermal decomposition processes of liquid gold coatings and the formation of the gilded metal layer using a combination of experimental techniques. First, thermal analyses coupled with mass spectrometry and infrared spectroscopy gave information concerning the decomposition of the organic medium. It has been found that the process of film formation can be decomposed into three steps, the second of which is an abrupt transition between 300 and 350 deg. C. Details on this transition have been obtained using real-time X-ray Diffraction and Rutherford Backscattering Spectrometry. Above 350 deg. C, the microstructure of the coating is reorganized to obtain a final layer which contains particles, of the size of a few hundreds nanometers, as shown by Transmission Electron Microscopy

  12. Studying gas-sheared liquid film in horizontal rectangular duct with laser-induced fluorescence technique

    Science.gov (United States)

    Cherdantsev, Andrey; Hann, David; Azzopardi, Barry

    2013-11-01

    High-speed LIF-technique is applied to study gas-sheared liquid film in horizontal rectangular duct with 161 mm width. Instantaneous distributions of film thickness resolved in both longitudinal and transverse coordinates were obtained with a frequency of 10 kHz and spatial resolution from 0.125 mm to 0.04 mm. Processes of generation of fast and slow ripples by disturbance waves are the same as described in literature for downwards annular pipe flow. Disturbance waves are often localized by transverse coordinate and may have curved or slanted fronts. Fast ripples, covering disturbance waves, are typically horseshoe-shaped and placed in staggered order. Their characteristic transverse size is of order 1 cm and it decreases with gas velocity. Entrainment of liquid from film surface can also be visualized. Mechanisms of ripple disruption, known as ``bag break-up'' and ``ligament break-up,'' were observed. Both mechanisms may occur on the same disturbance waves. Various scenarios of droplet deposition on the liquid film are observed, including the impact, slow sinking and bouncing, characterized by different outcome of secondary droplets or entrapped bubbles. Number and size of bubbles increase greatly inside the disturbance waves. Both quantities increase with gas and liquid flow rates. EPSRC Programme Grant MEMPHIS (EP/K003976/1), and Roll-Royce UTC (Nottingham, for access to flow facility).

  13. Measurement of interactions between solid particles, liquid droplets, and/or gas bubbles in a liquid using an integrated thin film drainage apparatus.

    Science.gov (United States)

    Wang, Louxiang; Sharp, David; Masliyah, Jacob; Xu, Zhenghe

    2013-03-19

    A novel device was designed to measure drainage dynamics of thin liquid films confined between a solid particle, an immiscible liquid droplet, and/or gas bubble. Equipped with a bimorph force sensor, a computer-interfaced video capture, and a data acquisition system, the newly designed integrated thin film drainage apparatus (ITFDA) allows for the direct and simultaneous measurements of force barrier, true film drainage time, and bubble/droplet deformation under a well-controlled external force, receding and advancing contact angles, capillary force, and adhesion (detachment) force between an air bubble or oil droplet and a solid, a liquid, or an air bubble in an immiscible liquid. Using the diaphragm of a high-frequency speaker as the drive mechanism for the air bubble or oil droplet attached to a capillary tube, this newly designed device is capable of measuring forces over a wide range of hydrodynamic conditions, including bubble approach and retract velocities up to 50 mm/s and displacement range up to 1 mm. The results showed that the ITFDA was capable of measuring hydrodynamic resistance, film drainage time, and other important physical parameters between air bubbles and solid particles in aqueous solutions. As an example of illustrating the versatility, the ITFDA was also applied to other important systems such as interactions between air bubble and oil droplet, two air bubbles, and two oil droplets in an aqueous solution.

  14. Development of a perpendicular vibration-induced electrical discharge machining process for fabrication of partially wavy inner structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Chul; Park, Sang Hu; Min, June Kee; Ha, Man Yeong; Shin, Bo Sung [Pusan National University, Busan (Korea, Republic of); Cho, Jong Rae [Korea Maritime University, Busan (Korea, Republic of)

    2016-05-15

    Heat transfer enhancement is an important issue in energy systems. To improve the efficiency of a cooling channel used inside injection molds, turbine blades, and high-temperature devices, channels with various shapes, such as wavy, elliptical, and twisted, have been studied. A cooling channel with a partially wavy inner structure has shown outstanding cooling performance despite a small increase in friction factor. However, generating a partially wavy inner structure inside a channel through conventional machining processes is not easy. To address this problem, we developed a new process called Perpendicular vibration-induced electrical discharge machining (PV-EDM). A specific electrode and one- and random-directional vibrating devices controlled by a pneumatic load were designed for the PV-EDM process. Experimental results showed that local shaping on the inner wall of a channel is possible, which confirmed the possibility of application of this process to actual industrial problems.

  15. Catastrophe Optics Method to Determine the Micro-Nano Size Profiles at TPL of Liquid Films on a Solid Surface

    Science.gov (United States)

    Chao, David F.; McQuillen, J. B.; Sankovic, J. M.; Zhang, Nengli

    2009-01-01

    As discovered by recent studies, what directly affects the wetting and spreading is curvature in micro-region rather than the macroscopic contact angle. Measuring the profile of the micro-region becomes an important research topic. Recently, catastrophe optics has been applied to this kind of measurements. Optical catastrophe occurring in far field of waves of liquid-refracted laser beam implies a wealth of information about the liquid spreading not only for liquid drops but also for films. When a parallel laser beam passes through a liquid film on a slide glass at three-phase-line (TPL), very interesting optical image patterns occur on a screen far from the film. An analysis based on catastrophe optics discloses and interprets the formation of these optical image patterns. The analysis reveals that the caustic line manifested as the bright-thick line on the screen implies the lowest hierarchy of optical catastrophes, called fold caustic. This optical catastrophe is produced by the inflexion line on liquid surface at the liquid foot, which is formed not only in the spreading of drops but also in spreading of films. The generalized catastrophe optics method enables to identify the edge profiles and determine the edge foot height of liquid films. Keywords: Crossover region, Inflexion line, liquid edge foot, Catastrophe optics, Caustic and diffraction

  16. Development of liquid film thickness measurement technique by high-density multipoint electrodes method

    International Nuclear Information System (INIS)

    Arai, Takahiro; Furuya, Masahiro; Kanai, Taizo

    2010-01-01

    High-density multipoint electrode method was developed to measure a liquid film thickness transient on a curved surface. The devised method allows us to measure spatial distribution of liquid film with its conductance between electrodes. The sensor was designed and fabricated as a multilayer print circuit board, where electrode pairs were distributed in reticular pattern with narrow interval. In order to measure a lot of electrode pairs at a high sampling rate, signal-processing method used by the wire mesh sensor measurement system was applied. An electrochemical impedance spectrometry concludes that the sampling rate of 1000 slices/s is feasible without signal distortion by electric double layer. The method was validated with two experimental campaigns: (1) a droplet impingement on a flat film and (2) a jet impingement on a rod-shape sensor surface. In the former experiment, a water droplet having 4 mm in diameter impinged onto the 1 mm thick film layer. A visual observation study with high-speed video camera shows after the liquid impingement, the water layer thinning process was clearly demonstrated with the sensor. For the latter experiment, the flexible circuit board was bended to form a cylindrical shape to measure water film on a simulated fuel rod in bundle geometry. A water jet having 3 mm in diameter impinged onto the rod-shape sensor surface. The process of wetting area enlargement on the rod surface was demonstrated in the same manner that the video-frames showed. (author)

  17. Mixed convection flow and heat transfer in a vertical wavy channel ...

    African Journals Online (AJOL)

    Mixed convection flow and heat transfer in a vertical wavy channel filled with porous and fluid layers is studied analytically. The flow in the porous medium is modeled using Darcy-Brinkman equation. The coupled non-linear partial differential equations describing the conservation of mass, momentum and energy are solved ...

  18. On Digital Film Theory: Liquid Cinema and Liquid Film Theory

    Directory of Open Access Journals (Sweden)

    Hakan Erkılıç

    2017-12-01

    Full Text Available Referring to Bauman’s (2005 concept of “liquid modernity”, this paper aims to discuss the new film theory that has emerged from the digitalization of cinema. The concepts of perceptual reality and elastic reality constitute the two most important parts of the theory. Bauman argues that contemporary modern societies are “liquid” because of their dynamic character. Although contemporary societies are in constant movement, he indicates that they lack certainty and borders, and flexibility and uncertainty become prominent instead. The digital cinema that Belton (2002 has defined as “a false revolution” is nothing but 1’s and 0’s. The key concept here is CGI (computer graphics imaging. Manovich (1995 points out that we have arrived at a digitally transformable reality that depends on computer programs and which is beyond photographic reality due to the digitalization of cinema: This is elastic reality. The second concept in the theoretical discussion of digital cinema through visual effects is brought by Prince (1996: "Perceptual realism". This paper opens a theoretical debate through CGI examples and is based on the argument that Bauman's concept of “liquid” constitutes a social and cultural background for digital theory.

  19. Laser-induced damage of materials in bulk, thin-film, and liquid forms

    International Nuclear Information System (INIS)

    Natoli, Jean-Yves; Gallais, Laurent; Akhouayri, Hassan; Amra, Claude

    2002-01-01

    Accurate threshold curves of laser-induced damage (7-ns single shot at 1.064 μm) are measured in bulk and at the surfaces of optical components such as substrates, thin films, multilayers, and liquids. The shapes and the slopes of the curves are related to the spot size and to the densities of the nanodefects that are responsible for damage. First, these densities are reported for bulk substrates. In surfaces and films the recorded extrinsic and intrinsic threshold curves permit the discrimination of the effects of microdefects and nanodefects. In all cases the density of nanocenters is extracted by means of a phenomenological approach. Then we test liquids and mixtures of liquids with controlled defect densities. The results emphasize the agreement between measurement and prediction and demonstrate the validity of the presence of different kinds of nanocenter as the precursors of laser damage

  20. In situ investigation of ion-induced dewetting of a thin iron-oxide film on silicon by high resolution scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Amirthapandian, S. [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart, 70569 Stuttgart (Germany); Material Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Schuchart, F.; Garmatter, D.; Bolse, W. [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart, 70569 Stuttgart (Germany)

    2012-11-15

    Using our new in situ high resolution scanning electron microscope, which is integrated into the UNILAC ion beamline at the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt, Germany, we investigated the swift heavy ion induced dewetting of a thin iron oxide layer on Si. Besides heterogeneous hole nucleation at defects and spontaneous (homogeneous) hole nucleation, we could clearly identify a dewetting mechanism, which is similar to the spinodal dewetting observed for liquid films. Instead of being due to capillary waves, it is based on a stress induced surface instability. The latter results in the formation of a wavy surface with constant dominant wave-length and increasing amplitude during ion irradiation. Dewetting sets in as soon as the wave-troughs reach the film-substrate interface. Inspection of the hole radii and rim shapes indicates that removal of the material from the hole area occurs mainly by plastic deformation at the inner boundary and ion induced viscous flow in the peripheral zone due to surface tension.

  1. Dewetting of low-viscosity films at solid/liquid interfaces.

    Science.gov (United States)

    Péron, Nicolas; Brochard-Wyart, Françoise; Duval, Hervé

    2012-11-13

    We report new experimental results on the dewetting of a mercury film (A) intercalated between a glass slab and an external nonmiscible liquid phase (B) under conditions of a large equilibrium contact angle. The viscosity of the external phase, ηB, was varied over 7 orders of magnitude. We observe a transition between two regimes of dewetting at a threshold viscosity of η(B)* ≈ (ρ(A)e|S̃|)(1/2), where ρ(A) is the mercury density, e is the film thickness, and |S̃| is the effective spreading coefficient. For η(B) dewetting is constant and ruled by Culick’s law, V ≈ (|S̃|/(ρ(A)e))(1/2). Capillary waves were observed at high dewetting velocities: they are a signature of hydraulic shock. For η(B) > η(B)*, the regime is viscous. The dewetting velocity is constant and scales as V ≈ |S̃|/η(B) in the limit of large η(B). We interpret this regime by a balance between the surface energy released during dewetting and the viscous dissipation in the surrounding liquid.

  2. Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    KAUST Repository

    Budiman, Alexander Christantho

    2014-12-04

    Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.

  3. Identification of flow structures in fully developed canonical and wavy channels by means of modal decomposition techniques

    Science.gov (United States)

    Ghebali, Sacha; Garicano-Mena, Jesús; Ferrer, Esteban; Valero, Eusebio

    2018-04-01

    A Dynamic Mode Decomposition (DMD) of Direct Numerical Simulations (DNS) of fully developed channel flows is undertaken in order to study the main differences in flow features between a plane-channel flow and a passively “controlled” flow wherein the mean friction was reduced relative to the baseline by modifying the geometry in order to generate a streamwise-periodic spanwise pressure gradient, as is the case for an oblique wavy wall. The present analysis reports POD and DMD modes for the plane channel, jointly with the application of a sparsity-promoting method, as well as a reconstruction of the Reynolds shear stress with the dynamic modes. Additionally, a dynamic link between the streamwise velocity fluctuations and the friction on the wall is sought by means of a composite approach both in the plane and wavy cases. One of the DMD modes associated with the wavy-wall friction exhibits a meandering motion which was hardly identifiable on the instantaneous friction fluctuations.

  4. Realization of hydrodynamic experiments on quasi-2D liquid crystal films in microgravity

    Science.gov (United States)

    Clark, Noel A.; Eremin, Alexey; Glaser, Matthew A.; Hall, Nancy; Harth, Kirsten; Klopp, Christoph; Maclennan, Joseph E.; Park, Cheol S.; Stannarius, Ralf; Tin, Padetha; Thurmes, William N.; Trittel, Torsten

    2017-08-01

    Freely suspended films of smectic liquid crystals are unique examples of quasi two-dimensional fluids. Mechanically stable and with quantized thickness of the order of only a few molecular layers, smectic films are ideal systems for studying fundamental fluid physics, such as collective molecular ordering, defect and fluctuation phenomena, hydrodynamics, and nonequilibrium behavior in two dimensions (2D), including serving as models of complex biological membranes. Smectic films can be drawn across openings in planar supports resulting in thin, meniscus-bounded membranes, and can also be prepared as bubbles, either supported on an inflation tube or floating freely. The quantized layering renders smectic films uniquely useful in 2D fluid physics. The OASIS team has pursued a variety of ground-based and microgravity applications of thin liquid crystal films to fluid structure and hydrodynamic problems in 2D and quasi-2D systems. Parabolic flights and sounding rocket experiments were carried out in order to explore the shape evolution of free floating smectic bubbles, and to probe Marangoni effects in flat films. The dynamics of emulsions of smectic islands (thicker regions on thin background films) and of microdroplet inclusions in spherical films, as well as thermocapillary effects, were studied over extended periods within the OASIS (Observation and Analysis of Smectic Islands in Space) project on the International Space Station. We summarize the technical details of the OASIS hardware and give preliminary examples of key observations.

  5. Liquid flow rate effects during partial evaporation in a falling film micro contactor

    NARCIS (Netherlands)

    Moschou, P.; Croon, de M.H.J.M.; Schaaf, van der J.; Schouten, J.C.

    2013-01-01

    The focus of this study is the investigation of the effect of liquid flow rate on partial evaporation, enhanced by convective nitrogen flow, in a falling film micro contactor. Experiments are performed at different flow rates and for a certain heating liquid temperature. The temperatures of the gas

  6. Foam flow and liquid films motion: role of the surfactants properties

    Science.gov (United States)

    Cantat, Isabelle

    2011-11-01

    Liquid foams absorb energy in a much more efficient way than each of its constituents, taken separately. However, the local process at the origin of the energy dissipation is not entirely elucidated yet, and several models may apply, thus making worth local studies on simpler systems. We investigate the motion through a wet tube of transverse soap films, or lamellae, combining local thickness and velocity measurements in the wetting film. For foaming solution with a high dilatational surface modulus, we reveal a zone of several centimeters in length, the dynamic wetting film, which is significantly influenced by a moving lamella. The dependence of this influence length on lamella velocity and wetting film thickness provides an accurate discrimination among several possible surfactants models. In collaboration with B. Dollet.

  7. Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloy.

    Science.gov (United States)

    Efthimiadis, Jim; Neil, Wayne C; Bunter, Andrew; Howlett, Patrick C; Hinton, Bruce R W; MacFarlane, Douglas R; Forsyth, Maria

    2010-05-01

    The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg-Zn-Rare Earth (RE)-Zr, nominal composition approximately 4 wt % Zn, approximately 1.7 wt % RE (Ce), approximately 0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P(6,6,6,14)][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of -200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes.

  8. Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth

    International Nuclear Information System (INIS)

    Thiele, U

    2010-01-01

    In the present contribution we review basic mathematical results for three physical systems involving self-organizing solid or liquid films at solid surfaces. The films may undergo a structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively. We highlight similarities and differences of the three systems based on the observation that in certain limits all of them may be described using models of similar form, i.e. time evolution equations for the film thickness profile. Those equations represent gradient dynamics characterized by mobility functions and an underlying energy functional. Two basic steps of mathematical analysis are used to compare the different systems. First, we discuss the linear stability of homogeneous steady states, i.e. flat films, and second the systematics of non-trivial steady states, i.e. drop/hole states for dewetting films and quantum-dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying solution structure might be very complex as in the case of epitaxial growth but can be better understood when comparing the much simpler results for the dewetting liquid film. We furthermore show that the numerical continuation techniques employed can shed some light on this structure in a more convenient way than time-stepping methods. Finally we discuss that the usage of the employed general formulation does not only relate seemingly unrelated physical systems mathematically, but does allow as well for discussing model extensions in a more unified way.

  9. Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer

    International Nuclear Information System (INIS)

    Nakayama, Hiroyasu; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Saitoh, Eiji; Ye, Jianting; Iwasa, Yoshihiro

    2012-01-01

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with 27 (-25) MV cm -1 of electric field by applying only 1.7 V of positive (negative) gate voltage. The experimental results indicate that the ionic-liquid-gated EDLT technique can be used for controlling the surface electronic states on metallic systems. (author)

  10. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.

    Science.gov (United States)

    Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori

    2014-06-01

    A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Airflow measurements at a wavy air-water interface using PIV and LIF

    Science.gov (United States)

    Buckley, Marc P.; Veron, Fabrice

    2017-11-01

    Physical phenomena at an air-water interface are of interest in a variety of flows with both industrial and natural/environmental applications. In this paper, we present novel experimental techniques incorporating a multi-camera multi-laser instrumentation in a combined particle image velocimetry and laser-induced fluorescence system. The system yields accurate surface detection thus enabling velocity measurements to be performed very close to the interface. In the application presented here, we show results from a laboratory study of the turbulent airflow over wind driven surface waves. Accurate detection of the wavy air-water interface further yields a curvilinear coordinate system that grants practical and easy implementation of ensemble and phase averaging routines. In turn, these averaging techniques allow for the separation of mean, surface wave coherent, and turbulent velocity fields. In this paper, we describe the instrumentation and techniques and show several data products obtained on the air-side of a wavy air-water interface.

  12. Phosphazene like film formation on InP in liquid ammonia (223 K)

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, A.-M., E-mail: goncalves@chimie.uvsq.fr; Njel, C.; Mathieu, C.; Aureau, D.; Etcheberry, A.

    2013-07-01

    An anodic photo-galvanostatic treatment at low current density (1 μA·cm{sup −2}) is carried out on n-InP semiconductor in liquid ammonia (223 K). The gradual chemical evolution of the surface is studied as a function of the anodic charge. Proof and reproducibility of the chemical transformation of the surface are clearly evidenced by X-ray photoelectron spectroscopy (XPS) analyses. Like by cyclic voltammetry, the perfect coverage of the InP surface by a thin phosphazene like film is also revealed by XPS data. However, a low anodic charge (≈ 0.5 mC·cm{sup −2}) is required by photo-galvanostatic treatment while a higher anodic charge (≈ 7 mC·cm{sup −2}) is involved by cyclic voltammetry. The excess of charge could be related to ammonia oxidation during the formation of the passivating film. This result proves the electrochemical oxidation of the solvent as a determinant step of the mechanism film formation. - Highlights: ► Cyclic voltammetry and galvanostatic modes on n-InP in liquid ammonia (223 K). ► A thin film growth is reached by photo-anodic polarization. ► The same phosphazene like film is evidenced by X-ray photoelectron spectroscopy. ► An excess of charge is observed by cyclic voltammetry. ► An electrochemical oxidation step of the solvent is assumed.

  13. Dynamics of the liquid film around elongated bubbles rising in vertical capillaries

    Science.gov (United States)

    Magnini, Mirco; Khodaparast, Sepideh; Matar, Omar K.; Stone, Howard A.; Thome, John R.

    2017-11-01

    We performed a theoretical, numerical and experimental study on elongated bubbles rising in vertical tubes in co-current liquid flows. The flow conditions were characterized by capillary, Reynolds and Bond numbers within the range of Ca = 0.005 - 0.1 , Re = 1 - 2000 and Bo = 0 - 20 . Direct numerical simulations of the two-phase flows are run with a self-improved version of OpenFOAM, implementing a coupled Level Set and Volume of Fluid method. A theoretical model based on an extension of the traditional Bretherton theory, accounting for inertia and the gravity force, is developed to obtain predictions of the profiles of the front and rear menisci of the bubble, liquid film thickness and bubble velocity. Different from the traditional theory for bubbles rising in a stagnant liquid, the gravity force impacts the flow already when Bo < 4 . Gravity effects speed up the bubble compared to the Bo = 0 case, making the liquid film thicker and reducing the amplitude of the undulation on the surface of the bubble near its tail. Gravity effects are more apparent in the visco-capillary regime, i.e. when the Reynolds number is below 1.

  14. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: watanabe_t@qe.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: takata.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: yamaguchi@n.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2017-03-15

    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  15. Self-similar decay to the marginally stable ground state in a model for film flow over inclined wavy bottoms

    Directory of Open Access Journals (Sweden)

    Tobias Hacker

    2012-04-01

    Full Text Available The integral boundary layer system (IBL with spatially periodic coefficients arises as a long wave approximation for the flow of a viscous incompressible fluid down a wavy inclined plane. The Nusselt-like stationary solution of the IBL is linearly at best marginally stable; i.e., it has essential spectrum at least up to the imaginary axis. Nevertheless, in this stable case we show that localized perturbations of the ground state decay in a self-similar way. The proof uses the renormalization group method in Bloch variables and the fact that in the stable case the Burgers equation is the amplitude equation for long waves of small amplitude in the IBL. It is the first time that such a proof is given for a quasilinear PDE with spatially periodic coefficients.

  16. Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer

    NARCIS (Netherlands)

    Nakayama, Hiroyasu; Ye, Jianting; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Iwasa, Yoshihiro; Saitoh, Eiji

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with

  17. Effect of three-dimensional deformations on local heat transfer to a nonuniformly heated falling film of liquid

    International Nuclear Information System (INIS)

    Chinnov, E.A.; Kabov, O.A.

    2004-01-01

    The experimental study on the heat transfer by the water film heated vertical flow is studied within the Reynolds number values from 1 to 45. The chart of the liquid film flow modes is plotted and the heat exchange areas are separated. The data on the dependence of the temperature of the heater walls and local heat flux at the heater symmetry axis on the longitudinal coordinate are obtained. The local heat exchange coefficients are measured. The comparison of the experimental data with the numerical calculations for the smooth film is carried out. The effect of the jet flow formation on the heat transfer to the liquid film is analyzed [ru

  18. Evolution of nonconformal Landau-Levich-Bretherton films of partially wetting liquids

    Science.gov (United States)

    Kreutzer, Michiel T.; Shah, Maulik S.; Parthiban, Pravien; Khan, Saif A.

    2018-01-01

    We experimentally and theoretically describe the dynamics of evolution and eventual rupture of Landau-Levich-Bretherton films of partially wetting liquids in microchannels in terms of nonplanar interface curvatures and disjoining pressure. While both the early-stage dynamics of film evolution and near-collapse dynamics of rupture are understood, we match these regimes and find theoretically that the dimensionless rupture time, Tr, scales with κ-10 /7. Here, κ is the dimensionless curvature given by the ratio of the Laplace-pressure discontinuity that initiates film thinning to the initial strength of the disjoining pressure that drives the rupture. We experimentally verify the rupture times and highlight the crucial consequences of early film rupture in digital microfluidic contexts: pressure drop in segmented flow and isolation of droplets from the walls.

  19. Thin aligned organic polymer films for liquid crystal devices

    International Nuclear Information System (INIS)

    Foster, Kathryn Ellen

    1997-01-01

    This project was designed to investigate the possibility of producing alignment layers for liquid crystal devices by cross-linking thin films containing anisotropic polymer bound chromophores via irradiation with polarised ultraviolet light. Photocross-linkable polymers find use in microelectronics, liquid crystal displays, printing and UV curable lacquers and inks; so there is an increasing incentive for the development of new varieties of photopolymers in general. The synthesis and characterisation of two new photopolymers that are suitable as potential alignment layers for liquid crystal devices are reported in this thesis. The first polymer contains the anthracene chromophore attached via a spacer unit to a methacrylate backbone and the second used a similarly attached aryl azide group. Copolymers of the new monomers with methyl methacrylate were investigated to establish reactivity ratios in order to understand composition drift during polymerisation. (author)

  20. Fabrication of flexible polymer dispersed liquid crystal films using conducting polymer thin films as the driving electrodes

    International Nuclear Information System (INIS)

    Kim, Yang-Bae; Park, Sucheol; Hong, Jin-Who

    2009-01-01

    Conducting polymers exhibit good mechanical and interfacial compatibility with plastic substrates. We prepared an optimized coating formulation based on poly(3,4-ethylenedioxythiophene) (PEDOT) and 3-(trimethoxysilyl)propyl acrylate and fabricated a transparent electrode on poly(ethylene terephthalate) (PET) substrate. The surface resistances and transmittance of the prepared thin films were 500-600 Ω/□ and 87% at 500 nm, respectively. To evaluate the performance of the conducting polymer electrode, we fabricated a five-layer flexible polymer-dispersed liquid crystal (PDLC) device as a PET-PEDOT-PDLC-PEDOT-PET flexible film. The prepared PDLC device exhibited a low driving voltage (15 VAC), high contrast ratio (60:1), and high transmittance in the ON state (60%), characteristics that are comparable with those of conventional PDLC film based on indium tin oxide electrodes. The fabrication of conducting polymer thin films as the driving electrodes in this study showed that such films can be used as a substitute for an indium tin oxide electrode, which further enhances the flexibility of PDLC film

  1. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films

    Directory of Open Access Journals (Sweden)

    Yujian Sun

    2016-12-01

    Full Text Available Polymer-dispersed liquid crystal (PDLC films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  2. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films.

    Science.gov (United States)

    Sun, Yujian; Zhang, Cuihong; Zhou, Le; Fang, Hua; Huang, Jianhua; Ma, Haipeng; Zhang, Yi; Yang, Jie; Zhang, Lan-Ying; Song, Ping; Gao, Yanzi; Xiao, Jiumei; Li, Fasheng; Li, Kexuan

    2016-12-30

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  3. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film

    Science.gov (United States)

    Nych, Andriy; Fukuda, Jun-Ichi; Ognysta, Uliana; Žumer, Slobodan; Muševič, Igor

    2017-12-01

    Skyrmions are coreless vortex-like excitations emerging in diverse condensed-matter systems, and real-time observation of their dynamics is still challenging. Here we report the first direct optical observation of the spontaneous formation of half-skyrmions. In a thin film of a chiral liquid crystal, depending on experimental conditions including film thickness, they form a hexagonal lattice whose lattice constant is a few hundred nanometres, or appear as isolated entities with topological defects compensating their charge. These half-skyrmions exhibit intriguing dynamical behaviour driven by thermal fluctuations. Numerical calculations of real-space images successfully corroborate the experimental observations despite the challenge because of the characteristic scale of the structures close to the optical resolution limit. A thin film of a chiral liquid crystal thus offers an intriguing platform that facilitates a direct investigation of the dynamics of topological excitations such as half-skyrmions and their manipulation with optical techniques.

  4. Experimental study of interfacial wave on a liquid film in vertical annular flow

    International Nuclear Information System (INIS)

    Hazuku, T.; Fukamachi, N.; Takamasa, T.; Matsumoto, Y.

    2003-01-01

    In this study, a precise database of microscopic interfacial wave-structure for annular flow developing in a vertical pipe was obtained using a new measuring technique with a laser focus displacement meter. Adiabatic upward annular air-water flow experiments were conducted using a 3-m-long, 11- mm-ID pipe. Measurements of interfacial waves were conducted at 21 axial locations, spaced 110 mm apart, in the pipe. The axial distances from the inlet (L) normalized by the pipe diameter (D) varied over L/D = 50 to 250. Data were collected for predetermined gas and liquid flow conditions and for Reynolds numbers ranging from Reg = 31,800 to 98,300 for the gas phase and Ref = 1,050 to 9,430 for the liquid phase. Using this new technique, we obtained such local properties as the minimum thickness, maximum thickness, and passing frequency of the waves. The results revealed that the maximum film thickness and passing frequency of disturbance waves decreased gradually, with some oscillations, as flow developed. The flow development, i.e., decreases of film thickness and passing frequency, existed until the pipe exit, which means that the flow might never reach a fully developed condition. Minimum thickness of the film decreased with flow development and with increasing gas flow rate. These results are discussed, taking into account the buffer layer calculated from Karman's three-layer model. Correlation is proposed for the minimum film thickness obtained in regard to interfacial shear stress and the Reynolds number of the liquid. This correlation expresses the minimum film thickness obtained from the experiment within a 5% deviation

  5. Instability of flow of liquid film over a heated surface

    International Nuclear Information System (INIS)

    Sha, W.T.

    1994-01-01

    Fundamental concepts and basic equations of a flowing thin liquid film cooling a heated surfaced by its vaporization and the effect of dry patches were treated. Stable film flow prior to the appearance of dry patches on the heated surface is maintained by a balance of various forces due to surface tension, shear stress, heat and mass transfer, and gravity. Film splitting at a critical film thickness produces dry patches due to perturbation by waves on a perfect surface, and often by surface imperfection and uneven heating. This work is primarily motivated by the design of next-generation nuclear reactors, which employ many novel passive heat-removal systems via natural circulation. These systems are design to prevent damage to the reactor core and containment without action by the reactor operators during or after a design basis accident such as a loss of coolant accident (LOCA) or a main steam-line break (MSLB) accident

  6. Numerical Study of Natural Convection within a Wavy Enclosure Using Meshfree Approach: Effect of Corner Heating

    Directory of Open Access Journals (Sweden)

    Sonam Singh

    2014-01-01

    Full Text Available This paper presents a numerical study of natural convection within a wavy enclosure heated via corner heating. The considered enclosure is a square enclosure with left wavy side wall. The vertical wavy wall of the enclosure and both of the corner heaters are maintained at constant temperature, Tc and Th, respectively, with Th>Tc while the remaining horizontal, bottom, top and side walls are insulated. A penalty element-free Galerkin approach with reduced gauss integration scheme for penalty terms is used to solve momentum and energy equations over the complex domain with wide range of parameters, namely, Rayleigh number (Ra, Prandtl number (Pr, and range of heaters in the x- and y-direction. Numerical results are represented in terms of isotherms, streamlines, and Nusselt number. It is observed that the rate of heat transfer depends to a great extent on the Rayleigh number, Prandtl number, length of the corner heaters and the shape of the heat transfer surface. The consistent performance of the adopted numerical procedure is verified by comparison of the results obtained through the present meshless technique with those existing in the literature.

  7. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence

    International Nuclear Information System (INIS)

    Kaplan, A. F. H.

    2012-01-01

    The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 μm wavelength CO 2 -laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadow domains.

  8. Numerical study of heat and mass transfer during evaporation of a thin liquid film

    Directory of Open Access Journals (Sweden)

    Oubella M’hand

    2015-01-01

    Full Text Available A numerical study of mixed convection heat and mass transfer with film evaporation in a vertical channel is developed. The emphasis is focused on the effects of vaporization of three different liquid films having widely different properties, along the isothermal and wetted walls on the heat and mass transfer rates in the channel. The induced laminar downward flow is a mixture of blowing dry air and vapour of water, methanol or acetone, assumed as ideal gases. A two-dimensional steady state and elliptical flow model, connected with variable thermo-physical properties, is used and the phase change problem is based on thin liquid film assumptions. The governing equations of the model are solved by a finite volume method and the velocity-pressure fields are linked by SIMPLE algorithm. The numerical results, including the velocity, temperature and concentration profiles, as well as axial variations of Nusselt numbers, Sherwood number and dimensionless film evaporation rate are presented for two values of inlet temperature and Reynolds number. It was found that lower the inlet temperature and Re, the higher the induced flows cooling with respect of most volatile film. The better mass transfer rates related with film evaporation are found for a system with low mass diffusion coefficient.

  9. Natural convection heat transfer from a horizontal wavy surface in a porous enclosure

    International Nuclear Information System (INIS)

    Murthy, P.V.S.N.; Kumar, B.V.R.; Singh, P.

    1997-01-01

    The effect of surface undulations on the natural convection heat transfer from an isothermal surface in a Darcian fluid-saturated porous enclosure has been numerically analyzed using the finite element method on a graded nonuniform mesh system. The flow-driving Rayleigh number Ra together with the geometrical parameters of wave amplitude a, wave phase φ, and the number of waves N considered in the horizontal dimension of the cavity are found to influence the flow and heat transfer process in the enclosure. For Ra around 50 and above, the phenomenon of flow separation and reattachment is noticed on the walls of the enclosure. A periodic shift in the reattachment point from the bottom wall to the adjacent walls in the clockwise direction, leading to the manifestation of cycles of unicellular and bicellular clockwise and counterclockwise flows, is observed, with the phase varying between 0 degree and 350 degree. The counterflow in the secondary circulation zone is intensified with the increase in the value of Ra. The counterflow on the wavy wall hinders the heat transfer into the system. An increase in either wave amplitude or the number of waves considered per unit length decreases the global heat flux into the system. Only marginal changes in global heat flux are noticed with increasing Ra. On the whole, the comparison of global heat flux results in the wavy wall case with those of the horizontal flat wall case shows that, in a porous enclosure, the wavy wall reduces the heat transfer into the system

  10. Numerical Simulation of Turbulent Convective Flow Over Wavy Terrain

    OpenAIRE

    Dörnbrack, A.; Schumann, U.

    1993-01-01

    By means of a large-eddy simulation, the convective boundary layer is investigated for flows over wavy terrain. The lower surface varies sinusoidalty in the downstream direction while remaining constant in the other. Several cases are considered with amplitude 6 up to 0.15H and wavelength A of H to 8H, where H is the mean fluid-layer height. At the lower surface, the vertical heat flux is prescribed to be constant and the momentum flux is determined locally from the Monin-Obukhov relationship...

  11. In-situ Non-Invasive Imaging of Liquid-Immersed Thin Film Composite Membranes

    KAUST Repository

    Ogieglo, Wojciech; Pinnau, Ingo; Wessling, Matthias

    2017-01-01

    We present a non-invasive method to directly image liquid-immersed thin film composite membranes. The approach allows accessing information not only on the lateral distribution of the coating thickness, including variations in its swelling

  12. Liquid flow deposited spinel (Ni,Mn){sub 3}O{sub 4} thin films for microbolometer applications

    Energy Technology Data Exchange (ETDEWEB)

    Le, Duc Thang, E-mail: ducthang36@skku.edu [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jeon, Chang Jun; Lee, Kui Woong; Jeong, Young Hun; Yun, Ji Sun [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Yoon, Dae Ho, E-mail: dhyoon@skku.edu [School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Cho, Jeong Ho, E-mail: goedc@kicet.re.kr [Intelligent Electronic Component Team, Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of)

    2015-03-01

    Highlights: • Highly quality (Ni,Mn){sub 3}O{sub 4} thin films were grown using liquid flow deposited (LFD) technique. • It is possible to deposit multi–component manganite–oxide thin films by LFD at low temperatures. • Nickel–manganite films showed a good negative temperature coefficient (NTC) characteristic. • Liquid flow deposited (Ni,Mn){sub 3}O{sub 4} thin films are very potential for microbolometer applications. - Abstract: A liquid flow deposition (LFD) technique was initially used for the fabrication of single-component Mn{sub 3}O{sub 4} thin films onto Si wafer substrates at a range of substrate temperatures of 30–80 °C, with the introduction of an oxidizing reagent (H{sub 2}O{sub 2}). As a result, solid thin films were well formed from an aqueous solution. An X-ray diffraction (XRD) analysis showed typical characteristics of hausmannite Mn{sub 3}O{sub 4} with a spinel tetragonal phase. Field-emission scanning electron microscopy (FE-SEM) observations revealed nano-sized grains arranged uniformly on a dense and smooth surface for all of the as-deposited films. On the other hand, the LFD method was then extended to prepare two-component nickel–manganite films according to the binary chemical composition of Ni{sub x}Mn{sub 3−x}O{sub 4} with x = 0.02–0.2. The as-grown nickel–manganite films showed a surface with a good quality with a spherical bead-like architecture when x ≤ 0.10, while a conversion from spherical grains into highly porous nanowalls in the microstructure was noted in films when x ≥ 0.12. These results signify that it is possible to fabricate various multi-component manganite-oxide thin films at a low temperature. In addition, the dependences of the room-temperature electrical resistivity (ρ) and the temperature coefficient of resistance (TCR) on the Ni substitution level (x) were investigated on films annealed at 400 °C.

  13. MHD natural convection of hybrid nanofluid in an open wavy cavity

    Science.gov (United States)

    Ashorynejad, Hamid Reza; Shahriari, Alireza

    2018-06-01

    In this paper, natural convection heat transfer of Al2O3-Cu/water hybrid nanofluid within open wavy cavity and subjected to a uniform magnetic field is examined by adopting the lattice Boltzmann method scheme. The left wavy wall is heated sinusoidal, while the right wall is open and maintained to the ambient conditions. The top and the bottom horizontal walls are smooth and insulated against heat and mass. The influence of solid volume fraction of nanoparticles (φ = 0, 0.02, 0.04), Rayleigh number (Ra = 103, 104, 105), Hartmann number (Ha = 0, 30, 60, 90) and phase deviation (Φ = 0, π/4, π/2, 3π/4) are investigated on flow and heat transfer fields. The results proved that the Nusselt number decreases with the increase of the Hartmann number, but it increases by the increment of Rayleigh number and nanoparticle volume fraction. The magnetic field rises or falls the effect produced by the presence of nanoparticles with respect to Rayleigh number. At Ra = 103, the effect of the raising phase deviation on heat transfer is erratic while it has a positive role in the improvement of nanoparticles effect at Ra = 105.

  14. Studies on micro-structures at vapor-liquid interfaces of film boiling on hot liquid surface at arriving of a shock pressure

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Lee, S. [Tokyo Inst. of Tech. (Japan)

    1998-01-01

    In vapor explosions, a pressure wave (shock wave) plays a fundamental role in the generation, propagation and escalation of the explosion. Transient volume change by rapid heat flow from a high temperature liquid to a low temperature volatile one and phase change generate micro-scale flow and the pressure wave. One of key issues for the vapor explosion is to make clear the mechanism to support the explosive energy release from hot drop to cold liquid. According to our observations by an Image Converter Camera, growth rate of vapor film around a hot tin drop became several times higher than that around a hot Platinum tube at the same conditions when a pressure pulse collapsed the film. The thermally induced fragmentation was followed by the explosive growth rate of the hot drop. In the previous report, we have proposed that the interface instability and fragmentation model in which the fine Taylor instability of vapor-liquid interface at the collapsing and re-growth phase of vapor film and the instability induced by the high pressure spots at the drop surface were assumed. In this study, the behavior of the vapor-liquid interface region at arrival of a pressure pulse was investigated by the CIPRIS code which is able to simulate dynamics of transient multi-phase interface regions. It is compared with the observation results. Through detailed investigations of these results, the mechanisms of the thermal fragmentation of single drop are discussed. (J.P.N.)

  15. Study of 'liquid gold' coatings: Thermal decomposition and formation of metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deram, V. [Laboratoire de Spectrochimie Infrarouge et Raman, Universite des Sciences et Technologies de Lille, UMR CNRS 8516, Bat C5 - 59655 Villeneuve d' Ascq (France) and Ecole Nationale Superieure des Mines de Paris, Centre de Mise en Forme des Materiaux, UMR CNRS 7635, BP 207, 06904 Sophia-Antipolis (France)]. E-mail: virginie.deram@ensmp.fr; Turrell, S. [Laboratoire de Spectrochimie Infrarouge et Raman, Universite des Sciences et Technologies de Lille, UMR CNRS 8516, Bat C5 - 59655 Villeneuve d' Ascq (France); Darque-Ceretti, E. [Ecole Nationale Superieure des Mines de Paris, Centre de Mise en Forme des Materiaux, UMR CNRS 7635, BP 207, 06904 Sophia-Antipolis (France); Aucouturier, M. [Centre de Recherche et de Restauration des Musees de France, UMR CNRS 171, Palais du Louvre, Porte des Lions, 14 quai F. Mitterrand, 75001 Paris Cedex (France)

    2006-09-25

    Organo-metallic solutions called liquid gold are largely used to obtain thin gilded films which are employed for decorative, technological and functional uses. However, these films often prove to be fragile with respect to use, resulting in loss of brilliance or even eventual film removal. An understanding of the behaviour of the layers requires good knowledge of the materials themselves. The present work was undertaken to better understand the evolution of the structural properties of liquid gold as it undergoes heat-processing. Accordingly, we followed the thermal decomposition processes of liquid gold coatings and the formation of the gilded metal layer using a combination of experimental techniques. First, thermal analyses coupled with mass spectrometry and infrared spectroscopy gave information concerning the decomposition of the organic medium. It has been found that the process of film formation can be decomposed into three steps, the second of which is an abrupt transition between 300 and 350 deg. C. Details on this transition have been obtained using real-time X-ray Diffraction and Rutherford Backscattering Spectrometry. Above 350 deg. C, the microstructure of the coating is reorganized to obtain a final layer which contains particles, of the size of a few hundreds nanometers, as shown by Transmission Electron Microscopy.

  16. 2D fringe probing of liquid film dynamics of a plug bubble in a micropipe

    International Nuclear Information System (INIS)

    Ji, H F; Qiu, H H

    2009-01-01

    An extended film thickness measurement method that can obtain the liquid film thickness profile of the whole plug bubble in a capillary tube simultaneously is presented. The approach is based on a 2D spatial fringe scattering technique, where the spatial frequency of scattered fringes is a function of liquid film thickness along the micropipe. Laser sheets are used instead of the laser beams, and the width of the laser sheets can be selected to cover the whole measurement field. Capillary tubes, with inner diameters of 1.0 mm and 0.3 mm, and lengths of 125 mm and 65 mm, are used. A gas plug bubble, 2.5–20 mm long, is introduced and moves through the testing part of the tube, which is filled with water as the working fluid. The interference fringes produced by two incident laser sheets are scattered from the interface between gas and water, and captured by a high-speed camera at a speed of up to 2000 frames s −1 . The experimental results show that the improved method can obtain the liquid film thickness profile at the different times and can be used to analyze the status of the plug bubble movement in a micropipe

  17. Hierarchical opal grating films prepared by slide coating of colloidal dispersions in binary liquid media.

    Science.gov (United States)

    Lee, Wonmok; Kim, Seulgi; Kim, Seulki; Kim, Jin-Ho; Lee, Hyunjung

    2015-02-15

    There are active researches on well ordered opal films due to their possible applications to various photonic devices. A recently developed slide coating method is capable of rapid fabrication of large area opal films from aqueous colloidal dispersion. In the current study, the slide coating of polystyrene colloidal dispersions in water/i-propanol (IPA) binary media is investigated. Under high IPA content in a dispersing medium, resulting opal film showed a deterioration of long range order, as well as a decreased film thickness due to dilution effect. From the binary liquid, the dried opal films exhibited the unprecedented topological groove patterns with varying periodic distances as a function of alcohol contents in the media. The groove patterns were consisted of the hierarchical structures of the terraced opal layers with periodic thickness variations. The origin of the groove patterns was attributed to a shear-induced periodic instability of colloidal concentration within a thin channel during the coating process which was directly converted to a groove patterns in a resulting opal film due to rapid evaporation of liquid. The groove periods of opal films were in the range of 50-500 μm, and the thickness differences between peak and valley of the groove were significantly large enough to be optically distinguishable, such that the coated films can be utilized as the optical grating film to disperse infra-red light. Utilizing a lowered hydrophilicity of water/IPA dispersant, an opal film could be successfully coated on a flexible Mylar film without significant dewetting problem. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Use of an electric field in an electrostatic liquid film radiator.

    Science.gov (United States)

    Bankoff, S G; Griffing, E M; Schluter, R A

    2002-10-01

    Experimental and numerical work was performed to further the understanding of an electrostatic liquid film radiator (ELFR) that was originally proposed by Kim et al.(1) The ELFR design utilizes an electric field that exerts a normal force on the interface of a flowing film. The field lowers the pressure under the film in a space radiator and, thereby, prevents leakage through a puncture in the radiator wall. The flowing film is subject to the Taylor cone instability, whereby a cone of fluid forms underneath an electrode and sharpens until a jet of fluid is pulled toward the electrode and disintegrates into droplets. The critical potential for the instability is shown to be as much as an order of magnitude higher than that used in previous designs.(2) Furthermore, leak stoppage experiments indicate that the critical field is adequate to stop leaks in a working radiator.

  19. Controlled electrodeposition of Au monolayer film on ionic liquid

    Science.gov (United States)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei; Liu, Shengzhong Frank

    2016-05-01

    Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF6] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  20. Photoelectrocatalytic activity of liquid phase deposited α-Fe2O3 films under visible light illumination

    International Nuclear Information System (INIS)

    Zhang, Man; Pu, Wenhong; Pan, Shichang; Okoth, Otieno Kevin; Yang, Changzhu; Zhang, Jingdong

    2015-01-01

    Liquid phase deposition (LPD) technique was employed to prepare α-Fe 2 O 3 films for photoelectrocatalytic degradation of pollutants. The obtained LPD films were characterized by various surface analysis techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). The results indicated that α-Fe 2 O 3 films with porous structure were successfully deposited on the titanium substrates by the LPD process. The UV–Visible diffuse reflectance spectroscopic (DRS) analysis showed that the obtained LPD α-Fe 2 O 3 film mainly absorbed visible light, which was advantageous to the utilization of solar energy. Under visible light illumination, the Fe 2 O 3 film electrodes exhibited sensitive photocurrent responses, which were affected by the calcination temperature. Consistent with the photocurrent analysis, the α-Fe 2 O 3 film calcined at 600 °C showed the best photoelectrocatalytic performance, and different organic pollutants such as methyl orange (MO) and p-nitrophenol (PNP) were effectively degraded over the LPD film electrode by photoelectrocatalytic treatment under visible light illumination. - Highlights: • α-Fe 2 O 3 film is prepared by liquid phase deposition process. • LPD α-Fe 2 O 3 film has a porous structure and absorbs visible light. • Calcination temperature shows a significant effect on the PEC performance of α-Fe 2 O 3 film. • α-Fe 2 O 3 film is efficient for photoelectrocatalytic degradation of pollutants

  1. Interfacial condensation heat transfer for countercurrent steam-water wavy flow in a horizontal circular pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Won; Chun, Moon Hyun [Korea Advanced Institute of Science and Technolgy, Taejon (Korea, Republic of); Chu, In Cheol [KAERI, Taejon (Korea, Republic of)

    2000-10-01

    An experimental study of interfacial condensation heat transfer has been performed for countercurrent steam-water wavy flow in a horizontal circular pipe. A total of 105 local interfacial condensation heat transfer coefficients have been obtained for various combinations of test parameters. Two empirical Nusselt number correlations were developed and parametric effects of steam and water flow rates and the degree of water subcooling on the condensation heat transfer were examined. For the wavy interface condition, the local Nusselt number is more strongly sensitive to the steam Reynolds number than water Reynolds number as opposed to the case of smooth interface condition. Comparisons of the present circular pipe data with existing correlations showed that existing correlations developed for rectangular channels are not directly applicable to a horizontal circular pipe flow.

  2. Simulation of a 3D Turbulent Wavy Channel based on the High-order WENO Scheme

    Science.gov (United States)

    Tsai, Bor-Jang; Chou, Chung-Chyi; Tsai, Yeong-Pei; Chuang, Ying Hung

    2018-02-01

    Passive interest turbulent drag reduction, effective means to improve air vehicle fuel consumption costs. Most turbulent problems happening to the nature and engineering applications were exactly the turbulence problem frequently caused by one or more turbulent shear flows. This study was operated with incompressible 3-D channels with cyclic wavy boundary to explore the physical properties of turbulence flow. This research measures the distribution of average velocity, instant flowing field shapes, turbulence and pressure distribution, etc. Furthermore, the systematic computation and analysis for the 3-D flow field was also implemented. It was aimed to clearly understand the turbulence fields formed by wavy boundary of tube flow. The purpose of this research is to obtain systematic structural information about the turbulent flow field and features of the turbulence structure are discussed.

  3. Droplet behavior analysis in consideration of droplet entrainment from liquid film in annular dispersed flow

    International Nuclear Information System (INIS)

    Matsuura, Keizo; Otake, Hiroshi; Kataoka, Isao; Serizawa, Akimi

    2000-01-01

    A method of droplet behavior simulation in an annular dispersed flow has been developed. In this method, both droplet deposition and entrainment from liquid film are considered. The Lagrangian method and stochastic model are used to analyze droplet diffusion and deposition behavior in a turbulent flow, and droplet entrainment from liquid film is calculated by an entrainment correlation. For the verification of this method, Gill's experiment is analyzed, in which the transition from annular flow with no entrainment to equilibrium annular dispersed flow was observed. Analysis results can also show the similar transition tendency. The experimental results of radial distribution of droplet mass flux are compared with analysis results. The agreement is good for low liquid flow rate, but entrainment rate must be adjusted for high liquid flow rate, in which gas turbulence is thought to be modified by high droplet density. In future work the effect of high droplet density on turbulence should be considered. (author)

  4. Wavy strings: Black or bright?

    International Nuclear Information System (INIS)

    Kaloper, N.; Myers, R.C.; Roussel, H.

    1997-01-01

    Recent developments in string theory have brought forth considerable interest in time-dependent hair on extended objects. This novel new hair is typically characterized by a wave profile along the horizon and angular momentum quantum numbers l,m in the transverse space. In this work, we present an extensive treatment of such oscillating black objects, focusing on their geometric properties. We first give a theorem of purely geometric nature, stating that such wavy hair cannot be detected by any scalar invariant built out of the curvature and/or matter fields. However, we show that the tidal forces detected by an infalling observer diverge at the open-quotes horizonclose quotes of a black string superposed with a vibration in any mode with l≥1. The same argument applied to longitudinal (l=0) waves detects only finite leading-order tidal forces. We also provide an example with a manifestly smooth metric, proving that at least a certain class of these longitudinal waves have regular horizons. copyright 1997 The American Physical Society

  5. Enhancement of plate heat exchanger performance using electric fields

    International Nuclear Information System (INIS)

    Down, E.M.

    2000-12-01

    The falling film plate evaporator is often used in the food processing industry to remove large amounts of water from liquids, pulps and slurries. Although a compact efficient device with high heat transfer rates, there is a requirement for even greater performance, particularly when fuelled by the low grade energy from many renewable sources. Electrohydrodynamics (EHD) has been shown to give large heat transfer enhancements under many conditions, but most of this previous research has been with working fluids having much lower electrical conductivities than the water-based fluids that are the main concern of this study. The liquid flow in falling film plate evaporators is in the form of a very thin (less than a millimetre) film falling down a heated plate under the effect of gravity. The film surface exhibits waviness over much of the operating range of industrial heat exchangers, and the degree of waviness has previously been shown to have a large effect on the rate of heat transfer. A theoretical model was developed which suggested that significant increases in waviness, and therefore heat transfer, could be stimulated using high voltage electrodes, and these were subsequently observed on the surface of a pool of water during bench-top experiments. An experimental falling film rig was designed to study this EHD effect but the 2.5 kV maximum voltage attainable was thought to be too low to stimulate wave enlargement and no heat transfer enhancement was seen. Significant heat transfer enhancement was observed in the falling film rig when utilising corona discharge electrodes. This was thought to be due to a thinning of the film in the vicinity of the electrode via the corona wind and increased fluid mixing downstream of the electrode. Both point and wire electrodes improved heat transfer rates but wire electrodes were thought to have more potential for integration into existing industrial heat exchanger designs, so were studied more closely. Heat transfer rates

  6. Analysis of gas absorption to a thin liquid film in the presence of a zero-order chemical reaction

    Science.gov (United States)

    Rajagopalan, S.; Rahman, M. M.

    1995-01-01

    The paper presents a detailed theoretical analysis of the process of gas absorption to a thin liquid film adjacent to a horizontal rotating disk. The film is formed by the impingement of a controlled liquid jet at the center of the disk and subsequent radial spreading of liquid along the disk. The chemical reaction between the gas and the liquid film can be expressed as a zero-order homogeneous reaction. The process was modeled by establishing equations for the conservation of mass, momentum, and species concentration and solving them analytically. A scaling analysis was used to determine dominant transport processes. Appropriate boundary conditions were used to solve these equations to develop expressions for the local concentration of gas across the thickness of the film and distributions of film height, bulk concentration, and Sherwood number along the radius of the disk. The partial differential equation for species concentration was solved using the separation of variables technique along with the Duhamel's theorem and the final analytical solution was expressed using confluent hypergeometric functions. Tables for eigenvalues and eigenfunctions are presented for a number of reaction rate constants. A parametric study was performed using Reynolds number, Ekman number, and dimensionless reaction rate as parameters. At all radial locations, Sherwood number increased with Reynolds number (flow rate) as well as Ekman number (rate of rotation). The enhancement of mass transfer due to chemical reaction was found to be small when compared to the case of no reaction (pure absorption), but the enhancement factor was very significant when compared to pure absorption in a stagnant liquid film. The zero-order reaction processes considered in the present investigation included the absorption of oxygen in aqueous alkaline solutions of sodiumdithionite and rhodium complex catalyzed carbonylation of methanol. Present analytical results were compared to previous theoretical

  7. The film tells the story: Physical-chemical characteristics of IgG at the liquid-air interface.

    Science.gov (United States)

    Koepf, Ellen; Schroeder, Rudolf; Brezesinski, Gerald; Friess, Wolfgang

    2017-10-01

    The presence of liquid-air interfaces in protein pharmaceuticals is known to negatively impact product stability. Nevertheless, the mechanisms behind interface-related protein aggregation are not yet fully understood. Little is known about the physical-chemical behavior of proteins adsorbed to the interface. Therefore, the combinatorial use of appropriate surface-sensitive analytical methods such as Langmuir trough experiments, Infrared Reflection-Absorption Spectroscopy (IRRAS), Brewster Angle Microscopy (BAM), and Atomic Force Microscopy (AFM) is highly expedient to uncover structures and events at the liquid-air interface directly. Concentration-dependent adsorption of a human immunoglobulin G (IgG) and characteristic surface-pressure/area isotherms substantiated the amphiphilic nature of the protein molecules as well as the formation of a compressible protein film at the liquid-air interface. Upon compression, the IgG molecules do not readily desorb but form a highly compressible interfacial film. IRRA spectra proved not only the presence of the protein at the interface, but also showed that the secondary structure does not change considerably during adsorption or compression. IRRAS experiments at different angles of incidence indicated that the film thickness and/or packing density increases upon compression. Furthermore, BAM images exposed the presence of a coherent but heterogeneous distribution of the protein at the interface. Topographical differences within the protein film after adsorption, compression and decompression were revealed using underwater AFM. The combinatorial use of physical-chemical, spectroscopic and microscopic methods provided useful insights into the liquid-air interfacial protein behavior and revealed the formation of a continuous but inhomogeneous film of native-like protein molecules whose topographical appearance is affected by compressive forces. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Optical properties of cadmium sulfide nanocrystal film prepared by electrochemical synthesis at liquid-liquid interface

    International Nuclear Information System (INIS)

    Luan Yemei; An Maozhong; Lu Guoqi

    2006-01-01

    Dendritic nanocrystalline CdS film was deposited at liquid-liquid interface of surfactants and an electrolyte containing 4 mmol L -1 cadmium chloride (CdCl 2 ) and 16 mmol L -1 thioacetamide (CH 3 CSNH 2 ) with an initial pH value of 5 at 15 deg. C by electrochemical synthesis. The nanofilm was characterized by transmission electron microscopy (TEM), field emission scanning electron microscope (FE-SEM), atomic force microscopy (AFM), ultraviolet visible (UV-vis) absorption spectroscopy and fluorescence spectroscopy. The surface morphology and particle size of the nanofilm were investigated by AFM, SEM and TEM, and the crystalline size was 30-50 nm. The thickness of the nanofilm calculated by optical absorption spectrum was 80 nm. The microstructure and composition of the nanofilm was investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), showing its polycrystalline structure consisting of CdS and Cd. Optical properties of the nanofilm were investigated systematically by UV-vis absorption and fluorescence spectroscopy. A λ onset blue shift compared with bulk CdS was observed in the absorption spectra. Fluorescence spectra of the nanofilm indicated that the CdS nanofilm emitted blue and green light. The nanocomposites film electrode will bring about anodic photocurrent during illumination, showing that the transfer of cavities produces photocurrent

  9. Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow

    Science.gov (United States)

    Tsvelodub, O. Yu; Bocharov, A. A.

    2017-09-01

    The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. The paper studies nonlinear waves on a liquid film, flowing under the action of gravity in a known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. The periodic and soliton steady-state traveling solutions of this equation have been numerically found. The analysis of branching of new families of steady-state traveling solutions has been performed. In particular, it is shown that this model equation has solutions in the form of solitons-humps.

  10. Measurement of liquid film thickness by optical fluorescence and its application to an oscillating piston positive displacement flowmeter

    International Nuclear Information System (INIS)

    Morton, Charlotte E; Baker, Roger C; Hutchings, Ian M

    2011-01-01

    The movement of the circular piston in an oscillating piston positive displacement flowmeter is important in understanding the operation of the flowmeter, and the leakage of liquid past the piston plays a key role in the performance of the meter. The clearances between the piston and the chamber are small, typically less than 60 µm. In order to measure this film thickness a fluorescent dye was added to the water passing through the meter, which was illuminated with UV light. Visible light images were captured with a digital camera and analysed to give a measure of the film thickness with an uncertainty of less than 7%. It is known that this method lacks precision unless careful calibration is undertaken. Methods to achieve this are discussed in the paper. The grey level values for a range of film thicknesses were calibrated in situ with six dye concentrations to select the most appropriate one for the range of liquid film thickness. Data obtained for the oscillating piston flowmeter demonstrate the value of the fluorescence technique. The method is useful, inexpensive and straightforward and can be extended to other applications where measurement of liquid film thickness is required

  11. Control of Flowing Liquid Films By Electrostatic Fields in Space

    Science.gov (United States)

    Bankoff, S. George; Miksis, Michael J.; Kim, Hyo

    1996-01-01

    A novel type of lightweight space radiator has been proposed which employs internal electrostatic fields to stop coolant leaks from punctures caused by micrometeorites or space debris. Extensive calculations have indicated the feasibility of leak stoppage without film destabilization for both stationary and rotating designs. Solutions of the evolution equation for a liquid-metal film on an inclined plate, using lubrication theory for low Reynolds numbers, Karman-Pohlhausen quadratic velocity profiles for higher Reynolds numbers, and a direct numerical solution are shown. For verification an earth-based falling-film experiment on a precisely-vertical wall with controllable vacuum on either side of a small puncture is proposed. The pressure difference required to start and to stop the leak, in the presence and absence of a strong electric field, will be measured and compared with calculations. Various parameters, such as field strength, film Reynolds number, contact angle, and hole diameter will be examined. A theoretical analysis will be made of the case where the electrode is close enough to the film surface that the electric field equation and the surface dynamics equations are coupled. Preflight design calculations will be made in order to transfer the modified equipment to a flight experiment.

  12. Film behaviour of vertical gas-liquid flow in a large diameter pipe

    OpenAIRE

    Zangana, Mohammed Haseeb Sedeeq

    2011-01-01

    Gas-liquid flow commonly occurs in oil and gas production and processing system. Large diameter vertical pipes can reduce pressure drops and so minimize operating costs. However, there is a need for research on two-phase flow in large diameter pipes to provide confidence to designers of equipments such as deep water risers. In this study a number of experimental campaigns were carried out to measure pressure drop, liquid film thickness and wall shear in 127mm vertical pipe. Total pressur...

  13. Experimental investigation of wavy leading edges on rod-aerofoil interaction noise

    Science.gov (United States)

    Chen, Weijie; Qiao, Weiyang; Tong, Fan; Wang, Liangfeng; Wang, Xunnian

    2018-05-01

    Experimental studies are performed to investigate the effect of wavy leading edges on rod-aerofoil interaction noise in an open-jet anechoic wind tunnel. NACA 0012 aerofoils with straight and wavy leading edges (denoted by SLE and WLE, respectively) are embedded in the wake of a circular rod. The WLEs are in the form of sinusoidal profiles of amplitude, A, and wavelength, W. Parametric studies of the amplitude and wavelength characteristics are conducted to understand the effect of WLEs on noise reduction. It is observed that the sound power reduction level is sensitive to both the amplitude and wavelength of the WLEs. The WLE with the largest amplitude and smallest wavelength can achieve the most considerable noise reduction effect of up to 4 dB. The influences of rod diameter, d, and free-stream velocity, U0, on the noise reduction effect of the WLEs are also investigated. In addition, a parametric study of the influence of separating rod-aerofoil distance on the acoustic radiation of the SLE case and on the sound power reduction level of the WLE cases is performed. It is found that a critical spacing exists where the acoustic radiation and noise reduction can be divided into two different "modes".

  14. Light-induced circular birefringence in cyanoazobenzene side-chain liquid-crystalline polyester films

    DEFF Research Database (Denmark)

    Naydenova, I; Nikolova, L; Ramanujam, P.S.

    1999-01-01

    We report the inducement of large circular birefringence (optical activity) in films of a cyanoazobenzene side-chain liquid-crystalline polyester on illumination with circularly polarized light. The polyester has no chiral groups and is initially isotropic. The induced optical rotation is up to 5...

  15. Experimental study on flow characteristics of a vertically falling film flow of liquid metal NaK in a transverse magnetic field

    International Nuclear Information System (INIS)

    Li Fengchen; Serizawa, Akimi

    2004-01-01

    Experimental study was carried out on the characteristics of a vertically falling film flow of liquid metal sodium-potassium alloy (NaK-78) in a vertical square duct in the presence of a transverse magnetic field. The magnitude of the applied magnetic field was up to 0.7 T. The Reynolds number, defined by the hydraulic diameter based on the wetted perimeter length and the liquid average velocity, ranged from 8.0x10 3 to 3.0x10 4 . The free surfaces of the falling film flows in both a stainless steel and an acrylic resin channels were visualized. The instantaneous film thickness of the falling film flow in the acrylic resin channel was then measured by means of the ultrasonic transmission technique. Magnetohydrodynamic (MHD) effects on the characteristics of the falling film flow were investigated by the visualization and the statistical analysis of the measured film thickness. It was found that the falling liquid NaK film was thickened and the flow was stabilized remarkably by a strong transverse magnetic field. A bifurcation of the film was recovered by the applied magnetic field. The turbulence of the flow was substantially suppressed

  16. Numerical and experimental modeling of liquid metal thin film flows in a quasi-coplanar magentic field

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Neil B. [Univ. of California, Los Angeles, CA (United States)

    1994-01-01

    Liquid metal film protection of plasma-facing surfaces in fusion reactors is proposed in an effort to counter the adverse effects of high heat and particle fluxes from the burning plasma. Concerns still exist about establishing the required flow in presence of strong magnetic fields and plasma momentum flux typical of a reactor environment. In this work, the flow behavior of the film is examined under such conditions. Analysis of MHD equations as they apply to liquid metal flows with a free surface in the fully-developed limit was undertaken. Solution yields data for velocity profiles and uniform film heights vs key design parameters (channel size, magnetic field magnitude/orientation, channel slope, wall conductivity). These results are compared to previous models to determine accuracy of simplifying assumptions, in particular Hartmann averaging of films along {rvec B}. Effect of a plasma momentum flux on the thin films is also analyzed. The plasma momentum is strong enough in the cases examined to seriously upset the film, especially for lighter elements like Li. Ga performed much better and its possible use is bolstered by calculations. In an experiment in the MeGA-loop MHD facility, coplanar, wide film flow was found to be little affected by the magnetic field due to the elongated nature of the film. Both MHD drag and partial laminarization are observed, supporting the fully- developed film model predictions of the onset of MHD drag and duct flow estimations for flow laminarization.

  17. Numerical and experimental modeling of liquid metal thin film flows in a quasi-coplanar magentic field

    International Nuclear Information System (INIS)

    Morley, N.B.

    1994-01-01

    Liquid metal film protection of plasma-facing surfaces in fusion reactors is proposed in an effort to counter the adverse effects of high heat and particle fluxes from the burning plasma. Concerns still exist about establishing the required flow in presence of strong magnetic fields and plasma momentum flux typical of a reactor environment. In this work, the flow behavior of the film is examined under such conditions. Analysis of MHD equations as they apply to liquid metal flows with a free surface in the fully-developed limit was undertaken. Solution yields data for velocity profiles and uniform film heights vs key design parameters (channel size, magnetic field magnitude/orientation, channel slope, wall conductivity). These results are compared to previous models to determine accuracy of simplifying assumptions, in particular Hartmann averaging of films along rvec B. Effect of a plasma momentum flux on the thin films is also analyzed. The plasma momentum is strong enough in the cases examined to seriously upset the film, especially for lighter elements like Li. Ga performed much better and its possible use is bolstered by calculations. In an experiment in the MeGA-loop MHD facility, coplanar, wide film flow was found to be little affected by the magnetic field due to the elongated nature of the film. Both MHD drag and partial laminarization are observed, supporting the fully- developed film model predictions of the onset of MHD drag and duct flow estimations for flow laminarization

  18. Analysis of a gas-liquid film plasma reactor for organic compound oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Kevin [Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310 (United States); Wang, Huijuan [School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Locke, Bruce R., E-mail: blocke@fsu.edu [Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310 (United States)

    2016-11-05

    Highlights: • Non-homogeneous filamentary plasma discharge formed along gas-liquid interface. • Hydrogen peroxide formed near interface favored over organic oxidation from liquid. • Post-plasma Fenton reactions lead to complete utilization of hydrogen peroxide. - Abstract: A pulsed electrical discharge plasma formed in a tubular reactor with flowing argon carrier gas and a liquid water film was analyzed using methylene blue as a liquid phase hydroxyl radical scavenger and simultaneous measurements of hydrogen peroxide formation. The effects of liquid flow rate, liquid conductivity, concentration of dye, and the addition of ferrous ion on dye decoloration and degradation were determined. Higher liquid flow rates and concentrations of dye resulted in less decoloration percentages and hydrogen peroxide formation due to initial liquid conductivity effects and lower residence times in the reactor. The highest decoloration energy yield of dye found in these studies was 5.2 g/kWh when using the higher liquid flow rate and adding the catalyst. The non-homogeneous nature of the plasma discharge favors the production of hydrogen peroxide in the plasma-liquid interface over the chemical oxidation of the organic in the bulk liquid phase and post-plasma reactions with the Fenton catalyst lead to complete utilization of the plasma-formed hydrogen peroxide.

  19. Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    KAUST Repository

    Budiman, Alexander Christantho; Mitsudharmadi, Hatsari; Bouremel, Yann; Winoto, Sonny H.; Low, H. T.

    2014-01-01

    structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal

  20. Soft liquid phase adsorption for fabrication of organic semiconductor films on wettability patterned surfaces.

    Science.gov (United States)

    Watanabe, Satoshi; Akiyoshi, Yuri; Matsumoto, Mutsuyoshi

    2014-01-01

    We report a soft liquid-phase adsorption (SLPA) technique for the fabrication of organic semiconductor films on wettability-patterned substrates using toluene/water emulsions. Wettability-patterned substrates were obtained by the UV-ozone treatment of self-assembled monolayers of silane coupling agents on glass plates using a metal mask. Organic semiconductor polymer films were formed selectively on the hydrophobic part of the wettability-patterned substrates. The thickness of the films fabricated by the SLPA technique is significantly larger than that of the films fabricated by dip-coating and spin-coating techniques. The film thickness can be controlled by adjusting the volume ratio of toluene to water, immersion angle, immersion temperature, and immersion time. The SLPA technique allows for the direct production of organic semiconductor films on wettability-patterned substrates with minimized material consumption and reduced number of fabrication steps.

  1. Synthesis of nanocrystalline TiO 2 thin films by liquid phase ...

    Indian Academy of Sciences (India)

    A transparent, high purity titanium dioxide thin film composed of densely packed nanometer sized grains has been successfully deposited on a glass substrate at 30°C from an aqueous solution of TiO2–HF with the addition of boric acid as a scavenger by liquid phase deposition technique. From X-ray diffraction ...

  2. Structure and dynamics of mica-confined films of [C10C1Pyrr][NTf2] ionic liquid

    Science.gov (United States)

    Freitas, Adilson Alves de; Shimizu, Karina; Smith, Alexander M.; Perkin, Susan; Canongia Lopes, José Nuno

    2018-05-01

    The structure of the ionic liquid 1-decyl-1-methylpyrrolidinium bis[(trifluoromethane)sulfonyl]imide, [C10C1Pyrr][NTf2], has been probed using Molecular Dynamics (MD) simulations. The simulations endeavour to model the behaviour of the ionic liquid in bulk isotropic conditions and also at interfaces and in confinement. The MD results have been confronted and validated with scattering and surface force experiments reported in the literature. The calculated structure factors, distribution functions, and density profiles were able to provide molecular and mechanistic insights into the properties of these long chain ionic liquids under different conditions, in particular those that lead to the formation of multi-layered ionic liquid films in confinement. Other properties inaccessible to experiment such as in-plane structures and relaxation rates within the films have also been analysed. Overall the work contributes structural and dynamic information relevant to many applications of ionic liquids with long alkyl chains, ranging from nanoparticle synthesis to lubrication.

  3. Observation of ultraslow stress release in silicon nitride films on CaF2

    International Nuclear Information System (INIS)

    Guo, Tianyi; Deen, M. Jamal; Xu, Changqing; Fang, Qiyin; Selvaganapathy, P. Ravi; Zhang, Haiying

    2015-01-01

    Silicon nitride thin films are deposited by plasma-enhanced chemical vapor deposition on (100) and (111) CaF 2 crystalline substrates. Delaminated wavy buckles formed during the release of internal compressive stress in the films and the stress releasing processes are observed macroscopically and microscopically. The stress release patterns start from the substrate edges and propagate to the center along defined directions aligned with the crystallographic orientations of the substrate. The stress releasing velocity of SiN x film on (111) CaF 2 is larger than that of SiN x film with the same thickness on (100) CaF 2 . The velocities of SiN x film on both (100) and (111) CaF 2 increase with the film thickness. The stress releasing process is initiated when the films are exposed to atmosphere, but it is not a chemical change from x-ray photoelectron spectroscopy

  4. Wave structure and transfer mechanisms at the interface of liquid films (a bibliographic synthesis)

    International Nuclear Information System (INIS)

    Spindler, Bertrand.

    1978-10-01

    The flow of a liquid film occurs in many industrial apparatuses. The waves which propagate at the film interface increase the momentum, mass and heat transfer rates of the system. The interface structure is studied; the different patterns of waves with their parameters (shape, amplitude, wavelength, celerity, frequency) and phenomena such as droplet entrainment are examined. An explanation is then given for the increase of transfer rates [fr

  5. Direct numerical simulations of a thin liquid film coating an axially oscillating cylindrical surface

    Energy Technology Data Exchange (ETDEWEB)

    Binz, Matthias; Rohlfs, Wilko; Kneer, Reinhold, E-mail: rohlfs@wsa.rwth-aachen.de [Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, D-52056 Aachen (Germany)

    2014-08-01

    Liquid films on cylindrical bodies like wires or fibers disintegrate into droplets if their length exceeds a critical measure (Plateau–Rayleigh instability). Stabilization of such films can be achieved by an axial oscillation of the solid core provided that a suitable combination of forcing amplitude and frequency is given. To investigate the stabilizing effect, direct numerical simulations of the axisymmetric problem are conducted in this study. Thus, a modified volume-of-fluid solver is employed based on the open source library OpenFOAM{sup ®}. The effect of film stabilization is demonstrated and the required conditions for a stable film configuration are found to be in accordance with other studies. Finally, parameter variations are conducted to investigate the influence on the long-term shape of the stabilized film surface. (paper)

  6. Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid.

    Science.gov (United States)

    Soheilmoghaddam, Mohammad; Wahit, Mat Uzir

    2013-07-01

    In this study, novel nanocomposite films based on regenerated cellulose/halloysite nanotube (RC/HNT) have been prepared using an environmentally friendly ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) through a simple green method. The structural, morphological, thermal and mechanical properties of the RC/HNT nanocomposites were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), thermal analysis and tensile strength measurements. The results obtained revealed interactions between the halloysite nanotubes and regenerated cellulose matrix. The thermal stability and mechanical properties of the nanocomposite films, compared with pure regenerated cellulose film, were significantly improved When the halloysite nanotube (HNT) loading was only 2 wt.%, the 20% weight loss temperature (T20) increased 20°C. The Young's modulus increased from 1.8 to 4.1 GPa, while tensile strength increased from 35.30 to 60.50 MPa when 8 wt.% halloysite nanotube (HNT) was incorporated, interestingly without loss of ductility. The nanocomposite films exhibited improved oxygen barrier properties and water absorption resistance compared to regenerated cellulose. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid

    Science.gov (United States)

    Guo, Jiacheng; Guo, Xingwu; Wang, Shaohua; Zhang, Zhicheng; Dong, Jie; Peng, Liming; Ding, Wenjiang

    2016-03-01

    The effects of glycine on the mechanism of electrodeposition of Ni-Mn alloy film prepared in ChCl-urea ionic liquid were studied in order to control the composition, microstructure and properties of the film. The cyclic voltammograms revealed that the presence of glycine in the ionic liquid can inhibit the reduction of Ni2+ ions but promote the reduction of Mn2+ ions in the cathodic scan. However, it promoted the dissolution of both Ni and Mn deposits in the ChCl-urea ionic liquids during the reverse scan. Glycine changed the mode of Ni-Mn film growth from Volmer-Weber mode into Stranski-Krastanov mode. The Mn content in the Ni-Mn film increased with the increase of concentration of glycine and current density. The Ni-Mn alloy film with 3.1 at.% Mn exhibited the lowest corrosion current density of 3 × 10-7 A/cm2 compared with other films prepared and exhibited better corrosion resistance than pure Ni film in 3.5 wt.% NaCl solution.

  8. Optical sensor platform based on cellulose nanocrystals (CNC) - 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films.

    Science.gov (United States)

    Santos, Moliria V; Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Napoli, Mariana; Nalin, Marcelo; Ribeiro, Sidney J L

    2017-07-15

    The preparation of composite materials has gained tremendous attention due to the potential synergy of the combined materials. Here we fabricate novel thermal/electrical responsive photonic composite films combining cellulose nanocrystals (CNC) with a low molecular weight nematic liquid crystal (NLC), 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC). The obtained composite material combines both intense structural coloration of photonic cellulose and thermal and conductive properties of NLC. Scanning electron microscopy (SEM) results confirmed that liquid crystals coated CNC films maintain chiral nematic structure characteristic of CNC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the CNC layers. Investigated composite film maintain NLC optical properties being switchable as a function of temperature during heating/cooling cycles. The relationship between the morphology and thermoresponsive in the micro/nanostructured materials was investigated by using transmission optical microscopy (TOM). Conductive response of the composite films was proved by Electrostatic force microscopy (EFM) measurement. Designed thermo- and electro-responsive materials open novel simple pathway of fabrication of CNC-based materials with tunable properties. Copyright © 2017. Published by Elsevier Ltd.

  9. Design and characterization of Ga-doped indium tin oxide films for pixel electrode in liquid crystal display

    International Nuclear Information System (INIS)

    Choi, J.H.; Kang, S.H.; Oh, H.S.; Yu, T.H.; Sohn, I.S.

    2013-01-01

    Indium tin oxide (ITO) thin films doped with various metal atoms were investigated in terms of phase transition behavior and electro-optical properties for the purpose of upgrading ITO and indium zinc oxide (IZO) films, commonly used for pixel electrodes in flat panel displays. We explored Ce, Mg, Zn, and Ga atoms as dopants to ITO by the co-sputtering technique, and Ga-doped ITO films (In:Sn:Ga = 87.4:6.7:5.9 at.%) showed the phase transition behavior at 210 °C within 20 min with high visible transmittance of 91% and low resistivity of 0.22 mΩ cm. The film also showed etching rate similar to amorphous ITO, and no etching residue on glass surfaces. These results were confirmed with the film formed from a single Ga-doped ITO target with slightly different compositions (In:Sn:Ga = 87:9:4 at.%). Compared to the ITO target, Ga-doped ITO target left 1/4 less nodules on the target surface after sputtering. These results suggest that Ga-doped ITO films could be an excellent alternative to ITO and IZO for pixel electrodes in thin film transistor liquid crystal display (TFT-LCD). - Highlights: ► We report Ga-doped In–Sn–O films for a pixel electrode in liquid crystal display. ► Ga-doped In–Sn–O films show phase transition behavior at 210 °C. ► Ga-doped In–Sn–O films show high wet etchability and low resistivity

  10. Application of Thin Films of Conjugated Polymers in Novel LED's and Liquid Crystal 'Light Valves'

    National Research Council Canada - National Science Library

    MacDiarmid, A

    1997-01-01

    .... Flexible, completely organic polymer dispersed liquid crystal light valves have been fabricated from transparent plastic substrates on which a conducting film of polypyrrole has been deposited...

  11. Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall

    KAUST Repository

    Chang, Kyungsik; Hughes, Thomas Jr R; Calo, Victor M.

    2012-01-01

    We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.

  12. Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall

    KAUST Repository

    Chang, Kyungsik

    2012-09-01

    We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.

  13. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    Science.gov (United States)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  14. Effect of the fluorinated groups on nematic liquid crystal alignment on monomer crosslinked film

    International Nuclear Information System (INIS)

    Yu Tao; Peng Zenghui; Ruan Shengping; Xuan Li

    2004-01-01

    It was found in this work that photosensitive monomers, bisphenol A dicinnamate ester and hexafluorobiphenol a dicinnamate ester were crosslinked under irradiation of linearly polarized ultraviolet light. The exposed films induced homogeneous and homeotropic alignment of liquid crystals (LC), respectively. We verified through experiments that it was fluorinated groups that caused the generation of LC homeotropic alignment on the crosslinked film. Photoreaction process was revealed by Fourier transform infrared spectra. There was no clear morphological anisotropy on these aligned films observed through atomic force microscope analysis. The surface energies were measured and homeotropic alignment reason was discussed in this work

  15. Studies on turbulence structure and liquid film behavior in annular two-phase flow flowing in a throat section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Miyabe, Masaya; Matsumoto, Tadayoshi; Kataoka, Isao; Ohmori, Shuichi; Mori, Michitsugu

    2004-01-01

    Experimental studies on turbulence structure and liquid film behavior in annular two-phase flow were carried out concerned with the steam injector systems for a next-generation nuclear reactor. In the steam injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design for high-performance steam injector system, it is very important to accumulate the fundamental data of thermo-hydro dynamic characteristics of annular flow in the steam injector. Especially, the turbulence modification in multi-phase flow due to the phase interaction is one of the most important phenomena and has attracted research attention. In this study, the liquid film behavior and the resultant turbulence modification due to the phase interaction were investigated. The behavior of the interfacial waves on liquid film flow such as the ripple or disturbance waves were observed to make clear the interfacial velocity and the special structure of the interfacial waves by using the high-speed video camera and the digital camera. The measurements for gas-phase velocity profiles and turbulent intensity in annular flow passing through the throat section were precisely performed to investigate quantitatively the turbulent modification in annular flow by using the constant temperature hot-wire anemometer. The measurements for liquid film thickness by the electrode needle method were also carried out. (author)

  16. Nonlinear periodic wavetrains in thin liquid films falling on a uniformly heated horizontal plate

    Science.gov (United States)

    Issokolo, Remi J. Noumana; Dikandé, Alain M.

    2018-05-01

    A thin liquid film falling on a uniformly heated horizontal plate spreads into fingering ripples that can display a complex dynamics ranging from continuous waves, nonlinear spatially localized periodic wave patterns (i.e., rivulet structures) to modulated nonlinear wavetrain structures. Some of these structures have been observed experimentally; however, conditions under which they form are still not well understood. In this work, we examine profiles of nonlinear wave patterns formed by a thin liquid film falling on a uniformly heated horizontal plate. For this purpose, the Benney model is considered assuming a uniform temperature distribution along the film propagation on the horizontal surface. It is shown that for strong surface tension but a relatively small Biot number, spatially localized periodic-wave structures can be analytically obtained by solving the governing equation under appropriate conditions. In the regime of weak nonlinearity, a multiple-scale expansion combined with the reductive perturbation method leads to a complex Ginzburg-Landau equation: the solutions of which are modulated periodic pulse trains which amplitude and width and period are expressed in terms of characteristic parameters of the model.

  17. Blending crystalline/liquid crystalline small molecule semiconductors: A strategy towards high performance organic thin film transistors

    Science.gov (United States)

    He, Chao; He, Yaowu; Li, Aiyuan; Zhang, Dongwei; Meng, Hong

    2016-10-01

    Solution processed small molecule polycrystalline thin films often suffer from the problems of inhomogeneity and discontinuity. Here, we describe a strategy to solve these problems through deposition of the active layer from a blended solution of crystalline (2-phenyl[1]benzothieno[3,2-b][1]benzothiophene, Ph-BTBT) and liquid crystalline (2-(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene, C12-Ph-BTBT) small molecule semiconductors with the hot spin-coating method. Organic thin film transistors with average hole mobility approaching 1 cm2/V s, much higher than that of single component devices, have been demonstrated, mainly due to the improved uniformity, continuity, crystallinity, and stronger intermolecular π-π stacking in blend thin films. Our results indicate that the crystalline/liquid crystalline semiconductor blend method is an effective way to enhance the performance of organic transistors.

  18. Laser-induced chemical liquid deposition of discontinuous and continuous copper films

    Czech Academy of Sciences Publication Activity Database

    Ouchi, A.; Bastl, Zdeněk; Boháček, Jaroslav; Šubrt, Jan; Pola, Josef

    2007-01-01

    Roč. 201, č. 8 (2007), s. 4728-4733 ISSN 0257-8972 R&D Projects: GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40720504 Keywords : copper films * laser photolysis * Cu(II) acetylacetonate * chemical liquid deposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.678, year: 2007

  19. Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation

    International Nuclear Information System (INIS)

    Zhang, Man; Yang, Changzhu; Pu, Wenhong; Tan, Yuanbin; Yang, Kun; Zhang, Jingdong

    2014-01-01

    Highlights: • Liquid phase deposition is developed for preparing WO 3 /TiO 2 heterojunction films. • TiO 2 film provides an excellent platform for WO 3 deposition. • WO 3 expands the absorption band edge of TiO 2 film to visible light region. • WO 3 /TiO 2 heterojunction film shows high photoelectrocatalytic activity. - ABSTRACT: The heterojunction films of WO 3 /TiO 2 were prepared by liquid phase deposition (LPD) method via two-step processes. The scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopic analysis indicated that flower-like WO 3 film was successfully deposited on TiO 2 film with the LPD processes. The TiO 2 film provided an excellent platform for WO 3 deposition while WO 3 obviously expanded the absorption of TiO 2 film to visible light. As the result, the heterojunction film of WO 3 /TiO 2 exhibited higher photocurrent response to visible light illumination than pure TiO 2 or WO 3 film. The photoelectrocatalytic (PEC) activity of WO 3 /TiO 2 film was evaluated by degrading Rhodamin B (RhB) and 4-chlorophenol (4-CP) under visible light irradiation. The results showed that the LPD WO 3 /TiO 2 film possessed high PEC activity for efficient removal of various refractory organic pollutants

  20. Hydrodynamic stability of thermoviscous liquid film inside a rotating horizontal cylinder: Heating and cooling effects

    Science.gov (United States)

    Kumawat, Tara Chand; Tiwari, Naveen

    2018-03-01

    Steady two-dimensional solutions and their stability analysis are presented for thin film of a thermoviscous liquid flowing inside a cylinder rotating about its horizontal axis. The inner surface of the cylinder is either uniformly hotter or colder than the enveloping air. The mass, momentum, and energy equations are simplified using thin-film approximation. The analytically obtained film thickness evolution equation consists of various dimensionless parameters such as gravitational number, Bond number, Biot number, thermoviscosity number, and Marangoni number. The viscosity of the liquid is considered as an exponential function of temperature. The viscosity increases (decreases) within the film thickness away from the inner surface of the cylinder when the surface is uniformly hotter (colder) than the atmosphere. For hotter (colder) surface, the film thickness on the rising side decreases (increases) when convective heat transfer at the free surface is increased. The surface tension gradient at the free surface generates Marangoni stress that has a destabilizing (stabilizing) effect on the thin film flow in the case of a hotter (colder) cylinder. The thermoviscosity number stabilizes (destabilizes) the flow on a heating (cooling) surface and this effect increases with an increase in the heat transfer at the free surface. For a hotter surface and in the presence of Marangoni stress, the convective heat transfer at the interface has the destabilizing effect for small values of the Biot number and assumes a stabilizing role for larger values. Non-linear simulations show consistency with the linear stability analysis.

  1. Study on flow instability for feasibility of a thin liquid film first wall

    Energy Technology Data Exchange (ETDEWEB)

    Okino, Fumito, E-mail: fumito.okino@iae.kyoto-u.ac.jp [Kyoto University Graduate School of Energy Science, Gokasho Uji, Kyoto (Japan); Kasada, Ryuta; Konishi, Satoshi [Kyoto University Institute of Advanced Energy, Gokasho Uji, Kyoto (Japan)

    2014-10-15

    Highlights: • We propose a probability of an instability wave growth on a liquid metal first wall. • Evaporated gas by the high energy flux is predicted to agitate this instability wave. • Liquid Pb-17Li with a velocity 10 m/s, the ambient gas must be below 6.2 × 10{sup 3} Pa. • This pressure corresponds to 1600 K and it is attainable under a fusion energy flux. • This probability is not yet verified so the full verifications are to be performed. - Abstract: This study proposes a probability of the evaporated gas that agitates a growing instability wave in a thin liquid film first wall. The liquid first wall was considered to be in vacuum and the effect of the ambient gas was neglected but the evaporated gas by the high energy fluxes is a probable cause of unstable wave agitation. The criterion is approximately expressed by the density ratio (Q{sub 2}) and the Weber number (We) as Q{sub 2} × We{sup 0.5} ≈ 5 × 10{sup −4}. Performed indirect experimental supported this criterion. For a case study of liquid Pb-17Li film with a velocity of 10 m/s, the evaporated gas pressure must be below 6.2 × 10{sup 3} Pa to maintain stable conditions. By recent study, this pressure is generated at 1600 K temperature and it is believed to be attainable by the energy fluxes on the first wall. This result is so far not confirmed so the full verification by experimental is to be performed.

  2. Modeling Replenishment of Ultrathin Liquid Perfluoro polyether Z Films on Solid Surfaces Using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Mayeed, M.S.; Kato, T.

    2014-01-01

    Applying the reptation algorithm to a simplified perfluoro polyether Z off-lattice polymer model an NVT Monte Carlo simulation has been performed. Bulk condition has been simulated first to compare the average radius of gyration with the bulk experimental results. Then the model is tested for its ability to describe dynamics. After this, it is applied to observe the replenishment of nano scale ultrathin liquid films on solid flat carbon surfaces. The replenishment rate for trenches of different widths (8, 12, and 16 nms for several molecular weights) between two films of perfluoro polyether Z from the Monte Carlo simulation is compared to that obtained solving the diffusion equation using the experimental diffusion coefficients of Ma et al. (1999), with room condition in both cases. Replenishment per Monte Carlo cycle seems to be a constant multiple of replenishment per second at least up to 2 nm replenished film thickness of the trenches over the carbon surface. Considerable good agreement has been achieved here between the experimental results and the dynamics of molecules using reptation moves in the ultrathin liquid films on solid surfaces.

  3. Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade

    International Nuclear Information System (INIS)

    Yang, SJ; Baeder, J D

    2016-01-01

    The flatback trailing edge design for modern 100meter wind turbine blade has been developed and proposed to make wind turbine blade to be slender and lighter. On the other hand, it will increase aerodynamic drag; consequently the increased drag diminishes turbine power generation. Thus, an aerodynamic drag reducing technique should be accompanied with the flatback trailing edge in order to prevent loss of turbine power generation. In this work, a drag mitigation design, span-wise wavy trailing edge blade, has been applied to a modern 100meter blade. The span-wise trailing edge acts as a vortex generator, and breaks up the strong span-wise coherent trailing edge vortex structure at the flatback airfoil trailing edge which is a major source of large drag. Three-dimensional unsteady Computational Fluid Dynamics (CFD) simulations have been performed for real scale wind turbine blade geometries. Delayed Detached Eddy Simulation (DDES) with the modified laminar-turbulent transition model has been applied to obtain accurate flow field predictions. Graphical Processor Unit (GPU)-accelerated computation has been conducted to reduce computational costs of the real scale wind turbine blade simulations. To verify the structural reliability of the wavy modification of the blade a simple Eigen buckling analysis has been performed in the current study. (paper)

  4. Development of neutron diffuse scattering analysis code by thin film and multilayer film

    International Nuclear Information System (INIS)

    Soyama, Kazuhiko

    2004-01-01

    To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering by thin film, roughness of surface of thin film, correlation function, neutron propagation by thin film, diffuse scattering by DWBA theory, measurement model, SDIFFF (neutron diffuse scattering analysis program by thin film) and simulation results are explained. On neutron diffuse scattering by multilayer film, roughness of multilayer film, principle of diffuse scattering, measurement method and simulation examples by MDIFF (neutron diffuse scattering analysis program by multilayer film) are explained. (S.Y.)To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering

  5. Liquid films on shake flask walls explain increasing maximum oxygen transfer capacities with elevating viscosity.

    Science.gov (United States)

    Giese, Heiner; Azizan, Amizon; Kümmel, Anne; Liao, Anping; Peter, Cyril P; Fonseca, João A; Hermann, Robert; Duarte, Tiago M; Büchs, Jochen

    2014-02-01

    In biotechnological screening and production, oxygen supply is a crucial parameter. Even though oxygen transfer is well documented for viscous cultivations in stirred tanks, little is known about the gas/liquid oxygen transfer in shake flask cultures that become increasingly viscous during cultivation. Especially the oxygen transfer into the liquid film, adhering on the shake flask wall, has not yet been described for such cultivations. In this study, the oxygen transfer of chemical and microbial model experiments was measured and the suitability of the widely applied film theory of Higbie was studied. With numerical simulations of Fick's law of diffusion, it was demonstrated that Higbie's film theory does not apply for cultivations which occur at viscosities up to 10 mPa s. For the first time, it was experimentally shown that the maximum oxygen transfer capacity OTRmax increases in shake flasks when viscosity is increased from 1 to 10 mPa s, leading to an improved oxygen supply for microorganisms. Additionally, the OTRmax does not significantly undermatch the OTRmax at waterlike viscosities, even at elevated viscosities of up to 80 mPa s. In this range, a shake flask is a somehow self-regulating system with respect to oxygen supply. This is in contrary to stirred tanks, where the oxygen supply is steadily reduced to only 5% at 80 mPa s. Since, the liquid film formation at shake flask walls inherently promotes the oxygen supply at moderate and at elevated viscosities, these results have significant implications for scale-up. © 2013 Wiley Periodicals, Inc.

  6. Liquid Film Migration in Warm Formed Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.

    2017-10-01

    Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.

  7. Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system

    Science.gov (United States)

    Faghri, Amir; Swanson, Theodore D.

    1989-01-01

    The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.

  8. Utilizing ultrathin DNA/poly-lysine multilayer films to create liquid/liquid interfaces: spectroscopic characterization, interfacial reactions and nanoparticle adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye Jin; Wark, Alastair W; Corn, Robert M [Department of Chemistry, University of California-Irvine, Irvine, CA 92697 (United States)

    2007-09-19

    Alternating electrostatic multilayer adsorption of poly-L-lysine (pLys) and DNA is used to create well-defined biopolymer multilayers for use as an ultrathin aqueous phase in liquid-liquid interfacial measurements. The molecular structure and thickness of the polyelectrolyte multilayers are determined using a combination of polarization modulation FT-IR reflection-absorption spectroscopy (PM-FTIRRAS) and FT-surface plasmon resonance (FT-SPR) thickness measurements. Electroactive species such as ferri/ferrocyanide ions can be incorporated into the DNA/pLys polyelectrolyte multilayers. The ion transport activity of these electroactive films when in contact with 1,2-dichoroethane is verified by electrochemical measurements. Micron-sized patterns of these multilayers are created by either photopatterning, vapour-deposited spot patterning or microfluidic stencil processing, and are used in conjunction with fluorescence and surface plasmon resonance imaging (SPRI) to monitor (i) the intercalation of dye molecules into DNA/pLys ultrathin films, (ii) the electrostatic adsorption of gold nanoparticles onto DNA/pLys multilayers and (iii) the spatially controlled incorporation and reaction of enzymes into patterned biopolymer multilayers.

  9. The development of evaporative liquid film model for analysis of passive containment cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hong June; Hwang, Young Dong; Kim, Hee Cheol; Kim, Young In; Chang, Moon Hee

    2000-07-01

    An analytical model was developed to simulate behavior of the liquid film formed on the outside surface of the steel containment vessel of PCCS including the ellipsoidal dome and the vertical wall. The model was coupled with CFX code using the user subroutines provided by the code, and a series of numerical calculations were performed to evaluate the evaporative heat transfer coefficient at the interface. Numerical results for Sherwood number and evaporative heat transfer coefficient were compared with the experimental data. The results were in good agreement with the experimental data. The calculated liquid film thickness showed good agreement with that of Sun except an upper portion of the channel. The model was applied to the full scale of PCCS to investigate the effects of dome and chimney on the evaporation rate. The results showed that the heat transfer coefficient in the dome region, where the flow cross-sectional area decreases and the swirling occurs, was lower than that of the vertical annulus region. The calculated evaporative heat transfer coefficient was about 20 times larger than that of the dry cooling. Sensitivity studies on the gap size and the wall temperature were also performed to figure out their effects on the heat transfer coefficient and inlet air average velocity. Through the analysis of the dryout point, the minimum liquid film flow rate to cover the entire surface of the vessel was estimated.

  10. The development of evaporative liquid film model for analysis of passive containment cooling system

    International Nuclear Information System (INIS)

    Park, Hong June; Hwang, Young Dong; Kim, Hee Cheol; Kim, Young In; Chang, Moon Hee

    2000-07-01

    An analytical model was developed to simulate behavior of the liquid film formed on the outside surface of the steel containment vessel of PCCS including the ellipsoidal dome and the vertical wall. The model was coupled with CFX code using the user subroutines provided by the code, and a series of numerical calculations were performed to evaluate the evaporative heat transfer coefficient at the interface. Numerical results for Sherwood number and evaporative heat transfer coefficient were compared with the experimental data. The results were in good agreement with the experimental data. The calculated liquid film thickness showed good agreement with that of Sun except an upper portion of the channel. The model was applied to the full scale of PCCS to investigate the effects of dome and chimney on the evaporation rate. The results showed that the heat transfer coefficient in the dome region, where the flow cross-sectional area decreases and the swirling occurs, was lower than that of the vertical annulus region. The calculated evaporative heat transfer coefficient was about 20 times larger than that of the dry cooling. Sensitivity studies on the gap size and the wall temperature were also performed to figure out their effects on the heat transfer coefficient and inlet air average velocity. Through the analysis of the dryout point, the minimum liquid film flow rate to cover the entire surface of the vessel was estimated

  11. Aspects of sorption processes in thermosiphon and in falling film arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Kockum, Henrik

    1998-09-01

    A study concerning closure relations pertinent to the design of sorption equipment of absorption heat pumps has been undertaken. Specifically, thermosiphon and vertical falling film arrangements were studied. For the thermosiphon, experimental data on the void fraction, the friction and orifice pressure drops, and the heat transfer coefficient at sub-atmospheric pressures were obtained for vaporizing water and vaporizing water-sugar mixtures. Empirical correlations were produced for all quantities. Furthermore, a semi-theoretical model for the void fraction was derived; this model compared favourably to existing correlations. Sample thermosiphon correlations using a two-field two-phase flow model, including a heating condensate film, were performed. For the falling film, a penetration-type of turbulence model was developed. Experimental data found in the open literature were used in the derivation. Absorption calculations then indicated that the model is appropriate for wavy-laminar flows, but not for turbulent flows. Falling film calculation results compared favourably to existing film thickness and heat transfer correlations 121 refs, 28 figs, 14 tabs

  12. Partial liquid-penetration inside a deep trench by film flowing over it

    Science.gov (United States)

    Nguyen, Phuc-Khanh; Dimakopoulos, Yiannis; Tsamopoulos, John

    2014-11-01

    Liquid film flow along substrates featuring a deep trench may not wet the trench floor, but create a second gas-liquid interface inside the trench. The liquid penetration inside the trench depends on the location and shape of this inner interface. The penetration increases by decreasing the two three-phase contact lines between the inner interface and the two side-walls or the flow rate and depends on the liquid properties. This partial-penetration is studied by employing the Galerkin / finite element method to solve the two-dimensional steady-state Navier-Stokes equations in a physical domain that is adaptively remeshed. Multiple branches of steady solutions connected via turning points are revealed by pseudo arc-length continuation. Flow hysteresis may occur in a certain range of liquid penetration depth, when the interaction of the two interfaces changes qualitatively. This induces an abrupt jump of penetration distance and deformation amplitude of the outer interface. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.

  13. Tribological properties of self-assembled monolayers of catecholic imidazolium and the spin-coated films of ionic liquids.

    Science.gov (United States)

    Liu, Jianxi; Li, Jinlong; Yu, Bo; Ma, Baodong; Zhu, Yangwen; Song, Xinwang; Cao, Xulong; Yang, Wu; Zhou, Feng

    2011-09-20

    A novel compound of an imidazolium type of ionic liquid (IL) containing a biomimetic catecholic functional group normally seen in mussel adhesive proteins was synthesized. The IL can be immobilized on a silicon surface and a variety of other engineering material surfaces via the catecholic anchor, allowing the tribological protection of these substrates for engineering applications. The surface wetting and adhesive properties and the tribological property of the synthesized self-assembled monolayers (SAMs) are successfully modulated by altering the counteranions. The chemical composition and wettability of the IL SAMs were characterized by means of X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The adhesive and friction forces were measured with an atomic force microscope (AFM) on the nanometer scale. IL composite films were prepared by spin coating thin IL films on top of the SAMs. The macrotribological properties of these IL composite films were investigated with a pin-on-disk tribometer. The results indicate that the presence of IL SAMs on a surface can improve the wettability of spin-coated ionic liquids and thus the film quality and the tribological properties. These films registered a reduced friction coefficient and a significantly enhanced durability and load-carrying capacity. The tribological properties of the composite films are better than those of pure IL films because the presence of the monolayers improves the adhesion and compatibility of spin-coated IL films with substrates. © 2011 American Chemical Society

  14. Shear thinning behavior of monolayer liquid lubricant films measured by fiber wobbling method

    International Nuclear Information System (INIS)

    Hamamoto, Y; Itoh, S; Fukuzawa, K; Zhang, H

    2010-01-01

    It is essential to clarify mechanical properties of monolayer lubricant films coated on magnetic disks under shearing motion for designing future hard disk drives with ultra-low flying height. Many of previous researchers reported that strong shear rate dependence of viscoelasticity was one of the typical phenomena observed with molecularly thin liquid films. However, it has not been clarified whether or not perfluoropolyether (PFPE) lubricant films, which are used for the head-disk interface (HDI) lubrication, show shear thinning behavior under actual HDI conditions. In this study, we used the fiber wobbling method that can achieve both highly-sensitive shear force measurement and precise gap control and measured shear rate dependence of viscoelastic properties of monolayer PFPE films coated on the magnetic disk. Our experimental results showed that shear thinning does occur at high shear rate ranged from 10 2 to 10 6 s -1 .

  15. Effect of the Wavy permeable Interface on Double Diffusive Natural Convection in a Partially Porous Cavity

    Directory of Open Access Journals (Sweden)

    R Mehdaoui

    2016-09-01

    Full Text Available Two-dimensional, double diffusion, natural convection in a partially porous cavity satured with a binary fluid is investigated numerically. Multiple motions are driven by the external temperature and concentration differences imposed across vertical walls. The wavy interface between fluid and porous layer is horizontal. The equations which describe the fluid flow and heat and mass transfer are described by the Navier-Stokes equations (fluid region, Darcy-Brinkman equation (porous region and energy and mass equations. The finite element method was applied to solve the governing equations. The fluid flow and heat and mass transfer has been investigated for different values of the amplitude and the wave number of the interface and the buoyancy ratio. The results obtained in the form of isotherms, stream lines, isoconcentrations and the Nusselt and Sherwood numbers; show that the wavy interface has a significant effect on the flow and heat and mass transfer.

  16. SnO2 Nanoparticles Decorated 2D Wavy Hierarchical Carbon Nanowalls with Enhanced Photoelectrochemical Performance

    Directory of Open Access Journals (Sweden)

    Noor Hamizah Khanis

    2017-01-01

    Full Text Available Two-dimensional carbon nanowall (2D-CNW structures were prepared by hot wire assisted plasma enhanced chemical vapor deposition (hw-PECVD system on silicon substrates. Controlled variations in the film structure were observed with increase in applied rf power during deposition which has been established to increase the rate of dissociation of precursor gases. The structural changes resulted in the formation of wavy-like features on the 2D-CNW, thus further enhancing the surface area of the nanostructures. The FESEM results confirmed the morphology transformation and conclusively showed the evolution of the 2D-CNW novel structures while Raman results revealed increase in ID/IG ratio indicating increase in the presence of disordered domains due to the presence of open edges on the 2D-CNW structures. Subsequently, the best 2D-CNW based on the morphology and structural properties was functionalized with tin oxide (SnO2 nanoparticles and used as a working electrode in a photoelectrochemical (PEC measurement system. Intriguingly, the SnO2 functionalized 2D-CNW showed enhancement in both Mott-Schottky profiles and LSV properties which suggested that these hierarchical networks showed promising potential application as effective charge-trapping medium in PEC systems.

  17. Observation of ultraslow stress release in silicon nitride films on CaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Tianyi [School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4K1, Canada and Institute of Microelectronics, Chinese Academy of Science, Beijing 100029 (China); Deen, M. Jamal, E-mail: jamal@mcmaster.ca [Department of Electrical and Computer Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4K1, Canada and School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4K1 (Canada); Xu, Changqing; Fang, Qiyin [Department of Engineering Physics, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4L7 (Canada); Selvaganapathy, P. Ravi [Department of Mechanical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4L7 (Canada); Zhang, Haiying [Institute of Microelectronics, Chinese Academy of Science, Beijing 100029 (China)

    2015-07-15

    Silicon nitride thin films are deposited by plasma-enhanced chemical vapor deposition on (100) and (111) CaF{sub 2} crystalline substrates. Delaminated wavy buckles formed during the release of internal compressive stress in the films and the stress releasing processes are observed macroscopically and microscopically. The stress release patterns start from the substrate edges and propagate to the center along defined directions aligned with the crystallographic orientations of the substrate. The stress releasing velocity of SiN{sub x} film on (111) CaF{sub 2} is larger than that of SiN{sub x} film with the same thickness on (100) CaF{sub 2}. The velocities of SiN{sub x} film on both (100) and (111) CaF{sub 2} increase with the film thickness. The stress releasing process is initiated when the films are exposed to atmosphere, but it is not a chemical change from x-ray photoelectron spectroscopy.

  18. Can deformation of a polymer film with a rigid coating model geophysical processes?

    Science.gov (United States)

    Volynskii, A. L.; Bazhenov, S. L.

    2007-12-01

    The structural and mechanical behavior of polymer films with a thin rigid coating is analyzed. The behavior of such systems under applied stress is accompanied by the formation of a regular wavy surface relief and by regular fragmentation of the coating. The above phenomena are shown to be universal. Both phenomena (stress-induced development of a regular wavy surface relief and regular fragmentation of the coating) are provided by the specific features of mechanical stress transfer from a compliant soft support to a rigid thin coating. The above phenomena are associated with a specific structure of the system, which is referred to as “a rigid coating on a soft substratum” system (RCSS). Surface microrelief in RCSS systems is similar to the ocean floor relief in the vicinity of mid-oceanic ridges. Thus, the complex system composed of a young oceanic crust and upper Earth's mantle may be considered as typically “a solid coating on a soft substratum” system. Specific features of the ocean floor relief are analyzed in terms of the approach advanced for the description of the structural mechanical behavior of polymer films with a rigid coating. This analysis allowed to estimate the strength of an ocean floor.

  19. An improved liquid film model to predict the CHF based on the influence of churn flow

    International Nuclear Information System (INIS)

    Wang, Ke; Bai, Bofeng; Ma, Weimin

    2014-01-01

    The critical heat flux (CHF) for boiling crisis is one of the most important parameters in thermal management and safe operation of many engineering systems. Traditionally, the liquid film flow model for “dryout” mechanism shows a good prediction in heated annular two-phase flow. However, a general assumption that the initial entrained fraction at the onset of annular flow shows a lack of reasonable physical interpretation. Since the droplets have great momentum and the length of churn flow is short, the droplets in churn flow show an inevitable effect on the downstream annular flow. To address this, we considered the effect of churn flow and developed the original liquid film flow model in vertical upward flow by suggesting that calculation starts from the onset of churn flow rather than annular flow. The results indicated satisfactory predictions with the experimental data and the developed model provided a better understanding about the effect of flow pattern on the CHF prediction. - Highlights: •The general assumption of initial entrained fraction is unreasonable. •The droplets in churn flow show an inevitable effect on downstream annular flow. •The original liquid film flow model for prediction of CHF was developed. •The integration process was modified to start from the onset of churn flow

  20. Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces.

    Science.gov (United States)

    Kalpathy, Sreeram K; Shreyes, Amrita Ravi

    2017-06-07

    The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other.

  1. Liquid--liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This well-known phenomenon is called a ''vapor explosion.'' One method of producing intimate, liquid--liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. In this experiment cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture). The main conclusion from the experimental study is that hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. A theoretical study was performed to check the possibility of vapor film squeezing (between a drop in film boiling and a surface) as a controlling mechanism for making liquid--liquid contact. Using experimental data, the film thickness was calculated and it was found to be too thick for any conceivable film rupture mechanism. It was suggested that the coalescence is a two-stage process, in which the controlling stage depends mainly on temperature and surface properties and can be described as the ability of cold liquid to spread on a hot surface

  2. Enhancement of tensile ductility and stretch formability of AZ31 magnesium alloy sheet processed by cross-wavy bending

    International Nuclear Information System (INIS)

    Huo, Qinghuan; Yang, Xuyue; Sun, Huan; Li, Bin; Qin, Jia; Wang, Jun; Ma, Jijun

    2013-01-01

    Highlights: •The AZ31 Mg alloy sheet is deformed to 4 passes at 673 K by cross-wavy bending. •A fine-grained microstructure and a weak and random texture are achieved. •Different softening mechanisms significantly affect the microstructure evolution. •The tensile ductility and stretch formability enhance dramatically. -- Abstract: The microstructure and texture evolution in the sheets of AZ31 magnesium alloy was studied by means of cross-wavy bending for 4 passes at 673 K. The bended samples were examined by optical microscopy and electron backscatter diffraction analysis. Finite element analysis suggested an inhomogeneous deformation at each pass. Following cross-wavy bending, a fine-grained microstructure with an average grain size of ∼8 μm and a weak and random basal texture were achieved. Accumulative effective strain was almost equal in the whole sheet at the end. Different work softening mechanisms significantly affected the evolution of the microstructure. Dynamic recovery played an important role during the first three bending passes whereas, in contrast, dynamic recrystallization dominated the evident grain refinement during the last pass. The tensile ductility and stretch formability of the 4-pass sheet at room temperature were distinctly enhanced compared to the initial sheet (1.55 and 2 times larger, respectively). These prominent increases were mainly attributed to texture randomizing rather than texture weakening alone

  3. Observation of two regions of selective light reflection from a thin film of a cholesteric liquid crystal

    International Nuclear Information System (INIS)

    Alaverdyan, R B; Dadalyan, T K; Chilingaryan, Yurii S

    2013-01-01

    Two regions of selective light reflection (in the short- and long- wavelength parts of the visible spectrum) from a thin film of a cholesteric liquid crystal (CLC), consisting of the mixture of two CLCs with opposite chirality and a nematic liquid crystal, are experimentally found for the first time. The spectral position of the reflection regions and the separation between them varies depending on the CLC composition and the temperature. The long-wavelength region of reflection corresponds to the region of Bragg reflection from the CLC helix, while the short-wavelength region is probably due to the defects in the structure of the CLC film. (letters)

  4. Controlling the color of cholesteric liquid-crystalline films by photoirradiation of a chiroptical molecular switch used as dopant

    NARCIS (Netherlands)

    van Delden, RA; Huck, NPM; Feringa, BL; Delden, Richard A. van; Gelder, Marc B. van; Huck, Nina P.M.

    Using thin films of a cholesteric mixture of acrylates 2 and 3 doped with the chiroptical molecular switch (M)-trans-1, photo-control of the reflection color between red and green is possible. This doped liquid-crystal (LC) film can be used for photoinduced writing, color reading, and photoinduced

  5. Investigation of liquid film behavior at the onset of flooding during adiabatic counter-current air-water two-phase flow in an inclined pipe

    International Nuclear Information System (INIS)

    Deendarlianto; Ousaka, Akiharu; Kariyasaki, Akira; Fukano, Tohru

    2005-01-01

    The liquid film characteristics at the onset of flooding in an inclined pipe (16 mm i.d. and 2.2 m in length) have been investigated experimentally. A constant electric current method and visual observation were utilized to elucidate the flow mechanisms at the onset of flooding. Two mechanisms are clarified to control the flooding in lower flooding and upper flooding, respectively. The lower flooding occurred at lower liquid flow rate and high pipe inclination angle. In this mechanism, the liquid film does not block the pipe cross-section. On the other hand, the upper flooding occurred at higher liquid flow rate and low pipe inclination angle. In this case, blocking of the pipe cross-section by large wave and entrainment plays an important role. The experimental data indicated that there was no reversal motion of liquid film at the onset of flooding during the operation of both lower flooding and upper flooding. The effects of pipe inclination angle on the onset of flooding are also discussed

  6. Experimental observation of the layering and wetting of multilayer liquid helium-4 films on graphite

    International Nuclear Information System (INIS)

    Kumar, S.

    1987-01-01

    The multilayer adsorption of liquid 4 He on graphite was studied by using third sound, a substrate-induced surface wave in a superfluid film, to probe the 4 He film-vapor interface. The third-sound velocity decreases with increasing film thickness and can be used to monitor the film growth. Graphite, forms of which have large areas of atomic uniformity, is an ideal substrate for the study of film growth and layering. An annular resonator made out of graphite fibers was used for the experiments. Such a resonator avoids problems such as capillary condensation present in earlier resonance experiments with graphite foam and vapor sound interference present in time-of-flight experiments with highly oriented pyrolitic graphite (HOPG). Measurements of film growth were made between temperatures of 0.35 and 1.25 K. The third-sound resonance frequency, which is proportional to the third-sound velocity, was used to follow the film growth. Simultaneous measurements of the third-sound velocity on glass provide an independent measure of the film thickness. Results obtained show continuous film growth up to at least 25 to 30 layers on graphite. Oscillations of the third-sound velocity for low film coverages shown evidence of layering of the film

  7. Destabilization and dry-spot nucleation in thin liquid films on partially wetting substrates using a low-pressure air-jet

    NARCIS (Netherlands)

    Berendsen, C.W.J.; Zeegers, J.C.H.; Darhuber, A.A.

    2011-01-01

    The rupture of a thin liquid film on a partially wetting substrate can be initiated by external forces. In this manuscript we present experiments and numerical simulations of the effects of a laminar axisymmetric air-jet impinging on triethylene glycol films. We numerically calculate stagnation

  8. Phase coexistence in thin liquid films stabilized by colloidal particles: equilibrium and non-equilibrium properties

    International Nuclear Information System (INIS)

    Blawzdziewicz, J.; Wajnryb, E.

    2005-01-01

    Phase equilibria between regions of different thickness in thin liquid films stabilized by colloidal particles are investigated using a quasi-two-dimensional thermodynamic formalism. Appropriate equilibrium conditions for the film tension, normal pressure, and chemical potential of the particles in the film are formulated, and it is shown that the relaxation of these parameters occurs consecutively on three distinct time scales. Film stratification is described quantitatively for a hard-sphere suspension using a Monte-Carlo method to evaluate thermodynamic equations of state. Coexisting phases are determined for systems in constrained- and full-equilibrium states that correspond to different stages of film relaxation. We also evaluated the effective viscosity coefficients for two-dimensional compressional and shear flows of a film and the self and collective mobility coefficients of the stabilizing particles. The hydrodynamic calculations were performed using a multiple-reflection representation of Stokes flow between two free surfaces. In this approach, the particle-laden film is equivalent to a periodic system of spheres with a unit cell that is much smaller in the transverse direction than in the lateral direction. (author)

  9. Evaporation temperature-tuned physical vapor deposition growth engineering of one-dimensional non-Fermi liquid tetrathiofulvalene tetracyanoquinodimethane thin films

    DEFF Research Database (Denmark)

    Sarkar, I.; Laux, M.; Demokritova, J.

    2010-01-01

    We describe the growth of high quality tetrathiofulvalene tetracyanoquinodimethane (TTF-TCNQ) organic charge-transfer thin films which show a clear non-Fermi liquid behavior. Temperature dependent angle resolved photoemission spectroscopy and electronic structure calculations show that the growth...... of TTF-TCNQ films is accompanied by the unfavorable presence of neutral TTF and TCNQ molecules. The quality of the films can be controlled by tuning the evaporation temperature of the precursor in physical vapor deposition method....

  10. Geometrical optics approach in liquid crystal films with three-dimensional director variations.

    Science.gov (United States)

    Panasyuk, G; Kelly, J; Gartland, E C; Allender, D W

    2003-04-01

    A formal geometrical optics approach (GOA) to the optics of nematic liquid crystals whose optic axis (director) varies in more than one dimension is described. The GOA is applied to the propagation of light through liquid crystal films whose director varies in three spatial dimensions. As an example, the GOA is applied to the calculation of light transmittance for the case of a liquid crystal cell which exhibits the homeotropic to multidomainlike transition (HMD cell). Properties of the GOA solution are explored, and comparison with the Jones calculus solution is also made. For variations on a smaller scale, where the Jones calculus breaks down, the GOA provides a fast, accurate method for calculating light transmittance. The results of light transmittance calculations for the HMD cell based on the director patterns provided by two methods, direct computer calculation and a previously developed simplified model, are in good agreement.

  11. Equilibrium helium film in the thick film limit

    International Nuclear Information System (INIS)

    Klier, J.; Schletterer, F.; Leiderer, P.; Shikin, V.

    2003-01-01

    For the thickness of a liquid or solid quantum film, like liquid helium or solid hydrogen, there exist still open questions about how the film thickness develops in certain limits. One of these is the thick film limit, i.e., the crossover from the thick film to bulk. We have performed measurements in this range using the surface plasmon resonance technique and an evaporated Ag film deposited on glass as substrate. The thickness of the adsorbed helium film is varied by changing the distance h of the bulk reservoir to the surface of the substrate. In the limiting case, when h > 0, the film thickness approaches about 100 nm following the van der Waals law in the retarded regime. The film thickness and its dependence on h is precisely determined and theoretically modeled. The equilibrium film thickness behaviour is discussed in detail. The agreement between theory and experiment is very good

  12. Two-phase heat and mass transfer in turbulent parallel and countercurrent flows of liquid film and gas

    International Nuclear Information System (INIS)

    Kholpanov, L.P.; Babak, T.B.; Babak, V.N.; Malyusov, V.A.; Zhavoronkov, N.M.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1980-01-01

    To determine the ways of intensification of heat and mass transfer processes, the direct flow and counterflow heat and mass transfer is analytically investigated during the turbulent flow of a liquid and gas film on the basis of solving the energy equation for liquid and gas film, i.e. the two-phase film heat transfer is investigated from the position of a conjugate task. The analysis of the two-phase heat transfer has shown that it is necessary to know the position of each point in a plane before using this or that formula. Depending on its position on this plane, the heat transfer process will be determined by one or two phases only. It is found, that in the case of a single-phase heat transfer the temperature on the surface remains stable over the channel length. In the case of a two-phase heat transfer it can significantly change over the channel length [ru

  13. Quasi-one-dimensional electron transport over the surface of a liquid-helium film

    International Nuclear Information System (INIS)

    Sokolov, Sviatoslav; Studart, Nelson

    2003-01-01

    Quasi-one-dimensional mobility of surface electrons over a liquid-helium suspended film is studied for a conducting channel. The electron mobility is calculated taking into account the electron scattering by helium atoms in the vapor phase, ripplons, and surface defects of the film substrate both in one-electron regime and in the so-called complete-control limit where the influence of inter-electron collisions on the electron distribution function is taken into account. It is shown that the mobility for low temperatures is dominated by the surface-defect scattering and its temperature dependence is essentially different from that of the electron-ripplon scattering

  14. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir; Hussain, Aftab M.; Omran, Hesham; Alshareef, Sarah; Salama, Khaled N.; Hussain, Muhammad Mustafa

    2015-01-01

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (Zn

  15. Numerical analysis of steady state fluid flow in a two-dimensional wavy channel

    International Nuclear Information System (INIS)

    Gorji, M.; Hosseinzadeh, E.

    2007-01-01

    A simple geometry of the flow passage that may be used to enhance the heat transfer rate is called wavy and periodic channel. Wavy channel can provide significant heat transfer augmentation and was always important for heat transfer engineering and so far many researches have been done in this field. In this paper, the effects of channel geometry and Reynolds number on the heat transfer coefficient, heat flux and pressure drop for the laminar fully developed flow in a two dimensional channel whereas the walls are considered fix temperature is numerically investigated. The problem is solved for channel with one and two wavy walls and comparisons with the straight channel, in the same flow rate, have been performed. Results indicate that, by decreasing the channel wave length and the distance between the channel walls the pressure drop, heat flux and heat transfer coefficient increase. Results and Conclusions: The following conclusion may be drawn: 1. In a specified channel, for the fluid flow with the constant Reynolds number, by decreasing the wave length from 0.2 m to 0.1 m, the pressure drop, heat flux and heat transfer coefficient increase by 37% , 54% and 29% respectively, whereas by decreasing the wave length from the same value the above mentioned parameters decrease to 108% , 143% and 47% respectively. 2. In a specified wave length, where the amplitude and the Reynolds number is constant, by increasing the distance between the walls from 0.15 m to 0.25 m, the pressure drop, heat flux and heat transfer coefficient decrease by 41% ,8% and 7.8% respectively. References [1] J.C. Burns, T. Parks, J. Fluid Mesh, 29(1967), 405-416. [2] J.L. Goldestein, E.M. Sparrow, ASME J. Heat Transfer, 99 (1977), 187. [3] J.E.O. Brain, E.M. Sparrow, ASME J. Heat Transfer, 104 (1982), 410 [4] N. Sanie, S. Dini, ASME J. Heat Transfer, 115 (1993), 788. [5] G. Wang, P. Vanka, Int. J. Heat Mass Transfer, 38 (17) (1995), 3219. [6] T.A. Rush, T.A. Newell, A.M. Jacobi, Int, J. Heat Mass

  16. Cooling of a microchannel with thin evaporating liquid film sheared by dry gas flow

    Science.gov (United States)

    Kabova, Yu O.; Kuznetsov, V. V.

    2017-11-01

    A joint motion of thin liquid film and dry gas in a microchannel is investigated numerically at different values of initial concentration of the liquid vapor in the gas phase, taking into account the evaporation process. Major factors affecting the temperature distribution in the liquid and the gas phases are as follows: transfer of heat by liquid and gas flows, heat loses due to evaporation, diffusion heat exchange. Comparisons of the numerical results for the case of the dry gas and for the case of equilibrium concentration of vapor in the gas have been carried out. It is shown that use of dry gas enhances the heat dissipation from the heater. It is found out that not only intense evaporation occurs near the heating areas, but also in both cases vapor condensation takes place below the heater in streamwise direction.

  17. Investigation of vertical liquid film width upon impingement on flat plate

    International Nuclear Information System (INIS)

    Kim, Won J.; Son, Hyung M.; Suh, Kune Y.

    2003-01-01

    In the early, high pressure phase during a Large-Break Loss-Of-Coolant Accident (LBLOCA), the Emergency Core Cooling (ECC) water of the Direct Vessel Injection (DVI) system is supplied from the Safety Injection Tank (SIT). After the shortage of the SIT, the In-containment Refueling Water Storage Tank (IRWST) supplies water to the safety system. Velocity of the injection flow varies during the process from the initial value of over 10 m/s in the blowdown phase to 2∼3 m/s in the later phase of reflood. During the safety injection, such important phenomena are observed as impingement, bypass, entrainment and sweepout, and condensation. The impingement is referred to the case where the ECC water is injected to strike on the reactor inner vessel. Accordingly, the water generates a liquid film to form a ridge on the wall. The liquid film then flows down the wall due to gravity. This impingement is interrupted by the steam-water mixture bypass flow to the break. The bypass, in turn, is affected by the impingement. This study is intended to understand the impinged water flow behavior neglecting such secondary effects as the temperature-dependent thermodynamic properties and the reactor vessel curvature. An emphasis is put on interpreting the results of visual inspection to understand the underlying mechanism of rather complex turbulent flow in the downcomer

  18. Transient solid-liquid He heat transfer and onset of film boiling

    International Nuclear Information System (INIS)

    Metzger, W.; Huebener, R.P.; Selig, K.P.

    1982-01-01

    The transient heat transfer between single-crystalline Ge chips and liquid helium is investigated during the application of light pulses with different optical power to the Ge sample. The strong temperature dependence of the electrical conductivity of Ge conveniently serves for monitoring the temporal behaviour of the sample temperature during the input of optical energy. After a certain time interval following the beginning of the light pulse an abrupt rise of the sample temperature is observed. This time interval is much longer than the thermal time constant expected for the sample. This abrupt rise of the sample temperature can be understood in terms of the onset of film boiling. The observed onset time of film boiling and its dependence upon the heat transfer power density agrees reasonably with earlier results by Steward (Int. J. Heat Mass Transfer 21; 863. (1978)). (author)

  19. Transient sensing of liquid films in microfluidic channels with optofluidic microresonators

    International Nuclear Information System (INIS)

    Grad, M; Attinger, D; Tsai, C C; Wong, C W; Yu, M; Kwong, D-L

    2010-01-01

    We demonstrate that optical ring resonators can be used as time-resolved refractive index sensors embedded in microfluidic channels. The nanophotonic structures are integrated into soft silicone microchannels interfaced with a transparent hard polymer manifold and standard microfluidic connections. The steady-state sensitivity, resolution and detection limit of the sensors are characterized using aqueous saline solutions at various concentrations. Time-resolved measurements are performed by sensing thin liquid films (0–400 nm) associated with oil/water segmented flow in microfluidic channels. The influence of the interrogation wavelength is investigated, and the optimal wavelength is determined. Millisecond resolution is demonstrated by sensing the shape of a single drop as it flows past the sensor. Finally, the film thickness between the droplet and the resonator is measured for different capillary numbers and channel diameters, and compared with existing theoretical and experimental results

  20. Nanoscale modeling for ultrathin liquid films: Spreading and coupled layering

    Science.gov (United States)

    Phillips, David Michael

    liquid PFPE. The experimental analogue of replenishment is the one-dimensional spreading analysis. PFPEs with functional endgroups demonstrated coupled molecular layering and dewetting phenomena during the spreading analysis, while PFPEs with nonfunctional endgroups did not. All of the PFPE thin films spread via a diffusive process and had diffusion coefficients that depended on the local film thickness. A theoretical analysis is presented here for both the governing equation and the disjoining pressure driving force for the PFPE thin film spreading. For PFPEs with non-functional endgroups, a reasonable analysis is performed on the diffusion coefficient for two classes of film: submonolayer and multilayer. The diffusion coefficient of PFPEs with functional endgroups are qualitatively linked to the gradient of the film disjoining pressure. To augment this theory, both lattice-based and off-lattice Monte Carlo simulations are conducted for PFPE film models. The lattice-based model shows the existence of a critical functional endgroup interaction strength. It is also used to study the break-up of molecular layers for a spreading film via a fractal analysis. The off-lattice model is used to calculate the anisotropic pressure tensor for the model PFPE thin film and subsequently the film disjoining pressure. The model also qualitatively analyzes of the self diffusion in the film.

  1. Bioconvection nanofluid slip flow past a wavy surface with applications in nano-biofuel cells

    OpenAIRE

    Beg, OA; Uddin, MJ; Khan, WA; Qureshi, SR

    2017-01-01

    A theoretical study is presented to examine free convective boundary layer flow of water-based bio-nanofluid containing gyrotactic microorganisms past a wavy surface. Buongiorno’s nanofluid model with passively controlled boundary condition is applied to investigate the effects of the emerging parameters on the physical quantities namely, skin friction, Nusselt numbers and density number of motile microorganisms. The effects of the both hydrodynamic and thermal slips are also incorporated. Lo...

  2. An extended numerical calibration method for an electrochemical probe in thin wavy flow with large amplitude waves

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-12-31

    The calibrating method for an electrochemical probe, neglecting the effect of the normal velocity on the mass transport, can cause large errors when applied to the measurement of wall shear rates in thin wavy flow with large amplitude waves. An extended calibrating method is developed to consider the contributions of the normal velocity. The inclusion of the turbulence-induced normal velocity term is found to have a negligible effect on the mass transfer coefficient. The contribution of the wave-induced normal velocity can be classified on the dimensionless parameter, V. If V is above a critical value of V, V{sub crit}, the effects of the wave-induced normal velocity become larger with an increase in V. While its effects negligible for inversely. The present inverse method can predict the unknown shear rate more accurately in thin wavy flow with large amplitude waves than the previous method. 18 refs., 8 figs. (Author)

  3. An extended numerical calibration method for an electrochemical probe in thin wavy flow with large amplitude waves

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The calibrating method for an electrochemical probe, neglecting the effect of the normal velocity on the mass transport, can cause large errors when applied to the measurement of wall shear rates in thin wavy flow with large amplitude waves. An extended calibrating method is developed to consider the contributions of the normal velocity. The inclusion of the turbulence-induced normal velocity term is found to have a negligible effect on the mass transfer coefficient. The contribution of the wave-induced normal velocity can be classified on the dimensionless parameter, V. If V is above a critical value of V, V{sub crit}, the effects of the wave-induced normal velocity become larger with an increase in V. While its effects negligible for inversely. The present inverse method can predict the unknown shear rate more accurately in thin wavy flow with large amplitude waves than the previous method. 18 refs., 8 figs. (Author)

  4. Electric field effect on exchange interaction in ultrathin Co films with ionic liquids

    Science.gov (United States)

    Ishibashi, Mio; Yamada, Kihiro T.; Shiota, Yoichi; Ando, Fuyuki; Koyama, Tomohiro; Kakizakai, Haruka; Mizuno, Hayato; Miwa, Kazumoto; Ono, Shimpei; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-06-01

    Electric-field modulations of magnetic properties have been extensively studied not only for practical applications but also for fundamental interest. In this study, we investigated the electric field effect on the exchange interaction in ultrathin Co films with ionic liquids. The exchange coupling J was characterized from the direct magnetization measurement as a function of temperature using Pt/ultrathin Co/MgO structures. The trend of the electric field effect on J is in good agreement with that of the theoretical prediction, and a large change in J by applying a gate voltage was observed by forming an electric double layer using ionic liquids.

  5. Studies of antimony telluride and copper telluride films electrodeposition from choline chloride containing ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Catrangiu, Adriana-Simona; Sin, Ion [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Prioteasa, Paula [INCDIE ICPE-Advanced Research, Splaiul Unirii 313, Bucharest (Romania); Cotarta, Adina [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Cojocaru, Anca, E-mail: a_cojocaru@chim.upb.ro [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Anicai, Liana [Center of Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest (Romania); Visan, Teodor [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania)

    2016-07-29

    Cyclic voltammetry and electrochemical impedance spectroscopy were used to investigate the deposition of antimony telluride or copper telluride from ionic liquid consisting in mixture of choline chloride with oxalic acid. In addition, the cathodic process during copper telluride formation was studied in the mixture of choline chloride with ethylene glycol. The results indicate that the Pt electrode is first covered with a Te layer, and then the more negative polarisation leads to the deposition of Sb{sub x}Te{sub y} or Cu{sub x}Te{sub y} semiconductor compounds. Thin films were deposited on copper and carbon steel at 60–70 °C and were characterised by scanning electron microscopy, energy X-ray dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Their stoichiometry depends on the bath composition and applied potential. EDS and XRD patterns indicate the possible synthesis of stoichiometric Sb{sub 2}Te{sub 3} phase and Cu{sub 2}Te, Cu{sub 5}Te{sub 3}, and Cu{sub 2.8}Te{sub 2} phases, respectively, by controlling the ratio of ion concentrations in ionic liquid electrolytes and deposition potential. - Highlights: • Sb{sub x}Te{sub y} and Cu{sub x}Te{sub y} films electrodeposited from choline-chloride-based ionic liquids. • The stoichiometry of film depends on the bath composition and deposition potential. • Sb{sub 2}Te{sub 3}, Cu{sub 2}Te, Cu{sub 5}Te{sub 3}, Cu{sub 2.8}Te{sub 2} phases were identified in X-ray diffraction patterns.

  6. Systematic periodicity in waviness of vertically aligned carbon nanotubes explained by helical buckling

    Science.gov (United States)

    Jahangiri, Mehdi

    2017-09-01

    A hypothesis is proposed in this work to account for the geometry of individual vertically aligned carbon nanotubes (VACNTs) that not only justifies the directionality of their growth, but also explains the origin of the waviness frequently reported for these nanotube forests. Such waviness has fundamental effects on the transport/conduction properties of VACNTs, either through or along them, regarding phenomena such as mass, stress, heat and electricity. Despite the general opinion about randomness of carbon nanotubes (CNTs) tortuosity, we demonstrate here that rules of helical buckling of tubular strings is applicable to VACNTs, based on which a regular 3D helical geometry is proposed for VACNTs, with a 2D sine wave shape side-profile. In this framework, gradual increase of the total free surface energy by growth of CNTs ensues their partial cohesion, driven by van der Waals interactions, to reduce the excess surface energy. On the other hand, their cohesion is accompanied by their deformation and loss of straightness, which in turn, translates to buildup of an elastic strain energy in the system. The balance of the two energies along with the spatial constraints on each CNT at its contact points with neighboring CNTs, is manifested in its helical buckling, that is systematically influenced by nanostructural characteristics of VACNTs, such as their diameter, wall thickness and inter-CNT spacing.

  7. Turbulent boundary layer over 2D and 3D large-scale wavy walls

    Science.gov (United States)

    Chamorro, Leonardo P.; Hamed, Ali M.; Castillo, Luciano

    2015-11-01

    In this work, an experimental investigation of the developing and developed flow over two- and three-dimensional large-scale wavy walls was performed using high-resolution planar particle image velocimetry in a refractive-index-matching flume. The 2D wall is described by a sinusoidal wave in the streamwise direction with amplitude to wavelength ratio a/ λx = 0.05. The 3D wall is defined with an additional wave superimposed on the 2D wall in the spanwise direction with a/ λy = 0.1. The flow was characterized at Reynolds numbers of 4000 and 40000, based on the bulk velocity and the flume half height. Instantaneous velocity fields and time-averaged turbulence quantities reveal strong coupling between large-scale topography and the turbulence dynamics near the wall. Turbulence statistics show the presence of a well-structured shear layer that enhances the turbulence for the 2D wavy wall, whereas the 3D wall exhibits different flow dynamics and significantly lower turbulence levels, particularly for which shows about 30% reduction. The likelihood of recirculation bubbles, levels and spatial distribution of turbulence, and the rate of the turbulent kinetic energy production are shown to be severely affected when a single spanwise mode is superimposed on the 2D wall. POD analysis was also performed to further understand distinctive features of the flow structures due to surface topography.

  8. Estimation of surface elasticity by the thickness change of liquid film and its correlation with foam stability

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jung Ryoul; Park, Jai Koo [Hanyang University, Seoul (Korea, Republic of)

    1996-04-30

    The relationship between foam stability and surface elasticity by the thickness change of liquid film was investigated. Foam stability was measured by draining liquid volume and decreasing gas volume as a function of time. Foam was formed by the fixed gas-injection the surfactant aqueous solution of different concentration. The used surfactants were sodium lauryl sulfate, hexadecane sulfonic acid sodium salt, and octane sulfonic acid sodium salt. Thickness of liquid film was estimated by using the volume ratio of liquid to gas in foam and surface elasticity of lamella was calculated by the surface tension and adsorbed amount. The thinning of liquid film is due to the combined effects of gravity and capillary suction, it would be ruptured at the minimum of lamella thickness which is called critical thickness. The lamella thickness of bubble which was formed at CMC(critical micelle concentration) was very thin. In the case of sodium lauryl sulfate, the thinning of lamella was continued in the range of measurement. The critical thicknesses of octane sulfonic acid sodium salt solution, hexadecane sulfonic acid sodium salt solution were determined to 0.479{approx}0.316, 0.209{approx}0.200 {mu}m, respectively. It was found that the tendency for foam stability was similar to that of lamella thickness. It was considered that foam which was formed at CMC has very high stability, and the order of foam stability for surfactant aqueous solution was sodium lauryl sulfate > hexadecane sulfonic acid sodium salt > octane sulfonic acid sodium salt. These results was considered that the lamella-rupturing was retarded by the relatively high surface elasticity of lamella. The saturated adsorption of surfactant was determined to 3.25{approx}3.04 * 10{sup -6} mol/m{sup 2} and the surface elasticity of lamella was also determined to 3{approx}56 mN/m. (author). 19 refs., 1 tab., 11 figs.

  9. DETERMINATION OF LIQUID FILM THICKNESS FOLLOWING DRAINING OF CONTACTORS, VESSELS, AND PIPES IN THE MCU PROCESS

    International Nuclear Information System (INIS)

    Poirier, M; Fernando Fondeur, F; Samuel Fink, S

    2006-01-01

    The Department of Energy (DOE) identified the caustic side solvent extraction (CSSX) process as the preferred technology to remove cesium from radioactive waste solutions at the Savannah River Site (SRS). As a result, Washington Savannah River Company (WSRC) began designing and building a Modular CSSX Unit (MCU) in the SRS tank farm to process liquid waste for an interim period until the Salt Waste Processing Facility (SWPF) begins operations. Both the solvent and the strip effluent streams could contain high concentrations of cesium which must be removed from the contactors, process tanks, and piping prior to performing contactor maintenance. When these vessels are drained, thin films or drops will remain on the equipment walls. Following draining, the vessels will be flushed with water and drained to remove the flush water. The draining reduces the cesium concentration in the vessels by reducing the volume of cesium-containing material. The flushing, and subsequent draining, reduces the cesium in the vessels by diluting the cesium that remains in the film or drops on the vessel walls. MCU personnel requested that Savannah River National Laboratory (SRNL) researchers conduct a literature search to identify models to calculate the thickness of the liquid films remaining in the contactors, process tanks, and piping following draining of salt solution, solvent, and strip solution. The conclusions from this work are: (1) The predicted film thickness of the strip effluent is 0.010 mm on vertical walls, 0.57 mm on horizontal walls and 0.081 mm in horizontal pipes. (2) The predicted film thickness of the salt solution is 0.015 mm on vertical walls, 0.74 mm on horizontal walls, and 0.106 mm in horizontal pipes. (3) The predicted film thickness of the solvent is 0.022 mm on vertical walls, 0.91 mm on horizontal walls, and 0.13 mm in horizontal pipes. (4) The calculated film volume following draining is: (a) Salt solution receipt tank--1.6 gallons; (b) Salt solution feed

  10. Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk

    Science.gov (United States)

    Thomas, S.; Faghri, A.; Hankey, W.

    1991-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.

  11. An energy landscape based approach for studying supercooled liquid and glassy thin films

    Science.gov (United States)

    Shah, Pooja; Mittal, Jeetain; Truskett, Thomas M.

    2004-03-01

    Materials in confined spaces are important in science and technology. Examples include biological fluids in membranes, liquids trapped in porous rocks, and thin-film materials used in high-resolution patterning technologies. However, few reliable rules exist to predict how the properties of materials will be affected by thin-film confinement. We have recently shown that the potential energy landscape formalism can be used to study, by both theory [1] and simulation [2], how the behavior of thin-film materials depends on sample dimensions and film-substrate interactions. Our landscape-based mean-field theory [1] can be used to study both the thermodynamic properties and the ideal glass transition of thin films. It predicts that, in the case of neutral or repulsive walls, the ideal glass transition temperature is lowered by decreasing film thickness. This is in qualitative agreement with experimental trends for the kinetic glass transition in confined fluids. Landscape-based approaches are also valuable for understanding the structural and mechanical properties of thin-film glasses. We demonstrate how the concept of an "equation of state of the energy landscape" [3] can be generalized to thin films [1, 2], where it gives insights into potential molecular mechanisms of tensile strength. [1] T. M. Truskett and V. Ganesan, J. Chem. Phys. 119, 1897-1900(2003); J. Mittal, P. Shah and T. M. Truskett, to be submitted to Langmuir. [2] P. Shah and T. M. Truskett, to be submitted to J. Phys. Chem. B. [3] S. Sastry, P. G. Debenedetti and F. H. Stillinger, Phys. Rev. E 56, 5533 (1997)

  12. Experimental and theoretical study of flowing foam and of the liquid film formed on the wall for the improvement of decontamination processes using foams

    International Nuclear Information System (INIS)

    Pouvreau, J.

    2002-01-01

    Amongst chemical decontamination techniques, the foam cleaning process has the advantage of reducing the amount of liquid used, thus limiting the quantity of the chemical reagents and the secondary waste volume. In order to improve this process, it is essential to understand the behaviour of the foam in the vicinity of the contaminated surface. Two methods of study have been initiated. Firstly, the characterization of the liquid film formed on the wall, and secondly, the characterization of the foam bed. Furthermore, our goal is to set up a drainage model which enables a choice of process parameters. Flush-mounted conductance probes have been developed in order to determine the thickness of the liquid film at the surface and the foam liquid fraction. The influence of the foam on the film structure and the interpretation of the thickness measured is discussed. The process studied consists of filling the facility with foam and letting the foam drain once the facility is full. It was demonstrated that the liquid film thickness varies between a few microns and 50 μm and that the value depends on position and time. Furthermore, a strong correlation links the film thickness and the foam liquid fraction. A drift-flux model has been built to describe the drainage of the upstream flow or static foam. The model is solved by using the method of characteristics. Analytical solutions are obtained and the liquid fraction evolution can easily be represented on a single diagram. The parameters of the void-drift closure law have been deducted from the experiments. The comparison to experimental data has shown that the model is well adapted. The laboratory therefore has experimental and theoretical equipment to study any foam. Finally, the model is applied to realistic decontamination configurations in order to present how determine the parameters of the process. (author) [fr

  13. Process and operating device for an apparatus using a running liquid film and application to separation of Zr and Hf tetrachlorides

    International Nuclear Information System (INIS)

    Brun, R.

    1989-01-01

    A process is claimed allowing to maintain a thin film in a running film exchanger, by increasing the flow rate for a short time to establish a film all over the surface. Application is made to continuous condensation of zirconium and hafnium tetrachlorides, from the separation column, by absorption in a liquid solvent made of potassium chloroaluminate [fr

  14. Radioactive liquid waste processing device

    International Nuclear Information System (INIS)

    Murakami, Susumu; Kuroda, Noriko; Matsumoto, Hiroyo.

    1991-01-01

    The present device comprises a radioactive liquid wastes concentration means for circulating radioactive liquid wastes between each of the tank, a pump and a film evaporator thereby obtaining liquid concentrates and a distilled water recovery means for condensing steams separated by the film evaporator by means of a condenser. It further comprises a cyclizing means for circulating the resultant distilled water to the upstream after the concentration of the liquid concentrates exceeds a predetermined value or the quality of the distilled water reaches a predetermined level. Further, a film evaporator having hydrophilic and homogeneous films is used as a film evaporator. Then, the quality of the distilled water discharged from the present device to the downstream can always satisfy the predetermined conditions. Further, by conducting operation at high concentration while interrupting the supply of the processing liquids, high concentration up to the aimed concentration can be attained. Further, since the hydrophilic homogeneous films are used, carry over of the radioactive material accompanying the evaporation is eliminated to reduce the working ratio of the vacuum pump. (T.M.)

  15. Liquid-phase exfoliated graphene self-assembled films: Low-frequency noise and thermal-electric characterization

    International Nuclear Information System (INIS)

    Tubon Usca, G.; Hernandez-Ambato, J.; Pace, C.; Caputi, L.S.; Tavolaro, A.

    2016-01-01

    Highlights: • Graphene was exfoliated in liquid phase also in the presence of zeolite 4A. • Films were obtained by drop-casting. • SEM, Raman, low-frequency noise and thermal electric measurements show that the presence of zeolite improves the quality of the FLG films. - Abstract: In few years, graphene has become a revolutionary material, leading not only to applications in various fields such as electronics, medicine and environment, but also to the production of new types of 2D materials. In this work, Liquid Phase Exfoliation (LPE) was applied to natural graphite by brief sonication or mixer treatment in suitable solvents, in order to produce Few Layers Graphene (FLG) suspensions. Additionally, zeolite 4A (Z4A) was added during the production of FLG flakes-based inks, with the aim of aiding the exfoliation process. Conductive films were obtained by drop casting three types of suspensions over Al 2 O 3 substrates with interdigitated electrodes, with total channel surface of 1.39 mm 2 . The morphology characterization resulted in the verification of the presence of thin self-assembled flakes. Raman studies gave evidence of 4 to 10 layers graphene flakes. Electrical measurements were performed to state the Low-Frequency Noise and Thermal-Electric characteristics of the samples. We observe interesting relations between sample preparation procedures and electrical properties.

  16. Petrographic observations suggestive of microbial mats from ...

    Indian Academy of Sciences (India)

    Ray 1977). 3. Petrographic observations. 3.1 General wavy lamination. Thin section studies of both Rampur and Bijaigarh. Shale show wavy and crinkly lamination of clayey and carbonaceous shales facies (figures 2, 3). Car- bonaceous films of clayey shale facies are very thin, continuous to discontinuous wavy crinkly lami ...

  17. Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors

    Directory of Open Access Journals (Sweden)

    Sutichai Chaisitsak

    2011-07-01

    Full Text Available This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG sensors by doping with fluorine (F. Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer. The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection.

  18. The effect of wheel eccentricity and run-out on grinding forces, waviness, wheel wear and chatter

    OpenAIRE

    O'DONNELL, GARRET; MURPHY, STUART

    2011-01-01

    PUBLISHED The effect of grinding-wheel eccentricity on grinding forces, wheel wear and final waviness height was studied. Eccentricity was evident in force oscillations and acceleration and audio measurements. A model was developed to predict final scallop-profile shape from grinding parameters and eccentricity. Recommendations are given on detecting eccentricity and determining when eccentricity is tolerable.

  19. Bi-liquid foams

    International Nuclear Information System (INIS)

    Sonneville, Odile

    1997-01-01

    Concentrated emulsions have structures similar to foams; for this reason they are also called 'bi-liquid foams'. For oil in water emulsions, they are made of polyhedral oil cells separated by aqueous surfactant films. The limited stability of these Systems is a major nuisance in their applications. In this work, we tried to understand and to control the mechanisms through which bi-liquid foams can loose their stability. In a first stage, we characterized the states of surfactant films in bi-liquid foams submitted to different pressures. We determined their hydration, the surfactant density at interfaces as well as their thicknesses. The bi-liquid foams were made by concentrating hexadecane-in-water emulsions through centrifugation. The initial emulsions contained submicron oil droplets that were completely covered with surfactant. We measured the resistance of the films to dehydration, and we represented it by pressure-film thickness curves or pressure-film hydration curves. We also obtained evidence that the interfacial surfactant density increases when the film thickness is decreased (SDS case). The Newton Black Film state is the most dehydrated metastable state that can be reached. In this state, the films can be described as surfactant bilayers that only contain the hydration water of the surfactant polar heads. Two different processes are involved the destabilization of bi-liquid foams: Ostwald ripening (oil transfer from small cells to large cells) and coalescence (films rupture). The first mechanism can be controlled by choosing oils that are very insoluble in water, avoiding ethoxylated nonionic surfactants of low molecular weight, and making emulsions that are not too fine. The second mechanism is responsible for the catastrophic destabilization of bi-liquid foams made of droplets above one micron or with a low coverage in surfactant. In these cases, destabilization occurs in the early stages of concentration, when the films are still thick. It is caused

  20. Polarization Patterns of Transmitted Celestial Light under Wavy Water Surfaces

    Directory of Open Access Journals (Sweden)

    Guanhua Zhou

    2017-03-01

    Full Text Available This paper presents a model to describe the polarization patterns of celestial light, which includes sunlight and skylight, when refracted by wavy water surfaces. The polarization patterns and intensity distribution of refracted light through the wave water surface were calculated. The model was validated by underwater experimental measurements. The experimental and theoretical values agree well qualitatively. This work provides a quantitative description of the repolarization and transmittance of celestial light transmitted through wave water surfaces. The effects of wind speed and incident sources on the underwater refraction polarization patterns are discussed. Scattering skylight dominates the polarization patterns while direct solar light is the dominant source of the intensity of the underwater light field. Wind speed has an influence on disturbing the patterns under water.

  1. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    Science.gov (United States)

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.

  2. Pressure sensor using liquid crystals

    Science.gov (United States)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  3. Conductivity of Langmuir-Blodgett films of a disk-shaped liquid-crystalline molecule-DNA complex studied by current-sensing atomic force microscopy

    Science.gov (United States)

    Nayak, Alpana; Suresh, K. A.

    2008-08-01

    We have studied the electrical conductivity in monolayer films of an ionic disk-shaped liquid-crystal molecule, pyridinium tethered with hexaalkoxytriphenylene (PyTp), and its complex with DNA by current-sensing atomic force microscopy (CS-AFM). The pure PyTp and PyTp-DNA complex monolayer films were first formed at the air-water interface and then transferred onto conducting substrates by the Langmuir-Blodgett (LB) technique to study the nanoscale electron transport through these films. The conductive tip of CS-AFM, the LB film, and the metal substrate form a nanoscopic metal-LB film-metal (M-LB-M) junction. We have measured the current-voltage (I-V) characteristics for the M-LB-M junction using CS-AFM and have analyzed the data quantitatively. We find that the I-V curves fit well to the Fowler-Nordheim (FN) model, suggesting electron tunneling to be a possible mechanism for electron transport in our system. Further, analysis of the I-V curves based on the FN model yields the barrier heights of PyTp-DNA complex and pure PyTp films. Electron transport studies of films of ionic disk-shaped liquid-crystal molecules and their complex with DNA are important from the point of view of their applications in organic electronics.

  4. Surface alignment of liquid crystal multilayers evaporated on a photoaligned polyimide film observed by surface profiler

    International Nuclear Information System (INIS)

    Oo, T.N.; Iwata, T.; Kimura, M.; Akahane, T.

    2005-01-01

    The investigation of the surface alignment of liquid crystal (LC) multilayers evaporated on a photoaligned polyimide vertical alignment (PI-VA) film was carried out by means of a novel three-dimensional (3-D) surface profiler. The photoinduced anisotropy of the partially UV-exposed PI-VA film can be visualized as a topological image of LC multilayers. It seems that the topology of LC multilayers is indicating the orientational distribution of LC molecules on the treated film. Moreover, it was shown that the surface profiler can be used to produce non-contact images with high vertical resolution (∼ 0.01 nm). Copyright (2003) AD-TECH - International Foundation for the Advancement of Technology Ltd

  5. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2016-08-01

    Full Text Available We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  6. Aligned Carbon Nanotubes for High-Performance Films and Composites

    Science.gov (United States)

    Zhang, Liwen

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or

  7. The effect of a flat-plate-type obstacle on the thin liquid film accompanied by a high speed gas flow

    International Nuclear Information System (INIS)

    Fukano, Tohru; Kadoguchi, Katsuhiko; Kanamori, Mikio; Tominaga, Akira.

    1989-01-01

    A flatplate-type obstacle, which simulates a grid-type spacer in a nuclear reactor, is set in an air-water cocurrent stratified flow to investigate liquid film breakdown occurring near the obstacle. We made detailed visual observations and measurements of the velocity profile of the air flow and the axial distributions of liquid film thickness and static pressure near the obstacle. Experimental parameters were the inclination of the rectangular duct, the configuration of the obstacle, i.e., with and without a projection and a hole, which is bored in order to delay the onset of dry patch formation near the obstacle and the gap between the plate and the lower-wall surface. The results show that the plate itself does not promote dry patch formation but the projection, even if it is in contact with the wall surface at only one point, has a strong effect on the liquid film breakdown. In general the film breakdown occurs in front of the projection in a wide range of flow conditions due to the leading edge down-wash of the stream and due also to the rejection of water by gravitational force in the case of the upward flow in the inclined duct. By setting a hole in or in front of the projection the occurrence of the dry patch formation is delayed. (author)

  8. Growth behaviors and biocidal properties of titanium dioxide films depending on nucleation duration in liquid phase deposition

    Science.gov (United States)

    Park, Sohyeon; Park, Joohee; Heo, Jiwoong; Hong, Bo Young; Hong, Jinkee

    2017-12-01

    Liquid phase deposition (LPD), which is a method to directly form a titanium dioxide (TiO2) film on a substrate, is the most practical method for applying TiO2 films to medical devices because it is performed at lower temperatures than other methods. The TiO2 films to be applied to medical devices should offer excellent antibacterial effect, but should be stable to normal cells and have appropriate strength. In this research, we observed that the size, shape, and density of TiO2 particles varied with the nucleation duration in LPD and confirmed that these results caused changes in several properties including the mechanical properties, cytotoxicity and antibacterial effect of TiO2 films. From the analysis of these results, we established the conditions for the preparation of TiO2 films that are suitable for medical devices and suggest a new approach to the study of TiO2 films prepared by LPD.

  9. Vortex pinning landscape in YBa2Cu3O7 films grown by hybrid liquid phase epitaxy

    International Nuclear Information System (INIS)

    Maiorov, B; Kursumovic, A; Stan, L; Zhou, H; Wang, H; Civale, L; Feenstra, R; MacManus-Driscoll, J L

    2007-01-01

    The influence of film thickness and growth rate on the vortex pinning in hybrid liquid phase epitaxy (HLPE) films was explored. Film growth rates as high as 12 nm s -1 (0.7 μm min -1 ) produced high J c films. Weak or no thickness dependence was found in films of thickness ranging from 0.4 to 3 μm. Field and angular measurements of the critical current density (J c ) and the power-law exponent (N) of the current-voltage curves were used to determine the nature of pinning. Films thinner than 0.6 μm showed a higher density of correlated defects parallel to the ab plane than thicker films. Using HLPE, it was possible to achieve very strong pinning in films ∼3 μm thick, yielding critical currents over 300 A cm -1 width at self-field, and as high as 35 A cm -1 width at μ 0 H = 3 T at T = 75.5 K. Decreasing the deposition rate allowed improving the high field performance, opening up the possibility to engineer the pinning landscape of the HLPE films

  10. Instability of a binary liquid film flowing down a slippery heated plate

    Science.gov (United States)

    Ellaban, E.; Pascal, J. P.; D'Alessio, S. J. D.

    2017-09-01

    In this paper, we study the stability of a binary liquid film flowing down a heated slippery inclined surface. It is assumed that the heating induces concentration differences in the liquid mixture (Soret effect), which together with the differences in temperature affects the surface tension. A mathematical model is constructed by coupling the Navier-Stokes equations governing the flow with equations for the concentration and temperature. A Navier slip condition is applied at the liquid-solid interface. We carry out a linear stability analysis in order to obtain the critical conditions for the onset of instability. We use a Chebyshev spectral collocation method to obtain numerical solutions to the resulting Orr-Sommerfeld-type equations. We also obtain an asymptotic solution that yields an expression for the state of neutral stability of long perturbations as a function of the parameters controlling the problem. A weighted residual approximation is employed to derive a reduced model that is used to analyse the nonlinear effects. Good agreement between the linear stability analysis and nonlinear simulations provided by the weighted residual model is found.

  11. Molecular dynamics simulations of the effect of waviness and agglomeration of CNTs on interface strength of thermoset nanocomposites.

    Science.gov (United States)

    Alian, A R; Meguid, S A

    2017-02-08

    Most existing molecular dynamics simulations in nanoreinforced composites assume carbon nanotubes (CNTs) to be straight and uniformly dispersed within thermoplastics. In reality, however, CNTs are typically curved, agglomerated and aggregated as a result of van der Waal interactions and electrostatic forces. In this paper, we account for both curvature and agglomeration of CNTs in extensive molecular dynamic (MD) simulations. The purpose of these simulations is to evaluate the influence of waviness and agglomeration of these curved and agglomerated CNTs on the interfacial strength of thermoset nanocomposite and upon their load transfer capability. Two aspects of the work were accordingly examined. In the first, realistic carbon nanotubes (CNTs) of the same length but varied curvatures were embedded in thermoset polymer composites and simulations of pull-out tests were conducted to evaluate the corresponding interfacial shear strength (ISS). In the second, the effect of the agglomerate size upon the ISS was determined using bundles of CNTs of different diameters. The results of our MD simulations revealed the following. The pull-out force of the curved CNTs is significantly higher than its straight counterpart and increases further with the increase in the waviness of the CNTs. This is attributed to the added pull-out energy dissipated in straightening the CNTs during the pull-out process. It also reveals that agglomeration of CNTs leads to a reduction in the ISS and poor load transferability, and that this reduction is governed by the size of the agglomerate. The simulation results were also used to develop a generalized relation for the ISS that takes into consideration the effect of waviness and agglomeration of CNTs of CNT-polymer composites.

  12. Interfacial Effects on the Spherulitic Morphology of Isotactic Polystyrene Thin Films on Liquid Substrates

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2016-01-01

    Full Text Available The influence of interfaces on the morphology of flat spherulites of isotactic polystyrene (iPS grown in thin films on liquid substrates was investigated. Amorphous iPS thin films spin-cast from a solution were annealed for cold crystallization on glycerol and silicone oil (nonsolvents for iPS. The number density of grown spherulites was revealed to be higher on the glycerol substrate than on the silicone oil substrate. This implies that the primary nucleation rate of crystallization is greater at the iPS/glycerol interface than at the iPS/silicone oil interface. The results may be consistent with the previous findings that concern the molecular interaction between atactic polystyrene and nonsolvents at the interface. In some cases, holes were formed in the thin films during the cold crystallization due to dewetting, which also significantly affect the spherulite morphology via, for example, transcrystallization.

  13. Influence of ionic liquids on the direct electrochemistry of glucose oxidase entrapped in nanogold-N,N-dimethylformamide-ionic liquid composite film

    International Nuclear Information System (INIS)

    Li, Jiangwen; Fan, Cong; Xiao, Fei; Yan, Rui; Fan, Shuangshuang; Zhao, Faqiong; Zeng, Baizhao

    2007-01-01

    Glucose oxidase (GOD) immobilized in nanogold particles (NAs)-N,N-dimethylformamide (DMF) composite film on glassy carbon (GC) electrode exhibits a pair of quasi-reversible and unstable peaks due to the redox of flavin adenine dinucleotide (FAD) of GOD. When ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF 4 ) or trihexyltetradecylphosphorium bis (trifluoromethylsulfony) (P 666,14 NTf 2 ) is introduced in the film, the peaks become small. But ILs 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF 6 ) and 1-octyl-3-methylimidazolium hexafluorophate (OMIMPF 6 ) make the peaks large and stable. In different composite films the formal potential (E 0 ') of GOD is different. UV-vis spectra show that the GOD dispersed in these films almost retains its native structure and there are weak interactions between ILs and GOD. Electrochemical impedance spectra display that NAs can promote the electron transfer between FAD and GC electrode; and ILs can affect the electron transfer through interacting with GOD. The thermal stability of GOD entrapped in NAs-DMF-ILs composite films is also influenced by ILs, and it follows such order as: in NAs-DMF-OMIMPF 6 > in NAs-DMF-BMIMPF 6 ∼ in NAs-DMF-BMIMBF 4 > in NAs-DMF. In addition, GOD immobilized in NAs-DMF-OMIMPF 6 and NAs-DMF-BMIMPF 6 films shows good catalytic activity to the oxidation of glucose. The I max of H 2 O 2 and the apparent K m (Michaelis-Menten constant) for the enzymatic reaction are calculated

  14. Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing over a Rotating Disk by Integral Method

    Science.gov (United States)

    Basu, S.; Cetegen, B. M.

    2005-01-01

    An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.

  15. A monolithic functional film of nanotubes/cellulose/ionic liquid for high performance supercapacitors

    Science.gov (United States)

    Basiricò, Lucia; Lanzara, Giulia

    2014-12-01

    A novel monolithic, pre-fabricated, fully functional film made of a nanostructured free-standing layer is presented for a new and competitive class of easy-to-assemble flexible supercapacitors whose design is in-between the all solid state and the traditional liquid electrolyte. The film is made of two vertically aligned multi-walled carbon nanotube (VANT) electrodes that store ions, embedded-in, and monolithically interspaced by a solution of microcrystalline cellulose in a room temperature ionic liquid (RTIL) electrolyte (1-ethyl-3-methylimidazolium acetate-EMIM Ac). The fine tuning of VANTs length and electrolyte/cellulose amount leads, in a sole and continuous block, to ions storage and physical separation between the electrodes without the need of the additional separator layer that is typically used in supercapacitors. Thus, physical discontinuities that can induce disturbances to ions mobility, are fully eliminated significantly reducing the equivalent series resistance and increasing the knee frequency, hence outclassing the best supercapacitors based on VANTs and non-aqueous electrolytes. The excellent electrochemical response can also be addressed to the chosen electrolyte that, not only has the advantage of leading to a significantly simpler and more affordable fabrication procedure, but has higher ionic conductivity, lower viscosity and higher ions mobility than other electrolytes capable of dissolving cellulose.

  16. Uniform hexagonal graphene flakes and films grown on liquid copper surface.

    Science.gov (United States)

    Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi

    2012-05-22

    Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm(2)), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 ± 200 Ω and saturation current density of 0.96 ± 0.15 mA/μm, demonstrating their good conductivity and capability for carrying high current density.

  17. PIV study of non-Marangoni surface flows in thin liquid films induced by single- and multi-point thermodes

    Science.gov (United States)

    Cui, Nai-Yi; Wang, Song-Po

    2018-03-01

    The non-Marangoni directional flows, which can occur in only very thin liquid films, have been studied using particle image velocimetry techniques. Single- and multi-point thermodes have been used in this study for generating the flows. The results show that the direction of these flows is governed by the variation trend of the thickness of the film and the shape of the temperature profile. A hot thermode always drives a thick-to-thin flow, whereas a cold thermode always drives a flow in the opposite direction. Increasing the temperature difference between the thermode and the ambience, or decreasing the thickness of the liquid film, can accelerate the flow speed. However, the flow speed cannot exceed an upper limit. When more than one thermode was used, different flow patterns, including thick-to-thin streams driven by hot thermodes and thin-to-thick streams driven by cold thermodes, could be formed. The experimental results strongly suggest that these flows were not driven by thermo-capillary forces but by a newly proposed thermo-dynamic mechanism.

  18. Flow and heat transfer in water based liquid film fluids dispensed with graphene nanoparticles

    Science.gov (United States)

    Zuhra, Samina; Khan, Noor Saeed; Khan, Muhammad Altaf; Islam, Saeed; Khan, Waris; Bonyah, Ebenezer

    2018-03-01

    The unsteady flow and heat transfer characteristics of electrically conducting water based thin liquid film non-Newtonian (Casson and Williamson) nanofluids dispensed with graphene nanoparticles past a stretching sheet are considered in the presence of transverse magnetic field and non-uniform heat source/sink. Embedding the graphene nanoparticles effectively amplifies the thermal conductivity of Casson and Williamson nanofluids. Ordinary differential equations together with the boundary conditions are obtained through similarity variables from the governing equations of the problem, which are solved by the HAM (Homotopy Analysis Method). The solution is expressed through graphs and illustrated which show the influences of all the parameters. The convergence of the HAM solution for the linear operators is obtained. Favorable comparison with previously published research paper is performed to show the correlation for the present work. Skin friction coefficient and Nusselt number are presented through Tables and graphs which show the validation for the achieved results demonstrating that the thin liquid films results from this study are in close agreement with the results reported in the literature. Results achieved by HAM and residual errors are evaluated numerically, given in Tables and also depicted graphically which show the accuracy of the present work.

  19. The effect of dry spots on heat transfer in a locally heated liquid film moving under the action of gas flow in a channel

    Science.gov (United States)

    Zaitsev, D. V.; Tkachenko, E. M.; Bykovskaya, E. F.

    2017-11-01

    Intensive evaporation of a thin liquid film, moving in a flat micro-/minichannel under the action of gas flow is very promising for the use in cooling systems of modern semiconductor devices with localized heat sources of high intensity. In this work, using the high-speed visualization, the effect of the formation of dry spots on heat transfer in a locally heated liquid film shear-driven in a channel was investigated. It was found that the maximum intensity of heat removal from the heater is achieved in the mode, when the film flow continuity is broken. During the experiment the total area of dry spots increases with increasing heat flux and heater temperature, but when the heater reaches a certain temperature (≈100°C), the total area begins to decrease. However, the length of contact line increases with increasing heat flux and reaches a maximum in the pre-crisis regime. Intensive evaporation in the region of the contact line may explain the achievement of high heat fluxes in the shear-driven liquid film.

  20. The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces

    KAUST Repository

    Shekhah, Osama; Eddaoudi, Mohamed

    2013-01-01

    Highly-oriented ZIF-8 thin films with controllable thickness were grown on an -OH-functionalized Au substrate using the liquid phase epitaxy method at room temperature, as evidenced by SEM and PXRD. The adsorption-desorption properties of the resulting ZIF-8 thin film were investigated for various VOCs using the QCM technique. © The Royal Society of Chemistry 2013.

  1. Studying the instantaneous velocity field in gas-sheared liquid films in a horizontal duct

    Science.gov (United States)

    Vasques, Joao; Tokarev, Mikhail; Cherdantsev, Andrey; Hann, David; Hewakandamby, Buddhika; Azzopardi, Barry

    2016-11-01

    In annular flow, the experimental validation of the basic assumptions on the liquid velocity profile is vital for developing theoretical models of the flow. However, the study of local velocity of liquid in gas-sheared films has proven to be a challenging task due to the highly curved and disturbed moving interface of the phases, small scale of the area of interrogation, high velocity gradients and irregular character of the flow. This study reports on different optical configurations and interface-tracking methods employed in a horizontal duct in order to obtain high-resolution particle image velocimetry (PIV) data in such types of complex flows. The experimental envelope includes successful measurements in 2D and 3D waves regimes, up to the disturbance wave regime. Preliminary data show the presence of complex structures in the liquid phase, which includes re-circulation areas below the liquid interface due to the gas-shearing action, together with non-uniform transverse movements of the liquid phase close to the wall due to the presence of 3D waves at the interface. With the aid of the moving interface-tracking, PIV, time-resolved particle-tracking velocimetry and vorticity measurements were performed.

  2. Chaotic diffusion in steady wavy vortex flow-Dependence on wave state and correlation with Eulerian symmetry measures

    Energy Technology Data Exchange (ETDEWEB)

    King, G P [Instituto de Oceanografia, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Rudman, Murray [CSIRO Manufacturing and Infrastructure Technology, P.O. Box 56, Highett, Vic. 3190 (Australia); Rowlands, G [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)], E-mail: gkinglisboa@gmail.com, E-mail: Murray.Rudman@csiro.au, E-mail: G.Rowlands@warwick.ac.uk

    2008-01-31

    The dimensionless effective axial diffusion coefficient, D{sub z}, calculated from particle trajectories in steady wavy vortex flow in a narrow gap Taylor-Couette system, has been determined as a function of Reynolds number (R = Re/Re{sub c}), axial wavelength ({lambda}{sub z}), and the number of azimuthal waves (m). Two regimes of Reynolds number were found: (i) when R < 3.5, D{sub z} has a complex and sometimes multi-modal dependence on Reynolds number; (ii) when R > 3.5, D{sub z} decreases monotonically. Eulerian quantities measuring the departure from rotational symmetry, {psi}{sub {theta}}, and flexion-free flow, {psi}{sub {nu}}, were calculated. The space-averaged quantities {phi}-bar{sub {theta}} and {phi}-bar{sub {nu}} were found to have, unlike D{sub z}, a simple unimodal dependence on R. In the low R regime the correlation between D{sub z} and {psi}{sub {theta}}{psi}{sub {nu}} was complicated and was attributed to variations in the spatial distribution of the wavy disturbance occurring in this range of R. In the large R regime, however, the correlation simplified to D{sub z}{approx}{phi}-bar{sub {theta}}{phi}-bar{sub {nu}} for all wave states, and this was attributed to the growth of an integrable vortex core and the concentration of the wavy disturbance into narrow regions near the outflow and inflow jets. A reservoir model of a wavy vortex was used to determine the rate of escape across the outflow and inflow boundaries, the size of the 'escape basins' (associated with escape across the outflow and inflow boundaries), and the size of the trapping region in the vortex core. In the low R regime after the breakup of all KAM tori, the outflow basin ({gamma}{sub O}) is larger than the inflow basin ({gamma}{sub I}), and both {gamma}{sub O} and {gamma}{sub I} are (approximately) independent of R. In the large R regime, with increasing Reynolds number the trapping region grows, the outflow basin decreases, and the inflow basin shows a slight increase

  3. Improvement of physical properties of IGZO thin films prepared by excimer laser annealing of sol–gel derived precursor films

    International Nuclear Information System (INIS)

    Tsay, Chien-Yie; Huang, Tzu-Teng

    2013-01-01

    Indium gallium zinc oxide (IGZO) transparent semiconductor thin films were prepared by KrF excimer laser annealing of sol–gel derived precursor films. Each as-coated film was dried at 150 °C in air and then annealed using excimer laser irradiation. The influence of laser irradiation energy density on surface conditions, optical transmittances, and electrical properties of laser annealed IGZO thin films were investigated, and the physical properties of the excimer laser annealed (ELA) and the thermally annealed (TA) thin films were compared. Experimental results showed that two kinds of surface morphology resulted from excimer laser annealing. Irradiation with a lower energy density (≤250 mJ cm −2 ) produced wavy and irregular surfaces, while irradiation with a higher energy density (≥350 mJ cm −2 ) produced flat and dense surfaces consisting of uniform nano-sized amorphous particles. The explanation for the differences in surface features and film quality is that using laser irradiation energy to form IGZO thin films improves the film density and removes organic constituents. The dried IGZO sol–gel films irradiated with a laser energy density of 350 mJ/cm 2 had the best physical properties of all the ELA IGZO thin films. The mean resistivity of the ELA 350 thin films (4.48 × 10 3 Ω cm) was lower than that of TA thin films (1.39 × 10 4 Ω cm), and the average optical transmittance in the visible range (90.2%) of the ELA 350 thin films was slightly higher than that of TA thin films (89.7%). - Highlights: • IGZO semiconductor films were prepared by laser annealing of sol–gel derived films. • Surface roughness and resistivity of ELA samples were affected by energy density. • The ELA 350 IGZO film exhibited the best properties among all of ELA IGZO films. • Transmittance and resistivity of ELA 350 films are greater than those of TA films

  4. Improvement of physical properties of IGZO thin films prepared by excimer laser annealing of sol–gel derived precursor films

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, Chien-Yie, E-mail: cytsay@fcu.edu.tw; Huang, Tzu-Teng

    2013-06-15

    Indium gallium zinc oxide (IGZO) transparent semiconductor thin films were prepared by KrF excimer laser annealing of sol–gel derived precursor films. Each as-coated film was dried at 150 °C in air and then annealed using excimer laser irradiation. The influence of laser irradiation energy density on surface conditions, optical transmittances, and electrical properties of laser annealed IGZO thin films were investigated, and the physical properties of the excimer laser annealed (ELA) and the thermally annealed (TA) thin films were compared. Experimental results showed that two kinds of surface morphology resulted from excimer laser annealing. Irradiation with a lower energy density (≤250 mJ cm{sup −2}) produced wavy and irregular surfaces, while irradiation with a higher energy density (≥350 mJ cm{sup −2}) produced flat and dense surfaces consisting of uniform nano-sized amorphous particles. The explanation for the differences in surface features and film quality is that using laser irradiation energy to form IGZO thin films improves the film density and removes organic constituents. The dried IGZO sol–gel films irradiated with a laser energy density of 350 mJ/cm{sup 2} had the best physical properties of all the ELA IGZO thin films. The mean resistivity of the ELA 350 thin films (4.48 × 10{sup 3} Ω cm) was lower than that of TA thin films (1.39 × 10{sup 4} Ω cm), and the average optical transmittance in the visible range (90.2%) of the ELA 350 thin films was slightly higher than that of TA thin films (89.7%). - Highlights: • IGZO semiconductor films were prepared by laser annealing of sol–gel derived films. • Surface roughness and resistivity of ELA samples were affected by energy density. • The ELA 350 IGZO film exhibited the best properties among all of ELA IGZO films. • Transmittance and resistivity of ELA 350 films are greater than those of TA films.

  5. Transition from Spin Dewetting to continuous film in spin coating of Liquid Crystal 5CB.

    Science.gov (United States)

    Dhara, Palash; Bhandaru, Nandini; Das, Anuja; Mukherjee, Rabibrata

    2018-05-08

    Spin dewetting refers to spontaneous rupture of the dispensed solution layer during spin coating, resulting in isolated but periodic, regular sized domains of the solute and is pre-dominant when the solute concentration (C n ) is very low. In this article we report how the morphology of liquid crystal (LC) 5CB thin films coated on flat and patterned PMMA substrate transform from spin dewetted droplets to continuous films with increase in C n . We further show that within the spin dewetted regime, with gradual increase in the solute concentration, periodicity of the isotropic droplets (λ D ) as well as their mean diameter (d D ), gradually decreases, till the film becomes continuous at a critical concentration (C n *). Interestingly, the trend that λ D reduces with increase in C n is exact opposite to what is observed in thermal/solvent vapor induced dewetting of a thin film. The spin dewetted droplets exhibit transient Radial texture, in contrast to Schlieren texture observed in elongated threads and continuous films of 5CB, which remains in the Nematic phase at room temperature. Finally we show that by casting the film on a grating patterned substrate it becomes possible to align the spin dewetted droplets along the contours substrate patterns.

  6. 3He impurity states on liquid 4He: From thin films to the bulk surface

    International Nuclear Information System (INIS)

    Pavloff, N.; Treiner, J.

    1991-01-01

    The structure of the states accessible to 3 He impurities in films of liquid 4 He on Nuclepore is investigated using a density functional approach with a finite-range effective interaction. In thick films, one finds that the two lowest states are localized in the surface region. For thinner films, the variation with film thickness of the first three states results from a delicate balance between the attractive tail of the substrate potential and the quantum finite-size effect. The existence of states localized in the second layer of the films is discussed. The energy difference between the ground state and the first excited state agrees with the recent determination of Higley, Sprague, and Hallock from magnetization measurements. The effective mass of the ground state has a structure similar to that obtained by Krotscheck and coworkers and exhibits a maximum for a 4 He coverage of 0.15 angstrom -2 , in agreement with the data of Gasparini and coworkers. A similar behavior is predicted for the effective mass of the first, second, and third excited states. The structure of the energy spectrum may also explain former results on third-sound measurements in thin mixture films by Laheurte et al. and by Hallock

  7. The competition between the liquid-liquid dewetting and the liquid-solid dewetting.

    Science.gov (United States)

    Xu, Lin; Shi, Tongfei; An, Lijia

    2009-05-14

    We investigate the dewetting behavior of the bilayer of air/PS/PMMA/silanized Si wafer and find the two competing dewetting pathways in the dewetting process. The upper layer dewets on the lower layer (dewetting pathway 1, the liquid-liquid dewetting) and the two layers rupture on the solid substrate (dewetting pathway 2, the liquid-solid dewetting). To the two competing dewetting pathways, the process of forming holes and the process of hole growth, influence their competing relation. In the process of forming holes, the time of forming holes is a main factor that influences their competing relation. During the process of hole growth, the dewetting velocity is a main factor that influences their competing relation. The liquid-liquid interfacial tension, the film thickness of the polymer, and the viscosity of the polymer are important factors that influence the time of forming holes and the dewetting velocity. When the liquid-liquid dewetting pathway and the liquid-solid dewetting pathway compete in the dewetting process, the competing relation can be controlled by changing the molecular weight of the polymer, the film thickness, and the annealing temperature. In addition, it is also found that the rim growth on the solid substrate is by a rolling mechanism in the process of hole growth.

  8. Burnout and distribution of liquid between the flow core and wall films in narrow slot channels

    Science.gov (United States)

    Boltenko, E. A.; Shpakovskii, A. A.

    2010-03-01

    Previous works on studying distribution of liquid between the flow core and wall films in narrow slot channels are briefly reviewed. Interrelation between mass transfer processes and burnout is shown. A procedure for calculating burnout on convex and concave heat-transfer surfaces in narrow slot channels is presented.

  9. Dynamic measurement of liquid film thickness in stratified flow by using ultrasonic echo technique

    International Nuclear Information System (INIS)

    Serizawa, A.; Nagane, K.; Kamei, T.; Kawara, Z.; Ebisu, T.; Torikoshi, K.

    2004-01-01

    We developed a technique to measure time-dependent local film thickness in stratified air-water flow over a horizontal plate by using a time of flight of ultrasonic transmission. The ultrasonic echoes reflected at the liquid/air interfaces are detected by a conventional ultrasonic instrumentation, and the signals are analyzed by a personal computer after being digitalized by an A/D converter to give the time of flight for the ultrasonic waves to run over a distance of twice of the film thickness. A 3.8 mm diameter probe type ultrasonic transducer was used in the present work which transmits and receives 10 MHz frequency ultrasonic waves. The estimated spatial resolution with this arrangement is 0.075 mm in film thickness for water. The time resolution, which depends on both the A/D converter and the memory capacity was up to several tens Hz. We also discussed the sensitivity of the method to the inclination angle of the interfaces. (author)

  10. Liquid spreading on ceramic-coated carbon nanotube films and patterned microstructures

    Science.gov (United States)

    Zhao, Hangbo; Hart, A. John

    2015-11-01

    We study the capillary-driven liquid spreading behavior on films and microstructures of ceramic-coated vertically aligned carbon nanotubes (CNTs) fabricated on quartz substrates. The nanoscale porosity and micro-scale dimensions of the CNT structures, which can be precisely varied by the fabrication process, enable quantitative measurements that can be related to analytical models of the spreading behavior. Moreover, the conformal alumina coating by atomic layer deposition (ALD) prevents capillary-induced deformation of the CNTs upon meniscus recession, which has complicated previous studies of this topic. Washburn-like liquid spreading behavior is observed on non-patterned CNT surfaces, and is explained using a scaling model based on the balance of capillary driving force and the viscous drag force. Using these insights, we design patterned surfaces with controllable spreading rates and study the contact line pinning-depinning behavior. The nanoscale porosity, controllable surface chemistry, and mechanical stability of coated CNTs provide significantly enhanced liquid-solid interfacial area compared to solid microstructures. As a result, these surface designs may be useful for applications such as phase-change heat transfer and electrochemical energy storage. Funding for this project is provided by the National Institutes of Health and the MIT Center for Clean Water and Clean Energy supported by the King Fahd University of Petroleum and Minerals.

  11. Design concept of cryogenic falling liquid film helium separator

    International Nuclear Information System (INIS)

    Kinoshita, M.; Yamanishi, T.; Bartlit, J.R.; Sherman, R.H.

    1986-01-01

    A design concept is developed for a cryogenic falling liquid film helium separator by clarifying the differences between this process and a cryogenic distillation column. The process characteristics are greatly improved by the idea of adding an H 2 gas flow to a point near the upper end of the packed section. The flow rate of tritium lost from the top is kept extremely low with an adequately short packed section, and the column pressure is reduced to 1 atm. The addition causes no appreciable increase in the protium percentage (approx. =1%) in the bottom liquid flow. A design procedure applying the Colburn-Hougen method is proposed for determining specifications of the refrigerated section. It is shown that the presence of noncondensible helium requires a significantly larger heat transfer area mainly because the mass transfer resistance increases enormously as the condensation of hydrogen isotopes proceeds. Control schemes are also proposed: The tritium concentration in the top gas is controlled by the H 2 gas flow rate. The pressure rise caused by an increase of the helium percentage within the refrigerated section, which cannot readily be eliminated by changing input specifications of the refrigerant gas, is avoided by increasing the top gas flow rate to release more helium from the top

  12. A review of ionic liquid surface film formation on Mg and its alloys for improved corrosion performance

    International Nuclear Information System (INIS)

    Huang, Peipei; Latham, Julie-Anne; MacFarlane, Douglas R.; Howlett, Patrick C.; Forsyth, Maria

    2013-01-01

    Magnesium and its alloys are prone to corrosion upon exposure to atmosphere thus are usually protected by using a pretreatment before being employed. The use of ionic liquids (ILs) has emerged as a novel chemical in corrosion protection of reactive metals such as lithium and magnesium. This paper reviews the use of ILs in the corrosion protection of magnesium and aluminium with respect to a range of IL chemistries. Emphasis has also been placed on characterisation of the passivating films using various techniques, as well as proposed mechanisms for film formation. This review highlights that there is still much research needed to understand how to generate robust passivating films on reactive metal surfaces in the presence of ILs

  13. Liquid film and interfacial wave behavior in air-water countercurrent flow through vertical short multi-tube geometries

    International Nuclear Information System (INIS)

    Zhang, Jinzhao; Giot, M.

    1992-01-01

    A series of experiments has been performed on air-water countercurrent flow through short multi-tube geometries (tube number n = 3, diameter d = 36mm, length I = 2d, 10d and 20d). The time-varying thicknesses of the liquid films trickling down the individual tubes are measured by means of conductance probes mounted flush at different locations of the inner wall surfaces. Detailed time series analyses of the measured film thicknesses provide some useful information about the film flow behavior as well as the interfacial wave characteristics in individual tubes, which can be used as some guidelines for developing more general predictive flooding models. 18 refs., 18 figs., 1 tabs

  14. Competitive concurrence of surface wrinkling and dewetting of liquid crystalline polymer films on non-wettable substrates.

    Science.gov (United States)

    Song, Sung E; Choi, Gwan H; Yi, Gi-Ra; Yoo, Pil J

    2017-11-01

    Polymeric thin films coated on non-wettable substrates undergo film-instabilities, which are usually manifested as surface deformation in the form of dewetting or wrinkling. The former takes place in fluidic films, whereas the latter occurs in solid films. Therefore, there have rarely been reports of systems involving simultaneous deformations of dewetting and wrinkling. In this study, we propose polymeric thin films of liquid crystalline (LC) mesogens prepared on a non-wettable Si substrate and apply a treatment of plasma irradiation to form a thin polymerized layer at the surface. The resulting compressive stress generated in the surface region drives the formation of wrinkles, while at the same time, dipolar attraction between LC molecules induces competitive cohesive dewetting. Intriguing surface structures were obtained whereby dewetting-like hole arrays are nested inside the randomly propagated wrinkles. The structural features are readily controlled by the degree of surface cross-linking, hydrophilicity of the substrates, and the LC film thickness. In particular, dewetting of LC mesogens is observed to be restricted to occur at the trough regions of wrinkles, exhibiting the typical behavior of geometrically confined dewetting. Finally, wrinkling-dewetting mixed structures are separated from the substrate in the form of free standing films to demonstrate the potential applicability as membranes.

  15. Aerodynamics of a thin airfoil flying over and in proximity to a wavy-wall surface. ; Lifting surface theory

    Energy Technology Data Exchange (ETDEWEB)

    Ando, S [Nagoya University, Nagoya (Japan); Ichikawa, M [Government Industrial Research Institute, Nagoya, Nagoya (Japan)

    1991-05-04

    Aerodynamic characteristics of a thin airfoil flying over and in proximity to a wavy-wall surface such as uneven ground or water surface were analyzed two-dimensionally by lifting surface theory in the simplest fundamental case only. The theoretical equation was simplified assuming that flow is inviscid and incompressible, all disturbances are sufficiently small, the wall surface is sinusoidal and rigid, and the wall moves in the same direction as free stream but with a constant velocity different from that of the stream. The equation was verified in the case where an airfoil with a constant angle-of-attack flies over a flat ground surface, and calculations were made with a set of important parameters such as mean airfoil height from the wall, wave length of the wall surface and the wall velocity. The whole effect of wavy wall proximity was divided into the first and second-order ground effects. The first one was just Kemp{prime}s upwash problem, and the second one was revealed through the present study which becomes significant for lower airfoil heights. 18 refs., 5 figs.

  16. Electrodeposition of CdTe thin film from acetate-based ionic liquid bath

    Science.gov (United States)

    Waldiya, Manmohansingh; Bhagat, Dharini; Mukhopadhyay, Indrajit

    2018-05-01

    CdTe being a direct band gap semiconductor, is mostly used in photovoltaics. Here we present, the synthesis of CdTe thin film on fluorine doped tin oxide (FTO) substrate potentiostatically using 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) ionic liquid (IL) bath at 90 °C. Major advantages of using electrodeposition involves process simplicity, large scalability & economic viability. Some of the benefits offered by IL electrolytic bath are low vapour pressure, wide electrochemical window, and good ionic mobility. Cd(CH3COO)2 (anhydrous) and TeO2 were used as the source precursors. The IL electrolytic bath temperature was kept at 90 °C for deposition, owing to the limited solubility of TeO2 in [Bmim][Ac] IL at room temperature. Cathodic electrodeposition was carried out using a three electrode cell setup at a constant potential of -1.20 V vs. platinum (Pt) wire. The CdTe/FTO thin film were annealed in argon (Ar) atmosphere. Optical study of nanostructured CdTe film were done using UV-Vis-IR and Raman spectroscopy. Raman analysis confirms the formation of CdTe having surface optics (SO) mode at 160.6 cm-1 and transverse optics (TO) mode at 140.5 cm-1. Elemental Te peaks at 123, 140.5 and 268 cm-1 were also observed. The optical band gap of Ar annealed CdTe thin film were found to be 1.47 eV (absorbance band edge ˜ 846 nm). The optimization of deposition parameters using acetate-based IL electrolytic bath to get nearly stoichiometric CdTe thin film is currently being explored.

  17. Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method.

    KAUST Repository

    Chernikova, Valeriya; Shekhah, Osama; Eddaoudi, Mohamed

    2016-01-01

    Here we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method

  18. Irreversibility analysis for gravity driven non-Newtonian liquid film along an inclined isothermal plate

    International Nuclear Information System (INIS)

    Makinde, O.D.

    2005-10-01

    In this paper, the first and second law of thermodynamics are employed in order to study the inherent irreversibility for a gravity driven non-Newtonian Ostwald-de Waele power law liquid film along an inclined isothermal plate. Based on some simplified assumptions, the governing equations are obtained and solved analytically. Expressions for fluid velocity, temperature, volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan number are also determined. (author)

  19. Synthesis of diamond films by pulsed liquid injection chemical vapor deposition using a mixture of acetone and water as precursor

    International Nuclear Information System (INIS)

    Apatiga, L.M.; Morales, J.

    2009-01-01

    A chemical vapor deposition reactor based on the flash evaporation of an organic liquid precursor was used to grow diamond films on Si substrates. An effective pulsed liquid injection mechanism consisting of an injector, normally used for fuel injection in internal combustion engines, injects micro-doses of the precursor to the evaporation zone at 280 o C and is instantly evaporated. The resulting vapor mixture is transported by a carrier gas to the high-temperature reaction chamber where the diamond nucleates and grows on the substrate surface at temperatures ranging from 750 to 850 o C. The injection frequency, opening time, number of pulses and other injector parameters are controlled by a computer-driven system. The diamond film morphology and structure were characterized by scanning electron microscopy and Raman spectroscopy. The as-deposited diamond films show a ball-shaped morphology with a grain size that varies from 100 to 400 nm, as well as the characteristic diamond Raman band at 1332 cm -1 . The effects of the experimental parameters and operation principle on the diamond films quality are analyzed and discussed in terms of crystallinity, composition, structure, and morphology.

  20. An analytical model for displacement velocity of liquid film on a hot vertical surface

    International Nuclear Information System (INIS)

    Yoshioka, Keisuke; Hasegawa, Shu

    1975-01-01

    The downward progress of the advancing front of a liquid film streaming down a heated vertical surface, as it would occur in emergency core cooling, is much slower than in the case of ordinary streaming down along a heated surface already wetted with the liquid. A two-dimensional heat conduction model is developed for evaluating this velocity of the liquid front, which takes account of the heat removal by ordinary flow boiling mechanism. In the analysis, the maximum heat flux and the calefaction temperature are taken up as parameters in addition to the initial dry heated wall temperature, the flow rate and the velocity of downward progress of the liquid front. The temperature profile is calculated for various combinations of these parameters. Two criteria are proposed for choosing the most suitable combination of the parameters. One is to reject solutions that represent an oscillating wall temperature distribution, and the second criterion requires that the length of the zone of violent boiling immediately following the liquid front should not be longer than about 1 mm, this value being determined from comparisons made between experiment and calculation. Application of the above two criteria resulted in reasonable values obtained for the calefaction temperature and the maximum heat flux, and the velocity of the liquid front derived therefrom showed good agreement with experiment. (auth.)

  1. Creeping Film Models for Rotating Channels

    NARCIS (Netherlands)

    Mondt, E.; Brouwers, J.J.H.; Kemenade, van H.P.

    2007-01-01

    A theoretical analysis is presented for the development of a liquid film at the walls of vertically placed centrifugal separators. The liquid film arises at the walls of these separators due to the action of the centrifugal force on the entrained liquid phases. The analysis applies to situations for

  2. Breaking through the glass ceiling: The correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films

    Science.gov (United States)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-01

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  3. Nonflat equilibrium liquid shapes on flat surfaces.

    Science.gov (United States)

    Starov, Victor M

    2004-01-15

    The hydrostatic pressure in thin liquid layers differs from the pressure in the ambient air. This difference is caused by the actions of surface forces and capillary pressure. The manifestation of the surface force action is the disjoining pressure, which has a very special S-shaped form in the case of partial wetting (aqueous thin films and thin films of aqueous electrolyte and surfactant solutions, both free films and films on solid substrates). In thin flat liquid films the disjoining pressure acts alone and determines their thickness. However, if the film surface is curved then both the disjoining and the capillary pressures act simultaneously. In the case of partial wetting their simultaneous action results in the existence of nonflat equilibrium liquid shapes. It is shown that in the case of S-shaped disjoining pressure isotherm microdrops, microdepressions, and equilibrium periodic films exist on flat solid substrates. Criteria are found for both the existence and the stability of these nonflat equilibrium liquid shapes. It is shown that a transition from thick films to thinner films can go via intermediate nonflat states, microdepressions and periodic films, which both can be more stable than flat films within some range of hydrostatic pressure. Experimental investigations of shapes of the predicted nonflat layers can open new possibilities of determination of disjoining pressure in the range of thickness in which flat films are unstable.

  4. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  5. Dewetting of thin liquid films on chemically patterned substrates : front propatation along narrow lyophobic stripes and stripe arrays

    NARCIS (Netherlands)

    Brasjen, B.J.; Gu, H.; Darhuber, A.A.

    2013-01-01

    Using experiments and numerical simulations, we investigate the dewetting of thin liquid films on chemically patterned substrates. The patterns consist of long and narrow hydrophobic stripes, separated by larger hydrophilic domains. We characterize the morphology and dynamics of the dewetting front

  6. Slug flow transitions in horizontal gas/liquid two-phase flows. Dependence on channel height and system pressure for air/water and steam/water two-phase flows

    International Nuclear Information System (INIS)

    Nakamura, Hideo

    1996-05-01

    The slug flow transitions and related phenomena for horizontal two-phase flows were studied for a better prediction of two-phase flows that typically appear during the reactor loss-of-coolant accidents (LOCAs). For better representation of the flow conditions experimentally, two large-scaled facility: TPTF for high-pressure steam/water two-phase flows and large duct test facility for air/water two-phase flows, were used. The visual observation of the flow using a video-probe was performed in the TPTF experiments for good understanding of the phenomena. The currently-used models and correlations based mostly on the small-scale low-pressure experiments were reviewed and improved based on these experimental results. The modified Taitel-Dukler model for prediction of transition into slug flow from wavy flow and the modified Steen-Wallis correlation for prediction of onset of liquid entrainment from the interfacial waves were obtained. An empirical correlation for the gas-liquid interfacial friction factor was obtained further for prediction of liquid levels at wavy flow. The region of slug flow regime that is generally under influences of the channel height and system pressure was predicted well when these models and correlations were applied together. (author). 90 refs

  7. All-organic polymer-dispersed liquid crystal light-valves integrated with electroactive anthraquinone-2-sulfonate-doped polypyrrole thin films as driving electrodes

    International Nuclear Information System (INIS)

    Wang, Pen-Cheng; Yu, Jing-Yu; Li, Kuan-Hsun

    2011-01-01

    Highlights: → Fabrication of flexible semi-transparent all-polymer electrodes under ambient conditions without using a CVD system. → Characterization of the above electrodes based on anthraquinone-2-sulfonate-doped polypyrrole thin films. → Demonstration of all-organic liquid crystal light-valves with polypyrrole thin films as the driving electrodes. - Abstract: All-organic PDLC (polymer-dispersed liquid crystal) light-valves using all-polymer conductive substrates containing thin films of polypyrrole doped with anthraquinone-2-sulfonate (AQSA - ) as the driving electrodes were fabricated in this study. The all-polymer conductive substrates were prepared under ambient conditions by in situ depositing polypyrrole thin films on blank flexible poly(ethylene terephthalate), or PET, substrates from aqueous media in which oxidative polymerization of pyrrole was taking place. The obtained flexible all-polymer conductive substrates were semi-transparent with cohesive coatings of AQSA - doped polypyrrole thin films (thickness ∼55 nm). The all-polymer flexible conductive substrates had sheet resistivity ∼40 kΩ □ -1 and T% transparency against air ∼78% at 600 nm. The light-valves fabricated using the above all-polymer conductive substrates showed ∼50% transparency against air at 600 nm when 4 V μm -1 electric field was applied.

  8. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    Science.gov (United States)

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".

  9. Unusual mechanism for the short-range electron transfer within gold-alkanethiol-ionic-liquid films of subnanometer thickness

    International Nuclear Information System (INIS)

    Khoshtariya, Dimitri E.; Dolidze, Tina D.; Eldik, Rudi van

    2009-01-01

    Exploiting nanoscopically tunable composite gold-alkanethiol-ionic-liquid/ferrocene self-assembled systems with tunable electron transfer distance, we discovered in the case of thinner alkanethiol films a thermally activated electron transfer pattern totally controlled by the viscosity-related slow relaxation mode(s) of the ionic liquid acting as the reactant's fluctuating environment. This pattern manifested through the activation enthalpy and volume parameters that are identical to those for viscous flow was explained in terms of the extreme adiabatic mechanism with a vanishing Marcus barrier (via the exponential Franck-Condon-like term approaching unity).

  10. Relation between anchorings of liquid crystals and conformation changes in aligning agents by the Langmuir-Blodgett film technique investigation

    International Nuclear Information System (INIS)

    Zhu, Y.; Lu, Z.; Wei, Y.

    1995-01-01

    The anchoring direction of liquid crystals on a solid substrate surface depends upon many parameters characterizing the liquid-crystal--substrate interface, a variation of which may change this anchoring direction leading to the so-called anchoring transition. Here, based on the Langmuir-Blodgett film technique, we present two model systems to study the relation between anchoring directions and the conformation changes in aligning agents. A double-armed crown ether liquid crystal and a side chain polymer liquid crystal at an air-water interface both show phase transitions, accompanied by conformation changes. However, when the monolayers in different phases were transferred onto solid substrates to orient liquid crystals, we found that for the crown ether material the conformation change can alter the anchoring of liquid crystals between homeotropic and homogeneous alignments, while for the polymer liquid crystal, despite the conformation changes, the liquid crystals can only be aligned homeotropically. The involved mechanisms were briefly discussed in terms of the Landau-type phenomenological theory

  11. In-situ Non-Invasive Imaging of Liquid-Immersed Thin Film Composite Membranes

    KAUST Repository

    Ogieglo, Wojciech

    2017-10-14

    We present a non-invasive method to directly image liquid-immersed thin film composite membranes. The approach allows accessing information not only on the lateral distribution of the coating thickness, including variations in its swelling and density, but also on the distribution of substrate porosity, roughness, accessibility of pores to liquid, and even the degree of pore intrusion related to the thin layer deposition process. The method can be particularly helpful in the fields of functional coatings or membranes to allow laterally-resolved studies under realistic application conditions thereby opening completely new research avenues. The approach is demonstrated in a study of two polymers of intrinsic microporosity, PIM-1 and PIM-6FDA-OH, coated on polyacrylonitrile support and immersed in water. Variations of the skin morphology using different coating methods (floating, spin-coating and dip-coating) are evaluated with the help of the presented method. Surfaces of at least tens of cm2 can be potentially analyzed.

  12. Performance evaluation of a wavy-fin heat sink for power electronics

    International Nuclear Information System (INIS)

    Lorenzini, Marco; Fabbri, Giampietro; Salvigni, Sandro

    2007-01-01

    The almost daily increase in dissipated power per unit area of electronic components sets higher and higher demands on the performance of the heat sinks. These must not only be able to dissipate high heat fluxes, but must also keep costs to a minimum and exhibit a reliable behaviour. In this paper a novel, modular heat sink consisting of elements with wavy fin profile which can be pressed together to construct the component is presented. Its performance under steady-state conditions are assessed for the case of forced convection in terms of velocity distribution in the channels and global thermal resistance. Configurations with uniform and non-uniform heat flux are studied and some considerations are made as to the influence of the spacers between fan and heat sink proper

  13. Atomistic modelling of evaporation and explosive boiling of thin film liquid argon over internally recessed nanostructured surface

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Shavik, Sheikh Mohammad, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com; Haque, Mominul, E-mail: mominulmarup@gmail.com [Department of Mechanical Engineering, Bangladesh University of Engineering & Technology (BUET) Dhaka-1000 (Bangladesh)

    2016-07-12

    Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in

  14. Simulation of Patterned Glass Film Formation in the Evaporating Colloidal Liquid under IR Heating

    Science.gov (United States)

    Kolegov, K. S.

    2018-02-01

    The paper theoretically studies the method of evaporative lithography in combination with external infrared heating. This method makes it possible to form solid microstructures of the required relief shape as a result of evaporation of the liquid film of the colloidal solution under the mask. The heated particles are sintered easier, so there are no cracks in the obtained structure, unlike the structure obtained employing the standard method of evaporative lithography. The paper puts forward a modification of the mathematical model which allows to describe not only heat and mass transfer at the initial stage of the process, but also the phase transition of colloidal solution into glass. Aqueous latex is taken as an example. The resulting final form of solid film is in good agreement with the experimental data of other authors.

  15. Soap films burst like flapping flags.

    Science.gov (United States)

    Lhuissier, Henri; Villermaux, Emmanuel

    2009-07-31

    When punctured, a flat soap film bursts by opening a hole driven by liquid surface tension. The hole rim does not, however, remain smooth but soon develops indentations at the tip of which ligaments form, ultimately breaking and leaving the initially connex film into a mist of disjointed drops. We report on original observations showing that these indentations result from a flaglike instability between the film and the surrounding atmosphere inducing an oscillatory motion out of its plane. Just like a flag edge flaps in the wind, the film is successively accelerated on both sides perpendicularly to its plane, inducing film thickness modulations and centrifuging liquid ligaments that finally pinch off to form the observed spray. This effect exemplifies how the dynamics of fragile objects such as thin liquid films is sensitive to their embedding medium.

  16. Time-dependent changes in the growth of ultrathin ionic liquid films on Ag(111).

    Science.gov (United States)

    Lexow, Matthias; Talwar, Timo; Heller, Bettina S J; May, Benjamin; Bhuin, Radha G; Maier, Florian; Steinrück, Hans-Peter

    2018-05-09

    Various amounts of the ionic liquids (ILs) [C1C1Im][Tf2N] and [C8C1Im][Tf2N] were deposited in vacuo by physical vapour deposition (PVD) on single crystalline Ag(111) at room temperature and subsequently monitored by angle-resolved X-ray photoelectron spectroscopy (ARXPS) as a function of time. For very low coverages of up to one closed molecular layer, an initial wetting layer was rapidly formed for both ILs. Deposition of higher amounts of [C1C1Im][Tf2N] revealed an initial three-dimensional film morphology. On the time scale of hours, characteristic changes of the XPS signals were observed. These are interpreted as island spreading and a transformation towards a nearly two dimensional [C1C1Im][Tf2N] film as the final state. In contrast, a film morphology close to 2D was found from the very beginning for [C8C1Im][Tf2N] deposited on Ag(111) demonstrating the influence of the alkyl chain length on the growth kinetics. These studies also highlight the suitability of time-resolved ARXPS for the investigation of IL/solid interfaces, which play a crucial role in IL thin film applications such as in catalysis, sensor, lubrication, and coating technologies.

  17. Preparation of YBa2Cu3O7 films by low pressure MOCVD using liquid solution sources

    International Nuclear Information System (INIS)

    Weiss, F.; Froehlich, K.; Haase, R.; Labeau, M.; Selbmann, D.; Senateur, J.P.; Thomas, O.

    1993-01-01

    A hybrid low pressure MOCVD process is described for reproducible preparation of superconducting thin films of YBa 2 Cu 3 O 7 . The process uses a single solution source of Y, Ba, and Cu β-diketonates dissolved in suitable organic solvents. This liquid precursor is atomized using an ultrasonic aerosol generator and transported as small droplets (∼1μm) into a CVD reactor where solvent and precursor are first evaporated before deposition takes place at low pressure on heated substrates in a cold wall geometry. This process allows, with stable evaporation rates for all three precursors, to grow in-situ superconducting films with constant composition from film to film. Thin and thick films with high critical temperatures and critical currents have been obtained (Tc>80K, Jc>10 4 A/cm 2 at 77K in self field) which are highly c-axis oriented. Experimental details of this new process are described and the effects of different process parameters are studied in order to improve the quality of the deposited layers. (orig.)

  18. Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow

    International Nuclear Information System (INIS)

    Yu Tsvelodub, O

    2016-01-01

    The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. Weakly nonlinear steady-state traveling solutions of the equation with wave numbers in a vicinity of neutral wave numbers are constructed analytically. The nature of the wave branching from the undisturbed solution is investigated. Steady-state traveling solutions, whose wave numbers within the instability area are far from neutral wave numbers, are found numerically. (paper)

  19. A new system for complete separation of 3He and T2 composed of a falling liquid film condenser and a cryogenic distillation column with a feedback stream

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Bartlit, J.R.; Sherman, R.H.

    1982-11-01

    A new system composed of a falling liquid film condenser and a cryogenic distillation column with a feedback stream, is developed for complete separation of 3 He and T 2 . For accomplishment of the separation, a sufficient flow rate of protium is added to the feed mixture. The resultant stream of 3 He, H 2 , HT and T 2 is fed to the falling liquid film condenser, and 3 He is removed almost completely. The H-T mixture from the bottom of the falling liquid film condenser is further processed by the cryogenic distillation column for complete separation of protium and tritium. The tritium recovery percentage of the system is 100%, and the two top streams can be transferred to a tritium waste treatment system. (author)

  20. Low-temperature liquid phase deposited TiO{sub 2} films on stainless steel for photogenerated cathodic protection applications

    Energy Technology Data Exchange (ETDEWEB)

    Lei, C.X.; Zhou, H. [College of Materials, Xiamen University, Xiamen 361005 (China); Feng, Z.D., E-mail: zdfeng@xmu.edu.cn [College of Materials, Xiamen University, Xiamen 361005 (China); Zhu, Y.F.; Du, R.G. [College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2011-06-01

    The low-temperature synthesis of anatase TiO{sub 2} films was an imperative requirement for their application to corrosion prevention of metals. In this paper, a liquid phase deposition (LPD) technique was developed to prepare TiO{sub 2} films on SUS304 stainless steel (304SS) at a relatively low temperature (80 deg. C). The as-prepared films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photon spectroscopy (XPS). It was observed that a dense and crack-free anatase TiO{sub 2} film with a thickness about 300 nm was obtained. The film contained some fluorine and nitrogen elements, and the amounts of these impurities were greatly decreased upon calcination. Under the white light illumination, the electrode potential of TiO{sub 2} coated 304SS rapidly shifted to a more negative direction. Moreover, the photopotential of TiO{sub 2}/304SS electrode showed more negative values with increased film thickness. In conclusion, the photogenerated cathodic protection of 304SS was achieved by the low-temperature LPD-derived TiO{sub 2} film.

  1. A phenomenological model of the thermal hydraulics of convective boiling during the quenching of hot rod bundles

    International Nuclear Information System (INIS)

    Nelson, R.A.; Unal, C.

    1991-01-01

    In this paper, a phenomenological model of the thermal hydraulics of convective boiling in the post-critical-heat-flux (post-CHF) regime is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code (an advanced best-estimate computer program written for the analysis of pressurized water reactor systems). The model was built around the determination of flow regimes downstream of the quench front. The regimes were determined from the flow-regime map suggested by Ishii and his coworkers. Heat transfer in the transition boiling region was formulated as a position-dependent model. The propagation of the CHF point was strongly dependent on the length of the transition boiling region. Wall-to-fluid film boiling heat transfer was considered to consist of two components: first, a wall-to-vapor convective heat-transfer portion and, second, a wall-to-liquid heat transfer representing near-wall effects. Each contribution was considered separately in each of the inverted annular flow (IAF) regimes. The interfacial heat transfer was also formulated as flow-regime dependent. The interfacial drag coefficient model upstream of the CHF point was considered to be similar to flow through a roughened pipe. A free-stream contribution was calculated using Ishii's bubbly flow model for either fully developed subcooled or saturated nucleate boiling. For the drag in the smooth IAF region, a simple smooth-tube correlation for the interfacial friction factor was used. The drag coefficient for the rough-wavy IAF was formulated in the same way as for the smooth IAF model except that the roughness parameter was assumed to be proportional to liquid droplet diameter entrained from the wavy interface. The drag coefficient in the highly dispersed flow regime considered the combined effects of the liquid droplets within the channel and a liquid film on wet unheated walls. 431 refs., 6 figs., 4 tabs

  2. [Comparison of detectability of liquid crystal displays (LCDs) and film using phantoms of small adenocarcinomas as abnormalities].

    Science.gov (United States)

    Mochizuki, Yasuo; Abe, Shinji; Monma, Masahiko; Yamaguchi, Kojirou; Adachi, Toshiki

    2011-01-01

    Following the trend of the digitalization of the modalities used for diagnostic imaging, the devices for such imaging have increasingly included monitors. The present study was undertaken to evaluate the usefulness of soft-copy (liquid crystal display; LCD) images of phantoms of small adenocarcinomas using receiver operating characteristic (ROC) analysis of two different display systems: LCD and hard copy (film). A two-tailed paired t-test and the jackknife method (parametric methods) were performed, and no significant differences were found in the area under the ROC curve (AUC) for the pulmonary fields, lungs, ribs, or mediastinum between the film and LCD display systems, and the detectability did not differ between the film and LCD monitors. A Mann-Whitney U test, which is a non-parametric method that applies to the analysis of a small sample, also showed no significant differences in the AUC. The results of this study suggest that LCDs can replace hard-copy film as a display system if the signals.

  3. Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition

    International Nuclear Information System (INIS)

    Sun, Jian; Wang, Huihui; Cao, Hui; Ding, Hangjun; Yang, Zhou; Yang, Huai; Wang, Ling; Xie, Hui; Luo, Xueyao; Xiao, Jiumei

    2014-01-01

    A smart polymer stabilized liquid crystal (PSLC) thin film with temperature-controllable light transmittance was prepared based on a smectic-A (SmA)–chiral nematic (N*) phase transition, and then the effect of the composition and the preparation condition of the PSLC film on its thermo-optical (T-O) characteristics has been investigated in detail. Within the temperature range of the SmA phase, the PSLC shows a strong opaque state due to the focal conic alignment of liquid crystal (LC) molecules, while the film exhibits a transparent state result from the parallel alignment of N* phase LC molecules at a higher temperature. Importantly, the PSLC films with different temperature of phase transition and contrast ratio can be prepared by changing the composition of photo-polymerizable monomer/LC/chiral dopant. According to the competition between the polymerization of the curable monomers and the diffusion of LC molecules, the ultraviolet (UV) curing surrounding temperature and the intensity of UV irradiation play a critical role in tuning the size of the polymer network meshes, which in turn influence the contrast ratio and the switching speed of the film. Our observations are expected to pave the way for preparing smart PSLC thin films for applications in areas of smart windows, thermo-detectors and other information recording devices. (paper)

  4. Characterization of counter-rotating streamwise vortices in flat rectangular channel with one-sided wavy wall

    KAUST Repository

    Bouremel, Yann

    2016-11-01

    Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.

  5. Characterization of counter-rotating streamwise vortices in flat rectangular channel with one-sided wavy wall

    KAUST Repository

    Bouremel, Yann; Mitsudharmadi, Hatsari; Budiman, Alexander C.; Winoto, Sonny H.

    2016-01-01

    Particle Image Velocimetry (PIV) has been used to characterize the evolution of counter-rotating streamwise vortices in a rectangular channel with one sided wavy surface. The vortices were created by a uniform set of saw-tooth carved over the leading edge of a flat plate at the entrance of a flat rectangular channel with one-sided wavy wall. PIV measurements were taken over the spanwise and streamwise planes at different locations and at Reynolds number of 2500. Two other Reynolds numbers of 2885 and 3333 have also been considered for quantification purpose. Pairs of counter-rotating streamwise vortices have been shown experimentally to be centred along the spanwise direction at the saw-tooth valley where the vorticity ωz=0ωz=0. It has also been found that the vorticity ωzωz of the pairs of counter-rotating vortices decreases along the streamwise direction, and increases with the Reynolds number. Moreover, different quantifications of such counter-rotating vortices have been discussed such as their size, boundary layer, velocity profile and vorticity. The current study shows that the mixing due to the wall shear stress of counter-rotating streamwise vortices as well as their averaged viscous dissipation rate of kinetic energy decrease over flat and adverse pressure gradient surfaces while increasing over favourable pressure gradient surfaces. Finally, it was also demonstrated that the main direction of stretching is orientated at around 45° with the main flow direction.

  6. Honeycomb-like thin films of polystyrene-block-poly(2-vinylpyridine) embedded with gold or silver nanoparticles formed at the planer liquid/liquid interface.

    Science.gov (United States)

    Wang, Di; Ma, Huihui; Chu, Chunxiao; Hao, Jingcheng; Liu, Hong-Guo

    2013-07-15

    Composite thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) decorated with Au or Ag nanoclusters and nanoparticles were fabricated at the interfaces of chloroform solution of PS-b-P2VP and aqueous solutions of HAuCl4 or AgNO3. Transmission electron microscopy (TEM) investigations indicated that large area of a single-layer honeycomb structure was formed, which is composed of polygons (most of them are hexagons) whose walls look like spindles with the length of several hundreds of nanometers. Large amount of Au or Ag nanoparticles are embedded in the walls and the undersides of the honeycomb structures. The formation of these novel composite structures was attributed to the adsorption of block copolymer molecules and inorganic species of AuCl4(-) and Ag(+) ions at the liquid-liquid interface, the combination of the polymer molecules and the inorganic ions, and the self-assembly of the composite molecules. After UV-light irradiation and KBH4 aqueous solution treatment, the inorganic species were reduced completely, as confirmed by UV-vis spectra and X-ray photoelectron spectra. These composite films exhibited high catalytic activities for the reduction of 4-nitrophenol (4-NP) by KBH4 in aqueous solutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Slug-flow dynamics with phase change heat transfer in compact heat exchangers with oblique wavy walls

    Science.gov (United States)

    Morimoto, Kenichi; Kinoshita, Hidenori; Matsushita, Ryo; Suzuki, Yuji

    2017-11-01

    With abundance of low-temperature geothermal energy source, small-scale binary-cycle power generation system has gained renewed attention. Although heat exchangers play a dominant role in thermal efficiency and the system size, the optimum design strategy has not been established due to complex flow phenomena and the lack of versatile heat transfer models. In the present study, the concept of oblique wavy walls, with which high j/f factor is achieved by strong secondary flows in single-phase system, is extended to two-phase exchangers. The present analyses are based on evaporation model coupled to a VOF technique, and a train of isolated bubbles is generated under the controlled inlet quality. R245fa is adopted as a low boiling-point working media, and two types of channels are considered with a hydraulic diameter of 4 mm: (i) a straight circular pipe and (ii) a duct with oblique wavy walls. The focus is on slug-flow dynamics with evaporation under small capillary but moderate Weber numbers, where the inertial effect as well as the surface tension is of significance. A possible direction of the change in thermo-physical properties is explored by assuming varied thermal conductivity. Effects of the vortical motions on evaporative heat transfer are highlighted. This work has been supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

  8. Effect of film size on drainage of foam and emulsion films

    International Nuclear Information System (INIS)

    Malhotra, A.K.; Wasan, D.T.

    1987-01-01

    All available theoretical analyses for the drainage of thin plane-parallel liquid films, such as those existing between two approaching liquid droplets or bubbles in the coalescence process, predict essentially the same dependence of rate of thinning of the intervening film on its size as is described by the Reynolds equation - that is, drainage time increases with the square of the film radius. Recently, the authors reported experimental data for both foam and emulsion films which showed that the measured drainage times increase with about a 0.8 power of the film radius, a value much smaller than the theoretically predicted value of 2.0. Here they present a hydrodynamic analysis to predict the experimentally observed effect of film size on the kinetics of thinning of emulsion and foam films. They extend the applicability of the Reynolds model by accounting for the flow in the Plateau borders as well as the London-van der Waals forces in the thin film phase. Their theoretical predictions are in good agreement with the experimental data on the dependence of drainage time of both foam and emulsion films on their radii

  9. Initial liquid metal magnetohydrodynamic thin film flow experiments in the MeGA-loop facility at UCLA

    International Nuclear Information System (INIS)

    Morley, N.B.; Gaizer, A.A.; Tillack, M.S.; Abdou, M.A.

    1995-01-01

    Free surface thin film flows of liquid metal were investigated experimentally in the presence of a coplanar magnetic field. This investigation was performed in a new magnetohydrodynamic (MHD) flow facility, the MeGA-loop, utilizing a low melting temperature lead-bismuth alloy as the working metal. Owing to the relatively low magnetic field produced by the present field coil system, the ordinary hydrodynamic and low MHD interaction regimes only were investigated. At the high flow speeds necessary for self cooling, the importance of a well designed and constructed channel becomes obvious. Partial MHD drag, increasing the film height, is observed as Haβ 2 becomes greater than unity. MHD laminarization of the turbulent film flows is observed when Haβ/Re>0.002, but fully laminar flow was not reached. Suggestions for facility upgrades to achieve greater MHD interaction are presented in the context of these initial results. (orig.)

  10. Flow and heat transfer in water based liquid film fluids dispensed with graphene nanoparticles

    Directory of Open Access Journals (Sweden)

    Samina Zuhra

    2018-03-01

    Full Text Available The unsteady flow and heat transfer characteristics of electrically conducting water based thin liquid film non-Newtonian (Casson and Williamson nanofluids dispensed with graphene nanoparticles past a stretching sheet are considered in the presence of transverse magnetic field and non-uniform heat source/sink. Embedding the graphene nanoparticles effectively amplifies the thermal conductivity of Casson and Williamson nanofluids. Ordinary differential equations together with the boundary conditions are obtained through similarity variables from the governing equations of the problem, which are solved by the HAM (Homotopy Analysis Method. The solution is expressed through graphs and illustrated which show the influences of all the parameters. The convergence of the HAM solution for the linear operators is obtained. Favorable comparison with previously published research paper is performed to show the correlation for the present work. Skin friction coefficient and Nusselt number are presented through Tables and graphs which show the validation for the achieved results demonstrating that the thin liquid films results from this study are in close agreement with the results reported in the literature. Results achieved by HAM and residual errors are evaluated numerically, given in Tables and also depicted graphically which show the accuracy of the present work. Keywords: Graphene nanoparticles, MHD, Casson and Williamson nanofluids, Stretching sheet, Skin friction coefficient, Nusselt number, Residual errors, Homotopy Analysis Method

  11. Physical optimization of a wavy porous cavity filled by nanofluids in the presence of solar radiations using the Box-Behnken design (BBD)

    Science.gov (United States)

    Ghorbanian, A.; Tahari, M.; Hatami, M.

    2017-06-01

    In this paper, the physical optimization of a wavy porous cavity is evaluated while it is filled with nanofluids and under the solar radiation heat flux by using numerical and statistical methods. The effect of four parameters is discussed on the Nusselt number: Wavy amplitude ( Am, solar heat flux, Darcy number and Rayleigh number. To find the effect and interaction of these parameters on the heat transfer, a Box-Behnken design (BBD) is used and analysis is performed on the 27 experiments proposed by BBD. Analysis of variance (ANOVA) of the results revealed that solar heat flux and wave amplitude have a strong effect on the Nusselt number compared to Darcy and Rayleigh numbers. Finally, the response surface methodology (RSM) was applied to find the optimized case while its error was 0.002% in predicting the Nusselt number for the optimized case which confirms the high accuracy of results.

  12. Sudden contact of a hot liquid with a volatile coolant: instability of the created vapour film

    International Nuclear Information System (INIS)

    Pion, Agnes

    1983-01-01

    As the sudden contact of a hot body with a coolant which may evaporate, results, after some delay, in an explosive evaporation, this research thesis proposes an interpretation based on the study of the destabilization of the vapour film which forms at the surface of the hot body. The author reports the modelling of the evolution of the average thickness of the film before the explosion. The possible chemical reactions at the surface of the hot body are taken into account. A base flow is obtained which allows the calculation of the evolution of Rayleigh-Taylor instabilities which may occur at the gas-coolant interface. This study is applied to the interaction between liquid sodium and water [fr

  13. Structure, morphology and cell affinity of poly(L-lactide) films surface-functionalized with chitosan nanofibers via a solid–liquid phase separation technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Han, Wanqing; Tang, Minjian [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Liang, Zhihong [Analytical and Testing Center, Jinan University, Guangzhou 510632 (China); Zhou, Changren [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2013-04-01

    Poly(L-lactide) films with a nano-structured surface by immobilizing chitosan nanofibers (CSNFs) for improving the cell affinity were fabricated via a solid-liquid phase separation technique. The successful grafting of CSNFs on the surface of poly(L-lactide) films was confirmed by the binding energy of N1s at 398.0 eV in the X-ray photoelectron spectroscopy and the amide I and II bands of chitosan at 1650 and 1568 cm{sup −1} in the Fourier transform infrared spectroscopy. Compared with the poly(L-lactide) film, the hydrophilicity was improved with a lower water contact angle of 83.3 ± 1.9° and 75.3 ± 2.5° for the CSNFs-grafted and CSNFs-grafted/anchored poly(L-lactide) films respectively. The scanning electron microscopy and atomic force microscopy analyses showed that the grafted CSNFs with 50–500 nm in diameter were randomly arranged on the film surface and entangled with the anchored CSNFs on the outermost layer. The 3T3 fibroblasts culture indicated cells tended to attach and stretch along the CSNFs on the film surface. The cell viability measurement revealed that among all the samples, the film with both grafted and anchored CSNFs exhibited the highest cell proliferation rate that was twice as much of the poly(L-lactide) film at 7 d. Herein, engineering a nano-structured surface by solid–liquid phase separation will be a promising tool for surface modification of biomaterials. Highlights: ► A surface nano-structured poly(L-lactide) film with chitosan nanofibers was prepared. ► Grafted and anchored chitosan nanofibers were obtained by different treatment ways. ► Hydrophilicity was improved by immobilizing chitosan nanofibers on the film surface. ► Cell viability was enhanced on modified poly(L-lactide) film with chitosan nanofibers. ► Cells tended to attach and stretch along chitosan nanofibers on the film surface.

  14. Development of a poly(alizarin red S)/ionic liquid film modified electrode for voltammetric determination of catechol

    International Nuclear Information System (INIS)

    Zhang, Qing; Pan, Dawei; Zhang, Haiyun; Han, Haitao; Kang, Qi

    2014-01-01

    Highlights: • This study is the first to conduct electroploymerization of ARS in RTILs. • BMIMBF 4 was successfully mixed in polymeric ARS film. • PARS/BMIMBF 4 film was tighter, smoother and better electrochemical property. • PARS/BMIMBF 4 /GCE showed superior performance for catechol determination. - Abstract: A novel modified electrode for voltammetric catechol determination was fabricated by electroploymerization of alizarin red S (ARS) onto a glassy carbon electrode (GCE) in one kind of room-temperature ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, BMIMBF 4 ). The polymeric ARS/ionic liquid (PARS/BMIMBF 4 ) film modified electrode was characterized by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and electrochemical methods. The EDX, XPS and FTIR results indicated that PARS/BMIMBF 4 film was successfully obtained. Compared with the GCE modified by electroploymerization of ARS in aqueous solution, the GCE modified by electroploymerization of ARS in BMIMBF 4 showed smoother and more compact morphology for coating and better electroanalytical properties. Given the combined electrochemical activity of PARS and excellent conductivity of BMIMBF 4 , the PARS/BMIMBF 4 /GCE has been successfully used for catechol determination by differential pulse voltammetry (DPV) with a linear range of 0.10 to 500 μM. The sensitivity and detection limit are 42 nA/μM and 0.026 μM, respectively. The PARS/BMIMBF 4 modified electrode was successfully applied to the determination of catechol in real water samples and may serve as a simple but high-performance sensor for the determination of some environmental pollutants

  15. Modeling the Thermal Mechanical Behavior of a 300 K Vacuum Vessel that is Cooled by Liquid Hydrogen in Film Boiling

    International Nuclear Information System (INIS)

    Yang, S.Q.; Green, M.A.; Lau, W.

    2004-01-01

    This report discusses the results from the rupture of a thin window that is part of a 20-liter liquid hydrogen vessel. This rupture will spill liquid hydrogen onto the walls and bottom of a 300 K cylindrical vacuum vessel. The spilled hydrogen goes into film boiling, which removes the thermal energy from the vacuum vessel wall. This report analyzes the transient heat transfer in the vessel and calculates the thermal deflection and stress that will result from the boiling liquid in contact with the vessel walls. This analysis was applied to aluminum and stainless steel vessels

  16. Production of nanodispersed materials and thin films by laser ablation techniques in liquid and in vacuum

    International Nuclear Information System (INIS)

    Tveryanovich, Yu S; Manshina, A A; Tverjanovich, A S

    2012-01-01

    The methods of laser ablation of chemical compounds in a liquid medium and in vacuum used for the production of highly dispersed materials and films, respectively, are considered. Features and advantages of these methods are noted and the potential of their application for the design of novel materials is discussed. Examples of application of these methods in scientific research are given. The bibliography includes 177 references.

  17. Tunable photoluminescence of porous silicon by liquid crystal infiltration

    International Nuclear Information System (INIS)

    Ma Qinglan; Xiong Rui; Huang Yuanming

    2011-01-01

    The photoluminescence (PL) of porous silicon films has been investigated as a function of the amount of liquid crystal molecules that are infiltrated into the constricted geometry of the porous silicon films. A typical nematic liquid crystal 4-pentyl-4'-cyanobiphenyl was employed in our experiment as the filler to modify the PL of porous silicon. It is found that the originally red PL of porous silicon films can be tuned to blue by simply adjusting the amount of liquid crystal molecules in the microchannels of the porous films. The chromaticity coordinates are calculated for the recorded PL spectra. The mechanism of the tunable PL is discussed. Our results have demonstrated that the luminescent properties of porous silicon films can be efficiently tuned by liquid crystal infiltration. - Highlights: → Liquid crystal infiltration can tune the photoluminescence of porous silicon. → Red emission of porous silicon can be switched to blue by the infiltration. → Chromaticity coordinates are calculated for the tuned emissions. → White emission is realized for porous silicon by liquid crystal infiltration.

  18. The α-particle excited scintillation response of YAG:Ce thin films grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Prusa, Petr; Nikl, Martin; Mares, Jiri A.; Nitsch, Karel; Beitlerova, Alena; Kucera, Miroslav

    2009-01-01

    Y 3 Al 5 O 12 :Ce (YAG:Ce) thin films were grown from PbO-,BaO-, and MoO 3 -based fluxes using the liquid phase epitaxy (LPE) method. Photoelectron yield, its time dependence within 0.5-10 μs shaping time, and energy resolution of these samples were measured under α-particle excitation. For comparison a sample of the Czochralski grown bulk YAG:Ce single crystal was measured as well. Photoelectron yield values of samples grown from the BaO-based flux were found superior to other LPE films and comparable with that of the bulk single crystal. The same is valid also for the time dependence of photoelectron yield. Obtained results are discussed taking into account the influence of the flux and technology used. Additionally, α particle energy deposition in very thin films is modelled and discussed. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. 3D nanoporous graphene films converted from liquid-crystalline holey graphene oxide for thin and high-performance supercapacitors

    Science.gov (United States)

    Wang, Bin; Liu, Jinzhang; Zhao, Yi; Zheng, Dezhi; Li, Yan; Sha, Jiangbo

    2018-01-01

    Holey graphene oxide (HGO) is prepared and its liquid crystal (LC) formation in water is investigated. The blade-coated LC-HGO hydrogel is hydrothermally reduced to form 3D nanoporous films used as supercapacitor electrodes. Holey graphene sheets are rumpled and interconnected to form a cellular structure with pore size around 100 nm during the reduction process. Reduced HGO films with different thicknesses are integrated into solid-state symmetric supercapacitors and their electrochemical performances are studied. High specific capacitance up to 304 F g-1 and high volumetric capacitance around 400 F cm-3 are achieved from our thin and flexible devices.

  20. Nanoporous Polymer Films of Cyanate Ester Resins Designed by Using Ionic Liquids as Porogens.

    Science.gov (United States)

    Fainleib, Alexander; Vashchuk, Alina; Starostenko, Olga; Grigoryeva, Olga; Rogalsky, Sergiy; Nguyen, Thi-Thanh-Tam; Grande, Daniel

    2017-12-01

    Novel nanoporous film materials of thermostable cyanate ester resins (CERs) were generated by polycyclotrimerization of dicyanate ester of bisphenol E in the presence of varying amounts (from 20 to 40 wt%) of an ionic liquid (IL), i.e., 1-heptylpyridinium tetrafluoroborate, followed by its quantitative extraction after complete CER network formation. The completion of CER formation and IL extraction was assessed using gel fraction content determination, FTIR, 1 H NMR, and energy-dispersive X-ray spectroscopy (EDX). SEM and DSC-based thermoporometry analyses demonstrated the formation of nanoporous structures after IL removal from CER networks, thus showing the effective role of IL as a porogen. Pore sizes varied from ~20 to ~180 nm with an average pore diameter of around 45-60 nm depending on the initial IL content. The thermal stability of nanoporous CER-based films was investigated by thermogravimetric analysis.

  1. On the Impact of Spheres onto Liquid Pools and Ultra-viscous Films

    KAUST Repository

    Mansoor, Mohammad Mujtaba

    2016-06-01

    The free-surface impact of spheres is important to several applications in the military, industry and sports such as the water-entry of torpedoes, dip-coating procedures and slamming of boats. This two-part thesis attempts to explore this field by investigating cavity formation during the impact of spheres with deep liquid pools and cavitation in thin ultra-viscous films. Part I reports results from an experimental study on the formation of stable- streamlined and helical cavity wakes following the free-surface impact of heated Leidenfrost spheres. The Leidenfrost effect encapsulates the sphere by a vapor layer to prevent any physical contact with the surrounding liquid. This phenomenon is essential for the pacification of acoustic rippling along the cavity interface to result in a stable-streamlined cavity wake. Such a streamlined configuration experiences drag coefficients an order of magnitude lower than those acting on room temperature spheres. A striking observation is the formation of helical cavities which occur for impact Reynolds numbers 0 ≳ 1.4 × 105 and are characterized by multiple interfacial ridges, stemming from and rotating synchronously about an evident contact line around the sphere equator. This helical configuration has 40-55% smaller overall force coefficients than those obtained in the formation of stable cavity wakes. Part II of this thesis investigates the inception of cavitation and resulting structures when a sphere collides with a solid surface covered with a layer of non-Newtonian liquid having kinematic viscosities of up to 0 = 20,000,000 cSt. The existence of shear-stress- induced cavitation during sphere approach towards the base wall (i.e. the pressurization stage) in ultra-viscous films is shown using a synchronized dual-view high-speed imaging system. In addition, cavitation by depressurization is noted for a new class of non-contact cases whereby the sphere rebounds without any prior contact with the solid wall. Horizontal

  2. Unsteady three dimensional flow of Casson liquid film over a porous stretching sheet in the presence of uniform transverse magnetic field and suction/injection

    Energy Technology Data Exchange (ETDEWEB)

    Maity, S., E-mail: susantamaiti@gmail.com [Department of Mathematics, National Institute of Technology, Arunachal Pradesh, Yupia, Papumpare 791112 (India); Singh, S.K. [Engineering Mechanics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Kumar, A.V. [Department of Mathematics, National Institute of Technology, Arunachal Pradesh, Yupia, Papumpare 791112 (India)

    2016-12-01

    Three dimensional flow of thin Casson liquid film over a porous unsteady stretching sheet is investigated under assumption of initial uniform film thickness. The effects of the uniform transverse magnetic field, suction and injection are also considered for investigation. The nonlinear governing set of equations and film evolution equation are solved analytically by using singular perturbation technique. It is found that the film thickness decreases with the increasing values of the Casson parameter. The Hartmann number and porosity parameter resist the film thinning process. It is also observed that the film thickness increases with the increasing values of the suction velocity whereas it decreases for increasing values of the injection velocity at the stretching surface.

  3. Small-angle light scattering symmetry breaking in polymer-dispersed liquid crystal films with inhomogeneous electrically controlled interface anchoring

    Energy Technology Data Exchange (ETDEWEB)

    Loiko, V. A., E-mail: loiko@ifanbel.bas-net.by; Konkolovich, A. V. [National Academy of Sciences of Belarus, Stepanov Institute of Physics (Belarus); Zyryanov, V. Ya. [Russian Academy of Sciences, Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Scientific Center,” Siberian Branch (Russian Federation); Miskevich, A. A. [National Academy of Sciences of Belarus, Stepanov Institute of Physics (Belarus)

    2017-03-15

    We have described the method of analyzing and reporting on the results of calculation of the small-angle structure of radiation scattered by a polymer-dispersed liquid crystal film with electrically controlled interfacial anchoring. The method is based on the interference approximation of the wave scattering theory and the hard disk model. Scattering from an individual liquid crystal droplet has been described using the anomalous diffraction approximation extended to the case of droplets with uniform and nonuniform interface anchoring at the droplet–polymer boundary. The director field structure in an individual droplet is determined from the solution of the problem of minimizing the volume density of the free energy. The electrooptical effect of symmetry breaking in the angular distribution of scattered radiation has been analyzed. This effect means that the intensities of radiation scattered within angles +θ{sub s} and–θ{sub s} relative to the direction of illumination in the scattering plane can be different. The effect is of the interference origin and is associated with asymmetry of the phase shift of the wavefront of an incident wave from individual parts of the droplet, which appears due to asymmetry of the director field structure in the droplet, caused by nonuniform anchoring of liquid crystal molecules with the polymer on its surface. This effect is analyzed in the case of normal illumination of the film depending on the interfacial anchoring at the liquid crystal–polymer interface, the orientation of the optical axes of droplets, their concentration, sizes, anisometry, and polydispersity.

  4. MHD natural convection from a heated vertical wavy surface with variable viscosity and thermal conductivity

    International Nuclear Information System (INIS)

    Choudhury, M.; Hazarika, G.C.; Sibanda, P.

    2013-01-01

    We investigate the effects of temperature dependent viscosity and thermal conductivity on natural convection flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface. The flow is permeated by uniform transverse magnetic field. The fluid viscosity and thermal conductivity are assumed to vary as inverse linear functions of temperature. The coupled non-linear systems of partial differential equations are solved using the finite difference method. The effects of variable viscosity parameter, variable thermal conductivity parameter and magnetic parameter on the flow field and the heat transfer characteristics are discussed and shown graphically. (author)

  5. Successive reactive liquid flow episodes in a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland)

    Science.gov (United States)

    Leuthold, Julien; Blundy, Jon; Holness, Marian

    2014-05-01

    We will present a detailed microstructural and geochemical study of reactive liquid flow in Unit 9 of the Rum Eastern Layered Intrusion. In the study region, Unit 9 comprises an underlying lens-like body of peridotite overlain by a sequence of troctolite and gabbro (termed allivalite), with some local and minor anorthosite. The troctolite is separated from the overlying gabbro by a distinct, sub-horizontal, undulose horizon (the major wavy horizon). Higher in the stratigraphy is another, similar, horizon (the minor wavy horizon) that separates relatively clinopyroxene-poor gabbro from an overlying gabbro. To the north of the peridotite lens, both troctolite and gabbro grade into poikilitic gabbro. Clinopyroxene habit in the allivalite varies from thin rims around olivine in troctolite, to equigranular crystals in gabbro, to oikocrysts in the poikilitic gabbro. The poikilitic gabbros contain multiple generations of clinopyroxene, with Cr-rich (~1.1 wt.% Cr2O3), anhedral cores with moderate REE concentrations (core1) overgrown by an anhedral REE-depleted second generation with moderate Cr (~0.7 wt.% Cr2O3) (core2). These composite cores are rimmed by Cr-poor (~0.2 wt.% Cr2O3) and REE-poor to moderate clinopyroxene. We interpret these microstructures as a consequence of two separate episodes of partial melting triggered by the intrusion of hot olivine-phyric picrite to form the discontinuous lenses that comprise the Unit 9 peridotite. Loss of clinopyroxene-saturated partial melt from the lower part of the allivalite immediately following the early stages of sill intrusion resulted in the formation of clinopyroxene-poor gabbro. The spatial extent of clinopyroxene loss is marked by the minor wavy horizon. A further partial melting event stripped out almost all clinopyroxene from the lowest allivalite, to form a troctolite, with the major wavy horizon marking the extent of melting during this second episode. The poikilitic gabbro formed from clinopyroxene-saturated melt

  6. Flow visualization study of post-critical heat flux in inverted flow

    International Nuclear Information System (INIS)

    Babelli, I.; Revankar, S.T.; Ishii, M.

    1994-01-01

    A visual study of film boiling was carried out to determine the flow regime transition in the post-CHF region for a transient bottom reflooding of a hot transparent test section. The effect of test liquid subcooling and inlet velocity on flow transition as well as on the quench front propagation was investigated. The respective ranges for liquid velocity and subcooling were 1.8-26.8 cm/s, and 20-45 C, respectively. The test liquid was Freon 113 which was introduced into the bottom of the quartz test section whose walls were maintained well above the film boiling temperature of the test liquid, via a transparent heat transfer fluid. The flow regimes observed down stream of the upward moving quench front were the rough wavy, the agitated, and the dispersed droplet/ligaments in agreement with a steady state, two-phase core injection study carried on recently by one of the authors. A correlation for the flow regime transition between the inverted annular and the dispersed droplet/ligament flow patterns was developed. The correlation showed a marked dependence on the void fraction at the CHF location and hence on the flow regime encountered in the pre-CHF region. (orig.)

  7. Chemically-induced liquid film migration with low lattice diffusivity relative to the migration rate in Mo-Ni-(W)

    International Nuclear Information System (INIS)

    Lee, K.R.

    1992-01-01

    This paper reports that when a 90Mo-10Ni alloy (by wt) liquid phase sintered at 1400 degrees C is heat-treated at 1400 degrees C after replacing the matrix with a melt of 44Ni-34Mo-22W (by wt), the liquid films between the grains migrate, leaving behind an Mo alloy enriched with W. The ratio of the lattice diffusivity of W in Mo, D, to the initial migration velocity, v. (D/v) is estimated to be between 0.03 and 0.18 angstrom. Hence it appears that there is no lattice diffusion of W ahead of the migrating liquid film, and is such a case the driving force has been suggested to be the chemical free energy. But the observed v is approximately same as that to be expected if the driving force is assumed to be diffusional coherency strain energy. Likewise, a previous study of den Broeder and Nakahara shows that the rate of chemically-induced grain boundary migration in Cu-Ni shows a smooth variation with temperature as D/v decreases from values much larger than the interatomic spacing to values much smaller with decreasing temperature. The coherency strain energy thus appears to be a general driving force for the migration even when the apparent diffusion length indicated by D/v is smaller than the interatomic spacing

  8. Falling Liquid Films

    CERN Document Server

    Kalliadasis, S; Scheid, B

    2012-01-01

    This research monograph gives a detailed review of the state-of-the-art theoretical methodologies for the analysis of dissipative wave dynamics and pattern formation on the surface of a film falling down a planar, inclined substrate. This prototype is an open-flow hydrodynamic instability representing an excellent paradigm for the study of complexity in active nonlinear media with energy supply, dissipation and dispersion. Whenever possible, the link between theory and experiments is illustrated and the development of order-of-magnitude estimates and scaling arguments is used to facilitate the

  9. Design Constraints for Liquid-Protected Divertors

    International Nuclear Information System (INIS)

    Shin, S.; Abdel-Khalik, S.I.; Yoda, M.

    2005-01-01

    Recent work on liquid-surface-protected plasma facing components has resulted in the establishment of operating windows for candidate liquids, as well as limits on the maximum allowable liquid surface temperature in order to limit plasma impurities from liquid evaporation. In this study, an additional constraint on the maximum allowable surface temperature gradient (i.e., heat flux gradient) has been quantified. Spatial variations in the wall and liquid surface temperatures are expected due to variations in the incident radiation and particle fluxes. Thermocapillary forces created by such temperature gradients can lead to film rupture and dry spot formation in regions of elevated local temperatures. Here, attention has been focused on ''non-flowing'' thin liquid films similar to those formed on the surface of porous wettedwall components. Future analyses will include the effects of macroscopic fluid motion, and MHD forces.A numerical model using the level contour reconstruction method was used to follow the evolution of the liquid free surface above a non-isothermal solid surface. The model was used to develop generalized charts for the maximum allowable spatial temperature gradients (i.e., the critical Marangoni number) as a function of the governing non-dimensional variables, viz. the Weber, Froude, and Prandtl numbers, and aspect ratio. Attention was focused on the asymptotic limit for thin liquid films (i.e., low aspect ratio) which provides a lower bound for the maximum allowable temperature gradients. Specific examples for lithium, Flibe, lithium-lead, tin, and gallium are presented. The generalized charts developed in this investigation will allow reactor designers to identify design windows for successful operation of liquid-protected plasma facing components for various coolants, film thicknesses, and operating conditions

  10. Effect of film thickness on morphological evolution in dewetting and crystallization of polystyrene/poly(ε-caprolactone) blend films.

    Science.gov (United States)

    Ma, Meng; He, Zhoukun; Yang, Jinghui; Chen, Feng; Wang, Ke; Zhang, Qin; Deng, Hua; Fu, Qiang

    2011-11-01

    In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation.

  11. Consistent three-equation model for thin films

    Science.gov (United States)

    Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul

    2017-11-01

    Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.

  12. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M., E-mail: fattah@cnu.edu

    2016-11-01

    Highlights: • Co films deposition via aqueous and ionic liquid Precursors. • Hydrogen evolution produced from reactive surfaces. • Co deposited films characterized by SEM, AFM, EDX and XRD techniques. - Abstract: Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH{sub 4}) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm{sup 2} catalytic surface with aqueous NaBH{sub 4} solutions generated rate constants (K) = equal to 4.9 × 10{sup −3} min{sup −1}, 4.6 × 10{sup −3} min{sup −1}, and 3.3 × 10{sup −3} min{sup −1} for ACoF, NCoF, and copper substrate respectively.

  13. Organic chemical hydrides as storage medium of hydrogen on the basis of superheated liquid-film concept

    International Nuclear Information System (INIS)

    Shinya Hodoshima; Atsushi Shono; Kazumi Satoh; Yasukazu Saito

    2006-01-01

    A catalysis pair of tetralin dehydrogenation / naphthalene hydrogenation has been proposed in the present paper as an organic chemical hydride for operating stationary fuel cells. Catalytic naphthalene hydrogenation, having been commercialized since the 1940's, proceeds to generate decalin via tetralin as an intermediate. The storage capacities of tetralin (3.0 wt%, 28.2 kg-H 2 / m 3 ) are lower than decalin (7.3 wt%, 64.8 kg-H 2 / m 3 ) but both tetralin dehydrogenation and naphthalene hydrogenation are much faster than the decalin / naphthalene pair. Moreover, existing infrastructures, e.g., gas station and tank lorry, are available for storage, transportation and supply of hydrogen. As for the stationary fuel cells with large space for hydrogen storage, tetralin as a hydrogen carrier is superior to decalin in terms of fast hydrogen supply. Rapid hydrogen supply from tetralin under mild conditions was only accomplished with the carbon supported metal catalysts in the 'superheated liquid-film states' under reactive distillation conditions. In contrast to the ordinary suspended states, the catalyst layer superheated in the liquid-film state gave high catalytic performances at around 250 C. As a result, serious coke formation over the catalyst surface and excessive exergy consumption were prevented simultaneously. (authors)

  14. Numerical simulation of falling film flow boiling along a vertical wall

    International Nuclear Information System (INIS)

    Chiaki Kino; Tomoaki Kunugi; Akimi Serizawa

    2005-01-01

    Full text of publication follows: When a dryout occurs in film flows with heating from the wall, the wall surface being cooled is no longer in intimate contact with the liquid film. Consequently, the heat transfer will dramatically reduce and the corresponding wall temperature will rise rapidly up to the melting temperature of the heat transfer plate or pipe. It is very important to investigate the heat transfer characteristics of liquid films flowing along a heating wall and the dryout phenomena of the liquid films associated with increasing heat flux in the high heat flux component devices for chemical and mechanical devices and nuclear reactor systems. Many studies have been conducted on the dryout phenomena and it has been shown that the dryout conditions are influenced by several different flow conditions, for instance, subcooled and saturated liquid films and so on. The dryout process of boiling liquid films is different between them: in the case of subcooled liquid films, the process is caused by the local surface-tension variation along the film. On the contrary, in the case of saturated liquid films the surface temperature of boiling films is maintained at a saturation temperature and there can be no variation of surface tension along the film. The process in the case of saturated liquid films is caused by the reduction of film flow rate due to the flow imbalance. This reduction of film flow rate is promoted by the evaporation and the liquid droplets arising from the film surface due to the burst of vapor bubbles. Therefore, it is very important to predict the sputtering rate of liquid droplets and to understand the behavior of vapor bubbles in film flow boiling. In the present study, numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver) developed by one of the authors have been performed in order to understand the dryout of film flow boiling. The film flows along a vertical wall are focused in the present study

  15. The shape of soap films and Plateau borders

    International Nuclear Information System (INIS)

    Fortes, M A; Teixeira, P I C; Deus, A M

    2007-01-01

    We have calculated the shapes of flat liquid films, and of the transition region to the associated Plateau borders (PBs), by integrating the Laplace equation with a position-dependent surface tension γ(x), where 2x is the local film thickness. We discuss films in either zero or non-zero gravity, using standard γ(x) potentials for the interaction between the two bounding surfaces. We have investigated the effects of the film flatness, liquid underpressure, and gravity on the shape of films and their PBs. Films may exhibit 'humps' and/or 'dips' associated with inflection points and minima of the film thickness. Finally, we propose an asymptotic analytical solution for the film width profile

  16. The shape of soap films and Plateau borders

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, M A [Departamento de Engenharia de Materiais and Instituto de Ciencia e Engenharia de Materiais e SuperfIcies, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Teixeira, P I C [Instituto Superior de Engenharia de Lisboa Rua Conselheiro EmIdio Navarro 1, P-1950-062 Lisbon (Portugal); Deus, A M [Departamento de Engenharia de Materiais and Instituto de Ciencia e Engenharia de Materiais e SuperfIcies, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal)

    2007-06-20

    We have calculated the shapes of flat liquid films, and of the transition region to the associated Plateau borders (PBs), by integrating the Laplace equation with a position-dependent surface tension {gamma}(x), where 2x is the local film thickness. We discuss films in either zero or non-zero gravity, using standard {gamma}(x) potentials for the interaction between the two bounding surfaces. We have investigated the effects of the film flatness, liquid underpressure, and gravity on the shape of films and their PBs. Films may exhibit 'humps' and/or 'dips' associated with inflection points and minima of the film thickness. Finally, we propose an asymptotic analytical solution for the film width profile.

  17. Auxetic hexachiral structures with wavy ligaments for large elasto-plastic deformation

    Science.gov (United States)

    Zhu, Yilin; Wang, Zhen-Pei; Hien Poh, Leong

    2018-05-01

    The hexachiral structure is in-plane isotropic in small deformation. When subjected to large elasto-plastic deformation, however, the hexachiral structure tends to lose its auxeticity and/or isotropy—properties which are desirable in many potential applications. The objective of this study is to improve these two mechanical properties, without significantly compromising the effective yield stress, in the regime with significant material and geometrical nonlinearity effects. It is found that the deformation mechanisms underlying the auxeticity and isotropy properties of a hexachiral structure are largely influenced by the extent of rotation of the central ring in a unit cell. To facilitate the development of this deformation mechanism, an improved design with wavy ligaments is proposed. The improved performance of the proposed hexachiral structure is demonstrated. An initial study on possible applications as a protective material is next carried out, where the improved hexachiral design is shown to exhibit higher specific energy absorption capacity compared to the original design, as well as standard honeycomb structures.

  18. Direct correlations between XPS analyses and growth film by chronopotentiometry on InP in liquid ammonia (−55 °C)

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, A.-M., E-mail: anne-marie.goncalves@uvsq.fr; Njel, C.; Aureau, D.; Etcheberry, A.

    2017-01-01

    Highlights: • Anodic galvannostatic treatment on n‐InP is carried out in liquid ammonia (−55 °C) under illumination. • Whatever the anodic charge, a phosphazene like film is revealed by XPS without thickening of the layer. • The film growth requires a nucleation step which is followed by a phosphazene coalescence phenomenon in the two dimensions of the surface. • A monolayer film of phosphazene is suggested and an excess of charge is observed which can be assigned to ammonia oxidation. - Abstract: This paper is based on the understanding of the formation of a reproducible polyphosphazene-like film (−[(H{sub 2}N)−P=N]{sub n}−) obtained on InP by anodic treatment in liquid ammonia. The approach is innovative as it combines indications from the coulometric charges and the related chemical information from XPS analyses. Anodic charges are accurately monitored by galvanostatic treatment between 0.05 mC cm{sup −2} and 12.5 mC cm{sup −2}. XPS investigation of the treated surfaces demonstrates the presence of an anodic film on InP. Whatever the spent charge, the specific P{sub 2p} and N{sub 1s} signals agree with the growth of an ultrathin phosphazene layer. From 0.25 mC cm{sup −2} to 12.5 mC cm{sup −2}, a quasi constant XPS response is revealed without thickening of the film. However a gradual chemical evolution of the modified surface is clearly observed for the lower anodic charges (from 0.04 mC cm{sup −2} to 0.5 mC cm{sup −2}). In this case, the surface is entirely recovered by the film as soon as 0.25 mC cm{sup −2} is consumed at the interface. Same atomic surface ratios are indeed revealed indicating that a constant chemical composition is consistent with a polyphosphazene film. On the basis of atomic surface ratios evolutions determined by XPS, a mechanism of the film growth is deduced. It requires a nucleation step which is followed by a phosphazene coalescence phenomenon in the two dimensions of the surface. A final phosphazene

  19. Holographic storage of three-dimensional image and data using photopolymer and polymer dispersed liquid crystal films

    International Nuclear Information System (INIS)

    Gao Hong-Yue; Liu Pan; Zeng Chao; Yao Qiu-Xiang; Zheng Zhiqiang; Liu Jicheng; Zheng Huadong; Yu Ying-Jie; Zeng Zhen-Xiang; Sun Tao

    2016-01-01

    We present holographic storage of three-dimensional (3D) images and data in a photopolymer film without any applied electric field. Its absorption and diffraction efficiency are measured, and reflective analog hologram of real object and image of digital information are recorded in the films. The photopolymer is compared with polymer dispersed liquid crystals as holographic materials. Besides holographic diffraction efficiency of the former is little lower than that of the latter, this work demonstrates that the photopolymer is more suitable for analog hologram and big data permanent storage because of its high definition and no need of high voltage electric field. Therefore, our study proposes a potential holographic storage material to apply in large size static 3D holographic displays, including analog hologram displays, digital hologram prints, and holographic disks. (special topic)

  20. Heat transfer on liquid-liquid interface of molten-metal and water

    International Nuclear Information System (INIS)

    Tanaka, T.; Saito, Yasushi; Mishima, Kaichiro

    2001-01-01

    Molten-core pool had been formed in the lower-head of TMI-2 pressure vessel at the severe accident. The lower head, however, didn't receive any damage by reactor core cooling. Heat transfer at outside of the lower head and boiling heat transfer at liquid-liquid interface of molten-metal and water, however, are important for initial cooling process of the molten-core pool. The heat transfer experiments for the liquid-liquid interface of molten-metal and water are carried out over the range of natural convection to film boiling region. Phenomenon on the heat transfer experiments are visualized by using of high speed video camera. Wood's metal and U-alloy 78 are used as molten-metal. The test section of the experiments consists of a copper block with heater, wood's metal, and water. Three thermocouple probes are used for temperature measurement of water side and the molten-metal side. Stability of the liquid-liquid interface is depended on the wetness of container wall for molten metal and the temperature distribution of the interface. Entrainment phenomena of molten-metal occurs by a fluctuation of the interface after boiling on the container wall surface. The boiling curves obtained from the liquid-liquid interface experiments are agree with the nucleate boiling and the film boiling correlations of solid-liquid system. (Suetake, M.)

  1. A free-flowing soap film combined with cavity ring-down spectroscopy as a detection system for liquid chromatography.

    Science.gov (United States)

    Vogelsang, Markus; Welsch, Thomas; Jones, Harold

    2010-05-07

    We have shown that a free-flowing soap film has sufficiently high-quality optical properties to allow it to be used in the cavity of a ring-down spectrometer (CRDS). The flow rates required to maintain a stable soap film were similar to those used in liquid chromatography and thus allowed interfacing with an HPLC system for use as an optical detector. We have investigated the properties of the system in a relevant analytical application. The soap film/CRDS combination was used at 355 nm as a detector for the separation of a mixture of nitroarenes. These compounds play a role in the residue analysis of areas contaminated with explosives and their decomposition products. In spite of the short absorption path length (9 microm) obtained by the soap film, the high-sensitivity of CRDS allowed a limit of detection of 4 x 10(-6) in absorption units (AU) or less than 17 fmol in the detection volume to be achieved. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  2. Revision of the design model for a cryogenic falling liquid film helium separator

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Bartlit, J.R.; Sherman, R.H.

    1983-05-01

    The present paper reports revision of the design model previously developed by the authors for the cryogenic falling liquid film helium separator. The revised design procedure is composed of three steps : 1) calculation of distributions of phase flow rates, temperature and phase compositions within the refrigerated section and the packed section ; 2) calculation of more detailed distributions of these variables within the refrigerated section ; and 3) estimation of column dimensions and determination of operating conditions. It is assumed that the vacant refrigerated section has two theoretical stages for hydrogen isotope separation. The mixture within the refrigerated section is considered in step 2) as two component system of He-HD. (author)

  3. PREFACE: Functionalized Liquid Liquid Interfaces

    Science.gov (United States)

    Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael

    2007-09-01

    Most natural processes take place at interfaces. For this reason, surface science has been a focal point of modern research. At solid-liquid interfaces one can induce various species to adsorb or react, and thus may study interactions between the substrate and adsorbates, kinetic processes, optical properties, etc. Liquid-liquid interfaces, formed by immiscible liquids such as water and oil, have a number of distinctive features. Both sides of the interface are amenable to detailed physical and chemical analysis. By chemical or electrochemical means, metal or semiconductor nanoparticles can be formed or localised at the interface. Surfactants can be used to tailor surface properties, and also to place organic molecular or supermolecular constructions at the boundary between the liquids. Electric fields can be used to drive ions from one fluid to another, or even change the shape of the interface itself. In many cases, both liquids are optically transparent, making functionalized liquid-liquid interfaces promising for various optical applications based on the transmission or reflection of light. An advantage common to most of these systems is self-assembly; because a liquid-liquid interface is not mechanically constrained like a solid-liquid interface, it can easily access its most stable state, even after it has been driven far from equilibrium. This special issue focuses on four modes of liquid-liquid interfacial functionalization: the controlled adsorption of molecules or nanoparticles, the formation of adlayers or films, electrowetting, and ion transfer or interface-localized reactions. Interfacial adsorption can be driven electrically, chemically, or mechanically. The liquid-liquid interface can be used to study how anisotropic particles orient at a surface under the influence of a field, how surfactants interact with other adsorbates, and how nanoparticles aggregate; the transparency of the interface also makes the chirality of organic adsorbates amenable to

  4. Viscous bursting of suspended films

    Science.gov (United States)

    Debrégeas, G.; Martin, P.; Brochard-Wyart, F.

    1995-11-01

    Soap films break up by an inertial process. We present here the first observations on freely suspended films of long-chain polymers, where viscous effects are dominant and no surfactant is present. A hole is nucleated at time 0 and grows up to a radius R(t) at time t. A surprising feature is that the liquid from the hole is not collected into a rim (as it is in soap films): The liquid spreads out without any significant change of the film thickness. The radius R(t) grows exponentially with time, R~exp(t/τ) [while in soap films R(t) is linear]. The rise time τ~ηe/2γ where η is viscosity, e is thickness (in the micron range), and γ is surface tension. A simple model is developed to explain this growth law.

  5. Ferroelectric properties of Bi3.25Ce0.75Ti3O12 thin films prepared by a liquid source misted chemical deposition

    International Nuclear Information System (INIS)

    Jeon, M.K.; Chung, H.J.; Kim, K.W.; Oh, K.S.; Woo, S.I.

    2005-01-01

    Cerium-substituted bismuth titanate (Bi 3.25 Ce 0.75 Ti 3 O 12 (BCT)) films were deposited on the Pt(111)/SiO 2 /Si(100) substrates by a liquid source misted chemical deposition technique. This film showed X-ray diffraction patterns that crystallization along the (006) direction was suppressed and did not contain any other oxides. The remnant polarization of this film increased with increase in annealing temperature. The 2P r and 2E c values of the BCT film annealed at 700 deg. C were 19.72 μC/cm 2 and 357 kV/cm, respectively. 2P r value of this film decreased by less than 5% of the initial value after 7 x 10 9 read/write switching cycles at a frequency of 1 MHz

  6. Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/ Prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film.

    Science.gov (United States)

    Deepa, Melepurath; Awadhia, Arvind; Bhandari, Shweta

    2009-07-21

    Electrochromic devices based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the cathodic coloring electrode and polyaniline (PANI) or Prussian blue (PB) as the counter electrode containing a highly conductive, self-supporting, distensible and transparent polymer-gel electrolyte film encapsulating an ionic liquid, 1-butyl-1-methylpyrrolidiniumbis-(trifluoromethylsulfonyl)imide, have been fabricated. Polarization, charge transfer and diffusion processes control the electrochemistry of the functional electrodes during coloration and bleaching and these phenomena differ when PEDOT and PANI/PB were employed alternately as working electrodes. While the electrochemical impedance response shows good similitude for PEDOT and PANI electrodes, the responses of PEDOT and PB were significantly different in the PEDOT-PB device, especially during reduction of PB, wherein the overall amplitude of the impedance response is enormous. Large values of the coloration efficiency maxima of 281 cm2 C(-1) (lambda = 583 nm) and 274 cm2 C(-1) (lambda = 602 nm), achieved at -1.0 and -1.5 V for the PEDOT PANI and PEDOT-PB devices have been correlated to the particularly low magnitude of charge transfer resistance and high polarization capacitance operative at the PEDOT ionic liquid based electrolyte interface at these dc potentials, thus allowing facile ion-transport and consequently resulting in enhanced absorption modulation. Moderately fast switching kinetics and the ability of these devices to sustain about 2500 cycles of clear-to-dark and dark-to-clear without incurring major losses in the optical contrast, along with the ease of construction of these cells in terms of high scalability and reproducibility of the synthetic procedure for fabrication of the electrochromic films and the ionic liquid based gel electrolyte film, are indicators of the promise these devices hold for practical applications like electrochromic windows and displays.

  7. Growth of superconducting Bi2Sr2CaCu2O8+δ films by sedimentation deposition and liquid phase sintering and annealing technique

    International Nuclear Information System (INIS)

    Manahan, R.L.C.; Sarmago, R.V.

    2006-01-01

    We report on a technique of growing highly c-axis oriented Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) thick films on MgO substrate using a combined sedimentation-deposition and liquid phase sintering and annealing process. The temperature profiles employed partial melting followed by rapid cooling to temperature below the melting point. Scanning electron micrographs show that the films have a smooth surface. No evidence of grain boundaries on the film's surface can be seen. The critical temperatures of the samples range from ∼67 K to ∼81 K. This method presents a quick and easy preparation for high quality epitaxial Bi-2212 films

  8. Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method.

    KAUST Repository

    Chernikova, Valeriya

    2016-07-14

    Here we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2•xH2O, Zn2(bdc)2•xH2O, HKUST-1 and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Thereby paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.

  9. Asymmetric liquid wetting and spreading on surfaces with slanted micro-pillar arrays

    KAUST Repository

    Yang, Xiaoming

    2013-01-01

    Uni-directional liquid spreading on asymmetric silicone-fabricated nanostructured surfaces has recently been reported. In this work, uniformly deflected polydimethylsiloxane (PDMS) micro-pillars covered with silver films were fabricated. Asymmetric liquid wetting and spreading behaviors in a preferential direction were observed on the slanted micro-pillar surfaces and a micro-scale thin liquid film advancing ahead of the bulk liquid droplet was clearly observed by high-speed video imaging. It is found that the slanted micro-pillar array is able to promote or inhibit the propagation of this thin liquid film in different directions by the asymmetric capillary force. The spreading behavior of the bulk liquid was guided and finally controlled by this micro-scale liquid film. Different spreading regimes are defined by the relationship between the liquid intrinsic contact angle and the critical angles, which were determined by the pillar height, pillar deflection angle and inter-pillar spacing. © The Royal Society of Chemistry 2013.

  10. Hydrogen storage by organic chemical hydrides and hydrogen supply to fuel cells with superheated liquid-film-type catalysis

    International Nuclear Information System (INIS)

    Hodoshima, S.; Shono, A.; Sato, K.; Saito, Y.

    2004-01-01

    Organic chemical hydrides, consisting of decalin / naphthalene and tetralin / naphthalene pairs, have been proposed as the storage medium of hydrogen for operating fuel cells in mobile and static modes. The target values in the DOE Hydrogen Plan, U.S., on storage ( 6.5 wt%, 62.0 kg-H 2 / m 3 ) are met with decalin ( 7.3 wt%, 64.8 kg-H 2 / m 3 ). In addition, existing gas stations and tank lorries are available for storage and supply of hydrogen by utilizing the decalin / naphthalene pair, suggesting that decalin is suitable for operating fuel-cell vehicles. Tetralin dehydrogenation proceeds quite rapidly, assuring a predominant power density, though its storage densities ( 3.0 wt%, 28.2 kg-H 2 / m 3 ) are relatively low. Efficient hydrogen supply from decalin or tetralin by heating at 210-280 o C was attained only with the carbon-supported nano-size metal catalysts in the 'superheated liquid-film states' under reactive distillation conditions, where coke formation over the catalyst surface was prevented. The catalyst layer superheated in the liquid-film states gave high reaction rates and conversions, minimizing the evaporation loss under boiling conditions and exergy loss in hydrogen energy systems. (author)

  11. Unusual dewetting of thin polymer films in liquid media containing a poor solvent and a nonsolvent.

    Science.gov (United States)

    Xu, Lin; Sharma, Ashutosh; Joo, Sang Woo; Liu, Hui; Shi, Tongfei

    2014-12-16

    We investigate the control of pattern size and kinetics in spontaneous dewetting of thin polymer films (polystyrene) that are stable to thermal annealing by annealing in a poor solvent (acetone)/nonsolvent (ethanol or n-hexane) liquid mixture. Dewetting occurs by the formation and growth of circular holes that coalesce to form droplets. The influence of the nature and the volume fraction of the nonsolvents on the contact angle of polymer droplets, number density of holes, and the kinetics of holes formation and growth is studied. Addition of ethanol greatly increases the hole density and slows down the kinetics substantially, while affecting only a small change in wettability. n-Hexane addition shows an interesting nonmonotonic response in decreasing the hole density and contact angle in the volume fraction range of 0-0.3 but an opposite effect beyond that. Although the two nonsolvents chosen cannot by themselves induce dewetting, their relative affinity for the solid substrate vis-à-vis acetone can strongly influence the observed dewetting scenarios that are not understood by the existing theoretical considerations. n-Hexane, for example, has great affinity for silicon substrate. In addition to the changes in wettability, viscosity, and film interfacial tension engendered by the nonsolvents, the possibility of the formation of adsorbed liquid layers at the substrate-polymer interface, which can modify the interfacial friction and slippage, needs to be considered.

  12. Application Of A Thin Film Evaporator System For Management Of Liquid High-Level Wastes At Hanford

    International Nuclear Information System (INIS)

    Tedeschi, A.R.; Wilson, R.A.

    2010-01-01

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  13. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  14. Gas-phase and liquid-phase pre-irradiation grafting of AAc onto LDPE and HDPE films for pervaporation membranes

    International Nuclear Information System (INIS)

    Rao Zhigong; Li Guixiang; Sugo, Takanobu; Okamoto, Jiro

    1992-01-01

    A study has been made on gas-phase and liquid-phase pre-irradiation grafting of acrylic acid onto LDPE and HDPE films for pervaporation membranes of ethanol-water mixtures. It was found that the degree of grafting, percent volume change of grafted membranes and length of grafting chains depend on the methods of grafting, crystal state of substrate films and diffusion rate of the monomer in the films. The pervaporation characteristics of grafted membranes is influenced directly by the surface hydrophilicity of grafted membranes, temperature of the feed, degree of grafting, crosslinking of grafted chains and alkaline metal ions in the functional groups. The potassium ion exchange membrane of HDPE synthesized by gas-phase grafting has better pervaporation efficiency. At 80 wt% ethanol in the feed, 25 o C feed temperature and 70% degree of grafting a grafted membrane has a 0.65 kg/m 2 h flux and a separation factor of 20. (Author)

  15. Method of drying passivated micromachines by dewetting from a liquid-based process

    Science.gov (United States)

    Houston, Michael R.; Howe, Roger T.; Maboudian, Roya; Srinivasan, Uthara

    2000-01-01

    A method of fabricating a micromachine includes the step of constructing a low surface energy film on the micromachine. The micromachine is then rinsed with a rinse liquid that has a high surface energy, relative to the low surface energy film, to produce a contact angle of greater than 90.degree. between the low surface energy film and the rinse liquid. This relatively large contact angle causes any rinse liquid on the micromachine to be displaced from the micromachine when the micromachine is removed from the rinse liquid. In other words, the micromachine is dried by dewetting from a liquid-based process. Thus, a separate evaporative drying step is not required, as the micromachine is removed from the liquid-based process in a dry state. The relatively large contact angle also operates to prevent attractive capillary forces between micromachine components, thereby preventing contact and adhesion between adjacent microstructure surfaces. The low surface energy film may be constructed with a fluorinated self-assembled monolayer film. The processing of the invention avoids the use of environmentally harmful, health-hazardous chemicals.

  16. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Ian, E-mail: ian.holt@rjah.nhs.uk [Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Gestmann, Ingo, E-mail: Ingo.Gestmann@fei.com [FEI Europe B.V., Achtseweg Noord 5, 5651 Eindhoven (Netherlands); Wright, Andrew C., E-mail: a.wright@glyndwr.ac.uk [Advanced Materials Research Laboratory, Glyndwr University, Plas Coch, Mold Rd, Wrexham LL11 2AW (United Kingdom)

    2013-10-15

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth.

  17. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    International Nuclear Information System (INIS)

    Holt, Ian; Gestmann, Ingo; Wright, Andrew C.

    2013-01-01

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth

  18. General aspects of solid on liquid growth mechanisms

    International Nuclear Information System (INIS)

    Laux, E; Charmet, J; Haquette, H; Banakh, O; Jeandupeux, L; Graf, B; Keppner, H

    2009-01-01

    Liquids, in general, tend to have a lower density as solids and therefore it is not straightforward to deposit solid over liquids in a way that the liquid becomes hermetically sealed under the solid layer. The authors review that several phenomena that can easily be observed in nature are only due to particular anomalies and solid on liquid is rather an exception as the rule. Natural solid on liquid systems are lacking of thermal, mechanical or chemical stability. It is not surprising, that one is not at all used thinking about to e.g. replace the gate oxide in a thin film transistor by a thin film of oil, or, to find in other microsystems functional liquids between a stack of thin solid films. However, once this becomes a serious option, a large variety of new Microsystems with new functionalities can be easily designed. In another paper (this conference and [1]) the authors pioneered that the polymer Parylene (poly(p-xylylene)) can be deposited on liquids coming already quite close to the above mentioned vision. In this paper the authors ask if one can synthesize other solid on liquid systems and surprisingly conclude, based on experimental evidence, that solid on liquid deposition seems to rather be the rule and not the exception.

  19. Review on pressure swirl injector in liquid rocket engine

    Science.gov (United States)

    Kang, Zhongtao; Wang, Zhen-guo; Li, Qinglian; Cheng, Peng

    2018-04-01

    The pressure swirl injector with tangential inlet ports is widely used in liquid rocket engine. Commonly, this type of pressure swirl injector consists of tangential inlet ports, a swirl chamber, a converging spin chamber, and a discharge orifice. The atomization of the liquid propellants includes the formation of liquid film, primary breakup and secondary atomization. And the back pressure and temperature in the combustion chamber could have great influence on the atomization of the injector. What's more, when the combustion instability occurs, the pressure oscillation could further affects the atomization process. This paper reviewed the primary atomization and the performance of the pressure swirl injector, which include the formation of the conical liquid film, the breakup and atomization characteristics of the conical liquid film, the effects of the rocket engine environment, and the response of the injector and atomization on the pressure oscillation.

  20. Contact angles in thin liquid films III. Interaction forces in Newton black soap films

    NARCIS (Netherlands)

    Feijter, J.A. de; Vrij, A.

    The interaction parameters of Newton black soap films stabilized by NaDS, as derived from contact angle experiments, have been interpretated in terms of the structure and the interaction forces in the films. From the film thickness and the difference between the surface excess of the salt in the