WorldWideScience

Sample records for wavelets scaling function

  1. Frame scaling function sets and frame wavelet sets in Rd

    International Nuclear Information System (INIS)

    Liu Zhanwei; Hu Guoen; Wu Guochang

    2009-01-01

    In this paper, we classify frame wavelet sets and frame scaling function sets in higher dimensions. Firstly, we obtain a necessary condition for a set to be the frame wavelet sets. Then, we present a necessary and sufficient condition for a set to be a frame scaling function set. We give a property of frame scaling function sets, too. Some corresponding examples are given to prove our theory in each section.

  2. Wavelets, vibrations and scalings

    CERN Document Server

    Meyer, Yves

    1997-01-01

    Physicists and mathematicians are intensely studying fractal sets of fractal curves. Mandelbrot advocated modeling of real-life signals by fractal or multifractal functions. One example is fractional Brownian motion, where large-scale behavior is related to a corresponding infrared divergence. Self-similarities and scaling laws play a key role in this new area. There is a widely accepted belief that wavelet analysis should provide the best available tool to unveil such scaling laws. And orthonormal wavelet bases are the only existing bases which are structurally invariant through dyadic dilations. This book discusses the relevance of wavelet analysis to problems in which self-similarities are important. Among the conclusions drawn are the following: 1) A weak form of self-similarity can be given a simple characterization through size estimates on wavelet coefficients, and 2) Wavelet bases can be tuned in order to provide a sharper characterization of this self-similarity. A pioneer of the wavelet "saga", Meye...

  3. Application of wavelet scaling function expansion continuous-energy resonance calculation method to MOX fuel problem

    International Nuclear Information System (INIS)

    Yang, W.; Wu, H.; Cao, L.

    2012-01-01

    More and more MOX fuels are used in all over the world in the past several decades. Compared with UO 2 fuel, it contains some new features. For example, the neutron spectrum is harder and more resonance interference effects within the resonance energy range are introduced because of more resonant nuclides contained in the MOX fuel. In this paper, the wavelets scaling function expansion method is applied to study the resonance behavior of plutonium isotopes within MOX fuel. Wavelets scaling function expansion continuous-energy self-shielding method is developed recently. It has been validated and verified by comparison to Monte Carlo calculations. In this method, the continuous-energy cross-sections are utilized within resonance energy, which means that it's capable to solve problems with serious resonance interference effects without iteration calculations. Therefore, this method adapts to treat the MOX fuel resonance calculation problem natively. Furthermore, plutonium isotopes have fierce oscillations of total cross-section within thermal energy range, especially for 240 Pu and 242 Pu. To take thermal resonance effect of plutonium isotopes into consideration the wavelet scaling function expansion continuous-energy resonance calculation code WAVERESON is enhanced by applying the free gas scattering kernel to obtain the continuous-energy scattering source within thermal energy range (2.1 eV to 4.0 eV) contrasting against the resonance energy range in which the elastic scattering kernel is utilized. Finally, all of the calculation results of WAVERESON are compared with MCNP calculation. (authors)

  4. Wavelet series approximation using wavelet function with compactly ...

    African Journals Online (AJOL)

    The Wavelets generated by Scaling Function with Compactly Support are useful in various applications especially for reconstruction of functions. Generally, the computational process will be faster if Scaling Function support descends, so computational errors are summarized from one level to another level. In this article, the ...

  5. Wavelets in functional data analysis

    CERN Document Server

    Morettin, Pedro A; Vidakovic, Brani

    2017-01-01

    Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.

  6. Detection of seismic phases by wavelet transform. Dependence of its performance on wavelet functions; Wavelet henkan ni yoru jishinha no iso kenshutsu. Wavelet ni yoru sai

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X; Yamazaki, K [Tokyo Gakugei University, Tokyo (Japan); Oguchi, Y [Hosei University, Tokyo (Japan)

    1997-10-22

    A study has been performed on wavelet analysis of seismic waves. In the wavelet analysis of seismic waves, there is a possibility that the results according to different wavelet functions may come out with great difference. The study has carried out the following analyses: an analysis of amplitude and phase using wavelet transform which uses wavelet function of Morlet on P- and S-waves generated by natural earthquakes and P-wave generated by an artificial earthquake, and an analysis using continuous wavelet transform, which uses a constitution of complex wavelet function constructed by a completely diagonal scaling function of Daubechies and the wavelet function. As a result, the following matters were made clear: the result of detection of abnormal components or discontinuity depends on the wavelet function; if the Morlet wavelet function is used to properly select angular frequency and scale, equiphase lines in a phase scalogram concentrate on the discontinuity; and the result of applying the complex wavelet function is superior to that of applying the wavelet function of Morlet. 2 refs., 5 figs.

  7. A Comparative Study on Optimal Structural Dynamics Using Wavelet Functions

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Mahdavi

    2015-01-01

    Full Text Available Wavelet solution techniques have become the focus of interest among researchers in different disciplines of science and technology. In this paper, implementation of two different wavelet basis functions has been comparatively considered for dynamic analysis of structures. For this aim, computational technique is developed by using free scale of simple Haar wavelet, initially. Later, complex and continuous Chebyshev wavelet basis functions are presented to improve the time history analysis of structures. Free-scaled Chebyshev coefficient matrix and operation of integration are derived to directly approximate displacements of the corresponding system. In addition, stability of responses has been investigated for the proposed algorithm of discrete Haar wavelet compared against continuous Chebyshev wavelet. To demonstrate the validity of the wavelet-based algorithms, aforesaid schemes have been extended to the linear and nonlinear structural dynamics. The effectiveness of free-scaled Chebyshev wavelet has been compared with simple Haar wavelet and two common integration methods. It is deduced that either indirect method proposed for discrete Haar wavelet or direct approach for continuous Chebyshev wavelet is unconditionally stable. Finally, it is concluded that numerical solution is highly benefited by the least computation time involved and high accuracy of response, particularly using low scale of complex Chebyshev wavelet.

  8. Selection of the wavelet function for the frequencies estimation

    International Nuclear Information System (INIS)

    Garcia R, A.

    2007-01-01

    At the moment the signals are used to diagnose the state of the systems, by means of the extraction of their more important characteristics such as the frequencies, tendencies, changes and temporary evolutions. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transformation, Fourier transformation in short time, Wavelet transformation, among others. The present work uses the one Wavelet transformation because it allows to analyze stationary, quasi-stationary and transitory signals in the time-frequency plane. It also describes a methodology to select the scales and the Wavelet function to be applied the one Wavelet transformation with the objective of detecting to the dominant system frequencies. (Author)

  9. A New Wavelet Threshold Function and Denoising Application

    Directory of Open Access Journals (Sweden)

    Lu Jing-yi

    2016-01-01

    Full Text Available In order to improve the effects of denoising, this paper introduces the basic principles of wavelet threshold denoising and traditional structures threshold functions. Meanwhile, it proposes wavelet threshold function and fixed threshold formula which are both improved here. First, this paper studies the problems existing in the traditional wavelet threshold functions and introduces the adjustment factors to construct the new threshold function basis on soft threshold function. Then, it studies the fixed threshold and introduces the logarithmic function of layer number of wavelet decomposition to design the new fixed threshold formula. Finally, this paper uses hard threshold, soft threshold, Garrote threshold, and improved threshold function to denoise different signals. And the paper also calculates signal-to-noise (SNR and mean square errors (MSE of the hard threshold functions, soft thresholding functions, Garrote threshold functions, and the improved threshold function after denoising. Theoretical analysis and experimental results showed that the proposed approach could improve soft threshold functions with constant deviation and hard threshold with discontinuous function problems. The proposed approach could improve the different decomposition scales that adopt the same threshold value to deal with the noise problems, also effectively filter the noise in the signals, and improve the SNR and reduce the MSE of output signals.

  10. Application of Improved Wavelet Thresholding Function in Image Denoising Processing

    Directory of Open Access Journals (Sweden)

    Hong Qi Zhang

    2014-07-01

    Full Text Available Wavelet analysis is a time – frequency analysis method, time-frequency localization problems are well solved, this paper analyzes the basic principles of the wavelet transform and the relationship between the signal singularity Lipschitz exponent and the local maxima of the wavelet transform coefficients mold, the principles of wavelet transform in image denoising are analyzed, the disadvantages of traditional wavelet thresholding function are studied, wavelet threshold function, the discontinuity of hard threshold and constant deviation of soft threshold are improved, image is denoised through using the improved threshold function.

  11. Selection of the wavelet function for the frequencies estimation; Seleccion de la funcion wavelet para la estimacion de frecuencias

    Energy Technology Data Exchange (ETDEWEB)

    Garcia R, A. [ININ, Carretera Mexico-Toluca S/N, 52750 La Marquesa, Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: ramador@nuclear.inin.mx

    2007-07-01

    At the moment the signals are used to diagnose the state of the systems, by means of the extraction of their more important characteristics such as the frequencies, tendencies, changes and temporary evolutions. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transformation, Fourier transformation in short time, Wavelet transformation, among others. The present work uses the one Wavelet transformation because it allows to analyze stationary, quasi-stationary and transitory signals in the time-frequency plane. It also describes a methodology to select the scales and the Wavelet function to be applied the one Wavelet transformation with the objective of detecting to the dominant system frequencies. (Author)

  12. Estimation of Seismic Wavelets Based on the Multivariate Scale Mixture of Gaussians Model

    Directory of Open Access Journals (Sweden)

    Jing-Huai Gao

    2009-12-01

    Full Text Available This paper proposes a new method for estimating seismic wavelets. Suppose a seismic wavelet can be modeled by a formula with three free parameters (scale, frequency and phase. We can transform the estimation of the wavelet into determining these three parameters. The phase of the wavelet is estimated by constant-phase rotation to the seismic signal, while the other two parameters are obtained by the Higher-order Statistics (HOS (fourth-order cumulant matching method. In order to derive the estimator of the Higher-order Statistics (HOS, the multivariate scale mixture of Gaussians (MSMG model is applied to formulating the multivariate joint probability density function (PDF of the seismic signal. By this way, we can represent HOS as a polynomial function of second-order statistics to improve the anti-noise performance and accuracy. In addition, the proposed method can work well for short time series.

  13. Fast, large-scale hologram calculation in wavelet domain

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Matsushima, Kyoji; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Ito, Tomoyoshi

    2018-04-01

    We propose a large-scale hologram calculation using WAvelet ShrinkAge-Based superpositIon (WASABI), a wavelet transform-based algorithm. An image-type hologram calculated using the WASABI method is printed on a glass substrate with the resolution of 65 , 536 × 65 , 536 pixels and a pixel pitch of 1 μm. The hologram calculation time amounts to approximately 354 s on a commercial CPU, which is approximately 30 times faster than conventional methods.

  14. Construction of Orthonormal Piecewise Polynomial Scaling and Wavelet Bases on Non-Equally Spaced Knots

    Directory of Open Access Journals (Sweden)

    Jean Pierre Astruc

    2007-01-01

    Full Text Available This paper investigates the mathematical framework of multiresolution analysis based on irregularly spaced knots sequence. Our presentation is based on the construction of nested nonuniform spline multiresolution spaces. From these spaces, we present the construction of orthonormal scaling and wavelet basis functions on bounded intervals. For any arbitrary degree of the spline function, we provide an explicit generalization allowing the construction of the scaling and wavelet bases on the nontraditional sequences. We show that the orthogonal decomposition is implemented using filter banks where the coefficients depend on the location of the knots on the sequence. Examples of orthonormal spline scaling and wavelet bases are provided. This approach can be used to interpolate irregularly sampled signals in an efficient way, by keeping the multiresolution approach.

  15. Comparisons between two wavelet functions in extracting coherent structures from solar wind time series

    International Nuclear Information System (INIS)

    Bolzani, M.J.A.; Guarnieri, F.L.; Vieira, Paulo Cesar

    2009-01-01

    Nowadays, wavelet analysis of turbulent flows have become increasingly popular. However, the study of geometric characteristics from wavelet functions is still poorly explored. In this work we compare the performance of two wavelet functions in extracting the coherent structures from solar wind velocity time series. The data series are from years 1996 to 2002 (except 1998 and 1999). The wavelet algorithm decomposes the annual time-series in two components: the coherent part and non-coherent one, using the daubechies-4 and haar wavelet function. The threshold assumed is based on a percentage of maximum variance found in each dyadic scale. After the extracting procedure, we applied the power spectral density on the original time series and coherent time series to obtain spectral indices. The results from spectral indices show higher values for the coherent part obtained by daubechies-4 than those obtained by the haar wavelet function. Using the kurtosis statistical parameter, on coherent and non-coherent time series, it was possible to conjecture that the differences found between two wavelet functions may be associated with their geometric forms. (author)

  16. A note on the standard dual frame of a wavelet frame with three-scale

    International Nuclear Information System (INIS)

    Chen Qingjiang; Wei Zongtian; Feng Jinshun

    2009-01-01

    In this paper, it is shown that there exist wavelet frames generated by two functions which have good dual wavelet frames, but for which the standard dual wavelet frame does not consist of wavelets. That is to say, the standard dual wavelet frame cannot be generated by the translations and dilations of a single function. Relation to some physical theories such as entropy and E-infinity theory is also discussed.

  17. Study of Denoising in TEOAE Signals Using an Appropriate Mother Wavelet Function

    Directory of Open Access Journals (Sweden)

    Habib Alizadeh Dizaji

    2007-06-01

    Full Text Available Background and Aim: Matching a mother wavelet to class of signals can be of interest in signal analy­sis and denoising based on wavelet multiresolution analysis and decomposition. As transient evoked otoacoustic emissions (TEOAES are contaminated with noise, the aim of this work was to pro­vide a quantitative approach to the problem of matching a mother wavelet to TEOAE signals by us­ing tun­ing curves and to use it for analysis and denoising TEOAE signals. Approximated mother wave­let for TEOAE signals was calculated using an algorithm for designing wavelet to match a specified sig­nal.Materials and Methods: In this paper a tuning curve has used as a template for designing a mother wave­let that has maximum matching to the tuning curve. The mother wavelet matching was performed on tuning curves spectrum magnitude and phase independent of one another. The scaling function was calcu­lated from the matched mother wavelet and by using these functions, lowpass and highpass filters were designed for a filter bank and otoacoustic emissions signal analysis and synthesis. After signal analyz­ing, denoising was performed by time windowing the signal time-frequency component.Results: Aanalysis indicated more signal reconstruction improvement in comparison with coiflets mother wavelet and by using the purposed denoising algorithm it is possible to enhance signal to noise ra­tio up to dB.Conclusion: The wavelet generated from this algorithm was remarkably similar to the biorthogonal wave­lets. Therefore, by matching a biorthogonal wavelet to the tuning curve and using wavelet packet analy­sis, a high resolution time-frequency analysis for the otoacoustic emission signals is possible.

  18. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    Science.gov (United States)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  19. Wigner functions from the two-dimensional wavelet group.

    Science.gov (United States)

    Ali, S T; Krasowska, A E; Murenzi, R

    2000-12-01

    Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.

  20. Perceptual security of encrypted images based on wavelet scaling analysis

    Science.gov (United States)

    Vargas-Olmos, C.; Murguía, J. S.; Ramírez-Torres, M. T.; Mejía Carlos, M.; Rosu, H. C.; González-Aguilar, H.

    2016-08-01

    The scaling behavior of the pixel fluctuations of encrypted images is evaluated by using the detrended fluctuation analysis based on wavelets, a modern technique that has been successfully used recently for a wide range of natural phenomena and technological processes. As encryption algorithms, we use the Advanced Encryption System (AES) in RBT mode and two versions of a cryptosystem based on cellular automata, with the encryption process applied both fully and partially by selecting different bitplanes. In all cases, the results show that the encrypted images in which no understandable information can be visually appreciated and whose pixels look totally random present a persistent scaling behavior with the scaling exponent α close to 0.5, implying no correlation between pixels when the DFA with wavelets is applied. This suggests that the scaling exponents of the encrypted images can be used as a perceptual security criterion in the sense that when their values are close to 0.5 (the white noise value) the encrypted images are more secure also from the perceptual point of view.

  1. Haar wavelets, fluctuations and structure functions: convenient choices for geophysics

    Directory of Open Access Journals (Sweden)

    S. Lovejoy

    2012-09-01

    Full Text Available Geophysical processes are typically variable over huge ranges of space-time scales. This has lead to the development of many techniques for decomposing series and fields into fluctuations Δv at well-defined scales. Classically, one defines fluctuations as differences: (Δvdiff = v(xx-v(x and this is adequate for many applications (Δx is the "lag". However, if over a range one has scaling Δv ∝ ΔxH, these difference fluctuations are only adequate when 0 < H < 1. Hence, there is the need for other types of fluctuations. In particular, atmospheric processes in the "macroweather" range ≈10 days to 10–30 yr generally have −1 < H < 0, so that a definition valid over the range −1 < H < 1 would be very useful for atmospheric applications. A general framework for defining fluctuations is wavelets. However, the generality of wavelets often leads to fairly arbitrary choices of "mother wavelet" and the resulting wavelet coefficients may be difficult to interpret. In this paper we argue that a good choice is provided by the (historically first wavelet, the Haar wavelet (Haar, 1910, which is easy to interpret and – if needed – to generalize, yet has rarely been used in geophysics. It is also easy to implement numerically: the Haar fluctuation (ΔvHaar at lag Δx is simply equal to the difference of the mean from x to x+ Δx/2 and from xx/2 to xx. Indeed, we shall see that the interest of the Haar wavelet is this relation to the integrated process rather than its wavelet nature per se.

    Using numerical multifractal simulations, we show that it is quite accurate, and we compare and contrast it with another similar technique, detrended fluctuation analysis. We find that, for estimating scaling exponents, the two methods are very similar, yet

  2. A simple structure wavelet transform circuit employing function link neural networks and SI filters

    Science.gov (United States)

    Mu, Li; Yigang, He

    2016-12-01

    Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.

  3. Distinguishing Stationary/Nonstationary Scaling Processes Using Wavelet Tsallis q-Entropies

    Directory of Open Access Journals (Sweden)

    Julio Ramirez Pacheco

    2012-01-01

    Full Text Available Classification of processes as stationary or nonstationary has been recognized as an important and unresolved problem in the analysis of scaling signals. Stationarity or nonstationarity determines not only the form of autocorrelations and moments but also the selection of estimators. In this paper, a methodology for classifying scaling processes as stationary or nonstationary is proposed. The method is based on wavelet Tsallis q-entropies and particularly on the behaviour of these entropies for scaling signals. It is demonstrated that the observed wavelet Tsallis q-entropies of 1/f signals can be modeled by sum-cosh apodizing functions which allocates constant entropies to a set of scaling signals and varying entropies to the rest and that this allocation is controlled by q. The proposed methodology, therefore, differentiates stationary signals from non-stationary ones based on the observed wavelet Tsallis entropies for 1/f signals. Experimental studies using synthesized signals confirm that the proposed method not only achieves satisfactorily classifications but also outperforms current methods proposed in the literature.

  4. Wavelet Space-Scale-Decomposition Analysis of QSO's Ly$\\alpha$ Absorption Lines: Spectrum of Density Perturbations

    OpenAIRE

    Pando, Jesus; Fang, Li-Zhi

    1995-01-01

    A method for measuring the spectrum of a density field by a discrete wavelet space-scale decomposition (SSD) has been studied. We show how the power spectrum can effectively be described by the father function coefficients (FFC) of the wavelet SSD. We demonstrate that the features of the spectrum, such as the magnitude, the index of a power law, and the typical scales, can be determined with high precision by the FFC reconstructed spectrum. This method does not require the mean density, which...

  5. Regularization of EIT reconstruction based on multi-scales wavelet transforms

    Directory of Open Access Journals (Sweden)

    Gong Bo

    2016-09-01

    Full Text Available Electrical Impedance Tomography (EIT intends to obtain the conductivity distribution of a domain from the electrical boundary conditions. This is an ill-posed inverse problem usually solved on finite element meshes. Wavelet transforms are widely used for medical image reconstruction. However, because of the irregular form of the finite element meshes, the canonical wavelet transforms is impossible to perform on meshes. In this article, we present a framework that combines multi-scales wavelet transforms and finite element meshes by viewing meshes as undirected graphs and applying spectral graph wavelet transform on the meshes.

  6. Wavelet transform of generalized functions in K ′{Mp} spaces

    Indian Academy of Sciences (India)

    Using convolution theory in K{Mp} space we obtain bounded results for the wavelet transform. Calderón-type reproducing formula is derived in distribution sense as an application of the same. An inversion formula for the wavelet transform of generalized functions is established. Keywords. Continuous wavelet transform ...

  7. A wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry

    Science.gov (United States)

    Wang, Jianhua; Yang, Yanxi

    2018-05-01

    We present a new wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry (2-D WTP). First of all, the maximum value point is extracted from two-dimensional wavelet transform coefficient modulus, and the local extreme value points over 90% of maximum value are also obtained, they both constitute wavelet ridge candidates. Then, the gradient of rotate factor is introduced into the Abid's cost function, and the logarithmic Logistic model is used to adjust and improve the cost function weights so as to obtain more reasonable value estimation. At last, the dynamic programming method is used to accurately find the optimal wavelet ridge, and the wrapped phase can be obtained by extracting the phase at the ridge. Its advantage is that, the fringe pattern with low signal-to-noise ratio can be demodulated accurately, and its noise immunity will be better. Meanwhile, only one fringe pattern is needed to projected to measured object, so dynamic three-dimensional (3-D) measurement in harsh environment can be realized. Computer simulation and experimental results show that, for the fringe pattern with noise pollution, the 3-D surface recovery accuracy by the proposed algorithm is increased. In addition, the demodulation phase accuracy of Morlet, Fan and Cauchy mother wavelets are compared.

  8. Wavelet multiscale analysis for Hedge Funds: Scaling and strategies

    Science.gov (United States)

    Conlon, T.; Crane, M.; Ruskin, H. J.

    2008-09-01

    The wide acceptance of Hedge Funds by Institutional Investors and Pension Funds has led to an explosive growth in assets under management. These investors are drawn to Hedge Funds due to the seemingly low correlation with traditional investments and the attractive returns. The correlations and market risk (the Beta in the Capital Asset Pricing Model) of Hedge Funds are generally calculated using monthly returns data, which may produce misleading results as Hedge Funds often hold illiquid exchange-traded securities or difficult to price over-the-counter securities. In this paper, the Maximum Overlap Discrete Wavelet Transform (MODWT) is applied to measure the scaling properties of Hedge Fund correlation and market risk with respect to the S&P 500. It is found that the level of correlation and market risk varies greatly according to the strategy studied and the time scale examined. Finally, the effects of scaling properties on the risk profile of a portfolio made up of Hedge Funds is studied using correlation matrices calculated over different time horizons.

  9. Estimation of Handgrip Force from SEMG Based on Wavelet Scale Selection.

    Science.gov (United States)

    Wang, Kai; Zhang, Xianmin; Ota, Jun; Huang, Yanjiang

    2018-02-24

    This paper proposes a nonlinear correlation-based wavelet scale selection technology to select the effective wavelet scales for the estimation of handgrip force from surface electromyograms (SEMG). The SEMG signal corresponding to gripping force was collected from extensor and flexor forearm muscles during the force-varying analysis task. We performed a computational sensitivity analysis on the initial nonlinear SEMG-handgrip force model. To explore the nonlinear correlation between ten wavelet scales and handgrip force, a large-scale iteration based on the Monte Carlo simulation was conducted. To choose a suitable combination of scales, we proposed a rule to combine wavelet scales based on the sensitivity of each scale and selected the appropriate combination of wavelet scales based on sequence combination analysis (SCA). The results of SCA indicated that the scale combination VI is suitable for estimating force from the extensors and the combination V is suitable for the flexors. The proposed method was compared to two former methods through prolonged static and force-varying contraction tasks. The experiment results showed that the root mean square errors derived by the proposed method for both static and force-varying contraction tasks were less than 20%. The accuracy and robustness of the handgrip force derived by the proposed method is better than that obtained by the former methods.

  10. Rolling bearings control by comparing the wavelet of scaling ...

    African Journals Online (AJOL)

    The method for bearing monitoring is proposed, which makes it possible to automate the process of defect detection and to increase the resolving power during vibrationacoustic control performance. The result of the study showed that the application of analysis algorithms with the use of wavelet transformation allows to ...

  11. Robust pricing of european options with wavelets and the characteristic function

    NARCIS (Netherlands)

    Ortiz-Gracia, L.; Oosterlee, C.W.

    2013-01-01

    We present a novel method for pricing European options based on the wavelet approximation method and the characteristic function. We focus on the discounted expected payoff pricing formula and compute it by means of wavelets. We approximate the density function associated to the underlying asset

  12. Wavelet Transforms: Application to Data Analysis - I -10 ...

    Indian Academy of Sciences (India)

    from 0 to 00, whereas translation index k takes values from -00 .... scaling function in any wavelet basis set. ..... sets derived from diverse sources like stock market, cos- ... [4] G B Folland, From Calculus to Wavelets: A New Mathematical Tech-.

  13. Wavelet analysis

    CERN Document Server

    Cheng, Lizhi; Luo, Yong; Chen, Bo

    2014-01-01

    This book could be divided into two parts i.e. fundamental wavelet transform theory and method and some important applications of wavelet transform. In the first part, as preliminary knowledge, the Fourier analysis, inner product space, the characteristics of Haar functions, and concepts of multi-resolution analysis, are introduced followed by a description on how to construct wavelet functions both multi-band and multi wavelets, and finally introduces the design of integer wavelets via lifting schemes and its application to integer transform algorithm. In the second part, many applications are discussed in the field of image and signal processing by introducing other wavelet variants such as complex wavelets, ridgelets, and curvelets. Important application examples include image compression, image denoising/restoration, image enhancement, digital watermarking, numerical solution of partial differential equations, and solving ill-conditioned Toeplitz system. The book is intended for senior undergraduate stude...

  14. Wavelets as basis functions in electronic structure calculations

    International Nuclear Information System (INIS)

    Chauvin, C.

    2005-11-01

    This thesis is devoted to the definition and the implementation of a multi-resolution method to determine the fundamental state of a system composed of nuclei and electrons. In this work, we are interested in the Density Functional Theory (DFT), which allows to express the Hamiltonian operator with the electronic density only, by a Coulomb potential and a non-linear potential. This operator acts on orbitals, which are solutions of the so-called Kohn-Sham equations. Their resolution needs to express orbitals and density on a set of functions owing both physical and numerical properties, as explained in the second chapter. One can hardly satisfy these two properties simultaneously, that is why we are interested in orthogonal and bi-orthogonal wavelets basis, whose properties of interpolation are presented in the third chapter. We present in the fourth chapter three dimensional solvers for the Coulomb's potential, using not only the preconditioning property of wavelets, but also a multigrid algorithm. Determining this potential allows us to solve the self-consistent Kohn-Sham equations, by an algorithm presented in chapter five. The originality of our method consists in the construction of the stiffness matrix, combining a Galerkin formulation and a collocation scheme. We analyse the approximation properties of this method in case of linear Hamiltonian, such as harmonic oscillator and hydrogen, and present convergence results of the DFT for small electrons. Finally we show how orbital compression reduces considerably the number of coefficients to keep, while preserving a good accuracy of the fundamental energy. (author)

  15. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    International Nuclear Information System (INIS)

    Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry

    2015-01-01

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments

  16. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Laura E., E-mail: lratcliff@anl.gov [Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Université de Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry [Université de Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France)

    2015-06-21

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.

  17. Visualization of a Turbulent Jet Using Wavelets

    Institute of Scientific and Technical Information of China (English)

    Hui LI

    2001-01-01

    An application of multiresolution image analysis to turbulence was investigated in this paper, in order to visualize the coherent structure and the most essential scales governing turbulence. The digital imaging photograph of jet slice was decomposed by two-dimensional discrete wavelet transform based on Daubechies, Coifman and Baylkin bases. The best choice of orthogonal wavelet basis for analyzing the image of the turbulent structures was first discussed. It is found that these orthonormal wavelet families with index N<10 were inappropriate for multiresolution image analysis of turbulent flow. The multiresolution images of turbulent structures were very similar when using the wavelet basis with the higher index number, even though wavelet bases are different functions. From the image components in orthogonal wavelet spaces with different scales, the further evident of the multi-scale structures in jet can be observed, and the edges of the vortices at different resolutions or scales and the coherent structure can be easily extracted.

  18. Wavelet analysis of MR functional data from the cerebellum

    International Nuclear Information System (INIS)

    Karen, Romero Sánchez; Vásquez Reyes Marcos, A.; González Gómez Dulce, I.; Hernández López, Javier M.; Silvia, Hidalgo Tobón; Pilar, Dies Suarez; Eduardo, Barragán Pérez; Benito, De Celis Alonso

    2014-01-01

    The main goal of this project was to create a computer algorithm based on wavelet analysis of BOLD signals, which automatically diagnosed ADHD using information from resting state MR experiments. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Wavelet analysis, which is a mathematical tool used to decompose time series into elementary constituents and detect hidden information, was applied here to the BOLD signal obtained from the cerebellum 8 region of all our volunteers. Statistical differences between the values of the a parameters of wavelet analysis was found and showed significant differences (p<0.02) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD

  19. Wavelet analysis of MR functional data from the cerebellum

    Energy Technology Data Exchange (ETDEWEB)

    Karen, Romero Sánchez, E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; Vásquez Reyes Marcos, A., E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; González Gómez Dulce, I., E-mail: alphacentauri-hp@hotmail.com, E-mail: marcos-vaquezr@hotmail.com, E-mail: isabeldgg@hotmail.com; Hernández López, Javier M., E-mail: javierh@fcfm.buap.mx [Faculty of Physics and Mathematics, BUAP, Puebla, Pue (Mexico); Silvia, Hidalgo Tobón, E-mail: shidbon@gmail.com [Infant Hospital of Mexico, Federico Gómez, Mexico DF. Mexico and Physics Department, Universidad Autónoma Metropolitana. Iztapalapa, Mexico DF. (Mexico); Pilar, Dies Suarez, E-mail: pilydies@yahoo.com, E-mail: neurodoc@prodigy.net.mx; Eduardo, Barragán Pérez, E-mail: pilydies@yahoo.com, E-mail: neurodoc@prodigy.net.mx [Infant Hospital of Mexico, Federico Gómez, Mexico DF. (Mexico); Benito, De Celis Alonso, E-mail: benileon@yahoo.com [Faculty of Physics and Mathematics, BUAP, Puebla, Pue. Mexico and Foundation for Development Carlos Sigüenza. Puebla, Pue. (Mexico)

    2014-11-07

    The main goal of this project was to create a computer algorithm based on wavelet analysis of BOLD signals, which automatically diagnosed ADHD using information from resting state MR experiments. Male right handed volunteers (infants with ages between 7 and 11 years old) were studied and compared with age matched controls. Wavelet analysis, which is a mathematical tool used to decompose time series into elementary constituents and detect hidden information, was applied here to the BOLD signal obtained from the cerebellum 8 region of all our volunteers. Statistical differences between the values of the a parameters of wavelet analysis was found and showed significant differences (p<0.02) between groups. This difference might help in the future to distinguish healthy from ADHD patients and therefore diagnose ADHD.

  20. Lattice functions, wavelet aliasing, and SO(3) mappings of orthonormal filters

    Science.gov (United States)

    John, Sarah

    1998-01-01

    A formulation of multiresolution in terms of a family of dyadic lattices {Sj;j∈Z} and filter matrices Mj⊂U(2)⊂GL(2,C) illuminates the role of aliasing in wavelets and provides exact relations between scaling and wavelet filters. By showing the {DN;N∈Z+} collection of compactly supported, orthonormal wavelet filters to be strictly SU(2)⊂U(2), its representation in the Euler angles of the rotation group SO(3) establishes several new results: a 1:1 mapping of the {DN} filters onto a set of orbits on the SO(3) manifold; an equivalence of D∞ to the Shannon filter; and a simple new proof for a criterion ruling out pathologically scaled nonorthonormal filters.

  1. Classification of endoscopic capsule images by using color wavelet features, higher order statistics and radial basis functions.

    Science.gov (United States)

    Lima, C S; Barbosa, D; Ramos, J; Tavares, A; Monteiro, L; Carvalho, L

    2008-01-01

    This paper presents a system to support medical diagnosis and detection of abnormal lesions by processing capsule endoscopic images. Endoscopic images possess rich information expressed by texture. Texture information can be efficiently extracted from medium scales of the wavelet transform. The set of features proposed in this paper to code textural information is named color wavelet covariance (CWC). CWC coefficients are based on the covariances of second order textural measures, an optimum subset of them is proposed. Third and forth order moments are added to cope with distributions that tend to become non-Gaussian, especially in some pathological cases. The proposed approach is supported by a classifier based on radial basis functions procedure for the characterization of the image regions along the video frames. The whole methodology has been applied on real data containing 6 full endoscopic exams and reached 95% specificity and 93% sensitivity.

  2. A study of biorthogonal multiple vector-valued wavelets

    International Nuclear Information System (INIS)

    Han Jincang; Cheng Zhengxing; Chen Qingjiang

    2009-01-01

    The notion of vector-valued multiresolution analysis is introduced and the concept of biorthogonal multiple vector-valued wavelets which are wavelets for vector fields, is introduced. It is proved that, like in the scalar and multiwavelet case, the existence of a pair of biorthogonal multiple vector-valued scaling functions guarantees the existence of a pair of biorthogonal multiple vector-valued wavelet functions. An algorithm for constructing a class of compactly supported biorthogonal multiple vector-valued wavelets is presented. Their properties are investigated by means of operator theory and algebra theory and time-frequency analysis method. Several biorthogonality formulas regarding these wavelet packets are obtained.

  3. Data-driven haemodynamic response function extraction using Fourier-wavelet regularised deconvolution

    NARCIS (Netherlands)

    Wink, Alle Meije; Hoogduin, Hans; Roerdink, Jos B.T.M.

    2008-01-01

    Background: We present a simple, data-driven method to extract haemodynamic response functions (HRF) from functional magnetic resonance imaging (fMRI) time series, based on the Fourier-wavelet regularised deconvolution (ForWaRD) technique. HRF data are required for many fMRI applications, such as

  4. Data-driven haemodynamic response function extraction using Fourier-wavelet regularised deconvolution

    NARCIS (Netherlands)

    Wink, Alle Meije; Hoogduin, Hans; Roerdink, Jos B.T.M.

    2010-01-01

    Background: We present a simple, data-driven method to extract haemodynamic response functions (HRF) from functional magnetic resonance imaging (fMRI) time series, based on the Fourier-wavelet regularised deconvolution (ForWaRD) technique. HRF data are required for many fMRI applications, such as

  5. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling

    Science.gov (United States)

    Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana

    2018-01-01

    This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.

  6. multi scale analysis of a function by neural networks elementary derivatives functions

    International Nuclear Information System (INIS)

    Chikhi, A.; Gougam, A.; Chafa, F.

    2006-01-01

    Recently, the wavelet network has been introduced as a special neural network supported by the wavelet theory . Such networks constitute a tool for function approximation problems as it has been already proved in reference . Our present work deals with this model, treating a multi scale analysis of a function. We have then used a linear expansion of a given function in wavelets, neglecting the usual translation parameters. We investigate two training operations. The first one consists on an optimization of the output synaptic layer, the second one, optimizing the output function with respect to scale parameters. We notice a temporary merging of the scale parameters leading to some interesting results : new elementary derivatives units emerge, representing a new elementary task, which is the derivative of the output task

  7. Characterizing Co-movements between Indian and Emerging Asian Equity Markets through Wavelet Multi-Scale Analysis

    Directory of Open Access Journals (Sweden)

    Aasif Shah

    2015-06-01

    Full Text Available Multi-scale representations are effective in characterising the time-frequency characteristics of financial return series. They have the capability to reveal the properties not evident with typical time domain analysis. Given the aforesaid, this study derives crucial insights from multi scale analysis to investigate the co- movements between Indian and emerging Asian equity markets using wavelet correlation and wavelet coherence measures. It is reported that the Indian equity market is strongly integrated with Asian equity markets at lower frequency scales and relatively less blended at higher frequencies. On the other hand the results from cross correlations suggest that the lead-lag relationship becomes substantial as we turn to lower frequency scales and finally, wavelet coherence demonstrates that this correlation eventually grows strong in the interim of the crises period at lower frequency scales. Overall the findings are relevant and have strong policy and practical implications.

  8. Wavelet approach to accelerator problems. 3: Melnikov functions and symplectic topology

    International Nuclear Information System (INIS)

    Fedorova, A.; Zeitlin, M.; Parsa, Z.

    1997-05-01

    This is the third part of a series of talks in which the authors present applications of methods of wavelet analysis to polynomial approximations for a number of accelerator physics problems. They consider the generalization of the variational wavelet approach to nonlinear polynomial problems to the case of Hamiltonian systems for which they need to preserve underlying symplectic or Poissonian or quasicomplex structures in any type of calculations. They use the approach for the problem of explicit calculations of Arnold-Weinstein curves via Floer variational approach from symplectic topology. The loop solutions are parameterized by the solutions of reduced algebraical problem--matrix Quadratic Mirror Filters equations. Also they consider wavelet approach to the calculations of Melnikov functions in the theory of homoclinic chaos in perturbed Hamiltonian systems

  9. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M. [Los Alamos National Lab., NM (United States); Hopper, T. [Federal Bureau of Investigation, Washington, DC (United States)

    1993-05-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI`s Integrated Automated Fingerprint Identification System.

  10. The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M. (Los Alamos National Lab., NM (United States)); Hopper, T. (Federal Bureau of Investigation, Washington, DC (United States))

    1993-01-01

    The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI's Integrated Automated Fingerprint Identification System.

  11. The effect of image enhancement on the statistical analysis of functional neuroimages : Wavelet-based denoising and Gaussian smoothing

    NARCIS (Netherlands)

    Wink, AM; Roerdink, JBTM; Sonka, M; Fitzpatrick, JM

    2003-01-01

    The quality of statistical analyses of functional neuroimages is studied after applying various preprocessing methods. We present wavelet-based denoising as an alternative to Gaussian smoothing, the standard denoising method in statistical parametric mapping (SPM). The wavelet-based denoising

  12. Revisiting the investor sentiment-stock returns relationship: A multi-scale perspective using wavelets

    Science.gov (United States)

    Lao, Jiashun; Nie, He; Jiang, Yonghong

    2018-06-01

    This paper employs SBW proposed by Baker and Wurgler (2006) to investigate the nonlinear asymmetric Granger causality between investor sentiment and stock returns for US economy while considering different time-scales. The wavelet method is utilized to decompose time series of investor sentiment and stock returns at different time-scales to focus on the local analysis of different time horizons of investors. The linear and nonlinear asymmetric Granger methods are employed to examine the Granger causal relationship on similar time-scales. We find evidence of strong bilateral linear and nonlinear asymmetric Granger causality between longer-term investor sentiment and stock returns. Furthermore, we observe the positive nonlinear causal relationship from stock returns to investor sentiment and the negative nonlinear causal relationship from investor sentiment to stock returns.

  13. Algorithm for removing the noise from γ energy spectrum by analyzing the evolution of the wavelet transform maxima across scales

    International Nuclear Information System (INIS)

    Li Tianduo; Xiao Gang; Di Yuming; Han Feng; Qiu Xiaoling

    1999-01-01

    The γ energy spectrum is expanded in allied energy-frequency space. By the different characterization of the evolution of wavelet transform modulus maxima across scales between energy spectrum and noise, the algorithm for removing the noise from γ energy spectrum by analyzing the evolution of the wavelet transform maxima across scales is presented. The results show, in contrast to the methods in energy space or in frequency space, the method has the advantages that the peak of energy spectrum can be indicated accurately and the energy spectrum can be reconstructed with a good approximation

  14. VELOCITY FIELD OF COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE: WAVELET DECOMPOSITION AND MODE SCALINGS

    International Nuclear Information System (INIS)

    Kowal, Grzegorz; Lazarian, A.

    2010-01-01

    We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.

  15. Time Scale Analysis of Interest Rate Spreads and Output Using Wavelets

    Directory of Open Access Journals (Sweden)

    Marco Gallegati

    2013-04-01

    Full Text Available This paper adds to the literature on the information content of different spreads for real activity by explicitly taking into account the time scale relationship between a variety of monetary and financial indicators (real interest rate, term and credit spreads and output growth. By means of wavelet-based exploratory data analysis we obtain richer results relative to the aggregate analysis by identifying the dominant scales of variation in the data and the scales and location at which structural breaks have occurred. Moreover, using the “double residuals” regression analysis on a scale-by-scale basis, we find that changes in the spread in several markets have different information content for output at different time frames. This is consistent with the idea that allowing for different time scales of variation in the data can provide a fruitful understanding of the complex dynamics of economic relationships between variables with non-stationary or transient components, certainly richer than those obtained using standard time domain methods.

  16. From cardinal spline wavelet bases to highly coherent dictionaries

    International Nuclear Information System (INIS)

    Andrle, Miroslav; Rebollo-Neira, Laura

    2008-01-01

    Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation. (fast track communication)

  17. Wavelet analysis for nonstationary signals

    International Nuclear Information System (INIS)

    Penha, Rosani Maria Libardi da

    1999-01-01

    Mechanical vibration signals play an important role in anomalies identification resulting of equipment malfunctioning. Traditionally, Fourier spectral analysis is used where the signals are assumed to be stationary. However, occasional transient impulses and start-up process are examples of nonstationary signals that can be found in mechanical vibrations. These signals can provide important information about the equipment condition, as early fault detection. The Fourier analysis can not adequately be applied to nonstationary signals because the results provide data about the frequency composition averaged over the duration of the signal. In this work, two methods for nonstationary signal analysis are used: Short Time Fourier Transform (STFT) and wavelet transform. The STFT is a method of adapting Fourier spectral analysis for nonstationary application to time-frequency domain. To have a unique resolution throughout the entire time-frequency domain is its main limitation. The wavelet transform is a new analysis technique suitable to nonstationary signals, which handles the STFT drawbacks, providing multi-resolution frequency analysis and time localization in a unique time-scale graphic. The multiple frequency resolutions are obtained by scaling (dilatation/compression) the wavelet function. A comparison of the conventional Fourier transform, STFT and wavelet transform is made applying these techniques to: simulated signals, arrangement rotor rig vibration signal and rotate machine vibration signal Hanning window was used to STFT analysis. Daubechies and harmonic wavelets were used to continuos, discrete and multi-resolution wavelet analysis. The results show the Fourier analysis was not able to detect changes in the signal frequencies or discontinuities. The STFT analysis detected the changes in the signal frequencies, but with time-frequency resolution problems. The wavelet continuos and discrete transform demonstrated to be a high efficient tool to detect

  18. Construction of wavelets with composite dilations

    International Nuclear Information System (INIS)

    Wu Guochang; Li Zhiqiang; Cheng Zhengxing

    2009-01-01

    In order to overcome classical wavelets' shortcoming in image processing problems, people developed many producing systems, which built up wavelet family. In this paper, the notion of AB-multiresolution analysis is generalized, and the corresponding theory is developed. For an AB-multiresolution analysis associated with any expanding matrices, we deduce that there exists a singe scaling function in its reducing subspace. Under some conditions, wavelets with composite dilations can be gotten by AB-multiresolution analysis, which permits the existence of fast implementation algorithm. Then, we provide an approach to design the wavelets with composite dilations by classic wavelets. Our way consists of separable and partly nonseparable cases. In each section, we construct all kinds of examples with nice properties to prove our theory.

  19. Wavelet analysis of the nuclear phase space

    International Nuclear Information System (INIS)

    Jouault, B.; Sebille, F.; De La Mota, V.

    1997-01-01

    The description of complex systems requires to select and to compact the relevant information. The wavelet theory constitutes an appropriate framework for defining adapted representation bases obtained from a controlled hierarchy of approximations. The optimization of the wavelet analysis depend mainly on the chosen analysis method and wavelet family. Here the analysis of the harmonic oscillator wave function was carried out by considering a Spline bi-orthogonal wavelet base which satisfy the symmetry requirements and can be approximated by simple analytical functions. The goal of this study was to determine a selection criterion allowing to minimize the number of elements considered for an optimal description of the analysed functions. An essential point consists in utilization of the wavelet complementarity and of the scale functions in order to reproduce the oscillating and peripheral parts of the wave functions. The wavelet base representation allows defining a sequence of approximations of the density matrix. Thus, this wavelet representation of the density matrix offers an optimal base for describing both the static nuclear configurations and their time evolution. This information compacting procedure is performed in a controlled manner and preserves the structure of the system wave functions and consequently some of its quantum properties

  20. Fast evaluation of nonlinear functionals of tensor product wavelet expansions

    NARCIS (Netherlands)

    Schwab, C.; Stevenson, R.

    2011-01-01

    Abstract For a nonlinear functional f, and a function u from the span of a set of tensor product interpolets, it is shown how to compute the interpolant of f (u) from the span of this set of tensor product interpolets in linear complexity, assuming that the index set has a certain multiple tree

  1. Wavelet based free-form deformations for nonrigid registration

    Science.gov (United States)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  2. Wavelet applications for modeling in the atmospheric sciences: Current status and potential extensions. Final report

    International Nuclear Information System (INIS)

    Envair, J.H.; Ekstrom, P.

    1995-11-01

    Wavelets are elementary mathematical functions used to construct, transform, and analyze higher functions and observational data. This report describes the results of an exploratory research effort to evaluate wavelet applications for numerically integrating differential equations associated with air pollution transport and conversion models. It is intended to provide a primer on wavelets, and specifically outlines the use of wavelets in a model that addresses derivative-evaluation and boundary-condition problems. Several factors complicate the use of wavelets for integrating differential equations. First, an enormous range of different wavelet types exists, making the choice of wavelet family for a given application challenging. Moreover, in contrast to the Fourier series, the functional derivatives necessary for numerical approximation are difficult to evaluate and consolidate in terms of wavelet expansions, introducing appreciable complexity into any attempt at wavelet-based integration. On the positive side, wavelet techniques do hold promise for effectively interfacing plume and other subgrid-scale phenomena in grid models. Moreover, workable techniques for derivative evaluation and simulation of boundary features appear feasible. Wavelet use may provide a viable, advantageous option for numerically integrating model equations describing fields on all scales of time and distance, especially where inhomogeneous fields exist, and provide a computationally efficient method of focusing on high-variability regions. The potential for wavelets to conduct integrations totally in transform space contrasts with Fourier-based approaches, which essentially preclude such treatments whenever nonlinear chemical processes occur in the modeled system

  3. Fractional Calculus and Shannon Wavelet

    Directory of Open Access Journals (Sweden)

    Carlo Cattani

    2012-01-01

    Full Text Available An explicit analytical formula for the any order fractional derivative of Shannon wavelet is given as wavelet series based on connection coefficients. So that for any 2(ℝ function, reconstructed by Shannon wavelets, we can easily define its fractional derivative. The approximation error is explicitly computed, and the wavelet series is compared with Grünwald fractional derivative by focusing on the many advantages of the wavelet method, in terms of rate of convergence.

  4. Upscaling of Large-Scale Transport in Spatially Heterogeneous Porous Media Using Wavelet Transformation

    Science.gov (United States)

    Moslehi, M.; de Barros, F.; Ebrahimi, F.; Sahimi, M.

    2015-12-01

    Modeling flow and solute transport in large-scale heterogeneous porous media involves substantial computational burdens. A common approach to alleviate this complexity is to utilize upscaling methods. These processes generate upscaled models with less complexity while attempting to preserve the hydrogeological properties comparable to the original fine-scale model. We use Wavelet Transformations (WT) of the spatial distribution of aquifer's property to upscale the hydrogeological models and consequently transport processes. In particular, we apply the technique to a porous formation with broadly distributed and correlated transmissivity to verify the performance of the WT. First, transmissivity fields are coarsened using WT in such a way that the high transmissivity zones, in which more important information is embedded, mostly remain the same, while the low transmissivity zones are averaged out since they contain less information about the hydrogeological formation. Next, flow and non-reactive transport are simulated in both fine-scale and upscaled models to predict both the concentration breakthrough curves at a control location and the large-scale spreading of the plume around its centroid. The results reveal that the WT of the fields generates non-uniform grids with an average of 2.1% of the number of grid blocks in the original fine-scale models, which eventually leads to a significant reduction in the computational costs. We show that the upscaled model obtained through the WT reconstructs the concentration breakthrough curves and the spreading of the plume at different times accurately. Furthermore, the impacts of the Hurst coefficient, size of the flow domain and the orders of magnitude difference in transmissivity values on the results have been investigated. It is observed that as the heterogeneity and the size of the domain increase, better agreement between the results of fine-scale and upscaled models can be achieved. Having this framework at hand aids

  5. Exploring functional data analysis and wavelet principal component analysis on ecstasy (MDMA wastewater data

    Directory of Open Access Journals (Sweden)

    Stefania Salvatore

    2016-07-01

    Full Text Available Abstract Background Wastewater-based epidemiology (WBE is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA and to wavelet principal component analysis (WPCA which is more flexible temporally. Methods We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data. Results The first three principal components (PCs, functional principal components (FPCs and wavelet principal components (WPCs explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data. Conclusion FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.

  6. Data-driven haemodynamic response function extraction using Fourier-wavelet regularised deconvolution

    Directory of Open Access Journals (Sweden)

    Roerdink Jos BTM

    2008-04-01

    Full Text Available Abstract Background We present a simple, data-driven method to extract haemodynamic response functions (HRF from functional magnetic resonance imaging (fMRI time series, based on the Fourier-wavelet regularised deconvolution (ForWaRD technique. HRF data are required for many fMRI applications, such as defining region-specific HRFs, effciently representing a general HRF, or comparing subject-specific HRFs. Results ForWaRD is applied to fMRI time signals, after removing low-frequency trends by a wavelet-based method, and the output of ForWaRD is a time series of volumes, containing the HRF in each voxel. Compared to more complex methods, this extraction algorithm requires few assumptions (separability of signal and noise in the frequency and wavelet domains and the general linear model and it is fast (HRF extraction from a single fMRI data set takes about the same time as spatial resampling. The extraction method is tested on simulated event-related activation signals, contaminated with noise from a time series of real MRI images. An application for HRF data is demonstrated in a simple event-related experiment: data are extracted from a region with significant effects of interest in a first time series. A continuous-time HRF is obtained by fitting a nonlinear function to the discrete HRF coeffcients, and is then used to analyse a later time series. Conclusion With the parameters used in this paper, the extraction method presented here is very robust to changes in signal properties. Comparison of analyses with fitted HRFs and with a canonical HRF shows that a subject-specific, regional HRF significantly improves detection power. Sensitivity and specificity increase not only in the region from which the HRFs are extracted, but also in other regions of interest.

  7. A new approach of watermarking technique by means multichannel wavelet functions

    Science.gov (United States)

    Agreste, Santa; Puccio, Luigia

    2012-12-01

    The digital piracy involving images, music, movies, books, and so on, is a legal problem that has not found a solution. Therefore it becomes crucial to create and to develop methods and numerical algorithms in order to solve the copyright problems. In this paper we focus the attention on a new approach of watermarking technique applied to digital color images. Our aim is to describe the realized watermarking algorithm based on multichannel wavelet functions with multiplicity r = 3, called MCWM 1.0. We report a large experimentation and some important numerical results in order to show the robustness of the proposed algorithm to geometrical attacks.

  8. Wavelet-based moment invariants for pattern recognition

    Science.gov (United States)

    Chen, Guangyi; Xie, Wenfang

    2011-07-01

    Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.

  9. Wavelet Scale Analysis of Mesoscale Convective Systems for Detecting Deep Convection From Infrared Imagery

    Science.gov (United States)

    Klein, Cornelia; Belušić, Danijel; Taylor, Christopher M.

    2018-03-01

    Mesoscale convective systems (MCSs) are frequently associated with rainfall extremes and are expected to further intensify under global warming. However, despite the significant impact of such extreme events, the dominant processes favoring their occurrence are still under debate. Meteosat geostationary satellites provide unique long-term subhourly records of cloud top temperatures, allowing to track changes in MCS structures that could be linked to rainfall intensification. Focusing on West Africa, we show that Meteosat cloud top temperatures are a useful proxy for rainfall intensities, as derived from snapshots from the Tropical Rainfall Measuring Mission 2A25 product: MCSs larger than 15,000 km2 at a temperature threshold of -40°C are found to produce 91% of all extreme rainfall occurrences in the study region, with 80% of the storms producing extreme rain when their minimum temperature drops below -80°C. Furthermore, we present a new method based on 2-D continuous wavelet transform to explore the relationship between cloud top temperature and rainfall intensity for subcloud features at different length scales. The method shows great potential for separating convective and stratiform cloud parts when combining information on temperature and scale, improving the common approach of using a temperature threshold only. We find that below -80°C, every fifth pixel is associated with deep convection. This frequency is doubled when looking at subcloud features smaller than 35 km. Scale analysis of subcloud features can thus help to better exploit cloud top temperature data sets, which provide much more spatiotemporal detail of MCS characteristics than available rainfall data sets alone.

  10. Applications of a fast, continuous wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Dress, W.B.

    1997-02-01

    A fast, continuous, wavelet transform, based on Shannon`s sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon`s sampling theorem lets us view the Fourier transform of the data set as a continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time- domain sampling of the signal under analysis. Computational cost and nonorthogonality aside, the inherent flexibility and shift invariance of the frequency-space wavelets has advantages. The method has been applied to forensic audio reconstruction speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants` heart beats. Audio reconstruction is aided by selection of desired regions in the 2-D representation of the magnitude of the transformed signal. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass-spring system (e.g., a vehicle) by an occupants beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, features such as the glottal closing rate and word and phrase segmentation may be extracted from voice data.

  11. The construction of a class of trivariate nonseparable compactly supported orthogonal wavelets

    International Nuclear Information System (INIS)

    Huang Yongdong; Lei Chongmin; Yang Miao

    2009-01-01

    In this paper, under a mild condition, the construction of compactly supported orthogonal wavelets is obtained. Wavelets inherit the symmetry of the corresponding scaling function and satisfy the vanishing moment condition originating in the symbols of the scaling function. An example is also given to demonstrate the general theory.

  12. Non-invasive baroreflex sensitivity assessment using wavelet transfer function-based time–frequency analysis

    International Nuclear Information System (INIS)

    Keissar, K; Gilad, O; Maestri, R; Pinna, G D; La Rovere, M T

    2010-01-01

    A novel approach for the estimation of baroreflex sensitivity (BRS) is introduced based on time–frequency analysis of the transfer function (TF). The TF method (TF-BRS) is a well-established non-invasive technique which assumes stationarity. This condition is difficult to meet, especially in cardiac patients. In this study, the classical TF was replaced with a wavelet transfer function (WTF) and the classical coherence was replaced with wavelet transform coherence (WTC), adding the time domain as an additional degree of freedom with dynamic error estimation. Error analysis and comparison between WTF-BRS and TF-BRS were performed using simulated signals with known transfer function and added noise. Similar comparisons were performed for ECG and blood pressure signals, in the supine position, of 19 normal subjects, 44 patients with a history of previous myocardial infarction (MI) and 45 patients with chronic heart failure. This yielded an excellent linear association (R > 0.94, p < 0.001) for time-averaged WTF-BRS, validating the new method as consistent with a known method. The additional advantage of dynamic analysis of coherence and TF estimates was illustrated in two physiological examples of supine rest and change of posture showing the evolution of BRS synchronized with its error estimations and sympathovagal balance

  13. Time variation of the electromagnetic transfer function of the earth estimated by using wavelet transform.

    Science.gov (United States)

    Suto, Noriko; Harada, Makoto; Izutsu, Jun; Nagao, Toshiyasu

    2006-07-01

    In order to accurately estimate the geomagnetic transfer functions in the area of the volcano Mt. Iwate (IWT), we applied the interstation transfer function (ISTF) method to the three-component geomagnetic field data observed at Mt. Iwate station (IWT), using the Kakioka Magnetic Observatory, JMA (KAK) as remote reference station. Instead of the conventional Fourier transform, in which temporary transient noises badly degrade the accuracy of long term properties, continuous wavelet transform has been used. The accuracy of the results was as high as that of robust estimations of transfer functions obtained by the Fourier transform method. This would provide us with possibilities for routinely monitoring the transfer functions, without sophisticated statistical procedures, to detect changes in the underground electrical conductivity structure.

  14. A Sequential, Implicit, Wavelet-Based Solver for Multi-Scale Time-Dependent Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Donald A. McLaren

    2013-04-01

    Full Text Available This paper describes and tests a wavelet-based implicit numerical method for solving partial differential equations. Intended for problems with localized small-scale interactions, the method exploits the form of the wavelet decomposition to divide the implicit system created by the time-discretization into multiple smaller systems that can be solved sequentially. Included is a test on a basic non-linear problem, with both the results of the test, and the time required to calculate them, compared with control results based on a single system with fine resolution. The method is then tested on a non-trivial problem, its computational time and accuracy checked against control results. In both tests, it was found that the method requires less computational expense than the control. Furthermore, the method showed convergence towards the fine resolution control results.

  15. Texture analysis using Gabor wavelets

    Science.gov (United States)

    Naghdy, Golshah A.; Wang, Jian; Ogunbona, Philip O.

    1996-04-01

    Receptive field profiles of simple cells in the visual cortex have been shown to resemble even- symmetric or odd-symmetric Gabor filters. Computational models employed in the analysis of textures have been motivated by two-dimensional Gabor functions arranged in a multi-channel architecture. More recently wavelets have emerged as a powerful tool for non-stationary signal analysis capable of encoding scale-space information efficiently. A multi-resolution implementation in the form of a dyadic decomposition of the signal of interest has been popularized by many researchers. In this paper, Gabor wavelet configured in a 'rosette' fashion is used as a multi-channel filter-bank feature extractor for texture classification. The 'rosette' spans 360 degrees of orientation and covers frequencies from dc. In the proposed algorithm, the texture images are decomposed by the Gabor wavelet configuration and the feature vectors corresponding to the mean of the outputs of the multi-channel filters extracted. A minimum distance classifier is used in the classification procedure. As a comparison the Gabor filter has been used to classify the same texture images from the Brodatz album and the results indicate the superior discriminatory characteristics of the Gabor wavelet. With the test images used it can be concluded that the Gabor wavelet model is a better approximation of the cortical cell receptive field profiles.

  16. Discovering Wavelets

    CERN Document Server

    Aboufadel, Edward

    1999-01-01

    An accessible and practical introduction to wavelets. With applications in image processing, audio restoration, seismology, and elsewhere, wavelets have been the subject of growing excitement and interest over the past several years. Unfortunately, most books on wavelets are accessible primarily to research mathematicians. Discovering Wavelets presents basic and advanced concepts of wavelets in a way that is accessible to anyone with only a fundamental knowledge of linear algebra. The basic concepts of wavelet theory are introduced in the context of an explanation of how the FBI uses wavelets

  17. Construction and decomposition of biorthogonal vector-valued wavelets with compact support

    International Nuclear Information System (INIS)

    Chen Qingjiang; Cao Huaixin; Shi Zhi

    2009-01-01

    In this article, we introduce vector-valued multiresolution analysis and the biorthogonal vector-valued wavelets with four-scale. The existence of a class of biorthogonal vector-valued wavelets with compact support associated with a pair of biorthogonal vector-valued scaling functions with compact support is discussed. A method for designing a class of biorthogonal compactly supported vector-valued wavelets with four-scale is proposed by virtue of multiresolution analysis and matrix theory. The biorthogonality properties concerning vector-valued wavelet packets are characterized with the aid of time-frequency analysis method and operator theory. Three biorthogonality formulas regarding them are presented.

  18. Wavelets and their uses

    International Nuclear Information System (INIS)

    Dremin, Igor M; Ivanov, Oleg V; Nechitailo, Vladimir A

    2001-01-01

    This review paper is intended to give a useful guide for those who want to apply the discrete wavelet transform in practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to the corresponding literature. The multiresolution analysis and fast wavelet transform have become a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for the achievement of a goal. Analysis of various functions with the help of wavelets allows one to reveal fractal structures, singularities etc. The wavelet transform of operator expressions helps solve some equations. In practical applications one often deals with the discretized functions, and the problem of stability of the wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves to a few examples only. The authors would be grateful for any comments which would move us closer to the goal proclaimed in the first phrase of the abstract. (reviews of topical problems)

  19. Removing divergences in the negative moments of the multi-fractal parition function with the wavelet transformation

    NARCIS (Netherlands)

    Z.R. Struzik

    1998-01-01

    textabstractWe present a promising technique which is capable of accessing the divergence free component of the partition function for the negative moments of the multi-fractal analysis of data using the wavelet transformation. It is based on implicitly bounding the local logarithmic slope of the

  20. Wavelet-based linear-response time-dependent density-functional theory

    International Nuclear Information System (INIS)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.

    2012-01-01

    Highlights: ► We has been implemented LR-TD-DFT in the pseudopotential wavelet-based program. ► We have compared the results against all-electron Gaussian-type program. ► Orbital energies converges significantly faster for BigDFT than for DEMON2K. ► We report the X-ray crystal structure of the small organic molecule flugi6. ► Measured and calculated absorption spectrum of flugi6 is also reported. - Abstract: Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N 2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  1. Wavelet processing techniques for digital mammography

    Science.gov (United States)

    Laine, Andrew F.; Song, Shuwu

    1992-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  2. A New Alignment Method Based on The Wavelet Multi-Scale Cross-Correlation for Noisy High Resolution ECG Records

    National Research Council Canada - National Science Library

    Laciar, E

    2001-01-01

    ... between the wavelet transforms of the template and the detected beat, respectively. The wavelet and temporal methods were tested for several simulated records corrupted with white noise and electromyographic (EMG...

  3. De Broglie wavelets versus Schroedinger wave functions: A ribbon model approach to quantum theory and the mechanisms of quantum interference

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jau

    1996-02-01

    As an alternative to better physical explanations of the mechanisms of quantum interference and the origins of uncertainty broadening, a linear hopping model is proposed with ``color-varying`` dynamics to reflect fast exchange between time-reversed states. Intricate relations between this model, particle-wave dualism, and relativity are discussed. The wave function is shown to possess dual characteristics of a stable, localized ``soliton-like`` de Broglie wavelet and a delocalized, interfering Schroedinger carrier wave function.

  4. Wavelet coherence analysis: A new approach to distinguish organic and functional tremor types.

    Science.gov (United States)

    Kramer, G; Van der Stouwe, A M M; Maurits, N M; Tijssen, M A J; Elting, J W J

    2018-01-01

    To distinguish tremor subtypes using wavelet coherence analysis (WCA). WCA enables to detect variations in coherence and phase difference between two signals over time and might be especially useful in distinguishing functional from organic tremor. In this pilot study, polymyography recordings were studied retrospectively of 26 Parkinsonian (PT), 26 functional (FT), 26 essential (ET), and 20 enhanced physiological (EPT) tremor patients. Per patient one segment of 20 s in duration, in which tremor was present continuously in the same posture, was selected. We studied several coherence and phase related parameters, and analysed all possible muscle combinations of the flexor and extensor muscles of the upper and fore arm. The area under the receiver operating characteristic curve (AUC-ROC) was applied to compare WCA and standard coherence analysis to distinguish tremor subtypes. The percentage of time with significant coherence (PTSC) and the number of periods without significant coherence (NOV) proved the most discriminative parameters. FT could be discriminated from organic (PT, ET, EPT) tremor by high NOV (31.88 vs 21.58, 23.12 and 10.20 respectively) with an AUC-ROC of 0.809, while standard coherence analysis resulted in an AUC-ROC of 0.552. EMG-EMG WCA analysis might provide additional variables to distinguish functional from organic tremor. WCA might prove to be of additional value to discriminate between tremor types. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Bayesian demosaicing using Gaussian scale mixture priors with local adaptivity in the dual tree complex wavelet packet transform domain

    Science.gov (United States)

    Goossens, Bart; Aelterman, Jan; Luong, Hiep; Pizurica, Aleksandra; Philips, Wilfried

    2013-02-01

    In digital cameras and mobile phones, there is an ongoing trend to increase the image resolution, decrease the sensor size and to use lower exposure times. Because smaller sensors inherently lead to more noise and a worse spatial resolution, digital post-processing techniques are required to resolve many of the artifacts. Color filter arrays (CFAs), which use alternating patterns of color filters, are very popular because of price and power consumption reasons. However, color filter arrays require the use of a post-processing technique such as demosaicing to recover full resolution RGB images. Recently, there has been some interest in techniques that jointly perform the demosaicing and denoising. This has the advantage that the demosaicing and denoising can be performed optimally (e.g. in the MSE sense) for the considered noise model, while avoiding artifacts introduced when using demosaicing and denoising sequentially. In this paper, we will continue the research line of the wavelet-based demosaicing techniques. These approaches are computationally simple and very suited for combination with denoising. Therefore, we will derive Bayesian Minimum Squared Error (MMSE) joint demosaicing and denoising rules in the complex wavelet packet domain, taking local adaptivity into account. As an image model, we will use Gaussian Scale Mixtures, thereby taking advantage of the directionality of the complex wavelets. Our results show that this technique is well capable of reconstructing fine details in the image, while removing all of the noise, at a relatively low computational cost. In particular, the complete reconstruction (including color correction, white balancing etc) of a 12 megapixel RAW image takes 3.5 sec on a recent mid-range GPU.

  6. Multidimensional signaling via wavelet packets

    Science.gov (United States)

    Lindsey, Alan R.

    1995-04-01

    This work presents a generalized signaling strategy for orthogonally multiplexed communication. Wavelet packet modulation (WPM) employs the basis functions from an arbitrary pruning of a full dyadic tree structured filter bank as orthogonal pulse shapes for conventional QAM symbols. The multi-scale modulation (MSM) and M-band wavelet modulation (MWM) schemes which have been recently introduced are handled as special cases, with the added benefit of an entire library of potentially superior sets of basis functions. The figures of merit are derived and it is shown that the power spectral density is equivalent to that for QAM (in fact, QAM is another special case) and hence directly applicable in existing systems employing this standard modulation. Two key advantages of this method are increased flexibility in time-frequency partitioning and an efficient all-digital filter bank implementation, making the WPM scheme more robust to a larger set of interferences (both temporal and sinusoidal) and computationally attractive as well.

  7. Wavelet-based Characterization of Small-scale Solar Emission Features at Low Radio Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, A. [Indian Institute of Science Education and Research, Pune-411008 (India); Sharma, R.; Oberoi, D. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune 411007 (India); Das, S. B. [Indian Institute of Science Education and Research, Kolkata-741249 (India); Pankratius, V.; Lonsdale, C. J.; Cappallo, R. J.; Corey, B. E.; Kratzenberg, E. [MIT Haystack Observatory, Westford, MA 01886 (United States); Timar, B. [California Institute of Technology, Pasadena, CA 91125 (United States); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Deshpande, A. A. [Raman Research Institute, Bangalore 560080 (India); Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102 (Australia); Goeke, R. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Greenhill, L. J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Hazelton, B. J. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140 (New Zealand); Kaplan, D. L. [Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Kasper, J. C., E-mail: akshay@students.iiserpune.ac.in [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); and others

    2017-07-01

    Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence of numerous weak short-lived narrowband emission features, even during moderately quiet solar conditions. These nonthermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence necessarily require an automated approach for their detection and characterization. Here, we employ continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this approach and present the first statistically robust characterization of the properties of these features. In particular, we examine distributions of their peak flux densities, spectral spans, temporal spans, and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power law with an index of −2.23 in the 12–155 SFU range, implying that they can provide an energetically significant contribution to coronal and chromospheric heating. These features typically last for 1–2 s and possess bandwidths of about 4–5 MHz. Their occurrence rate remains fairly flat in the 140–210 MHz frequency range. At the time resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I bursts.

  8. Wavelet-based linear-response time-dependent density-functional theory

    Science.gov (United States)

    Natarajan, Bhaarathi; Genovese, Luigi; Casida, Mark E.; Deutsch, Thierry; Burchak, Olga N.; Philouze, Christian; Balakirev, Maxim Y.

    2012-06-01

    Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BIGDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program DEMON2K for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BIGDFT than for DEMON2K. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BIGDFT, while all virtual orbitals are included in TD-DFT calculations in DEMON2K. As a reality check, we report the X-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-amine.

  9. A wavelet phase filter for emission tomography

    International Nuclear Information System (INIS)

    Olsen, E.T.; Lin, B.

    1995-01-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2π). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods

  10. Application of wavelets to singular integral scattering equations

    International Nuclear Information System (INIS)

    Kessler, B.M.; Payne, G.L.; Polyzou, W.N.

    2004-01-01

    The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems

  11. Multiscale wavelet representations for mammographic feature analysis

    Science.gov (United States)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  12. Wavelet basics

    CERN Document Server

    Chan, Y T

    1995-01-01

    Since the study of wavelets is a relatively new area, much of the research coming from mathematicians, most of the literature uses terminology, concepts and proofs that may, at times, be difficult and intimidating for the engineer. Wavelet Basics has therefore been written as an introductory book for scientists and engineers. The mathematical presentation has been kept simple, the concepts being presented in elaborate detail in a terminology that engineers will find familiar. Difficult ideas are illustrated with examples which will also aid in the development of an intuitive insight. Chapter 1 reviews the basics of signal transformation and discusses the concepts of duals and frames. Chapter 2 introduces the wavelet transform, contrasts it with the short-time Fourier transform and clarifies the names of the different types of wavelet transforms. Chapter 3 links multiresolution analysis, orthonormal wavelets and the design of digital filters. Chapter 4 gives a tour d'horizon of topics of current interest: wave...

  13. Joint Time-Frequency And Wavelet Analysis - An Introduction

    Directory of Open Access Journals (Sweden)

    Majkowski Andrzej

    2014-12-01

    Full Text Available A traditional frequency analysis is not appropriate for observation of properties of non-stationary signals. This stems from the fact that the time resolution is not defined in the Fourier spectrum. Thus, there is a need for methods implementing joint time-frequency analysis (t/f algorithms. Practical aspects of some representative methods of time-frequency analysis, including Short Time Fourier Transform, Gabor Transform, Wigner-Ville Transform and Cone-Shaped Transform are described in this paper. Unfortunately, there is no correlation between the width of the time-frequency window and its frequency content in the t/f analysis. This property is not valid in the case of a wavelet transform. A wavelet is a wave-like oscillation, which forms its own “wavelet window”. Compression of the wavelet narrows the window, and vice versa. Individual wavelet functions are well localized in time and simultaneously in scale (the equivalent of frequency. The wavelet analysis owes its effectiveness to the pyramid algorithm described by Mallat, which enables fast decomposition of a signal into wavelet components.

  14. Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task

    Directory of Open Access Journals (Sweden)

    Noor Kamal Al-Qazzaz

    2015-11-01

    Full Text Available We performed a comparative study to select the efficient mother wavelet (MWT basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM task recorded through electro-encephalography (EEG. Nineteen EEG electrodes were placed on the scalp following the 10–20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1–db20, Symlets (sym1–sym20, and Coiflets (coif1–coif5. Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using “sym9” across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.

  15. Image Encryption Algorithm Based on a Novel Improper Fractional-Order Attractor and a Wavelet Function Map

    Directory of Open Access Journals (Sweden)

    Jian-feng Zhao

    2017-01-01

    Full Text Available This paper presents a three-dimensional autonomous chaotic system with high fraction dimension. It is noted that the nonlinear characteristic of the improper fractional-order chaos is interesting. Based on the continuous chaos and the discrete wavelet function map, an image encryption algorithm is put forward. The key space is formed by the initial state variables, parameters, and orders of the system. Every pixel value is included in secret key, so as to improve antiattack capability of the algorithm. The obtained simulation results and extensive security analyses demonstrate the high level of security of the algorithm and show its robustness against various types of attacks.

  16. Wavelet based comparison of high frequency oscillations in the geodetic and fluid excitation functions of polar motion

    Science.gov (United States)

    Kosek, W.; Popinski, W.; Niedzielski, T.

    2011-10-01

    It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.

  17. The wavelet analysis for the assessment of microvascular function with the laser Doppler fluxmetry over the last 20 years. Looking for hidden informations.

    Science.gov (United States)

    Martini, Romeo; Bagno, Andrea

    2018-04-14

    The wavelet analysis has been applied to the Laser Doppler Fluxmetry for assessing the frequency spectrum of the flowmotion to study the microvascular function waves.Although the application of wavelet analysis has allowed a detailed evaluation of the microvascular function, its use does not seem to be yet widespread over the last two decades.Aiming to improve the diffusion of this methodology, we herein present a systematic review of the literature about the application of the wavelet analysis to the laser Doppler fluxmetry signal. A computer research has been performed on PubMed and Scopus databases from January 1990 to December 2017. The used terms for the investigation have been "wavelet analysis", "wavelet transform analysis", "Morlet wavelet transform" along with the terms "laser Doppler", "laserdoppler" and/or "flowmetry" or "fluxmetry". One hundred and eighteen studies have been found. After the scrutiny, 97 studies reporting data on humans have been selected. Fifty-three studies, 54.0% (95% CI 44.2-63.6) pooled rate, have been performed on 892 healthy subjects and 44, 45,9 % (95% CI 36.3-55.7%) pooled rate have been performed on 1679 patients. No significant difference has been found between the two groups (p 0,81). On average, the number of studies published each year was 4.8 (95% CI 3.4-6.2). The trend of studies production has increased significantly from 1998 to 2017, (p 0.0006). But only the studies on patients have shown a significant increase trend along the years (p 0.0003), than the studies on healthy subjects (p 0.09).In conclusion, this review highlights that despite being a promising and interesting methodology for the study of the microcirculatory function, the wavelet analysis has remained still neglected.

  18. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer

    International Nuclear Information System (INIS)

    Jian, Han; Nan, Jiang

    2008-01-01

    Experimental measurement of hypersonic boundary layer stability and transition on a sharp cone with a half angle of 5° is carried out at free-coming stream Mach number 6 in a hypersonic wind tunnel. Mean and fluctuation surface-thermal-flux characteristics of the hypersonic boundary layer flow are measured by Pt-thin-film thermocouple temperature sensors installed at 28 stations on the cone surface along longitudinal direction. At hypersonic speeds, the dominant flow instabilities demonstrate that the growth rate of the second mode tends to exceed that of the low-frequency mode. Wavelet-based cross-spectrum technique is introduced to obtain the multi-scale cross-spectral characteristics of the fluctuating signals in the frequency range of the second mode. Nonlinear interactions both of the second mode disturbance and the first mode disturbance are demonstrated to be dominant instabilities in the initial stage of laminar-turbulence transition for hypersonic shear flow. (fundamental areas of phenomenology (including applications))

  19. A generalized wavelet extrema representation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jian; Lades, M.

    1995-10-01

    The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.

  20. Wavelet-Based Frequency Response Function: Comparative Study of Input Excitation

    Directory of Open Access Journals (Sweden)

    K. Dziedziech

    2014-01-01

    Full Text Available Time-variant systems can be found in many areas of engineering. It is widely accepted that the classical Fourier-based methods are not suitable for the analysis and identification of such systems. The time-variant frequency response function—based on the continuous wavelet transform—is used in this paper for the analysis of time-variant systems. The focus is on the comparative study of various broadband input excitations. The performance of the method is tested using simulated data from a simple MDOF system and experimental data from a frame-like structure.

  1. Generalized 3D Zernike functions for analytic construction of band-limited line-detecting wavelets

    OpenAIRE

    Janssen, Augustus J. E. M.

    2015-01-01

    We consider 3D versions of the Zernike polynomials that are commonly used in 2D in optics and lithography. We generalize the 3D Zernike polynomials to functions that vanish to a prescribed degree $\\alpha\\geq0$ at the rim of their supporting ball $\\rho\\leq1$. The analytic theory of the 3D generalized Zernike functions is developed, with attention for computational results for their Fourier transform, Funk and Radon transform, and scaling operations. The Fourier transform of generalized 3D Zern...

  2. Wavelet frames and their duals

    DEFF Research Database (Denmark)

    Lemvig, Jakob

    2008-01-01

    frames with good time localization and other attractive properties. Furthermore, the dual wavelet frames are constructed in such a way that we are guaranteed that both frames will have the same desirable features. The construction procedure works for any real, expansive dilation. A quasi-affine system....... The signals are then represented by linear combinations of the building blocks with coefficients found by an associated frame, called a dual frame. A wavelet frame is a frame where the building blocks are stretched (dilated) and translated versions of a single function; such a frame is said to have wavelet...... structure. The dilation of the wavelet building blocks in higher dimension is done via a square matrix which is usually taken to be integer valued. In this thesis we step away from the "usual" integer, expansive dilation and consider more general, expansive dilations. In most applications of wavelet frames...

  3. Wavelet-LMS algorithm-based echo cancellers

    Science.gov (United States)

    Seetharaman, Lalith K.; Rao, Sathyanarayana S.

    2002-12-01

    This paper presents Echo Cancellers based on the Wavelet-LMS Algorithm. The performance of the Least Mean Square Algorithm in Wavelet transform domain is observed and its application in Echo cancellation is analyzed. The Widrow-Hoff Least Mean Square Algorithm is most widely used algorithm for Adaptive filters that function as Echo Cancellers. The present day communication signals are widely non-stationary in nature and some errors crop up when Least Mean Square Algorithm is used for the Echo Cancellers handling such signals. The analysis of non-stationary signals often involves a compromise between how well transitions or discontinuities can be located. The multi-scale or multi-resolution of signal analysis, which is the essence of wavelet transform, makes Wavelets popular in non-stationary signal analysis. In this paper, we present a Wavelet-LMS algorithm wherein the wavelet coefficients of a signal are modified adaptively using the Least Mean Square Algorithm and then reconstructed to give an Echo-free signal. The Echo Canceller based on this Algorithm is found to have a better convergence and a comparatively lesser MSE (Mean Square error).

  4. Wavelet-based coherence between large-scale resting-state networks : neurodynamics marker for autism?

    NARCIS (Netherlands)

    Bernas, Antoine; Barendse, Evelien M; Zinger, Svitlana; Aldenkamp, Albert P.

    Neurodynamics is poorly understood and has raised interest of neuroscientists over the past decade. When a brain pathology cannot be described through structural or functional brain analyses, neurodynamics based descriptors might be the only option to understand a pathology and maybe predict its

  5. Properties of the Magnitude Terms of Orthogonal Scaling Functions.

    Science.gov (United States)

    Tay, Peter C; Havlicek, Joseph P; Acton, Scott T; Hossack, John A

    2010-09-01

    The spectrum of the convolution of two continuous functions can be determined as the continuous Fourier transform of the cross-correlation function. The same can be said about the spectrum of the convolution of two infinite discrete sequences, which can be determined as the discrete time Fourier transform of the cross-correlation function of the two sequences. In current digital signal processing, the spectrum of the contiuous Fourier transform and the discrete time Fourier transform are approximately determined by numerical integration or by densely taking the discrete Fourier transform. It has been shown that all three transforms share many analogous properties. In this paper we will show another useful property of determining the spectrum terms of the convolution of two finite length sequences by determining the discrete Fourier transform of the modified cross-correlation function. In addition, two properties of the magnitude terms of orthogonal wavelet scaling functions are developed. These properties are used as constraints for an exhaustive search to determine an robust lower bound on conjoint localization of orthogonal scaling functions.

  6. Time-localized wavelet multiple regression and correlation

    Science.gov (United States)

    Fernández-Macho, Javier

    2018-02-01

    This paper extends wavelet methodology to handle comovement dynamics of multivariate time series via moving weighted regression on wavelet coefficients. The concept of wavelet local multiple correlation is used to produce one single set of multiscale correlations along time, in contrast with the large number of wavelet correlation maps that need to be compared when using standard pairwise wavelet correlations with rolling windows. Also, the spectral properties of weight functions are investigated and it is argued that some common time windows, such as the usual rectangular rolling window, are not satisfactory on these grounds. The method is illustrated with a multiscale analysis of the comovements of Eurozone stock markets during this century. It is shown how the evolution of the correlation structure in these markets has been far from homogeneous both along time and across timescales featuring an acute divide across timescales at about the quarterly scale. At longer scales, evidence from the long-term correlation structure can be interpreted as stable perfect integration among Euro stock markets. On the other hand, at intramonth and intraweek scales, the short-term correlation structure has been clearly evolving along time, experiencing a sharp increase during financial crises which may be interpreted as evidence of financial 'contagion'.

  7. Wavelets as basis functions in electronic structure calculations; Les ondelettes comme fonction de base dans le calcul de structures electroniques

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, C

    2005-11-15

    This thesis is devoted to the definition and the implementation of a multi-resolution method to determine the fundamental state of a system composed of nuclei and electrons. In this work, we are interested in the Density Functional Theory (DFT), which allows to express the Hamiltonian operator with the electronic density only, by a Coulomb potential and a non-linear potential. This operator acts on orbitals, which are solutions of the so-called Kohn-Sham equations. Their resolution needs to express orbitals and density on a set of functions owing both physical and numerical properties, as explained in the second chapter. One can hardly satisfy these two properties simultaneously, that is why we are interested in orthogonal and bi-orthogonal wavelets basis, whose properties of interpolation are presented in the third chapter. We present in the fourth chapter three dimensional solvers for the Coulomb's potential, using not only the preconditioning property of wavelets, but also a multigrid algorithm. Determining this potential allows us to solve the self-consistent Kohn-Sham equations, by an algorithm presented in chapter five. The originality of our method consists in the construction of the stiffness matrix, combining a Galerkin formulation and a collocation scheme. We analyse the approximation properties of this method in case of linear Hamiltonian, such as harmonic oscillator and hydrogen, and present convergence results of the DFT for small electrons. Finally we show how orbital compression reduces considerably the number of coefficients to keep, while preserving a good accuracy of the fundamental energy. (author)

  8. The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH-BEKK model

    Science.gov (United States)

    Liu, Xueyong; An, Haizhong; Huang, Shupei; Wen, Shaobo

    2017-01-01

    Aiming to investigate the evolution of mean and volatility spillovers between oil and stock markets in the time and frequency dimensions, we employed WTI crude oil prices, the S&P 500 (USA) index and the MICEX index (Russia) for the period Jan. 2003-Dec. 2014 as sample data. We first applied a wavelet-based GARCH-BEKK method to examine the spillover features in frequency dimension. To consider the evolution of spillover effects in time dimension at multiple-scales, we then divided the full sample period into three sub-periods, pre-crisis period, crisis period, and post-crisis period. The results indicate that spillover effects vary across wavelet scales in terms of strength and direction. By analysis the time-varying linkage, we found the different evolution features of spillover effects between the Oil-US stock market and Oil-Russia stock market. The spillover relationship between oil and US stock market is shifting to short-term while the spillover relationship between oil and Russia stock market is changing to all time scales. That result implies that the linkage between oil and US stock market is weakening in the long-term, and the linkage between oil and Russia stock market is getting close in all time scales. This may explain the phenomenon that the US stock index and the Russia stock index showed the opposite trend with the falling of oil price in the post-crisis period.

  9. Boosted bosons and wavelets

    CERN Document Server

    Søgaard, Andreas

    For the LHC Run 2 and beyond, experiments are pushing both the energy and the intensity frontier so the need for robust and efficient pile-up mitigation tools becomes ever more pressing. Several methods exist, relying on uniformity of pile-up, local correlations of charged to neutral particles, and parton shower shapes, all in $y − \\phi$ space. Wavelets are presented as tools for pile-up removal, utilising their ability to encode position and frequency information simultaneously. This allows for the separation of individual hadron collision events by angular scale and thus for subtracting of soft, diffuse/wide-angle contributions while retaining the hard, small-angle components from the hard event. Wavelet methods may utilise the same assumptions as existing methods, the difference being the underlying, novel representation. Several wavelet methods are proposed and their effect studied in simple toy simulation under conditions relevant for the LHC Run 2. One full pile-up mitigation tool (‘wavelet analysis...

  10. Certain problems concerning wavelets and wavelets packets

    International Nuclear Information System (INIS)

    Siddiqi, A.H.

    1995-09-01

    Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs

  11. Certain problems concerning wavelets and wavelets packets

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqi, A H

    1995-09-01

    Wavelets is the outcome of the synthesis of ideas that have emerged in different branches of science and technology, mainly in the last decade. The concept of wavelet packets, which are superpositions of wavelets, has been introduced a couple of years ago. They form bases which retain many properties of wavelets like orthogonality, smoothness and localization. The Walsh orthornomal system is a special case of wavelet packet. The wavelet packets provide at our disposal a library of orthonormal bases, each of which can be used to analyze a given signal of finite energy. The optimal choice is decided by the entropy criterion. In the present paper we discuss results concerning convergence, coefficients, and approximation of wavelet packets series in general and wavelets series in particular. Wavelet packet techniques for solutions of differential equations are also mentioned. (author). 117 refs.

  12. A dynamically adaptive wavelet approach to stochastic computations based on polynomial chaos - capturing all scales of random modes on independent grids

    International Nuclear Information System (INIS)

    Ren Xiaoan; Wu Wenquan; Xanthis, Leonidas S.

    2011-01-01

    Highlights: → New approach for stochastic computations based on polynomial chaos. → Development of dynamically adaptive wavelet multiscale solver using space refinement. → Accurate capture of steep gradients and multiscale features in stochastic problems. → All scales of each random mode are captured on independent grids. → Numerical examples demonstrate the need for different space resolutions per mode. - Abstract: In stochastic computations, or uncertainty quantification methods, the spectral approach based on the polynomial chaos expansion in random space leads to a coupled system of deterministic equations for the coefficients of the expansion. The size of this system increases drastically when the number of independent random variables and/or order of polynomial chaos expansions increases. This is invariably the case for large scale simulations and/or problems involving steep gradients and other multiscale features; such features are variously reflected on each solution component or random/uncertainty mode requiring the development of adaptive methods for their accurate resolution. In this paper we propose a new approach for treating such problems based on a dynamically adaptive wavelet methodology involving space-refinement on physical space that allows all scales of each solution component to be refined independently of the rest. We exemplify this using the convection-diffusion model with random input data and present three numerical examples demonstrating the salient features of the proposed method. Thus we establish a new, elegant and flexible approach for stochastic problems with steep gradients and multiscale features based on polynomial chaos expansions.

  13. From Fourier analysis to wavelets

    CERN Document Server

    Gomes, Jonas

    2015-01-01

    This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints.  Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform.  The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets.  Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis.  Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.

  14. Experimental study on the crack detection with optimized spatial wavelet analysis and windowing

    Science.gov (United States)

    Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine

    2018-05-01

    In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.

  15. A method for identifying gas-liquid two-phase flow patterns on the basis of wavelet packet multi-scale information entropy and HMM

    International Nuclear Information System (INIS)

    Zhou Yunlong; Zhang Xueqing; Gao Yunpeng; Cheng Yue

    2009-01-01

    For studying flow regimes of gas/liquid two-phase in a vertical upward pipe, the conductance fluctuation information of four typical flow regimes was collected by a measuring the system with self-made multiple conductivity probes. Owing to the non-stationarity of conductance fluctuation signals of gas-liquid two-phase flow, a kind of' flow regime identification method based on wavelet packet Multi-scale Information Entropy and Hidden Markov Model (HMM) was put forward. First of all, the collected conductance fluctuation signals were decomposed into eight different frequency bands signals. Secondly, the wavelet packet multi-scale information entropy of different frequency bands signals were regarded as the input characteristic vectors of all states HMM which had been trained. In the end the regime identification of' the gas-liquid two-phase flow could be performed. The study showed that the method that HMM was applied to identify the flow regime was superior to the one that BP neural network was used, and the results proved that the method was efficient and feasible. (authors)

  16. Functional nanometer-scale structures

    Science.gov (United States)

    Chan, Tsz On Mario

    Nanometer-scale structures have properties that are fundamentally different from their bulk counterparts. Much research effort has been devoted in the past decades to explore new fabrication techniques, model the physical properties of these structures, and construct functional devices. The ability to manipulate and control the structure of matter at the nanoscale has made many new classes of materials available for the study of fundamental physical processes and potential applications. The interplay between fabrication techniques and physical understanding of the nanostructures and processes has revolutionized the physical and material sciences, providing far superior properties in materials for novel applications that benefit society. This thesis consists of two major aspects of my graduate research in nano-scale materials. In the first part (Chapters 3--6), a comprehensive study on the nanostructures based on electrospinning and thermal treatment is presented. Electrospinning is a well-established method for producing high-aspect-ratio fibrous structures, with fiber diameter ranging from 1 nm--1 microm. A polymeric solution is typically used as a precursor in electrospinning. In our study, the functionality of the nanostructure relies on both the nanostructure and material constituents. Metallic ions containing precursors were added to the polymeric precursor following a sol-gel process to prepare the solution suitable for electrospinning. A typical electrospinning process produces as-spun fibers containing both polymer and metallic salt precursors. Subsequent thermal treatments of the as-spun fibers were carried out in various conditions to produce desired structures. In most cases, polymer in the solution and the as-spun fibers acted as a backbone for the structure formation during the subsequent heat treatment, and were thermally removed in the final stage. Polymers were also designed to react with the metallic ion precursors during heat treatment in some

  17. Method for Car in Dangerous Action Detection by Means of Wavelet Multi Resolution Analysis Based on Appropriate Support Length of Base Function

    OpenAIRE

    Kohei Arai; Tomoko Nishikawa

    2013-01-01

    Multi-Resolution Analysis: MRA based on the mother wavelet function with which support length differs from the image of the automobile rear under run is performed, and the run characteristic of a car is searched for. Speed, deflection, etc. are analyzed and the method of detecting vehicles with high accident danger is proposed. The experimental results show that vehicles in a dangerous action can be detected by the proposed method.

  18. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    International Nuclear Information System (INIS)

    Kingsbury, J Ng and N G

    2004-01-01

    This book provides an overview of the theory and practice of continuous and discrete wavelet transforms. Divided into seven chapters, the first three chapters of the book are introductory, describing the various forms of the wavelet transform and their computation, while the remaining chapters are devoted to applications in fluids, engineering, medicine and miscellaneous areas. Each chapter is well introduced, with suitable examples to demonstrate key concepts. Illustrations are included where appropriate, thus adding a visual dimension to the text. A noteworthy feature is the inclusion, at the end of each chapter, of a list of further resources from the academic literature which the interested reader can consult. The first chapter is purely an introduction to the text. The treatment of wavelet transforms begins in the second chapter, with the definition of what a wavelet is. The chapter continues by defining the continuous wavelet transform and its inverse and a description of how it may be used to interrogate signals. The continuous wavelet transform is then compared to the short-time Fourier transform. Energy and power spectra with respect to scale are also discussed and linked to their frequency counterparts. Towards the end of the chapter, the two-dimensional continuous wavelet transform is introduced. Examples of how the continuous wavelet transform is computed using the Mexican hat and Morlet wavelets are provided throughout. The third chapter introduces the discrete wavelet transform, with its distinction from the discretized continuous wavelet transform having been made clear at the end of the second chapter. In the first half of the chapter, the logarithmic discretization of the wavelet function is described, leading to a discussion of dyadic grid scaling, frames, orthogonal and orthonormal bases, scaling functions and multiresolution representation. The fast wavelet transform is introduced and its computation is illustrated with an example using the Haar

  19. Validation of the Early Functional Abilities scale

    DEFF Research Database (Denmark)

    Poulsen, Ingrid; Kreiner, Svend; Engberg, Aase W

    2018-01-01

    model item analysis. A secondary objective was to examine the relationship between the Early Functional Abilities scale and the Functional Independence Measurement™, in order to establish the criterion validity of the Early Functional Abilities scale and to compare the sensitivity of measurements using......), facio-oral, sensorimotor and communicative/cognitive functions. Removal of one item from the sensorimotor scale confirmed unidimensionality for each of the 4 subscales, but not for the entire scale. The Early Functional Abilities subscales are sensitive to differences between patients in ranges in which......OBJECTIVE: The Early Functional Abilities scale assesses the restoration of brain function after brain injury, based on 4 dimensions. The primary objective of this study was to evaluate the validity, objectivity, reliability and measurement precision of the Early Functional Abilities scale by Rasch...

  20. In-vivo assessment of microvascular functional dynamics by combination of cmOCT and wavelet transform

    Science.gov (United States)

    Smirni, Salvatore; MacDonald, Michael P.; Robertson, Catherine P.; McNamara, Paul M.; O'Gorman, Sean; Leahy, Martin J.; Khan, Faisel

    2018-02-01

    The cutaneous microcirculation represents an index of the health status of the cardiovascular system. Conventional methods to evaluate skin microvascular function are based on measuring blood flow by laser Doppler in combination with reactive tests such as post-occlusive reactive hyperaemia (PORH). Moreover, the spectral analysis of blood flow signals by continuous wavelet transform (CWT) reveals nonlinear oscillations reflecting the functionality of microvascular biological factors, e.g. endothelial cells (ECs). Correlation mapping optical coherence tomography (cmOCT) has been previously described as an efficient methodology for the morphological visualisation of cutaneous micro-vessels. Here, we show that cmOCT flow maps can also provide information on the functional components of the microcirculation. A spectral domain optical coherence tomography (SD-OCT) imaging system was used to acquire 90 sequential 3D OCT volumes from the forearm of a volunteer, while challenging the micro-vessels with a PORH test. The volumes were sampled in a temporal window of 25 minutes, and were processed by cmOCT to obtain flow maps at different tissue depths. The images clearly show changes of flow in response to the applied stimulus. Furthermore, a blood flow signal was reconstructed from cmOCT maps intensities to investigate the microvascular nonlinear dynamics by CWT. The analysis revealed oscillations changing in response to PORH, associated with the activity of ECs and the sympathetic innervation. The results demonstrate that cmOCT may be potentially used as diagnostic tool for the assessment of microvascular function, with the advantage of also providing spatial resolution and structural information compared to the traditional laser Doppler techniques.

  1. [Application of wavelet transform-radial basis function neural network in NIRS for determination of rifampicin and isoniazide tablets].

    Science.gov (United States)

    Lu, Jia-hui; Zhang, Yi-bo; Zhang, Zhuo-yong; Meng, Qing-fan; Guo, Wei-liang; Teng, Li-rong

    2008-06-01

    A calibration model (WT-RBFNN) combination of wavelet transform (WT) and radial basis function neural network (RBFNN) was proposed for synchronous and rapid determination of rifampicin and isoniazide in Rifampicin and Isoniazide tablets by near infrared reflectance spectroscopy (NIRS). The approximation coefficients were used for input data in RBFNN. The network parameters including the number of hidden layer neurons and spread constant (SC) were investigated. WT-RBFNN model which compressed the original spectra data, removed the noise and the interference of background, and reduced the randomness, the capabilities of prediction were well optimized. The root mean square errors of prediction (RMSEP) for the determination of rifampicin and isoniazide obtained from the optimum WT-RBFNN model are 0.00639 and 0.00587, and the root mean square errors of cross-calibration (RMSECV) for them are 0.00604 and 0.00457, respectively which are superior to those obtained by the optimum RBFNN and PLS models. Regression coefficient (R) between NIRS predicted values and RP-HPLC values for rifampicin and isoniazide are 0.99522 and 0.99392, respectively and the relative error is lower than 2.300%. It was verified that WT-RBFNN model is a suitable approach to dealing with NIRS. The proposed WT-RBFNN model is convenient, and rapid and with no pollution for the determination of rifampicin and isoniazide tablets.

  2. Built-Up Area Detection from High-Resolution Satellite Images Using Multi-Scale Wavelet Transform and Local Spatial Statistics

    Science.gov (United States)

    Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.

    2018-04-01

    Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.

  3. The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    Energy Technology Data Exchange (ETDEWEB)

    Kingsbury, J Ng and N G [Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2004-02-06

    This book provides an overview of the theory and practice of continuous and discrete wavelet transforms. Divided into seven chapters, the first three chapters of the book are introductory, describing the various forms of the wavelet transform and their computation, while the remaining chapters are devoted to applications in fluids, engineering, medicine and miscellaneous areas. Each chapter is well introduced, with suitable examples to demonstrate key concepts. Illustrations are included where appropriate, thus adding a visual dimension to the text. A noteworthy feature is the inclusion, at the end of each chapter, of a list of further resources from the academic literature which the interested reader can consult. The first chapter is purely an introduction to the text. The treatment of wavelet transforms begins in the second chapter, with the definition of what a wavelet is. The chapter continues by defining the continuous wavelet transform and its inverse and a description of how it may be used to interrogate signals. The continuous wavelet transform is then compared to the short-time Fourier transform. Energy and power spectra with respect to scale are also discussed and linked to their frequency counterparts. Towards the end of the chapter, the two-dimensional continuous wavelet transform is introduced. Examples of how the continuous wavelet transform is computed using the Mexican hat and Morlet wavelets are provided throughout. The third chapter introduces the discrete wavelet transform, with its distinction from the discretized continuous wavelet transform having been made clear at the end of the second chapter. In the first half of the chapter, the logarithmic discretization of the wavelet function is described, leading to a discussion of dyadic grid scaling, frames, orthogonal and orthonormal bases, scaling functions and multiresolution representation. The fast wavelet transform is introduced and its computation is illustrated with an example using the Haar

  4. Wavelet transform analysis of transient signals: the seismogram and the electrocardiogram

    Energy Technology Data Exchange (ETDEWEB)

    Anant, K.S.

    1997-06-01

    In this dissertation I quantitatively demonstrate how the wavelet transform can be an effective mathematical tool for the analysis of transient signals. The two key signal processing applications of the wavelet transform, namely feature identification and representation (i.e., compression), are shown by solving important problems involving the seismogram and the electrocardiogram. The seismic feature identification problem involved locating in time the P and S phase arrivals. Locating these arrivals accurately (particularly the S phase) has been a constant issue in seismic signal processing. In Chapter 3, I show that the wavelet transform can be used to locate both the P as well as the S phase using only information from single station three-component seismograms. This is accomplished by using the basis function (wave-let) of the wavelet transform as a matching filter and by processing information across scales of the wavelet domain decomposition. The `pick` time results are quite promising as compared to analyst picks. The representation application involved the compression of the electrocardiogram which is a recording of the electrical activity of the heart. Compression of the electrocardiogram is an important problem in biomedical signal processing due to transmission and storage limitations. In Chapter 4, I develop an electrocardiogram compression method that applies vector quantization to the wavelet transform coefficients. The best compression results were obtained by using orthogonal wavelets, due to their ability to represent a signal efficiently. Throughout this thesis the importance of choosing wavelets based on the problem at hand is stressed. In Chapter 5, I introduce a wavelet design method that uses linear prediction in order to design wavelets that are geared to the signal or feature being analyzed. The use of these designed wavelets in a test feature identification application led to positive results. The methods developed in this thesis; the

  5. Wavelet based analysis of multi-electrode EEG-signals in epilepsy

    Science.gov (United States)

    Hein, Daniel A.; Tetzlaff, Ronald

    2005-06-01

    For many epilepsy patients seizures cannot sufficiently be controlled by an antiepileptic pharmacatherapy. Furthermore, only in small number of cases a surgical treatment may be possible. The aim of this work is to contribute to the realization of an implantable seizure warning device. By using recordings of electroenzephalographical(EEG) signals obtained from the department of epileptology of the University of Bonn we studied a recently proposed algorithm for the detection of parameter changes in nonlinear systems. Firstly, after calculating the crosscorrelation function between the signals of two electrodes near the epileptic focus, a wavelet-analysis follows using a sliding window with the so called Mexican-Hat wavelet. Then the Shannon-Entropy of the wavelet-transformed data has been determined providing the information content on a time scale in subject to the dilation of the wavelet-transformation. It shows distinct changes at the seizure onset for all dilations and for all patients.

  6. Wavelets in medical imaging

    International Nuclear Information System (INIS)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-01-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  7. Wavelets in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H. [Sharda University, SET, Department of Electronics and Communication, Knowledge Park 3rd, Gr. Noida (India); University of Kocaeli, Department of Mathematics, 41380 Kocaeli (Turkey); Istanbul Aydin University, Department of Computer Engineering, 34295 Istanbul (Turkey); Sharda University, SET, Department of Mathematics, 32-34 Knowledge Park 3rd, Greater Noida (India)

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  8. A novel image fusion algorithm based on 2D scale-mixing complex wavelet transform and Bayesian MAP estimation for multimodal medical images

    Directory of Open Access Journals (Sweden)

    Abdallah Bengueddoudj

    2017-05-01

    Full Text Available In this paper, we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform (2D-SMCWT. The fusion of the detail 2D-SMCWT coefficients is performed via a Bayesian Maximum a Posteriori (MAP approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients. For the approximation coefficients, a new fusion rule based on the Principal Component Analysis (PCA is applied. We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method. The obtained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics. Robustness of the proposed method is further tested against different types of noise. The plots of fusion metrics establish the accuracy of the proposed fusion method.

  9. Generalized 3D Zernike functions for analytic construction of band-limited line-detecting wavelets

    NARCIS (Netherlands)

    Janssen, A.J.E.M.

    2015-01-01

    We consider 3D versions of the Zernike polynomials that are commonly used in 2D in optics and lithography. We generalize the 3D Zernike polynomials to functions that vanish to a prescribed degree $\\alpha\\geq0$ at the rim of their supporting ball $\\rho\\leq1$. The analytic theory of the 3D generalized

  10. WAVELET TRANSFORM AND LIP MODEL

    Directory of Open Access Journals (Sweden)

    Guy Courbebaisse

    2011-05-01

    Full Text Available The Fourier transform is well suited to the study of stationary functions. Yet, it is superseded by the Wavelet transform for the powerful characterizations of function features such as singularities. On the other hand, the LIP (Logarithmic Image Processing model is a mathematical framework developed by Jourlin and Pinoli, dedicated to the representation and processing of gray tones images called hereafter logarithmic images. This mathematically well defined model, comprising a Fourier Transform "of its own", provides an effective tool for the representation of images obtained by transmitted light, such as microscope images. This paper presents a Wavelet transform within the LIP framework, with preservation of the classical Wavelet Transform properties. We show that the fast computation algorithm due to Mallat can be easily used. An application is given for the detection of crests.

  11. Wavelet analysis of polarization maps of polycrystalline biological fluids networks

    Science.gov (United States)

    Ushenko, Y. A.

    2011-12-01

    The optical model of human joints synovial fluid is proposed. The statistic (statistic moments), correlation (autocorrelation function) and self-similar (Log-Log dependencies of power spectrum) structure of polarization two-dimensional distributions (polarization maps) of synovial fluid has been analyzed. It has been shown that differentiation of polarization maps of joint synovial fluid with different physiological state samples is expected of scale-discriminative analysis. To mark out of small-scale domain structure of synovial fluid polarization maps, the wavelet analysis has been used. The set of parameters, which characterize statistic, correlation and self-similar structure of wavelet coefficients' distributions of different scales of polarization domains for diagnostics and differentiation of polycrystalline network transformation connected with the pathological processes, has been determined.

  12. A CMOS Morlet Wavelet Generator

    Directory of Open Access Journals (Sweden)

    A. I. Bautista-Castillo

    2017-04-01

    Full Text Available The design and characterization of a CMOS circuit for Morlet wavelet generation is introduced. With the proposed Morlet wavelet circuit, it is possible to reach a~low power consumption, improve standard deviation (σ control and also have a small form factor. A prototype in a double poly, three metal layers, 0.5 µm CMOS process from MOSIS foundry was carried out in order to verify the functionality of the proposal. However, the design methodology can be extended to different CMOS processes. According to the performance exhibited by the circuit, may be useful in many different signal processing tasks such as nonlinear time-variant systems.

  13. Adaptive Wavelet Transforms

    Energy Technology Data Exchange (ETDEWEB)

    Szu, H.; Hsu, C. [Univ. of Southwestern Louisiana, Lafayette, LA (United States)

    1996-12-31

    Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.

  14. Parsimonious Wavelet Kernel Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Wang Qin

    2015-11-01

    Full Text Available In this study, a parsimonious scheme for wavelet kernel extreme learning machine (named PWKELM was introduced by combining wavelet theory and a parsimonious algorithm into kernel extreme learning machine (KELM. In the wavelet analysis, bases that were localized in time and frequency to represent various signals effectively were used. Wavelet kernel extreme learning machine (WELM maximized its capability to capture the essential features in “frequency-rich” signals. The proposed parsimonious algorithm also incorporated significant wavelet kernel functions via iteration in virtue of Householder matrix, thus producing a sparse solution that eased the computational burden and improved numerical stability. The experimental results achieved from the synthetic dataset and a gas furnace instance demonstrated that the proposed PWKELM is efficient and feasible in terms of improving generalization accuracy and real time performance.

  15. BOOK REVIEW: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    Science.gov (United States)

    Ng, J.; Kingsbury, N. G.

    2004-02-01

    This book provides an overview of the theory and practice of continuous and discrete wavelet transforms. Divided into seven chapters, the first three chapters of the book are introductory, describing the various forms of the wavelet transform and their computation, while the remaining chapters are devoted to applications in fluids, engineering, medicine and miscellaneous areas. Each chapter is well introduced, with suitable examples to demonstrate key concepts. Illustrations are included where appropriate, thus adding a visual dimension to the text. A noteworthy feature is the inclusion, at the end of each chapter, of a list of further resources from the academic literature which the interested reader can consult. The first chapter is purely an introduction to the text. The treatment of wavelet transforms begins in the second chapter, with the definition of what a wavelet is. The chapter continues by defining the continuous wavelet transform and its inverse and a description of how it may be used to interrogate signals. The continuous wavelet transform is then compared to the short-time Fourier transform. Energy and power spectra with respect to scale are also discussed and linked to their frequency counterparts. Towards the end of the chapter, the two-dimensional continuous wavelet transform is introduced. Examples of how the continuous wavelet transform is computed using the Mexican hat and Morlet wavelets are provided throughout. The third chapter introduces the discrete wavelet transform, with its distinction from the discretized continuous wavelet transform having been made clear at the end of the second chapter. In the first half of the chapter, the logarithmic discretization of the wavelet function is described, leading to a discussion of dyadic grid scaling, frames, orthogonal and orthonormal bases, scaling functions and multiresolution representation. The fast wavelet transform is introduced and its computation is illustrated with an example using the Haar

  16. Multi-scale coding of genomic information: From DNA sequence to genome structure and function

    International Nuclear Information System (INIS)

    Arneodo, Alain; Vaillant, Cedric; Audit, Benjamin; Argoul, Francoise; D'Aubenton-Carafa, Yves; Thermes, Claude

    2011-01-01

    Understanding how chromatin is spatially and dynamically organized in the nucleus of eukaryotic cells and how this affects genome functions is one of the main challenges of cell biology. Since the different orders of packaging in the hierarchical organization of DNA condition the accessibility of DNA sequence elements to trans-acting factors that control the transcription and replication processes, there is actually a wealth of structural and dynamical information to learn in the primary DNA sequence. In this review, we show that when using concepts, methodologies, numerical and experimental techniques coming from statistical mechanics and nonlinear physics combined with wavelet-based multi-scale signal processing, we are able to decipher the multi-scale sequence encoding of chromatin condensation-decondensation mechanisms that play a fundamental role in regulating many molecular processes involved in nuclear functions.

  17. Quantum dynamics and electronic spectroscopy within the framework of wavelets

    International Nuclear Information System (INIS)

    Toutounji, Mohamad

    2013-01-01

    This paper serves as a first-time report on formulating important aspects of electronic spectroscopy and quantum dynamics in condensed harmonic systems using the framework of wavelets, and a stepping stone to our future work on developing anharmonic wavelets. The Morlet wavelet is taken to be the mother wavelet for the initial state of the system of interest. This work reports daughter wavelets that may be used to study spectroscopy and dynamics of harmonic systems. These wavelets are shown to arise naturally upon optical electronic transition of the system of interest. Natural birth of basis (daughter) wavelets emerging on exciting an electronic two-level system coupled, both linearly and quadratically, to harmonic phonons is discussed. It is shown that this takes place through using the unitary dilation and translation operators, which happen to be part of the time evolution operator of the final electronic state. The corresponding optical autocorrelation function and linear absorption spectra are calculated to test the applicability and correctness of the herein results. The link between basis wavelets and the Liouville space generating function is established. An anharmonic mother wavelet is also proposed in the case of anharmonic electron–phonon coupling. A brief description of deriving anharmonic wavelets and the corresponding anharmonic Liouville space generating function is explored. In conclusion, a mother wavelet (be it harmonic or anharmonic) which accounts for Duschinsky mixing is suggested. (paper)

  18. Scaling function, spectral function and nucleon momentum distribution in nuclei

    International Nuclear Information System (INIS)

    Antonov, A.N.; Ivanov, M.V.; Caballero, J.A.; Barbaro, M.B.; Udias, J.M.; Moya de Guerra, E.; Donnelly, T.W.

    2010-01-01

    The aim of the study is to find a good simultaneous description of the spectral function and the momentum distribution in relation to the realistic scaling function obtained from inclusive electron-nuclei scattering experiments. We start with a modified Hartree-Fock spectral function in which the energy dependent part (δ-function) is replaced by the Gaussian distributions with hole state widths as free parameters. We calculate the scaling function and the nucleon momentum distribution on the basis of the spectral function constructed in this way, trying to find a good description of the experimental data. The obtained scaling function has a weak asymmetry and the momentum distribution has not got a high-momentum tail in the case when harmonic-oscillator single-particle wave functions are used. So, to improve the behavior of the momentum distribution we used the basis of natural orbitals (NO) in which short-range correlations are partly incorporated. The results for the scaling function show again a weak asymmetry, but in this case the momentum distribution has a high-momentum tail. As a next step we include final-state interactions (FSI) in the calculations to reproduce the experimentally observed asymmetry of the scaling function. (author)

  19. Multi-function nuclear weight scale system

    International Nuclear Information System (INIS)

    Zheng Mingquan; Sun Jinhua; Jia Changchun; Wang Mingqian; Tang Ke

    1998-01-01

    The author introduces the methods to contrive the hardware and software of a Multi-function Nuclear Weight Scale System based on the communication contract in compliance with RS485 between a master (industrial control computer 386) and a slave (single chip 8098) and its main functions

  20. Application of Shannon Wavelet Entropy and Shannon Wavelet Packet Entropy in Analysis of Power System Transient Signals

    Directory of Open Access Journals (Sweden)

    Jikai Chen

    2016-12-01

    Full Text Available In a power system, the analysis of transient signals is the theoretical basis of fault diagnosis and transient protection theory. Shannon wavelet entropy (SWE and Shannon wavelet packet entropy (SWPE are powerful mathematics tools for transient signal analysis. Combined with the recent achievements regarding SWE and SWPE, their applications are summarized in feature extraction of transient signals and transient fault recognition. For wavelet aliasing at adjacent scale of wavelet decomposition, the impact of wavelet aliasing is analyzed for feature extraction accuracy of SWE and SWPE, and their differences are compared. Meanwhile, the analyses mentioned are verified by partial discharge (PD feature extraction of power cable. Finally, some new ideas and further researches are proposed in the wavelet entropy mechanism, operation speed and how to overcome wavelet aliasing.

  1. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    Science.gov (United States)

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  2. Inflation and wavelets for the icosahedral Danzer tiling

    International Nuclear Information System (INIS)

    Kramer, Peter; Andrle, Miroslav

    2004-01-01

    The distribution of atoms in quasi-crystals lacks periodicity and displays point symmetry associated with non-crystallographic modules. Often it can be described by quasi-periodic tilings on R 3 built from a finite number of prototiles. The modules and the canonical tilings of five-fold and icosahedral point symmetry admit inflation symmetry. In the simplest case of stone inflation, any prototile when scaled by the golden section number τ can be packed from unscaled prototiles. Observables supported on R 3 for quasi-crystals require symmetry-adapted function spaces. We construct wavelet bases on R 3 for the icosahedral Danzer tiling. The stone inflation of the four Danzer prototiles is given explicitly in terms of Euclidean group operations acting on R 3 . By acting with the unitary representations inverse to these operations on the characteristic functions of the prototiles, we recursively provide a full orthogonal wavelet basis of R 3 . It incorporates the icosahedral and inflation symmetry

  3. Quasi-wavelet formulations of turbulence and wave scattering

    DEFF Research Database (Denmark)

    Wilson, D. Keith; Ott, Søren; Goedecke, George H.

    2009-01-01

    Quasi-wavelets (QWs) are eddy-like entities similar to customary wavelets in the sense that they are based on translations and dilations of a spatially localized parent function. The positions and orientations are, however, normally taken to be random. Random fields such as turbulence may...... types of QWs and couplings, suitable for various applicatons, can be constructed through differentiation of spherically symmetric parent functions. For velocity fluctuations, QWs with toroidal and poloidal circulations can be derived. (2) Self-similar ensembles of QWs with rotation rates scaling...... to Fourier modes, QWs can be naturally arranged in a spatially intermittent manner. Models for both local (intrinsic) and global intermittency are discussed. (5) The spatially localized nature of QWs can be advantageous in wave-scattering calculations and other applications....

  4. Linear scaling of density functional algorithms

    International Nuclear Information System (INIS)

    Stechel, E.B.; Feibelman, P.J.; Williams, A.R.

    1993-01-01

    An efficient density functional algorithm (DFA) that scales linearly with system size will revolutionize electronic structure calculations. Density functional calculations are reliable and accurate in determining many condensed matter and molecular ground-state properties. However, because current DFA's, including methods related to that of Car and Parrinello, scale with the cube of the system size, density functional studies are not routinely applied to large systems. Linear scaling is achieved by constructing functions that are both localized and fully occupied, thereby eliminating the need to calculate global eigenfunctions. It is, however, widely believed that exponential localization requires the existence of an energy gap between the occupied and unoccupied states. Despite this, the authors demonstrate that linear scaling can still be achieved for metals. Using a linear scaling algorithm, they have explicitly constructed localized, almost fully occupied orbitals for the quintessential metallic system, jellium. The algorithm is readily generalizable to any system geometry and Hamiltonian. They will discuss the conceptual issues involved, convergence properties and scaling for their new algorithm

  5. Visibility of wavelet quantization noise

    Science.gov (United States)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  6. Fruit Classification by Wavelet-Entropy and Feedforward Neural Network Trained by Fitness-Scaled Chaotic ABC and Biogeography-Based Optimization

    Directory of Open Access Journals (Sweden)

    Shuihua Wang

    2015-08-01

    Full Text Available Fruit classification is quite difficult because of the various categories and similar shapes and features of fruit. In this work, we proposed two novel machine-learning based classification methods. The developed system consists of wavelet entropy (WE, principal component analysis (PCA, feedforward neural network (FNN trained by fitness-scaled chaotic artificial bee colony (FSCABC and biogeography-based optimization (BBO, respectively. The K-fold stratified cross validation (SCV was utilized for statistical analysis. The classification performance for 1653 fruit images from 18 categories showed that the proposed “WE + PCA + FSCABC-FNN” and “WE + PCA + BBO-FNN” methods achieve the same accuracy of 89.5%, higher than state-of-the-art approaches: “(CH + MP + US + PCA + GA-FNN ” of 84.8%, “(CH + MP + US + PCA + PSO-FNN” of 87.9%, “(CH + MP + US + PCA + ABC-FNN” of 85.4%, “(CH + MP + US + PCA + kSVM” of 88.2%, and “(CH + MP + US + PCA + FSCABC-FNN” of 89.1%. Besides, our methods used only 12 features, less than the number of features used by other methods. Therefore, the proposed methods are effective for fruit classification.

  7. Scaling-Up the Functional Diagnostic Systems

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2008-01-01

    Functional diagnostic systems received a lot of attention in the last decade. They have proven their powerful for diagnosis the new faults of some complex systems. But, they still have some complexity in both the representation and reasoning about the large-scale systems. This paper introduces a new functional diagnostic system that can divide its small functions into main and auxiliary ones. This process enables the diagnostic system to scale -up the representation of the tested system and simplify the diagnostic mechanism tasks. Thus, it can improve both the representation and reasoning complexity. Also,it can decrease the required analysis, cost, and time. Proposed system can be applied for a wide area of the large-scale systems. It has been proven its acceptance to be applied practically for the Complex real-time systems

  8. Detection and classification of Breast Cancer in Wavelet Sub-bands of Fractal Segmented Cancerous Zones.

    Science.gov (United States)

    Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri

    2015-01-01

    Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and

  9. Optimization of wavelet decomposition for image compression and feature preservation.

    Science.gov (United States)

    Lo, Shih-Chung B; Li, Huai; Freedman, Matthew T

    2003-09-01

    A neural-network-based framework has been developed to search for an optimal wavelet kernel that can be used for a specific image processing task. In this paper, a linear convolution neural network was employed to seek a wavelet that minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as microcalcifications in mammograms and bone in computed tomography (CT) head images. We have used this method to evaluate the performance of tap-4 wavelets on mammograms, CTs, magnetic resonance images, and Lena images. We found that the Daubechies wavelet or those wavelets with similar filtering characteristics can produce the highest compression efficiency with the smallest mean-square-error for many image patterns including general image textures as well as microcalcifications in digital mammograms. However, the Haar wavelet produces the best results on sharp edges and low-noise smooth areas. We also found that a special wavelet whose low-pass filter coefficients are 0.32252136, 0.85258927, 1.38458542, and -0.14548269) produces the best preservation outcomes in all tested microcalcification features including the peak signal-to-noise ratio, the contrast and the figure of merit in the wavelet lossy compression scheme. Having analyzed the spectrum of the wavelet filters, we can find the compression outcomes and feature preservation characteristics as a function of wavelets. This newly developed optimization approach can be generalized to other image analysis applications where a wavelet decomposition is employed.

  10. Wavelet-based verification of the quantitative precipitation forecast

    Science.gov (United States)

    Yano, Jun-Ichi; Jakubiak, Bogumil

    2016-06-01

    This paper explores the use of wavelets for spatial verification of quantitative precipitation forecasts (QPF), and especially the capacity of wavelets to provide both localization and scale information. Two 24-h forecast experiments using the two versions of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) on 22 August 2010 over Poland are used to illustrate the method. Strong spatial localizations and associated intermittency of the precipitation field make verification of QPF difficult using standard statistical methods. The wavelet becomes an attractive alternative, because it is specifically designed to extract spatially localized features. The wavelet modes are characterized by the two indices for the scale and the localization. Thus, these indices can simply be employed for characterizing the performance of QPF in scale and localization without any further elaboration or tunable parameters. Furthermore, spatially-localized features can be extracted in wavelet space in a relatively straightforward manner with only a weak dependence on a threshold. Such a feature may be considered an advantage of the wavelet-based method over more conventional "object" oriented verification methods, as the latter tend to represent strong threshold sensitivities. The present paper also points out limits of the so-called "scale separation" methods based on wavelets. Our study demonstrates how these wavelet-based QPF verifications can be performed straightforwardly. Possibilities for further developments of the wavelet-based methods, especially towards a goal of identifying a weak physical process contributing to forecast error, are also pointed out.

  11. Gamma Splines and Wavelets

    Directory of Open Access Journals (Sweden)

    Hannu Olkkonen

    2013-01-01

    Full Text Available In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines are born by -times convolution of the exponential by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG. Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.

  12. Wavelets in neuroscience

    CERN Document Server

    Hramov, Alexander E; Makarov, Valeri A; Pavlov, Alexey N; Sitnikova, Evgenia

    2015-01-01

    This book examines theoretical and applied aspects of wavelet analysis in neurophysics, describing in detail different practical applications of the wavelet theory in the areas of neurodynamics and neurophysiology and providing a review of fundamental work that has been carried out in these fields over the last decade. Chapters 1 and 2 introduce and review the relevant foundations of neurophysics and wavelet theory, respectively, pointing on one hand to the various current challenges in neuroscience and introducing on the other the mathematical techniques of the wavelet transform in its two variants (discrete and continuous) as a powerful and versatile tool for investigating the relevant neuronal dynamics. Chapter 3 then analyzes results from examining individual neuron dynamics and intracellular processes. The principles for recognizing neuronal spikes from extracellular recordings and the advantages of using wavelets to address these issues are described and combined with approaches based on wavelet neural ...

  13. Multivariate wavelet frames

    CERN Document Server

    Skopina, Maria; Protasov, Vladimir

    2016-01-01

    This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...

  14. Wavelets in scientific computing

    DEFF Research Database (Denmark)

    Nielsen, Ole Møller

    1998-01-01

    the FWT can be used as a front-end for efficient image compression schemes. Part II deals with vector-parallel implementations of several variants of the Fast Wavelet Transform. We develop an efficient and scalable parallel algorithm for the FWT and derive a model for its performance. Part III...... supported wavelets in the context of multiresolution analysis. These wavelets are particularly attractive because they lead to a stable and very efficient algorithm, namely the fast wavelet transform (FWT). We give estimates for the approximation characteristics of wavelets and demonstrate how and why...... is an investigation of the potential for using the special properties of wavelets for solving partial differential equations numerically. Several approaches are identified and two of them are described in detail. The algorithms developed are applied to the nonlinear Schrödinger equation and Burgers' equation...

  15. Wavelet library for constrained devices

    Science.gov (United States)

    Ehlers, Johan Hendrik; Jassim, Sabah A.

    2007-04-01

    The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.

  16. Adaptive Filtering in the Wavelet Transform Domain via Genetic Algorithms

    Science.gov (United States)

    2004-08-06

    wavelet transforms. Whereas the term “evolved” pertains only to the altered wavelet coefficients used during the inverse transform process. 2...words, the inverse transform produces the original signal x(t) from the wavelet and scaling coefficients. )()( ,, tdtx nk n nk k ψ...reconstruct the original signal as accurately as possible. The inverse transform reconstructs an approximation of the original signal (Burrus

  17. Functional Materials Produced On An Industrial Scale

    Directory of Open Access Journals (Sweden)

    Barska Justyna

    2015-08-01

    Full Text Available The article presents a wide range of applications of functional materials and a scale of their current industrial production. These are the materials which have specific characteristics, thanks to which they became virtually indispensable in certain constructional solutions. Their basic characteristics, properties, methods of production and use as smart materials were described.

  18. Wavelet time-frequency analysis of accelerating and decelerating flows in a tube bank

    International Nuclear Information System (INIS)

    Indrusiak, M.L.S.; Goulart, J.V.; Olinto, C.R.; Moeller, S.V.

    2005-01-01

    In the present work, the steady approximation for accelerating and decelerating flows through tube banks is discussed. With this purpose, the experimental study of velocity and pressure fluctuations of transient turbulent cross-flow in a tube bank with square arrangement and a pitch-to-diameter ratio of 1.26 is performed. The Reynolds number at steady-state flow, computed with the tube diameter and the flow velocity in the narrow gap between the tubes, is 8 x 10 4 . Air is the working fluid. The accelerating and decelerating transients are obtained by means of start and stop of the centrifugal blower. Wavelet and wavelet packet multiresolution analysis were applied to decompose the signal in frequency intervals, using Daubechies 20 wavelet and scale functions, thus allowing the analysis of phenomena in a time-frequency domain. The continuous wavelet transform was also applied, using the Morlet function. The signals in the steady state, which presented a bistable behavior, were separated in two modes and analyzed with usual statistic tools. The results were compared with the steady-state assumption, demonstrating the ability of wavelets for analyzing time varying signals

  19. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    Science.gov (United States)

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  20. Wavelet domain image restoration with adaptive edge-preserving regularization.

    Science.gov (United States)

    Belge, M; Kilmer, M E; Miller, E L

    2000-01-01

    In this paper, we consider a wavelet based edge-preserving regularization scheme for use in linear image restoration problems. Our efforts build on a collection of mathematical results indicating that wavelets are especially useful for representing functions that contain discontinuities (i.e., edges in two dimensions or jumps in one dimension). We interpret the resulting theory in a statistical signal processing framework and obtain a highly flexible framework for adapting the degree of regularization to the local structure of the underlying image. In particular, we are able to adapt quite easily to scale-varying and orientation-varying features in the image while simultaneously retaining the edge preservation properties of the regularizer. We demonstrate a half-quadratic algorithm for obtaining the restorations from observed data.

  1. Wavelet Radiosity

    OpenAIRE

    Cohen, Michael F.; Gortler, Steven; Schröder, Peter; Hanrahan, Pat

    1993-01-01

    Radiosity methods have been shown to be an effective means to solve the global illumination problem in Lambertian diffuse environments. These methods approximate the radiosity integral equation by projecting the unknown radiosity function into a set of basis functions with limited support resulting in a set of n linear equations where n is the number of discrete elements in the scene. Classical radiosity methods required the evaluation of n2 interaction coefficients. Efforts to reduce the num...

  2. Partially coherent imaging and spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, Roman

    2003-03-01

    A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)

  3. Wavelet based correlation coefficient of time series of Saudi Meteorological Data

    International Nuclear Information System (INIS)

    Rehman, S.; Siddiqi, A.H.

    2009-01-01

    In this paper, wavelet concepts are used to study a correlation between pairs of time series of meteorological parameters such as pressure, temperature, rainfall, relative humidity and wind speed. The study utilized the daily average values of meteorological parameters of nine meteorological stations of Saudi Arabia located at different strategic locations. The data used in this study cover a period of 16 years between 1990 and 2005. Besides obtaining wavelet spectra, we also computed the wavelet correlation coefficients between two same parameters from two different locations and show that strong correlation or strong anti-correlation depends on scale. The cross-correlation coefficients of meteorological parameters between two stations were also calculated using statistical function. For coastal to costal pair of stations, pressure time series was found to be strongly correlated. In general, the temperature data were found to be strongly correlated for all pairs of stations and the rainfall data the least.

  4. A study of non-binary discontinuity wavelet

    International Nuclear Information System (INIS)

    Lin Hai; Liu Lianshou

    2006-01-01

    This paper gives a study of non-binary discontinuity wavelet, put forward the theory and method of constituting basic wavelet functions, and has constituted concretely a wavelet function using λ=3.4 as an example. It also conducts a theoretical inference on the decomposition algorithm and reconstruction algorithm of non-binary wavelet, and gives a concrete study of the change of matrix in connection with λ=3.4. In the end, it shows the future of application of the result to the study of high energy collision. (authors)

  5. Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm

    Science.gov (United States)

    Wang, Zhanyong; Lu, Feng; He, Hong-di; Lu, Qing-Chang; Wang, Dongsheng; Peng, Zhong-Ren

    2015-03-01

    At road intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly in the green-light period, which generates higher velocity fluctuation and thus higher emission rates. Additionally, the frequent changes of wind direction further add the highly variable dispersion of pollutants at the street scale. It is, therefore, very difficult to estimate the distribution of pollutant concentrations using conventional deterministic causal models. For this reason, a hybrid model combining wavelet neural network and genetic algorithm (GA-WNN) is proposed for predicting 5-min series of carbon monoxide (CO) and fine particulate matter (PM2.5) concentrations in proximity to an intersection. The proposed model is examined based on the measured data under two situations. As the measured pollutant concentrations are found to be dependent on the distance to the intersection, the model is evaluated in three locations respectively, i.e. 110 m, 330 m and 500 m. Due to the different variation of pollutant concentrations on varied time, the model is also evaluated in peak and off-peak traffic time periods separately. Additionally, the proposed model, together with the back-propagation neural network (BPNN), is examined with the measured data in these situations. The proposed model is found to perform better in predictability and precision for both CO and PM2.5 than BPNN does, implying that the hybrid model can be an effective tool to improve the accuracy of estimating pollutants' distribution pattern at intersections. The outputs of these findings demonstrate the potential of the proposed model to be applicable to forecast the distribution pattern of air pollution in real-time in proximity to road intersection.

  6. Coresident sensor fusion and compression using the wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, D.A.

    1996-03-11

    Imagery from coresident sensor platforms, such as unmanned aerial vehicles, can be combined using, multiresolution decomposition of the sensor images by means of the two-dimensional wavelet transform. The wavelet approach uses the combination of spatial/spectral information at multiple scales to create a fused image. This can be done in both an ad hoc or model-based approach. We compare results from commercial ``fusion`` software and the ad hoc, wavelet approach. Results show the wavelet approach outperforms the commercial algorithms and also supports efficient compression of the fused image.

  7. Watermarking on 3D mesh based on spherical wavelet transform.

    Science.gov (United States)

    Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng

    2004-03-01

    In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.

  8. A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data

    Science.gov (United States)

    Freeman, P. E.; Kashyap, V.; Rosner, R.; Lamb, D. Q.

    2002-01-01

    Wavelets are scalable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero, and thus may be used to simultaneously characterize the shape, location, and strength of astronomical sources. But in addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly nonzero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. Source pixels are identified by comparing each correlation coefficient with its probability sampling distribution, which is a function of the (estimated or a priori known) background amplitude. In this paper, we describe the mission-independent, wavelet-based source detection algorithm ``WAVDETECT,'' part of the freely available Chandra Interactive Analysis of Observations (CIAO) software package. Our algorithm uses the Marr, or ``Mexican Hat'' wavelet function, but may be adapted for use with other wavelet functions. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e., flat-fielded) background maps; (2) the correction for exposure variations within the field of view (due to, e.g., telescope support ribs or the edge of the field); (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the

  9. Wavelet analysis of epileptic spikes

    Science.gov (United States)

    Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.

    2003-05-01

    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.

  10. Wavelet analysis of epileptic spikes

    CERN Document Server

    Latka, M; Kozik, A; West, B J; Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.

    2003-01-01

    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous, pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.

  11. Geometrical scaling in charm structure function ratios

    International Nuclear Information System (INIS)

    Boroun, G.R.; Rezaei, B.

    2014-01-01

    By using a Laplace-transform technique, we solve the next-to-leading-order master equation for charm production and derive a compact formula for the ratio R c =F L cc ¯ /F 2 cc ¯ , which is useful for extracting the charm structure function from the reduced charm cross section, in particular, at DESY HERA, at small x. Our results show that this ratio is independent of x at small x. In this method of determining the ratios, we apply geometrical scaling in charm production in deep inelastic scattering (DIS). Our analysis shows that the renormalization scales have a sizable impact on the ratio R c at high Q 2 . Our results for the ratio of the charm structure functions are in a good agreement with some phenomenological models

  12. Wavelet Analysis for Molecular Dynamics

    Science.gov (United States)

    2015-06-01

    Our method takes as input the topology and sparsity of the bonding structure of a molecular system, and returns a hierarchical set of system-specific...problems, such as modeling crack initiation and propagation, or interfacial phenomena. In the present work, we introduce a wavelet-based approach to extend...Several functional forms are common for angle poten- tials complicating not only implementation but also choice of approximation. In all cases, the

  13. On transforms between Gabor frames and wavelet frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2013-01-01

    We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....

  14. A data-driven wavelet-based approach for generating jumping loads

    Science.gov (United States)

    Chen, Jun; Li, Guo; Racic, Vitomir

    2018-06-01

    This paper suggests an approach to generate human jumping loads using wavelet transform and a database of individual jumping force records. A total of 970 individual jumping force records of various frequencies were first collected by three experiments from 147 test subjects. For each record, every jumping pulse was extracted and decomposed into seven levels by wavelet transform. All the decomposition coefficients were stored in an information database. Probability distributions of jumping cycle period, contact ratio and energy of the jumping pulse were statistically analyzed. Inspired by the theory of DNA recombination, an approach was developed by interchanging the wavelet coefficients between different jumping pulses. To generate a jumping force time history with N pulses, wavelet coefficients were first selected randomly from the database at each level. They were then used to reconstruct N pulses by the inverse wavelet transform. Jumping cycle periods and contract ratios were then generated randomly based on their probabilistic functions. These parameters were assigned to each of the N pulses which were in turn scaled by the amplitude factors βi to account for energy relationship between successive pulses. The final jumping force time history was obtained by linking all the N cycles end to end. This simulation approach can preserve the non-stationary features of the jumping load force in time-frequency domain. Application indicates that this approach can be used to generate jumping force time history due to single people jumping and also can be extended further to stochastic jumping loads due to groups and crowds.

  15. Architecture design of the multi-functional wavelet-based ECG microprocessor for realtime detection of abnormal cardiac events.

    Science.gov (United States)

    Cheng, Li-Fang; Chen, Tung-Chien; Chen, Liang-Gee

    2012-01-01

    Most of the abnormal cardiac events such as myocardial ischemia, acute myocardial infarction (AMI) and fatal arrhythmia can be diagnosed through continuous electrocardiogram (ECG) analysis. According to recent clinical research, early detection and alarming of such cardiac events can reduce the time delay to the hospital, and the clinical outcomes of these individuals can be greatly improved. Therefore, it would be helpful if there is a long-term ECG monitoring system with the ability to identify abnormal cardiac events and provide realtime warning for the users. The combination of the wireless body area sensor network (BASN) and the on-sensor ECG processor is a possible solution for this application. In this paper, we aim to design and implement a digital signal processor that is suitable for continuous ECG monitoring and alarming based on the continuous wavelet transform (CWT) through the proposed architectures--using both programmable RISC processor and application specific integrated circuits (ASIC) for performance optimization. According to the implementation results, the power consumption of the proposed processor integrated with an ASIC for CWT computation is only 79.4 mW. Compared with the single-RISC processor, about 91.6% of the power reduction is achieved.

  16. Wavelet analysis in neurodynamics

    International Nuclear Information System (INIS)

    Pavlov, Aleksei N; Hramov, Aleksandr E; Koronovskii, Aleksei A; Sitnikova, Evgenija Yu; Makarov, Valeri A; Ovchinnikov, Alexey A

    2012-01-01

    Results obtained using continuous and discrete wavelet transforms as applied to problems in neurodynamics are reviewed, with the emphasis on the potential of wavelet analysis for decoding signal information from neural systems and networks. The following areas of application are considered: (1) the microscopic dynamics of single cells and intracellular processes, (2) sensory data processing, (3) the group dynamics of neuronal ensembles, and (4) the macrodynamics of rhythmical brain activity (using multichannel EEG recordings). The detection and classification of various oscillatory patterns of brain electrical activity and the development of continuous wavelet-based brain activity monitoring systems are also discussed as possibilities. (reviews of topical problems)

  17. Wavelets in physics

    CERN Document Server

    Fang, Li-Zhi

    1998-01-01

    Recent advances have shown wavelets to be an effective, and even necessary, mathematical tool for theoretical physics. This book is a timely overview of the progress of this new frontier. It includes an introduction to wavelet analysis, and applications in the fields of high energy physics, astrophysics, cosmology and statistical physics. The topics are selected for the interests of physicists and graduate students of theoretical studies. It emphasizes the need for wavelets in describing and revealing structure in physical problems, which is not easily accomplishing by other methods.

  18. Wavelets y sus aplicaciones

    OpenAIRE

    Castro, Liliana Raquel; Castro, Silvia Mabel

    1995-01-01

    Se presenta una introducción a la teorfa de wavelets. Ademas, se da una revisión histórica de cómo fueron introducidas las wavelets para la representación de funciones. Se efectúa una comparación entre la transformada wavelet y la transformada de Fourier. Por último, se presentan también algunas de los múltiples aplicaciones de esta nueva herramienta de análisis armónico.

  19. Wavelets a primer

    CERN Document Server

    Blatter, Christian

    1998-01-01

    The Wavelet Transform has stimulated research that is unparalleled since the invention of the Fast Fourier Transform and has opened new avenues of applications in signal processing, image compression, radiology, cardiology, and many other areas. This book grew out of a short course for mathematics students at the ETH in Zurich; it provides a solid mathematical foundation for the broad range of applications enjoyed by the wavelet transform. Numerous illustrations and fully worked out examples enhance the book.

  20. Wavelet theory and belt finishing process, influence of wavelet shape on the surface roughness parameter values

    International Nuclear Information System (INIS)

    Khawaja, Z; Mazeran, P-E; Bigerelle, M; Guillemot, G; Mansori, M El

    2011-01-01

    This article presents a multi-scale theory based on wavelet decomposition to characterize the evolution of roughness in relation with a finishing process or an observed surface property. To verify this approach in production conditions, analyses were developed for the finishing process of the hardened steel by abrasive belts. These conditions are described by seven parameters considered in the Tagushi experimental design. The main objective of this work is to identify the most relevant roughness parameter and characteristic length allowing to assess the influence of finishing process, and to test the relevance of the measurement scale. Results show that wavelet approach allows finding this scale.

  1. Real-time modeling of primitive environments through wavelet sensors and Hebbian learning

    Science.gov (United States)

    Vaccaro, James M.; Yaworsky, Paul S.

    1999-06-01

    Modeling the world through sensory input necessarily provides a unique perspective for the observer. Given a limited perspective, objects and events cannot always be encoded precisely but must involve crude, quick approximations to deal with sensory information in a real- time manner. As an example, when avoiding an oncoming car, a pedestrian needs to identify the fact that a car is approaching before ascertaining the model or color of the vehicle. In our methodology, we use wavelet-based sensors with self-organized learning to encode basic sensory information in real-time. The wavelet-based sensors provide necessary transformations while a rank-based Hebbian learning scheme encodes a self-organized environment through translation, scale and orientation invariant sensors. Such a self-organized environment is made possible by combining wavelet sets which are orthonormal, log-scale with linear orientation and have automatically generated membership functions. In earlier work we used Gabor wavelet filters, rank-based Hebbian learning and an exponential modulation function to encode textural information from images. Many different types of modulation are possible, but based on biological findings the exponential modulation function provided a good approximation of first spike coding of `integrate and fire' neurons. These types of Hebbian encoding schemes (e.g., exponential modulation, etc.) are useful for quick response and learning, provide several advantages over contemporary neural network learning approaches, and have been found to quantize data nonlinearly. By combining wavelets with Hebbian learning we can provide a real-time front-end for modeling an intelligent process, such as the autonomous control of agents in a simulated environment.

  2. Option pricing from wavelet-filtered financial series

    Science.gov (United States)

    de Almeida, V. T. X.; Moriconi, L.

    2012-10-01

    We perform wavelet decomposition of high frequency financial time series into large and small time scale components. Taking the FTSE100 index as a case study, and working with the Haar basis, it turns out that the small scale component defined by most (≃99.6%) of the wavelet coefficients can be neglected for the purpose of option premium evaluation. The relevance of the hugely compressed information provided by low-pass wavelet-filtering is related to the fact that the non-gaussian statistical structure of the original financial time series is essentially preserved for expiration times which are larger than just one trading day.

  3. Functional Disorganization of Small-World Brain Networks in mild Alzheimer’s Disease and amnestic Mild Cognitive Impairment: An EEG Study using Relative Wavelet Entropy (RWE

    Directory of Open Access Journals (Sweden)

    Christos A. Frantzidis

    2014-08-01

    Full Text Available Previous neuroscientific findings have linked Alzheimer’s disease (AD with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD. Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT, and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N=500, 600, 700, 800 edges across all participants and groups (fixed density values. All groups exhibited a small-world (SW brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant’s generic cognitive status. The deterioration of the network’s organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation.

  4. Schrödinger like equation for wavelets

    Directory of Open Access Journals (Sweden)

    A. Zúñiga-Segundo

    2016-01-01

    Full Text Available An explicit phase space representation of the wave function is build based on a wavelet transformation. The wavelet transformation allows us to understand the relationship between s − ordered Wigner function, (or Wigner function when s = 0, and the Torres-Vega-Frederick’s wave functions. This relationship is necessary to find a general solution of the Schrödinger equation in phase-space.

  5. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    Science.gov (United States)

    Wei, H. L.; Billings, S. A.

    2009-09-01

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  6. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    Energy Technology Data Exchange (ETDEWEB)

    Wei, H.L., E-mail: w.hualiang@sheffield.ac.u [Department of Automatic Control and Systems Engineering, the University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Billings, S.A., E-mail: s.billings@sheffield.ac.u [Department of Automatic Control and Systems Engineering, the University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2009-09-07

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  7. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    International Nuclear Information System (INIS)

    Wei, H.L.; Billings, S.A.

    2009-01-01

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  8. Lecture notes on wavelet transforms

    CERN Document Server

    Debnath, Lokenath

    2017-01-01

    This book provides a systematic exposition of the basic ideas and results of wavelet analysis suitable for mathematicians, scientists, and engineers alike. The primary goal of this text is to show how different types of wavelets can be constructed, illustrate why they are such powerful tools in mathematical analysis, and demonstrate their use in applications. It also develops the required analytical knowledge and skills on the part of the reader, rather than focus on the importance of more abstract formulation with full mathematical rigor.  These notes differs from many textbooks with similar titles in that a major emphasis is placed on the thorough development of the underlying theory before introducing applications and modern topics such as fractional Fourier transforms, windowed canonical transforms, fractional wavelet transforms, fast wavelet transforms, spline wavelets, Daubechies wavelets, harmonic wavelets and non-uniform wavelets. The selection, arrangement, and presentation of the material in these ...

  9. Almost Automorphic Functions on the Quantum Time Scale and Applications

    Directory of Open Access Journals (Sweden)

    Yongkun Li

    2017-01-01

    Full Text Available We first propose two types of concepts of almost automorphic functions on the quantum time scale. Secondly, we study some basic properties of almost automorphic functions on the quantum time scale. Then, we introduce a transformation between functions defined on the quantum time scale and functions defined on the set of generalized integer numbers; by using this transformation we give equivalent definitions of almost automorphic functions on the quantum time scale; following the idea of the transformation, we also give a concept of almost automorphic functions on more general time scales that can unify the concepts of almost automorphic functions on almost periodic time scales and on the quantum time scale. Finally, as an application of our results, we establish the existence of almost automorphic solutions of linear and semilinear dynamic equations on the quantum time scale.

  10. Detecting microcalcifications in digital mammogram using wavelets

    International Nuclear Information System (INIS)

    Yang Jucheng; Park Dongsun

    2004-01-01

    false-positive (FP) clusters per image. Experimental results show that the proposed detection method generates accurate positions, with almost same sizes, of microcalcifications. And we can see that the reconstructed image from 4 levels decomposing is better than those from low levels decomposing. On the other hand, the db4 wavelet with 4 levels decomposing achieves the best detecting result which can obtain a 92% TP rate with FP rate of 1.2 clusters per image. However, the sym2 wavelet's detecting result is the worst, because some parts of microcalcifications are shrunken. In this work, we comparably study the detection of microcalcifications by using wavelets. Several normal family wavelets are studied comparably, and for each wavelet function, different resolution levels are explored for detecting the microcalcifications. Results show us that this method is able to detect microcalcifications exactly and efficiently in numbers and shapes in digital mammogram. Further experiments have proceeded to obtain more Objective results. (authors)

  11. The use of wavelet transforms in the solution of two-phase flow problems

    International Nuclear Information System (INIS)

    Moridis, G.J.; Nikolaou, M.; You, Yong

    1994-10-01

    In this paper we present the use of wavelets to solve the nonlinear Partial Differential.Equation (PDE) of two-phase flow in one dimension. The wavelet transforms allow a drastically different approach in the discretization of space. In contrast to the traditional trigonometric basis functions, wavelets approximate a function not by cancellation but by placement of wavelets at appropriate locations. When an abrupt chance, such as a shock wave or a spike, occurs in a function, only local coefficients in a wavelet approximation will be affected. The unique feature of wavelets is their Multi-Resolution Analysis (MRA) property, which allows seamless investigational any spatial resolution. The use of wavelets is tested in the solution of the one-dimensional Buckley-Leverett problem against analytical solutions and solutions obtained from standard numerical models. Two classes of wavelet bases (Daubechies and Chui-Wang) and two methods (Galerkin and collocation) are investigated. We determine that the Chui-Wang, wavelets and a collocation method provide the optimum wavelet solution for this type of problem. Increasing the resolution level improves the accuracy of the solution, but the order of the basis function seems to be far less important. Our results indicate that wavelet transforms are an effective and accurate method which does not suffer from oscillations or numerical smearing in the presence of steep fronts

  12. Target recognition by wavelet transform

    International Nuclear Information System (INIS)

    Li Zhengdong; He Wuliang; Zheng Xiaodong; Cheng Jiayuan; Peng Wen; Pei Chunlan; Song Chen

    2002-01-01

    Wavelet transform has an important character of multi-resolution power, which presents pyramid structure, and this character coincides the way by which people distinguish object from coarse to fineness and from large to tiny. In addition to it, wavelet transform benefits to reducing image noise, simplifying calculation, and embodying target image characteristic point. A method of target recognition by wavelet transform is provided

  13. International Conference and Workshop on Fractals and Wavelets

    CERN Document Server

    Barnsley, Michael; Devaney, Robert; Falconer, Kenneth; Kannan, V; PB, Vinod

    2014-01-01

    Fractals and wavelets are emerging areas of mathematics with many common factors which can be used to develop new technologies. This volume contains the selected contributions from the lectures and plenary and invited talks given at the International Workshop and Conference on Fractals and Wavelets held at Rajagiri School of Engineering and Technology, India from November 9-12, 2013. Written by experts, the contributions hope to inspire and motivate researchers working in this area. They provide more insight into the areas of fractals, self similarity, iterated function systems, wavelets and the applications of both fractals and wavelets. This volume will be useful for the beginners as well as experts in the fields of fractals and wavelets.

  14. Wavelet-based multiscale analysis of minimum toe clearance variability in the young and elderly during walking.

    Science.gov (United States)

    Khandoker, Ahsan H; Karmakar, Chandan K; Begg, Rezaul K; Palaniswami, Marimuthu

    2007-01-01

    As humans age or are influenced by pathology of the neuromuscular system, gait patterns are known to adjust, accommodating for reduced function in the balance control system. The aim of this study was to investigate the effectiveness of a wavelet based multiscale analysis of a gait variable [minimum toe clearance (MTC)] in deriving indexes for understanding age-related declines in gait performance and screening of balance impairments in the elderly. MTC during walking on a treadmill for 30 healthy young, 27 healthy elderly and 10 falls risk elderly subjects with a history of tripping falls were analyzed. The MTC signal from each subject was decomposed to eight detailed signals at different wavelet scales by using the discrete wavelet transform. The variances of detailed signals at scales 8 to 1 were calculated. The multiscale exponent (beta) was then estimated from the slope of the variance progression at successive scales. The variance at scale 5 was significantly (ppathological conditions. Early detection of gait pattern changes due to ageing and balance impairments using wavelet-based multiscale analysis might provide the opportunity to initiate preemptive measures to be undertaken to avoid injurious falls.

  15. Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study.

    Science.gov (United States)

    Ergen, Burhan; Tatar, Yetkin; Gulcur, Halil Ozcan

    2012-01-01

    Analysis of phonocardiogram (PCG) signals provides a non-invasive means to determine the abnormalities caused by cardiovascular system pathology. In general, time-frequency representation (TFR) methods are used to study the PCG signal because it is one of the non-stationary bio-signals. The continuous wavelet transform (CWT) is especially suitable for the analysis of non-stationary signals and to obtain the TFR, due to its high resolution, both in time and in frequency and has recently become a favourite tool. It decomposes a signal in terms of elementary contributions called wavelets, which are shifted and dilated copies of a fixed mother wavelet function, and yields a joint TFR. Although the basic characteristics of the wavelets are similar, each type of the wavelets produces a different TFR. In this study, eight real types of the most known wavelets are examined on typical PCG signals indicating heart abnormalities in order to determine the best wavelet to obtain a reliable TFR. For this purpose, the wavelet energy and frequency spectrum estimations based on the CWT and the spectra of the chosen wavelets were compared with the energy distribution and the autoregressive frequency spectra in order to determine the most suitable wavelet. The results show that Morlet wavelet is the most reliable wavelet for the time-frequency analysis of PCG signals.

  16. Visualization of synchronization of the uterine contraction signals: running cross-correlation and wavelet running cross-correlation methods.

    Science.gov (United States)

    Oczeretko, Edward; Swiatecka, Jolanta; Kitlas, Agnieszka; Laudanski, Tadeusz; Pierzynski, Piotr

    2006-01-01

    In physiological research, we often study multivariate data sets, containing two or more simultaneously recorded time series. The aim of this paper is to present the cross-correlation and the wavelet cross-correlation methods to assess synchronization between contractions in different topographic regions of the uterus. From a medical point of view, it is important to identify time delays between contractions, which may be of potential diagnostic significance in various pathologies. The cross-correlation was computed in a moving window with a width corresponding to approximately two or three contractions. As a result, the running cross-correlation function was obtained. The propagation% parameter assessed from this function allows quantitative description of synchronization in bivariate time series. In general, the uterine contraction signals are very complicated. Wavelet transforms provide insight into the structure of the time series at various frequencies (scales). To show the changes of the propagation% parameter along scales, a wavelet running cross-correlation was used. At first, the continuous wavelet transforms as the uterine contraction signals were received and afterwards, a running cross-correlation analysis was conducted for each pair of transformed time series. The findings show that running functions are very useful in the analysis of uterine contractions.

  17. Wavelets and quantum algebras

    International Nuclear Information System (INIS)

    Ludu, A.; Greiner, M.

    1995-09-01

    A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs

  18. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  19. (Multi)fractality of Earthquakes by use of Wavelet Analysis

    Science.gov (United States)

    Enescu, B.; Ito, K.; Struzik, Z. R.

    2002-12-01

    The fractal character of earthquakes' occurrence, in time, space or energy, has by now been established beyond doubt and is in agreement with modern models of seismicity. Moreover, the cascade-like generation process of earthquakes -with one "main" shock followed by many aftershocks, having their own aftershocks- may well be described through multifractal analysis, well suited for dealing with such multiplicative processes. The (multi)fractal character of seismicity has been analysed so far by using traditional techniques, like the box-counting and correlation function algorithms. This work introduces a new approach for characterising the multifractal patterns of seismicity. The use of wavelet analysis, in particular of the wavelet transform modulus maxima, to multifractal analysis was pioneered by Arneodo et al. (1991, 1995) and applied successfully in diverse fields, such as the study of turbulence, the DNA sequences or the heart rate dynamics. The wavelets act like a microscope, revealing details about the analysed data at different times and scales. We introduce and perform such an analysis on the occurrence time of earthquakes and show its advantages. In particular, we analyse shallow seismicity, characterised by a high aftershock "productivity", as well as intermediate and deep seismic activity, known for its scarcity of aftershocks. We examine as well declustered (aftershocks removed) versions of seismic catalogues. Our preliminary results show some degree of multifractality for the undeclustered, shallow seismicity. On the other hand, at large scales, we detect a monofractal scaling behaviour, clearly put in evidence for the declustered, shallow seismic activity. Moreover, some of the declustered sequences show a long-range dependent (LRD) behaviour, characterised by a Hurst exponent, H > 0.5, in contrast with the memory-less, Poissonian model. We demonstrate that the LRD is a genuine characteristic and is not an effect of the time series probability

  20. Standard filter approximations for low power Continuous Wavelet Transforms.

    Science.gov (United States)

    Casson, Alexander J; Rodriguez-Villegas, Esther

    2010-01-01

    Analogue domain implementations of the Continuous Wavelet Transform (CWT) have proved popular in recent years as they can be implemented at very low power consumption levels. This is essential for use in wearable, long term physiological monitoring systems. Present analogue CWT implementations rely on taking mathematical a approximation of the wanted mother wavelet function to give a filter transfer function that is suitable for circuit implementation. This paper investigates the use of standard filter approximations (Butterworth, Chebyshev, Bessel) as an alternative wavelet approximation technique. This extends the number of approximation techniques available for generating analogue CWT filters. An example ECG analysis shows that signal information can be successfully extracted using these CWT approximations.

  1. Pseudo-stochastic signal characterization in wavelet-domain

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Zhirnov, Andrei A; Alekhnovich, Valentin I; Yurchenko, Stanislav O

    2015-01-01

    In this paper we present the method for fast and accurate characterization of pseudo-stochastic signals, which contain a large number of similar but randomly-located fragments. This method allows estimating the statistical characteristics of pseudo-stochastic signal, and it is based on digital signal processing in wavelet-domain. Continuous wavelet transform and the criterion for wavelet scale power density are utilized. We are experimentally implementing this method for the purpose of sand granulometry, and we are estimating the statistical parameters of test sand fractions

  2. WAVELET ANALYSIS OF ABNORMAL ECGS

    Directory of Open Access Journals (Sweden)

    Vasudha Nannaparaju

    2014-02-01

    Full Text Available Detection of the warning signals by the heart can be diagnosed from ECG. An accurate and reliable diagnosis of ECG is very important however which is cumbersome and at times ambiguous in time domain due to the presence of noise. Study of ECG in wavelet domain using both continuous Wavelet transform (CWT and discrete Wavelet transform (DWT, with well known wavelet as well as a wavelet proposed by the authors for this investigation is found to be useful and yields fairly reliable results. In this study, Wavelet analysis of ECGs of Normal, Hypertensive, Diabetic and Cardiac are carried out. The salient feature of the study is that detection of P and T phases in wavelet domain is feasible which are otherwise feeble or absent in raw ECGs.

  3. Mammography image compression using Wavelet

    International Nuclear Information System (INIS)

    Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa

    2004-01-01

    Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)

  4. Wavelet packet transform-based robust video watermarking technique

    Indian Academy of Sciences (India)

    If any conflict happens to the copyright identification and authentication, ... the present work is concentrated on the robust digital video watermarking. .... the wavelet decomposition, resulting in a new family of orthonormal bases for function ...

  5. Log wavelet leaders cumulant based multifractal analysis of EVI fMRI time series: evidence of scaling in ongoing and evoked brain activity

    Energy Technology Data Exchange (ETDEWEB)

    Ciuciu, P.; Rabrait, C. [CEA, Neuro Spin, Gif Sur Yvette (France); Abry, P.; Wendt, H. [Ecole Normale Super Lyon, Phys Lab, CNRS, UMR 5672, Lyon (France)

    2008-07-01

    Classical within-subject analysis in functional magnetic resonance imaging (fMRI) relies on a detection step to localize which parts of the brain are activated by a given stimulus type. This is usually achieved using model-based approaches. Here, we propose an alternative exploratory analysis. The originality of this contribution is twofold. First, we propose a synthetic, consistent, and comparative overview of the various stochastic processes and estimation procedures used to model and analyze scale invariance. Notably, it is explained how multifractal models are more versatile to adjust the scaling properties of fMRI data but require more elaborated analysis procedures. Second, we bring evidence of the existence of actual scaling in fMRI time series that are clearly disentangled from putative superimposed non-stationarities. By nature, scaling analysis requires the use of long enough signals with high frequency sampling rate. To this end, we make use of a localized 3-D echo volume imaging (EVI) technique, which has recently emerged in fMRI because it allows very fast acquisitions of successive brain volumes. High temporal resolution EVI fMRI data have been acquired both in resting state and during a slow event-related visual paradigm. A voxel-based systematic multifractal analysis has been performed over both kinds of data. Combining multifractal attribute estimates together with paired statistical tests, we observe significant scaling parameter changes between ongoing and evoked brain activity, which clearly validate an increase in long memory and suggest a global multi-fractality decrease effect under activation. (authors)

  6. Characterization and Simulation of Gunfire with Wavelets

    Directory of Open Access Journals (Sweden)

    David O. Smallwood

    1999-01-01

    Full Text Available Gunfire is used as an example to show how the wavelet transform can be used to characterize and simulate nonstationary random events when an ensemble of events is available. The structural response to nearby firing of a high-firing rate gun has been characterized in several ways as a nonstationary random process. The current paper will explore a method to describe the nonstationary random process using a wavelet transform. The gunfire record is broken up into a sequence of transient waveforms each representing the response to the firing of a single round. A wavelet transform is performed on each of these records. The gunfire is simulated by generating realizations of records of a single-round firing by computing an inverse wavelet transform from Gaussian random coefficients with the same mean and standard deviation as those estimated from the previously analyzed gunfire record. The individual records are assembled into a realization of many rounds firing. A second-order correction of the probability density function is accomplished with a zero memory nonlinear function. The method is straightforward, easy to implement, and produces a simulated record much like the measured gunfire record.

  7. Optimization and Assessment of Wavelet Packet Decompositions with Evolutionary Computation

    Directory of Open Access Journals (Sweden)

    Schell Thomas

    2003-01-01

    Full Text Available In image compression, the wavelet transformation is a state-of-the-art component. Recently, wavelet packet decomposition has received quite an interest. A popular approach for wavelet packet decomposition is the near-best-basis algorithm using nonadditive cost functions. In contrast to additive cost functions, the wavelet packet decomposition of the near-best-basis algorithm is only suboptimal. We apply methods from the field of evolutionary computation (EC to test the quality of the near-best-basis results. We observe a phenomenon: the results of the near-best-basis algorithm are inferior in terms of cost-function optimization but are superior in terms of rate/distortion performance compared to EC methods.

  8. orthogonal and scaling transformations of quadratic functions

    African Journals Online (AJOL)

    Preferred Customer

    functions of sub-problems of various nonlinear programming problems that employ methods such as sequential quadratic programming and trust-region methods (Sorensen, 1982; Eldersveld,. 1991; Nocedal and Wright, 1999). Various problems in Algebra, Functional Analysis,. Analytic Geometry and Computational Mathe-.

  9. Comparative study of wavelets of the first and second generation

    International Nuclear Information System (INIS)

    Ososkov, G.A.; Shitov, A.B.; Stadnik, A.V.

    2001-01-01

    In order to compare efficiency a comprehensive set of benchmarking tests is developed, which is used to compare abilities of continuous wavelet transform of the vanishing momenta type as well as the second generation wavelets constructed on the basis of the lifting scheme. It is based on processing of various types of pure and contaminated harmonic signals, delta-function, study of the signal phase dependence and the gain-frequency characteristics. The results of a comparative multiscale analysis allow one to reveal advantages and flaws of the considered types of wavelets

  10. Multiscale functions, scale dynamics, and applications to partial differential equations

    Science.gov (United States)

    Cresson, Jacky; Pierret, Frédéric

    2016-05-01

    Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.

  11. Novel discrimination parameters for neutron-gamma discrimination with liquid scintillation detectors using wavelet transform

    International Nuclear Information System (INIS)

    Singh, H.; Singh, S.

    2015-01-01

    It has been observed that the discrimination performance of the wavelet transform method strongly depends on definition of discrimination parameters. These parameters are usually obtained from a combination of scaling functions at different scales, which represents the energy density of the wavelet coefficients. In this paper, the discrete wavelet transform (DWT) at minimum possible values of scale was investigated. Novel pulse shape discrimination parameters have been proposed for neutron and gamma discrimination in a mixed radiation field and tested with modeled pulses. The performance of these parameters was also validated in terms of quality of discrimination using experimental data of mixed events from an AmBe source collected with BC501 liquid scintillation detector. The quality of discrimination was evaluated by calculating a figure of merit (FOM) with all parameters under same experimental and simulation conditions. The FOM obtained with the proposed novel parameters was also compared with the charge comparison method. The proposed parameters exhibit better FOM as compared to the charge comparison method when high levels of noise are present in the data

  12. Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic–ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Fenghua Tian

    2016-01-01

    Full Text Available Cerebral autoregulation represents the physiological mechanisms that keep brain perfusion relatively constant in the face of changes in blood pressure and thus plays an essential role in normal brain function. This study assessed cerebral autoregulation in nine newborns with moderate-to-severe hypoxic–ischemic encephalopathy (HIE. These neonates received hypothermic therapy during the first 72 h of life while mean arterial pressure (MAP and cerebral tissue oxygenation saturation (SctO2 were continuously recorded. Wavelet coherence analysis, which is a time-frequency domain approach, was used to characterize the dynamic relationship between spontaneous oscillations in MAP and SctO2. Wavelet-based metrics of phase, coherence and gain were derived for quantitative evaluation of cerebral autoregulation. We found cerebral autoregulation in neonates with HIE was time-scale-dependent in nature. Specifically, the spontaneous changes in MAP and SctO2 had in-phase coherence at time scales of less than 80 min (<0.0002 Hz in frequency, whereas they showed anti-phase coherence at time scales of around 2.5 h (~0.0001 Hz in frequency. Both the in-phase and anti-phase coherence appeared to be related to worse clinical outcomes. These findings suggest the potential clinical use of wavelet coherence analysis to assess dynamic cerebral autoregulation in neonatal HIE during hypothermia.

  13. Functional cortical mapping of scale illusion

    International Nuclear Information System (INIS)

    Wang, Li-qun; Kuriki, Shinya

    2011-01-01

    We have studied cortical activation using 1.5 T fMRI during 'Scale Illusion', a kind of auditory illusion, in which subjects perceive smooth melodies while listening to dichotic irregular pitch sequences consisting of scale tones, in repeated phrases composed of eight tones. Four male and four female subjects listened to different stimuli, that including illusion-inducing tone sequence, monaural tone sequence and perceived pitch sequence with a control of white noises delivered to the right and left ears in random order. 32 scans with a repetition time (TR) 3 s Between 3 s interval for each type of the four stimuli were performed. In BOLD signals, activation was observed in the prefrontal and temporal cortices, parietal lobule and occipital areas by first-level group analysis. However, there existed large intersubject variability such that systematic tendency of the activation was not clear. The study will be continued to obtain larger number of subjects for group analysis. (author)

  14. Wavelet analysis as a tool to characteriseand remove environmental noisefrom self-potential time series

    OpenAIRE

    Chianese, D.; Colangelo, G.; D'Emilio, M.; Lanfredi, M.; Lapenna, V.; Ragosta, M.; Macchiato, M. F.

    2004-01-01

    Multiresolution wavelet analysis of self-potential signals and rainfall levels is performed for extracting fluctuations in electrical signals, which might be addressed to meteorological variability. In the time-scale domain of the wavelet transform, rain data are used as markers to single out those wavelet coefficients of the electric signal which can be considered relevant to the environmental disturbance. Then these coefficients are filtered out and the signal is recovered by anti...

  15. Developing knowledge level scale of functional foods: Validity and ...

    African Journals Online (AJOL)

    The aim of the study was to develop a scale to determine the knowledge levels of University students on functional foods and to investigate the validity and reliability of the scale. The research was conducted on 417 (209 girls and 208 boys) undergraduate students in Selcuk University regarding functional foods.

  16. Vigilance task-related change in brain functional connectivity as revealed by wavelet phase coherence analysis of near-infrared spectroscopy signals

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-08-01

    Full Text Available This study aims to assess the vigilance task-related change in connectivity in healthy adults using wavelet phase coherence (WPCO analysis of near-infrared spectroscopy signals (NIRS. NIRS is a non-invasive neuroimaging technique for assessing brain activity. Continuous recordings of the NIRS signals were obtained from the prefrontal cortex (PFC and sensorimotor cortical areas of 20 young healthy adults (24.9±3.3 years during a 10-min resting state and a 20-min vigilance task state. The vigilance task was used to simulate driving mental load by judging three random numbers (i.e., whether odd numbers. The task was divided into two sessions: the first 10 minutes (Task t1 and the second 10 minutes (Task t2. The WPCO of six channel pairs were calculated in five frequency intervals: 0.6–2 Hz (I, 0.145–0.6 Hz (II, 0.052–0.145 Hz (III, 0.021–0.052 Hz (IV, and 0.0095–0.021 Hz (V. The significant WPCO formed global connectivity (GC maps in intervals I and II and functional connectivity (FC maps in intervals III to V. Results show that the GC levels in interval I and FC levels in interval III were significantly lower in the Task t2 than in the resting state (p < 0.05, particularly between the left PFC and bilateral sensorimotor regions. Also, the reaction time shows an increase in Task t2 compared with that in Task t1. However, no significant difference in WPCO was found between Task t1 and resting state. The results showed that the change in FC at the range of 0.6-2 Hz was not attributed to the vigilance task pe se, but the interaction effect of vigilance task and time factors. The findings suggest that the decreased attention level might be partly attributed to the reduced GC levels between the left prefrontal region and sensorimotor area. The present results provide a new insight into the vigilance task-related brain activity.

  17. A new approach to global seismic tomography based on regularization by sparsity in a novel 3D spherical wavelet basis

    Science.gov (United States)

    Loris, Ignace; Simons, Frederik J.; Daubechies, Ingrid; Nolet, Guust; Fornasier, Massimo; Vetter, Philip; Judd, Stephen; Voronin, Sergey; Vonesch, Cédric; Charléty, Jean

    2010-05-01

    Global seismic wavespeed models are routinely parameterized in terms of spherical harmonics, networks of tetrahedral nodes, rectangular voxels, or spherical splines. Up to now, Earth model parametrizations by wavelets on the three-dimensional ball remain uncommon. Here we propose such a procedure with the following three goals in mind: (1) The multiresolution character of a wavelet basis allows for the models to be represented with an effective spatial resolution that varies as a function of position within the Earth. (2) This property can be used to great advantage in the regularization of seismic inversion schemes by seeking the most sparse solution vector, in wavelet space, through iterative minimization of a combination of the ℓ2 (to fit the data) and ℓ1 norms (to promote sparsity in wavelet space). (3) With the continuing increase in high-quality seismic data, our focus is also on numerical efficiency and the ability to use parallel computing in reconstructing the model. In this presentation we propose a new wavelet basis to take advantage of these three properties. To form the numerical grid we begin with a surface tesselation known as the 'cubed sphere', a construction popular in fluid dynamics and computational seismology, coupled with an semi-regular radial subdivison that honors the major seismic discontinuities between the core-mantle boundary and the surface. This mapping first divides the volume of the mantle into six portions. In each 'chunk' two angular and one radial variable are used for parametrization. In the new variables standard 'cartesian' algorithms can more easily be used to perform the wavelet transform (or other common transforms). Edges between chunks are handled by special boundary filters. We highlight the benefits of this construction and use it to analyze the information present in several published seismic compressional-wavespeed models of the mantle, paying special attention to the statistics of wavelet and scaling coefficients

  18. Study of the oscillations event of the CNLV-U1 with Wavelets techniques

    International Nuclear Information System (INIS)

    Amador G, R.; Nunez C, A.; Prieto G, A.; Espinosa P, G.

    2004-01-01

    Presently work is described and the techniques are applied of the Fourier Transformation in Short Time, the Continuous Transformation of Wavelets and the Multi resolution Analysis for the analysis of the event of oscillations of power in the Nuclear Power station of Laguna Verde Unit 1 happened in January of 1995. In general, the wavelets techniques allows to carry out studies of the different signals generated by a nuclear plant in the plane Time-frequency, Time-scale as well as the decomposition of the signals. The results obtained study presently demonstrate that the frequency of the event of oscillations in the Nuclear Power station of Laguna Verde Unit 1 are approximately 0.52 Hz for the 3 analysis techniques, besides being observed the evolution of the frequency in function of the time. (Author)

  19. Controlled wavelet domain sparsity for x-ray tomography

    Science.gov (United States)

    Purisha, Zenith; Rimpeläinen, Juho; Bubba, Tatiana; Siltanen, Samuli

    2018-01-01

    Tomographic reconstruction is an ill-posed inverse problem that calls for regularization. One possibility is to require sparsity of the unknown in an orthonormal wavelet basis. This, in turn, can be achieved by variational regularization, where the penalty term is the sum of the absolute values of the wavelet coefficients. The primal-dual fixed point algorithm showed that the minimizer of the variational regularization functional can be computed iteratively using a soft-thresholding operation. Choosing the soft-thresholding parameter \

  20. Wavelet-Based Quantum Field Theory

    Directory of Open Access Journals (Sweden)

    Mikhail V. Altaisky

    2007-11-01

    Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.

  1. 3D image restoration for confocal microscopy: toward a wavelet deconvolution for the study of complex biological structures

    Science.gov (United States)

    Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats

    2000-05-01

    Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.

  2. Peak center and area estimation in gamma-ray energy spectra using a Mexican-hat wavelet

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan [School of Information Science & Technology, Chengdu University of Technology, Chengdu (China); Wu, Qi-fan [Department of Engineering Physics, Tsinghua University, Beijing (China)

    2017-06-21

    Wavelet analysis is commonly used to detect and localize peaks within a signal, such as in Gamma-ray energy spectra. This paper presents a peak area estimation method based on a new wavelet analysis. Another Mexican Hat Wavelet Signal (MHWS) named after the new MHWS is obtained with the convolution of a Gaussian signal and a MHWS. During the transform, the overlapping background on the Gaussian signal caused by Compton scattering can be subtracted because the impulse response function MHWS is a second-order smooth function, and the amplitude of the maximum within the new MHWS is the net height corresponding to the Gaussian signal height, which can be used to estimate the Gaussian peak area. Moreover, the zero-crossing points within the new MHWS contain the information of the Gaussian variance whose valve should be obtained when the Gaussian peak area is estimated. Further, the new MHWS center is also the Gaussian peak center. With that distinguishing feature, the channel address of a characteristic peak center can be accurately obtained which is very useful in the stabilization of airborne Gamma energy spectra. In particular, a method for determining the correction coefficient k is given, where the peak area is calculated inaccurately because the value of the scale factor in wavelet transform is too small. The simulation and practical applications show the feasibility of the proposed peak center and area estimation method.

  3. Applications of wavelet transforms for nuclear power plant signal analysis

    International Nuclear Information System (INIS)

    Seker, S.; Turkcan, E.; Upadhyaya, B.R.; Erbay, A.S.

    1998-01-01

    The safety of Nuclear Power Plants (NPPs) may be enhanced by the timely processing of information derived from multiple process signals from NPPs. The most widely used technique in signal analysis applications is the Fourier transform in the frequency domain to generate power spectral densities (PSD). However, the Fourier transform is global in nature and will obscure any non-stationary signal feature. Lately, a powerful technique called the Wavelet Transform, has been developed. This transform uses certain basis functions for representing the data in an effective manner, with capability for sub-band analysis and providing time-frequency localization as needed. This paper presents a brief overview of wavelets applied to the nuclear industry for signal processing and plant monitoring. The basic theory of Wavelets is also summarized. In order to illustrate the application of wavelet transforms data were acquired from the operating nuclear power plant Borssele in the Netherlands. The experimental data consist of various signals in the power plant and are selected from a stationary power operation. Their frequency characteristics and the mutual relations were investigated using MATLAB signal processing and wavelet toolbox for computing their PSDs and coherence functions by multi-resolution analysis. The results indicate that the sub-band PSD matches with the original signal PSD and enhances the estimation of coherence functions. The Wavelet analysis demonstrates the feasibility of application to stationary signals to provide better estimates in the frequency band of interest as compared to the classical FFT approach. (author)

  4. Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China.

    Science.gov (United States)

    Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng

    2017-07-01

    Particulate matter with aerodynamic diameter below 10 μm (PM 10 ) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM 10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM 10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM 10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM 10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM 10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM 10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM 10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM 10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM 10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM 10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM 10 forecasting field.

  5. Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's

    Science.gov (United States)

    Cai, Wei; Wang, Jian-Zhong

    1993-01-01

    We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.

  6. Clifford Continuous Wavelet Transforms in Ll0,2 and Ll0,3

    International Nuclear Information System (INIS)

    Bernstein, S.

    2008-01-01

    We consider Clifford-valued functions defined on R n . From the viewpoint of square integrable group representations a continuous wavelet transform is an irreducible continuous unitary representation of the affin group on the real line but also on R n . We will demonstrate that different Clifford continuous wavelet transforms can be obtained inside the calculus with similar properties than the real valued transform. Nevertheless, the Clifford wavelet transform is neither just a special vector transform nor just a wavelet transform applied to each component of the Clifford-valued function.

  7. Generalized exact holographic mapping with wavelets

    Science.gov (United States)

    Lee, Ching Hua

    2017-12-01

    The idea of renormalization and scale invariance is pervasive across disciplines. It has not only drawn numerous surprising connections between physical systems under the guise of holographic duality, but has also inspired the development of wavelet theory now widely used in signal processing. Synergizing on these two developments, we describe in this paper a generalized exact holographic mapping that maps a generic N -dimensional lattice system to a (N +1 )-dimensional holographic dual, with the emergent dimension representing scale. In previous works, this was achieved via the iterations of the simplest of all unitary mappings, the Haar mapping, which fails to preserve the form of most Hamiltonians. By taking advantage of the full generality of biorthogonal wavelets, our new generalized holographic mapping framework is able to preserve the form of a large class of lattice Hamiltonians. By explicitly separating features that are fundamentally associated with the physical system from those that are basis specific, we also obtain a clearer understanding of how the resultant bulk geometry arises. For instance, the number of nonvanishing moments of the high-pass wavelet filter is revealed to be proportional to the radius of the dual anti-de Sitter space geometry. We conclude by proposing modifications to the mapping for systems with generic Fermi pockets.

  8. Noise reduction by wavelet thresholding

    National Research Council Canada - National Science Library

    Jansen, Maarten

    2001-01-01

    .... I rather present new material and own insights in the que stions involved with wavelet based noise reduction . On the other hand , the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: spar...

  9. Wavelet representation of the nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jouault, B.; Sebille, F.; Mota, V. de la

    1997-12-31

    The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.). 52 refs.

  10. Wavelet representation of the nuclear dynamics

    International Nuclear Information System (INIS)

    Jouault, B.; Sebille, F.; Mota, V. de la.

    1997-01-01

    The study of transport phenomena in nuclear matter is addressed in a new approach named DYWAN, based on the projection methods of statistical physics and on the mathematical theory of wavelets. Strongly compressed representations of the nuclear systems are obtained with an accurate description of the wave functions and of their antisymmetrization. The results of the approach are illustrated for the ground state description as well as for the dissipative dynamics of nuclei at intermediate energies. (K.A.)

  11. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction

    Science.gov (United States)

    Shoaib, Muhammad; Shamseldin, Asaad Y.; Melville, Bruce W.; Khan, Mudasser Muneer

    2016-04-01

    In order to predict runoff accurately from a rainfall event, the multilayer perceptron type of neural network models are commonly used in hydrology. Furthermore, the wavelet coupled multilayer perceptron neural network (MLPNN) models has also been found superior relative to the simple neural network models which are not coupled with wavelet. However, the MLPNN models are considered as static and memory less networks and lack the ability to examine the temporal dimension of data. Recurrent neural network models, on the other hand, have the ability to learn from the preceding conditions of the system and hence considered as dynamic models. This study for the first time explores the potential of wavelet coupled time lagged recurrent neural network (TLRNN) models for runoff prediction using rainfall data. The Discrete Wavelet Transformation (DWT) is employed in this study to decompose the input rainfall data using six of the most commonly used wavelet functions. The performance of the simple and the wavelet coupled static MLPNN models is compared with their counterpart dynamic TLRNN models. The study found that the dynamic wavelet coupled TLRNN models can be considered as alternative to the static wavelet MLPNN models. The study also investigated the effect of memory depth on the performance of static and dynamic neural network models. The memory depth refers to how much past information (lagged data) is required as it is not known a priori. The db8 wavelet function is found to yield the best results with the static MLPNN models and with the TLRNN models having small memory depths. The performance of the wavelet coupled TLRNN models with large memory depths is found insensitive to the selection of the wavelet function as all wavelet functions have similar performance.

  12. Response of Autonomic Nervous System to Body Positions: Fourier and Wavelet Analysis

    OpenAIRE

    Xu, Aiguo; Gonnella, G.; Federici, A.; Stramaglia, S.; Simone, F.; Zenzola, A.; Santostasi, R.

    2003-01-01

    Two mathematical methods, the Fourier and wavelet transforms, were used to study the short term cardiovascular control system. Time series, picked from electrocardiogram and arterial blood pressure lasting 6 minutes, were analyzed in supine position (SUP), during the first (HD1), and the second parts (HD2) of $90^{\\circ}$ head down tilt and during recovery (REC). The wavelet transform was performed using the Haar function of period $T=2^j$ ($% j=1$,2,$... $,6) to obtain wavelet coefficients. ...

  13. Multiscale peak detection in wavelet space.

    Science.gov (United States)

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-07

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  14. Wavelet Enhanced Appearance Modelling

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Forchhammer, Søren; Cootes, Timothy F.

    2004-01-01

    Generative segmentation methods such as the Active Appearance Models (AAM) establish dense correspondences by modelling variation of shape and pixel intensities. Alas, for 3D and high-resolution 2D images typical in medical imaging, this approach is rendered infeasible due to excessive storage......-7 wavelets on face images have shown that segmentation accuracy degrades gracefully with increasing compression ratio. Further, a proposed weighting scheme emphasizing edges was shown to be significantly more accurate at compression ratio 1:1, than a conventional AAM. At higher compression ratios the scheme...

  15. An antisymmetric psychometric function on a logarithmic scale

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kappers, A.M.L.

    2011-01-01

    This very brief report introduces a psychometric function, very suitable for psychophysical data that displays Weber-like behaviour, because it is antisymmetric on a logarithmic scale. © 2011 a Pion publication.

  16. A scaling study of the step scaling function of quenched QCD with improved gauge actions

    International Nuclear Information System (INIS)

    Takeda, S.; Aoki, S.; Fukugita, M.; Ishikawa, K-I.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Kaneko, T.; Kuramashi, Y.; Okawa, M.; Taniguchi, Y.; Ukawa, A.; Yoshie, T.

    2005-01-01

    We study the scaling behavior of the step scaling function for SU(3) gauge theory, employing the Iwasaki gauge action and the Luescher-Weisz gauge action. In particular, we test the choice of boundary counter terms and apply a perturbative procedure for removal of lattice artifacts for the simulation results in the extrapolation procedure. We confirm the universality of the step scaling functions at both weak and strong coupling regions. We also measure the low energy scale ratio with the Iwasaki action, and confirm its universality

  17. Investigation and experimental data de-noising of Damavand tokamak by using fourier series expansion and wavelet code

    International Nuclear Information System (INIS)

    Sadeghi, Y.

    2006-01-01

    Computer Programs are important tools in physics. Analysis of the experimental data and the control of complex handle physical phenomenon and the solution of numerical problem in physics help scientist to the behavior and simulate the process. In this paper, calculation of several Fourier series gives us a visual and analytic impression of data analyses from Fourier series. One of important aspect in data analyses is to find optimum method for de-noising. Wavelets are mathematical functions that cut up data into different frequency components, and then study each component with a resolution corresponding to its scale. They have advantages over usual traditional methods in analyzing physical situations where the signal contains discontinuities and sharp spikes. Transformed data by wavelets in frequency space has time information and can clearly show the exact location in time of the discontinuity. This aspect makes wavelets an excellent tool in the field of data analysis. In this paper, we show how Fourier series and wavelets can analyses data in Damavand tokamak. ?

  18. Real-time wavelet-transform spectrum analyzer for the investigation of 1/fα noise

    Science.gov (United States)

    Brogioli, Doriano; Vailati, Alberto

    2003-04-01

    A wavelet-transform spectrum analyzer operating in real time within the frequency range 3×10-5-1.3×105Hz has been implemented on a low-cost digital signal processing (DSP) board operating at 150 MHz. The wavelet decomposition of the signal allows one to efficiently process nonstationary signals dominated by large amplitude events fairly well localized in time, thus providing the natural tool to analyze processes characterized by 1/fα power spectrum. The parallel architecture of the DSP allows the real-time processing of the wavelet transform of the signal sampled at 0.3 MHz. The bandwidth is about 220 dB, almost 10 decades. The power spectrum of the signal is processed in real time from the mean square value of the wavelet coefficients within each frequency band. The performances of the spectrum analyzer have been investigated by performing dynamic light scattering experiments on colloidal suspensions and by comparing the measured spectra with the correlation functions data obtained with a traditional multitau correlator. In order to assess the potentialities of the spectrum analyzer in the investigation of processes involving a wide range of time scales, we have performed measurements on a model system where fluctuations in the scattered intensities are generated by the number fluctuations in a dilute colloidal suspension illuminated by a wide beam. This system is characterized by a power-law spectrum with exponent -3/2 in the scattered intensity fluctuations. The spectrum analyzer allows one to recover the power spectrum with a dynamic range spanning about 8 decades. The advantages of wavelet analysis versus correlation analysis in the investigation of processes characterized by a wide distribution of time scales and nonstationary processes are briefly discussed.

  19. Multifractal Cross Wavelet Analysis

    Science.gov (United States)

    Jiang, Zhi-Qiang; Gao, Xing-Lu; Zhou, Wei-Xing; Stanley, H. Eugene

    Complex systems are composed of mutually interacting components and the output values of these components usually exhibit long-range cross-correlations. Using wavelet analysis, we propose a method of characterizing the joint multifractal nature of these long-range cross correlations, a method we call multifractal cross wavelet analysis (MFXWT). We assess the performance of the MFXWT method by performing extensive numerical experiments on the dual binomial measures with multifractal cross correlations and the bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, we find the empirical joint multifractality of MFXWT to be in approximate agreement with the theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the wide spanning range of the multifractal spectrum. We also apply the MFXWT method to stock market indices, and in pairs of index returns and volatilities we find an intriguing joint multifractal behavior. The tests on surrogate series also reveal that the cross correlation behavior, particularly the cross correlation with zero lag, is the main origin of cross multifractality.

  20. An Introduction to Wavelet Theory and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miner, N.E.

    1998-10-01

    This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.

  1. Bearing faults identification and resonant band demodulation based on wavelet de-noising methods and envelope analysis

    Science.gov (United States)

    Abdelrhman, Ahmed M.; Sei Kien, Yong; Salman Leong, M.; Meng Hee, Lim; Al-Obaidi, Salah M. Ali

    2017-07-01

    The vibration signals produced by rotating machinery contain useful information for condition monitoring and fault diagnosis. Fault severities assessment is a challenging task. Wavelet Transform (WT) as a multivariate analysis tool is able to compromise between the time and frequency information in the signals and served as a de-noising method. The CWT scaling function gives different resolutions to the discretely signals such as very fine resolution at lower scale but coarser resolution at a higher scale. However, the computational cost increased as it needs to produce different signal resolutions. DWT has better low computation cost as the dilation function allowed the signals to be decomposed through a tree of low and high pass filters and no further analysing the high-frequency components. In this paper, a method for bearing faults identification is presented by combing Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) with envelope analysis for bearing fault diagnosis. The experimental data was sampled by Case Western Reserve University. The analysis result showed that the proposed method is effective in bearing faults detection, identify the exact fault’s location and severity assessment especially for the inner race and outer race faults.

  2. Test Review: Barkley Deficits in Executive Functioning Scale (BDEFS)

    Science.gov (United States)

    Allee-Smith, Paula J.; Winters, Rebecca R.; Drake, Amanda; Joslin, Amanda K.

    2013-01-01

    The Barkley Deficits in Executive Functioning Scale (BDEFS), authored by Russell A. Barkley and published by Guilford in 2011, is an individually administered assessment tool that may be used to evaluate adults ages 18 to 81. The purpose of this measure is to screen those who may be experiencing executive functioning (EF) deficits in…

  3. Modified scaling function projective synchronization of chaotic systems

    International Nuclear Information System (INIS)

    Xu Yu-Hua; Zhou Wu-Neng; Fang Jian-An

    2011-01-01

    This paper investigates a kind of modified scaling function projective synchronization of uncertain chaotic systems using an adaptive controller. The given scaling function in the new method can be an equilibrium point, a periodic orbit, or even a chaotic attractor in the phase space. Based on LaSalle's invariance set principle, the adaptive control law is derived to make the states of two chaotic systems function projective synchronized. Some numerical examples are also given to show the effectiveness of the proposed method. (general)

  4. Efficient hemodynamic event detection utilizing relational databases and wavelet analysis

    Science.gov (United States)

    Saeed, M.; Mark, R. G.

    2001-01-01

    Development of a temporal query framework for time-oriented medical databases has hitherto been a challenging problem. We describe a novel method for the detection of hemodynamic events in multiparameter trends utilizing wavelet coefficients in a MySQL relational database. Storage of the wavelet coefficients allowed for a compact representation of the trends, and provided robust descriptors for the dynamics of the parameter time series. A data model was developed to allow for simplified queries along several dimensions and time scales. Of particular importance, the data model and wavelet framework allowed for queries to be processed with minimal table-join operations. A web-based search engine was developed to allow for user-defined queries. Typical queries required between 0.01 and 0.02 seconds, with at least two orders of magnitude improvement in speed over conventional queries. This powerful and innovative structure will facilitate research on large-scale time-oriented medical databases.

  5. Wavelet spectra of JACEE events

    International Nuclear Information System (INIS)

    Suzuki, Naomichi; Biyajima, Minoru; Ohsawa, Akinori.

    1995-01-01

    Pseudo-rapidity distributions of two high multiplicity events Ca-C and Si-AgBr observed by the JACEE are analyzed by a wavelet transform. Wavelet spectra of those events are calculated and compared with the simulation calculations. The wavelet spectrum of the Ca-C event somewhat resembles that simulated with the uniform random numbers. That of Si-AgBr event, however, is not reproduced by simulation calculations with Poisson random numbers, uniform random numbers, or a p-model. (author)

  6. Auditory ERB like admissible wavelet packet features for TIMIT phoneme recognition

    Directory of Open Access Journals (Sweden)

    P.K. Sahu

    2014-09-01

    Full Text Available In recent years wavelet transform has been found to be an effective tool for time–frequency analysis. Wavelet transform has been used as feature extraction in speech recognition applications and it has proved to be an effective technique for unvoiced phoneme classification. In this paper a new filter structure using admissible wavelet packet is analyzed for English phoneme recognition. These filters have the benefit of having frequency bands spacing similar to the auditory Equivalent Rectangular Bandwidth (ERB scale. Central frequencies of ERB scale are equally distributed along the frequency response of human cochlea. A new sets of features are derived using wavelet packet transform's multi-resolution capabilities and found to be better than conventional features for unvoiced phoneme problems. Some of the noises from NOISEX-92 database has been used for preparing the artificial noisy database to test the robustness of wavelet based features.

  7. Wavelet-Based Methodology for Evolutionary Spectra Estimation of Nonstationary Typhoon Processes

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2015-01-01

    Full Text Available Closed-form expressions are proposed to estimate the evolutionary power spectral density (EPSD of nonstationary typhoon processes by employing the wavelet transform. Relying on the definition of the EPSD and the concept of the wavelet transform, wavelet coefficients of a nonstationary typhoon process at a certain time instant are interpreted as the Fourier transform of a new nonstationary oscillatory process, whose modulating function is equal to the modulating function of the nonstationary typhoon process multiplied by the wavelet function in time domain. Then, the EPSD of nonstationary typhoon processes is deduced in a closed form and is formulated as a weighted sum of the squared moduli of time-dependent wavelet functions. The weighted coefficients are frequency-dependent functions defined by the wavelet coefficients of the nonstationary typhoon process and the overlapping area of two shifted wavelets. Compared with the EPSD, defined by a sum of the squared moduli of the wavelets in frequency domain in literature, this paper provides an EPSD estimation method in time domain. The theoretical results are verified by uniformly modulated nonstationary typhoon processes and non-uniformly modulated nonstationary typhoon processes.

  8. Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves

    Science.gov (United States)

    Yuan, Y. O.; Simons, F. J.; Bozdag, E.

    2014-12-01

    We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.

  9. Iris Recognition Using Wavelet

    Directory of Open Access Journals (Sweden)

    Khaliq Masood

    2013-08-01

    Full Text Available Biometric systems are getting more attention in the present era. Iris recognition is one of the most secure and authentic among the other biometrics and this field demands more authentic, reliable and fast algorithms to implement these biometric systems in real time. In this paper, an efficient localization technique is presented to identify pupil and iris boundaries using histogram of the iris image. Two small portions of iris have been used for polar transformation to reduce computational time and to increase the efficiency of the system. Wavelet transform is used for feature vector generation. Rotation of iris is compensated without shifts in the iris code. System is tested on Multimedia University Iris Database and results show that proposed system has encouraging performance.

  10. JPEG and wavelet compression of ophthalmic images

    Science.gov (United States)

    Eikelboom, Robert H.; Yogesan, Kanagasingam; Constable, Ian J.; Barry, Christopher J.

    1999-05-01

    This study was designed to determine the degree and methods of digital image compression to produce ophthalmic imags of sufficient quality for transmission and diagnosis. The photographs of 15 subjects, which inclined eyes with normal, subtle and distinct pathologies, were digitized to produce 1.54MB images and compressed to five different methods: (i) objectively by calculating the RMS error between the uncompressed and compressed images, (ii) semi-subjectively by assessing the visibility of blood vessels, and (iii) subjectively by asking a number of experienced observers to assess the images for quality and clinical interpretation. Results showed that as a function of compressed image size, wavelet compressed images produced less RMS error than JPEG compressed images. Blood vessel branching could be observed to a greater extent after Wavelet compression compared to JPEG compression produced better images then a JPEG compression for a given image size. Overall, it was shown that images had to be compressed to below 2.5 percent for JPEG and 1.7 percent for Wavelet compression before fine detail was lost, or when image quality was too poor to make a reliable diagnosis.

  11. Sub-50 nm Scale to Micrometer Scale Soft Lithographic Patterning of Functional Materials

    NARCIS (Netherlands)

    George, A.

    2011-01-01

    This PhD thesis addresses two major issues: 1) Fabricating nanometer-scale patterns of functional materials, 2) Extending the applicability of soft lithographic processes to a wide range of functional materials on conventional silicon substrates and flexible plastic substrates. This thesis describes

  12. Prediction of Hydrophobic Cores of Proteins Using Wavelet Analysis.

    Science.gov (United States)

    Hirakawa; Kuhara

    1997-01-01

    Information concerning the secondary structures, flexibility, epitope and hydrophobic regions of amino acid sequences can be extracted by assigning physicochemical indices to each amino acid residue, and information on structure can be derived using the sliding window averaging technique, which is in wide use for smoothing out raw functions. Wavelet analysis has shown great potential and applicability in many fields, such as astronomy, radar, earthquake prediction, and signal or image processing. This approach is efficient for removing noise from various functions. Here we employed wavelet analysis to smooth out a plot assigned to a hydrophobicity index for amino acid sequences. We then used the resulting function to predict hydrophobic cores in globular proteins. We calculated the prediction accuracy for the hydrophobic cores of 88 representative set of proteins. Use of wavelet analysis made feasible the prediction of hydrophobic cores at 6.13% greater accuracy than the sliding window averaging technique.

  13. Wavelet theory and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.

  14. Wavelets and multiscale signal processing

    CERN Document Server

    Cohen, Albert

    1995-01-01

    Since their appearance in mid-1980s, wavelets and, more generally, multiscale methods have become powerful tools in mathematical analysis and in applications to numerical analysis and signal processing. This book is based on "Ondelettes et Traitement Numerique du Signal" by Albert Cohen. It has been translated from French by Robert D. Ryan and extensively updated by both Cohen and Ryan. It studies the existing relations between filter banks and wavelet decompositions and shows how these relations can be exploited in the context of digital signal processing. Throughout, the book concentrates on the fundamentals. It begins with a chapter on the concept of multiresolution analysis, which contains complete proofs of the basic results. The description of filter banks that are related to wavelet bases is elaborated in both the orthogonal case (Chapter 2), and in the biorthogonal case (Chapter 4). The regularity of wavelets, how this is related to the properties of the filters and the importance of regularity for t...

  15. A new fractional wavelet transform

    Science.gov (United States)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-03-01

    The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.

  16. An NMR log echo data de-noising method based on the wavelet packet threshold algorithm

    International Nuclear Information System (INIS)

    Meng, Xiangning; Xie, Ranhong; Li, Changxi; Hu, Falong; Li, Chaoliu; Zhou, Cancan

    2015-01-01

    To improve the de-noising effects of low signal-to-noise ratio (SNR) nuclear magnetic resonance (NMR) log echo data, this paper applies the wavelet packet threshold algorithm to the data. The principle of the algorithm is elaborated in detail. By comparing the properties of a series of wavelet packet bases and the relevance between them and the NMR log echo train signal, ‘sym7’ is found to be the optimal wavelet packet basis of the wavelet packet threshold algorithm to de-noise the NMR log echo train signal. A new method is presented to determine the optimal wavelet packet decomposition scale; this is within the scope of its maximum, using the modulus maxima and the Shannon entropy minimum standards to determine the global and local optimal wavelet packet decomposition scales, respectively. The results of applying the method to the simulated and actual NMR log echo data indicate that compared with the wavelet threshold algorithm, the wavelet packet threshold algorithm, which shows higher decomposition accuracy and better de-noising effect, is much more suitable for de-noising low SNR–NMR log echo data. (paper)

  17. Pigmented skin lesion detection using random forest and wavelet-based texture

    Science.gov (United States)

    Hu, Ping; Yang, Tie-jun

    2016-10-01

    The incidence of cutaneous malignant melanoma, a disease of worldwide distribution and is the deadliest form of skin cancer, has been rapidly increasing over the last few decades. Because advanced cutaneous melanoma is still incurable, early detection is an important step toward a reduction in mortality. Dermoscopy photographs are commonly used in melanoma diagnosis and can capture detailed features of a lesion. A great variability exists in the visual appearance of pigmented skin lesions. Therefore, in order to minimize the diagnostic errors that result from the difficulty and subjectivity of visual interpretation, an automatic detection approach is required. The objectives of this paper were to propose a hybrid method using random forest and Gabor wavelet transformation to accurately differentiate which part belong to lesion area and the other is not in a dermoscopy photographs and analyze segmentation accuracy. A random forest classifier consisting of a set of decision trees was used for classification. Gabor wavelets transformation are the mathematical model of visual cortical cells of mammalian brain and an image can be decomposed into multiple scales and multiple orientations by using it. The Gabor function has been recognized as a very useful tool in texture analysis, due to its optimal localization properties in both spatial and frequency domain. Texture features based on Gabor wavelets transformation are found by the Gabor filtered image. Experiment results indicate the following: (1) the proposed algorithm based on random forest outperformed the-state-of-the-art in pigmented skin lesions detection (2) and the inclusion of Gabor wavelet transformation based texture features improved segmentation accuracy significantly.

  18. Functional Independent Scaling Relation for ORR/OER Catalysts

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Dickens, Colin F.

    2016-01-01

    reactions. Here, we show that the oxygen-oxygen bond in the OOH* intermediate is, however, not well described with the previously used class of exchange-correlation functionals. By quantifying and correcting the systematic error, an improved description of gaseous peroxide species versus experimental data...... and a reduction in calculational uncertainty is obtained. For adsorbates, we find that the systematic error largely cancels the vdW interaction missing in the original determination of the scaling relation. An improved scaling relation, which is fully independent of the applied exchange-correlation functional...

  19. Improved CEEMDAN-wavelet transform de-noising method and its application in well logging noise reduction

    Science.gov (United States)

    Zhang, Jingxia; Guo, Yinghai; Shen, Yulin; Zhao, Difei; Li, Mi

    2018-06-01

    The use of geophysical logging data to identify lithology is an important groundwork in logging interpretation. Inevitably, noise is mixed in during data collection due to the equipment and other external factors and this will affect the further lithological identification and other logging interpretation. Therefore, to get a more accurate lithological identification it is necessary to adopt de-noising methods. In this study, a new de-noising method, namely improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-wavelet transform, is proposed, which integrates the superiorities of improved CEEMDAN and wavelet transform. Improved CEEMDAN, an effective self-adaptive multi-scale analysis method, is used to decompose non-stationary signals as the logging data to obtain the intrinsic mode function (IMF) of N different scales and one residual. Moreover, one self-adaptive scale selection method is used to determine the reconstruction scale k. Simultaneously, given the possible frequency aliasing problem between adjacent IMFs, a wavelet transform threshold de-noising method is used to reduce the noise of the (k-1)th IMF. Subsequently, the de-noised logging data are reconstructed by the de-noised (k-1)th IMF and the remaining low-frequency IMFs and the residual. Finally, empirical mode decomposition, improved CEEMDAN, wavelet transform and the proposed method are applied for analysis of the simulation and the actual data. Results show diverse performance of these de-noising methods with regard to accuracy for lithological identification. Compared with the other methods, the proposed method has the best self-adaptability and accuracy in lithological identification.

  20. Characterizing and understanding the climatic determinism of high- to low-frequency variations in precipitation in northwestern France using a coupled wavelet multiresolution/statistical downscaling approach

    Science.gov (United States)

    Massei, Nicolas; Dieppois, Bastien; Hannah, David; Lavers, David; Fossa, Manuel; Laignel, Benoit; Debret, Maxime

    2017-04-01

    Geophysical signals oscillate over several time-scales that explain different amount of their overall variability and may be related to different physical processes. Characterizing and understanding such variabilities in hydrological variations and investigating their determinism is one important issue in a context of climate change, as these variabilities can be occasionally superimposed to long-term trend possibly due to climate change. It is also important to refine our understanding of time-scale dependent linkages between large-scale climatic variations and hydrological responses on the regional or local-scale. Here we investigate such links by conducting a wavelet multiresolution statistical dowscaling approach of precipitation in northwestern France (Seine river catchment) over 1950-2016 using sea level pressure (SLP) and sea surface temperature (SST) as indicators of atmospheric and oceanic circulations, respectively. Previous results demonstrated that including multiresolution decomposition in a statistical downscaling model (within a so-called multiresolution ESD model) using SLP as large-scale predictor greatly improved simulation of low-frequency, i.e. interannual to interdecadal, fluctuations observed in precipitation. Building on these results, continuous wavelet transform of simulated precipiation using multiresolution ESD confirmed the good performance of the model to better explain variability at all time-scales. A sensitivity analysis of the model to the choice of the scale and wavelet function used was also tested. It appeared that whatever the wavelet used, the model performed similarly. The spatial patterns of SLP found as the best predictors for all time-scales, which resulted from the wavelet decomposition, revealed different structures according to time-scale, showing possible different determinisms. More particularly, some low-frequency components ( 3.2-yr and 19.3-yr) showed a much wide-spread spatial extentsion across the Atlantic

  1. Conductance calculations with a wavelet basis set

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Bollinger, Mikkel; Jacobsen, Karsten Wedel

    2003-01-01

    We present a method based on density functional theory (DFT) for calculating the conductance of a phase-coherent system. The metallic contacts and the central region where the electron scattering occurs, are treated on the same footing taking their full atomic and electronic structure into account....... The linear-response conductance is calculated from the Green's function which is represented in terms of a system-independent basis set containing wavelets with compact support. This allows us to rigorously separate the central region from the contacts and to test for convergence in a systematic way...

  2. Image Mosaic Techniques OptimizationUsing Wavelet

    Institute of Scientific and Technical Information of China (English)

    ZHOUAn-qi; CUILi

    2014-01-01

    This essay concentrates on two key procedures of image mosaic——image registration and imagefusion.Becauseof the character of geometric transformation invariance of edge points, wecalculate the angle difference of the direction vector ofedge points in different images anddraw an angle difference histogramto adjust the rotationproblem. Through this way, algorithm based on gray information is expandedandcan be used in images withdisplacementand rotation. Inthe term of image fusion, wavelet multi-scale analysis is used to fuse spliced images. In order to choose the best method of imagefusion,weevaluate the results of different methods of image fusion by cross entropy.

  3. 3D weak lensing with spin wavelets on the ball

    Science.gov (United States)

    Leistedt, Boris; McEwen, Jason D.; Kitching, Thomas D.; Peiris, Hiranya V.

    2015-12-01

    We construct the spin flaglet transform, a wavelet transform to analyze spin signals in three dimensions. Spin flaglets can probe signal content localized simultaneously in space and frequency and, moreover, are separable so that their angular and radial properties can be controlled independently. They are particularly suited to analyzing cosmological observations such as the weak gravitational lensing of galaxies. Such observations have a unique 3D geometrical setting since they are natively made on the sky, have spin angular symmetries, and are extended in the radial direction by additional distance or redshift information. Flaglets are constructed in the harmonic space defined by the Fourier-Laguerre transform, previously defined for scalar functions and extended here to signals with spin symmetries. Thanks to various sampling theorems, both the Fourier-Laguerre and flaglet transforms are theoretically exact when applied to bandlimited signals. In other words, in numerical computations the only loss of information is due to the finite representation of floating point numbers. We develop a 3D framework relating the weak lensing power spectrum to covariances of flaglet coefficients. We suggest that the resulting novel flaglet weak lensing estimator offers a powerful alternative to common 2D and 3D approaches to accurately capture cosmological information. While standard weak lensing analyses focus on either real- or harmonic-space representations (i.e., correlation functions or Fourier-Bessel power spectra, respectively), a wavelet approach inherits the advantages of both techniques, where both complicated sky coverage and uncertainties associated with the physical modeling of small scales can be handled effectively. Our codes to compute the Fourier-Laguerre and flaglet transforms are made publicly available.

  4. Broadband Structural Dynamics: Understanding the Impulse-Response of Structures Across Multiple Length and Time Scales

    Science.gov (United States)

    2010-08-18

    Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform  mtP

  5. Signal Analysis by New Mother Wavelets

    International Nuclear Information System (INIS)

    Niu Jinbo; Qi Kaiguo; Fan Hongyi

    2009-01-01

    Based on the general formula for finding qualified mother wavelets [Opt. Lett. 31 (2006) 407] we make wavelet transforms computed with the newly found mother wavelets (characteristic of the power 2n) for some optical Gaussian pulses, which exhibit the ability to measure frequency of the pulse more precisely and clearly. We also work with complex mother wavelets composed of new real mother wavelets, which offer the ability of obtaining phase information of the pulse as well as amplitude information. The analogy between the behavior of Hermite-Gauss beams and that of new wavelet transforms is noticed. (general)

  6. Wavelet Transformation for Damage Identication in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Skov, Jonas falk; Kirkegaard, Poul Henning

    2014-01-01

    The present paper documents a proposed modal and wavelet analysis-based structural health monitoring (SHM) method for damage identification in wind turbine blades. A finite element (FE) model of a full-scale wind turbine blade is developed and introduced to a transverse surface crack. Hereby, post......-damage mode shapes are derived through modal analysis and subsequently analyzed with continuous two-dimensional wavelet transformation for damage identification, namely detection, localization and assessment. It is found that valid damage identification is obtained even when utilizing the mode shape...

  7. Wavelets in self-consistent electronic structure calculations

    International Nuclear Information System (INIS)

    Wei, S.; Chou, M.Y.

    1996-01-01

    We report the first implementation of orthonormal wavelet bases in self-consistent electronic structure calculations within the local-density approximation. These local bases of different scales efficiently describe localized orbitals of interest. As an example, we studied two molecules, H 2 and O 2 , using pseudopotentials and supercells. Considerably fewer bases are needed compared with conventional plane-wave approaches, yet calculated binding properties are similar. Our implementation employs fast wavelet and Fourier transforms, avoiding evaluating any three-dimensional integral numerically. copyright 1996 The American Physical Society

  8. Study of the oscillations event of the CNLV-U1 with Wavelets techniques; Estudio del evento de oscilaciones de la CNLV-U1 con tecnicas de wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Amador G, R.; Nunez C, A. [CNSNS, Dr. Barragan 779, 03020 Mexico D.F. (Mexico)]. E-mail: ragarcia@cnsns.gob.mx; Prieto G, A.; Espinosa P, G. [UAM-I, 09340 Mexico D.F. (Mexico)

    2004-07-01

    Presently work is described and the techniques are applied of the Fourier Transformation in Short Time, the Continuous Transformation of Wavelets and the Multi resolution Analysis for the analysis of the event of oscillations of power in the Nuclear Power station of Laguna Verde Unit 1 happened in January of 1995. In general, the wavelets techniques allows to carry out studies of the different signals generated by a nuclear plant in the plane Time-frequency, Time-scale as well as the decomposition of the signals. The results obtained study presently demonstrate that the frequency of the event of oscillations in the Nuclear Power station of Laguna Verde Unit 1 are approximately 0.52 Hz for the 3 analysis techniques, besides being observed the evolution of the frequency in function of the time. (Author)

  9. An improved adaptive wavelet shrinkage for ultrasound despeckling

    Indian Academy of Sciences (India)

    Preservation Index (EPI). A comparison of the results shows that the proposed fil- ter achieves an improvement in terms of quantitative measures and in terms of visual quality of the images. Keywords. Wavelet; translation invariance; inter and intra scale dependency; speckle; adaptive thresholding; ultrasound images. ∗.

  10. Development of a scale of executive functioning for the RBANS.

    Science.gov (United States)

    Spencer, Robert J; Kitchen Andren, Katherine A; Tolle, Kathryn A

    2018-01-01

    The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) is a cognitive battery that contains scales of several cognitive abilities, but no scale in the instrument is exclusively dedicated to executive functioning. Although the subtests allow for observation of executive-type errors, each error is of fairly low base rate, and healthy and clinical normative data are lacking on the frequency of these types of errors, making their significance difficult to interpret in isolation. The aim of this project was to create an RBANS executive errors scale (RBANS EE) with items comprised of qualitatively dysexecutive errors committed throughout the test. Participants included Veterans referred for outpatient neuropsychological testing. Items were initially selected based on theoretical literature and were retained based on item-total correlations. The RBANS EE (a percentage calculated by dividing the number of dysexecutive errors by the total number of responses) was moderately related to each of seven established measures of executive functioning and was strongly predictive of dichotomous classification of executive impairment. Thus, the scale had solid concurrent validity, justifying its use as a supplementary scale. The RBANS EE requires no additional administration time and can provide a quantified measure of otherwise unmeasured aspects of executive functioning.

  11. Wavelet regression model in forecasting crude oil price

    Science.gov (United States)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  12. Long memory analysis by using maximal overlapping discrete wavelet transform

    Science.gov (United States)

    Shafie, Nur Amalina binti; Ismail, Mohd Tahir; Isa, Zaidi

    2015-05-01

    Long memory process is the asymptotic decay of the autocorrelation or spectral density around zero. The main objective of this paper is to do a long memory analysis by using the Maximal Overlapping Discrete Wavelet Transform (MODWT) based on wavelet variance. In doing so, stock market of Malaysia, China, Singapore, Japan and United States of America are used. The risk of long term and short term investment are also being looked into. MODWT can be analyzed with time domain and frequency domain simultaneously and decomposing wavelet variance to different scales without loss any information. All countries under studied show that they have long memory. Subprime mortgage crisis in 2007 is occurred in the United States of America are possible affect to the major trading countries. Short term investment is more risky than long term investment.

  13. Information filtering via a scaling-based function.

    Science.gov (United States)

    Qiu, Tian; Zhang, Zi-Ke; Chen, Guang

    2013-01-01

    Finding a universal description of the algorithm optimization is one of the key challenges in personalized recommendation. In this article, for the first time, we introduce a scaling-based algorithm (SCL) independent of recommendation list length based on a hybrid algorithm of heat conduction and mass diffusion, by finding out the scaling function for the tunable parameter and object average degree. The optimal value of the tunable parameter can be abstracted from the scaling function, which is heterogeneous for the individual object. Experimental results obtained from three real datasets, Netflix, MovieLens and RYM, show that the SCL is highly accurate in recommendation. More importantly, compared with a number of excellent algorithms, including the mass diffusion method, the original hybrid method, and even an improved version of the hybrid method, the SCL algorithm remarkably promotes the personalized recommendation in three other aspects: solving the accuracy-diversity dilemma, presenting a high novelty, and solving the key challenge of cold start problem.

  14. Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm.

    Science.gov (United States)

    Savareh, Behrouz Alizadeh; Emami, Hassan; Hajiabadi, Mohamadreza; Azimi, Seyed Majid; Ghafoori, Mahyar

    2018-05-29

    Manual brain tumor segmentation is a challenging task that requires the use of machine learning techniques. One of the machine learning techniques that has been given much attention is the convolutional neural network (CNN). The performance of the CNN can be enhanced by combining other data analysis tools such as wavelet transform. In this study, one of the famous implementations of CNN, a fully convolutional network (FCN), was used in brain tumor segmentation and its architecture was enhanced by wavelet transform. In this combination, a wavelet transform was used as a complementary and enhancing tool for CNN in brain tumor segmentation. Comparing the performance of basic FCN architecture against the wavelet-enhanced form revealed a remarkable superiority of enhanced architecture in brain tumor segmentation tasks. Using mathematical functions and enhancing tools such as wavelet transform and other mathematical functions can improve the performance of CNN in any image processing task such as segmentation and classification.

  15. A Hybrid Model Based on Wavelet Decomposition-Reconstruction in Track Irregularity State Forecasting

    Directory of Open Access Journals (Sweden)

    Chaolong Jia

    2015-01-01

    Full Text Available Wavelet is able to adapt to the requirements of time-frequency signal analysis automatically and can focus on any details of the signal and then decompose the function into the representation of a series of simple basis functions. It is of theoretical and practical significance. Therefore, this paper does subdivision on track irregularity time series based on the idea of wavelet decomposition-reconstruction and tries to find the best fitting forecast model of detail signal and approximate signal obtained through track irregularity time series wavelet decomposition, respectively. On this ideology, piecewise gray-ARMA recursive based on wavelet decomposition and reconstruction (PG-ARMARWDR and piecewise ANN-ARMA recursive based on wavelet decomposition and reconstruction (PANN-ARMARWDR models are proposed. Comparison and analysis of two models have shown that both these models can achieve higher accuracy.

  16. Non-stationary dynamics in the bouncing ball: A wavelet perspective

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Abhinna K., E-mail: abhinna@iiserkol.ac.in; Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246 (India); Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in [Plasma Physics Division, Saha Institute of Nuclear Physics (SINP), Sector 1, Block-AF, Bidhannagar, Kolkata 700064 (India)

    2014-12-01

    The non-stationary dynamics of a bouncing ball, comprising both periodic as well as chaotic behavior, is studied through wavelet transform. The multi-scale characterization of the time series displays clear signatures of self-similarity, complex scaling behavior, and periodicity. Self-similar behavior is quantified by the generalized Hurst exponent, obtained through both wavelet based multi-fractal detrended fluctuation analysis and Fourier methods. The scale dependent variable window size of the wavelets aptly captures both the transients and non-stationary periodic behavior, including the phase synchronization of different modes. The optimal time-frequency localization of the continuous Morlet wavelet is found to delineate the scales corresponding to neutral turbulence, viscous dissipation regions, and different time varying periodic modulations.

  17. Noise removal for medical X-ray images in wavelet domain

    International Nuclear Information System (INIS)

    Wang, Ling; Lu, Jianming; Li, Yeqiu; Yahagi, Takashi; Okamoto, Takahide

    2006-01-01

    Many important problems in engineering and science are well-modeled by Poisson noise, the noise of medical X-ray image is Poisson noise. In this paper, we propose a method of noise removal for degraded medical X-ray image using improved preprocessing and improved BayesShrink (IBS) method in wavelet domain. Firstly, we pre-process the medical X-ray image, Secondly, we apply the Daubechies (db) wavelet transform to medical X-ray image to acquire scaling and wavelet coefficients. Thirdly, we apply the proposed IBS method to process wavelet coefficients. Finally, we compute the inverse wavelet transform for the thresholded coefficeints. Experimental results show that the proposed method always outperforms traditional methods. (author)

  18. Probing Mantle Heterogeneity Across Spatial Scales

    Science.gov (United States)

    Hariharan, A.; Moulik, P.; Lekic, V.

    2017-12-01

    Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long

  19. 基于多尺度区间插值小波法的牛肉图像中大理石花纹分割%Application of multi-scale interval interpolation wavelet in beef image of marbling segmentation

    Institute of Scientific and Technical Information of China (English)

    张彦娥; 魏颖慧; 梅树立; 朱梦婷

    2016-01-01

    The richness of the marbling in beef, as an important index of beef quality, can be used to characterize the beef fat content. In particular, the area ratio of marbling, big fat density, and small fat density are the main indicators for most existing beef grade determination. Researchers have investigated that computer vision and image processing is applicable to the automatic grading of beef marbling, and thus plays a great role in promoting the development of the beef industry. However, images may be polluted when experiencing acquisition, transmitting and other processing. Consequently, the quality of the images may be reduced, and thereby, more uncertainties emerge. Importantly, the texture of the beef marbling image becomes blurred and texture contour is not clear. It will further affect the subsequent procedures of texture segmentation and extraction. Therefore, it is necessary to use the de-noising method with better edge preserving property to keep the edge and texture information of the image. In this study, we aimed to use the method of multi-scale interval interpolation wavelet to de-noise images, and thereby to smooth the gray values to segment and extract the regions of beef muscle, large and small fat particles from the beef marbling image. Here, we used the method of multi-scale interval interpolation wavelet to solve the partial differential equation, thus to de-noise images. Specifically, from this method, the edge-preserving smoothing for different object area can be realized, so that the texture and edge of beef marble were made more clearly. In addition, in this method, we chose the external collocation points adaptively, thus the computational efficiency can be greatly improved. In particular, extension method based on Center Similarity Transformation can be used to solve the boundary effect effectively. Firstly, on the basis of the objective evaluation index of the image, the PSNR (Peak Signal to Noise Ratio) mean value of the image de

  20. Evaluation of the Use of Second Generation Wavelets in the Coherent Vortex Simulation Approach

    Science.gov (United States)

    Goldstein, D. E.; Vasilyev, O. V.; Wray, A. A.; Rogallo, R. S.

    2000-01-01

    The objective of this study is to investigate the use of the second generation bi-orthogonal wavelet transform for the field decomposition in the Coherent Vortex Simulation of turbulent flows. The performances of the bi-orthogonal second generation wavelet transform and the orthogonal wavelet transform using Daubechies wavelets with the same number of vanishing moments are compared in a priori tests using a spectral direct numerical simulation (DNS) database of isotropic turbulence fields: 256(exp 3) and 512(exp 3) DNS of forced homogeneous turbulence (Re(sub lambda) = 168) and 256(exp 3) and 512(exp 3) DNS of decaying homogeneous turbulence (Re(sub lambda) = 55). It is found that bi-orthogonal second generation wavelets can be used for coherent vortex extraction. The results of a priori tests indicate that second generation wavelets have better compression and the residual field is closer to Gaussian. However, it was found that the use of second generation wavelets results in an integral length scale for the incoherent part that is larger than that derived from orthogonal wavelets. A way of dealing with this difficulty is suggested.

  1. An Examination of Psychometric Properties of Positive Functional Attitudes Scale

    Directory of Open Access Journals (Sweden)

    Saide Umut ZEYBEK

    2017-08-01

    Full Text Available The aim of this study is to investigate the applicability of Coping Attitudes Scale: Measure of Positive Attitudes in Depression (CAS among Turkish young adult community sample and determine the psychometric properties (validity and reliability of this scale. This study was conducted with 419 students attending different departments in Mugla Sitki Kocman University, Faculty of Education in the spring semester of academic year of 2015-2016. Positive Functional Attitudes Scale, Beck Depression Scale, Beck Hopelessness Scale, Automatic Thoughts Scale, Positivity Scale and Developed Automatic Thoughts Scale.were used as data collection tools. Confirmatory factor analysis (CFA were used for investigation of the psychometric properties of the PFAS. Also, criterion-related validity, test-retest validity, and internal consistency were used calculated. The CFA results showed that standardized item estimates of the CAS ranged between 0.45 and 0.47. Also the CFA results showed that the original factor structure of the PFAS confirmed on the Turkish sample. internal consistency was calculated using the total community sample’s PFAS score. Cronbach’s alpha coefficient ort he total scale (.93 was high. Test-retest results of the subscales were 0.76. The findings showed that factor structures of the PFAS’ life perspective, personal accomplishment, positive future, self-worth, coping with problems had psychometric quality in Turkish version. As a result of the study, the Turkish version of PFAS has good validity and reliability for young adult community sample. [JCBPR 2017; 6(2.000: 59-66

  2. Wavelets: Applications to Image Compression-II

    Indian Academy of Sciences (India)

    Wavelets: Applications to Image Compression-II. Sachin P ... successful application of wavelets in image com- ... b) Soft threshold: In this case, all the coefficients x ..... [8] http://www.jpeg.org} Official site of the Joint Photographic Experts Group.

  3. Wavelet Transforms using VTK-m

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaomeng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-27

    These are a set of slides that deal with the topics of wavelet transforms using VTK-m. First, wavelets are discussed and detailed, then VTK-m is discussed and detailed, then wavelets and VTK-m are looked at from a performance comparison, then from an accuracy comparison, and finally lessons learned, conclusion, and what is next. Lessons learned are the following: Launching worklets is expensive; Natural logic of performing 2D wavelet transform: Repeat the same 1D wavelet transform on every row, repeat the same 1D wavelet transform on every column, invoke the 1D wavelet worklet every time: num_rows x num_columns; VTK-m approach of performing 2D wavelet transform: Create a worklet for 2D that handles both rows and columns, invoke this new worklet only one time; Fast calculation, but cannot reuse 1D implementations.

  4. From Calculus to Wavelets: ANew Mathematical Technique

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 4. From Calculus to Wavelets: A New Mathematical Technique Wavelet Analysis Physical Properties. Gerald B Folland. General Article Volume 2 Issue 4 April 1997 pp 25-37 ...

  5. Applications of wavelets in morphometric analysis of medical images

    Science.gov (United States)

    Davatzikos, Christos; Tao, Xiaodong; Shen, Dinggang

    2003-11-01

    Morphometric analysis of medical images is playing an increasingly important role in understanding brain structure and function, as well as in understanding the way in which these change during development, aging and pathology. This paper presents three wavelet-based methods with related applications in morphometric analysis of magnetic resonance (MR) brain images. The first method handles cases where very limited datasets are available for the training of statistical shape models in the deformable segmentation. The method is capable of capturing a larger range of shape variability than the standard active shape models (ASMs) can, by using the elegant spatial-frequency decomposition of the shape contours provided by wavelet transforms. The second method addresses the difficulty of finding correspondences in anatomical images, which is a key step in shape analysis and deformable registration. The detection of anatomical correspondences is completed by using wavelet-based attribute vectors as morphological signatures of voxels. The third method uses wavelets to characterize the morphological measurements obtained from all voxels in a brain image, and the entire set of wavelet coefficients is further used to build a brain classifier. Since the classification scheme operates in a very-high-dimensional space, it can determine subtle population differences with complex spatial patterns. Experimental results are provided to demonstrate the performance of the proposed methods.

  6. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  7. Development of large-scale functional brain networks in children.

    Science.gov (United States)

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  8. Analysis of transient signals by Wavelet transform

    International Nuclear Information System (INIS)

    Penha, Rosani Libardi da; Silva, Aucyone A. da; Ting, Daniel K.S.; Oliveira Neto, Jose Messias de

    2000-01-01

    The objective of this work is to apply the Wavelet Transform in transient signals. The Wavelet technique can outline the short time events that are not easily detected using traditional techniques. In this work, the Wavelet Transform is compared with Fourier Transform, by using simulated data and rotor rig data. This data contain known transients. The wavelet could follow all the transients, what do not happen to the Fourier techniques. (author)

  9. Density Functional Theory and Materials Modeling at Atomistic Length Scales

    Directory of Open Access Journals (Sweden)

    Swapan K. Ghosh

    2002-04-01

    Full Text Available Abstract: We discuss the basic concepts of density functional theory (DFT as applied to materials modeling in the microscopic, mesoscopic and macroscopic length scales. The picture that emerges is that of a single unified framework for the study of both quantum and classical systems. While for quantum DFT, the central equation is a one-particle Schrodinger-like Kohn-Sham equation, the classical DFT consists of Boltzmann type distributions, both corresponding to a system of noninteracting particles in the field of a density-dependent effective potential, the exact functional form of which is unknown. One therefore approximates the exchange-correlation potential for quantum systems and the excess free energy density functional or the direct correlation functions for classical systems. Illustrative applications of quantum DFT to microscopic modeling of molecular interaction and that of classical DFT to a mesoscopic modeling of soft condensed matter systems are highlighted.

  10. Multiresolution forecasting for futures trading using wavelet decompositions.

    Science.gov (United States)

    Zhang, B L; Coggins, R; Jabri, M A; Dersch, D; Flower, B

    2001-01-01

    We investigate the effectiveness of a financial time-series forecasting strategy which exploits the multiresolution property of the wavelet transform. A financial series is decomposed into an over complete, shift invariant scale-related representation. In transform space, each individual wavelet series is modeled by a separate multilayer perceptron (MLP). We apply the Bayesian method of automatic relevance determination to choose short past windows (short-term history) for the inputs to the MLPs at lower scales and long past windows (long-term history) at higher scales. To form the overall forecast, the individual forecasts are then recombined by the linear reconstruction property of the inverse transform with the chosen autocorrelation shell representation, or by another perceptron which learns the weight of each scale in the prediction of the original time series. The forecast results are then passed to a money management system to generate trades.

  11. Fast reversible wavelet image compressor

    Science.gov (United States)

    Kim, HyungJun; Li, Ching-Chung

    1996-10-01

    We present a unified image compressor with spline biorthogonal wavelets and dyadic rational filter coefficients which gives high computational speed and excellent compression performance. Convolutions with these filters can be preformed by using only arithmetic shifting and addition operations. Wavelet coefficients can be encoded with an arithmetic coder which also uses arithmetic shifting and addition operations. Therefore, from the beginning to the end, the while encoding/decoding process can be done within a short period of time. The proposed method naturally extends form the lossless compression to the lossy but high compression range and can be easily adapted to the progressive reconstruction.

  12. Fundamental papers in wavelet theory

    CERN Document Server

    Walnut, David F

    2006-01-01

    This book traces the prehistory and initial development of wavelet theory, a discipline that has had a profound impact on mathematics, physics, and engineering. Interchanges between these fields during the last fifteen years have led to a number of advances in applications such as image compression, turbulence, machine vision, radar, and earthquake prediction. This book contains the seminal papers that presented the ideas from which wavelet theory evolved, as well as those major papers that developed the theory into its current form. These papers originated in a variety of journals from differ

  13. Wavelet transform with fuzzy tuning based indirect field oriented speed control of three-phase induction motor drive

    DEFF Research Database (Denmark)

    Sanjeevikumar, P.; Daya, J.L. Febin; Wheeler, Patrick

    2015-01-01

    by the proposed controller for an improved transient and steady state performances. The discrete wavelet transform has been used to decompose the error speed into different frequency components and the fuzzy logic is used to generate the scaling gains of the wavelet controller. The complete model of the proposed...

  14. A simple output voltage control scheme for single phase wavelet ...

    African Journals Online (AJOL)

    DR OKE

    of the wavelet modulated (WM) scheme is that a single synthesis function, derived ... a single-phase H-bridge voltage-source (VS) inverter using MATLAB simulations. ... reconstruction process has been suggested to device a new class of ...

  15. A novel neural-wavelet approach for process diagnostics and complex system modeling

    Science.gov (United States)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  16. Large-scale, high-resolution multielectrode-array recording depicts functional network differences of cortical and hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    Shinya Ito

    Full Text Available Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system to record the activity from hundreds of neurons in organotypic cultures of cortico-hippocampal brain slices from mice. To probe the network structure, we employed a wavelet transform of the cross-correlogram to categorize the functional connectivity in different frequency ranges. With this method we directly compare, for the first time, in any preparation, the neuronal network structures of cortex and hippocampus, on the scale of hundreds of neurons, with sub-millisecond time resolution. Among the three frequency ranges that we investigated, the lower two frequency ranges (gamma (30-80 Hz and beta (12-30 Hz range showed similar network structure between cortex and hippocampus, but there were many significant differences between these structures in the high frequency range (100-1000 Hz. The high frequency networks in cortex showed short tailed degree-distributions, shorter decay length of connectivity density, smaller clustering coefficients, and positive assortativity. Our results suggest that our method can characterize frequency dependent differences of network architecture from different brain regions. Crucially, because these differences between brain regions require millisecond temporal scales to be observed and characterized, these results underscore the importance of high temporal resolution recordings for the understanding of functional networks in neuronal systems.

  17. An Improved Method of Parameter Identification and Damage Detection in Beam Structures under Flexural Vibration Using Wavelet Multi-Resolution Analysis

    Directory of Open Access Journals (Sweden)

    Seyed Alireza Ravanfar

    2015-09-01

    Full Text Available This paper reports on a two-step approach for optimally determining the location and severity of damage in beam structures under flexural vibration. The first step focuses on damage location detection. This is done by defining the damage index called relative wavelet packet entropy (RWPE. The damage severities of the model in terms of loss of stiffness are assessed in the second step using the inverse solution of equations of motion of a structural system in the wavelet domain. For this purpose, the connection coefficient of the scaling function to convert the equations of motion in the time domain into the wavelet domain is applied. Subsequently, the dominant components based on the relative energies of the wavelet packet transform (WPT components of the acceleration responses are defined. To obtain the best estimation of the stiffness parameters of the model, the least squares error minimization is used iteratively over the dominant components. Then, the severity of the damage is evaluated by comparing the stiffness parameters of the identified model before and after the occurrence of damage. The numerical and experimental results demonstrate that the proposed method is robust and effective for the determination of damage location and accurate estimation of the loss in stiffness due to damage.

  18. The Minimum Data Set 3.0 Cognitive Function Scale.

    Science.gov (United States)

    Thomas, Kali S; Dosa, David; Wysocki, Andrea; Mor, Vincent

    2017-09-01

    The Minimum Data Set (MDS) 3.0 introduced the Brief Interview for Mental Status (BIMS), a short performance-based cognitive screener for nursing home (NH) residents. Not all residents are able to complete the BIMS and are consequently assessed by staff. We designed a Cognitive Function Scale (CFS) integrating self-report and staff-report data and present evidence of the scale's construct validity. A retrospective cohort study. The subjects consisted of 3 cohorts: (1) long-stay NH residents (N=941,077) and (2) new admissions (N=2,066,580) during 2011-2012, and (3) residents with the older MDS 2.0 assessment in 2010 and the newer MDS 3.0 assessment (n=688,511). MDS 3.0 items were used to create a single, integrated 4-category hierarchical CFS that was compared with residents' prior MDS 2.0 Cognitive Performance Scale scores and other concurrent MDS 3.0 measures of construct validity. The new CFS suggests that 28% of the long-stay cohort in 2011-2012 were cognitively intact, 22% were mildly impaired, 33% were moderately impaired, and 17% were severely impaired. For the admission cohort, the CFS noted 56% as cognitively intact, 23% as mildly impaired, 17% as moderately impaired, and 4% as severely impaired. The CFS corresponded closely with residents' prior MDS 2.0 Cognitive Performance Scale scores and with performance of Activities of Daily Living, and nurses' judgments of function and behavior in both the admission and long-stay cohorts. The new CFS is valuable to researchers as it provides a single, integrated measure of NH residents' cognitive function, regardless of the mode of assessment.

  19. Wavelets a tutorial in theory and applications

    CERN Document Server

    1992-01-01

    Wavelets: A Tutorial in Theory and Applications is the second volume in the new series WAVELET ANALYSIS AND ITS APPLICATIONS. As a companion to the first volume in this series, this volume covers several of the most important areas in wavelets, ranging from the development of the basic theory such as construction and analysis of wavelet bases to an introduction of some of the key applications, including Mallat's local wavelet maxima technique in second generation image coding. A fairly extensive bibliography is also included in this volume.Key Features* Covers several of the

  20. Information filtering via a scaling-based function.

    Directory of Open Access Journals (Sweden)

    Tian Qiu

    Full Text Available Finding a universal description of the algorithm optimization is one of the key challenges in personalized recommendation. In this article, for the first time, we introduce a scaling-based algorithm (SCL independent of recommendation list length based on a hybrid algorithm of heat conduction and mass diffusion, by finding out the scaling function for the tunable parameter and object average degree. The optimal value of the tunable parameter can be abstracted from the scaling function, which is heterogeneous for the individual object. Experimental results obtained from three real datasets, Netflix, MovieLens and RYM, show that the SCL is highly accurate in recommendation. More importantly, compared with a number of excellent algorithms, including the mass diffusion method, the original hybrid method, and even an improved version of the hybrid method, the SCL algorithm remarkably promotes the personalized recommendation in three other aspects: solving the accuracy-diversity dilemma, presenting a high novelty, and solving the key challenge of cold start problem.

  1. Wavelet entropy characterization of elevated intracranial pressure.

    Science.gov (United States)

    Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao

    2008-01-01

    Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.

  2. Quantum dynamics calculations using symmetrized, orthogonal Weyl-Heisenberg wavelets with a phase space truncation scheme. II. Construction and optimization

    International Nuclear Information System (INIS)

    Poirier, Bill; Salam, A.

    2004-01-01

    In this paper, we extend and elaborate upon a wavelet method first presented in a previous publication [B. Poirier, J. Theo. Comput. Chem. 2, 65 (2003)]. In particular, we focus on construction and optimization of the wavelet functions, from theoretical and numerical viewpoints, and also examine their localization properties. The wavelets used are modified Wilson-Daubechies wavelets, which in conjunction with a simple phase space truncation scheme, enable one to solve the multidimensional Schroedinger equation. This approach is ideally suited to rovibrational spectroscopy applications, but can be used in any context where differential equations are involved

  3. Multiscale Lyapunov exponent for 2-microlocal functions

    International Nuclear Information System (INIS)

    Dhifaoui, Zouhaier; Kortas, Hedi; Ammou, Samir Ben

    2009-01-01

    The Lyapunov exponent is an important indicator of chaotic dynamics. Using wavelet analysis, we define a multiscale representation of this exponent which we demonstrate the scale-wise dependence for functions belonging to C x 0 s,s ' spaces. An empirical study involving simulated processes and financial time series corroborates the theoretical findings.

  4. Discrete wavelet transform: a tool in smoothing kinematic data.

    Science.gov (United States)

    Ismail, A R; Asfour, S S

    1999-03-01

    Motion analysis systems typically introduce noise to the displacement data recorded. Butterworth digital filters have been used to smooth the displacement data in order to obtain smoothed velocities and accelerations. However, this technique does not yield satisfactory results, especially when dealing with complex kinematic motions that occupy the low- and high-frequency bands. The use of the discrete wavelet transform, as an alternative to digital filters, is presented in this paper. The transform passes the original signal through two complementary low- and high-pass FIR filters and decomposes the signal into an approximation function and a detail function. Further decomposition of the signal results in transforming the signal into a hierarchy set of orthogonal approximation and detail functions. A reverse process is employed to perfectly reconstruct the signal (inverse transform) back from its approximation and detail functions. The discrete wavelet transform was applied to the displacement data recorded by Pezzack et al., 1977. The smoothed displacement data were twice differentiated and compared to Pezzack et al.'s acceleration data in order to choose the most appropriate filter coefficients and decomposition level on the basis of maximizing the percentage of retained energy (PRE) and minimizing the root mean square error (RMSE). Daubechies wavelet of the fourth order (Db4) at the second decomposition level showed better results than both the biorthogonal and Coiflet wavelets (PRE = 97.5%, RMSE = 4.7 rad s-2). The Db4 wavelet was then used to compress complex displacement data obtained from a noisy mathematically generated function. Results clearly indicate superiority of this new smoothing approach over traditional filters.

  5. Study on critical heat flux based on wavelet transform in rectangular narrow channels

    International Nuclear Information System (INIS)

    Zhou Tao; Ju Zhongyun; Zhang Lei; Li Jingjing; Sheng Cheng; Xiao Zejun

    2014-01-01

    Critical heat flux is very important for the safety of nuclear reactor, and observing temperature rise rate is a feasible method. The wavelet transform is used to analyze the CHF temperature rise curves in rectangular narrow channels, which can remove relative weaker interference and effectively judge CHF. Rectangular narrow channel can strengthen heat transfer and reduce CHF, whose characteristics are proved by temperature rise curves analyzed by wavelet transform. Respectively applying Daubechies function and Haar function is to guarantee the accuracy of the wavelet analysis, and Daubechies function is more accurate than Haar function in the detail signal processing from results. While the wavelet analysis and experimental results are compared and found in good agreement with the experimental results. (authors)

  6. Study on critical heat flux based on wavelet transform in rectangular narrow channels

    International Nuclear Information System (INIS)

    Zhou Tao; Ju Zhongyun; Zhang Lei; Li Jingjing; Sheng Cheng; Xiao Zejun

    2014-01-01

    Critical heat flux is very important for nuclear reactor safety, and observing temperature rise rate is a feasible method. Through using the wavelet transform to analyze the CHF temperature rise curves in rectangular narrow channels, it can remove relative weaker interference and effectively judge CHF. Rectangular narrow channel can strengthen heat transfer and reduce CHF, whose characteristics are proved by, temperature rise curves analyzed by wavelet transform. Respectively applying Daubechies function and Haar function is for guarantee the accuracy of the wavelet analysis, and Daubechies function is more accurate than Haar function in the detail signal processing from results. While the wavelet analysis and experimental results are compared and found in good agreement with the experimental results. (authors)

  7. Online Wavelet Complementary velocity Estimator.

    Science.gov (United States)

    Righettini, Paolo; Strada, Roberto; KhademOlama, Ehsan; Valilou, Shirin

    2018-02-01

    In this paper, we have proposed a new online Wavelet Complementary velocity Estimator (WCE) over position and acceleration data gathered from an electro hydraulic servo shaking table. This is a batch estimator type that is based on the wavelet filter banks which extract the high and low resolution of data. The proposed complementary estimator combines these two resolutions of velocities which acquired from numerical differentiation and integration of the position and acceleration sensors by considering a fixed moving horizon window as input to wavelet filter. Because of using wavelet filters, it can be implemented in a parallel procedure. By this method the numerical velocity is estimated without having high noise of differentiators, integration drifting bias and with less delay which is suitable for active vibration control in high precision Mechatronics systems by Direct Velocity Feedback (DVF) methods. This method allows us to make velocity sensors with less mechanically moving parts which makes it suitable for fast miniature structures. We have compared this method with Kalman and Butterworth filters over stability, delay and benchmarked them by their long time velocity integration for getting back the initial position data. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Molecular-Scale Electronics: From Concept to Function.

    Science.gov (United States)

    Xiang, Dong; Wang, Xiaolong; Jia, Chuancheng; Lee, Takhee; Guo, Xuefeng

    2016-04-13

    Creating functional electrical circuits using individual or ensemble molecules, often termed as "molecular-scale electronics", not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits. Finally, we provide a critical discussion of limitations and main challenges that still exist for the development of molecular electronics. These analyses should be valuable for deeply understanding charge transport through molecular junctions, the device fabrication process, and the roadmap for future practical molecular electronics.

  9. Harmonic analysis from Fourier to wavelets

    CERN Document Server

    Pereyra, Maria Cristina

    2012-01-01

    In the last 200 years, harmonic analysis has been one of the most influential bodies of mathematical ideas, having been exceptionally significant both in its theoretical implications and in its enormous range of applicability throughout mathematics, science, and engineering. In this book, the authors convey the remarkable beauty and applicability of the ideas that have grown from Fourier theory. They present for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization). While concentrating on the Fourier and Haar cases, the book touches on aspects of the world that lies between these two different ways of decomposing functions: time-frequency analysis (wavelets). Both finite and continuous perspectives are presented, allowing for the introd...

  10. A Novel Fractional-Order PID Controller for Integrated Pressurized Water Reactor Based on Wavelet Kernel Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-xin Zhao

    2014-01-01

    Full Text Available This paper presents a novel wavelet kernel neural network (WKNN with wavelet kernel function. It is applicable in online learning with adaptive parameters and is applied on parameters tuning of fractional-order PID (FOPID controller, which could handle time delay problem of the complex control system. Combining the wavelet function and the kernel function, the wavelet kernel function is adopted and validated the availability for neural network. Compared to the conservative wavelet neural network, the most innovative character of the WKNN is its rapid convergence and high precision in parameters updating process. Furthermore, the integrated pressurized water reactor (IPWR system is established by RELAP5, and a novel control strategy combining WKNN and fuzzy logic rule is proposed for shortening controlling time and utilizing the experiential knowledge sufficiently. Finally, experiment results verify that the control strategy and controller proposed have the practicability and reliability in actual complicated system.

  11. Wavelet-based multiscale window transform and energy and vorticity analysis

    Science.gov (United States)

    Liang, Xiang San

    A new methodology, Multiscale Energy and Vorticity Analysis (MS-EVA), is developed to investigate sub-mesoscale, meso-scale, and large-scale dynamical interactions in geophysical fluid flows which are intermittent in space and time. The development begins with the construction of a wavelet-based functional analysis tool, the multiscale window transform (MWT), which is local, orthonormal, self-similar, and windowed on scale. The MWT is first built over the real line then modified onto a finite domain. Properties are explored, the most important one being the property of marginalization which brings together a quadratic quantity in physical space with its phase space representation. Based on MWT the MS-EVA is developed. Energy and enstrophy equations for the large-, meso-, and sub-meso-scale windows are derived and their terms interpreted. The processes thus represented are classified into four categories: transport; transfer, conversion, and dissipation/diffusion. The separation of transport from transfer is made possible with the introduction of the concept of perfect transfer. By the property of marginalization, the classical energetic analysis proves to be a particular case of the MS-EVA. The MS-EVA developed is validated with classical instability problems. The validation is carried out through two steps. First, it is established that the barotropic and baroclinic instabilities are indicated by the spatial averages of certain transfer term interaction analyses. Then calculations of these indicators are made with an Eady model and a Kuo model. The results agree precisely with what is expected from their analytical solutions, and the energetics reproduced reveal a consistent and important aspect of the unknown dynamic structures of instability processes. As an application, the MS-EVA is used to investigate the Iceland-Faeroe frontal (IFF) variability. A MS-EVA-ready dataset is first generated, through a forecasting study with the Harvard Ocean Prediction System

  12. The wavelet/scalar quantization compression standard for digital fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  13. Construction of Scaling Partitions of Unity

    Directory of Open Access Journals (Sweden)

    Ole Christensen

    2017-11-01

    Full Text Available Partitions of unity in ℝd formed by (matrix scales of a fixed function appear in many parts of harmonic analysis, e.g., wavelet analysis and the analysis of Triebel-Lizorkin spaces. We give a simple characterization of the functions and matrices yielding such a partition of unity. For expanding matrices, the characterization leads to easy ways of constructing appropriate functions with attractive properties like high regularity and small support. We also discuss a class of integral transforms that map functions having the partition of unity property to functions with the same property. The one-dimensional version of the transform allows a direct definition of a class of nonuniform splines with properties that are parallel to those of the classical B-splines. The results are illustrated with the construction of dual pairs of wavelet frames.

  14. Traffic characterization and modeling of wavelet-based VBR encoded video

    Energy Technology Data Exchange (ETDEWEB)

    Yu Kuo; Jabbari, B. [George Mason Univ., Fairfax, VA (United States); Zafar, S. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1997-07-01

    Wavelet-based video codecs provide a hierarchical structure for the encoded data, which can cater to a wide variety of applications such as multimedia systems. The characteristics of such an encoder and its output, however, have not been well examined. In this paper, the authors investigate the output characteristics of a wavelet-based video codec and develop a composite model to capture the traffic behavior of its output video data. Wavelet decomposition transforms the input video in a hierarchical structure with a number of subimages at different resolutions and scales. the top-level wavelet in this structure contains most of the signal energy. They first describe the characteristics of traffic generated by each subimage and the effect of dropping various subimages at the encoder on the signal-to-noise ratio at the receiver. They then develop an N-state Markov model to describe the traffic behavior of the top wavelet. The behavior of the remaining wavelets are then obtained through estimation, based on the correlations between these subimages at the same level of resolution and those wavelets located at an immediate higher level. In this paper, a three-state Markov model is developed. The resulting traffic behavior described by various statistical properties, such as moments and correlations, etc., is then utilized to validate their model.

  15. Energy-Based Wavelet De-Noising of Hydrologic Time Series

    Science.gov (United States)

    Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu

    2014-01-01

    De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed. PMID:25360533

  16. Investment horizon heterogeneity and wavelet: Overview and further research directions

    Science.gov (United States)

    Chakrabarty, Anindya; De, Anupam; Gunasekaran, Angappa; Dubey, Rameshwar

    2015-07-01

    Wavelet based multi-scale analysis of financial time series has attracted much attention, lately, from both the academia and practitioners from all around the world. The unceasing metamorphosis of the discipline of finance from its humble beginning as applied economics to the more sophisticated depiction as applied physics and applied psychology has revolutionized the way we perceive the market and its complexities. One such complexity is the presence of heterogeneous horizon agents in the market. In this context, we have performed a generous review of different aspects of horizon heterogeneity that has been successfully elucidated through the synergy between wavelet theory and finance. The evolution of wavelet has been succinctly delineated to bestow necessary information to the readers who are new to this field. The migration of wavelet into finance and its subsequent branching into different sub-divisions have been sketched. The pertinent literature on the impact of horizon heterogeneity on risk, asset pricing and inter-dependencies of the financial time series are explored. The significant contributions are collated and classified in accordance to their purpose and approach so that potential researcher and practitioners, interested in this subject, can be benefited. Future research possibilities in the direction of "agency cost mitigation" and "synergy between econophysics and behavioral finance in stock market forecasting" are also suggested in the paper.

  17. A Wavelet-Based Optimization Method for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Maurizio Carlini

    2018-02-01

    Full Text Available On a global scale many countries are still heavily dependent on crude oil to produce energy and fuel for transport, with a resulting increase of atmospheric pollution. A possible solution to obviate this problem is to find eco-sustainable energy sources. A potential choice could be the use of biodiesel as fuel. The work presented aims to characterise the transesterification reaction of waste peanut frying oil using colour analysis and wavelet analysis. The biodiesel production, with the complete absence of mucilages, was evaluated through a suitable set of energy wavelet coefficients and scalograms. The physical characteristics of the biodiesel are influenced by mucilages. In particular the viscosity, that is a fundamental parameter for the correct use of the biodiesel, might be compromised. The presence of contaminants in the samples can often be missed by visual analysis. The low and high frequency wavelet analysis, by investigating the energy change of wavelet coefficient, provided a valid characterisation of the quality of the samples, related to the absence of mucilages, which is consistent with the experimental results. The proposed method of this work represents a preliminary analysis, before the subsequent chemical physical analysis, that can be develop during the production phases of the biodiesel in order to optimise the process, avoiding the presence of impurities in suspension in the final product.

  18. Constructing pairs of dual bandlimited frame wavelets in L^2(R^n)

    DEFF Research Database (Denmark)

    Lemvig, Jakob

    2012-01-01

    combination of dilations of ψ with explicitly given coefficients. The result allows a simple construction procedure for pairs of dual wavelet frames whose generators have compact support in the Fourier domain and desired time localization. The construction relies on a technical condition on ψ, and we exhibit......Given a real, expansive dilation matrix we prove that any bandlimited function ψ∈L2(Rn), for which the dilations of its Fourier transform form a partition of unity, generates a wavelet frame for certain translation lattices. Moreover, there exists a dual wavelet frame generated by a finite linear...

  19. Neural networks and wavelet analysis in the computer interpretation of pulse oximetry data

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F.U.; Skokowski, P.G.; Leach, R.R. Jr.

    1996-03-01

    Pulse oximeters determine the oxygen saturation level of blood by measuring the light absorption of arterial blood. The sensor consists of red and infrared light sources and photodetectors. A method based on neural networks and wavelet analysis is developed for improved saturation estimation in the presence of sensor motion. Spectral and correlation functions of the dual channel oximetry data are used by a backpropagation neural network to characterize the type of motion. Amplitude ratios of red to infrared signals as a function of time scale are obtained from the multiresolution wavelet decomposition of the two-channel data. Motion class and amplitude ratios are then combined to obtain a short-time estimate of the oxygen saturation level. A final estimate of oxygen saturation is obtained by applying a 15 s smoothing filter on the short-time measurements based on 3.5 s windows sampled every 1.75 s. The design employs two backpropagation neural networks. The first neural network determines the motion characteristics and the second network determines the saturation estimate. Our approach utilizes waveform analysis in contrast to the standard algorithms that are based on the successful detection of peaks and troughs in the signal. The proposed algorithm is numerically efficient and has stable characteristics with a reduced false alarm rate with a small loss in detection. The method can be rapidly developed on a digital signal processing platform.

  20. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  1. Hexagonal wavelet processing of digital mammography

    Science.gov (United States)

    Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.

    1993-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  2. Network Anomaly Detection Based on Wavelet Analysis

    Science.gov (United States)

    Lu, Wei; Ghorbani, Ali A.

    2008-12-01

    Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  3. Wavelet/scalar quantization compression standard for fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.

  4. Development of an assessment of functioning scale for prison environments.

    Science.gov (United States)

    Shelton, Deborah; Wakai, Sara

    2015-01-01

    This paper reports the development of a global assessment of functioning (GAF), modified from the DSM Axis V GAF for the prison environment. Focus groups, which were conducted with 36 correctional officers and clinicians in two prisons, provided descriptions of behavior in prison settings to re-align the GAF scale. Face validity was established. It was found that Habitation/Behavior, Social, and Symptoms emerged as important domains of functioning in prison. Gender differences were noted with regard to cleanliness, relationships and coping strategies. The cut-off score was identified at a score where offenders were unable to participate in a disciplinary process due to their mental illness. The structure of prison alters human functioning, requiring different assessment language and ratings to measure perceived behavioral norms and/or expectations. Front-line staff need the ability to observe and communicate behavioral changes quickly and accurately in a prison environment without undue burden upon their workload. This assessment was modified by front-line staff specifically for the prison environment to document quick and frequent assessments of observed changes over time in the offender population.

  5. Wavelet Analysis of Ultrasonic Echo Waveform and Application to Nondestructive Evaluation

    International Nuclear Information System (INIS)

    Park, Ik Keun; Park, Un Su; Ahn, Hyung Keun; Kwun, Sook In; Byeon, Jai Won

    2000-01-01

    Recently, advanced signal analysis which is called 'time-frequency analysis' has been used widely in nondestructive evaluation applications. Wavelet transform(WT) and Wigner Distribution are the most advanced techniques for processing signals with time-varying spectra. Wavelet analysis method is an attractive technique for evaluation of material characterization nondestructively. Wavelet transform is applied to the time-frequency analysis of ultrasonic echo waveform obtained by an ultrasonic pulse-echo technique. In this study, the feasibility of noise suppression of ultrasonic flaw signal and frequency-dependent ultrasonic group velocity and attenuation coefficient using wavelet analysis of ultrasonic echo waveform have been verified experimentally. The Gabor function is adopted the analyzing wavelet. The wavelet analysis shows that the variations of ultrasonic group velocity and attenuation coefficient due to the change of material characterization can be evaluated at each frequency. Furthermore, to assure the enhancement of detectability and new sizing performance, both computer simulated results and experimental measurements using wavelet signal processing are used to demonstrate the effectiveness of the noise suppression of ultrasonic flaw signal obtained from austenitic stainless steel weld including EDM notch

  6. Modeling Network Traffic in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Sheng Ma

    2004-12-01

    Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.

  7. Cross wavelet analysis: significance testing and pitfalls

    Directory of Open Access Journals (Sweden)

    D. Maraun

    2004-01-01

    Full Text Available In this paper, we present a detailed evaluation of cross wavelet analysis of bivariate time series. We develop a statistical test for zero wavelet coherency based on Monte Carlo simulations. If at least one of the two processes considered is Gaussian white noise, an approximative formula for the critical value can be utilized. In a second part, typical pitfalls of wavelet cross spectra and wavelet coherency are discussed. The wavelet cross spectrum appears to be not suitable for significance testing the interrelation between two processes. Instead, one should rather apply wavelet coherency. Furthermore we investigate problems due to multiple testing. Based on these results, we show that coherency between ENSO and NAO is an artefact for most of the time from 1900 to 1995. However, during a distinct period from around 1920 to 1940, significant coherency between the two phenomena occurs.

  8. Wavelet Correlation Coefficient of 'strongly correlated' financial time series

    OpenAIRE

    Razdan, Ashok

    2003-01-01

    In this paper we use wavelet concepts to show that correlation coefficient between two financial data's is not constant but varies with scale from high correlation value to strongly anti-correlation value This studies is important because correlation coefficient is used to quantify degree of independence between two variables. In econophysics correlation coefficient forms important input to evolve hierarchial tree and minimum spanning tree of financial data.

  9. Shannon Entropy-Based Wavelet Transform Method for Autonomous Coherent Structure Identification in Fluid Flow Field Data

    Directory of Open Access Journals (Sweden)

    Kartik V. Bulusu

    2015-09-01

    Full Text Available The coherent secondary flow structures (i.e., swirling motions in a curved artery model possess a variety of spatio-temporal morphologies and can be encoded over an infinitely-wide range of wavelet scales. Wavelet analysis was applied to the following vorticity fields: (i a numerically-generated system of Oseen-type vortices for which the theoretical solution is known, used for bench marking and evaluation of the technique; and (ii experimental two-dimensional, particle image velocimetry data. The mother wavelet, a two-dimensional Ricker wavelet, can be dilated to infinitely large or infinitesimally small scales. We approached the problem of coherent structure detection by means of continuous wavelet transform (CWT and decomposition (or Shannon entropy. The main conclusion of this study is that the encoding of coherent secondary flow structures can be achieved by an optimal number of binary digits (or bits corresponding to an optimal wavelet scale. The optimal wavelet-scale search was driven by a decomposition entropy-based algorithmic approach and led to a threshold-free coherent structure detection method. The method presented in this paper was successfully utilized in the detection of secondary flow structures in three clinically-relevant blood flow scenarios involving the curved artery model under a carotid artery-inspired, pulsatile inflow condition. These scenarios were: (i a clean curved artery; (ii stent-implanted curved artery; and (iii an idealized Type IV stent fracture within the curved artery.

  10. Wavelet analysis in two-dimensional tomography

    Science.gov (United States)

    Burkovets, Dimitry N.

    2002-02-01

    The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.

  11. Wavelet Radiosity on Arbitrary Planar Surfaces

    OpenAIRE

    Holzschuch , Nicolas; Cuny , François; Alonso , Laurent

    2000-01-01

    Colloque avec actes et comité de lecture. internationale.; International audience; Wavelet radiosity is, by its nature, restricted to parallelograms or triangles. This paper presents an innovative technique enabling wavelet radiosity computations on planar surfaces of arbitrary shape, including concave contours or contours with holes. This technique replaces the need for triangulating such complicated shapes, greatly reducing the complexity of the wavelet radiosity algorithm and the computati...

  12. Butterfly effects: novel functional materials inspired from the wings scales.

    Science.gov (United States)

    Zhang, Wang; Gu, Jiajun; Liu, Qinglei; Su, Huilan; Fan, Tongxiang; Zhang, Di

    2014-10-07

    Through millions of years of evolutionary selection, nature has created biological materials with various functional properties for survival. Many complex natural architectures, such as shells, bones, and honeycombs, have been studied and imitated in the design and fabrication of materials with enhanced hardness and stiffness. Recently, more and more researchers have started to research the wings of butterflies, mostly because of their dazzling colors. It was found that most of these iridescent colors are caused by periodic photonic structures on the scales that make up the surfaces of these wings. These materials have recently become a focus of multidiscipline research because of their promising applications in the display of structural colors, and in advanced sensors, photonic crystals, and solar cells. This paper review aims to provide a perspective overview of the research inspired by these wing structures in recent years.

  13. Quality Variation Control for Three-Dimensional Wavelet-Based Video Coders

    Directory of Open Access Journals (Sweden)

    Vidhya Seran

    2007-02-01

    Full Text Available The fluctuation of quality in time is a problem that exists in motion-compensated-temporal-filtering (MCTF- based video coding. The goal of this paper is to design a solution for overcoming the distortion fluctuation challenges faced by wavelet-based video coders. We propose a new technique for determining the number of bits to be allocated to each temporal subband in order to minimize the fluctuation in the quality of the reconstructed video. Also, the wavelet filter properties are explored to design suitable scaling coefficients with the objective of smoothening the temporal PSNR. The biorthogonal 5/3 wavelet filter is considered in this paper and experimental results are presented for 2D+t and t+2D MCTF wavelet coders.

  14. Quality Variation Control for Three-Dimensional Wavelet-Based Video Coders

    Directory of Open Access Journals (Sweden)

    Seran Vidhya

    2007-01-01

    Full Text Available The fluctuation of quality in time is a problem that exists in motion-compensated-temporal-filtering (MCTF- based video coding. The goal of this paper is to design a solution for overcoming the distortion fluctuation challenges faced by wavelet-based video coders. We propose a new technique for determining the number of bits to be allocated to each temporal subband in order to minimize the fluctuation in the quality of the reconstructed video. Also, the wavelet filter properties are explored to design suitable scaling coefficients with the objective of smoothening the temporal PSNR. The biorthogonal 5/3 wavelet filter is considered in this paper and experimental results are presented for 2D+t and t+2D MCTF wavelet coders.

  15. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    Science.gov (United States)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  16. On soft limits of large-scale structure correlation functions

    International Nuclear Information System (INIS)

    Sagunski, Laura

    2016-08-01

    Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the

  17. Scaling root processes based on plant functional traits (Invited)

    Science.gov (United States)

    Eissenstat, D. M.; McCormack, M. L.; Gaines, K.; Adams, T.

    2013-12-01

    There are great challenges to scaling root processes as variation across species and variation of a particular species over different spatial and temporal scales is poorly understood. We have examined tree species variation using multispecies plantings, often referred to by ecologists as 'common gardens'. Choosing species with wide variation in growth rate, root morphology (diameter, branching intensity) and root chemistry (root N and Ca concentration), we found that variation in root lifespan was well correlated with plant functional traits across 12 species. There was also evidence that localized liquid N addition could increase root lifespan and localized water addition diminished root lifespan over untreated controls, with effects strongest in the species of finest root diameter. In an adjacent forest, we have also seen tree species variation in apparent depth of rooting using water isotopes. In particular species of wood anatomy that was ring porous (e.g. oaks) typically had the deepest rooting depth, whereas those that had either diffuse-porous sapwood (maples) or tracheid sapwood (pines) were shallower rooted. These differences in rooting depth were related to sap flux of trees during and immediately after periods of drought. The extent that the patterns observed in central Pennsylvania are modulated by environment or indicative of other plant species will be discussed.

  18. On soft limits of large-scale structure correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Sagunski, Laura

    2016-08-15

    Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the

  19. Wavelet analysis and its applications an introduction

    CERN Document Server

    Yajnik, Archit

    2013-01-01

    "Wavelet analysis and its applications: an introduction" demonstrates the consequences of Fourier analysis and introduces the concept of wavelet followed by applications lucidly. While dealing with one dimension signals, sometimes they are required to be oversampled. A novel technique of oversampling the digital signal is introduced in this book alongwith necessary illustrations. The technique of feature extraction in the development of optical character recognition software for any natural language alongwith wavelet based feature extraction technique is demonstrated using multiresolution analysis of wavelet in the book.

  20. Wavelets for Sparse Representation of Music

    DEFF Research Database (Denmark)

    Endelt, Line Ørtoft; Harbo, Anders La-Cour

    2004-01-01

    We are interested in obtaining a sparse representation of music signals by means of a discrete wavelet transform (DWT). That means we want the energy in the representation to be concentrated in few DWT coefficients. It is well-known that the decay of the DWT coefficients is strongly related...... to the number of vanishing moments of the mother wavelet, and to the smoothness of the signal. In this paper we present the result of applying two classical families of wavelets to a series of musical signals. The purpose is to determine a general relation between the number of vanishing moments of the wavelet...

  1. Wavelet-based prediction of oil prices

    International Nuclear Information System (INIS)

    Yousefi, Shahriar; Weinreich, Ilona; Reinarz, Dominik

    2005-01-01

    This paper illustrates an application of wavelets as a possible vehicle for investigating the issue of market efficiency in futures markets for oil. The paper provides a short introduction to the wavelets and a few interesting wavelet-based contributions in economics and finance are briefly reviewed. A wavelet-based prediction procedure is introduced and market data on crude oil is used to provide forecasts over different forecasting horizons. The results are compared with data from futures markets for oil and the relative performance of this procedure is used to investigate whether futures markets are efficiently priced

  2. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.

    Science.gov (United States)

    Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2017-12-01

    To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic

  3. A Novel Error Resilient Scheme for Wavelet-based Image Coding Over Packet Networks

    OpenAIRE

    WenZhu Sun; HongYu Wang; DaXing Qian

    2012-01-01

    this paper presents a robust transmission strategy for wavelet based scalable bit stream over packet erasure channel. By taking the advantage of the bit plane coding and the multiple description coding, the proposed strategy adopts layered multiple description coding (LMDC) for the embedded wavelet coders to improve the error resistant capability of the important bit planes in the meaning of D(R) function. Then, the post-compression rate-distortion (PCRD) optimization process is used to impro...

  4. Diffraction and interference of single de Broglie-wavelets. Deterministic wave mechanics

    International Nuclear Information System (INIS)

    Barut, A.O.

    1993-05-01

    Wavelets are localized nonspreading solutions of massless wave equations which move like massive quantum particles. They form a bridge between classical mechanics of point particles and wave functions of probabilistic quantum mechanics, both of which can be obtained by limiting processes. Here we develop a theory of the propagation of wavelets in the presence of boundaries and derive interference phenomena of quantum theory from the behavior of single events with ''hidden parameters''. (author). 8 refs, 1 fig

  5. Polymer density functional theory approach based on scaling second-order direct correlation function.

    Science.gov (United States)

    Zhou, Shiqi

    2006-06-01

    A second-order direct correlation function (DCF) from solving the polymer-RISM integral equation is scaled up or down by an equation of state for bulk polymer, the resultant scaling second-order DCF is in better agreement with corresponding simulation results than the un-scaling second-order DCF. When the scaling second-order DCF is imported into a recently proposed LTDFA-based polymer DFT approach, an originally associated adjustable but mathematically meaningless parameter now becomes mathematically meaningful, i.e., the numerical value lies now between 0 and 1. When the adjustable parameter-free version of the LTDFA is used instead of the LTDFA, i.e., the adjustable parameter is fixed at 0.5, the resultant parameter-free version of the scaling LTDFA-based polymer DFT is also in good agreement with the corresponding simulation data for density profiles. The parameter-free version of the scaling LTDFA-based polymer DFT is employed to investigate the density profiles of a freely jointed tangent hard sphere chain near a variable sized central hard sphere, again the predictions reproduce accurately the simulational results. Importance of the present adjustable parameter-free version lies in its combination with a recently proposed universal theoretical way, in the resultant formalism, the contact theorem is still met by the adjustable parameter associated with the theoretical way.

  6. The Time-Dependent Wavelet Spectrum of HH 1 and 2

    Science.gov (United States)

    Raga, A. C.; Reipurth, B.; Esquivel, A.; González-Gómez, D.; Riera, A.

    2018-04-01

    We have calculated the wavelet spectra of four epochs (spanning ≍20 yr) of Hα and [S II] HST images of HH 1 and 2. From these spectra we calculated the distribution functions of the (angular) radii of the emission structures. We found that the size distributions have maxima (corresponding to the characteristic sizes of the observed structures) with radii that are logarithmically spaced with factors of ≍2→3 between the successive peaks. The positions of these peaks generally showed small shifts towards larger sizes as a function of time. This result indicates that the structures of HH 1 and 2 have a general expansion (seen at all scales), and/or are the result of a sequence of merging events resulting in the formation of knots with larger characteristic sizes.

  7. An economic prediction of the finer resolution level wavelet coefficients in electronic structure calculations.

    Science.gov (United States)

    Nagy, Szilvia; Pipek, János

    2015-12-21

    In wavelet based electronic structure calculations, introducing a new, finer resolution level is usually an expensive task, this is why often a two-level approximation is used with very fine starting resolution level. This process results in large matrices to calculate with and a large number of coefficients to be stored. In our previous work we have developed an adaptively refined solution scheme that determines the indices, where the refined basis functions are to be included, and later a method for predicting the next, finer resolution coefficients in a very economic way. In the present contribution, we would like to determine whether the method can be applied for predicting not only the first, but also the other, higher resolution level coefficients. Also the energy expectation values of the predicted wave functions are studied, as well as the scaling behaviour of the coefficients in the fine resolution limit.

  8. Large-scale functional purification of recombinant HIV-1 capsid.

    Directory of Open Access Journals (Sweden)

    Magdeleine Hung

    Full Text Available During human immunodeficiency virus type-1 (HIV-1 virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.

  9. Optical Aperture Synthesis Object's Information Extracting Based on Wavelet Denoising

    International Nuclear Information System (INIS)

    Fan, W J; Lu, Y

    2006-01-01

    Wavelet denoising is studied to improve OAS(optical aperture synthesis) object's Fourier information extracting. Translation invariance wavelet denoising based on Donoho wavelet soft threshold denoising is researched to remove Pseudo-Gibbs in wavelet soft threshold image. OAS object's information extracting based on translation invariance wavelet denoising is studied. The study shows that wavelet threshold denoising can improve the precision and the repetition of object's information extracting from interferogram, and the translation invariance wavelet denoising information extracting is better than soft threshold wavelet denoising information extracting

  10. Complex Wavelet transform for MRI

    International Nuclear Information System (INIS)

    Junor, P.; Janney, P.

    2004-01-01

    Full text: There is a perpetual compromise encountered in magnetic resonance (MRl) image reconstruction, between the traditional elements of image quality (noise, spatial resolution and contrast). Additional factors exacerbating this trade-off include various artifacts, computational (and hence time-dependent) overhead, and financial expense. This paper outlines a new approach to the problem of minimizing MRI image acquisition and reconstruction time without compromising resolution and noise reduction. The standard approaches for reconstructing magnetic resonance (MRI) images from raw data (which rely on relatively conventional signal processing) have matured but there are a number of challenges which limit their use. A major one is the 'intrinsic' signal-to-noise ratio (SNR) of the reconstructed image that depends on the strength of the main field. A typical clinical MRI almost invariably uses a super-cooled magnet in order to achieve a high field strength. The ongoing running cost of these super-cooled magnets prompts consideration of alternative magnet systems for use in MRIs for developing countries and in some remote regional installations. The decrease in image quality from using lower field strength magnets can be addressed by improvements in signal processing strategies. Conversely, improved signal processing will obviously benefit the current conventional field strength MRI machines. Moreover, the 'waiting time' experienced in many MR sequences (due to the relaxation time delays) can be exploited by more rigorous processing of the MR signals. Acquisition often needs to be repeated so that coherent averaging may partially redress the shortfall in SNR, at the expense of further delay. Wavelet transforms have been used in MRI as an alternative for encoding and denoising for over a decade. These have not supplanted the traditional Fourier transform methods that have long been the mainstay of MRI reconstruction, but have some inflexibility. The dual

  11. A Scale Elasticity Measure for Directional Distance Function and its Dual: Theory and DEA Estimation

    OpenAIRE

    Valentin Zelenyuk

    2012-01-01

    In this paper we focus on scale elasticity measure based on directional distance function for multi-output-multi-input technologies, explore its fundamental properties and show its equivalence with the input oriented and output oriented scale elasticity measures. We also establish duality relationship between the scale elasticity measure based on the directional distance function with scale elasticity measure based on the profit function. Finally, we discuss the estimation issues of the scale...

  12. Wavelet Coherence Analysis of Change Blindness

    Directory of Open Access Journals (Sweden)

    Irfan Ali Memon

    2013-01-01

    Full Text Available Change blindness is the incapability of the brain to detect substantial visual changes in the presence of other visual interruption. The objectives of this study are to examine the EEG (Electroencephalographic based changes in functional connectivity of the brain due to the change blindness. The functional connectivity was estimated using the wavelet-based MSC (Magnitude Square Coherence function of ERPs (Event Related Potentials. The ERPs of 30 subjects were used and were recorded using the visual attention experiment in which subjects were instructed to detect changes in visual stimulus presented before them through the computer monitor. The two-way ANOVA statistical test revealed significant increase in both gamma and theta band MSCs, and significant decrease in beta band MSC for change detection trials. These findings imply that change blindness might be associated to the lack of functional connectivity in gamma and theta bands and increase of functional connectivity in beta band. Since gamma, theta, and beta frequency bands reflect different functions of cognitive process such as maintenance, encoding, retrieval, and matching and work load of VSTM (Visual Short Term Memory, the change in functional connectivity might be correlated to these cognitive processes during change blindness.

  13. Wavelet coherence analysis of change blindness

    International Nuclear Information System (INIS)

    Memon, I.; Kalhoro, M.S.

    2013-01-01

    Change blindness is the incapability of the brain to detect substantial visual changes in the presence of other visual interruption. The objectives of this study are to examine the EEG (Electroencephalographic) based changes in functional connectivity of the brain due to the change blindness. The functional connectivity was estimated using the wavelet-based MSC (Magnitude Square Coherence) function of ERPs (Event Related Potentials). The ERPs of 30 subjects were used and were recorded using the visual attention experiment in which subjects were instructed to detect changes in visual stimulus presented before them through the computer monitor. The two-way ANOVA statistical test revealed significant increase in both gamma and theta band MSCs, and significant decrease in beta band MSC for change detection trials. These findings imply that change blindness might be associated to the lack of functional connectivity in gamma and theta bands and increase of functional connectivity in beta band. Since gamma, theta, and beta frequency bands reflect different functions of cognitive process such as maintenance, encoding, retrieval, and matching and work load of VSTM (Visual Short Term Memory), the change in functional connectivity might be correlated to these cognitive processes during change blindness. (author)

  14. Urban scaling and the production function for cities.

    Science.gov (United States)

    Lobo, José; Bettencourt, Luís M A; Strumsky, Deborah; West, Geoffrey B

    2013-01-01

    The factors that account for the differences in the economic productivity of urban areas have remained difficult to measure and identify unambiguously. Here we show that a microscopic derivation of urban scaling relations for economic quantities vs. population, obtained from the consideration of social and infrastructural properties common to all cities, implies an effective model of economic output in the form of a Cobb-Douglas type production function. As a result we derive a new expression for the Total Factor Productivity (TFP) of urban areas, which is the standard measure of economic productivity per unit of aggregate production factors (labor and capital). Using these results we empirically demonstrate that there is a systematic dependence of urban productivity on city population size, resulting from the mismatch between the size dependence of wages and labor, so that in contemporary US cities productivity increases by about 11% with each doubling of their population. Moreover, deviations from the average scale dependence of economic output, capturing the effect of local factors, including history and other local contingencies, also manifest surprising regularities. Although, productivity is maximized by the combination of high wages and low labor input, high productivity cities show invariably high wages and high levels of employment relative to their size expectation. Conversely, low productivity cities show both low wages and employment. These results shed new light on the microscopic processes that underlie urban economic productivity, explain the emergence of effective aggregate urban economic output models in terms of labor and capital inputs and may inform the development of economic theory related to growth.

  15. Evidence of A Bimodal US GDP Growth Rate Distribution: A Wavelet Approach

    Directory of Open Access Journals (Sweden)

    Sandro Claudio Lera

    2017-04-01

    Full Text Available We present a quantitative characterisation of the fluctuations of the annualized growth rate of the real US GDP per capita at many scales, using a wavelet transform analysis of two data sets, quarterly data from 1947 to 2015 and annual data from 1800 to 2010. The chosen mother wavelet (first derivative of the Gaussian function applied to the logarithm of the real US GDP per capita provides a robust estimation of the instantaneous growth rate at different scales. Our main finding is that business cycles appear at all scales and the distribution of GDP growth rates can be well approximated by a bimodal function associated to a series of switches between regimes of strong growth rate $\\rho_\\text{high}$ and regimes of low growth rate $\\rho_\\text{low}$. The succession of such two regimes compounds to produce a remarkably stable long term average real annualized growth rate of 1.6% from 1800 to 2010 and $\\approx 2.0\\%$ since 1950, which is the result of a subtle compensation between the high and low growth regimes that alternate continuously. Thus, the overall growth dynamics of the US economy is punctuated, with phases of strong growth that are intrinsically unsustainable, followed by corrections or consolidation until the next boom starts. We interpret these findings within the theory of "social bubbles" and argue as a consequence that estimations of the cost of the 2008 crisis may be misleading. We also interpret the absence of strong recovery since 2008 as a protracted low growth regime $\\rho_\\text{low}$ associated with the exceptional nature of the preceding large growth regime.

  16. EIT Imaging Regularization Based on Spectral Graph Wavelets.

    Science.gov (United States)

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Vauhkonen, Marko; Wolf, Gerhard; Mueller-Lisse, Ullrich; Moeller, Knut

    2017-09-01

    The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.

  17. Detecting fine scratches on smooth surfaces with multiscale wavelet representation

    International Nuclear Information System (INIS)

    Yao, Li; Wan, Yan; Yao, Ming; Xu, Bugao

    2012-01-01

    This paper presents a set of image-processing algorithms for automatic detection of fine scratches on smooth surfaces, such as automobile paint surfaces. The scratches to be detected have random directions, inconspicuous gray levels and background noise. The multiscale wavelet transform was used to extract texture features, and a controlled edge fusion model was employed to merge the detailed (horizontal, vertical and diagonal) wavelet coefficient maps. Based on the fused detail map, multivariate statistics were applied to synthesize features in multiple scales and directions, and an optimal threshold was set to separate scratches from the background. The experimental results of 24 automobile paint surface showed that the presented algorithms can effectively suppress background noise and detect scratches accurately. (paper)

  18. Wavelet analysis of the seismograms for tsunami warning

    Directory of Open Access Journals (Sweden)

    A. Chamoli

    2010-10-01

    Full Text Available The complexity in the tsunami phenomenon makes the available warning systems not much effective in the practical situations. The problem arises due to the time lapsed in the data transfer, processing and modeling. The modeling and simulation needs the input fault geometry and mechanism of the earthquake. The estimation of these parameters and other aprior information increases the utilized time for making any warning. Here, the wavelet analysis is used to identify the tsunamigenesis of an earthquake. The frequency content of the seismogram in time scale domain is examined using wavelet transform. The energy content in high frequencies is calculated and gives a threshold for tsunami warnings. Only first few minutes of the seismograms of the earthquake events are used for quick estimation. The results for the earthquake events of Andaman Sumatra region and other historic events are promising.

  19. Group theoretical methods and wavelet theory: coorbit theory and applications

    Science.gov (United States)

    Feichtinger, Hans G.

    2013-05-01

    Before the invention of orthogonal wavelet systems by Yves Meyer1 in 1986 Gabor expansions (viewed as discretized inversion of the Short-Time Fourier Transform2 using the overlap and add OLA) and (what is now perceived as) wavelet expansions have been treated more or less at an equal footing. The famous paper on painless expansions by Daubechies, Grossman and Meyer3 is a good example for this situation. The description of atomic decompositions for functions in modulation spaces4 (including the classical Sobolev spaces) given by the author5 was directly modeled according to the corresponding atomic characterizations by Frazier and Jawerth,6, 7 more or less with the idea of replacing the dyadic partitions of unity of the Fourier transform side by uniform partitions of unity (so-called BUPU's, first named as such in the early work on Wiener-type spaces by the author in 19808). Watching the literature in the subsequent two decades one can observe that the interest in wavelets "took over", because it became possible to construct orthonormal wavelet systems with compact support and of any given degree of smoothness,9 while in contrast the Balian-Low theorem is prohibiting the existence of corresponding Gabor orthonormal bases, even in the multi-dimensional case and for general symplectic lattices.10 It is an interesting historical fact that* his construction of band-limited orthonormal wavelets (the Meyer wavelet, see11) grew out of an attempt to prove the impossibility of the existence of such systems, and the final insight was that it was not impossible to have such systems, and in fact quite a variety of orthonormal wavelet system can be constructed as we know by now. Meanwhile it is established wisdom that wavelet theory and time-frequency analysis are two different ways of decomposing signals in orthogonal resp. non-orthogonal ways. The unifying theory, covering both cases, distilling from these two situations the common group theoretical background lead to the

  20. Application of wavelets in speech processing

    CERN Document Server

    Farouk, Mohamed Hesham

    2014-01-01

    This book provides a survey on wide-spread of employing wavelets analysis  in different applications of speech processing. The author examines development and research in different application of speech processing. The book also summarizes the state of the art research on wavelet in speech processing.

  1. On soft limits of large-scale structure correlation functions

    International Nuclear Information System (INIS)

    Ben-Dayan, Ido; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura

    2014-11-01

    We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we rederive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: The time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) 'equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and 'equal-time consistency conditions' are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the 'equal-time consistency conditions' quantitatively approximates the perturbative results for the density contrast. Thus, we generalize the background method to properly incorporate the effect of curvature in the density and velocity fluctuations on short scales, and discuss the reasons behind this discrepancy. We conclude with a few comments on practical implementations and future directions.

  2. Discrete wavelet transform analysis of surface electromyography for the fatigue assessment of neck and shoulder muscles.

    Science.gov (United States)

    Chowdhury, Suman Kanti; Nimbarte, Ashish D; Jaridi, Majid; Creese, Robert C

    2013-10-01

    Assessment of neuromuscular fatigue is essential for early detection and prevention of risks associated with work-related musculoskeletal disorders. In recent years, discrete wavelet transform (DWT) of surface electromyography (SEMG) has been used to evaluate muscle fatigue, especially during dynamic contractions when the SEMG signal is non-stationary. However, its application to the assessment of work-related neck and shoulder muscle fatigue is not well established. Therefore, the purpose of this study was to establish DWT analysis as a suitable method to conduct quantitative assessment of neck and shoulder muscle fatigue under dynamic repetitive conditions. Ten human participants performed 40min of fatiguing repetitive arm and neck exertions while SEMG data from the upper trapezius and sternocleidomastoid muscles were recorded. The ten of the most commonly used wavelet functions were used to conduct the DWT analysis. Spectral changes estimated using power of wavelet coefficients in the 12-23Hz frequency band showed the highest sensitivity to fatigue induced by the dynamic repetitive exertions. Although most of the wavelet functions tested in this study reasonably demonstrated the expected power trend with fatigue development and recovery, the overall performance of the "Rbio3.1" wavelet in terms of power estimation and statistical significance was better than the remaining nine wavelets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Night Vision Image De-Noising of Apple Harvesting Robots Based on the Wavelet Fuzzy Threshold

    Directory of Open Access Journals (Sweden)

    Chengzhi Ruan

    2015-12-01

    Full Text Available In this paper, the de-noising problem of night vision images is studied for apple harvesting robots working at night. The wavelet threshold method is applied to the de-noising of night vision images. Due to the fact that the choice of wavelet threshold function restricts the effect of the wavelet threshold method, the fuzzy theory is introduced to construct the fuzzy threshold function. We then propose the de-noising algorithm based on the wavelet fuzzy threshold. This new method can reduce image noise interferences, which is conducive to further image segmentation and recognition. To demonstrate the performance of the proposed method, we conducted simulation experiments and compared the median filtering and the wavelet soft threshold de-noising methods. It is shown that this new method can achieve the highest relative PSNR. Compared with the original images, the median filtering de-noising method and the classical wavelet threshold de-noising method, the relative PSNR increases 24.86%, 13.95%, and 11.38% respectively. We carry out comparisons from various aspects, such as intuitive visual evaluation, objective data evaluation, edge evaluation and artificial light evaluation. The experimental results show that the proposed method has unique advantages for the de-noising of night vision images, which lay the foundation for apple harvesting robots working at night.

  4. Scaling functions for the O(4) model in d=3 dimensions

    International Nuclear Information System (INIS)

    Braun, Jens; Klein, Bertram

    2008-01-01

    A nonperturbative renormalization group approach is used to calculate scaling functions for an O(4) model in d=3 dimensions in the presence of an external symmetry-breaking field. These scaling functions are important for the analysis of critical behavior in the O(4) universality class. For example, the finite-temperature phase transition in QCD with two flavors is expected to fall into this class. Critical exponents are calculated in local-potential approximation. Parametrizations of the scaling functions for the order parameter and for the longitudinal susceptibility are given. Relations from universal scaling arguments between these scaling functions are investigated and confirmed. The expected asymptotic behavior of the scaling functions predicted by Griffiths is observed. Corrections to the scaling behavior at large values of the external field are studied qualitatively. These scaling corrections can become large, which might have implications for the scaling analysis of lattice QCD results.

  5. Some applications of wavelets to physics

    International Nuclear Information System (INIS)

    Thompson, C.R.

    1992-01-01

    A thorough description of a fast wavelet transform algorithm (FWT) and its inverse (IFWT) are given. The effects of noise in the wavelet transform are studied, in particular the effects on signal reconstruction. A model for additive white noise on the coefficients is presented along with two methods that can help to suppress the effects of noise corruption of the signal. Problems of improper sampling are studied, including the propagation of uncertainty through the FWT and IFWT. Interpolation techniques and data compression are also studied. The FWT and IFWT are generalized for analysis of two dimensional images. Methods for edge detection are discussed as well as contrast improvement and data compression. Finally, wavelets are applied to electromagnetic wave propagation problems. Formulas relating the wavelet and Fourier transforms are given, and expansions of time-dependent electromagnetic fields using both fixed and moving wavelet bases are studied

  6. Large-Scale Functional Brain Network Abnormalities in Alzheimer’s Disease: Insights from Functional Neuroimaging

    Directory of Open Access Journals (Sweden)

    Bradford C. Dickerson

    2009-01-01

    Full Text Available Functional MRI (fMRI studies of mild cognitive impairment (MCI and Alzheimer’s disease (AD have begun to reveal abnormalities in large-scale memory and cognitive brain networks. Since the medial temporal lobe (MTL memory system is a site of very early pathology in AD, a number of studies have focused on this region of the brain. Yet it is clear that other regions of the large-scale episodic memory network are affected early in the disease as well, and fMRI has begun to illuminate functional abnormalities in frontal, temporal, and parietal cortices as well in MCI and AD. Besides predictable hypoactivation of brain regions as they accrue pathology and undergo atrophy, there are also areas of hyperactivation in brain memory and cognitive circuits, possibly representing attempted compensatory activity. Recent fMRI data in MCI and AD are beginning to reveal relationships between abnormalities of functional activity in the MTL memory system and in functionally connected brain regions, such as the precuneus. Additional work with “resting state” fMRI data is illuminating functional-anatomic brain circuits and their disruption by disease. As this work continues to mature, it will likely contribute to our understanding of fundamental memory processes in the human brain and how these are perturbed in memory disorders. We hope these insights will translate into the incorporation of measures of task-related brain function into diagnostic assessment or therapeutic monitoring, which will hopefully one day be useful for demonstrating beneficial effects of treatments being tested in clinical trials.

  7. Complex Wavelet Based Modulation Analysis

    DEFF Research Database (Denmark)

    Luneau, Jean-Marc; Lebrun, Jérôme; Jensen, Søren Holdt

    2008-01-01

    Low-frequency modulation of sound carry important information for speech and music. The modulation spectrum i commonly obtained by spectral analysis of the sole temporal envelopes of the sub-bands out of a time-frequency analysis. Processing in this domain usually creates undesirable distortions...... polynomial trends. Moreover an analytic Hilbert-like transform is possible with complex wavelets implemented as an orthogonal filter bank. By working in an alternative transform domain coined as “Modulation Subbands”, this transform shows very promising denoising capabilities and suggests new approaches for joint...

  8. Wavelets and the Lifting Scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  9. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2012-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  10. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2009-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  11. Wavelet analysis of polarization azimuths maps for laser images of myocardial tissue for the purpose of diagnosing acute coronary insufficiency

    Science.gov (United States)

    Wanchuliak, O. Ya.; Peresunko, A. P.; Bakko, Bouzan Adel; Kushnerick, L. Ya.

    2011-09-01

    This paper presents the foundations of a large scale - localized wavelet - polarization analysis - inhomogeneous laser images of histological sections of myocardial tissue. Opportunities were identified defining relations between the structures of wavelet coefficients and causes of death. The optical model of polycrystalline networks of myocardium protein fibrils is presented. The technique of determining the coordinate distribution of polarization azimuth of the points of laser images of myocardium histological sections is suggested. The results of investigating the interrelation between the values of statistical (statistical moments of the 1st-4th order) parameters are presented which characterize distributions of wavelet - coefficients polarization maps of myocardium layers and death reasons.

  12. An adaptive wavelet-network model for forecasting daily total solar-radiation

    International Nuclear Information System (INIS)

    Mellit, A.; Benghanem, M.; Kalogirou, S.A.

    2006-01-01

    The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet-networks are feed-forward networks using wavelets as activation functions. Wavelet-networks have been used successfully in various engineering applications such as classification, identification and control problems. In this paper, the use of adaptive wavelet-network architecture in finding a suitable forecasting model for predicting the daily total solar-radiation is investigated. Total solar-radiation is considered as the most important parameter in the performance prediction of renewable energy systems, particularly in sizing photovoltaic (PV) power systems. For this purpose, daily total solar-radiation data have been recorded during the period extending from 1981 to 2001, by a meteorological station in Algeria. The wavelet-network model has been trained by using either the 19 years of data or one year of the data. In both cases the total solar radiation data corresponding to year 2001 was used for testing the model. The network was trained to accept and handle a number of unusual cases. Results indicate that the model predicts daily total solar-radiation values with a good accuracy of approximately 97% and the mean absolute percentage error is not more than 6%. In addition, the performance of the model was compared with different neural network structures and classical models. Training algorithms for wavelet-networks require smaller numbers of iterations when compared with other neural networks. The model can be used to fill missing data in weather databases. Additionally, the proposed model can be generalized and used in different locations and for other weather data, such as sunshine duration and ambient temperature. Finally, an application using the model for sizing a PV-power system is presented in order to confirm the validity of this model

  13. Mathematical principles of signal processing Fourier and wavelet analysis

    CERN Document Server

    Brémaud, Pierre

    2002-01-01

    Fourier analysis is one of the most useful tools in many applied sciences. The recent developments of wavelet analysis indicates that in spite of its long history and well-established applications, the field is still one of active research. This text bridges the gap between engineering and mathematics, providing a rigorously mathematical introduction of Fourier analysis, wavelet analysis and related mathematical methods, while emphasizing their uses in signal processing and other applications in communications engineering. The interplay between Fourier series and Fourier transforms is at the heart of signal processing, which is couched most naturally in terms of the Dirac delta function and Lebesgue integrals. The exposition is organized into four parts. The first is a discussion of one-dimensional Fourier theory, including the classical results on convergence and the Poisson sum formula. The second part is devoted to the mathematical foundations of signal processing - sampling, filtering, digital signal proc...

  14. Efficient regularization with wavelet sparsity constraints in photoacoustic tomography

    Science.gov (United States)

    Frikel, Jürgen; Haltmeier, Markus

    2018-02-01

    In this paper, we consider the reconstruction problem of photoacoustic tomography (PAT) with a flat observation surface. We develop a direct reconstruction method that employs regularization with wavelet sparsity constraints. To that end, we derive a wavelet-vaguelette decomposition (WVD) for the PAT forward operator and a corresponding explicit reconstruction formula in the case of exact data. In the case of noisy data, we combine the WVD reconstruction formula with soft-thresholding, which yields a spatially adaptive estimation method. We demonstrate that our method is statistically optimal for white random noise if the unknown function is assumed to lie in any Besov-ball. We present generalizations of this approach and, in particular, we discuss the combination of PAT-vaguelette soft-thresholding with a total variation (TV) prior. We also provide an efficient implementation of the PAT-vaguelette transform that leads to fast image reconstruction algorithms supported by numerical results.

  15. Wavelet modeling of signals for non-destructive testing of concretes

    International Nuclear Information System (INIS)

    Shao, Zhixue; Shi, Lihua; Cai, Jian

    2011-01-01

    In a non-destructive test of concrete structures, ultrasonic pulses are commonly used to detect damage or embedded objects from their reflections. A wavelet modeling method is proposed here to identify the main reflections and to remove the interferences in the detected ultrasonic waves. This method assumes that if the structure is stimulated by a wavelet function with good time–frequency localization ability, the detected signal is a combination of time-delayed and amplitude-attenuated wavelets. Therefore, modeling of the detected signal by wavelets can give a straightforward and simple model of the original signal. The central time and amplitude of each wavelet represent the position and amplitude of the reflections in the detected structure. A signal processing method is also proposed to estimate the structure response to wavelet excitation from its response to a high-voltage pulse with a sharp leading edge. A signal generation card with a compact peripheral component interconnect extension for instrumentation interface is designed to produce this high-voltage pulse. The proposed method is applied to synthesized aperture focusing technology of concrete specimens and the image results are provided

  16. Hermitian Mindlin Plate Wavelet Finite Element Method for Load Identification

    Directory of Open Access Journals (Sweden)

    Xiaofeng Xue

    2016-01-01

    Full Text Available A new Hermitian Mindlin plate wavelet element is proposed. The two-dimensional Hermitian cubic spline interpolation wavelet is substituted into finite element functions to construct frequency response function (FRF. It uses a system’s FRF and response spectrums to calculate load spectrums and then derives loads in the time domain via the inverse fast Fourier transform. By simulating different excitation cases, Hermitian cubic spline wavelets on the interval (HCSWI finite elements are used to reverse load identification in the Mindlin plate. The singular value decomposition (SVD method is adopted to solve the ill-posed inverse problem. Compared with ANSYS results, HCSWI Mindlin plate element can accurately identify the applied load. Numerical results show that the algorithm of HCSWI Mindlin plate element is effective. The accuracy of HCSWI can be verified by comparing the FRF of HCSWI and ANSYS elements with the experiment data. The experiment proves that the load identification of HCSWI Mindlin plate is effective and precise by using the FRF and response spectrums to calculate the loads.

  17. Multifocal ERG wavelet packet decomposition applied to glaucoma diagnosis

    Directory of Open Access Journals (Sweden)

    Rodríguez-Ascariz José M

    2011-05-01

    Full Text Available Abstract Background Glaucoma is the second-leading cause of blindness worldwide and early diagnosis is essential to its treatment. Current clinical methods based on multifocal electroretinography (mfERG essentially involve measurement of amplitudes and latencies and assume standard signal morphology. This paper presents a new method based on wavelet packet analysis of global-flash multifocal electroretinogram signals. Methods This study comprised twenty-five patients diagnosed with OAG and twenty-five control subjects. Their mfERG recordings data were used to develop the algorithm method based on wavelet packet analysis. By reconstructing the third wavelet packet contained in the fourth decomposition level (ADAA4 of the mfERG recording, it is possible to obtain a signal from which to extract a marker in the 60-80 ms time interval. Results The marker found comprises oscillatory potentials with a negative-slope basal line in the case of glaucomatous recordings and a positive-slope basal line in the case of normal signals. Application of the optimal threshold calculated in the validation cases showed that the technique proposed achieved a sensitivity of 0.81 and validation specificity of 0.73. Conclusions This new method based on mfERG analysis may be reliable enough to detect functional deficits that are not apparent using current automated perimetry tests. As new stimulation and analysis protocols develop, mfERG has the potential to become a useful tool in early detection of glaucoma-related functional deficits.

  18. Local Wavelet-Based Filtering of Electromyographic Signals to Eliminate the Electrocardiographic-Induced Artifacts in Patients with Spinal Cord Injury.

    Science.gov (United States)

    Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel'farb, Georgy; El-Baz, Ayman; Ovechkin, Alexander

    2013-07-18

    Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals.

  19. A wavelet multiscale denoising algorithm for magnetic resonance (MR) images

    International Nuclear Information System (INIS)

    Yang, Xiaofeng; Fei, Baowei

    2011-01-01

    Based on the Radon transform, a wavelet multiscale denoising method is proposed for MR images. The approach explicitly accounts for the Rician nature of MR data. Based on noise statistics we apply the Radon transform to the original MR images and use the Gaussian noise model to process the MR sinogram image. A translation invariant wavelet transform is employed to decompose the MR 'sinogram' into multiscales in order to effectively denoise the images. Based on the nature of Rician noise we estimate noise variance in different scales. For the final denoised sinogram we apply the inverse Radon transform in order to reconstruct the original MR images. Phantom, simulation brain MR images, and human brain MR images were used to validate our method. The experiment results show the superiority of the proposed scheme over the traditional methods. Our method can reduce Rician noise while preserving the key image details and features. The wavelet denoising method can have wide applications in MRI as well as other imaging modalities

  20. RAINFALL ANALYSIS IN KLANG RIVER BASIN USING CONTINUOUS WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    Celso A. G. Santos

    2016-01-01

    Full Text Available The rainfall characteristics within Klang River basin is analyzed by the continuous wavelet transform using monthly rainfall data (1997–2009 from a raingauge and also using daily rainfall data (1998–2013 from the Tropical Rainfall Measuring Mission (TRMM. The wavelet power spectrum showed that some frequency components were presented within the rainfall time series, but the observed time series is short to provide accurate information, thus the daily TRMM rainfall data were used. In such analysis, two main frequency components, i.e., 6 and 12 months, showed to be present during the entire period of 16 years. Such semiannual and annual frequencies were confirmed by the global wavelet power spectra. Finally, the modulation in the 8–16-month and 256– 512-day bands were examined by an average of all scales between 8 and 16 months, and 256 and 512 days, respectively, giving a measure of the average monthly/daily variance versus time, where the periods with low or high variance could be identified.

  1. Wavelets in music analysis and synthesis: timbre analysis and perspectives

    Science.gov (United States)

    Alves Faria, Regis R.; Ruschioni, Ruggero A.; Zuffo, Joao A.

    1996-10-01

    Music is a vital element in the process of comprehending the world where we live and interact with. Frequency it exerts a subtle but expressive influence over a society's evolution line. Analysis and synthesis of music and musical instruments has always been associated with forefront technologies available at each period of human history, and there is no surprise in witnessing now the use of digital technologies and sophisticated mathematical tools supporting its development. Fourier techniques have been employed for years as a tool to analyze timbres' spectral characteristics, and re-synthesize them from these extracted parameters. Recently many modern implementations, based on spectral modeling techniques, have been leading to the development of new generations of music synthesizers, capable of reproducing natural sounds with high fidelity, and producing novel timbres as well. Wavelets are a promising tool on the development of new generations of music synthesizers, counting on its advantages over the Fourier techniques in representing non-periodic and transient signals, with complex fine textures, as found in music. In this paper we propose and introduce the use of wavelets addressing its perspectives towards musical applications. The central idea is to investigate the capacities of wavelets in analyzing, extracting features and altering fine timbre components in a multiresolution time- scale, so as to produce high quality synthesized musical sounds.

  2. A Study of Coherent Structures using Wavelet Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kaspersen, J H

    1996-05-01

    Turbulence is important in many fields of engineering, for example in estimating drag or minimizing drag on surfaces. It is known that turbulent flows contain coherent structures, which implies that a turbulent shear flow can be decomposed into coherent structures and random motion. It is generally accepted that coherent structures are responsible for significant transport of mass, heat and momentum. This doctoral thesis presents and discusses a new algorithm to detect coherent structures based on Wavelet transformations, a transform similar to the Fourier transform but providing information on both frequency and scale. The new detection scheme does not require any predefined threshold or integration time, and its general performance is found to be very good. Wind tunnel experiments were performed to obtain data for analysis. Scalograms resulting from the Wavelet transform show clearly that coherent structures exist in turbulent flows. These structures are shown to contribute considerably to the shear stresses. The contribution from the organized motion to the normal stresses close to the wall appears to be considerably smaller. Direct Navier Stokes (DNS) channel flow seems to be more organized than Zero Pressure Gradient (ZPG) flows. The topology of ZPG flows was studied using a multiple hot wire arrangement and conditionally averaged streamlines based on detections from the Wavelet method are presented. It is shown that the coherent structures produce large amounts of both vorticity and strain at the detection point. 56 refs., 92 figs., 3 tabs.

  3. Enhanced ATM Security using Biometric Authentication and Wavelet Based AES

    Directory of Open Access Journals (Sweden)

    Sreedharan Ajish

    2016-01-01

    Full Text Available The traditional ATM terminal customer recognition systems rely only on bank cards, passwords and such identity verification methods are not perfect and functions are too single. Biometrics-based authentication offers several advantages over other authentication methods, there has been a significant surge in the use of biometrics for user authentication in recent years. This paper presents a highly secured ATM banking system using biometric authentication and wavelet based Advanced Encryption Standard (AES algorithm. Two levels of security are provided in this proposed design. Firstly we consider the security level at the client side by providing biometric authentication scheme along with a password of 4-digit long. Biometric authentication is achieved by considering the fingerprint image of the client. Secondly we ensure a secured communication link between the client machine to the bank server using an optimized energy efficient and wavelet based AES processor. The fingerprint image is the data for encryption process and 4-digit long password is the symmetric key for the encryption process. The performance of ATM machine depends on ultra-high-speed encryption, very low power consumption, and algorithmic integrity. To get a low power consuming and ultra-high speed encryption at the ATM machine, an optimized and wavelet based AES algorithm is proposed. In this system biometric and cryptography techniques are used together for personal identity authentication to improve the security level. The design of the wavelet based AES processor is simulated and the design of the energy efficient AES processor is simulated in Quartus-II software. Simulation results ensure its proper functionality. A comparison among other research works proves its superiority.

  4. Large-scale functional MRI analysis to accumulate knowledge on brain functions

    International Nuclear Information System (INIS)

    Schwartz, Yannick

    2015-01-01

    How can we accumulate knowledge on brain functions? How can we leverage years of research in functional MRI to analyse finer-grained psychological constructs, and build a comprehensive model of the brain? Researchers usually rely on single studies to delineate brain regions recruited by mental processes. They relate their findings to previous works in an informal way by defining regions of interest from the literature. Meta-analysis approaches provide a more principled way to build upon the literature. This thesis investigates three ways to assemble knowledge using activation maps from a large amount of studies. First, we present an approach that uses jointly two similar fMRI experiments, to better condition an analysis from a statistical standpoint. We show that it is a valuable data-driven alternative to traditional regions of interest analyses, but fails to provide a systematic way to relate studies, and thus does not permit to integrate knowledge on a large scale. Because of the difficulty to associate multiple studies, we resort to using a single dataset sampling a large number of stimuli for our second contribution. This method estimates functional networks associated with functional profiles, where the functional networks are interacting brain regions and the functional profiles are a weighted set of cognitive descriptors. This work successfully yields known brain networks and automatically associates meaningful descriptions. Its limitations lie in the unsupervised nature of this method, which is more difficult to validate, and the use of a single dataset. It however brings the notion of cognitive labels, which is central to our last contribution. Our last contribution presents a method that learns functional atlases by combining several datasets. [Henson 2006] shows that forward inference, i.e. the probability of an activation given a cognitive process, is often not sufficient to conclude on the engagement of brain regions for a cognitive process

  5. Cross dynamics of oil-stock interactions: A redundant wavelet analysis

    International Nuclear Information System (INIS)

    Jammazi, Rania

    2012-01-01

    The main aim of the present paper is to explore how the interactions between crude oil (CO) price changes and stock returns of five developed countries namely U.S.A, Canada, Germany, Japan and U.K., evolve simultaneously over time and frequency, in light of the conflicting evidence provided by much of recent studies on the sign and the direction of this relationship. To this end, we apply a more efficient wavelet tool, namely Haar à trous wavelet transform that helps circumvent the problems of the standard regression techniques and proves its effectiveness in encircling the real data features. In order to provide more credible conclusions, the wavelet variance, correlation and cross-correlation are implemented. In general, we extend the existing empirical works by providing more generalized and convincing results inherent to the stock-oil markets interactions which are usually reputed to be complicated. First, we find evidence that the wavelet variances of all the variables decrease with increasing scales. Second, from the analysis of the wavelet correlation, changes in CO and almost all the stock prices do not move together up to the intermediate scale, but since they abruptly shift their direction in unison. Third, results for the wavelet CCF at scales 2, 3 and/or 4 generally illustrate no transmission mechanism between CO and the stock market returns although we provide support for massive CO variations at these scales. In contrast, the CO-equity market relationships at higher scales become interconnected in a negative unidirectional pattern running from CO to stock market returns for only two oil importing countries but also Canada. For oil exporting countries, we have seen that while highly transient (scale 1) positive/negative causalities flowing from TSX stock market to CO changes are detected, highly persistent (scale 6) positive causality running from FTSE to the CO changes are rather found. Finally, the implications of the study's results vary depending

  6. Orthogonal and Scaling Transformations of Quadratic Functions with ...

    African Journals Online (AJOL)

    In this paper we present a non-singular transformation that can reduce a given quadratic function defined on Rn to another simpler quadratic function and study the impact of the transformation in relation to the problem of minimization of the function. In particular, we construct a non-singular transformation that can reduce a ...

  7. Traits Without Borders:Integrating Functional Diversity Across Scales

    Czech Academy of Sciences Publication Activity Database

    Carmona, C. P.; de Bello, Francesco; Mason, N. W. H.; Lepš, Jan

    2016-01-01

    Roč. 31, č. 5 (2016), s. 382-394 ISSN 0169-5347 R&D Projects: GA ČR GAP505/12/1296; GA ČR GB14-36079G Institutional support: RVO:67985939 ; RVO:60077344 Keywords : functional trait * functional diversity * functional niche Subject RIV: EH - Ecology, Behaviour Impact factor: 15.268, year: 2016

  8. Adapted wavelet analysis from theory to software

    CERN Document Server

    Wickerhauser, Mladen Victor

    1994-01-01

    This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications. From the table of contents: - Mathematical Preliminaries - Programming Techniques - The Discrete Fourier Transform - Local Trigonometric Transforms - Quadrature Filters - The Discrete Wavelet Transform - Wavelet Packets - The Best Basis Algorithm - Multidimensional Library Trees - Time-Frequency Analysis - Some Applications - Solutions to Some of the Exercises - List of Symbols - Quadrature Filter Coefficients

  9. Characteristic functions of scale mixtures of multivariate skew-normal distributions

    KAUST Repository

    Kim, Hyoung-Moon; Genton, Marc G.

    2011-01-01

    We obtain the characteristic function of scale mixtures of skew-normal distributions both in the univariate and multivariate cases. The derivation uses the simple stochastic relationship between skew-normal distributions and scale mixtures of skew

  10. A Scale Elasticity Measure for Directional Distance Function and its Dual

    OpenAIRE

    Valentin Zelenyuk

    2011-01-01

    In this paper we introduce a scale elasticity measure based on directional distance function for multi-output-multi-input technologies and explore its fundamental properties. Specifically, we derive necessary and sufficient condition for equivalence of the scale elasticity measure based on the directional distance function with the input oriented and output oriented scale elasticity measures. We also establish duality relationship between the scale elasticity measure based on the directional ...

  11. Significance tests for the wavelet cross spectrum and wavelet linear coherence

    Directory of Open Access Journals (Sweden)

    Z. Ge

    2008-12-01

    Full Text Available This work attempts to develop significance tests for the wavelet cross spectrum and the wavelet linear coherence as a follow-up study on Ge (2007. Conventional approaches that are used by Torrence and Compo (1998 based on stationary background noise time series were used here in estimating the sampling distributions of the wavelet cross spectrum and the wavelet linear coherence. The sampling distributions are then used for establishing significance levels for these two wavelet-based quantities. In addition to these two wavelet quantities, properties of the phase angle of the wavelet cross spectrum of, or the phase difference between, two Gaussian white noise series are discussed. It is found that the tangent of the principal part of the phase angle approximately has a standard Cauchy distribution and the phase angle is uniformly distributed, which makes it impossible to establish significance levels for the phase angle. The simulated signals clearly show that, when there is no linear relation between the two analysed signals, the phase angle disperses into the entire range of [−π,π] with fairly high probabilities for values close to ±π to occur. Conversely, when linear relations are present, the phase angle of the wavelet cross spectrum settles around an associated value with considerably reduced fluctuations. When two signals are linearly coupled, their wavelet linear coherence will attain values close to one. The significance test of the wavelet linear coherence can therefore be used to complement the inspection of the phase angle of the wavelet cross spectrum. The developed significance tests are also applied to actual data sets, simultaneously recorded wind speed and wave elevation series measured from a NOAA buoy on Lake Michigan. Significance levels of the wavelet cross spectrum and the wavelet linear coherence between the winds and the waves reasonably separated meaningful peaks from those generated by randomness in the data set. As

  12. Diagnosing time scales of flux tower-model agreement as a function of environmental regime

    Science.gov (United States)

    Brunsell, N. A.; Barlage, M. J.; Monaghan, A. J.

    2013-12-01

    Understanding the extent of agreement between land surface models and observations can provide insight into theoretical advancements in our understanding of land-atmosphere interactions. In particular, understanding the conditions under which models perform particularly well or poorly is essential for identifying potential model limitations. Here, we use three eddy covariance towers over different land cover to assess the agreement with the Noah and Noah-MP ("Multi-Physics") land surface models as a function of environmental variables. The data spans 2007-2012 and encompasses both normal and drought conditions. The environmental regimes are isolated using self-organizing maps (SOMs) to diagnose the relative importance of factors (soil moisture, air temperature, humidity, solar radiation, wind-speed, etc.) on the resulting water and carbon fluxes. The temporal variability of model limitations is assessed with an information theory based wavelet technique within each environmental regime. Discussion will focus on the role of predicting potential model biases as a function of environmental condition.

  13. Signatures of non-universal large scales in conditional structure functions from various turbulent flows

    International Nuclear Information System (INIS)

    Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K

    2011-01-01

    We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)

  14. Multiresolution Modeling of Semidilute Polymer Solutions: Coarse-Graining Using Wavelet-Accelerated Monte Carlo

    Directory of Open Access Journals (Sweden)

    Animesh Agarwal

    2017-09-01

    Full Text Available We present a hierarchical coarse-graining framework for modeling semidilute polymer solutions, based on the wavelet-accelerated Monte Carlo (WAMC method. This framework forms a hierarchy of resolutions to model polymers at length scales that cannot be reached via atomistic or even standard coarse-grained simulations. Previously, it was applied to simulations examining the structure of individual polymer chains in solution using up to four levels of coarse-graining (Ismail et al., J. Chem. Phys., 2005, 122, 234901 and Ismail et al., J. Chem. Phys., 2005, 122, 234902, recovering the correct scaling behavior in the coarse-grained representation. In the present work, we extend this method to the study of polymer solutions, deriving the bonded and non-bonded potentials between coarse-grained superatoms from the single chain statistics. A universal scaling function is obtained, which does not require recalculation of the potentials as the scale of the system is changed. To model semi-dilute polymer solutions, we assume the intermolecular potential between the coarse-grained beads to be equal to the non-bonded potential, which is a reasonable approximation in the case of semidilute systems. Thus, a minimal input of microscopic data is required for simulating the systems at the mesoscopic scale. We show that coarse-grained polymer solutions can reproduce results obtained from the more detailed atomistic system without a significant loss of accuracy.

  15. Multidisciplinary Delphi Development of a Scale to Evaluate Team Function in Obstetric Emergencies: The PETRA Scale.

    Science.gov (United States)

    Balki, Mrinalini; Hoppe, David; Monks, David; Cooke, Mary Ellen; Sharples, Lynn; Windrim, Rory

    2017-06-01

    The objective of this study was to develop a new interdisciplinary teamwork scale, the Perinatal Emergency: Team Response Assessment (PETRA), for the management of obstetric crises, through consensus agreement of obstetric caregivers. This prospective study was performed using expert consensus, based on a Delphi method. The study investigators developed a new PETRA tool, specifically related to obstetric crisis management, based on the existing literature and discussions among themselves. The scale was distributed to a selected panel of experts in the field for the Delphi process. After each round of Delphi, every component of the scale was analyzed quantitatively by the percentage of agreement ratings and each comment reviewed by the blinded investigators. The assessment scale was then modified, with components of less than 80% agreement removed from the scale. The process was repeated on three occasions to reach a consensus and final PETRA scale. Fourteen of 24 invited experts participated in the Delphi process. The original PETRA scale included six categories and 48 items, one global scale item, and a 3-point rubric for rating. The overall percentage agreement by experts in the first, second, and third rounds was 95.0%, 93.2%, and 98.5%, respectively. The final scale after the third round of Delphi consisted of the following seven categories: shared mental model, communication, situational awareness, leadership, followership, workload management, and positive/effective behaviours and attitudes. There were 34 individual items within these categories, each with a 5-point rating rubric (1 = unacceptable to 5 = perfect). Using a structured Delphi method, we established the face and content validity of this assessment scale that focuses on important aspects of interdisciplinary teamwork in the management of obstetric crises. Copyright © 2017 The Society of Obstetricians and Gynaecologists of Canada/La Société des obstétriciens et gynécologues du Canada

  16. Wavelet brain angiography suggests arteriovenous pulse wave phase locking.

    Directory of Open Access Journals (Sweden)

    William E Butler

    Full Text Available When a stroke volume of arterial blood arrives to the brain, the total blood volume in the bony cranium must remain constant as the proportions of arterial and venous blood vary, and by the end of the cardiac cycle an equivalent volume of venous blood must have been ejected. I hypothesize the brain to support this process by an extraluminally mediated exchange of information between its arterial and venous circulations. To test this I introduce wavelet angiography methods to resolve single moving vascular pulse waves (PWs in the brain while simultaneously measuring brain pulse motion. The wavelet methods require angiographic data acquired at significantly faster rate than cardiac frequency. I obtained these data in humans from brain surface optical angiograms at craniotomy and in piglets from ultrasound angiograms via cranial window. I exploit angiographic time of flight to resolve arterial from venous circulation. Initial wavelet reconstruction proved unsatisfactory because of angiographic motion alias from brain pulse motion. Testing with numerically simulated cerebral angiograms enabled the development of a vascular PW cine imaging method based on cross-correlated wavelets of mixed high frequency and high temporal resolution respectively to attenuate frequency and motion alias. Applied to the human and piglet data, the method resolves individual arterial and venous PWs and finds them to be phase locked each with separate phase relations to brain pulse motion. This is consistent with arterial and venous PW coordination mediated by pulse motion and points to a testable hypothesis of a function of cerebrospinal fluid in the ventricles of the brain.

  17. Digital transceiver implementation for wavelet packet modulation

    Science.gov (United States)

    Lindsey, Alan R.; Dill, Jeffrey C.

    1998-03-01

    Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.

  18. Numerical shaping of the ultrasonic wavelet

    International Nuclear Information System (INIS)

    Bonis, M.

    1991-01-01

    Improving the performance and the quality of ultrasonic testing requires the numerical control of the shape of the driving signal applied to the piezoelectric transducer. This allows precise shaping of the ultrasonic field wavelet and corrections for the physical defects of the transducer, which are mainly due to the damper or the lens. It also does away with the need for an accurate electric matching. It then becomes feasible to characterize, a priori, the ultrasonic wavelet by means of temporal and/or spectral specifications and to use, subsequently, an adaptative algorithm to calculate the corresponding driving wavelet. Moreover, the versatility resulting from the numerical control of this wavelet allows it to be changed in real time during a test

  19. Building nonredundant adaptive wavelets by update lifting

    NARCIS (Netherlands)

    H.J.A.M. Heijmans (Henk); B. Pesquet-Popescu; G. Piella (Gema)

    2002-01-01

    textabstractAdaptive wavelet decompositions appear useful in various applications in image and video processing, such as image analysis, compression, feature extraction, denoising and deconvolution, or optic flow estimation. For such tasks it may be important that the multiresolution representations

  20. Scalets, wavelets and (complex) turning point quantization

    Science.gov (United States)

    Handy, C. R.; Brooks, H. A.

    2001-05-01

    Despite the many successes of wavelet analysis in image and signal processing, the incorporation of continuous wavelet transform theory within quantum mechanics has lacked a compelling, first principles, motivating analytical framework, until now. For arbitrary one-dimensional rational fraction Hamiltonians, we develop a simple, unified formalism, which clearly underscores the complementary, and mutually interdependent, role played by moment quantization theory (i.e. via scalets, as defined herein) and wavelets. This analysis involves no approximation of the Hamiltonian within the (equivalent) wavelet space, and emphasizes the importance of (complex) multiple turning point contributions in the quantization process. We apply the method to three illustrative examples. These include the (double-well) quartic anharmonic oscillator potential problem, V(x) = Z2x2 + gx4, the quartic potential, V(x) = x4, and the very interesting and significant non-Hermitian potential V(x) = -(ix)3, recently studied by Bender and Boettcher.

  1. Using wavelet features for analyzing gamma lines

    International Nuclear Information System (INIS)

    Medhat, M.E.; Abdel-hafiez, A.; Hassan, M.F.; Ali, M.A.; Uzhinskii, V.V.

    2004-01-01

    Data processing methods for analyzing gamma ray spectra with symmetric bell-shaped peaks form are considered. In many cases the peak form is symmetrical bell shaped in particular a Gaussian case is the most often used due to many physical reasons. The problem is how to evaluate parameters of such peaks, i.e. their positions, amplitudes and also their half-widths, that is for a single peak and overlapped peaks. Through wavelet features by using Marr wavelet (Mexican Hat) as a correlation method, it could be to estimate the optimal wavelet parameters and to locate peaks in the spectrum. The performance of the proposed method and others shows a better quality of wavelet transform method

  2. Effective implementation of wavelet Galerkin method

    Science.gov (United States)

    Finěk, Václav; Šimunková, Martina

    2012-11-01

    It was proved by W. Dahmen et al. that an adaptive wavelet scheme is asymptotically optimal for a wide class of elliptic equations. This scheme approximates the solution u by a linear combination of N wavelets and a benchmark for its performance is the best N-term approximation, which is obtained by retaining the N largest wavelet coefficients of the unknown solution. Moreover, the number of arithmetic operations needed to compute the approximate solution is proportional to N. The most time consuming part of this scheme is the approximate matrix-vector multiplication. In this contribution, we will introduce our implementation of wavelet Galerkin method for Poisson equation -Δu = f on hypercube with homogeneous Dirichlet boundary conditions. In our implementation, we identified nonzero elements of stiffness matrix corresponding to the above problem and we perform matrix-vector multiplication only with these nonzero elements.

  3. Framelets and wavelets algorithms, analysis, and applications

    CERN Document Server

    Han, Bin

    2017-01-01

    Marking a distinct departure from the perspectives of frame theory and discrete transforms, this book provides a comprehensive mathematical and algorithmic introduction to wavelet theory. As such, it can be used as either a textbook or reference guide. As a textbook for graduate mathematics students and beginning researchers, it offers detailed information on the basic theory of framelets and wavelets, complemented by self-contained elementary proofs, illustrative examples/figures, and supplementary exercises. Further, as an advanced reference guide for experienced researchers and practitioners in mathematics, physics, and engineering, the book addresses in detail a wide range of basic and advanced topics (such as multiwavelets/multiframelets in Sobolev spaces and directional framelets) in wavelet theory, together with systematic mathematical analysis, concrete algorithms, and recent developments in and applications of framelets and wavelets. Lastly, the book can also be used to teach on or study selected spe...

  4. Image Registration Using Redundant Wavelet Transforms

    National Research Council Canada - National Science Library

    Brown, Richard

    2001-01-01

    .... In our research, we present a fundamentally new wavelet-based registration algorithm utilizing redundant transforms and a masking process to suppress the adverse effects of noise and improve processing efficiency...

  5. Identification of speech transients using variable frame rate analysis and wavelet packets.

    Science.gov (United States)

    Rasetshwane, Daniel M; Boston, J Robert; Li, Ching-Chung

    2006-01-01

    Speech transients are important cues for identifying and discriminating speech sounds. Yoo et al. and Tantibundhit et al. were successful in identifying speech transients and, emphasizing them, improving the intelligibility of speech in noise. However, their methods are computationally intensive and unsuitable for real-time applications. This paper presents a method to identify and emphasize speech transients that combines subband decomposition by the wavelet packet transform with variable frame rate (VFR) analysis and unvoiced consonant detection. The VFR analysis is applied to each wavelet packet to define a transitivity function that describes the extent to which the wavelet coefficients of that packet are changing. Unvoiced consonant detection is used to identify unvoiced consonant intervals and the transitivity function is amplified during these intervals. The wavelet coefficients are multiplied by the transitivity function for that packet, amplifying the coefficients localized at times when they are changing and attenuating coefficients at times when they are steady. Inverse transform of the modified wavelet packet coefficients produces a signal corresponding to speech transients similar to the transients identified by Yoo et al. and Tantibundhit et al. A preliminary implementation of the algorithm runs more efficiently.

  6. On locally uniformly linearizable high breakdown location and scale functionals

    NARCIS (Netherlands)

    Davies, P.L.

    1998-01-01

    This article gives two constructions of a weighted mean which has a large domain, is affinely equivariant, has a locally high breakdown point and is locally uniformly linearizable. One construction is based on $M$-functionals with smooth defining $\\psi$- and $\\chi$ -functions which are used to

  7. SeismicWaveTool: Continuous and discrete wavelet analysis and filtering for multichannel seismic data

    Science.gov (United States)

    Galiana-Merino, J. J.; Rosa-Herranz, J. L.; Rosa-Cintas, S.; Martinez-Espla, J. J.

    2013-01-01

    A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of multichannel seismic data. The considered time-frequency transforms include the continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform. The developed approaches provide a fast and precise time-frequency examination of the seismograms at different frequency bands. Moreover, filtering methods for noise, transients or even baseline removal, are implemented. The primary motivation is to support seismologists with a user-friendly and fast program for the wavelet analysis, providing practical and understandable results. Program summaryProgram title: SeismicWaveTool Catalogue identifier: AENG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 611072 No. of bytes in distributed program, including test data, etc.: 14688355 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.8.0.347 (R2009a) or higher. Wavelet Toolbox is required. Computer: Developed on a MacBook Pro. Tested on Mac and PC. No computer-specific optimization was performed. Operating system: Any supporting MATLAB (MathWorks Inc.) v7.8.0.347 (R2009a) or higher. Tested on Mac OS X 10.6.8, Windows XP and Vista. Classification: 13. Nature of problem: Numerous research works have developed a great number of free or commercial wavelet based software, which provide specific solutions for the analysis of seismic data. On the other hand, standard toolboxes, packages or libraries, such as the MathWorks' Wavelet Toolbox for MATLAB, offer command line functions and interfaces for the wavelet analysis of one-component signals. Thus, software usually is focused on very specific problems

  8. Wavelet-Smoothed Interpolation of Masked Scientific Data for JPEG 2000 Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, Christopher M. [Los Alamos National Laboratory

    2012-08-13

    How should we manage scientific data with 'holes'? Some applications, like JPEG 2000, expect logically rectangular data, but some sources, like the Parallel Ocean Program (POP), generate data that isn't defined on certain subsets. We refer to grid points that lack well-defined, scientifically meaningful sample values as 'masked' samples. Wavelet-smoothing is a highly scalable interpolation scheme for regions with complex boundaries on logically rectangular grids. Computation is based on forward/inverse discrete wavelet transforms, so runtime complexity and memory scale linearly with respect to sample count. Efficient state-of-the-art minimal realizations yield small constants (O(10)) for arithmetic complexity scaling, and in-situ implementation techniques make optimal use of memory. Implementation in two dimensions using tensor product filter banks is straighsorward and should generalize routinely to higher dimensions. No hand-tuning required when the interpolation mask changes, making the method aeractive for problems with time-varying masks. Well-suited for interpolating undefined samples prior to JPEG 2000 encoding. The method outperforms global mean interpolation, as judged by both SNR rate-distortion performance and low-rate artifact mitigation, for data distributions whose histograms do not take the form of sharply peaked, symmetric, unimodal probability density functions. These performance advantages can hold even for data whose distribution differs only moderately from the peaked unimodal case, as demonstrated by POP salinity data. The interpolation method is very general and is not tied to any particular class of applications, could be used for more generic smooth interpolation.

  9. Intermittency and geometrical statistics of three-dimensional homogeneous magnetohydrodynamic turbulence: A wavelet viewpoint

    International Nuclear Information System (INIS)

    Yoshimatsu, Katsunori; Kawahara, Yasuhiro; Schneider, Kai; Okamoto, Naoya; Farge, Marie

    2011-01-01

    Scale-dependent and geometrical statistics of three-dimensional incompressible homogeneous magnetohydrodynamic turbulence without mean magnetic field are examined by means of the orthogonal wavelet decomposition. The flow is computed by direct numerical simulation with a Fourier spectral method at resolution 512 3 and a unit magnetic Prandtl number. Scale-dependent second and higher order statistics of the velocity and magnetic fields allow to quantify their intermittency in terms of spatial fluctuations of the energy spectra, the flatness, and the probability distribution functions at different scales. Different scale-dependent relative helicities, e.g., kinetic, cross, and magnetic relative helicities, yield geometrical information on alignment between the different scale-dependent fields. At each scale, the alignment between the velocity and magnetic field is found to be more pronounced than the other alignments considered here, i.e., the scale-dependent alignment between the velocity and vorticity, the scale-dependent alignment between the magnetic field and its vector potential, and the scale-dependent alignment between the magnetic field and the current density. Finally, statistical scale-dependent analyses of both Eulerian and Lagrangian accelerations and the corresponding time-derivatives of the magnetic field are performed. It is found that the Lagrangian acceleration does not exhibit substantially stronger intermittency compared to the Eulerian acceleration, in contrast to hydrodynamic turbulence where the Lagrangian acceleration shows much stronger intermittency than the Eulerian acceleration. The Eulerian time-derivative of the magnetic field is more intermittent than the Lagrangian time-derivative of the magnetic field.

  10. Thin film description by wavelet coefficients statistics

    Czech Academy of Sciences Publication Activity Database

    Boldyš, Jiří; Hrach, R.

    2005-01-01

    Roč. 55, č. 1 (2005), s. 55-64 ISSN 0011-4626 Grant - others:GA UK(CZ) 173/2003 Institutional research plan: CEZ:AV0Z10750506 Keywords : thin films * wavelet transform * descriptors * histogram model Subject RIV: BD - Theory of Information Impact factor: 0.360, year: 2005 http://library.utia.cas.cz/separaty/2009/ZOI/boldys-thin film description by wavelet coefficients statistics .pdf

  11. Wavelet and Blend maps for texture synthesis

    OpenAIRE

    Du Jin-Lian; Wang Song; Meng Xianhai

    2011-01-01

    blending is now a popular technology for large realtime texture synthesis .Nevertheless, creating blend map during rendering is time and computation consuming work. In this paper, we exploited a method to create a kind of blend tile which can be tile together seamlessly. Note that blend map is in fact a kind of image, which is Markov Random Field, contains multiresolution signals, while wavelet is a powerful way to process multiresolution signals, we use wavelet to process the traditional ble...

  12. Application of wavelet analysis to the nuclear phase space study; Application de l`analyse en ondelettes a l`etude de l`espace des phases nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Jouault, B. [Nantes Univ., 44 (France)

    1996-11-22

    The objective of this thesis is to present a methodology, based on the projection methods used in statistical physics and on the wavelet approach, which allows to obtain various classes of information. A coherent modelling was elaborated as the tools used for generating and solving the evolution equations, expressed in terms of pertinent variables, are based on common concepts. The property of scale separation of the wavelet analysis allows an approximation hierarchy based on the geometrical structure of phase space to be defined. This information structuration offers the opportunity of solving the evolution equations with various degrees of precision by controlling the information loss and avoiding the sampling methods of Monte Carlo type. The application of this methodology to the case of heavy ion collisions needs an entirely numerical treatment of the density matrix evolution equation. This implies a very precise level of description in order to take into account the important dissipation effects occurring in intermediate energy nuclear dynamics. A proper solution less expensive was adopted by using the wavelets analytically expressed, this entailing also the testing of model validity by comparing its results with the analytical solutions. This model takes into account the structure of the system wave functions, thus conserving the microscopical information. The present methodology can be applied also at other energy domains providing the nuclear systems are subject to transient non steady-state regimes. The wavelet analysis was used extensively in the field of signal processing particularly to extract from background a physical signal and also in the field of turbulence phenomena 152 refs.

  13. Quality of Life Scale: A Measure of Function for People with Pain

    Science.gov (United States)

    Quality Of Life Scale A Measure Of Function For People With Pain 0 Non-functioning 1 2 3 4 ... the week Active on weekends 9 10 Normal Quality of Life Work/volunteer/be active eight hours daily Take ...

  14. Deep inelastic singlet structure functions and scaling violation

    Energy Technology Data Exchange (ETDEWEB)

    Wen-zhu, Li; Bing-xun, Hu

    1984-02-01

    The flavour singlet structure functions of deep inelastic scattering processes can yield more decisive tests of QCD than the non-singlet. We give analytical expression for flavour singlet structure functions through analysing the lepton-nucleon deep inelastic scattering processes by means of QCD and using Jacobi polynomials. This expression contains 4 to 5 parameters and shows the changes of the singlet structure functions with x and Q/sup 2/ very well. In QCD leading order, the conclusion is in reasonable agreement with experimental data.

  15. The cross wavelet and wavelet coherence analysis of spatio-temporal rainfall-groundwater system in Pingtung plain, Taiwan

    Science.gov (United States)

    Lin, Yuan-Chien; Yu, Hwa-Lung

    2013-04-01

    The increasing frequency and intensity of extreme rainfall events has been observed recently in Taiwan. Particularly, Typhoon Morakot, Typhoon Fanapi, and Typhoon Megi consecutively brought record-breaking intensity and magnitude of rainfalls to different locations of Taiwan in these two years. However, records show the extreme rainfall events did not elevate the amount of annual rainfall accordingly. Conversely, the increasing frequency of droughts has also been occurring in Taiwan. The challenges have been confronted by governmental agencies and scientific communities to come up with effective adaptation strategies for natural disaster reduction and sustainable environment establishment. Groundwater has long been a reliable water source for a variety of domestic, agricultural, and industrial uses because of its stable quantity and quality. In Taiwan, groundwater accounts for the largest proportion of all water resources for about 40%. This study plans to identify and quantify the nonlinear relationship between precipitation and groundwater recharge, find the non-stationary time-frequency relations between the variations of rainfall and groundwater levels to understand the phase difference of time series. Groundwater level data and over-50-years hourly rainfall records obtained from 20 weather stations in Pingtung Plain, Taiwan has been collected. Extract the space-time pattern by EOF method, which is a decomposition of a signal or data set in terms of orthogonal basis functions determined from the data for both time series and spatial patterns, to identify the important spatial pattern of groundwater recharge and using cross wavelet and wavelet coherence method to identify the relationship between rainfall and groundwater levels. Results show that EOF method can specify the spatial-temporal patterns which represents certain geological characteristics and other mechanisms of groundwater, and the wavelet coherence method can identify general correlation between

  16. Noncoding sequence classification based on wavelet transform analysis: part I

    Science.gov (United States)

    Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.

    2017-09-01

    DNA sequences in human genome can be divided into the coding and noncoding ones. Coding sequences are those that are read during the transcription. The identification of coding sequences has been widely reported in literature due to its much-studied periodicity. Noncoding sequences represent the majority of the human genome. They play an important role in gene regulation and differentiation among the cells. However, noncoding sequences do not exhibit periodicities that correlate to their functions. The ENCODE (Encyclopedia of DNA elements) and Epigenomic Roadmap Project projects have cataloged the human noncoding sequences into specific functions. We study characteristics of noncoding sequences with wavelet analysis of genomic signals.

  17. Climatic drivers of vegetation based on wavelet analysis

    Science.gov (United States)

    Claessen, Jeroen; Martens, Brecht; Verhoest, Niko E. C.; Molini, Annalisa; Miralles, Diego

    2017-04-01

    Vegetation dynamics are driven by climate, and at the same time they play a key role in forcing the different bio-geochemical cycles. As climate change leads to an increase in frequency and intensity of hydro-meteorological extremes, vegetation is expected to respond to these changes, and subsequently feed back on their occurrence. This response can be analysed using time series of different vegetation diagnostics observed from space, in the optical (e.g. Normalised Difference Vegetation Index (NDVI), Solar Induced Fluorescence (SIF)) and microwave (Vegetation Optical Depth (VOD)) domains. In this contribution, we compare the climatic drivers of different vegetation diagnostics, based on a monthly global data-cube of 24 years at a 0.25° resolution. To do so, we calculate the wavelet coherence between each vegetation-related observation and observations of air temperature, precipitation and incoming radiation. The use of wavelet coherence allows unveiling the scale-by-scale response and sensitivity of the diverse vegetation indices to their climatic drivers. Our preliminary results show that the wavelet-based statistics prove to be a suitable tool for extracting information from different vegetation indices. Going beyond traditional methods based on linear correlations, the application of wavelet coherence provides information about: (a) the specific periods at which the correspondence between climate and vegetation dynamics is larger, (b) the frequencies at which this correspondence occurs (e.g. monthly or seasonal scales), and (c) the time lag in the response of vegetation to their climate drivers, and vice versa. As expected, areas of high rainfall volumes are characterised by a strong control of radiation and temperature over vegetation. Furthermore, precipitation is the most important driver of vegetation variability over short terms in most regions of the world - which can be explained by the rapid response of leaf development towards available water content

  18. Wavelet and receiver operating characteristic analysis of heart rate variability

    Science.gov (United States)

    McCaffery, G.; Griffith, T. M.; Naka, K.; Frennaux, M. P.; Matthai, C. C.

    2002-02-01

    Multiresolution wavelet analysis has been used to study the heart rate variability in two classes of patients with different pathological conditions. The scale dependent measure of Thurner et al. was found to be statistically significant in discriminating patients suffering from hypercardiomyopathy from a control set of normal subjects. We have performed Receiver Operating Characteristc (ROC) analysis and found the ROC area to be a useful measure by which to label the significance of the discrimination, as well as to describe the severity of heart dysfunction.

  19. A Wavelet Support Vector Machine Combination Model for Singapore Tourist Arrival to Malaysia

    Science.gov (United States)

    Rafidah, A.; Shabri, Ani; Nurulhuda, A.; Suhaila, Y.

    2017-08-01

    In this study, wavelet support vector machine model (WSVM) is proposed and applied for monthly data Singapore tourist time series prediction. The WSVM model is combination between wavelet analysis and support vector machine (SVM). In this study, we have two parts, first part we compare between the kernel function and second part we compare between the developed models with single model, SVM. The result showed that kernel function linear better than RBF while WSVM outperform with single model SVM to forecast monthly Singapore tourist arrival to Malaysia.

  20. Cutting force response in milling of Inconel: analysis by wavelet and Hilbert-Huang Transforms

    Directory of Open Access Journals (Sweden)

    Grzegorz Litak

    Full Text Available We study the milling process of Inconel. By continuously increasing the cutting depth we follow the system response and appearance of oscillations of larger amplitude. The cutting force amplitude and frequency analysis has been done by means of wavelets and Hilbert-Huang transform. We report that in our system the force oscillations are closely related to the rotational motion of the tool and advocate for a regenerative mechanism of chatter vibrations. To identify vibrations amplitudes occurrence in time scale we apply wavelet and Hilbert-Huang transforms.

  1. Fractal Markets Hypothesis and the Global Financial Crisis: Wavelet Power Evidence

    Science.gov (United States)

    Kristoufek, Ladislav

    2013-10-01

    We analyze whether the prediction of the fractal markets hypothesis about a dominance of specific investment horizons during turbulent times holds. To do so, we utilize the continuous wavelet transform analysis and obtained wavelet power spectra which give the crucial information about the variance distribution across scales and its evolution in time. We show that the most turbulent times of the Global Financial Crisis can be very well characterized by the dominance of short investment horizons which is in hand with the assertions of the fractal markets hypothesis.

  2. Multiresolution Wavelet Analysis of Heartbeat Intervals Discriminates Healthy Patients from Those with Cardiac Pathology

    Science.gov (United States)

    Thurner, Stefan; Feurstein, Markus C.; Teich, Malvin C.

    1998-02-01

    We applied multiresolution wavelet analysis to the sequence of times between human heartbeats ( R-R intervals) and have found a scale window, between 16 and 32 heartbeat intervals, over which the widths of the R-R wavelet coefficients fall into disjoint sets for normal and heart-failure patients. This has enabled us to correctly classify every patient in a standard data set as belonging either to the heart-failure or normal group with 100% accuracy, thereby providing a clinically significant measure of the presence of heart failure from the R-R intervals alone. Comparison is made with previous approaches, which have provided only statistically significant measures.

  3. Multiresolution wavelet analysis of heartbeat intervals discriminates healthy patients from those with cardiac pathology

    OpenAIRE

    Thurner, Stefan; Feurstein, Markus C.; Teich, Malvin C.

    1997-01-01

    We applied multiresolution wavelet analysis to the sequence of times between human heartbeats (R-R intervals) and have found a scale window, between 16 and 32 heartbeats, over which the widths of the R-R wavelet coefficients fall into disjoint sets for normal and heart-failure patients. This has enabled us to correctly classify every patient in a standard data set as either belonging to the heart-failure or normal group with 100% accuracy, thereby providing a clinically significant measure of...

  4. Research of generalized wavelet transformations of Haar correctness in remote sensing of the Earth

    Science.gov (United States)

    Kazaryan, Maretta; Shakhramanyan, Mihail; Nedkov, Roumen; Richter, Andrey; Borisova, Denitsa; Stankova, Nataliya; Ivanova, Iva; Zaharinova, Mariana

    2017-10-01

    In this paper, Haar's generalized wavelet functions are applied to the problem of ecological monitoring by the method of remote sensing of the Earth. We study generalized Haar wavelet series and suggest the use of Tikhonov's regularization method for investigating them for correctness. In the solution of this problem, an important role is played by classes of functions that were introduced and described in detail by I.M. Sobol for studying multidimensional quadrature formulas and it contains functions with rapidly convergent series of wavelet Haar. A theorem on the stability and uniform convergence of the regularized summation function of the generalized wavelet-Haar series of a function from this class with approximate coefficients is proved. The article also examines the problem of using orthogonal transformations in Earth remote sensing technologies for environmental monitoring. Remote sensing of the Earth allows to receive from spacecrafts information of medium, high spatial resolution and to conduct hyperspectral measurements. Spacecrafts have tens or hundreds of spectral channels. To process the images, the device of discrete orthogonal transforms, and namely, wavelet transforms, was used. The aim of the work is to apply the regularization method in one of the problems associated with remote sensing of the Earth and subsequently to process the satellite images through discrete orthogonal transformations, in particular, generalized Haar wavelet transforms. General methods of research. In this paper, Tikhonov's regularization method, the elements of mathematical analysis, the theory of discrete orthogonal transformations, and methods for decoding of satellite images are used. Scientific novelty. The task of processing of archival satellite snapshots (images), in particular, signal filtering, was investigated from the point of view of an incorrectly posed problem. The regularization parameters for discrete orthogonal transformations were determined.

  5. Invariant 2D object recognition using the wavelet transform and structured neural networks

    Science.gov (United States)

    Khalil, Mahmoud I.; Bayoumi, Mohamed M.

    1999-03-01

    This paper applies the dyadic wavelet transform and the structured neural networks approach to recognize 2D objects under translation, rotation, and scale transformation. Experimental results are presented and compared with traditional methods. The experimental results showed that this refined technique successfully classified the objects and outperformed some traditional methods especially in the presence of noise.

  6. Frequentist and Bayesian inference for Gaussian-log-Gaussian wavelet trees and statistical signal processing applications

    DEFF Research Database (Denmark)

    Jacobsen, Christian Robert Dahl; Møller, Jesper

    2017-01-01

    We introduce new estimation methods for a subclass of the Gaussian scale mixture models for wavelet trees by Wainwright, Simoncelli and Willsky that rely on modern results for composite likelihoods and approximate Bayesian inference. Our methodology is illustrated for denoising and edge detection...

  7. AFIT/AFOSR Workshop on the Role of Wavelets in Signal Processing Applications

    Science.gov (United States)

    1992-08-28

    Stein and G. Weiss, "Fourier analysis on Eucildean spaces," Princeton University Press, 1971. [V] G. Vitali, Sulla condizione di chiusura di un sistema ...present the more general framework into wavelets fit, suggesting hence companion ways of time-scale analysis for self-similar and 1/f-type processes

  8. Characteristic functions of scale mixtures of multivariate skew-normal distributions

    KAUST Repository

    Kim, Hyoung-Moon

    2011-08-01

    We obtain the characteristic function of scale mixtures of skew-normal distributions both in the univariate and multivariate cases. The derivation uses the simple stochastic relationship between skew-normal distributions and scale mixtures of skew-normal distributions. In particular, we describe the characteristic function of skew-normal, skew-t, and other related distributions. © 2011 Elsevier Inc.

  9. A hybrid wavelet transform based short-term wind speed forecasting approach.

    Science.gov (United States)

    Wang, Jujie

    2014-01-01

    It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy.

  10. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    Science.gov (United States)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  11. A Wavelet-based Energetic Approach for the Analysis of Electroencephalogram

    Directory of Open Access Journals (Sweden)

    Abul Hasan Siddiqi

    2012-12-01

    Full Text Available Electroencephalography (EEG is the recording of electrical activity along the scalp produced by the firing of neurons within the brain. The main application of EEG is in the case of epilepsy, as epileptic activity can create clear abnormalities on a standard EEG study. EEG signals, like many biomedical signals, are highly non-stationary by their nature. Wavelet analysis has found a prominent position in the investigation of biomedical signals for its ability to analyze such signals, in particular EEG signals. Wavelet transform is capable of separating the signal energy among different frequency bands (i.e., different scales, achieving a good compromise between temporal and frequency resolution. The present study is an attempt at better understanding of the mechanism causing the epileptic disorder and accurate prediction of the occurrence of seizures. In the present paper we identify typical patterns of energy redistribution before and during a seizure using multi-resolution wavelet analysis.

  12. Wavelet analysis as a tool to characteriseand remove environmental noisefrom self-potential time series

    Directory of Open Access Journals (Sweden)

    M. Ragosta

    2004-06-01

    Full Text Available Multiresolution wavelet analysis of self-potential signals and rainfall levels is performed for extracting fluctuations in electrical signals, which might be addressed to meteorological variability. In the time-scale domain of the wavelet transform, rain data are used as markers to single out those wavelet coefficients of the electric signal which can be considered relevant to the environmental disturbance. Then these coefficients are filtered out and the signal is recovered by anti-transforming the retained coefficients. Such methodological approach might be applied to characterise unwanted environmental noise. It also can be considered as a practical technique to remove noise that can hamper the correct assessment and use of electrical techniques for the monitoring of geophysical phenomena.

  13. A wavelet analysis of co-movements in Asian gold markets

    Science.gov (United States)

    Das, Debojyoti; Kannadhasan, M.; Al-Yahyaee, Khamis Hamed; Yoon, Seong-Min

    2018-02-01

    This study assesses the cross-country co-movements of gold spot returns among the major gold consuming countries in Asia using wavelet-based analysis for a dataset spanning over 26 years. Wavelet-based analysis is used since it allows measuring co-movements in a time-frequency space. The results suggest intense and positive co-movements in Asia after the Asian financial crisis of 1997 at all frequencies. In addition, the Asian gold spot markets depict a state of impending perfect market integration. Finally, Thailand emerges as the potential market leader in all wavelet scales except one, which is led by India. The study has important implications for international diversification of a single-asset (gold) portfolio.

  14. Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration

    DEFF Research Database (Denmark)

    Nielsen, Morten Ø.; Frederiksen, Per Houmann

    2005-01-01

    In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches, and we consider both parametric and semiparametric estimation methods. The es...... the time domain parametric methods, and (4) without sufficient trimming of scales the wavelet-based estimators are heavily biased.......In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches, and we consider both parametric and semiparametric estimation methods....... The estimators are briefly introduced and compared, and the criteria adopted for measuring finite sample performance are bias and root mean squared error. Most importantly, the simulations reveal that (1) the frequency domain maximum likelihood procedure is superior to the time domain parametric methods, (2) all...

  15. Allometric scaling of kidney function in green iguanas.

    Science.gov (United States)

    Maxwell, Lara K; Jacobson, Elliott R

    2004-07-01

    Numerous physiological parameters, such as metabolic rate and glomerular filtration rate (GFR), are allometrically related to body mass. Whereas the interspecific relationships between metabolic rate and body mass have been extensively studied in vertebrates, intraspecific studies of renal function have been limited. Therefore, kidney function was studied in 16 green iguanas, (Iguana iguana; 322-4764 g), by using nuclear scintigraphy to measure the renal uptake of 99mTc-diethylenetriamine pentaacetic acid (99mTc-DTPA), following either intravenous or intraosseous administration. Route of 99mTc-DTPA administration did not affect the percentage of the dose that accumulated in the kidney (P > 0.05). Renal uptake of 99mTc-DTPA was related to body mass (W, g) as: %Dose Kidney (min-1) = 11.09W(-0.235). Although not directly measured, the apparent renal clearance of 99mTc-DTPA could be described as: Renal CL 99mTc-DTPA (ml.min-1) = 0.005W(0.759), and the mass exponent did not differ from either the 2/3 or 3/4 values (P > 0.05). The similarity of the mass exponents relating both renal function and metabolic rate to body mass suggests a common mechanism underlying these allometric relationships. As this study also demonstrated that renal scintigraphy can be used to quantify kidney function in iguanas, this technique may be a useful research and diagnostic tool.

  16. A scale purification procedure for evaluation of differential item functioning

    NARCIS (Netherlands)

    Khalid, Muhammad Naveed; Glas, Cornelis A.W.

    2014-01-01

    Item bias or differential item functioning (DIF) has an important impact on the fairness of psychological and educational testing. In this paper, DIF is seen as a lack of fit to an item response (IRT) model. Inferences about the presence and importance of DIF require a process of so-called test

  17. A large-scale evaluation of computational protein function prediction

    NARCIS (Netherlands)

    Radivojac, P.; Clark, W.T.; Oron, T.R.; Schnoes, A.M.; Wittkop, T.; Kourmpetis, Y.A.I.; Dijk, van A.D.J.; Friedberg, I.

    2013-01-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be

  18. On Soft Limits of Large-Scale Structure Correlation Functions

    OpenAIRE

    Ben-Dayan, Ido; Konstandin, Thomas; Porto, Rafael A.; Sagunski, Laura

    2014-01-01

    We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literat...

  19. Examining the Functional Specification of Two-Parameter Model under Location and Scale Parameter Condition

    OpenAIRE

    Nakashima, Takahiro

    2006-01-01

    The functional specification of mean-standard deviation approach is examined under location and scale parameter condition. Firstly, the full set of restrictions imposed on the mean-standard deviation function under the location and scale parameter condition are made clear. Secondly, the examination based on the restrictions mentioned in the previous sentence derives the new properties of the mean-standard deviation function on the applicability of additive separability and the curvature of ex...

  20. Large-Scale Functional Brain Network Reorganization During Taoist Meditation.

    Science.gov (United States)

    Jao, Tun; Li, Chia-Wei; Vértes, Petra E; Wu, Changwei Wesley; Achard, Sophie; Hsieh, Chao-Hsien; Liou, Chien-Hui; Chen, Jyh-Horng; Bullmore, Edward T

    2016-02-01

    Meditation induces a distinct and reversible mental state that provides insights into brain correlates of consciousness. We explored brain network changes related to meditation by graph theoretical analysis of resting-state functional magnetic resonance imaging data. Eighteen Taoist meditators with varying levels of expertise were scanned using a within-subjects counterbalanced design during resting and meditation states. State-related differences in network topology were measured globally and at the level of individual nodes and edges. Although measures of global network topology, such as small-worldness, were unchanged, meditation was characterized by an extensive and expertise-dependent reorganization of the hubs (highly connected nodes) and edges (functional connections). Areas of sensory cortex, especially the bilateral primary visual and auditory cortices, and the bilateral temporopolar areas, which had the highest degree (or connectivity) during the resting state, showed the biggest decrease during meditation. Conversely, bilateral thalamus and components of the default mode network, mainly the bilateral precuneus and posterior cingulate cortex, had low degree in the resting state but increased degree during meditation. Additionally, these changes in nodal degree were accompanied by reorganization of anatomical orientation of the edges. During meditation, long-distance longitudinal (antero-posterior) edges increased proportionally, whereas orthogonal long-distance transverse (right-left) edges connecting bilaterally homologous cortices decreased. Our findings suggest that transient changes in consciousness associated with meditation introduce convergent changes in the topological and spatial properties of brain functional networks, and the anatomical pattern of integration might be as important as the global level of integration when considering the network basis for human consciousness.

  1. Contextual Compression of Large-Scale Wind Turbine Array Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gruchalla, Kenny M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunhart-Lupo, Nicholas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Potter, Kristin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clyne, John [National Center for Atmospheric Research (NCAR)

    2017-12-04

    Data sizes are becoming a critical issue particularly for HPC applications. We have developed a user-driven lossy wavelet-based storage model to facilitate the analysis and visualization of large-scale wind turbine array simulations. The model stores data as heterogeneous blocks of wavelet coefficients, providing high-fidelity access to user-defined data regions believed the most salient, while providing lower-fidelity access to less salient regions on a block-by-block basis. In practice, by retaining the wavelet coefficients as a function of feature saliency, we have seen data reductions in excess of 94 percent, while retaining lossless information in the turbine-wake regions most critical to analysis and providing enough (low-fidelity) contextual information in the upper atmosphere to track incoming coherent turbulent structures. Our contextual wavelet compression approach has allowed us to deliver interative visual analysis while providing the user control over where data loss, and thus reduction in accuracy, in the analysis occurs. We argue this reduced but contextualized representation is a valid approach and encourages contextual data management.

  2. Multiresolution wavelet-ANN model for significant wave height forecasting.

    Digital Repository Service at National Institute of Oceanography (India)

    Deka, P.C.; Mandal, S.; Prahlada, R.

    Hybrid wavelet artificial neural network (WLNN) has been applied in the present study to forecast significant wave heights (Hs). Here Discrete Wavelet Transformation is used to preprocess the time series data (Hs) prior to Artificial Neural Network...

  3. A New Formula for the Inverse Wavelet Transform

    OpenAIRE

    Sun, Wenchang

    2010-01-01

    Finding a computationally efficient algorithm for the inverse continuous wavelet transform is a fundamental topic in applications. In this paper, we show the convergence of the inverse wavelet transform.

  4. Wavelet transforms as solutions of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zweig, G.

    1997-10-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuous wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.

  5. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Directory of Open Access Journals (Sweden)

    Suyi Li

    2017-01-01

    Full Text Available The noninvasive peripheral oxygen saturation (SpO2 and the pulse rate can be extracted from photoplethysmography (PPG signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects’ PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  6. A Wavelet-Based Finite Element Method for the Self-Shielding Issue in Neutron Transport

    International Nuclear Information System (INIS)

    Le Tellier, R.; Fournier, D.; Ruggieri, J. M.

    2009-01-01

    This paper describes a new approach for treating the energy variable of the neutron transport equation in the resolved resonance energy range. The aim is to avoid recourse to a case-specific spatially dependent self-shielding calculation when considering a broad group structure. This method consists of a discontinuous Galerkin discretization of the energy using wavelet-based elements. A Σ t -orthogonalization of the element basis is presented in order to make the approach tractable for spatially dependent problems. First numerical tests of this method are carried out in a limited framework under the Livolant-Jeanpierre hypotheses in an infinite homogeneous medium. They are mainly focused on the way to construct the wavelet-based element basis. Indeed, the prior selection of these wavelet functions by a thresholding strategy applied to the discrete wavelet transform of a given quantity is a key issue for the convergence rate of the method. The Canuto thresholding approach applied to an approximate flux is found to yield a nearly optimal convergence in many cases. In these tests, the capability of such a finite element discretization to represent the flux depression in a resonant region is demonstrated; a relative accuracy of 10 -3 on the flux (in L 2 -norm) is reached with less than 100 wavelet coefficients per group. (authors)

  7. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    Science.gov (United States)

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  8. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Huiyan Jiang

    2012-01-01

    Full Text Available An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  9. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.

    Science.gov (United States)

    Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  10. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    Science.gov (United States)

    Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135

  11. A Time-Frequency Auditory Model Using Wavelet Packets

    DEFF Research Database (Denmark)

    Agerkvist, Finn

    1996-01-01

    A time-frequency auditory model is presented. The model uses the wavelet packet analysis as the preprocessor. The auditory filters are modelled by the rounded exponential filters, and the excitation is smoothed by a window function. By comparing time-frequency excitation patterns it is shown...... that the change in the time-frequency excitation pattern introduced when a test tone at masked threshold is added to the masker is approximately equal to 7 dB for all types of maskers. The classic detection ratio therefore overrates the detection efficiency of the auditory system....

  12. Modeling of Geological Objects and Geophysical Fields Using Haar Wavelets

    Directory of Open Access Journals (Sweden)

    A. S. Dolgal

    2014-12-01

    Full Text Available This article is a presentation of application of the fast wavelet transform with basic Haar functions for modeling the structural surfaces and geophysical fields, characterized by fractal features. The multiscale representation of experimental data allows reducing significantly a cost of the processing of large volume data and improving the interpretation quality. This paper presents the algorithms for sectionally prismatic approximation of geological objects, for preliminary estimation of the number of equivalent sources for the analytical approximation of fields, and for determination of the rock magnetization in the upper part of the geological section.

  13. Local-scaling density-functional method: Intraorbit and interorbit density optimizations

    International Nuclear Information System (INIS)

    Koga, T.; Yamamoto, Y.; Ludena, E.V.

    1991-01-01

    The recently proposed local-scaling density-functional theory provides us with a practical method for the direct variational determination of the electron density function ρ(r). The structure of ''orbits,'' which ensures the one-to-one correspondence between the electron density ρ(r) and the N-electron wave function Ψ({r k }), is studied in detail. For the realization of the local-scaling density-functional calculations, procedures for intraorbit and interorbit optimizations of the electron density function are proposed. These procedures are numerically illustrated for the helium atom in its ground state at the beyond-Hartree-Fock level

  14. Nuclear data compression and reconstruction via discrete wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)

  15. Nuclear data compression and reconstruction via discrete wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Ryong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    Discrete Wavelet Transforms (DWTs) are recent mathematics, and begin to be used in various fields. The wavelet transform can be used to compress the signal and image due to its inherent properties. We applied the wavelet transform compression and reconstruction to the neutron cross section data. Numerical tests illustrate that the signal compression using wavelet is very effective to reduce the data saving spaces. 7 refs., 4 figs., 3 tabs. (Author)

  16. Construction of a class of Daubechies type wavelet bases

    International Nuclear Information System (INIS)

    Li Dengfeng; Wu Guochang

    2009-01-01

    Extensive work has been done in the theory and the construction of compactly supported orthonormal wavelet bases of L 2 (R). Some of the most distinguished work was done by Daubechies, who constructed a whole family of such wavelet bases. In this paper, we construct a class of orthonormal wavelet bases by using the principle of Daubechies, and investigate the length of support and the regularity of these wavelet bases.

  17. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.

    Science.gov (United States)

    Du, Pan; Kibbe, Warren A; Lin, Simon M

    2006-09-01

    A major problem for current peak detection algorithms is that noise in mass spectrometry (MS) spectra gives rise to a high rate of false positives. The false positive rate is especially problematic in detecting peaks with low amplitudes. Usually, various baseline correction algorithms and smoothing methods are applied before attempting peak detection. This approach is very sensitive to the amount of smoothing and aggressiveness of the baseline correction, which contribute to making peak detection results inconsistent between runs, instrumentation and analysis methods. Most peak detection algorithms simply identify peaks based on amplitude, ignoring the additional information present in the shape of the peaks in a spectrum. In our experience, 'true' peaks have characteristic shapes, and providing a shape-matching function that provides a 'goodness of fit' coefficient should provide a more robust peak identification method. Based on these observations, a continuous wavelet transform (CWT)-based peak detection algorithm has been devised that identifies peaks with different scales and amplitudes. By transforming the spectrum into wavelet space, the pattern-matching problem is simplified and in addition provides a powerful technique for identifying and separating the signal from the spike noise and colored noise. This transformation, with the additional information provided by the 2D CWT coefficients can greatly enhance the effective signal-to-noise ratio. Furthermore, with this technique no baseline removal or peak smoothing preprocessing steps are required before peak detection, and this improves the robustness of peak detection under a variety of conditions. The algorithm was evaluated with SELDI-TOF spectra with known polypeptide positions. Comparisons with two other popular algorithms were performed. The results show the CWT-based algorithm can identify both strong and weak peaks while keeping false positive rate low. The algorithm is implemented in R and will be

  18. Selection of mother wavelets for the detection of the oscillation frequencies in power signals of nuclear reactors

    International Nuclear Information System (INIS)

    Amador G, R.; Castillo D, R.; Ortiz V, J.

    2007-01-01

    Diverse types of transitory events can lead to oscillations of power in nuclear reactors. In such events, the power monitors provide a signal that contains important characteristics of the transitory one, as the oscillation frequency, tendencies, changes and the instants or periods in those that important events are presented. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transform, Fourier Transform in Short Time, Wavelets Transform, among others. Presently work is used the one Wavelets Continuous Transform because it allows to carry out studies of the stationary, quasi-stationary and transitory signals in the Time-scale and Time-scale-spectrum planes. Contrary to other similar works, this work describes a methodology for the selection of the scales and the Wavelet mother to be applied the one Wavelets Continuous Transform, with the objective of detecting to the dominant frequencies of the system. To prove the proposal a broadly well-known real signal of an event of power oscillations it has been used. The obtained results correspond to three families of Wavelets mothers that fulfilled the conditions of scales and central frequency of the proposal. The results show that the value of the certain frequency oscillation in this work is practically the same one reported in other studies with other techniques. (Author)

  19. Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments

    Science.gov (United States)

    Carey, Sean K.; Tetzlaff, Doerthe; Buttle, Jim; Laudon, Hjalmar; McDonnell, Jeff; McGuire, Kevin; Seibert, Jan; Soulsby, Chris; Shanley, Jamie

    2013-10-01

    The higher midlatitudes of the northern hemisphere are particularly sensitive to change due to the important role the 0°C isotherm plays in the phase of precipitation and intermediate storage as snow. An international intercatchment comparison program called North-Watch seeks to improve our understanding of the sensitivity of northern catchments to change by examining their hydrological and biogeochemical variability and response. Here eight North-Watch catchments located in Sweden (Krycklan), Scotland (Girnock and Strontian), the United States (Sleepers River, Hubbard Brook, and HJ Andrews), and Canada (Dorset and Wolf Creek) with 10 continuous years of daily precipitation and runoff data were selected to assess daily to seasonal coupling of precipitation (P) and runoff (Q) using wavelet coherency, and to explore the patterns and scales of variability in streamflow using color maps. Wavelet coherency revealed that P and Q were decoupled in catchments with cold winters, yet were strongly coupled during and immediately following the spring snowmelt freshet. In all catchments, coupling at shorter time scales occurred during wet periods when the catchment was responsive and storage deficits were small. At longer time scales, coupling reflected coherence between seasonal cycles, being enhanced at sites with enhanced seasonality in P. Color maps were applied as an alternative method to identify patterns and scales of flow variability. Seasonal versus transient flow variability was identified along with the persistence of that variability on influencing the flow regime. While exploratory in nature, this intercomparison exercise highlights the importance of climate and the 0°C isotherm on the functioning of northern catchments.

  20. Uniform functional structure across spatial scales in an intertidal benthic assemblage.

    Science.gov (United States)

    Barnes, R S K; Hamylton, Sarah

    2015-05-01

    To investigate the causes of the remarkable similarity of emergent assemblage properties that has been demonstrated across disparate intertidal seagrass sites and assemblages, this study examined whether their emergent functional-group metrics are scale related by testing the null hypothesis that functional diversity and the suite of dominant functional groups in seagrass-associated macrofauna are robust structural features of such assemblages and do not vary spatially across nested scales within a 0.4 ha area. This was carried out via a lattice of 64 spatially referenced stations. Although densities of individual components were patchily dispersed across the locality, rank orders of importance of the 14 functional groups present, their overall functional diversity and evenness, and the proportions of the total individuals contained within each showed, in contrast, statistically significant spatial uniformity, even at areal scales functional groups in their geospatial context also revealed weaker than expected levels of spatial autocorrelation, and then only at the smaller scales and amongst the most dominant groups, and only a small number of negative correlations occurred between the proportional importances of the individual groups. In effect, such patterning was a surface veneer overlying remarkable stability of assemblage functional composition across all spatial scales. Although assemblage species composition is known to be homogeneous in some soft-sediment marine systems over equivalent scales, this combination of patchy individual components yet basically constant functional-group structure seems as yet unreported. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Wavelet transform-vector quantization compression of supercomputer ocean model simulation output

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J N; Brislawn, C M

    1992-11-12

    We describe a new procedure for efficient compression of digital information for storage and transmission purposes. The algorithm involves a discrete wavelet transform subband decomposition of the data set, followed by vector quantization of the wavelet transform coefficients using application-specific vector quantizers. The new vector quantizer design procedure optimizes the assignment of both memory resources and vector dimensions to the transform subbands by minimizing an exponential rate-distortion functional subject to constraints on both overall bit-rate and encoder complexity. The wavelet-vector quantization method, which originates in digital image compression. is applicable to the compression of other multidimensional data sets possessing some degree of smoothness. In this paper we discuss the use of this technique for compressing the output of supercomputer simulations of global climate models. The data presented here comes from Semtner-Chervin global ocean models run at the National Center for Atmospheric Research and at the Los Alamos Advanced Computing Laboratory.

  2. Identification of weak nonlinearities on damping and stiffness by the continuous wavelet transform

    Science.gov (United States)

    Ta, Minh-Nghi; Lardiès, Joseph

    2006-05-01

    We consider the free response of a nonlinear vibrating system. Using the ridges and skeletons of the continuous wavelet transform, we identify weak nonlinearities on damping and stiffness and estimate their physical parameters. The crucial choice of the son wavelet function is obtained using an optimization technique based on the entropy of the continuous wavelet transform. The method is applied to simulated single-degree-of-freedom systems and multi-degree-of-freedom systems with nonlinearities on damping and stiffness. Experimental validation of the nonlinear identification and parameter estimation method is presented. The experimental system is a clamped beam with nonlinearities on damping and stiffness and these nonlinearities are identified and quantified from a displacement sensor.

  3. Improved Real-time Denoising Method Based on Lifting Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Liu Zhaohua

    2014-06-01

    Full Text Available Signal denoising can not only enhance the signal to noise ratio (SNR but also reduce the effect of noise. In order to satisfy the requirements of real-time signal denoising, an improved semisoft shrinkage real-time denoising method based on lifting wavelet transform was proposed. The moving data window technology realizes the real-time wavelet denoising, which employs wavelet transform based on lifting scheme to reduce computational complexity. Also hyperbolic threshold function and recursive threshold computing can ensure the dynamic characteristics of the system, in addition, it can improve the real-time calculating efficiency as well. The simulation results show that the semisoft shrinkage real-time denoising method has quite a good performance in comparison to the traditional methods, namely soft-thresholding and hard-thresholding. Therefore, this method can solve more practical engineering problems.

  4. Wavelet Co-movement Significance Testing with Respect to Gaussian White Noise Background

    Directory of Open Access Journals (Sweden)

    Poměnková Jitka

    2018-01-01

    Full Text Available The paper deals with significance testing of time series co-movement measured via wavelet analysis, namely via the wavelet cross-spectra. This technique is very popular for its better time resolution compare to other techniques. Such approach put in evidence the existence of both long-run and short-run co-movement. In order to have better predictive power it is suitable to support and validate obtained results via some testing approach. We investigate the test of wavelet power cross-spectrum with respect to the Gaussian white noise background with the use of the Bessel function. Our experiment is performed on real data, i.e. seasonally adjusted quarterly data of gross domestic product of the United Kingdom, Korea and G7 countries. To validate the test results we perform Monte Carlo simulation. We describe the advantages and disadvantages of both approaches and formulate recommendations for its using.

  5. Kernel and wavelet density estimators on manifolds and more general metric spaces

    DEFF Research Database (Denmark)

    Cleanthous, G.; Georgiadis, Athanasios; Kerkyacharian, G.

    We consider the problem of estimating the density of observations taking values in classical or nonclassical spaces such as manifolds and more general metric spaces. Our setting is quite general but also sufficiently rich in allowing the development of smooth functional calculus with well localized...... spectral kernels, Besov regularity spaces, and wavelet type systems. Kernel and both linear and nonlinear wavelet density estimators are introduced and studied. Convergence rates for these estimators are established, which are analogous to the existing results in the classical setting of real...

  6. On extensions of wavelet systems to dual pairs of frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Hong Oh; Kim, Rae Young

    2015-01-01

    It is an open problem whether any pair of Bessel sequences with wavelet structure can be extended to a pair of dual frames by adding a pair of singly generated wavelet systems. We consider the particular case where the given wavelet systems are generated by the multiscale setup with trigonometric...

  7. Fast generation of computer-generated holograms using wavelet shrinkage.

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-01-09

    Computer-generated holograms (CGHs) are generated by superimposing complex amplitudes emitted from a number of object points. However, this superposition process remains very time-consuming even when using the latest computers. We propose a fast calculation algorithm for CGHs that uses a wavelet shrinkage method, eliminating small wavelet coefficient values to express approximated complex amplitudes using only a few representative wavelet coefficients.

  8. Image encryption using the fractional wavelet transform

    International Nuclear Information System (INIS)

    Vilardy, Juan M; Useche, J; Torres, C O; Mattos, L

    2011-01-01

    In this paper a technique for the coding of digital images is developed using Fractional Wavelet Transform (FWT) and random phase masks (RPMs). The digital image to encrypt is transformed with the FWT, after the coefficients resulting from the FWT (Approximation, Details: Horizontal, vertical and diagonal) are multiplied each one by different RPMs (statistically independent) and these latest results is applied an Inverse Wavelet Transform (IWT), obtaining the encrypted digital image. The decryption technique is the same encryption technique in reverse sense. This technique provides immediate advantages security compared to conventional techniques, in this technique the mother wavelet family and fractional orders associated with the FWT are additional keys that make access difficult to information to an unauthorized person (besides the RPMs used), thereby the level of encryption security is extraordinarily increased. In this work the mathematical support for the use of the FWT in the computational algorithm for the encryption is also developed.

  9. Motion compensation via redundant-wavelet multihypothesis.

    Science.gov (United States)

    Fowler, James E; Cui, Suxia; Wang, Yonghui

    2006-10-01

    Multihypothesis motion compensation has been widely used in video coding with previous attention focused on techniques employing predictions that are diverse spatially or temporally. In this paper, the multihypothesis concept is extended into the transform domain by using a redundant wavelet transform to produce multiple predictions that are diverse in transform phase. The corresponding multiple-phase inverse transform implicitly combines the phase-diverse predictions into a single spatial-domain prediction for motion compensation. The performance advantage of this redundant-wavelet-multihypothesis approach is investigated analytically, invoking the fact that the multiple-phase inverse involves a projection that significantly reduces the power of a dense-motion residual modeled as additive noise. The analysis shows that redundant-wavelet multihypothesis is capable of up to a 7-dB reduction in prediction-residual variance over an equivalent single-phase, single-hypothesis approach. Experimental results substantiate the performance advantage for a block-based implementation.

  10. ECG denoising with adaptive bionic wavelet transform.

    Science.gov (United States)

    Sayadi, Omid; Shamsollahi, Mohammad Bagher

    2006-01-01

    In this paper a new ECG denoising scheme is proposed using a novel adaptive wavelet transform, named bionic wavelet transform (BWT), which had been first developed based on a model of the active auditory system. There has been some outstanding features with the BWT such as nonlinearity, high sensitivity and frequency selectivity, concentrated energy distribution and its ability to reconstruct signal via inverse transform but the most distinguishing characteristic of BWT is that its resolution in the time-frequency domain can be adaptively adjusted not only by the signal frequency but also by the signal instantaneous amplitude and its first-order differential. Besides by optimizing the BWT parameters parallel to modifying a new threshold value, one can handle ECG denoising with results comparing to those of wavelet transform (WT). Preliminary tests of BWT application to ECG denoising were constructed on the signals of MIT-BIH database which showed high performance of noise reduction.

  11. Improvement of electrocardiogram by empirical wavelet transform

    Science.gov (United States)

    Chanchang, Vikanda; Kumchaiseemak, Nakorn; Sutthiopad, Malee; Luengviriya, Chaiya

    2017-09-01

    Electrocardiogram (ECG) is a crucial tool in the detection of cardiac arrhythmia. It is also often used in a routine physical exam, especially, for elderly people. This graphical representation of electrical activity of heart is obtained by a measurement of voltage at the skin; therefore, the signal is always contaminated by noise from various sources. For a proper interpretation, the quality of the ECG should be improved by a noise reduction. In this article, we present a study of a noise filtration in the ECG by using an empirical wavelet transform (EWT). Unlike the traditional wavelet method, EWT is adaptive since the frequency spectrum of the ECG is taken into account in the construction of the wavelet basis. We show that the signal-to-noise ratio increases after the noise filtration for different noise artefacts.

  12. Analysis of Satellite Drag Coefficient Based on Wavelet Transform

    Science.gov (United States)

    Liu, Wei; Wang, Ronglan; Liu, Siqing

    Abstract: Drag coefficient sequence was obtained by solving Tiangong1 continuous 55days GPS orbit data with different arc length. The same period solar flux f10.7 and geomagnetic index Ap ap series were high and low frequency multi-wavelet decomposition. Statistical analysis results of the layers sliding correlation between space environmental parameters and decomposition of Cd, showed that the satellite drag coefficient sequence after wavelet decomposition and the corresponding level of f10.7 Ap sequence with good lag correlation. It also verified that the Cd prediction is feasible. Prediction residuals of Cd with different regression models and different sample length were analysed. The results showed that the case was best when setting sample length 20 days and f10.7 regression model were used. It also showed that NRLMSIS-00 model's response in the region of 350km (Tiangong's altitude) and low-middle latitude (Tiangong's inclination) is excessive in ascent stage of geomagnetic activity Ap and is inadequate during fall off segment. Additionally, the low-frequency decomposition components NRLMSIS-00 model's response is appropriate in f10.7 rising segment. High frequency decomposition section, Showed NRLMSIS-00 model's response is small-scale inadequate during f10.7 ascent segment and is reverse in decline of f10.7. Finally, the potential use of a summary and outlook were listed; This method has an important reference value to improve the spacecraft orbit prediction accuracy. Key words: wavelet transform; drag coefficient; lag correlation; Tiangong1;space environment

  13. Reactor condition monitoring and singularity detection via wavelet and use of entropy in Monte Carlo calculation

    International Nuclear Information System (INIS)

    Kim, Ok Joo

    2007-02-01

    Wavelet theory was applied to detect the singularity in reactor power signal. Compared to Fourier transform, wavelet transform has localization properties in space and frequency. Therefore, by wavelet transform after de-noising, singular points can be found easily. To demonstrate this, we generated reactor power signals using a HANARO (a Korean multi-purpose research reactor) dynamics model consisting of 39 nonlinear differential equations and Gaussian noise. We applied wavelet transform decomposition and de-noising procedures to these signals. It was effective to detect the singular events such as sudden reactivity change and abrupt intrinsic property changes. Thus this method could be profitably utilized in a real-time system for automatic event recognition (e.g., reactor condition monitoring). In addition, using the wavelet de-noising concept, variance reduction of Monte Carlo result was tried. To get correct solution in Monte Carlo calculation, small uncertainty is required and it is quite time-consuming on a computer. Instead of long-time calculation in the Monte Carlo code (MCNP), wavelet de-noising can be performed to get small uncertainties. We applied this idea to MCNP results of k eff and fission source. Variance was reduced somewhat while the average value is kept constant. In MCNP criticality calculation, initial guess for the fission distribution is used and it could give contamination to solution. To avoid this situation, sufficient number of initial generations should be discarded, and they are called inactive cycles. Convergence check can give guildeline to determine when we should start the active cycles. Various entropy functions are tried to check the convergence of fission distribution. Some entropy functions reflect the convergence behavior of fission distribution well. Entropy could be a powerful method to determine inactive/active cycles in MCNP calculation

  14. Classification of arterial and venous cerebral vasculature based on wavelet postprocessing of CT perfusion data.

    Science.gov (United States)

    Havla, Lukas; Schneider, Moritz J; Thierfelder, Kolja M; Beyer, Sebastian E; Ertl-Wagner, Birgit; Reiser, Maximilian F; Sommer, Wieland H; Dietrich, Olaf

    2016-02-01

    The purpose of this study was to propose and evaluate a new wavelet-based technique for classification of arterial and venous vessels using time-resolved cerebral CT perfusion data sets. Fourteen consecutive patients (mean age 73 yr, range 17-97) with suspected stroke but no pathology in follow-up MRI were included. A CT perfusion scan with 32 dynamic phases was performed during intravenous bolus contrast-agent application. After rigid-body motion correction, a Paul wavelet (order 1) was used to calculate voxelwise the wavelet power spectrum (WPS) of each attenuation-time course. The angiographic intensity A was defined as the maximum of the WPS, located at the coordinates T (time axis) and W (scale/width axis) within the WPS. Using these three parameters (A, T, W) separately as well as combined by (1) Fisher's linear discriminant analysis (FLDA), (2) logistic regression (LogR) analysis, or (3) support vector machine (SVM) analysis, their potential to classify 18 different arterial and venous vessel segments per subject was evaluated. The best vessel classification was obtained using all three parameters A and T and W [area under the curve (AUC): 0.953 with FLDA and 0.957 with LogR or SVM]. In direct comparison, the wavelet-derived parameters provided performance at least equal to conventional attenuation-time-course parameters. The maximum AUC obtained from the proposed wavelet parameters was slightly (although not statistically significantly) higher than the maximum AUC (0.945) obtained from the conventional parameters. A new method to classify arterial and venous cerebral vessels with high statistical accuracy was introduced based on the time-domain wavelet transform of dynamic CT perfusion data in combination with linear or nonlinear multidimensional classification techniques.

  15. Electrocardiogram signal denoising based on a new improved wavelet thresholding

    Science.gov (United States)

    Han, Guoqiang; Xu, Zhijun

    2016-08-01

    Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method.

  16. Spanish adaptation of the internal functioning of the Work Teams Scale (QFI-22).

    Science.gov (United States)

    Ficapal-Cusí, Pilar; Boada-Grau, Joan; Torrent-Sellens, Joan; Vigil-Colet, Andreu

    2014-05-01

    The aim of this article is to develop the Spanish adaptation of the internal functioning of Work Teams Scale (QFI-22). The scale was adapted from the French version, and was applied to a sample of 1,055 employees working for firms operating in Spain. The article analyses the internal structure (exploratory and confirmatory factor analysis) and internal consistency, and provides convergent validity evidence of the scale. The QFI-22 scale shows the same internal structure as the original. Factor analysis confirmed the existence of two factors: interpersonal support and team work management, with good internal consistency coefficients (α1 = .93, α2 = .92). Regarding validity evidence, the QFI-22 scale has significant correlations with other correlates and alternative scales used for comparison purposes. The two factors correlated positively with team vision, participation safety, task orientation and support for innovation (Team Climate Inventory, TCI scale), with progressive culture (Organisational Culture, X-Y scale), and with creating change, customer focus and organisational learning (Denison Organizational Culture Survey, DOCS scale). In contrast, the two factors correlated negatively with traditional culture (X-Y scale). The QFI-22 scale is a useful instrument for assessing the internal functioning of work teams.

  17. Orthonormal Wavelet Bases for Quantum Molecular Dynamics

    International Nuclear Information System (INIS)

    Tymczak, C.; Wang, X.

    1997-01-01

    We report on the use of compactly supported, orthonormal wavelet bases for quantum molecular-dynamics (Car-Parrinello) algorithms. A wavelet selection scheme is developed and tested for prototypical problems, such as the three-dimensional harmonic oscillator, the hydrogen atom, and the local density approximation to atomic and molecular systems. Our method shows systematic convergence with increased grid size, along with improvement on compression rates, thereby yielding an optimal grid for self-consistent electronic structure calculations. copyright 1997 The American Physical Society

  18. Wavelet methods in mathematical analysis and engineering

    CERN Document Server

    Damlamian, Alain

    2010-01-01

    This book gives a comprehensive overview of both the fundamentals of wavelet analysis and related tools, and of the most active recent developments towards applications. It offers a stateoftheart in several active areas of research where wavelet ideas, or more generally multiresolution ideas have proved particularly effective. The main applications covered are in the numerical analysis of PDEs, and signal and image processing. Recently introduced techniques such as Empirical Mode Decomposition (EMD) and new trends in the recovery of missing data, such as compressed sensing, are also presented.

  19. Multiresolution signal decomposition transforms, subbands, and wavelets

    CERN Document Server

    Akansu, Ali N; Haddad, Paul R

    2001-01-01

    The uniqueness of this book is that it covers such important aspects of modern signal processing as block transforms from subband filter banks and wavelet transforms from a common unifying standpoint, thus demonstrating the commonality among these decomposition techniques. In addition, it covers such ""hot"" areas as signal compression and coding, including particular decomposition techniques and tables listing coefficients of subband and wavelet filters and other important properties.The field of this book (Electrical Engineering/Computer Science) is currently booming, which is, of course

  20. Translation, cultural adaptation and reproducibility of the Cochin Hand Functional Scale questionnaire for Brazil

    Directory of Open Access Journals (Sweden)

    Aline Chiari

    2011-01-01

    Full Text Available OBJECTIVE: To translate, to perform a cultural adaptation of and to test the reproducibility of the Cochin Hand Functional Scale questionnaire for Brazil. METHODS: First, the Cochin Hand Functional Scale questionnaire was translated into Portuguese and was then back-translated into French. These translations were reviewed by a committee to establish a Brazilian version of the questionnaire to be tested. The validity and reproducibility of the Cochin Hand Functional Scale questionnaire was evaluated. Patients of both sexes, who were aged 18 to 60 years and presented with rheumatoid arthritis affecting their hands, were interviewed. The patients were initially interviewed by two observers and were later interviewed by a single rater. First, the Visual Analogue Scale for hand pain, the Arm, Shoulder and Hand Disability questionnaire and the Health Assessment Questionnaire were administered. The third administration of the Cochin Hand Functional Scale was performed fifteen days after the first administration. Ninety patients were assessed in the present study. RESULTS: Two questions were modified as a result of the assessment of cultural equivalence. The Cronbach's alpha value for this assessment was 0.93. The intraclass intraobserver and interobserver correlation coefficients were 0.76 and 0.96, respectively. The Spearman's coefficient indicated that there was a low level of correlation between the Cochin Hand Functional Scale and the Visual Analogue Scale for pain (0.46 and that there was a moderate level of correlation of the Cochin Scale with the Health Assessment Questionnaire (0.66 and with the Disability of the Arm, Shoulder and Hand questionnaire (0.63. The average administration time for the Cochin Scale was three minutes. CONCLUSION: The Brazilian version of the Cochin Hand Functional Scale was successfully translated and adapted, and this version exhibited good internal consistency, reliability and construct validity.

  1. Pyramidal Watershed Segmentation Algorithm for High-Resolution Remote Sensing Images Using Discrete Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    K. Parvathi

    2009-01-01

    Full Text Available The watershed transformation is a useful morphological segmentation tool for a variety of grey-scale images. However, over segmentation and under segmentation have become the key problems for the conventional algorithm. In this paper, an efficient segmentation method for high-resolution remote sensing image analysis is presented. Wavelet analysis is one of the most popular techniques that can be used to detect local intensity variation and hence the wavelet transformation is used to analyze the image. Wavelet transform is applied to the image, producing detail (horizontal, vertical, and diagonal and Approximation coefficients. The image gradient with selective regional minima is estimated with the grey-scale morphology for the Approximation image at a suitable resolution, and then the watershed is applied to the gradient image to avoid over segmentation. The segmented image is projected up to high resolutions using the inverse wavelet transform. The watershed segmentation is applied to small subset size image, demanding less computational time. We have applied our new approach to analyze remote sensing images. The algorithm was implemented in MATLAB. Experimental results demonstrated the method to be effective.

  2. Scale Economies and Industry Agglomeration Externalities: A Dynamic Cost Function Approach

    OpenAIRE

    Donald S. Siegel; Catherine J. Morrison Paul

    1999-01-01

    Scale economies and agglomeration externalities are alleged to be important determinants of economic growth. To assess these effects, the authors outline and estimate a microfoundations model based on a dynamic cost function specification. This model provides for the separate identification of the impacts of externalities and cyclical utilization on short- and long-run scale economies and input substitution patterns. The authors find that scale economies are prevalent in U.S manufacturing; co...

  3. Reliability of the EK scale, a functional test for non-ambulatory persons with Duchenne dystrophy

    DEFF Research Database (Denmark)

    Steffensen, Birgit F.; Hyde, Sylvia A.; Attermann, Jørn

    2002-01-01

    The EK {Egen Klassifikation} scale was developed to assess overall functional ability in the non-ambulatory stage of Duchenne muscular dystrophy (DMD). The purpose of this study was to examine the reliability of the EK scale. Six subjects with DMD, selected as representative of the entire range...

  4. The MIMIC Method with Scale Purification for Detecting Differential Item Functioning

    Science.gov (United States)

    Wang, Wen-Chung; Shih, Ching-Lin; Yang, Chih-Chien

    2009-01-01

    This study implements a scale purification procedure onto the standard MIMIC method for differential item functioning (DIF) detection and assesses its performance through a series of simulations. It is found that the MIMIC method with scale purification (denoted as M-SP) outperforms the standard MIMIC method (denoted as M-ST) in controlling…

  5. Effects of wave function correlations on scaling violation in quasi-free electron scattering

    International Nuclear Information System (INIS)

    Tornow, V.; Drechsel, D.; Orlandini, G.; Traini, M.

    1981-01-01

    The scaling law in quasi-free electron scattering is broken due to the existence of exchange forces, leading to a finite mean value of the scaling variable anti y. This effect is considerably increased by wave function correlations, in particular by tensor correlations, similar to the case of the photonuclear enhancement factor k. (orig.)

  6. Measuring Functional Creativity: Non-Expert Raters and the Creative Solution Diagnosis Scale

    Science.gov (United States)

    Cropley, David H.; Kaufman, James C.

    2012-01-01

    The Creative Solution Diagnosis Scale (CSDS) is a 30-item scale based on a core of four criteria: Relevance & Effectiveness, Novelty, Elegance, and Genesis. The CSDS offers potential for the consensual assessment of functional product creativity. This article describes an empirical study in which non-expert judges rated a series of mousetrap…

  7. Brief Assessment of Motor Function: Content Validity and Reliability of the Upper Extremity Gross Motor Scale

    Science.gov (United States)

    Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn

    2011-01-01

    Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and…

  8. Time-frequency wavelet analysis of the interrelationship between the global macro assets and the fear indexes

    Science.gov (United States)

    Abid, Fathi; Kaffel, Bilel

    2018-01-01

    Understanding the interrelationships of the global macro assets is crucial for global macro investing. This paper investigates the local variance and the interconnection between the stock, gold, oil, Forex and the implied volatility markets in the time/frequency domains using the wavelet methodology, including the wavelet power spectrum, the wavelet squared coherence and phase difference, the wavelet multiple correlation and cross-correlation. The univariate analysis reveals that, in some crisis periods, underlying asset markets present the same pattern in terms of the wavelet power spectrum indicating high volatility for the medium scale, and that for the other market stress periods, volatility behaves differently. Moreover, unlike the underlying asset markets, the implied volatility markets are characterized by high power regions across the entire period, even in the absence of economic events. Bivariate results show a bidirectional relationship between the underlying assets and their corresponding implied volatility indexes, and a steady co-movement between the stock index and its corresponding fear index. Multiple correlation analysis indicates a strong correlation between markets at high scales with evidence of a nearly perfect integration for a period longer than a year. In addition, the hedging strategies based on the volatility index lead to an increase in portfolio correlation. On the other hand, the results from multiple cross-correlations reveal that the lead-lag effect starts from the medium scale and that the VIX (stock market volatility index) index is the potential leader or follower of the other markets.

  9. Smoothed Conditional Scale Function Estimation in AR(1-ARCH(1 Processes

    Directory of Open Access Journals (Sweden)

    Lema Logamou Seknewna

    2018-01-01

    Full Text Available The estimation of the Smoothed Conditional Scale Function for time series was taken out under the conditional heteroscedastic innovations by imitating the kernel smoothing in nonparametric QAR-QARCH scheme. The estimation was taken out based on the quantile regression methodology proposed by Koenker and Bassett. And the proof of the asymptotic properties of the Conditional Scale Function estimator for this type of process was given and its consistency was shown.

  10. Creation and Initial Validation of the International Dysphagia Diet Standardisation Initiative Functional Diet Scale.

    Science.gov (United States)

    Steele, Catriona M; Namasivayam-MacDonald, Ashwini M; Guida, Brittany T; Cichero, Julie A; Duivestein, Janice; Hanson, Ben; Lam, Peter; Riquelme, Luis F

    2018-05-01

    To assess consensual validity, interrater reliability, and criterion validity of the International Dysphagia Diet Standardisation Initiative Functional Diet Scale, a new functional outcome scale intended to capture the severity of oropharyngeal dysphagia, as represented by the degree of diet texture restriction recommended for the patient. Participants assigned International Dysphagia Diet Standardisation Initiative Functional Diet Scale scores to 16 clinical cases. Consensual validity was measured against reference scores determined by an author reference panel. Interrater reliability was measured overall and across quartile subsets of the dataset. Criterion validity was evaluated versus Functional Oral Intake Scale (FOIS) scores assigned by survey respondents to the same case scenarios. Feedback was requested regarding ease and likelihood of use. Web-based survey. Respondents (N=170) from 29 countries. Not applicable. Consensual validity (percent agreement and Kendall τ), criterion validity (Spearman rank correlation), and interrater reliability (Kendall concordance and intraclass coefficients). The International Dysphagia Diet Standardisation Initiative Functional Diet Scale showed strong consensual validity, criterion validity, and interrater reliability. Scenarios involving liquid-only diets, transition from nonoral feeding, or trial diet advances in therapy showed the poorest consensus, indicating a need for clear instructions on how to score these situations. The International Dysphagia Diet Standardisation Initiative Functional Diet Scale showed greater sensitivity than the FOIS to specific changes in diet. Most (>70%) respondents indicated enthusiasm for implementing the International Dysphagia Diet Standardisation Initiative Functional Diet Scale. This initial validation study suggests that the International Dysphagia Diet Standardisation Initiative Functional Diet Scale has strong consensual and criterion validity and can be used reliably by clinicians

  11. Solution of wave-like equation based on Haar wavelet

    Directory of Open Access Journals (Sweden)

    Naresh Berwal

    2012-11-01

    Full Text Available Wavelet transform and wavelet analysis are powerful mathematical tools for many problems. Wavelet also can be applied in numerical analysis. In this paper, we apply Haar wavelet method to solve wave-like equation with initial and boundary conditions known. The fundamental idea of Haar wavelet method is to convert the differential equations into a group of algebraic equations, which involves a finite number or variables. The results and graph show that the proposed way is quite reasonable when compared to exact solution.

  12. Comparison between wavelet and wavelet packet transform features for classification of faults in distribution system

    Science.gov (United States)

    Arvind, Pratul

    2012-11-01

    The ability to identify and classify all ten types of faults in a distribution system is an important task for protection engineers. Unlike transmission system, distribution systems have a complex configuration and are subjected to frequent faults. In the present work, an algorithm has been developed for identifying all ten types of faults in a distribution system by collecting current samples at the substation end. The samples are subjected to wavelet packet transform and artificial neural network in order to yield better classification results. A comparison of results between wavelet transform and wavelet packet transform is also presented thereby justifying the feature extracted from wavelet packet transform yields promising results. It should also be noted that current samples are collected after simulating a 25kv distribution system in PSCAD software.

  13. Research on Wavelet-Based Algorithm for Image Contrast Enhancement

    Institute of Scientific and Technical Information of China (English)

    Wu Ying-qian; Du Pei-jun; Shi Peng-fei

    2004-01-01

    A novel wavelet-based algorithm for image enhancement is proposed in the paper. On the basis of multiscale analysis, the proposed algorithm solves efficiently the problem of noise over-enhancement, which commonly occurs in the traditional methods for contrast enhancement. The decomposed coefficients at same scales are processed by a nonlinear method, and the coefficients at different scales are enhanced in different degree. During the procedure, the method takes full advantage of the properties of Human visual system so as to achieve better performance. The simulations demonstrate that these characters of the proposed approach enable it to fully enhance the content in images, to efficiently alleviate the enhancement of noise and to achieve much better enhancement effect than the traditional approaches.

  14. Image Compression using Haar and Modified Haar Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Mohannad Abid Shehab Ahmed

    2013-04-01

    Full Text Available Efficient image compression approaches can provide the best solutions to the recent growth of the data intensive and multimedia based applications. As presented in many papers the Haar matrix–based methods and wavelet analysis can be used in various areas of image processing such as edge detection, preserving, smoothing or filtering. In this paper, color image compression analysis and synthesis based on Haar and modified Haar is presented. The standard Haar wavelet transformation with N=2 is composed of a sequence of low-pass and high-pass filters, known as a filter bank, the vertical and horizontal Haar filters are composed to construct four 2-dimensional filters, such filters applied directly to the image to speed up the implementation of the Haar wavelet transform. Modified Haar technique is studied and implemented for odd based numbers i.e. (N=3 & N=5 to generate many solution sets, these sets are tested using the energy function or numerical method to get the optimum one.The Haar transform is simple, efficient in memory usage due to high zero value spread (it can use sparse principle, and exactly reversible without the edge effects as compared to DCT (Discrete Cosine Transform. The implemented Matlab simulation results prove the effectiveness of DWT (Discrete Wave Transform algorithms based on Haar and Modified Haar techniques in attaining an efficient compression ratio (C.R, achieving higher peak signal to noise ratio (PSNR, and the resulting images are of much smoother as compared to standard JPEG especially for high C.R. A comparison between standard JPEG, Haar, and Modified Haar techniques is done finally which approves the highest capability of Modified Haar between others.

  15. Development and Psychometric Properties of the OCD Family Functioning (OFF) Scale

    Science.gov (United States)

    Stewart, S. Evelyn; Hu, Yu-Pei; Hezel, Dianne M.; Proujansky, Rachel; Lamstein, Abby; Walsh, Casey; Ben-Joseph, Elana Pearl; Gironda, Christina; Jenike, Michael; Geller, Daniel A.; Pauls, David L.

    2013-01-01

    Obsessive–compulsive disorder (OCD) influences not only patients but also family members. Although the construct of family accommodation has received attention in OCD literature, no measures of overall family functioning are currently available. The OCD Family Functioning (OFF) Scale was developed to explore the context, extent, and perspectives of functional impairment in families affected by OCD. It is a three-part, self-report measure capturing independent perspectives of patients and relatives. A total of 400 subjects were enrolled between 2008 and 2010 from specialized OCD clinics and OCD research studies. Psychometric properties of this scale were examined including internal consistency, test–retest reliability, convergent and divergent validity, and exploratory factor analyses. Both patient and relative versions of the OFF Scale demonstrated excellent internal consistency (Cronbach’s alpha coefficient = 0.96). The test–retest reliability was also adequate (ICC = 0.80). Factor analyses determined that the OFF Scale comprises a family functioning impairment factor and four OCD symptom factors that were consistent with previously reported OCD symptom dimension studies. The OFF Scale demonstrated excellent convergent validity with the Family Accommodation Scale and the Work and Social Adjustment Scale. Information gathered regarding emotional impact and family role-specific impairment was novel and not captured by other examined scales. The OFF Scale is a reliable and valid instrument for the clinical and research assessment of family functioning in pediatric and adult OCD. This will facilitate the exploration of family functioning impairment as a potential risk factor, as a moderator and as a treatment outcome measure in OCD. PMID:21553962

  16. Studies on combined model based on functional objectives of large scale complex engineering

    Science.gov (United States)

    Yuting, Wang; Jingchun, Feng; Jiabao, Sun

    2018-03-01

    As various functions were included in large scale complex engineering, and each function would be conducted with completion of one or more projects, combined projects affecting their functions should be located. Based on the types of project portfolio, the relationship of projects and their functional objectives were analyzed. On that premise, portfolio projects-technics based on their functional objectives were introduced, then we studied and raised the principles of portfolio projects-technics based on the functional objectives of projects. In addition, The processes of combined projects were also constructed. With the help of portfolio projects-technics based on the functional objectives of projects, our research findings laid a good foundation for management of large scale complex engineering portfolio management.

  17. The function of communities in protein interaction networks at multiple scales

    Directory of Open Access Journals (Sweden)

    Jones Nick S

    2010-07-01

    Full Text Available Abstract Background If biology is modular then clusters, or communities, of proteins derived using only protein interaction network structure should define protein modules with similar biological roles. We investigate the link between biological modules and network communities in yeast and its relationship to the scale at which we probe the network. Results Our results demonstrate that the functional homogeneity of communities depends on the scale selected, and that almost all proteins lie in a functionally homogeneous community at some scale. We judge functional homogeneity using a novel test and three independent characterizations of protein function, and find a high degree of overlap between these measures. We show that a high mean clustering coefficient of a community can be used to identify those that are functionally homogeneous. By tracing the community membership of a protein through multiple scales we demonstrate how our approach could be useful to biologists focusing on a particular protein. Conclusions We show that there is no one scale of interest in the community structure of the yeast protein interaction network, but we can identify the range of resolution parameters that yield the most functionally coherent communities, and predict which communities are most likely to be functionally homogeneous.

  18. Protein structure analysis using the resonant recognition model and wavelet transforms

    International Nuclear Information System (INIS)

    Fang, Q.; Cosic, I.

    1998-01-01

    An approach based on the resonant recognition model and the discrete wavelet transform is introduced here for characterising proteins' biological function. The protein sequence is converted into a numerical series by assigning the electron-ion interaction potential to each amino acid from N-terminal to C-terminal. A set of peaks is found after performing a wavelet transform onto a numerical series representing a group of homologous proteins. These peaks are related to protein structural and functional properties and named characteristic vector of that protein group. Further more, the amino acids contributing mostly to a protein's biological functions, the so-called 'hot spots' amino acids, are predicted by the continuous wavelet transform. It is found that the hot spots are clustered around the protein's cleft structure. The wavelets approach provides a novel methods for amino acid sequence analysis as well as an expansion for the newly established macromolecular interaction model: the resonant recognition model. Copyright (1998) Australasian Physical and Engineering Sciences in Medicine

  19. Bayesian Estimation of the Scale Parameter of Inverse Weibull Distribution under the Asymmetric Loss Functions

    Directory of Open Access Journals (Sweden)

    Farhad Yahgmaei

    2013-01-01

    Full Text Available This paper proposes different methods of estimating the scale parameter in the inverse Weibull distribution (IWD. Specifically, the maximum likelihood estimator of the scale parameter in IWD is introduced. We then derived the Bayes estimators for the scale parameter in IWD by considering quasi, gamma, and uniform priors distributions under the square error, entropy, and precautionary loss functions. Finally, the different proposed estimators have been compared by the extensive simulation studies in corresponding the mean square errors and the evolution of risk functions.

  20. Target Identification Using Harmonic Wavelet Based ISAR Imaging

    Science.gov (United States)

    Shreyamsha Kumar, B. K.; Prabhakar, B.; Suryanarayana, K.; Thilagavathi, V.; Rajagopal, R.

    2006-12-01

    A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency (T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.